1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 254 if (Subtarget.is64Bit()) { 255 setOperationAction(ISD::ROTL, MVT::i32, Custom); 256 setOperationAction(ISD::ROTR, MVT::i32, Custom); 257 } 258 } else { 259 setOperationAction(ISD::ROTL, XLenVT, Expand); 260 setOperationAction(ISD::ROTR, XLenVT, Expand); 261 } 262 263 if (Subtarget.hasStdExtZbp()) { 264 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 265 // more combining. 266 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 267 setOperationAction(ISD::BSWAP, XLenVT, Custom); 268 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 269 // BSWAP i8 doesn't exist. 270 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 271 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 272 273 if (Subtarget.is64Bit()) { 274 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 275 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 276 } 277 } else { 278 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 279 // pattern match it directly in isel. 280 setOperationAction(ISD::BSWAP, XLenVT, 281 Subtarget.hasStdExtZbb() ? Legal : Expand); 282 } 283 284 if (Subtarget.hasStdExtZbb()) { 285 setOperationAction(ISD::SMIN, XLenVT, Legal); 286 setOperationAction(ISD::SMAX, XLenVT, Legal); 287 setOperationAction(ISD::UMIN, XLenVT, Legal); 288 setOperationAction(ISD::UMAX, XLenVT, Legal); 289 290 if (Subtarget.is64Bit()) { 291 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 292 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 294 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 295 } 296 } else { 297 setOperationAction(ISD::CTTZ, XLenVT, Expand); 298 setOperationAction(ISD::CTLZ, XLenVT, Expand); 299 setOperationAction(ISD::CTPOP, XLenVT, Expand); 300 } 301 302 if (Subtarget.hasStdExtZbt()) { 303 setOperationAction(ISD::FSHL, XLenVT, Custom); 304 setOperationAction(ISD::FSHR, XLenVT, Custom); 305 setOperationAction(ISD::SELECT, XLenVT, Legal); 306 307 if (Subtarget.is64Bit()) { 308 setOperationAction(ISD::FSHL, MVT::i32, Custom); 309 setOperationAction(ISD::FSHR, MVT::i32, Custom); 310 } 311 } else { 312 setOperationAction(ISD::SELECT, XLenVT, Custom); 313 } 314 315 static const ISD::CondCode FPCCToExpand[] = { 316 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 317 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 318 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 319 320 static const ISD::NodeType FPOpToExpand[] = { 321 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 322 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 323 324 if (Subtarget.hasStdExtZfh()) 325 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 326 327 if (Subtarget.hasStdExtZfh()) { 328 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 329 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 330 setOperationAction(ISD::LRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 332 setOperationAction(ISD::LROUND, MVT::f16, Legal); 333 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 334 setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal); 335 setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal); 336 setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal); 337 setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal); 338 setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); 339 setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); 340 setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); 341 setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); 342 setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); 343 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 344 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 345 setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); 346 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal); 348 for (auto CC : FPCCToExpand) 349 setCondCodeAction(CC, MVT::f16, Expand); 350 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 351 setOperationAction(ISD::SELECT, MVT::f16, Custom); 352 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 353 354 setOperationAction(ISD::FREM, MVT::f16, Promote); 355 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 356 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 357 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 358 setOperationAction(ISD::FRINT, MVT::f16, Promote); 359 setOperationAction(ISD::FROUND, MVT::f16, Promote); 360 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 361 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 362 setOperationAction(ISD::FPOW, MVT::f16, Promote); 363 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 364 setOperationAction(ISD::FCOS, MVT::f16, Promote); 365 setOperationAction(ISD::FSIN, MVT::f16, Promote); 366 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 367 setOperationAction(ISD::FEXP, MVT::f16, Promote); 368 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 369 setOperationAction(ISD::FLOG, MVT::f16, Promote); 370 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 371 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 372 373 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 374 // complete support for all operations in LegalizeDAG. 375 376 // We need to custom promote this. 377 if (Subtarget.is64Bit()) 378 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 379 } 380 381 if (Subtarget.hasStdExtF()) { 382 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 383 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 384 setOperationAction(ISD::LRINT, MVT::f32, Legal); 385 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 386 setOperationAction(ISD::LROUND, MVT::f32, Legal); 387 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 388 setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal); 389 setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal); 390 setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal); 391 setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal); 392 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 393 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 394 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 395 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 396 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 397 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 398 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 399 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 400 for (auto CC : FPCCToExpand) 401 setCondCodeAction(CC, MVT::f32, Expand); 402 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 403 setOperationAction(ISD::SELECT, MVT::f32, Custom); 404 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 405 for (auto Op : FPOpToExpand) 406 setOperationAction(Op, MVT::f32, Expand); 407 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 408 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 409 } 410 411 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 412 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 413 414 if (Subtarget.hasStdExtD()) { 415 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 416 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 417 setOperationAction(ISD::LRINT, MVT::f64, Legal); 418 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 419 setOperationAction(ISD::LROUND, MVT::f64, Legal); 420 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 421 setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal); 422 setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal); 423 setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal); 424 setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal); 425 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 426 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 427 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 428 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 429 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 430 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 431 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 432 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 433 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 434 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 435 for (auto CC : FPCCToExpand) 436 setCondCodeAction(CC, MVT::f64, Expand); 437 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 438 setOperationAction(ISD::SELECT, MVT::f64, Custom); 439 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 440 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 441 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 442 for (auto Op : FPOpToExpand) 443 setOperationAction(Op, MVT::f64, Expand); 444 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 445 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 446 } 447 448 if (Subtarget.is64Bit()) { 449 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 450 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 451 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 452 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 453 } 454 455 if (Subtarget.hasStdExtF()) { 456 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 457 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 458 459 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 460 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 461 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 462 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 463 464 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 465 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 466 } 467 468 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 469 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 470 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 471 setOperationAction(ISD::JumpTable, XLenVT, Custom); 472 473 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 474 475 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 476 // Unfortunately this can't be determined just from the ISA naming string. 477 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 478 Subtarget.is64Bit() ? Legal : Custom); 479 480 setOperationAction(ISD::TRAP, MVT::Other, Legal); 481 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 482 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 483 if (Subtarget.is64Bit()) 484 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 485 486 if (Subtarget.hasStdExtA()) { 487 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 488 setMinCmpXchgSizeInBits(32); 489 } else { 490 setMaxAtomicSizeInBitsSupported(0); 491 } 492 493 setBooleanContents(ZeroOrOneBooleanContent); 494 495 if (Subtarget.hasVInstructions()) { 496 setBooleanVectorContents(ZeroOrOneBooleanContent); 497 498 setOperationAction(ISD::VSCALE, XLenVT, Custom); 499 500 // RVV intrinsics may have illegal operands. 501 // We also need to custom legalize vmv.x.s. 502 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 503 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 504 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 505 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 506 if (Subtarget.is64Bit()) { 507 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 508 } else { 509 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 510 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 511 } 512 513 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 514 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 515 516 static const unsigned IntegerVPOps[] = { 517 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 518 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 519 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 520 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 521 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 522 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 523 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 524 ISD::VP_SELECT}; 525 526 static const unsigned FloatingPointVPOps[] = { 527 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 528 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 529 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SELECT}; 530 531 if (!Subtarget.is64Bit()) { 532 // We must custom-lower certain vXi64 operations on RV32 due to the vector 533 // element type being illegal. 534 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 535 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 536 537 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 538 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 539 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 540 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 541 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 542 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 543 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 544 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 545 546 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 547 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 548 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 549 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 550 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 551 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 552 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 553 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 554 } 555 556 for (MVT VT : BoolVecVTs) { 557 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 558 559 // Mask VTs are custom-expanded into a series of standard nodes 560 setOperationAction(ISD::TRUNCATE, VT, Custom); 561 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 562 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 563 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 564 565 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 566 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 567 568 setOperationAction(ISD::SELECT, VT, Custom); 569 setOperationAction(ISD::SELECT_CC, VT, Expand); 570 setOperationAction(ISD::VSELECT, VT, Expand); 571 setOperationAction(ISD::VP_SELECT, VT, Expand); 572 573 setOperationAction(ISD::VP_AND, VT, Custom); 574 setOperationAction(ISD::VP_OR, VT, Custom); 575 setOperationAction(ISD::VP_XOR, VT, Custom); 576 577 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 578 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 579 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 580 581 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 582 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 583 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 584 585 // RVV has native int->float & float->int conversions where the 586 // element type sizes are within one power-of-two of each other. Any 587 // wider distances between type sizes have to be lowered as sequences 588 // which progressively narrow the gap in stages. 589 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 590 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 591 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 592 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 593 594 // Expand all extending loads to types larger than this, and truncating 595 // stores from types larger than this. 596 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 597 setTruncStoreAction(OtherVT, VT, Expand); 598 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 599 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 600 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 601 } 602 } 603 604 for (MVT VT : IntVecVTs) { 605 if (VT.getVectorElementType() == MVT::i64 && 606 !Subtarget.hasVInstructionsI64()) 607 continue; 608 609 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 610 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 611 612 // Vectors implement MULHS/MULHU. 613 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 614 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 615 616 setOperationAction(ISD::SMIN, VT, Legal); 617 setOperationAction(ISD::SMAX, VT, Legal); 618 setOperationAction(ISD::UMIN, VT, Legal); 619 setOperationAction(ISD::UMAX, VT, Legal); 620 621 setOperationAction(ISD::ROTL, VT, Expand); 622 setOperationAction(ISD::ROTR, VT, Expand); 623 624 setOperationAction(ISD::CTTZ, VT, Expand); 625 setOperationAction(ISD::CTLZ, VT, Expand); 626 setOperationAction(ISD::CTPOP, VT, Expand); 627 628 setOperationAction(ISD::BSWAP, VT, Expand); 629 630 // Custom-lower extensions and truncations from/to mask types. 631 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 632 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 633 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 634 635 // RVV has native int->float & float->int conversions where the 636 // element type sizes are within one power-of-two of each other. Any 637 // wider distances between type sizes have to be lowered as sequences 638 // which progressively narrow the gap in stages. 639 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 640 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 641 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 642 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 643 644 setOperationAction(ISD::SADDSAT, VT, Legal); 645 setOperationAction(ISD::UADDSAT, VT, Legal); 646 setOperationAction(ISD::SSUBSAT, VT, Legal); 647 setOperationAction(ISD::USUBSAT, VT, Legal); 648 649 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 650 // nodes which truncate by one power of two at a time. 651 setOperationAction(ISD::TRUNCATE, VT, Custom); 652 653 // Custom-lower insert/extract operations to simplify patterns. 654 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 655 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 656 657 // Custom-lower reduction operations to set up the corresponding custom 658 // nodes' operands. 659 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 660 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 661 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 662 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 663 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 664 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 665 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 666 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 667 668 for (unsigned VPOpc : IntegerVPOps) 669 setOperationAction(VPOpc, VT, Custom); 670 671 setOperationAction(ISD::LOAD, VT, Custom); 672 setOperationAction(ISD::STORE, VT, Custom); 673 674 setOperationAction(ISD::MLOAD, VT, Custom); 675 setOperationAction(ISD::MSTORE, VT, Custom); 676 setOperationAction(ISD::MGATHER, VT, Custom); 677 setOperationAction(ISD::MSCATTER, VT, Custom); 678 679 setOperationAction(ISD::VP_LOAD, VT, Custom); 680 setOperationAction(ISD::VP_STORE, VT, Custom); 681 setOperationAction(ISD::VP_GATHER, VT, Custom); 682 setOperationAction(ISD::VP_SCATTER, VT, Custom); 683 684 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 685 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 686 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 687 688 setOperationAction(ISD::SELECT, VT, Custom); 689 setOperationAction(ISD::SELECT_CC, VT, Expand); 690 691 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 692 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 693 694 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 695 setTruncStoreAction(VT, OtherVT, Expand); 696 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 697 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 698 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 699 } 700 701 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 702 // type that can represent the value exactly. 703 if (VT.getVectorElementType() != MVT::i64) { 704 MVT FloatEltVT = 705 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 706 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 707 if (isTypeLegal(FloatVT)) { 708 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 709 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 710 } 711 } 712 } 713 714 // Expand various CCs to best match the RVV ISA, which natively supports UNE 715 // but no other unordered comparisons, and supports all ordered comparisons 716 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 717 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 718 // and we pattern-match those back to the "original", swapping operands once 719 // more. This way we catch both operations and both "vf" and "fv" forms with 720 // fewer patterns. 721 static const ISD::CondCode VFPCCToExpand[] = { 722 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 723 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 724 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 725 }; 726 727 // Sets common operation actions on RVV floating-point vector types. 728 const auto SetCommonVFPActions = [&](MVT VT) { 729 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 730 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 731 // sizes are within one power-of-two of each other. Therefore conversions 732 // between vXf16 and vXf64 must be lowered as sequences which convert via 733 // vXf32. 734 setOperationAction(ISD::FP_ROUND, VT, Custom); 735 setOperationAction(ISD::FP_EXTEND, VT, Custom); 736 // Custom-lower insert/extract operations to simplify patterns. 737 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 738 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 739 // Expand various condition codes (explained above). 740 for (auto CC : VFPCCToExpand) 741 setCondCodeAction(CC, VT, Expand); 742 743 setOperationAction(ISD::FMINNUM, VT, Legal); 744 setOperationAction(ISD::FMAXNUM, VT, Legal); 745 746 setOperationAction(ISD::FTRUNC, VT, Custom); 747 setOperationAction(ISD::FCEIL, VT, Custom); 748 setOperationAction(ISD::FFLOOR, VT, Custom); 749 750 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 751 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 752 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 753 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 754 755 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 756 757 setOperationAction(ISD::LOAD, VT, Custom); 758 setOperationAction(ISD::STORE, VT, Custom); 759 760 setOperationAction(ISD::MLOAD, VT, Custom); 761 setOperationAction(ISD::MSTORE, VT, Custom); 762 setOperationAction(ISD::MGATHER, VT, Custom); 763 setOperationAction(ISD::MSCATTER, VT, Custom); 764 765 setOperationAction(ISD::VP_LOAD, VT, Custom); 766 setOperationAction(ISD::VP_STORE, VT, Custom); 767 setOperationAction(ISD::VP_GATHER, VT, Custom); 768 setOperationAction(ISD::VP_SCATTER, VT, Custom); 769 770 setOperationAction(ISD::SELECT, VT, Custom); 771 setOperationAction(ISD::SELECT_CC, VT, Expand); 772 773 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 774 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 775 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 776 777 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 778 779 for (unsigned VPOpc : FloatingPointVPOps) 780 setOperationAction(VPOpc, VT, Custom); 781 }; 782 783 // Sets common extload/truncstore actions on RVV floating-point vector 784 // types. 785 const auto SetCommonVFPExtLoadTruncStoreActions = 786 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 787 for (auto SmallVT : SmallerVTs) { 788 setTruncStoreAction(VT, SmallVT, Expand); 789 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 790 } 791 }; 792 793 if (Subtarget.hasVInstructionsF16()) 794 for (MVT VT : F16VecVTs) 795 SetCommonVFPActions(VT); 796 797 for (MVT VT : F32VecVTs) { 798 if (Subtarget.hasVInstructionsF32()) 799 SetCommonVFPActions(VT); 800 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 801 } 802 803 for (MVT VT : F64VecVTs) { 804 if (Subtarget.hasVInstructionsF64()) 805 SetCommonVFPActions(VT); 806 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 807 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 808 } 809 810 if (Subtarget.useRVVForFixedLengthVectors()) { 811 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 812 if (!useRVVForFixedLengthVectorVT(VT)) 813 continue; 814 815 // By default everything must be expanded. 816 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 817 setOperationAction(Op, VT, Expand); 818 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 819 setTruncStoreAction(VT, OtherVT, Expand); 820 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 821 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 822 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 823 } 824 825 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 826 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 827 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 828 829 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 830 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 831 832 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 833 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 834 835 setOperationAction(ISD::LOAD, VT, Custom); 836 setOperationAction(ISD::STORE, VT, Custom); 837 838 setOperationAction(ISD::SETCC, VT, Custom); 839 840 setOperationAction(ISD::SELECT, VT, Custom); 841 842 setOperationAction(ISD::TRUNCATE, VT, Custom); 843 844 setOperationAction(ISD::BITCAST, VT, Custom); 845 846 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 847 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 848 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 849 850 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 851 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 852 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 853 854 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 855 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 856 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 857 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 858 859 // Operations below are different for between masks and other vectors. 860 if (VT.getVectorElementType() == MVT::i1) { 861 setOperationAction(ISD::VP_AND, VT, Custom); 862 setOperationAction(ISD::VP_OR, VT, Custom); 863 setOperationAction(ISD::VP_XOR, VT, Custom); 864 setOperationAction(ISD::AND, VT, Custom); 865 setOperationAction(ISD::OR, VT, Custom); 866 setOperationAction(ISD::XOR, VT, Custom); 867 continue; 868 } 869 870 // Use SPLAT_VECTOR to prevent type legalization from destroying the 871 // splats when type legalizing i64 scalar on RV32. 872 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 873 // improvements first. 874 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 875 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 876 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 877 } 878 879 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 880 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 881 882 setOperationAction(ISD::MLOAD, VT, Custom); 883 setOperationAction(ISD::MSTORE, VT, Custom); 884 setOperationAction(ISD::MGATHER, VT, Custom); 885 setOperationAction(ISD::MSCATTER, VT, Custom); 886 887 setOperationAction(ISD::VP_LOAD, VT, Custom); 888 setOperationAction(ISD::VP_STORE, VT, Custom); 889 setOperationAction(ISD::VP_GATHER, VT, Custom); 890 setOperationAction(ISD::VP_SCATTER, VT, Custom); 891 892 setOperationAction(ISD::ADD, VT, Custom); 893 setOperationAction(ISD::MUL, VT, Custom); 894 setOperationAction(ISD::SUB, VT, Custom); 895 setOperationAction(ISD::AND, VT, Custom); 896 setOperationAction(ISD::OR, VT, Custom); 897 setOperationAction(ISD::XOR, VT, Custom); 898 setOperationAction(ISD::SDIV, VT, Custom); 899 setOperationAction(ISD::SREM, VT, Custom); 900 setOperationAction(ISD::UDIV, VT, Custom); 901 setOperationAction(ISD::UREM, VT, Custom); 902 setOperationAction(ISD::SHL, VT, Custom); 903 setOperationAction(ISD::SRA, VT, Custom); 904 setOperationAction(ISD::SRL, VT, Custom); 905 906 setOperationAction(ISD::SMIN, VT, Custom); 907 setOperationAction(ISD::SMAX, VT, Custom); 908 setOperationAction(ISD::UMIN, VT, Custom); 909 setOperationAction(ISD::UMAX, VT, Custom); 910 setOperationAction(ISD::ABS, VT, Custom); 911 912 setOperationAction(ISD::MULHS, VT, Custom); 913 setOperationAction(ISD::MULHU, VT, Custom); 914 915 setOperationAction(ISD::SADDSAT, VT, Custom); 916 setOperationAction(ISD::UADDSAT, VT, Custom); 917 setOperationAction(ISD::SSUBSAT, VT, Custom); 918 setOperationAction(ISD::USUBSAT, VT, Custom); 919 920 setOperationAction(ISD::VSELECT, VT, Custom); 921 setOperationAction(ISD::SELECT_CC, VT, Expand); 922 923 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 924 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 925 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 926 927 // Custom-lower reduction operations to set up the corresponding custom 928 // nodes' operands. 929 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 930 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 931 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 932 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 933 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 934 935 for (unsigned VPOpc : IntegerVPOps) 936 setOperationAction(VPOpc, VT, Custom); 937 938 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 939 // type that can represent the value exactly. 940 if (VT.getVectorElementType() != MVT::i64) { 941 MVT FloatEltVT = 942 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 943 EVT FloatVT = 944 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 945 if (isTypeLegal(FloatVT)) { 946 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 947 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 948 } 949 } 950 } 951 952 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 953 if (!useRVVForFixedLengthVectorVT(VT)) 954 continue; 955 956 // By default everything must be expanded. 957 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 958 setOperationAction(Op, VT, Expand); 959 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 960 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 961 setTruncStoreAction(VT, OtherVT, Expand); 962 } 963 964 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 965 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 966 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 967 968 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 969 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 970 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 971 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 972 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 973 974 setOperationAction(ISD::LOAD, VT, Custom); 975 setOperationAction(ISD::STORE, VT, Custom); 976 setOperationAction(ISD::MLOAD, VT, Custom); 977 setOperationAction(ISD::MSTORE, VT, Custom); 978 setOperationAction(ISD::MGATHER, VT, Custom); 979 setOperationAction(ISD::MSCATTER, VT, Custom); 980 981 setOperationAction(ISD::VP_LOAD, VT, Custom); 982 setOperationAction(ISD::VP_STORE, VT, Custom); 983 setOperationAction(ISD::VP_GATHER, VT, Custom); 984 setOperationAction(ISD::VP_SCATTER, VT, Custom); 985 986 setOperationAction(ISD::FADD, VT, Custom); 987 setOperationAction(ISD::FSUB, VT, Custom); 988 setOperationAction(ISD::FMUL, VT, Custom); 989 setOperationAction(ISD::FDIV, VT, Custom); 990 setOperationAction(ISD::FNEG, VT, Custom); 991 setOperationAction(ISD::FABS, VT, Custom); 992 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 993 setOperationAction(ISD::FSQRT, VT, Custom); 994 setOperationAction(ISD::FMA, VT, Custom); 995 setOperationAction(ISD::FMINNUM, VT, Custom); 996 setOperationAction(ISD::FMAXNUM, VT, Custom); 997 998 setOperationAction(ISD::FP_ROUND, VT, Custom); 999 setOperationAction(ISD::FP_EXTEND, VT, Custom); 1000 1001 setOperationAction(ISD::FTRUNC, VT, Custom); 1002 setOperationAction(ISD::FCEIL, VT, Custom); 1003 setOperationAction(ISD::FFLOOR, VT, Custom); 1004 1005 for (auto CC : VFPCCToExpand) 1006 setCondCodeAction(CC, VT, Expand); 1007 1008 setOperationAction(ISD::VSELECT, VT, Custom); 1009 setOperationAction(ISD::SELECT, VT, Custom); 1010 setOperationAction(ISD::SELECT_CC, VT, Expand); 1011 1012 setOperationAction(ISD::BITCAST, VT, Custom); 1013 1014 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1015 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1016 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1017 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1018 1019 for (unsigned VPOpc : FloatingPointVPOps) 1020 setOperationAction(VPOpc, VT, Custom); 1021 } 1022 1023 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1024 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1025 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1026 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1027 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1028 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1029 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1030 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1031 } 1032 } 1033 1034 // Function alignments. 1035 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1036 setMinFunctionAlignment(FunctionAlignment); 1037 setPrefFunctionAlignment(FunctionAlignment); 1038 1039 setMinimumJumpTableEntries(5); 1040 1041 // Jumps are expensive, compared to logic 1042 setJumpIsExpensive(); 1043 1044 setTargetDAGCombine(ISD::ADD); 1045 setTargetDAGCombine(ISD::SUB); 1046 setTargetDAGCombine(ISD::AND); 1047 setTargetDAGCombine(ISD::OR); 1048 setTargetDAGCombine(ISD::XOR); 1049 setTargetDAGCombine(ISD::ANY_EXTEND); 1050 if (Subtarget.hasStdExtF()) { 1051 setTargetDAGCombine(ISD::ZERO_EXTEND); 1052 setTargetDAGCombine(ISD::FP_TO_SINT); 1053 setTargetDAGCombine(ISD::FP_TO_UINT); 1054 } 1055 if (Subtarget.hasVInstructions()) { 1056 setTargetDAGCombine(ISD::FCOPYSIGN); 1057 setTargetDAGCombine(ISD::MGATHER); 1058 setTargetDAGCombine(ISD::MSCATTER); 1059 setTargetDAGCombine(ISD::VP_GATHER); 1060 setTargetDAGCombine(ISD::VP_SCATTER); 1061 setTargetDAGCombine(ISD::SRA); 1062 setTargetDAGCombine(ISD::SRL); 1063 setTargetDAGCombine(ISD::SHL); 1064 setTargetDAGCombine(ISD::STORE); 1065 } 1066 } 1067 1068 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1069 LLVMContext &Context, 1070 EVT VT) const { 1071 if (!VT.isVector()) 1072 return getPointerTy(DL); 1073 if (Subtarget.hasVInstructions() && 1074 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1075 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1076 return VT.changeVectorElementTypeToInteger(); 1077 } 1078 1079 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1080 return Subtarget.getXLenVT(); 1081 } 1082 1083 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1084 const CallInst &I, 1085 MachineFunction &MF, 1086 unsigned Intrinsic) const { 1087 auto &DL = I.getModule()->getDataLayout(); 1088 switch (Intrinsic) { 1089 default: 1090 return false; 1091 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1092 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1093 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1094 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1095 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1096 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1097 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1098 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1099 case Intrinsic::riscv_masked_cmpxchg_i32: { 1100 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 1101 Info.opc = ISD::INTRINSIC_W_CHAIN; 1102 Info.memVT = MVT::getVT(PtrTy->getElementType()); 1103 Info.ptrVal = I.getArgOperand(0); 1104 Info.offset = 0; 1105 Info.align = Align(4); 1106 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1107 MachineMemOperand::MOVolatile; 1108 return true; 1109 } 1110 case Intrinsic::riscv_masked_strided_load: 1111 Info.opc = ISD::INTRINSIC_W_CHAIN; 1112 Info.ptrVal = I.getArgOperand(1); 1113 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1114 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1115 Info.size = MemoryLocation::UnknownSize; 1116 Info.flags |= MachineMemOperand::MOLoad; 1117 return true; 1118 case Intrinsic::riscv_masked_strided_store: 1119 Info.opc = ISD::INTRINSIC_VOID; 1120 Info.ptrVal = I.getArgOperand(1); 1121 Info.memVT = 1122 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1123 Info.align = Align( 1124 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1125 8); 1126 Info.size = MemoryLocation::UnknownSize; 1127 Info.flags |= MachineMemOperand::MOStore; 1128 return true; 1129 } 1130 } 1131 1132 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1133 const AddrMode &AM, Type *Ty, 1134 unsigned AS, 1135 Instruction *I) const { 1136 // No global is ever allowed as a base. 1137 if (AM.BaseGV) 1138 return false; 1139 1140 // Require a 12-bit signed offset. 1141 if (!isInt<12>(AM.BaseOffs)) 1142 return false; 1143 1144 switch (AM.Scale) { 1145 case 0: // "r+i" or just "i", depending on HasBaseReg. 1146 break; 1147 case 1: 1148 if (!AM.HasBaseReg) // allow "r+i". 1149 break; 1150 return false; // disallow "r+r" or "r+r+i". 1151 default: 1152 return false; 1153 } 1154 1155 return true; 1156 } 1157 1158 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1159 return isInt<12>(Imm); 1160 } 1161 1162 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1163 return isInt<12>(Imm); 1164 } 1165 1166 // On RV32, 64-bit integers are split into their high and low parts and held 1167 // in two different registers, so the trunc is free since the low register can 1168 // just be used. 1169 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1170 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1171 return false; 1172 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1173 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1174 return (SrcBits == 64 && DestBits == 32); 1175 } 1176 1177 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1178 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1179 !SrcVT.isInteger() || !DstVT.isInteger()) 1180 return false; 1181 unsigned SrcBits = SrcVT.getSizeInBits(); 1182 unsigned DestBits = DstVT.getSizeInBits(); 1183 return (SrcBits == 64 && DestBits == 32); 1184 } 1185 1186 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1187 // Zexts are free if they can be combined with a load. 1188 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1189 // poorly with type legalization of compares preferring sext. 1190 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1191 EVT MemVT = LD->getMemoryVT(); 1192 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1193 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1194 LD->getExtensionType() == ISD::ZEXTLOAD)) 1195 return true; 1196 } 1197 1198 return TargetLowering::isZExtFree(Val, VT2); 1199 } 1200 1201 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1202 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1203 } 1204 1205 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1206 return Subtarget.hasStdExtZbb(); 1207 } 1208 1209 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1210 return Subtarget.hasStdExtZbb(); 1211 } 1212 1213 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1214 EVT VT = Y.getValueType(); 1215 1216 // FIXME: Support vectors once we have tests. 1217 if (VT.isVector()) 1218 return false; 1219 1220 return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y); 1221 } 1222 1223 /// Check if sinking \p I's operands to I's basic block is profitable, because 1224 /// the operands can be folded into a target instruction, e.g. 1225 /// splats of scalars can fold into vector instructions. 1226 bool RISCVTargetLowering::shouldSinkOperands( 1227 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1228 using namespace llvm::PatternMatch; 1229 1230 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1231 return false; 1232 1233 auto IsSinker = [&](Instruction *I, int Operand) { 1234 switch (I->getOpcode()) { 1235 case Instruction::Add: 1236 case Instruction::Sub: 1237 case Instruction::Mul: 1238 case Instruction::And: 1239 case Instruction::Or: 1240 case Instruction::Xor: 1241 case Instruction::FAdd: 1242 case Instruction::FSub: 1243 case Instruction::FMul: 1244 case Instruction::FDiv: 1245 case Instruction::ICmp: 1246 case Instruction::FCmp: 1247 return true; 1248 case Instruction::Shl: 1249 case Instruction::LShr: 1250 case Instruction::AShr: 1251 case Instruction::UDiv: 1252 case Instruction::SDiv: 1253 case Instruction::URem: 1254 case Instruction::SRem: 1255 return Operand == 1; 1256 case Instruction::Call: 1257 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1258 switch (II->getIntrinsicID()) { 1259 case Intrinsic::fma: 1260 return Operand == 0 || Operand == 1; 1261 default: 1262 return false; 1263 } 1264 } 1265 return false; 1266 default: 1267 return false; 1268 } 1269 }; 1270 1271 for (auto OpIdx : enumerate(I->operands())) { 1272 if (!IsSinker(I, OpIdx.index())) 1273 continue; 1274 1275 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1276 // Make sure we are not already sinking this operand 1277 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1278 continue; 1279 1280 // We are looking for a splat that can be sunk. 1281 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1282 m_Undef(), m_ZeroMask()))) 1283 continue; 1284 1285 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1286 // and vector registers 1287 for (Use &U : Op->uses()) { 1288 Instruction *Insn = cast<Instruction>(U.getUser()); 1289 if (!IsSinker(Insn, U.getOperandNo())) 1290 return false; 1291 } 1292 1293 Ops.push_back(&Op->getOperandUse(0)); 1294 Ops.push_back(&OpIdx.value()); 1295 } 1296 return true; 1297 } 1298 1299 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1300 bool ForCodeSize) const { 1301 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1302 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1303 return false; 1304 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1305 return false; 1306 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1307 return false; 1308 if (Imm.isNegZero()) 1309 return false; 1310 return Imm.isZero(); 1311 } 1312 1313 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1314 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1315 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1316 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1317 } 1318 1319 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1320 CallingConv::ID CC, 1321 EVT VT) const { 1322 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1323 // We might still end up using a GPR but that will be decided based on ABI. 1324 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1325 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1326 return MVT::f32; 1327 1328 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1329 } 1330 1331 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1332 CallingConv::ID CC, 1333 EVT VT) const { 1334 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1335 // We might still end up using a GPR but that will be decided based on ABI. 1336 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1337 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1338 return 1; 1339 1340 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1341 } 1342 1343 // Changes the condition code and swaps operands if necessary, so the SetCC 1344 // operation matches one of the comparisons supported directly by branches 1345 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1346 // with 1/-1. 1347 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1348 ISD::CondCode &CC, SelectionDAG &DAG) { 1349 // Convert X > -1 to X >= 0. 1350 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1351 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1352 CC = ISD::SETGE; 1353 return; 1354 } 1355 // Convert X < 1 to 0 >= X. 1356 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1357 RHS = LHS; 1358 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1359 CC = ISD::SETGE; 1360 return; 1361 } 1362 1363 switch (CC) { 1364 default: 1365 break; 1366 case ISD::SETGT: 1367 case ISD::SETLE: 1368 case ISD::SETUGT: 1369 case ISD::SETULE: 1370 CC = ISD::getSetCCSwappedOperands(CC); 1371 std::swap(LHS, RHS); 1372 break; 1373 } 1374 } 1375 1376 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1377 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1378 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1379 if (VT.getVectorElementType() == MVT::i1) 1380 KnownSize *= 8; 1381 1382 switch (KnownSize) { 1383 default: 1384 llvm_unreachable("Invalid LMUL."); 1385 case 8: 1386 return RISCVII::VLMUL::LMUL_F8; 1387 case 16: 1388 return RISCVII::VLMUL::LMUL_F4; 1389 case 32: 1390 return RISCVII::VLMUL::LMUL_F2; 1391 case 64: 1392 return RISCVII::VLMUL::LMUL_1; 1393 case 128: 1394 return RISCVII::VLMUL::LMUL_2; 1395 case 256: 1396 return RISCVII::VLMUL::LMUL_4; 1397 case 512: 1398 return RISCVII::VLMUL::LMUL_8; 1399 } 1400 } 1401 1402 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1403 switch (LMul) { 1404 default: 1405 llvm_unreachable("Invalid LMUL."); 1406 case RISCVII::VLMUL::LMUL_F8: 1407 case RISCVII::VLMUL::LMUL_F4: 1408 case RISCVII::VLMUL::LMUL_F2: 1409 case RISCVII::VLMUL::LMUL_1: 1410 return RISCV::VRRegClassID; 1411 case RISCVII::VLMUL::LMUL_2: 1412 return RISCV::VRM2RegClassID; 1413 case RISCVII::VLMUL::LMUL_4: 1414 return RISCV::VRM4RegClassID; 1415 case RISCVII::VLMUL::LMUL_8: 1416 return RISCV::VRM8RegClassID; 1417 } 1418 } 1419 1420 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1421 RISCVII::VLMUL LMUL = getLMUL(VT); 1422 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1423 LMUL == RISCVII::VLMUL::LMUL_F4 || 1424 LMUL == RISCVII::VLMUL::LMUL_F2 || 1425 LMUL == RISCVII::VLMUL::LMUL_1) { 1426 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1427 "Unexpected subreg numbering"); 1428 return RISCV::sub_vrm1_0 + Index; 1429 } 1430 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1431 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1432 "Unexpected subreg numbering"); 1433 return RISCV::sub_vrm2_0 + Index; 1434 } 1435 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1436 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1437 "Unexpected subreg numbering"); 1438 return RISCV::sub_vrm4_0 + Index; 1439 } 1440 llvm_unreachable("Invalid vector type."); 1441 } 1442 1443 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1444 if (VT.getVectorElementType() == MVT::i1) 1445 return RISCV::VRRegClassID; 1446 return getRegClassIDForLMUL(getLMUL(VT)); 1447 } 1448 1449 // Attempt to decompose a subvector insert/extract between VecVT and 1450 // SubVecVT via subregister indices. Returns the subregister index that 1451 // can perform the subvector insert/extract with the given element index, as 1452 // well as the index corresponding to any leftover subvectors that must be 1453 // further inserted/extracted within the register class for SubVecVT. 1454 std::pair<unsigned, unsigned> 1455 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1456 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1457 const RISCVRegisterInfo *TRI) { 1458 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1459 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1460 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1461 "Register classes not ordered"); 1462 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1463 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1464 // Try to compose a subregister index that takes us from the incoming 1465 // LMUL>1 register class down to the outgoing one. At each step we half 1466 // the LMUL: 1467 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1468 // Note that this is not guaranteed to find a subregister index, such as 1469 // when we are extracting from one VR type to another. 1470 unsigned SubRegIdx = RISCV::NoSubRegister; 1471 for (const unsigned RCID : 1472 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1473 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1474 VecVT = VecVT.getHalfNumVectorElementsVT(); 1475 bool IsHi = 1476 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1477 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1478 getSubregIndexByMVT(VecVT, IsHi)); 1479 if (IsHi) 1480 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1481 } 1482 return {SubRegIdx, InsertExtractIdx}; 1483 } 1484 1485 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1486 // stores for those types. 1487 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1488 return !Subtarget.useRVVForFixedLengthVectors() || 1489 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1490 } 1491 1492 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1493 if (ScalarTy->isPointerTy()) 1494 return true; 1495 1496 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1497 ScalarTy->isIntegerTy(32)) 1498 return true; 1499 1500 if (ScalarTy->isIntegerTy(64)) 1501 return Subtarget.hasVInstructionsI64(); 1502 1503 if (ScalarTy->isHalfTy()) 1504 return Subtarget.hasVInstructionsF16(); 1505 if (ScalarTy->isFloatTy()) 1506 return Subtarget.hasVInstructionsF32(); 1507 if (ScalarTy->isDoubleTy()) 1508 return Subtarget.hasVInstructionsF64(); 1509 1510 return false; 1511 } 1512 1513 static bool useRVVForFixedLengthVectorVT(MVT VT, 1514 const RISCVSubtarget &Subtarget) { 1515 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1516 if (!Subtarget.useRVVForFixedLengthVectors()) 1517 return false; 1518 1519 // We only support a set of vector types with a consistent maximum fixed size 1520 // across all supported vector element types to avoid legalization issues. 1521 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1522 // fixed-length vector type we support is 1024 bytes. 1523 if (VT.getFixedSizeInBits() > 1024 * 8) 1524 return false; 1525 1526 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1527 1528 MVT EltVT = VT.getVectorElementType(); 1529 1530 // Don't use RVV for vectors we cannot scalarize if required. 1531 switch (EltVT.SimpleTy) { 1532 // i1 is supported but has different rules. 1533 default: 1534 return false; 1535 case MVT::i1: 1536 // Masks can only use a single register. 1537 if (VT.getVectorNumElements() > MinVLen) 1538 return false; 1539 MinVLen /= 8; 1540 break; 1541 case MVT::i8: 1542 case MVT::i16: 1543 case MVT::i32: 1544 break; 1545 case MVT::i64: 1546 if (!Subtarget.hasVInstructionsI64()) 1547 return false; 1548 break; 1549 case MVT::f16: 1550 if (!Subtarget.hasVInstructionsF16()) 1551 return false; 1552 break; 1553 case MVT::f32: 1554 if (!Subtarget.hasVInstructionsF32()) 1555 return false; 1556 break; 1557 case MVT::f64: 1558 if (!Subtarget.hasVInstructionsF64()) 1559 return false; 1560 break; 1561 } 1562 1563 // Reject elements larger than ELEN. 1564 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1565 return false; 1566 1567 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1568 // Don't use RVV for types that don't fit. 1569 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1570 return false; 1571 1572 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1573 // the base fixed length RVV support in place. 1574 if (!VT.isPow2VectorType()) 1575 return false; 1576 1577 return true; 1578 } 1579 1580 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1581 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1582 } 1583 1584 // Return the largest legal scalable vector type that matches VT's element type. 1585 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1586 const RISCVSubtarget &Subtarget) { 1587 // This may be called before legal types are setup. 1588 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1589 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1590 "Expected legal fixed length vector!"); 1591 1592 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1593 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1594 1595 MVT EltVT = VT.getVectorElementType(); 1596 switch (EltVT.SimpleTy) { 1597 default: 1598 llvm_unreachable("unexpected element type for RVV container"); 1599 case MVT::i1: 1600 case MVT::i8: 1601 case MVT::i16: 1602 case MVT::i32: 1603 case MVT::i64: 1604 case MVT::f16: 1605 case MVT::f32: 1606 case MVT::f64: { 1607 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1608 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1609 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1610 unsigned NumElts = 1611 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1612 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1613 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1614 return MVT::getScalableVectorVT(EltVT, NumElts); 1615 } 1616 } 1617 } 1618 1619 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1620 const RISCVSubtarget &Subtarget) { 1621 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1622 Subtarget); 1623 } 1624 1625 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1626 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1627 } 1628 1629 // Grow V to consume an entire RVV register. 1630 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1631 const RISCVSubtarget &Subtarget) { 1632 assert(VT.isScalableVector() && 1633 "Expected to convert into a scalable vector!"); 1634 assert(V.getValueType().isFixedLengthVector() && 1635 "Expected a fixed length vector operand!"); 1636 SDLoc DL(V); 1637 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1638 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1639 } 1640 1641 // Shrink V so it's just big enough to maintain a VT's worth of data. 1642 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1643 const RISCVSubtarget &Subtarget) { 1644 assert(VT.isFixedLengthVector() && 1645 "Expected to convert into a fixed length vector!"); 1646 assert(V.getValueType().isScalableVector() && 1647 "Expected a scalable vector operand!"); 1648 SDLoc DL(V); 1649 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1650 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1651 } 1652 1653 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1654 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1655 // the vector type that it is contained in. 1656 static std::pair<SDValue, SDValue> 1657 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1658 const RISCVSubtarget &Subtarget) { 1659 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1660 MVT XLenVT = Subtarget.getXLenVT(); 1661 SDValue VL = VecVT.isFixedLengthVector() 1662 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1663 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1664 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1665 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1666 return {Mask, VL}; 1667 } 1668 1669 // As above but assuming the given type is a scalable vector type. 1670 static std::pair<SDValue, SDValue> 1671 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1672 const RISCVSubtarget &Subtarget) { 1673 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1674 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1675 } 1676 1677 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1678 // of either is (currently) supported. This can get us into an infinite loop 1679 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1680 // as a ..., etc. 1681 // Until either (or both) of these can reliably lower any node, reporting that 1682 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1683 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1684 // which is not desirable. 1685 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1686 EVT VT, unsigned DefinedValues) const { 1687 return false; 1688 } 1689 1690 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1691 // Only splats are currently supported. 1692 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1693 return true; 1694 1695 return false; 1696 } 1697 1698 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1699 const RISCVSubtarget &Subtarget) { 1700 // RISCV FP-to-int conversions saturate to the destination register size, but 1701 // don't produce 0 for nan. We can use a conversion instruction and fix the 1702 // nan case with a compare and a select. 1703 SDValue Src = Op.getOperand(0); 1704 1705 EVT DstVT = Op.getValueType(); 1706 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1707 1708 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1709 unsigned Opc; 1710 if (SatVT == DstVT) 1711 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1712 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1713 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1714 else 1715 return SDValue(); 1716 // FIXME: Support other SatVTs by clamping before or after the conversion. 1717 1718 SDLoc DL(Op); 1719 SDValue FpToInt = DAG.getNode( 1720 Opc, DL, DstVT, Src, 1721 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1722 1723 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1724 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1725 } 1726 1727 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1728 // and back. Taking care to avoid converting values that are nan or already 1729 // correct. 1730 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1731 // have FRM dependencies modeled yet. 1732 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1733 MVT VT = Op.getSimpleValueType(); 1734 assert(VT.isVector() && "Unexpected type"); 1735 1736 SDLoc DL(Op); 1737 1738 // Freeze the source since we are increasing the number of uses. 1739 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1740 1741 // Truncate to integer and convert back to FP. 1742 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1743 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1744 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1745 1746 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1747 1748 if (Op.getOpcode() == ISD::FCEIL) { 1749 // If the truncated value is the greater than or equal to the original 1750 // value, we've computed the ceil. Otherwise, we went the wrong way and 1751 // need to increase by 1. 1752 // FIXME: This should use a masked operation. Handle here or in isel? 1753 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1754 DAG.getConstantFP(1.0, DL, VT)); 1755 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1756 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1757 } else if (Op.getOpcode() == ISD::FFLOOR) { 1758 // If the truncated value is the less than or equal to the original value, 1759 // we've computed the floor. Otherwise, we went the wrong way and need to 1760 // decrease by 1. 1761 // FIXME: This should use a masked operation. Handle here or in isel? 1762 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1763 DAG.getConstantFP(1.0, DL, VT)); 1764 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1765 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1766 } 1767 1768 // Restore the original sign so that -0.0 is preserved. 1769 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1770 1771 // Determine the largest integer that can be represented exactly. This and 1772 // values larger than it don't have any fractional bits so don't need to 1773 // be converted. 1774 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1775 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1776 APFloat MaxVal = APFloat(FltSem); 1777 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1778 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1779 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1780 1781 // If abs(Src) was larger than MaxVal or nan, keep it. 1782 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1783 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1784 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1785 } 1786 1787 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1788 const RISCVSubtarget &Subtarget) { 1789 MVT VT = Op.getSimpleValueType(); 1790 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1791 1792 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1793 1794 SDLoc DL(Op); 1795 SDValue Mask, VL; 1796 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1797 1798 unsigned Opc = 1799 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1800 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1801 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1802 } 1803 1804 struct VIDSequence { 1805 int64_t StepNumerator; 1806 unsigned StepDenominator; 1807 int64_t Addend; 1808 }; 1809 1810 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1811 // to the (non-zero) step S and start value X. This can be then lowered as the 1812 // RVV sequence (VID * S) + X, for example. 1813 // The step S is represented as an integer numerator divided by a positive 1814 // denominator. Note that the implementation currently only identifies 1815 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1816 // cannot detect 2/3, for example. 1817 // Note that this method will also match potentially unappealing index 1818 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1819 // determine whether this is worth generating code for. 1820 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1821 unsigned NumElts = Op.getNumOperands(); 1822 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1823 if (!Op.getValueType().isInteger()) 1824 return None; 1825 1826 Optional<unsigned> SeqStepDenom; 1827 Optional<int64_t> SeqStepNum, SeqAddend; 1828 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1829 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1830 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1831 // Assume undef elements match the sequence; we just have to be careful 1832 // when interpolating across them. 1833 if (Op.getOperand(Idx).isUndef()) 1834 continue; 1835 // The BUILD_VECTOR must be all constants. 1836 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1837 return None; 1838 1839 uint64_t Val = Op.getConstantOperandVal(Idx) & 1840 maskTrailingOnes<uint64_t>(EltSizeInBits); 1841 1842 if (PrevElt) { 1843 // Calculate the step since the last non-undef element, and ensure 1844 // it's consistent across the entire sequence. 1845 unsigned IdxDiff = Idx - PrevElt->second; 1846 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1847 1848 // A zero-value value difference means that we're somewhere in the middle 1849 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1850 // step change before evaluating the sequence. 1851 if (ValDiff != 0) { 1852 int64_t Remainder = ValDiff % IdxDiff; 1853 // Normalize the step if it's greater than 1. 1854 if (Remainder != ValDiff) { 1855 // The difference must cleanly divide the element span. 1856 if (Remainder != 0) 1857 return None; 1858 ValDiff /= IdxDiff; 1859 IdxDiff = 1; 1860 } 1861 1862 if (!SeqStepNum) 1863 SeqStepNum = ValDiff; 1864 else if (ValDiff != SeqStepNum) 1865 return None; 1866 1867 if (!SeqStepDenom) 1868 SeqStepDenom = IdxDiff; 1869 else if (IdxDiff != *SeqStepDenom) 1870 return None; 1871 } 1872 } 1873 1874 // Record and/or check any addend. 1875 if (SeqStepNum && SeqStepDenom) { 1876 uint64_t ExpectedVal = 1877 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1878 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1879 if (!SeqAddend) 1880 SeqAddend = Addend; 1881 else if (SeqAddend != Addend) 1882 return None; 1883 } 1884 1885 // Record this non-undef element for later. 1886 if (!PrevElt || PrevElt->first != Val) 1887 PrevElt = std::make_pair(Val, Idx); 1888 } 1889 // We need to have logged both a step and an addend for this to count as 1890 // a legal index sequence. 1891 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1892 return None; 1893 1894 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1895 } 1896 1897 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1898 const RISCVSubtarget &Subtarget) { 1899 MVT VT = Op.getSimpleValueType(); 1900 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1901 1902 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1903 1904 SDLoc DL(Op); 1905 SDValue Mask, VL; 1906 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1907 1908 MVT XLenVT = Subtarget.getXLenVT(); 1909 unsigned NumElts = Op.getNumOperands(); 1910 1911 if (VT.getVectorElementType() == MVT::i1) { 1912 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1913 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1914 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1915 } 1916 1917 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1918 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1919 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1920 } 1921 1922 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1923 // scalar integer chunks whose bit-width depends on the number of mask 1924 // bits and XLEN. 1925 // First, determine the most appropriate scalar integer type to use. This 1926 // is at most XLenVT, but may be shrunk to a smaller vector element type 1927 // according to the size of the final vector - use i8 chunks rather than 1928 // XLenVT if we're producing a v8i1. This results in more consistent 1929 // codegen across RV32 and RV64. 1930 unsigned NumViaIntegerBits = 1931 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1932 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1933 // If we have to use more than one INSERT_VECTOR_ELT then this 1934 // optimization is likely to increase code size; avoid peforming it in 1935 // such a case. We can use a load from a constant pool in this case. 1936 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1937 return SDValue(); 1938 // Now we can create our integer vector type. Note that it may be larger 1939 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1940 MVT IntegerViaVecVT = 1941 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1942 divideCeil(NumElts, NumViaIntegerBits)); 1943 1944 uint64_t Bits = 0; 1945 unsigned BitPos = 0, IntegerEltIdx = 0; 1946 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1947 1948 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1949 // Once we accumulate enough bits to fill our scalar type, insert into 1950 // our vector and clear our accumulated data. 1951 if (I != 0 && I % NumViaIntegerBits == 0) { 1952 if (NumViaIntegerBits <= 32) 1953 Bits = SignExtend64(Bits, 32); 1954 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1955 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1956 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1957 Bits = 0; 1958 BitPos = 0; 1959 IntegerEltIdx++; 1960 } 1961 SDValue V = Op.getOperand(I); 1962 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1963 Bits |= ((uint64_t)BitValue << BitPos); 1964 } 1965 1966 // Insert the (remaining) scalar value into position in our integer 1967 // vector type. 1968 if (NumViaIntegerBits <= 32) 1969 Bits = SignExtend64(Bits, 32); 1970 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1971 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1972 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1973 1974 if (NumElts < NumViaIntegerBits) { 1975 // If we're producing a smaller vector than our minimum legal integer 1976 // type, bitcast to the equivalent (known-legal) mask type, and extract 1977 // our final mask. 1978 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1979 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1980 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1981 DAG.getConstant(0, DL, XLenVT)); 1982 } else { 1983 // Else we must have produced an integer type with the same size as the 1984 // mask type; bitcast for the final result. 1985 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1986 Vec = DAG.getBitcast(VT, Vec); 1987 } 1988 1989 return Vec; 1990 } 1991 1992 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1993 // vector type, we have a legal equivalently-sized i8 type, so we can use 1994 // that. 1995 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1996 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1997 1998 SDValue WideVec; 1999 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2000 // For a splat, perform a scalar truncate before creating the wider 2001 // vector. 2002 assert(Splat.getValueType() == XLenVT && 2003 "Unexpected type for i1 splat value"); 2004 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2005 DAG.getConstant(1, DL, XLenVT)); 2006 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2007 } else { 2008 SmallVector<SDValue, 8> Ops(Op->op_values()); 2009 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2010 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2011 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2012 } 2013 2014 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2015 } 2016 2017 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2018 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2019 : RISCVISD::VMV_V_X_VL; 2020 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 2021 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2022 } 2023 2024 // Try and match index sequences, which we can lower to the vid instruction 2025 // with optional modifications. An all-undef vector is matched by 2026 // getSplatValue, above. 2027 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2028 int64_t StepNumerator = SimpleVID->StepNumerator; 2029 unsigned StepDenominator = SimpleVID->StepDenominator; 2030 int64_t Addend = SimpleVID->Addend; 2031 2032 assert(StepNumerator != 0 && "Invalid step"); 2033 bool Negate = false; 2034 int64_t SplatStepVal = StepNumerator; 2035 unsigned StepOpcode = ISD::MUL; 2036 if (StepNumerator != 1) { 2037 if (isPowerOf2_64(std::abs(StepNumerator))) { 2038 Negate = StepNumerator < 0; 2039 StepOpcode = ISD::SHL; 2040 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2041 } 2042 } 2043 2044 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2045 // threshold since it's the immediate value many RVV instructions accept. 2046 // There is no vmul.vi instruction so ensure multiply constant can fit in 2047 // a single addi instruction. 2048 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2049 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2050 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2051 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2052 // Convert right out of the scalable type so we can use standard ISD 2053 // nodes for the rest of the computation. If we used scalable types with 2054 // these, we'd lose the fixed-length vector info and generate worse 2055 // vsetvli code. 2056 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2057 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2058 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2059 SDValue SplatStep = DAG.getSplatVector( 2060 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2061 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2062 } 2063 if (StepDenominator != 1) { 2064 SDValue SplatStep = DAG.getSplatVector( 2065 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2066 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2067 } 2068 if (Addend != 0 || Negate) { 2069 SDValue SplatAddend = 2070 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2071 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2072 } 2073 return VID; 2074 } 2075 } 2076 2077 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2078 // when re-interpreted as a vector with a larger element type. For example, 2079 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2080 // could be instead splat as 2081 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2082 // TODO: This optimization could also work on non-constant splats, but it 2083 // would require bit-manipulation instructions to construct the splat value. 2084 SmallVector<SDValue> Sequence; 2085 unsigned EltBitSize = VT.getScalarSizeInBits(); 2086 const auto *BV = cast<BuildVectorSDNode>(Op); 2087 if (VT.isInteger() && EltBitSize < 64 && 2088 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2089 BV->getRepeatedSequence(Sequence) && 2090 (Sequence.size() * EltBitSize) <= 64) { 2091 unsigned SeqLen = Sequence.size(); 2092 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2093 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2094 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2095 ViaIntVT == MVT::i64) && 2096 "Unexpected sequence type"); 2097 2098 unsigned EltIdx = 0; 2099 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2100 uint64_t SplatValue = 0; 2101 // Construct the amalgamated value which can be splatted as this larger 2102 // vector type. 2103 for (const auto &SeqV : Sequence) { 2104 if (!SeqV.isUndef()) 2105 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2106 << (EltIdx * EltBitSize)); 2107 EltIdx++; 2108 } 2109 2110 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2111 // achieve better constant materializion. 2112 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2113 SplatValue = SignExtend64(SplatValue, 32); 2114 2115 // Since we can't introduce illegal i64 types at this stage, we can only 2116 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2117 // way we can use RVV instructions to splat. 2118 assert((ViaIntVT.bitsLE(XLenVT) || 2119 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2120 "Unexpected bitcast sequence"); 2121 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2122 SDValue ViaVL = 2123 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2124 MVT ViaContainerVT = 2125 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2126 SDValue Splat = 2127 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2128 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2129 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2130 return DAG.getBitcast(VT, Splat); 2131 } 2132 } 2133 2134 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2135 // which constitute a large proportion of the elements. In such cases we can 2136 // splat a vector with the dominant element and make up the shortfall with 2137 // INSERT_VECTOR_ELTs. 2138 // Note that this includes vectors of 2 elements by association. The 2139 // upper-most element is the "dominant" one, allowing us to use a splat to 2140 // "insert" the upper element, and an insert of the lower element at position 2141 // 0, which improves codegen. 2142 SDValue DominantValue; 2143 unsigned MostCommonCount = 0; 2144 DenseMap<SDValue, unsigned> ValueCounts; 2145 unsigned NumUndefElts = 2146 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2147 2148 // Track the number of scalar loads we know we'd be inserting, estimated as 2149 // any non-zero floating-point constant. Other kinds of element are either 2150 // already in registers or are materialized on demand. The threshold at which 2151 // a vector load is more desirable than several scalar materializion and 2152 // vector-insertion instructions is not known. 2153 unsigned NumScalarLoads = 0; 2154 2155 for (SDValue V : Op->op_values()) { 2156 if (V.isUndef()) 2157 continue; 2158 2159 ValueCounts.insert(std::make_pair(V, 0)); 2160 unsigned &Count = ValueCounts[V]; 2161 2162 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2163 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2164 2165 // Is this value dominant? In case of a tie, prefer the highest element as 2166 // it's cheaper to insert near the beginning of a vector than it is at the 2167 // end. 2168 if (++Count >= MostCommonCount) { 2169 DominantValue = V; 2170 MostCommonCount = Count; 2171 } 2172 } 2173 2174 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2175 unsigned NumDefElts = NumElts - NumUndefElts; 2176 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2177 2178 // Don't perform this optimization when optimizing for size, since 2179 // materializing elements and inserting them tends to cause code bloat. 2180 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2181 ((MostCommonCount > DominantValueCountThreshold) || 2182 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2183 // Start by splatting the most common element. 2184 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2185 2186 DenseSet<SDValue> Processed{DominantValue}; 2187 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2188 for (const auto &OpIdx : enumerate(Op->ops())) { 2189 const SDValue &V = OpIdx.value(); 2190 if (V.isUndef() || !Processed.insert(V).second) 2191 continue; 2192 if (ValueCounts[V] == 1) { 2193 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2194 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2195 } else { 2196 // Blend in all instances of this value using a VSELECT, using a 2197 // mask where each bit signals whether that element is the one 2198 // we're after. 2199 SmallVector<SDValue> Ops; 2200 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2201 return DAG.getConstant(V == V1, DL, XLenVT); 2202 }); 2203 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2204 DAG.getBuildVector(SelMaskTy, DL, Ops), 2205 DAG.getSplatBuildVector(VT, DL, V), Vec); 2206 } 2207 } 2208 2209 return Vec; 2210 } 2211 2212 return SDValue(); 2213 } 2214 2215 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2216 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2217 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2218 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2219 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2220 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2221 // node in order to try and match RVV vector/scalar instructions. 2222 if ((LoC >> 31) == HiC) 2223 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2224 2225 // If vl is equal to VLMax and Hi constant is equal to Lo, we could use 2226 // vmv.v.x whose EEW = 32 to lower it. 2227 auto *Const = dyn_cast<ConstantSDNode>(VL); 2228 if (LoC == HiC && Const && Const->getSExtValue() == RISCV::VLMaxSentinel) { 2229 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2230 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2231 // access the subtarget here now. 2232 auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT, Lo, VL); 2233 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2234 } 2235 } 2236 2237 // Fall back to a stack store and stride x0 vector load. 2238 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2239 } 2240 2241 // Called by type legalization to handle splat of i64 on RV32. 2242 // FIXME: We can optimize this when the type has sign or zero bits in one 2243 // of the halves. 2244 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2245 SDValue VL, SelectionDAG &DAG) { 2246 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2247 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2248 DAG.getConstant(0, DL, MVT::i32)); 2249 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2250 DAG.getConstant(1, DL, MVT::i32)); 2251 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2252 } 2253 2254 // This function lowers a splat of a scalar operand Splat with the vector 2255 // length VL. It ensures the final sequence is type legal, which is useful when 2256 // lowering a splat after type legalization. 2257 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2258 SelectionDAG &DAG, 2259 const RISCVSubtarget &Subtarget) { 2260 if (VT.isFloatingPoint()) { 2261 // If VL is 1, we could use vfmv.s.f. 2262 if (isOneConstant(VL)) 2263 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT), 2264 Scalar, VL); 2265 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2266 } 2267 2268 MVT XLenVT = Subtarget.getXLenVT(); 2269 2270 // Simplest case is that the operand needs to be promoted to XLenVT. 2271 if (Scalar.getValueType().bitsLE(XLenVT)) { 2272 // If the operand is a constant, sign extend to increase our chances 2273 // of being able to use a .vi instruction. ANY_EXTEND would become a 2274 // a zero extend and the simm5 check in isel would fail. 2275 // FIXME: Should we ignore the upper bits in isel instead? 2276 unsigned ExtOpc = 2277 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2278 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2279 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2280 // If VL is 1 and the scalar value won't benefit from immediate, we could 2281 // use vmv.s.x. 2282 if (isOneConstant(VL) && 2283 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2284 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar, 2285 VL); 2286 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2287 } 2288 2289 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2290 "Unexpected scalar for splat lowering!"); 2291 2292 if (isOneConstant(VL) && isNullConstant(Scalar)) 2293 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), 2294 DAG.getConstant(0, DL, XLenVT), VL); 2295 2296 // Otherwise use the more complicated splatting algorithm. 2297 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2298 } 2299 2300 // Is the mask a slidedown that shifts in undefs. 2301 static int matchShuffleAsSlideDown(ArrayRef<int> Mask) { 2302 int Size = Mask.size(); 2303 2304 // Elements shifted in should be undef. 2305 auto CheckUndefs = [&](int Shift) { 2306 for (int i = Size - Shift; i != Size; ++i) 2307 if (Mask[i] >= 0) 2308 return false; 2309 return true; 2310 }; 2311 2312 // Elements should be shifted or undef. 2313 auto MatchShift = [&](int Shift) { 2314 for (int i = 0; i != Size - Shift; ++i) 2315 if (Mask[i] >= 0 && Mask[i] != Shift + i) 2316 return false; 2317 return true; 2318 }; 2319 2320 // Try all possible shifts. 2321 for (int Shift = 1; Shift != Size; ++Shift) 2322 if (CheckUndefs(Shift) && MatchShift(Shift)) 2323 return Shift; 2324 2325 // No match. 2326 return -1; 2327 } 2328 2329 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2330 const RISCVSubtarget &Subtarget) { 2331 SDValue V1 = Op.getOperand(0); 2332 SDValue V2 = Op.getOperand(1); 2333 SDLoc DL(Op); 2334 MVT XLenVT = Subtarget.getXLenVT(); 2335 MVT VT = Op.getSimpleValueType(); 2336 unsigned NumElts = VT.getVectorNumElements(); 2337 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2338 2339 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2340 2341 SDValue TrueMask, VL; 2342 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2343 2344 if (SVN->isSplat()) { 2345 const int Lane = SVN->getSplatIndex(); 2346 if (Lane >= 0) { 2347 MVT SVT = VT.getVectorElementType(); 2348 2349 // Turn splatted vector load into a strided load with an X0 stride. 2350 SDValue V = V1; 2351 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2352 // with undef. 2353 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2354 int Offset = Lane; 2355 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2356 int OpElements = 2357 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2358 V = V.getOperand(Offset / OpElements); 2359 Offset %= OpElements; 2360 } 2361 2362 // We need to ensure the load isn't atomic or volatile. 2363 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2364 auto *Ld = cast<LoadSDNode>(V); 2365 Offset *= SVT.getStoreSize(); 2366 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2367 TypeSize::Fixed(Offset), DL); 2368 2369 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2370 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2371 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2372 SDValue IntID = 2373 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2374 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2375 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2376 SDValue NewLoad = DAG.getMemIntrinsicNode( 2377 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2378 DAG.getMachineFunction().getMachineMemOperand( 2379 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2380 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2381 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2382 } 2383 2384 // Otherwise use a scalar load and splat. This will give the best 2385 // opportunity to fold a splat into the operation. ISel can turn it into 2386 // the x0 strided load if we aren't able to fold away the select. 2387 if (SVT.isFloatingPoint()) 2388 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2389 Ld->getPointerInfo().getWithOffset(Offset), 2390 Ld->getOriginalAlign(), 2391 Ld->getMemOperand()->getFlags()); 2392 else 2393 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2394 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2395 Ld->getOriginalAlign(), 2396 Ld->getMemOperand()->getFlags()); 2397 DAG.makeEquivalentMemoryOrdering(Ld, V); 2398 2399 unsigned Opc = 2400 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2401 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2402 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2403 } 2404 2405 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2406 assert(Lane < (int)NumElts && "Unexpected lane!"); 2407 SDValue Gather = 2408 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2409 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2410 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2411 } 2412 } 2413 2414 // Try to match as a slidedown. 2415 int SlideAmt = matchShuffleAsSlideDown(SVN->getMask()); 2416 if (SlideAmt >= 0) { 2417 // TODO: Should we reduce the VL to account for the upper undef elements? 2418 // Requires additional vsetvlis, but might be faster to execute. 2419 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2420 SDValue SlideDown = 2421 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2422 DAG.getUNDEF(ContainerVT), V1, 2423 DAG.getConstant(SlideAmt, DL, XLenVT), 2424 TrueMask, VL); 2425 return convertFromScalableVector(VT, SlideDown, DAG, Subtarget); 2426 } 2427 2428 // Detect shuffles which can be re-expressed as vector selects; these are 2429 // shuffles in which each element in the destination is taken from an element 2430 // at the corresponding index in either source vectors. 2431 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2432 int MaskIndex = MaskIdx.value(); 2433 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2434 }); 2435 2436 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2437 2438 SmallVector<SDValue> MaskVals; 2439 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2440 // merged with a second vrgather. 2441 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2442 2443 // By default we preserve the original operand order, and use a mask to 2444 // select LHS as true and RHS as false. However, since RVV vector selects may 2445 // feature splats but only on the LHS, we may choose to invert our mask and 2446 // instead select between RHS and LHS. 2447 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2448 bool InvertMask = IsSelect == SwapOps; 2449 2450 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2451 // half. 2452 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2453 2454 // Now construct the mask that will be used by the vselect or blended 2455 // vrgather operation. For vrgathers, construct the appropriate indices into 2456 // each vector. 2457 for (int MaskIndex : SVN->getMask()) { 2458 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2459 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2460 if (!IsSelect) { 2461 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2462 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2463 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2464 : DAG.getUNDEF(XLenVT)); 2465 GatherIndicesRHS.push_back( 2466 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2467 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2468 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2469 ++LHSIndexCounts[MaskIndex]; 2470 if (!IsLHSOrUndefIndex) 2471 ++RHSIndexCounts[MaskIndex - NumElts]; 2472 } 2473 } 2474 2475 if (SwapOps) { 2476 std::swap(V1, V2); 2477 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2478 } 2479 2480 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2481 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2482 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2483 2484 if (IsSelect) 2485 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2486 2487 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2488 // On such a large vector we're unable to use i8 as the index type. 2489 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2490 // may involve vector splitting if we're already at LMUL=8, or our 2491 // user-supplied maximum fixed-length LMUL. 2492 return SDValue(); 2493 } 2494 2495 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2496 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2497 MVT IndexVT = VT.changeTypeToInteger(); 2498 // Since we can't introduce illegal index types at this stage, use i16 and 2499 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2500 // than XLenVT. 2501 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2502 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2503 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2504 } 2505 2506 MVT IndexContainerVT = 2507 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2508 2509 SDValue Gather; 2510 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2511 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2512 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2513 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2514 } else { 2515 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2516 // If only one index is used, we can use a "splat" vrgather. 2517 // TODO: We can splat the most-common index and fix-up any stragglers, if 2518 // that's beneficial. 2519 if (LHSIndexCounts.size() == 1) { 2520 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2521 Gather = 2522 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2523 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2524 } else { 2525 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2526 LHSIndices = 2527 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2528 2529 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2530 TrueMask, VL); 2531 } 2532 } 2533 2534 // If a second vector operand is used by this shuffle, blend it in with an 2535 // additional vrgather. 2536 if (!V2.isUndef()) { 2537 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2538 // If only one index is used, we can use a "splat" vrgather. 2539 // TODO: We can splat the most-common index and fix-up any stragglers, if 2540 // that's beneficial. 2541 if (RHSIndexCounts.size() == 1) { 2542 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2543 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2544 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2545 } else { 2546 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2547 RHSIndices = 2548 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2549 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2550 VL); 2551 } 2552 2553 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2554 SelectMask = 2555 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2556 2557 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2558 Gather, VL); 2559 } 2560 2561 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2562 } 2563 2564 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2565 SDLoc DL, SelectionDAG &DAG, 2566 const RISCVSubtarget &Subtarget) { 2567 if (VT.isScalableVector()) 2568 return DAG.getFPExtendOrRound(Op, DL, VT); 2569 assert(VT.isFixedLengthVector() && 2570 "Unexpected value type for RVV FP extend/round lowering"); 2571 SDValue Mask, VL; 2572 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2573 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2574 ? RISCVISD::FP_EXTEND_VL 2575 : RISCVISD::FP_ROUND_VL; 2576 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2577 } 2578 2579 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2580 // the exponent. 2581 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2582 MVT VT = Op.getSimpleValueType(); 2583 unsigned EltSize = VT.getScalarSizeInBits(); 2584 SDValue Src = Op.getOperand(0); 2585 SDLoc DL(Op); 2586 2587 // We need a FP type that can represent the value. 2588 // TODO: Use f16 for i8 when possible? 2589 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2590 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2591 2592 // Legal types should have been checked in the RISCVTargetLowering 2593 // constructor. 2594 // TODO: Splitting may make sense in some cases. 2595 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2596 "Expected legal float type!"); 2597 2598 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2599 // The trailing zero count is equal to log2 of this single bit value. 2600 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2601 SDValue Neg = 2602 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2603 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2604 } 2605 2606 // We have a legal FP type, convert to it. 2607 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2608 // Bitcast to integer and shift the exponent to the LSB. 2609 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2610 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2611 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2612 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2613 DAG.getConstant(ShiftAmt, DL, IntVT)); 2614 // Truncate back to original type to allow vnsrl. 2615 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2616 // The exponent contains log2 of the value in biased form. 2617 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2618 2619 // For trailing zeros, we just need to subtract the bias. 2620 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2621 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2622 DAG.getConstant(ExponentBias, DL, VT)); 2623 2624 // For leading zeros, we need to remove the bias and convert from log2 to 2625 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2626 unsigned Adjust = ExponentBias + (EltSize - 1); 2627 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2628 } 2629 2630 // While RVV has alignment restrictions, we should always be able to load as a 2631 // legal equivalently-sized byte-typed vector instead. This method is 2632 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2633 // the load is already correctly-aligned, it returns SDValue(). 2634 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2635 SelectionDAG &DAG) const { 2636 auto *Load = cast<LoadSDNode>(Op); 2637 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2638 2639 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2640 Load->getMemoryVT(), 2641 *Load->getMemOperand())) 2642 return SDValue(); 2643 2644 SDLoc DL(Op); 2645 MVT VT = Op.getSimpleValueType(); 2646 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2647 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2648 "Unexpected unaligned RVV load type"); 2649 MVT NewVT = 2650 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2651 assert(NewVT.isValid() && 2652 "Expecting equally-sized RVV vector types to be legal"); 2653 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2654 Load->getPointerInfo(), Load->getOriginalAlign(), 2655 Load->getMemOperand()->getFlags()); 2656 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2657 } 2658 2659 // While RVV has alignment restrictions, we should always be able to store as a 2660 // legal equivalently-sized byte-typed vector instead. This method is 2661 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2662 // returns SDValue() if the store is already correctly aligned. 2663 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2664 SelectionDAG &DAG) const { 2665 auto *Store = cast<StoreSDNode>(Op); 2666 assert(Store && Store->getValue().getValueType().isVector() && 2667 "Expected vector store"); 2668 2669 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2670 Store->getMemoryVT(), 2671 *Store->getMemOperand())) 2672 return SDValue(); 2673 2674 SDLoc DL(Op); 2675 SDValue StoredVal = Store->getValue(); 2676 MVT VT = StoredVal.getSimpleValueType(); 2677 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2678 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2679 "Unexpected unaligned RVV store type"); 2680 MVT NewVT = 2681 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2682 assert(NewVT.isValid() && 2683 "Expecting equally-sized RVV vector types to be legal"); 2684 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2685 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2686 Store->getPointerInfo(), Store->getOriginalAlign(), 2687 Store->getMemOperand()->getFlags()); 2688 } 2689 2690 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2691 SelectionDAG &DAG) const { 2692 switch (Op.getOpcode()) { 2693 default: 2694 report_fatal_error("unimplemented operand"); 2695 case ISD::GlobalAddress: 2696 return lowerGlobalAddress(Op, DAG); 2697 case ISD::BlockAddress: 2698 return lowerBlockAddress(Op, DAG); 2699 case ISD::ConstantPool: 2700 return lowerConstantPool(Op, DAG); 2701 case ISD::JumpTable: 2702 return lowerJumpTable(Op, DAG); 2703 case ISD::GlobalTLSAddress: 2704 return lowerGlobalTLSAddress(Op, DAG); 2705 case ISD::SELECT: 2706 return lowerSELECT(Op, DAG); 2707 case ISD::BRCOND: 2708 return lowerBRCOND(Op, DAG); 2709 case ISD::VASTART: 2710 return lowerVASTART(Op, DAG); 2711 case ISD::FRAMEADDR: 2712 return lowerFRAMEADDR(Op, DAG); 2713 case ISD::RETURNADDR: 2714 return lowerRETURNADDR(Op, DAG); 2715 case ISD::SHL_PARTS: 2716 return lowerShiftLeftParts(Op, DAG); 2717 case ISD::SRA_PARTS: 2718 return lowerShiftRightParts(Op, DAG, true); 2719 case ISD::SRL_PARTS: 2720 return lowerShiftRightParts(Op, DAG, false); 2721 case ISD::BITCAST: { 2722 SDLoc DL(Op); 2723 EVT VT = Op.getValueType(); 2724 SDValue Op0 = Op.getOperand(0); 2725 EVT Op0VT = Op0.getValueType(); 2726 MVT XLenVT = Subtarget.getXLenVT(); 2727 if (VT.isFixedLengthVector()) { 2728 // We can handle fixed length vector bitcasts with a simple replacement 2729 // in isel. 2730 if (Op0VT.isFixedLengthVector()) 2731 return Op; 2732 // When bitcasting from scalar to fixed-length vector, insert the scalar 2733 // into a one-element vector of the result type, and perform a vector 2734 // bitcast. 2735 if (!Op0VT.isVector()) { 2736 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2737 if (!isTypeLegal(BVT)) 2738 return SDValue(); 2739 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2740 DAG.getUNDEF(BVT), Op0, 2741 DAG.getConstant(0, DL, XLenVT))); 2742 } 2743 return SDValue(); 2744 } 2745 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2746 // thus: bitcast the vector to a one-element vector type whose element type 2747 // is the same as the result type, and extract the first element. 2748 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2749 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2750 if (!isTypeLegal(BVT)) 2751 return SDValue(); 2752 SDValue BVec = DAG.getBitcast(BVT, Op0); 2753 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2754 DAG.getConstant(0, DL, XLenVT)); 2755 } 2756 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2757 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2758 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2759 return FPConv; 2760 } 2761 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2762 Subtarget.hasStdExtF()) { 2763 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2764 SDValue FPConv = 2765 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2766 return FPConv; 2767 } 2768 return SDValue(); 2769 } 2770 case ISD::INTRINSIC_WO_CHAIN: 2771 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2772 case ISD::INTRINSIC_W_CHAIN: 2773 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2774 case ISD::INTRINSIC_VOID: 2775 return LowerINTRINSIC_VOID(Op, DAG); 2776 case ISD::BSWAP: 2777 case ISD::BITREVERSE: { 2778 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2779 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2780 MVT VT = Op.getSimpleValueType(); 2781 SDLoc DL(Op); 2782 // Start with the maximum immediate value which is the bitwidth - 1. 2783 unsigned Imm = VT.getSizeInBits() - 1; 2784 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2785 if (Op.getOpcode() == ISD::BSWAP) 2786 Imm &= ~0x7U; 2787 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2788 DAG.getConstant(Imm, DL, VT)); 2789 } 2790 case ISD::FSHL: 2791 case ISD::FSHR: { 2792 MVT VT = Op.getSimpleValueType(); 2793 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2794 SDLoc DL(Op); 2795 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2796 // use log(XLen) bits. Mask the shift amount accordingly to prevent 2797 // accidentally setting the extra bit. 2798 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2799 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2800 DAG.getConstant(ShAmtWidth, DL, VT)); 2801 // fshl and fshr concatenate their operands in the same order. fsr and fsl 2802 // instruction use different orders. fshl will return its first operand for 2803 // shift of zero, fshr will return its second operand. fsl and fsr both 2804 // return rs1 so the ISD nodes need to have different operand orders. 2805 // Shift amount is in rs2. 2806 SDValue Op0 = Op.getOperand(0); 2807 SDValue Op1 = Op.getOperand(1); 2808 unsigned Opc = RISCVISD::FSL; 2809 if (Op.getOpcode() == ISD::FSHR) { 2810 std::swap(Op0, Op1); 2811 Opc = RISCVISD::FSR; 2812 } 2813 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 2814 } 2815 case ISD::TRUNCATE: { 2816 SDLoc DL(Op); 2817 MVT VT = Op.getSimpleValueType(); 2818 // Only custom-lower vector truncates 2819 if (!VT.isVector()) 2820 return Op; 2821 2822 // Truncates to mask types are handled differently 2823 if (VT.getVectorElementType() == MVT::i1) 2824 return lowerVectorMaskTrunc(Op, DAG); 2825 2826 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2827 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2828 // truncate by one power of two at a time. 2829 MVT DstEltVT = VT.getVectorElementType(); 2830 2831 SDValue Src = Op.getOperand(0); 2832 MVT SrcVT = Src.getSimpleValueType(); 2833 MVT SrcEltVT = SrcVT.getVectorElementType(); 2834 2835 assert(DstEltVT.bitsLT(SrcEltVT) && 2836 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2837 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2838 "Unexpected vector truncate lowering"); 2839 2840 MVT ContainerVT = SrcVT; 2841 if (SrcVT.isFixedLengthVector()) { 2842 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2843 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2844 } 2845 2846 SDValue Result = Src; 2847 SDValue Mask, VL; 2848 std::tie(Mask, VL) = 2849 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2850 LLVMContext &Context = *DAG.getContext(); 2851 const ElementCount Count = ContainerVT.getVectorElementCount(); 2852 do { 2853 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2854 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2855 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2856 Mask, VL); 2857 } while (SrcEltVT != DstEltVT); 2858 2859 if (SrcVT.isFixedLengthVector()) 2860 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2861 2862 return Result; 2863 } 2864 case ISD::ANY_EXTEND: 2865 case ISD::ZERO_EXTEND: 2866 if (Op.getOperand(0).getValueType().isVector() && 2867 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2868 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2869 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2870 case ISD::SIGN_EXTEND: 2871 if (Op.getOperand(0).getValueType().isVector() && 2872 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2873 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2874 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2875 case ISD::SPLAT_VECTOR_PARTS: 2876 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2877 case ISD::INSERT_VECTOR_ELT: 2878 return lowerINSERT_VECTOR_ELT(Op, DAG); 2879 case ISD::EXTRACT_VECTOR_ELT: 2880 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2881 case ISD::VSCALE: { 2882 MVT VT = Op.getSimpleValueType(); 2883 SDLoc DL(Op); 2884 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2885 // We define our scalable vector types for lmul=1 to use a 64 bit known 2886 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2887 // vscale as VLENB / 8. 2888 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 2889 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2890 // We assume VLENB is a multiple of 8. We manually choose the best shift 2891 // here because SimplifyDemandedBits isn't always able to simplify it. 2892 uint64_t Val = Op.getConstantOperandVal(0); 2893 if (isPowerOf2_64(Val)) { 2894 uint64_t Log2 = Log2_64(Val); 2895 if (Log2 < 3) 2896 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2897 DAG.getConstant(3 - Log2, DL, VT)); 2898 if (Log2 > 3) 2899 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2900 DAG.getConstant(Log2 - 3, DL, VT)); 2901 return VLENB; 2902 } 2903 // If the multiplier is a multiple of 8, scale it down to avoid needing 2904 // to shift the VLENB value. 2905 if ((Val % 8) == 0) 2906 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2907 DAG.getConstant(Val / 8, DL, VT)); 2908 } 2909 2910 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2911 DAG.getConstant(3, DL, VT)); 2912 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2913 } 2914 case ISD::FPOWI: { 2915 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 2916 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 2917 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 2918 Op.getOperand(1).getValueType() == MVT::i32) { 2919 SDLoc DL(Op); 2920 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 2921 SDValue Powi = 2922 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 2923 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 2924 DAG.getIntPtrConstant(0, DL)); 2925 } 2926 return SDValue(); 2927 } 2928 case ISD::FP_EXTEND: { 2929 // RVV can only do fp_extend to types double the size as the source. We 2930 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2931 // via f32. 2932 SDLoc DL(Op); 2933 MVT VT = Op.getSimpleValueType(); 2934 SDValue Src = Op.getOperand(0); 2935 MVT SrcVT = Src.getSimpleValueType(); 2936 2937 // Prepare any fixed-length vector operands. 2938 MVT ContainerVT = VT; 2939 if (SrcVT.isFixedLengthVector()) { 2940 ContainerVT = getContainerForFixedLengthVector(VT); 2941 MVT SrcContainerVT = 2942 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2943 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2944 } 2945 2946 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2947 SrcVT.getVectorElementType() != MVT::f16) { 2948 // For scalable vectors, we only need to close the gap between 2949 // vXf16->vXf64. 2950 if (!VT.isFixedLengthVector()) 2951 return Op; 2952 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2953 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2954 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2955 } 2956 2957 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2958 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2959 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2960 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2961 2962 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2963 DL, DAG, Subtarget); 2964 if (VT.isFixedLengthVector()) 2965 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2966 return Extend; 2967 } 2968 case ISD::FP_ROUND: { 2969 // RVV can only do fp_round to types half the size as the source. We 2970 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2971 // conversion instruction. 2972 SDLoc DL(Op); 2973 MVT VT = Op.getSimpleValueType(); 2974 SDValue Src = Op.getOperand(0); 2975 MVT SrcVT = Src.getSimpleValueType(); 2976 2977 // Prepare any fixed-length vector operands. 2978 MVT ContainerVT = VT; 2979 if (VT.isFixedLengthVector()) { 2980 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2981 ContainerVT = 2982 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2983 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2984 } 2985 2986 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2987 SrcVT.getVectorElementType() != MVT::f64) { 2988 // For scalable vectors, we only need to close the gap between 2989 // vXf64<->vXf16. 2990 if (!VT.isFixedLengthVector()) 2991 return Op; 2992 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2993 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2994 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2995 } 2996 2997 SDValue Mask, VL; 2998 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2999 3000 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3001 SDValue IntermediateRound = 3002 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3003 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3004 DL, DAG, Subtarget); 3005 3006 if (VT.isFixedLengthVector()) 3007 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3008 return Round; 3009 } 3010 case ISD::FP_TO_SINT: 3011 case ISD::FP_TO_UINT: 3012 case ISD::SINT_TO_FP: 3013 case ISD::UINT_TO_FP: { 3014 // RVV can only do fp<->int conversions to types half/double the size as 3015 // the source. We custom-lower any conversions that do two hops into 3016 // sequences. 3017 MVT VT = Op.getSimpleValueType(); 3018 if (!VT.isVector()) 3019 return Op; 3020 SDLoc DL(Op); 3021 SDValue Src = Op.getOperand(0); 3022 MVT EltVT = VT.getVectorElementType(); 3023 MVT SrcVT = Src.getSimpleValueType(); 3024 MVT SrcEltVT = SrcVT.getVectorElementType(); 3025 unsigned EltSize = EltVT.getSizeInBits(); 3026 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3027 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3028 "Unexpected vector element types"); 3029 3030 bool IsInt2FP = SrcEltVT.isInteger(); 3031 // Widening conversions 3032 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 3033 if (IsInt2FP) { 3034 // Do a regular integer sign/zero extension then convert to float. 3035 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 3036 VT.getVectorElementCount()); 3037 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3038 ? ISD::ZERO_EXTEND 3039 : ISD::SIGN_EXTEND; 3040 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3041 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3042 } 3043 // FP2Int 3044 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3045 // Do one doubling fp_extend then complete the operation by converting 3046 // to int. 3047 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3048 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3049 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3050 } 3051 3052 // Narrowing conversions 3053 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 3054 if (IsInt2FP) { 3055 // One narrowing int_to_fp, then an fp_round. 3056 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3057 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3058 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3059 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3060 } 3061 // FP2Int 3062 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3063 // representable by the integer, the result is poison. 3064 MVT IVecVT = 3065 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 3066 VT.getVectorElementCount()); 3067 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3068 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3069 } 3070 3071 // Scalable vectors can exit here. Patterns will handle equally-sized 3072 // conversions halving/doubling ones. 3073 if (!VT.isFixedLengthVector()) 3074 return Op; 3075 3076 // For fixed-length vectors we lower to a custom "VL" node. 3077 unsigned RVVOpc = 0; 3078 switch (Op.getOpcode()) { 3079 default: 3080 llvm_unreachable("Impossible opcode"); 3081 case ISD::FP_TO_SINT: 3082 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3083 break; 3084 case ISD::FP_TO_UINT: 3085 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3086 break; 3087 case ISD::SINT_TO_FP: 3088 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3089 break; 3090 case ISD::UINT_TO_FP: 3091 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3092 break; 3093 } 3094 3095 MVT ContainerVT, SrcContainerVT; 3096 // Derive the reference container type from the larger vector type. 3097 if (SrcEltSize > EltSize) { 3098 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3099 ContainerVT = 3100 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3101 } else { 3102 ContainerVT = getContainerForFixedLengthVector(VT); 3103 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3104 } 3105 3106 SDValue Mask, VL; 3107 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3108 3109 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3110 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3111 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3112 } 3113 case ISD::FP_TO_SINT_SAT: 3114 case ISD::FP_TO_UINT_SAT: 3115 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3116 case ISD::FTRUNC: 3117 case ISD::FCEIL: 3118 case ISD::FFLOOR: 3119 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3120 case ISD::VECREDUCE_ADD: 3121 case ISD::VECREDUCE_UMAX: 3122 case ISD::VECREDUCE_SMAX: 3123 case ISD::VECREDUCE_UMIN: 3124 case ISD::VECREDUCE_SMIN: 3125 return lowerVECREDUCE(Op, DAG); 3126 case ISD::VECREDUCE_AND: 3127 case ISD::VECREDUCE_OR: 3128 case ISD::VECREDUCE_XOR: 3129 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3130 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3131 return lowerVECREDUCE(Op, DAG); 3132 case ISD::VECREDUCE_FADD: 3133 case ISD::VECREDUCE_SEQ_FADD: 3134 case ISD::VECREDUCE_FMIN: 3135 case ISD::VECREDUCE_FMAX: 3136 return lowerFPVECREDUCE(Op, DAG); 3137 case ISD::VP_REDUCE_ADD: 3138 case ISD::VP_REDUCE_UMAX: 3139 case ISD::VP_REDUCE_SMAX: 3140 case ISD::VP_REDUCE_UMIN: 3141 case ISD::VP_REDUCE_SMIN: 3142 case ISD::VP_REDUCE_FADD: 3143 case ISD::VP_REDUCE_SEQ_FADD: 3144 case ISD::VP_REDUCE_FMIN: 3145 case ISD::VP_REDUCE_FMAX: 3146 return lowerVPREDUCE(Op, DAG); 3147 case ISD::VP_REDUCE_AND: 3148 case ISD::VP_REDUCE_OR: 3149 case ISD::VP_REDUCE_XOR: 3150 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3151 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3152 return lowerVPREDUCE(Op, DAG); 3153 case ISD::INSERT_SUBVECTOR: 3154 return lowerINSERT_SUBVECTOR(Op, DAG); 3155 case ISD::EXTRACT_SUBVECTOR: 3156 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3157 case ISD::STEP_VECTOR: 3158 return lowerSTEP_VECTOR(Op, DAG); 3159 case ISD::VECTOR_REVERSE: 3160 return lowerVECTOR_REVERSE(Op, DAG); 3161 case ISD::BUILD_VECTOR: 3162 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3163 case ISD::SPLAT_VECTOR: 3164 if (Op.getValueType().getVectorElementType() == MVT::i1) 3165 return lowerVectorMaskSplat(Op, DAG); 3166 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3167 case ISD::VECTOR_SHUFFLE: 3168 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3169 case ISD::CONCAT_VECTORS: { 3170 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3171 // better than going through the stack, as the default expansion does. 3172 SDLoc DL(Op); 3173 MVT VT = Op.getSimpleValueType(); 3174 unsigned NumOpElts = 3175 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3176 SDValue Vec = DAG.getUNDEF(VT); 3177 for (const auto &OpIdx : enumerate(Op->ops())) { 3178 SDValue SubVec = OpIdx.value(); 3179 // Don't insert undef subvectors. 3180 if (SubVec.isUndef()) 3181 continue; 3182 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3183 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3184 } 3185 return Vec; 3186 } 3187 case ISD::LOAD: 3188 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3189 return V; 3190 if (Op.getValueType().isFixedLengthVector()) 3191 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3192 return Op; 3193 case ISD::STORE: 3194 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3195 return V; 3196 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3197 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3198 return Op; 3199 case ISD::MLOAD: 3200 case ISD::VP_LOAD: 3201 return lowerMaskedLoad(Op, DAG); 3202 case ISD::MSTORE: 3203 case ISD::VP_STORE: 3204 return lowerMaskedStore(Op, DAG); 3205 case ISD::SETCC: 3206 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3207 case ISD::ADD: 3208 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3209 case ISD::SUB: 3210 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3211 case ISD::MUL: 3212 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3213 case ISD::MULHS: 3214 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3215 case ISD::MULHU: 3216 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3217 case ISD::AND: 3218 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3219 RISCVISD::AND_VL); 3220 case ISD::OR: 3221 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3222 RISCVISD::OR_VL); 3223 case ISD::XOR: 3224 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3225 RISCVISD::XOR_VL); 3226 case ISD::SDIV: 3227 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3228 case ISD::SREM: 3229 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3230 case ISD::UDIV: 3231 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3232 case ISD::UREM: 3233 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3234 case ISD::SHL: 3235 case ISD::SRA: 3236 case ISD::SRL: 3237 if (Op.getSimpleValueType().isFixedLengthVector()) 3238 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3239 // This can be called for an i32 shift amount that needs to be promoted. 3240 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3241 "Unexpected custom legalisation"); 3242 return SDValue(); 3243 case ISD::SADDSAT: 3244 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3245 case ISD::UADDSAT: 3246 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3247 case ISD::SSUBSAT: 3248 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3249 case ISD::USUBSAT: 3250 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3251 case ISD::FADD: 3252 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3253 case ISD::FSUB: 3254 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3255 case ISD::FMUL: 3256 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3257 case ISD::FDIV: 3258 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3259 case ISD::FNEG: 3260 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3261 case ISD::FABS: 3262 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3263 case ISD::FSQRT: 3264 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3265 case ISD::FMA: 3266 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3267 case ISD::SMIN: 3268 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3269 case ISD::SMAX: 3270 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3271 case ISD::UMIN: 3272 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3273 case ISD::UMAX: 3274 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3275 case ISD::FMINNUM: 3276 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3277 case ISD::FMAXNUM: 3278 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3279 case ISD::ABS: 3280 return lowerABS(Op, DAG); 3281 case ISD::CTLZ_ZERO_UNDEF: 3282 case ISD::CTTZ_ZERO_UNDEF: 3283 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3284 case ISD::VSELECT: 3285 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3286 case ISD::FCOPYSIGN: 3287 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3288 case ISD::MGATHER: 3289 case ISD::VP_GATHER: 3290 return lowerMaskedGather(Op, DAG); 3291 case ISD::MSCATTER: 3292 case ISD::VP_SCATTER: 3293 return lowerMaskedScatter(Op, DAG); 3294 case ISD::FLT_ROUNDS_: 3295 return lowerGET_ROUNDING(Op, DAG); 3296 case ISD::SET_ROUNDING: 3297 return lowerSET_ROUNDING(Op, DAG); 3298 case ISD::VP_SELECT: 3299 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3300 case ISD::VP_ADD: 3301 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3302 case ISD::VP_SUB: 3303 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3304 case ISD::VP_MUL: 3305 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3306 case ISD::VP_SDIV: 3307 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3308 case ISD::VP_UDIV: 3309 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3310 case ISD::VP_SREM: 3311 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3312 case ISD::VP_UREM: 3313 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3314 case ISD::VP_AND: 3315 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3316 case ISD::VP_OR: 3317 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3318 case ISD::VP_XOR: 3319 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3320 case ISD::VP_ASHR: 3321 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3322 case ISD::VP_LSHR: 3323 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3324 case ISD::VP_SHL: 3325 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3326 case ISD::VP_FADD: 3327 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3328 case ISD::VP_FSUB: 3329 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3330 case ISD::VP_FMUL: 3331 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3332 case ISD::VP_FDIV: 3333 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3334 } 3335 } 3336 3337 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3338 SelectionDAG &DAG, unsigned Flags) { 3339 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3340 } 3341 3342 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3343 SelectionDAG &DAG, unsigned Flags) { 3344 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3345 Flags); 3346 } 3347 3348 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3349 SelectionDAG &DAG, unsigned Flags) { 3350 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3351 N->getOffset(), Flags); 3352 } 3353 3354 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3355 SelectionDAG &DAG, unsigned Flags) { 3356 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3357 } 3358 3359 template <class NodeTy> 3360 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3361 bool IsLocal) const { 3362 SDLoc DL(N); 3363 EVT Ty = getPointerTy(DAG.getDataLayout()); 3364 3365 if (isPositionIndependent()) { 3366 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3367 if (IsLocal) 3368 // Use PC-relative addressing to access the symbol. This generates the 3369 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3370 // %pcrel_lo(auipc)). 3371 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3372 3373 // Use PC-relative addressing to access the GOT for this symbol, then load 3374 // the address from the GOT. This generates the pattern (PseudoLA sym), 3375 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3376 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3377 } 3378 3379 switch (getTargetMachine().getCodeModel()) { 3380 default: 3381 report_fatal_error("Unsupported code model for lowering"); 3382 case CodeModel::Small: { 3383 // Generate a sequence for accessing addresses within the first 2 GiB of 3384 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3385 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3386 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3387 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3388 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3389 } 3390 case CodeModel::Medium: { 3391 // Generate a sequence for accessing addresses within any 2GiB range within 3392 // the address space. This generates the pattern (PseudoLLA sym), which 3393 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3394 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3395 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3396 } 3397 } 3398 } 3399 3400 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3401 SelectionDAG &DAG) const { 3402 SDLoc DL(Op); 3403 EVT Ty = Op.getValueType(); 3404 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3405 int64_t Offset = N->getOffset(); 3406 MVT XLenVT = Subtarget.getXLenVT(); 3407 3408 const GlobalValue *GV = N->getGlobal(); 3409 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3410 SDValue Addr = getAddr(N, DAG, IsLocal); 3411 3412 // In order to maximise the opportunity for common subexpression elimination, 3413 // emit a separate ADD node for the global address offset instead of folding 3414 // it in the global address node. Later peephole optimisations may choose to 3415 // fold it back in when profitable. 3416 if (Offset != 0) 3417 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3418 DAG.getConstant(Offset, DL, XLenVT)); 3419 return Addr; 3420 } 3421 3422 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3423 SelectionDAG &DAG) const { 3424 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3425 3426 return getAddr(N, DAG); 3427 } 3428 3429 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3430 SelectionDAG &DAG) const { 3431 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3432 3433 return getAddr(N, DAG); 3434 } 3435 3436 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3437 SelectionDAG &DAG) const { 3438 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3439 3440 return getAddr(N, DAG); 3441 } 3442 3443 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3444 SelectionDAG &DAG, 3445 bool UseGOT) const { 3446 SDLoc DL(N); 3447 EVT Ty = getPointerTy(DAG.getDataLayout()); 3448 const GlobalValue *GV = N->getGlobal(); 3449 MVT XLenVT = Subtarget.getXLenVT(); 3450 3451 if (UseGOT) { 3452 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3453 // load the address from the GOT and add the thread pointer. This generates 3454 // the pattern (PseudoLA_TLS_IE sym), which expands to 3455 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3456 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3457 SDValue Load = 3458 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3459 3460 // Add the thread pointer. 3461 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3462 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3463 } 3464 3465 // Generate a sequence for accessing the address relative to the thread 3466 // pointer, with the appropriate adjustment for the thread pointer offset. 3467 // This generates the pattern 3468 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3469 SDValue AddrHi = 3470 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3471 SDValue AddrAdd = 3472 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3473 SDValue AddrLo = 3474 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3475 3476 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3477 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3478 SDValue MNAdd = SDValue( 3479 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3480 0); 3481 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3482 } 3483 3484 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3485 SelectionDAG &DAG) const { 3486 SDLoc DL(N); 3487 EVT Ty = getPointerTy(DAG.getDataLayout()); 3488 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3489 const GlobalValue *GV = N->getGlobal(); 3490 3491 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3492 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3493 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3494 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3495 SDValue Load = 3496 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3497 3498 // Prepare argument list to generate call. 3499 ArgListTy Args; 3500 ArgListEntry Entry; 3501 Entry.Node = Load; 3502 Entry.Ty = CallTy; 3503 Args.push_back(Entry); 3504 3505 // Setup call to __tls_get_addr. 3506 TargetLowering::CallLoweringInfo CLI(DAG); 3507 CLI.setDebugLoc(DL) 3508 .setChain(DAG.getEntryNode()) 3509 .setLibCallee(CallingConv::C, CallTy, 3510 DAG.getExternalSymbol("__tls_get_addr", Ty), 3511 std::move(Args)); 3512 3513 return LowerCallTo(CLI).first; 3514 } 3515 3516 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3517 SelectionDAG &DAG) const { 3518 SDLoc DL(Op); 3519 EVT Ty = Op.getValueType(); 3520 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3521 int64_t Offset = N->getOffset(); 3522 MVT XLenVT = Subtarget.getXLenVT(); 3523 3524 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3525 3526 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3527 CallingConv::GHC) 3528 report_fatal_error("In GHC calling convention TLS is not supported"); 3529 3530 SDValue Addr; 3531 switch (Model) { 3532 case TLSModel::LocalExec: 3533 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3534 break; 3535 case TLSModel::InitialExec: 3536 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3537 break; 3538 case TLSModel::LocalDynamic: 3539 case TLSModel::GeneralDynamic: 3540 Addr = getDynamicTLSAddr(N, DAG); 3541 break; 3542 } 3543 3544 // In order to maximise the opportunity for common subexpression elimination, 3545 // emit a separate ADD node for the global address offset instead of folding 3546 // it in the global address node. Later peephole optimisations may choose to 3547 // fold it back in when profitable. 3548 if (Offset != 0) 3549 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3550 DAG.getConstant(Offset, DL, XLenVT)); 3551 return Addr; 3552 } 3553 3554 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3555 SDValue CondV = Op.getOperand(0); 3556 SDValue TrueV = Op.getOperand(1); 3557 SDValue FalseV = Op.getOperand(2); 3558 SDLoc DL(Op); 3559 MVT VT = Op.getSimpleValueType(); 3560 MVT XLenVT = Subtarget.getXLenVT(); 3561 3562 // Lower vector SELECTs to VSELECTs by splatting the condition. 3563 if (VT.isVector()) { 3564 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3565 SDValue CondSplat = VT.isScalableVector() 3566 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3567 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3568 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3569 } 3570 3571 // If the result type is XLenVT and CondV is the output of a SETCC node 3572 // which also operated on XLenVT inputs, then merge the SETCC node into the 3573 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3574 // compare+branch instructions. i.e.: 3575 // (select (setcc lhs, rhs, cc), truev, falsev) 3576 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3577 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3578 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3579 SDValue LHS = CondV.getOperand(0); 3580 SDValue RHS = CondV.getOperand(1); 3581 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3582 ISD::CondCode CCVal = CC->get(); 3583 3584 // Special case for a select of 2 constants that have a diffence of 1. 3585 // Normally this is done by DAGCombine, but if the select is introduced by 3586 // type legalization or op legalization, we miss it. Restricting to SETLT 3587 // case for now because that is what signed saturating add/sub need. 3588 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3589 // but we would probably want to swap the true/false values if the condition 3590 // is SETGE/SETLE to avoid an XORI. 3591 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3592 CCVal == ISD::SETLT) { 3593 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3594 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3595 if (TrueVal - 1 == FalseVal) 3596 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3597 if (TrueVal + 1 == FalseVal) 3598 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3599 } 3600 3601 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3602 3603 SDValue TargetCC = DAG.getCondCode(CCVal); 3604 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3605 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3606 } 3607 3608 // Otherwise: 3609 // (select condv, truev, falsev) 3610 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3611 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3612 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3613 3614 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3615 3616 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3617 } 3618 3619 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3620 SDValue CondV = Op.getOperand(1); 3621 SDLoc DL(Op); 3622 MVT XLenVT = Subtarget.getXLenVT(); 3623 3624 if (CondV.getOpcode() == ISD::SETCC && 3625 CondV.getOperand(0).getValueType() == XLenVT) { 3626 SDValue LHS = CondV.getOperand(0); 3627 SDValue RHS = CondV.getOperand(1); 3628 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3629 3630 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3631 3632 SDValue TargetCC = DAG.getCondCode(CCVal); 3633 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3634 LHS, RHS, TargetCC, Op.getOperand(2)); 3635 } 3636 3637 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3638 CondV, DAG.getConstant(0, DL, XLenVT), 3639 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3640 } 3641 3642 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3643 MachineFunction &MF = DAG.getMachineFunction(); 3644 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3645 3646 SDLoc DL(Op); 3647 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3648 getPointerTy(MF.getDataLayout())); 3649 3650 // vastart just stores the address of the VarArgsFrameIndex slot into the 3651 // memory location argument. 3652 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3653 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3654 MachinePointerInfo(SV)); 3655 } 3656 3657 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3658 SelectionDAG &DAG) const { 3659 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3660 MachineFunction &MF = DAG.getMachineFunction(); 3661 MachineFrameInfo &MFI = MF.getFrameInfo(); 3662 MFI.setFrameAddressIsTaken(true); 3663 Register FrameReg = RI.getFrameRegister(MF); 3664 int XLenInBytes = Subtarget.getXLen() / 8; 3665 3666 EVT VT = Op.getValueType(); 3667 SDLoc DL(Op); 3668 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3669 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3670 while (Depth--) { 3671 int Offset = -(XLenInBytes * 2); 3672 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3673 DAG.getIntPtrConstant(Offset, DL)); 3674 FrameAddr = 3675 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3676 } 3677 return FrameAddr; 3678 } 3679 3680 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3681 SelectionDAG &DAG) const { 3682 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3683 MachineFunction &MF = DAG.getMachineFunction(); 3684 MachineFrameInfo &MFI = MF.getFrameInfo(); 3685 MFI.setReturnAddressIsTaken(true); 3686 MVT XLenVT = Subtarget.getXLenVT(); 3687 int XLenInBytes = Subtarget.getXLen() / 8; 3688 3689 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3690 return SDValue(); 3691 3692 EVT VT = Op.getValueType(); 3693 SDLoc DL(Op); 3694 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3695 if (Depth) { 3696 int Off = -XLenInBytes; 3697 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3698 SDValue Offset = DAG.getConstant(Off, DL, VT); 3699 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3700 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3701 MachinePointerInfo()); 3702 } 3703 3704 // Return the value of the return address register, marking it an implicit 3705 // live-in. 3706 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3707 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3708 } 3709 3710 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3711 SelectionDAG &DAG) const { 3712 SDLoc DL(Op); 3713 SDValue Lo = Op.getOperand(0); 3714 SDValue Hi = Op.getOperand(1); 3715 SDValue Shamt = Op.getOperand(2); 3716 EVT VT = Lo.getValueType(); 3717 3718 // if Shamt-XLEN < 0: // Shamt < XLEN 3719 // Lo = Lo << Shamt 3720 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3721 // else: 3722 // Lo = 0 3723 // Hi = Lo << (Shamt-XLEN) 3724 3725 SDValue Zero = DAG.getConstant(0, DL, VT); 3726 SDValue One = DAG.getConstant(1, DL, VT); 3727 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3728 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3729 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3730 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3731 3732 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3733 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3734 SDValue ShiftRightLo = 3735 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3736 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3737 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3738 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3739 3740 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3741 3742 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3743 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3744 3745 SDValue Parts[2] = {Lo, Hi}; 3746 return DAG.getMergeValues(Parts, DL); 3747 } 3748 3749 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3750 bool IsSRA) const { 3751 SDLoc DL(Op); 3752 SDValue Lo = Op.getOperand(0); 3753 SDValue Hi = Op.getOperand(1); 3754 SDValue Shamt = Op.getOperand(2); 3755 EVT VT = Lo.getValueType(); 3756 3757 // SRA expansion: 3758 // if Shamt-XLEN < 0: // Shamt < XLEN 3759 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3760 // Hi = Hi >>s Shamt 3761 // else: 3762 // Lo = Hi >>s (Shamt-XLEN); 3763 // Hi = Hi >>s (XLEN-1) 3764 // 3765 // SRL expansion: 3766 // if Shamt-XLEN < 0: // Shamt < XLEN 3767 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3768 // Hi = Hi >>u Shamt 3769 // else: 3770 // Lo = Hi >>u (Shamt-XLEN); 3771 // Hi = 0; 3772 3773 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3774 3775 SDValue Zero = DAG.getConstant(0, DL, VT); 3776 SDValue One = DAG.getConstant(1, DL, VT); 3777 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3778 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3779 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3780 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3781 3782 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3783 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3784 SDValue ShiftLeftHi = 3785 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3786 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3787 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3788 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3789 SDValue HiFalse = 3790 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3791 3792 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3793 3794 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3795 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3796 3797 SDValue Parts[2] = {Lo, Hi}; 3798 return DAG.getMergeValues(Parts, DL); 3799 } 3800 3801 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3802 // legal equivalently-sized i8 type, so we can use that as a go-between. 3803 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3804 SelectionDAG &DAG) const { 3805 SDLoc DL(Op); 3806 MVT VT = Op.getSimpleValueType(); 3807 SDValue SplatVal = Op.getOperand(0); 3808 // All-zeros or all-ones splats are handled specially. 3809 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3810 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3811 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3812 } 3813 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3814 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3815 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3816 } 3817 MVT XLenVT = Subtarget.getXLenVT(); 3818 assert(SplatVal.getValueType() == XLenVT && 3819 "Unexpected type for i1 splat value"); 3820 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3821 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3822 DAG.getConstant(1, DL, XLenVT)); 3823 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3824 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3825 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3826 } 3827 3828 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3829 // illegal (currently only vXi64 RV32). 3830 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3831 // them to SPLAT_VECTOR_I64 3832 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3833 SelectionDAG &DAG) const { 3834 SDLoc DL(Op); 3835 MVT VecVT = Op.getSimpleValueType(); 3836 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3837 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3838 3839 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3840 SDValue Lo = Op.getOperand(0); 3841 SDValue Hi = Op.getOperand(1); 3842 3843 if (VecVT.isFixedLengthVector()) { 3844 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3845 SDLoc DL(Op); 3846 SDValue Mask, VL; 3847 std::tie(Mask, VL) = 3848 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3849 3850 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3851 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3852 } 3853 3854 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3855 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3856 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3857 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3858 // node in order to try and match RVV vector/scalar instructions. 3859 if ((LoC >> 31) == HiC) 3860 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3861 } 3862 3863 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3864 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3865 isa<ConstantSDNode>(Hi.getOperand(1)) && 3866 Hi.getConstantOperandVal(1) == 31) 3867 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3868 3869 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3870 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3871 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3872 } 3873 3874 // Custom-lower extensions from mask vectors by using a vselect either with 1 3875 // for zero/any-extension or -1 for sign-extension: 3876 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3877 // Note that any-extension is lowered identically to zero-extension. 3878 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3879 int64_t ExtTrueVal) const { 3880 SDLoc DL(Op); 3881 MVT VecVT = Op.getSimpleValueType(); 3882 SDValue Src = Op.getOperand(0); 3883 // Only custom-lower extensions from mask types 3884 assert(Src.getValueType().isVector() && 3885 Src.getValueType().getVectorElementType() == MVT::i1); 3886 3887 MVT XLenVT = Subtarget.getXLenVT(); 3888 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3889 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3890 3891 if (VecVT.isScalableVector()) { 3892 // Be careful not to introduce illegal scalar types at this stage, and be 3893 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3894 // illegal and must be expanded. Since we know that the constants are 3895 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3896 bool IsRV32E64 = 3897 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3898 3899 if (!IsRV32E64) { 3900 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3901 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3902 } else { 3903 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3904 SplatTrueVal = 3905 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3906 } 3907 3908 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3909 } 3910 3911 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3912 MVT I1ContainerVT = 3913 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3914 3915 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3916 3917 SDValue Mask, VL; 3918 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3919 3920 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3921 SplatTrueVal = 3922 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3923 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3924 SplatTrueVal, SplatZero, VL); 3925 3926 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3927 } 3928 3929 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3930 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3931 MVT ExtVT = Op.getSimpleValueType(); 3932 // Only custom-lower extensions from fixed-length vector types. 3933 if (!ExtVT.isFixedLengthVector()) 3934 return Op; 3935 MVT VT = Op.getOperand(0).getSimpleValueType(); 3936 // Grab the canonical container type for the extended type. Infer the smaller 3937 // type from that to ensure the same number of vector elements, as we know 3938 // the LMUL will be sufficient to hold the smaller type. 3939 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3940 // Get the extended container type manually to ensure the same number of 3941 // vector elements between source and dest. 3942 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3943 ContainerExtVT.getVectorElementCount()); 3944 3945 SDValue Op1 = 3946 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3947 3948 SDLoc DL(Op); 3949 SDValue Mask, VL; 3950 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3951 3952 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3953 3954 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3955 } 3956 3957 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3958 // setcc operation: 3959 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3960 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3961 SelectionDAG &DAG) const { 3962 SDLoc DL(Op); 3963 EVT MaskVT = Op.getValueType(); 3964 // Only expect to custom-lower truncations to mask types 3965 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3966 "Unexpected type for vector mask lowering"); 3967 SDValue Src = Op.getOperand(0); 3968 MVT VecVT = Src.getSimpleValueType(); 3969 3970 // If this is a fixed vector, we need to convert it to a scalable vector. 3971 MVT ContainerVT = VecVT; 3972 if (VecVT.isFixedLengthVector()) { 3973 ContainerVT = getContainerForFixedLengthVector(VecVT); 3974 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3975 } 3976 3977 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3978 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3979 3980 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3981 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3982 3983 if (VecVT.isScalableVector()) { 3984 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3985 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3986 } 3987 3988 SDValue Mask, VL; 3989 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3990 3991 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3992 SDValue Trunc = 3993 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3994 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3995 DAG.getCondCode(ISD::SETNE), Mask, VL); 3996 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3997 } 3998 3999 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4000 // first position of a vector, and that vector is slid up to the insert index. 4001 // By limiting the active vector length to index+1 and merging with the 4002 // original vector (with an undisturbed tail policy for elements >= VL), we 4003 // achieve the desired result of leaving all elements untouched except the one 4004 // at VL-1, which is replaced with the desired value. 4005 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4006 SelectionDAG &DAG) const { 4007 SDLoc DL(Op); 4008 MVT VecVT = Op.getSimpleValueType(); 4009 SDValue Vec = Op.getOperand(0); 4010 SDValue Val = Op.getOperand(1); 4011 SDValue Idx = Op.getOperand(2); 4012 4013 if (VecVT.getVectorElementType() == MVT::i1) { 4014 // FIXME: For now we just promote to an i8 vector and insert into that, 4015 // but this is probably not optimal. 4016 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4017 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4018 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4019 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4020 } 4021 4022 MVT ContainerVT = VecVT; 4023 // If the operand is a fixed-length vector, convert to a scalable one. 4024 if (VecVT.isFixedLengthVector()) { 4025 ContainerVT = getContainerForFixedLengthVector(VecVT); 4026 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4027 } 4028 4029 MVT XLenVT = Subtarget.getXLenVT(); 4030 4031 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4032 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4033 // Even i64-element vectors on RV32 can be lowered without scalar 4034 // legalization if the most-significant 32 bits of the value are not affected 4035 // by the sign-extension of the lower 32 bits. 4036 // TODO: We could also catch sign extensions of a 32-bit value. 4037 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4038 const auto *CVal = cast<ConstantSDNode>(Val); 4039 if (isInt<32>(CVal->getSExtValue())) { 4040 IsLegalInsert = true; 4041 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4042 } 4043 } 4044 4045 SDValue Mask, VL; 4046 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4047 4048 SDValue ValInVec; 4049 4050 if (IsLegalInsert) { 4051 unsigned Opc = 4052 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4053 if (isNullConstant(Idx)) { 4054 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4055 if (!VecVT.isFixedLengthVector()) 4056 return Vec; 4057 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4058 } 4059 ValInVec = 4060 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4061 } else { 4062 // On RV32, i64-element vectors must be specially handled to place the 4063 // value at element 0, by using two vslide1up instructions in sequence on 4064 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4065 // this. 4066 SDValue One = DAG.getConstant(1, DL, XLenVT); 4067 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4068 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4069 MVT I32ContainerVT = 4070 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4071 SDValue I32Mask = 4072 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4073 // Limit the active VL to two. 4074 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4075 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4076 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4077 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 4078 InsertI64VL); 4079 // First slide in the hi value, then the lo in underneath it. 4080 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4081 ValHi, I32Mask, InsertI64VL); 4082 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4083 ValLo, I32Mask, InsertI64VL); 4084 // Bitcast back to the right container type. 4085 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4086 } 4087 4088 // Now that the value is in a vector, slide it into position. 4089 SDValue InsertVL = 4090 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4091 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4092 ValInVec, Idx, Mask, InsertVL); 4093 if (!VecVT.isFixedLengthVector()) 4094 return Slideup; 4095 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4096 } 4097 4098 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4099 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4100 // types this is done using VMV_X_S to allow us to glean information about the 4101 // sign bits of the result. 4102 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4103 SelectionDAG &DAG) const { 4104 SDLoc DL(Op); 4105 SDValue Idx = Op.getOperand(1); 4106 SDValue Vec = Op.getOperand(0); 4107 EVT EltVT = Op.getValueType(); 4108 MVT VecVT = Vec.getSimpleValueType(); 4109 MVT XLenVT = Subtarget.getXLenVT(); 4110 4111 if (VecVT.getVectorElementType() == MVT::i1) { 4112 // FIXME: For now we just promote to an i8 vector and extract from that, 4113 // but this is probably not optimal. 4114 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4115 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4116 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4117 } 4118 4119 // If this is a fixed vector, we need to convert it to a scalable vector. 4120 MVT ContainerVT = VecVT; 4121 if (VecVT.isFixedLengthVector()) { 4122 ContainerVT = getContainerForFixedLengthVector(VecVT); 4123 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4124 } 4125 4126 // If the index is 0, the vector is already in the right position. 4127 if (!isNullConstant(Idx)) { 4128 // Use a VL of 1 to avoid processing more elements than we need. 4129 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4130 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4131 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4132 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4133 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4134 } 4135 4136 if (!EltVT.isInteger()) { 4137 // Floating-point extracts are handled in TableGen. 4138 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4139 DAG.getConstant(0, DL, XLenVT)); 4140 } 4141 4142 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4143 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4144 } 4145 4146 // Some RVV intrinsics may claim that they want an integer operand to be 4147 // promoted or expanded. 4148 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 4149 const RISCVSubtarget &Subtarget) { 4150 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4151 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4152 "Unexpected opcode"); 4153 4154 if (!Subtarget.hasVInstructions()) 4155 return SDValue(); 4156 4157 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4158 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4159 SDLoc DL(Op); 4160 4161 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4162 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4163 if (!II || !II->hasSplatOperand()) 4164 return SDValue(); 4165 4166 unsigned SplatOp = II->SplatOperand + 1 + HasChain; 4167 assert(SplatOp < Op.getNumOperands()); 4168 4169 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4170 SDValue &ScalarOp = Operands[SplatOp]; 4171 MVT OpVT = ScalarOp.getSimpleValueType(); 4172 MVT XLenVT = Subtarget.getXLenVT(); 4173 4174 // If this isn't a scalar, or its type is XLenVT we're done. 4175 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4176 return SDValue(); 4177 4178 // Simplest case is that the operand needs to be promoted to XLenVT. 4179 if (OpVT.bitsLT(XLenVT)) { 4180 // If the operand is a constant, sign extend to increase our chances 4181 // of being able to use a .vi instruction. ANY_EXTEND would become a 4182 // a zero extend and the simm5 check in isel would fail. 4183 // FIXME: Should we ignore the upper bits in isel instead? 4184 unsigned ExtOpc = 4185 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4186 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4187 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4188 } 4189 4190 // Use the previous operand to get the vXi64 VT. The result might be a mask 4191 // VT for compares. Using the previous operand assumes that the previous 4192 // operand will never have a smaller element size than a scalar operand and 4193 // that a widening operation never uses SEW=64. 4194 // NOTE: If this fails the below assert, we can probably just find the 4195 // element count from any operand or result and use it to construct the VT. 4196 assert(II->SplatOperand > 0 && "Unexpected splat operand!"); 4197 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4198 4199 // The more complex case is when the scalar is larger than XLenVT. 4200 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4201 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4202 4203 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4204 // on the instruction to sign-extend since SEW>XLEN. 4205 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4206 if (isInt<32>(CVal->getSExtValue())) { 4207 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4208 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4209 } 4210 } 4211 4212 // We need to convert the scalar to a splat vector. 4213 // FIXME: Can we implicitly truncate the scalar if it is known to 4214 // be sign extended? 4215 SDValue VL = Op.getOperand(II->VLOperand + 1 + HasChain); 4216 assert(VL.getValueType() == XLenVT); 4217 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4218 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4219 } 4220 4221 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4222 SelectionDAG &DAG) const { 4223 unsigned IntNo = Op.getConstantOperandVal(0); 4224 SDLoc DL(Op); 4225 MVT XLenVT = Subtarget.getXLenVT(); 4226 4227 switch (IntNo) { 4228 default: 4229 break; // Don't custom lower most intrinsics. 4230 case Intrinsic::thread_pointer: { 4231 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4232 return DAG.getRegister(RISCV::X4, PtrVT); 4233 } 4234 case Intrinsic::riscv_orc_b: 4235 // Lower to the GORCI encoding for orc.b. 4236 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 4237 DAG.getConstant(7, DL, XLenVT)); 4238 case Intrinsic::riscv_grev: 4239 case Intrinsic::riscv_gorc: { 4240 unsigned Opc = 4241 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4242 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4243 } 4244 case Intrinsic::riscv_shfl: 4245 case Intrinsic::riscv_unshfl: { 4246 unsigned Opc = 4247 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4248 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4249 } 4250 case Intrinsic::riscv_bcompress: 4251 case Intrinsic::riscv_bdecompress: { 4252 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4253 : RISCVISD::BDECOMPRESS; 4254 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4255 } 4256 case Intrinsic::riscv_bfp: 4257 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4258 Op.getOperand(2)); 4259 case Intrinsic::riscv_vmv_x_s: 4260 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4261 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4262 Op.getOperand(1)); 4263 case Intrinsic::riscv_vmv_v_x: 4264 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4265 Op.getSimpleValueType(), DL, DAG, Subtarget); 4266 case Intrinsic::riscv_vfmv_v_f: 4267 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4268 Op.getOperand(1), Op.getOperand(2)); 4269 case Intrinsic::riscv_vmv_s_x: { 4270 SDValue Scalar = Op.getOperand(2); 4271 4272 if (Scalar.getValueType().bitsLE(XLenVT)) { 4273 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4274 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4275 Op.getOperand(1), Scalar, Op.getOperand(3)); 4276 } 4277 4278 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4279 4280 // This is an i64 value that lives in two scalar registers. We have to 4281 // insert this in a convoluted way. First we build vXi64 splat containing 4282 // the/ two values that we assemble using some bit math. Next we'll use 4283 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4284 // to merge element 0 from our splat into the source vector. 4285 // FIXME: This is probably not the best way to do this, but it is 4286 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4287 // point. 4288 // sw lo, (a0) 4289 // sw hi, 4(a0) 4290 // vlse vX, (a0) 4291 // 4292 // vid.v vVid 4293 // vmseq.vx mMask, vVid, 0 4294 // vmerge.vvm vDest, vSrc, vVal, mMask 4295 MVT VT = Op.getSimpleValueType(); 4296 SDValue Vec = Op.getOperand(1); 4297 SDValue VL = Op.getOperand(3); 4298 4299 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4300 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4301 DAG.getConstant(0, DL, MVT::i32), VL); 4302 4303 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4304 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4305 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4306 SDValue SelectCond = 4307 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4308 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4309 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4310 Vec, VL); 4311 } 4312 case Intrinsic::riscv_vslide1up: 4313 case Intrinsic::riscv_vslide1down: 4314 case Intrinsic::riscv_vslide1up_mask: 4315 case Intrinsic::riscv_vslide1down_mask: { 4316 // We need to special case these when the scalar is larger than XLen. 4317 unsigned NumOps = Op.getNumOperands(); 4318 bool IsMasked = NumOps == 7; 4319 unsigned OpOffset = IsMasked ? 1 : 0; 4320 SDValue Scalar = Op.getOperand(2 + OpOffset); 4321 if (Scalar.getValueType().bitsLE(XLenVT)) 4322 break; 4323 4324 // Splatting a sign extended constant is fine. 4325 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4326 if (isInt<32>(CVal->getSExtValue())) 4327 break; 4328 4329 MVT VT = Op.getSimpleValueType(); 4330 assert(VT.getVectorElementType() == MVT::i64 && 4331 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4332 4333 // Convert the vector source to the equivalent nxvXi32 vector. 4334 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4335 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4336 4337 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4338 DAG.getConstant(0, DL, XLenVT)); 4339 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4340 DAG.getConstant(1, DL, XLenVT)); 4341 4342 // Double the VL since we halved SEW. 4343 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 4344 SDValue I32VL = 4345 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4346 4347 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4348 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4349 4350 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4351 // instructions. 4352 if (IntNo == Intrinsic::riscv_vslide1up || 4353 IntNo == Intrinsic::riscv_vslide1up_mask) { 4354 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4355 I32Mask, I32VL); 4356 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4357 I32Mask, I32VL); 4358 } else { 4359 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4360 I32Mask, I32VL); 4361 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4362 I32Mask, I32VL); 4363 } 4364 4365 // Convert back to nxvXi64. 4366 Vec = DAG.getBitcast(VT, Vec); 4367 4368 if (!IsMasked) 4369 return Vec; 4370 4371 // Apply mask after the operation. 4372 SDValue Mask = Op.getOperand(NumOps - 3); 4373 SDValue MaskedOff = Op.getOperand(1); 4374 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4375 } 4376 } 4377 4378 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4379 } 4380 4381 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4382 SelectionDAG &DAG) const { 4383 unsigned IntNo = Op.getConstantOperandVal(1); 4384 switch (IntNo) { 4385 default: 4386 break; 4387 case Intrinsic::riscv_masked_strided_load: { 4388 SDLoc DL(Op); 4389 MVT XLenVT = Subtarget.getXLenVT(); 4390 4391 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4392 // the selection of the masked intrinsics doesn't do this for us. 4393 SDValue Mask = Op.getOperand(5); 4394 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4395 4396 MVT VT = Op->getSimpleValueType(0); 4397 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4398 4399 SDValue PassThru = Op.getOperand(2); 4400 if (!IsUnmasked) { 4401 MVT MaskVT = 4402 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4403 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4404 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4405 } 4406 4407 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4408 4409 SDValue IntID = DAG.getTargetConstant( 4410 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4411 XLenVT); 4412 4413 auto *Load = cast<MemIntrinsicSDNode>(Op); 4414 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4415 if (!IsUnmasked) 4416 Ops.push_back(PassThru); 4417 Ops.push_back(Op.getOperand(3)); // Ptr 4418 Ops.push_back(Op.getOperand(4)); // Stride 4419 if (!IsUnmasked) 4420 Ops.push_back(Mask); 4421 Ops.push_back(VL); 4422 if (!IsUnmasked) { 4423 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4424 Ops.push_back(Policy); 4425 } 4426 4427 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4428 SDValue Result = 4429 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4430 Load->getMemoryVT(), Load->getMemOperand()); 4431 SDValue Chain = Result.getValue(1); 4432 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4433 return DAG.getMergeValues({Result, Chain}, DL); 4434 } 4435 } 4436 4437 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4438 } 4439 4440 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4441 SelectionDAG &DAG) const { 4442 unsigned IntNo = Op.getConstantOperandVal(1); 4443 switch (IntNo) { 4444 default: 4445 break; 4446 case Intrinsic::riscv_masked_strided_store: { 4447 SDLoc DL(Op); 4448 MVT XLenVT = Subtarget.getXLenVT(); 4449 4450 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4451 // the selection of the masked intrinsics doesn't do this for us. 4452 SDValue Mask = Op.getOperand(5); 4453 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4454 4455 SDValue Val = Op.getOperand(2); 4456 MVT VT = Val.getSimpleValueType(); 4457 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4458 4459 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4460 if (!IsUnmasked) { 4461 MVT MaskVT = 4462 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4463 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4464 } 4465 4466 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4467 4468 SDValue IntID = DAG.getTargetConstant( 4469 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4470 XLenVT); 4471 4472 auto *Store = cast<MemIntrinsicSDNode>(Op); 4473 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4474 Ops.push_back(Val); 4475 Ops.push_back(Op.getOperand(3)); // Ptr 4476 Ops.push_back(Op.getOperand(4)); // Stride 4477 if (!IsUnmasked) 4478 Ops.push_back(Mask); 4479 Ops.push_back(VL); 4480 4481 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4482 Ops, Store->getMemoryVT(), 4483 Store->getMemOperand()); 4484 } 4485 } 4486 4487 return SDValue(); 4488 } 4489 4490 static MVT getLMUL1VT(MVT VT) { 4491 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4492 "Unexpected vector MVT"); 4493 return MVT::getScalableVectorVT( 4494 VT.getVectorElementType(), 4495 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4496 } 4497 4498 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4499 switch (ISDOpcode) { 4500 default: 4501 llvm_unreachable("Unhandled reduction"); 4502 case ISD::VECREDUCE_ADD: 4503 return RISCVISD::VECREDUCE_ADD_VL; 4504 case ISD::VECREDUCE_UMAX: 4505 return RISCVISD::VECREDUCE_UMAX_VL; 4506 case ISD::VECREDUCE_SMAX: 4507 return RISCVISD::VECREDUCE_SMAX_VL; 4508 case ISD::VECREDUCE_UMIN: 4509 return RISCVISD::VECREDUCE_UMIN_VL; 4510 case ISD::VECREDUCE_SMIN: 4511 return RISCVISD::VECREDUCE_SMIN_VL; 4512 case ISD::VECREDUCE_AND: 4513 return RISCVISD::VECREDUCE_AND_VL; 4514 case ISD::VECREDUCE_OR: 4515 return RISCVISD::VECREDUCE_OR_VL; 4516 case ISD::VECREDUCE_XOR: 4517 return RISCVISD::VECREDUCE_XOR_VL; 4518 } 4519 } 4520 4521 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4522 SelectionDAG &DAG, 4523 bool IsVP) const { 4524 SDLoc DL(Op); 4525 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4526 MVT VecVT = Vec.getSimpleValueType(); 4527 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4528 Op.getOpcode() == ISD::VECREDUCE_OR || 4529 Op.getOpcode() == ISD::VECREDUCE_XOR || 4530 Op.getOpcode() == ISD::VP_REDUCE_AND || 4531 Op.getOpcode() == ISD::VP_REDUCE_OR || 4532 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4533 "Unexpected reduction lowering"); 4534 4535 MVT XLenVT = Subtarget.getXLenVT(); 4536 assert(Op.getValueType() == XLenVT && 4537 "Expected reduction output to be legalized to XLenVT"); 4538 4539 MVT ContainerVT = VecVT; 4540 if (VecVT.isFixedLengthVector()) { 4541 ContainerVT = getContainerForFixedLengthVector(VecVT); 4542 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4543 } 4544 4545 SDValue Mask, VL; 4546 if (IsVP) { 4547 Mask = Op.getOperand(2); 4548 VL = Op.getOperand(3); 4549 } else { 4550 std::tie(Mask, VL) = 4551 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4552 } 4553 4554 unsigned BaseOpc; 4555 ISD::CondCode CC; 4556 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4557 4558 switch (Op.getOpcode()) { 4559 default: 4560 llvm_unreachable("Unhandled reduction"); 4561 case ISD::VECREDUCE_AND: 4562 case ISD::VP_REDUCE_AND: { 4563 // vcpop ~x == 0 4564 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4565 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4566 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4567 CC = ISD::SETEQ; 4568 BaseOpc = ISD::AND; 4569 break; 4570 } 4571 case ISD::VECREDUCE_OR: 4572 case ISD::VP_REDUCE_OR: 4573 // vcpop x != 0 4574 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4575 CC = ISD::SETNE; 4576 BaseOpc = ISD::OR; 4577 break; 4578 case ISD::VECREDUCE_XOR: 4579 case ISD::VP_REDUCE_XOR: { 4580 // ((vcpop x) & 1) != 0 4581 SDValue One = DAG.getConstant(1, DL, XLenVT); 4582 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4583 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4584 CC = ISD::SETNE; 4585 BaseOpc = ISD::XOR; 4586 break; 4587 } 4588 } 4589 4590 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4591 4592 if (!IsVP) 4593 return SetCC; 4594 4595 // Now include the start value in the operation. 4596 // Note that we must return the start value when no elements are operated 4597 // upon. The vcpop instructions we've emitted in each case above will return 4598 // 0 for an inactive vector, and so we've already received the neutral value: 4599 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4600 // can simply include the start value. 4601 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4602 } 4603 4604 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4605 SelectionDAG &DAG) const { 4606 SDLoc DL(Op); 4607 SDValue Vec = Op.getOperand(0); 4608 EVT VecEVT = Vec.getValueType(); 4609 4610 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4611 4612 // Due to ordering in legalize types we may have a vector type that needs to 4613 // be split. Do that manually so we can get down to a legal type. 4614 while (getTypeAction(*DAG.getContext(), VecEVT) == 4615 TargetLowering::TypeSplitVector) { 4616 SDValue Lo, Hi; 4617 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4618 VecEVT = Lo.getValueType(); 4619 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4620 } 4621 4622 // TODO: The type may need to be widened rather than split. Or widened before 4623 // it can be split. 4624 if (!isTypeLegal(VecEVT)) 4625 return SDValue(); 4626 4627 MVT VecVT = VecEVT.getSimpleVT(); 4628 MVT VecEltVT = VecVT.getVectorElementType(); 4629 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4630 4631 MVT ContainerVT = VecVT; 4632 if (VecVT.isFixedLengthVector()) { 4633 ContainerVT = getContainerForFixedLengthVector(VecVT); 4634 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4635 } 4636 4637 MVT M1VT = getLMUL1VT(ContainerVT); 4638 MVT XLenVT = Subtarget.getXLenVT(); 4639 4640 SDValue Mask, VL; 4641 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4642 4643 SDValue NeutralElem = 4644 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4645 SDValue IdentitySplat = lowerScalarSplat( 4646 NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4647 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4648 IdentitySplat, Mask, VL); 4649 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4650 DAG.getConstant(0, DL, XLenVT)); 4651 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4652 } 4653 4654 // Given a reduction op, this function returns the matching reduction opcode, 4655 // the vector SDValue and the scalar SDValue required to lower this to a 4656 // RISCVISD node. 4657 static std::tuple<unsigned, SDValue, SDValue> 4658 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4659 SDLoc DL(Op); 4660 auto Flags = Op->getFlags(); 4661 unsigned Opcode = Op.getOpcode(); 4662 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4663 switch (Opcode) { 4664 default: 4665 llvm_unreachable("Unhandled reduction"); 4666 case ISD::VECREDUCE_FADD: { 4667 // Use positive zero if we can. It is cheaper to materialize. 4668 SDValue Zero = 4669 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 4670 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 4671 } 4672 case ISD::VECREDUCE_SEQ_FADD: 4673 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4674 Op.getOperand(0)); 4675 case ISD::VECREDUCE_FMIN: 4676 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4677 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4678 case ISD::VECREDUCE_FMAX: 4679 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4680 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4681 } 4682 } 4683 4684 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4685 SelectionDAG &DAG) const { 4686 SDLoc DL(Op); 4687 MVT VecEltVT = Op.getSimpleValueType(); 4688 4689 unsigned RVVOpcode; 4690 SDValue VectorVal, ScalarVal; 4691 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4692 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4693 MVT VecVT = VectorVal.getSimpleValueType(); 4694 4695 MVT ContainerVT = VecVT; 4696 if (VecVT.isFixedLengthVector()) { 4697 ContainerVT = getContainerForFixedLengthVector(VecVT); 4698 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4699 } 4700 4701 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4702 MVT XLenVT = Subtarget.getXLenVT(); 4703 4704 SDValue Mask, VL; 4705 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4706 4707 SDValue ScalarSplat = lowerScalarSplat( 4708 ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4709 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4710 VectorVal, ScalarSplat, Mask, VL); 4711 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4712 DAG.getConstant(0, DL, XLenVT)); 4713 } 4714 4715 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4716 switch (ISDOpcode) { 4717 default: 4718 llvm_unreachable("Unhandled reduction"); 4719 case ISD::VP_REDUCE_ADD: 4720 return RISCVISD::VECREDUCE_ADD_VL; 4721 case ISD::VP_REDUCE_UMAX: 4722 return RISCVISD::VECREDUCE_UMAX_VL; 4723 case ISD::VP_REDUCE_SMAX: 4724 return RISCVISD::VECREDUCE_SMAX_VL; 4725 case ISD::VP_REDUCE_UMIN: 4726 return RISCVISD::VECREDUCE_UMIN_VL; 4727 case ISD::VP_REDUCE_SMIN: 4728 return RISCVISD::VECREDUCE_SMIN_VL; 4729 case ISD::VP_REDUCE_AND: 4730 return RISCVISD::VECREDUCE_AND_VL; 4731 case ISD::VP_REDUCE_OR: 4732 return RISCVISD::VECREDUCE_OR_VL; 4733 case ISD::VP_REDUCE_XOR: 4734 return RISCVISD::VECREDUCE_XOR_VL; 4735 case ISD::VP_REDUCE_FADD: 4736 return RISCVISD::VECREDUCE_FADD_VL; 4737 case ISD::VP_REDUCE_SEQ_FADD: 4738 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4739 case ISD::VP_REDUCE_FMAX: 4740 return RISCVISD::VECREDUCE_FMAX_VL; 4741 case ISD::VP_REDUCE_FMIN: 4742 return RISCVISD::VECREDUCE_FMIN_VL; 4743 } 4744 } 4745 4746 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4747 SelectionDAG &DAG) const { 4748 SDLoc DL(Op); 4749 SDValue Vec = Op.getOperand(1); 4750 EVT VecEVT = Vec.getValueType(); 4751 4752 // TODO: The type may need to be widened rather than split. Or widened before 4753 // it can be split. 4754 if (!isTypeLegal(VecEVT)) 4755 return SDValue(); 4756 4757 MVT VecVT = VecEVT.getSimpleVT(); 4758 MVT VecEltVT = VecVT.getVectorElementType(); 4759 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4760 4761 MVT ContainerVT = VecVT; 4762 if (VecVT.isFixedLengthVector()) { 4763 ContainerVT = getContainerForFixedLengthVector(VecVT); 4764 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4765 } 4766 4767 SDValue VL = Op.getOperand(3); 4768 SDValue Mask = Op.getOperand(2); 4769 4770 MVT M1VT = getLMUL1VT(ContainerVT); 4771 MVT XLenVT = Subtarget.getXLenVT(); 4772 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4773 4774 SDValue StartSplat = 4775 lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, 4776 DL, DAG, Subtarget); 4777 SDValue Reduction = 4778 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4779 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4780 DAG.getConstant(0, DL, XLenVT)); 4781 if (!VecVT.isInteger()) 4782 return Elt0; 4783 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4784 } 4785 4786 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4787 SelectionDAG &DAG) const { 4788 SDValue Vec = Op.getOperand(0); 4789 SDValue SubVec = Op.getOperand(1); 4790 MVT VecVT = Vec.getSimpleValueType(); 4791 MVT SubVecVT = SubVec.getSimpleValueType(); 4792 4793 SDLoc DL(Op); 4794 MVT XLenVT = Subtarget.getXLenVT(); 4795 unsigned OrigIdx = Op.getConstantOperandVal(2); 4796 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4797 4798 // We don't have the ability to slide mask vectors up indexed by their i1 4799 // elements; the smallest we can do is i8. Often we are able to bitcast to 4800 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4801 // into a scalable one, we might not necessarily have enough scalable 4802 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4803 if (SubVecVT.getVectorElementType() == MVT::i1 && 4804 (OrigIdx != 0 || !Vec.isUndef())) { 4805 if (VecVT.getVectorMinNumElements() >= 8 && 4806 SubVecVT.getVectorMinNumElements() >= 8) { 4807 assert(OrigIdx % 8 == 0 && "Invalid index"); 4808 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4809 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4810 "Unexpected mask vector lowering"); 4811 OrigIdx /= 8; 4812 SubVecVT = 4813 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4814 SubVecVT.isScalableVector()); 4815 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4816 VecVT.isScalableVector()); 4817 Vec = DAG.getBitcast(VecVT, Vec); 4818 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4819 } else { 4820 // We can't slide this mask vector up indexed by its i1 elements. 4821 // This poses a problem when we wish to insert a scalable vector which 4822 // can't be re-expressed as a larger type. Just choose the slow path and 4823 // extend to a larger type, then truncate back down. 4824 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4825 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4826 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4827 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4828 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4829 Op.getOperand(2)); 4830 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4831 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4832 } 4833 } 4834 4835 // If the subvector vector is a fixed-length type, we cannot use subregister 4836 // manipulation to simplify the codegen; we don't know which register of a 4837 // LMUL group contains the specific subvector as we only know the minimum 4838 // register size. Therefore we must slide the vector group up the full 4839 // amount. 4840 if (SubVecVT.isFixedLengthVector()) { 4841 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 4842 return Op; 4843 MVT ContainerVT = VecVT; 4844 if (VecVT.isFixedLengthVector()) { 4845 ContainerVT = getContainerForFixedLengthVector(VecVT); 4846 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4847 } 4848 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4849 DAG.getUNDEF(ContainerVT), SubVec, 4850 DAG.getConstant(0, DL, XLenVT)); 4851 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 4852 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 4853 return DAG.getBitcast(Op.getValueType(), SubVec); 4854 } 4855 SDValue Mask = 4856 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4857 // Set the vector length to only the number of elements we care about. Note 4858 // that for slideup this includes the offset. 4859 SDValue VL = 4860 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4861 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4862 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4863 SubVec, SlideupAmt, Mask, VL); 4864 if (VecVT.isFixedLengthVector()) 4865 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4866 return DAG.getBitcast(Op.getValueType(), Slideup); 4867 } 4868 4869 unsigned SubRegIdx, RemIdx; 4870 std::tie(SubRegIdx, RemIdx) = 4871 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4872 VecVT, SubVecVT, OrigIdx, TRI); 4873 4874 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4875 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4876 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4877 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4878 4879 // 1. If the Idx has been completely eliminated and this subvector's size is 4880 // a vector register or a multiple thereof, or the surrounding elements are 4881 // undef, then this is a subvector insert which naturally aligns to a vector 4882 // register. These can easily be handled using subregister manipulation. 4883 // 2. If the subvector is smaller than a vector register, then the insertion 4884 // must preserve the undisturbed elements of the register. We do this by 4885 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4886 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4887 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4888 // LMUL=1 type back into the larger vector (resolving to another subregister 4889 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4890 // to avoid allocating a large register group to hold our subvector. 4891 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4892 return Op; 4893 4894 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4895 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4896 // (in our case undisturbed). This means we can set up a subvector insertion 4897 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4898 // size of the subvector. 4899 MVT InterSubVT = VecVT; 4900 SDValue AlignedExtract = Vec; 4901 unsigned AlignedIdx = OrigIdx - RemIdx; 4902 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4903 InterSubVT = getLMUL1VT(VecVT); 4904 // Extract a subvector equal to the nearest full vector register type. This 4905 // should resolve to a EXTRACT_SUBREG instruction. 4906 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4907 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4908 } 4909 4910 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4911 // For scalable vectors this must be further multiplied by vscale. 4912 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4913 4914 SDValue Mask, VL; 4915 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4916 4917 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4918 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4919 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4920 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4921 4922 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4923 DAG.getUNDEF(InterSubVT), SubVec, 4924 DAG.getConstant(0, DL, XLenVT)); 4925 4926 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4927 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4928 4929 // If required, insert this subvector back into the correct vector register. 4930 // This should resolve to an INSERT_SUBREG instruction. 4931 if (VecVT.bitsGT(InterSubVT)) 4932 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4933 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4934 4935 // We might have bitcast from a mask type: cast back to the original type if 4936 // required. 4937 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4938 } 4939 4940 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4941 SelectionDAG &DAG) const { 4942 SDValue Vec = Op.getOperand(0); 4943 MVT SubVecVT = Op.getSimpleValueType(); 4944 MVT VecVT = Vec.getSimpleValueType(); 4945 4946 SDLoc DL(Op); 4947 MVT XLenVT = Subtarget.getXLenVT(); 4948 unsigned OrigIdx = Op.getConstantOperandVal(1); 4949 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4950 4951 // We don't have the ability to slide mask vectors down indexed by their i1 4952 // elements; the smallest we can do is i8. Often we are able to bitcast to 4953 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4954 // from a scalable one, we might not necessarily have enough scalable 4955 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4956 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4957 if (VecVT.getVectorMinNumElements() >= 8 && 4958 SubVecVT.getVectorMinNumElements() >= 8) { 4959 assert(OrigIdx % 8 == 0 && "Invalid index"); 4960 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4961 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4962 "Unexpected mask vector lowering"); 4963 OrigIdx /= 8; 4964 SubVecVT = 4965 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4966 SubVecVT.isScalableVector()); 4967 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4968 VecVT.isScalableVector()); 4969 Vec = DAG.getBitcast(VecVT, Vec); 4970 } else { 4971 // We can't slide this mask vector down, indexed by its i1 elements. 4972 // This poses a problem when we wish to extract a scalable vector which 4973 // can't be re-expressed as a larger type. Just choose the slow path and 4974 // extend to a larger type, then truncate back down. 4975 // TODO: We could probably improve this when extracting certain fixed 4976 // from fixed, where we can extract as i8 and shift the correct element 4977 // right to reach the desired subvector? 4978 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4979 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4980 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4981 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4982 Op.getOperand(1)); 4983 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4984 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4985 } 4986 } 4987 4988 // If the subvector vector is a fixed-length type, we cannot use subregister 4989 // manipulation to simplify the codegen; we don't know which register of a 4990 // LMUL group contains the specific subvector as we only know the minimum 4991 // register size. Therefore we must slide the vector group down the full 4992 // amount. 4993 if (SubVecVT.isFixedLengthVector()) { 4994 // With an index of 0 this is a cast-like subvector, which can be performed 4995 // with subregister operations. 4996 if (OrigIdx == 0) 4997 return Op; 4998 MVT ContainerVT = VecVT; 4999 if (VecVT.isFixedLengthVector()) { 5000 ContainerVT = getContainerForFixedLengthVector(VecVT); 5001 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5002 } 5003 SDValue Mask = 5004 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5005 // Set the vector length to only the number of elements we care about. This 5006 // avoids sliding down elements we're going to discard straight away. 5007 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5008 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5009 SDValue Slidedown = 5010 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5011 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5012 // Now we can use a cast-like subvector extract to get the result. 5013 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5014 DAG.getConstant(0, DL, XLenVT)); 5015 return DAG.getBitcast(Op.getValueType(), Slidedown); 5016 } 5017 5018 unsigned SubRegIdx, RemIdx; 5019 std::tie(SubRegIdx, RemIdx) = 5020 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5021 VecVT, SubVecVT, OrigIdx, TRI); 5022 5023 // If the Idx has been completely eliminated then this is a subvector extract 5024 // which naturally aligns to a vector register. These can easily be handled 5025 // using subregister manipulation. 5026 if (RemIdx == 0) 5027 return Op; 5028 5029 // Else we must shift our vector register directly to extract the subvector. 5030 // Do this using VSLIDEDOWN. 5031 5032 // If the vector type is an LMUL-group type, extract a subvector equal to the 5033 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5034 // instruction. 5035 MVT InterSubVT = VecVT; 5036 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5037 InterSubVT = getLMUL1VT(VecVT); 5038 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5039 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5040 } 5041 5042 // Slide this vector register down by the desired number of elements in order 5043 // to place the desired subvector starting at element 0. 5044 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5045 // For scalable vectors this must be further multiplied by vscale. 5046 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5047 5048 SDValue Mask, VL; 5049 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5050 SDValue Slidedown = 5051 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5052 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5053 5054 // Now the vector is in the right position, extract our final subvector. This 5055 // should resolve to a COPY. 5056 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5057 DAG.getConstant(0, DL, XLenVT)); 5058 5059 // We might have bitcast from a mask type: cast back to the original type if 5060 // required. 5061 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5062 } 5063 5064 // Lower step_vector to the vid instruction. Any non-identity step value must 5065 // be accounted for my manual expansion. 5066 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5067 SelectionDAG &DAG) const { 5068 SDLoc DL(Op); 5069 MVT VT = Op.getSimpleValueType(); 5070 MVT XLenVT = Subtarget.getXLenVT(); 5071 SDValue Mask, VL; 5072 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5073 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5074 uint64_t StepValImm = Op.getConstantOperandVal(0); 5075 if (StepValImm != 1) { 5076 if (isPowerOf2_64(StepValImm)) { 5077 SDValue StepVal = 5078 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 5079 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5080 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5081 } else { 5082 SDValue StepVal = lowerScalarSplat( 5083 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 5084 DL, DAG, Subtarget); 5085 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5086 } 5087 } 5088 return StepVec; 5089 } 5090 5091 // Implement vector_reverse using vrgather.vv with indices determined by 5092 // subtracting the id of each element from (VLMAX-1). This will convert 5093 // the indices like so: 5094 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5095 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5096 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5097 SelectionDAG &DAG) const { 5098 SDLoc DL(Op); 5099 MVT VecVT = Op.getSimpleValueType(); 5100 unsigned EltSize = VecVT.getScalarSizeInBits(); 5101 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5102 5103 unsigned MaxVLMAX = 0; 5104 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5105 if (VectorBitsMax != 0) 5106 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 5107 5108 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5109 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5110 5111 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5112 // to use vrgatherei16.vv. 5113 // TODO: It's also possible to use vrgatherei16.vv for other types to 5114 // decrease register width for the index calculation. 5115 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5116 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5117 // Reverse each half, then reassemble them in reverse order. 5118 // NOTE: It's also possible that after splitting that VLMAX no longer 5119 // requires vrgatherei16.vv. 5120 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5121 SDValue Lo, Hi; 5122 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5123 EVT LoVT, HiVT; 5124 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5125 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5126 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5127 // Reassemble the low and high pieces reversed. 5128 // FIXME: This is a CONCAT_VECTORS. 5129 SDValue Res = 5130 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5131 DAG.getIntPtrConstant(0, DL)); 5132 return DAG.getNode( 5133 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5134 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5135 } 5136 5137 // Just promote the int type to i16 which will double the LMUL. 5138 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5139 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5140 } 5141 5142 MVT XLenVT = Subtarget.getXLenVT(); 5143 SDValue Mask, VL; 5144 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5145 5146 // Calculate VLMAX-1 for the desired SEW. 5147 unsigned MinElts = VecVT.getVectorMinNumElements(); 5148 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5149 DAG.getConstant(MinElts, DL, XLenVT)); 5150 SDValue VLMinus1 = 5151 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5152 5153 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5154 bool IsRV32E64 = 5155 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5156 SDValue SplatVL; 5157 if (!IsRV32E64) 5158 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5159 else 5160 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 5161 5162 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5163 SDValue Indices = 5164 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5165 5166 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5167 } 5168 5169 SDValue 5170 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5171 SelectionDAG &DAG) const { 5172 SDLoc DL(Op); 5173 auto *Load = cast<LoadSDNode>(Op); 5174 5175 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5176 Load->getMemoryVT(), 5177 *Load->getMemOperand()) && 5178 "Expecting a correctly-aligned load"); 5179 5180 MVT VT = Op.getSimpleValueType(); 5181 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5182 5183 SDValue VL = 5184 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5185 5186 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5187 SDValue NewLoad = DAG.getMemIntrinsicNode( 5188 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5189 Load->getMemoryVT(), Load->getMemOperand()); 5190 5191 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5192 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5193 } 5194 5195 SDValue 5196 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5197 SelectionDAG &DAG) const { 5198 SDLoc DL(Op); 5199 auto *Store = cast<StoreSDNode>(Op); 5200 5201 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5202 Store->getMemoryVT(), 5203 *Store->getMemOperand()) && 5204 "Expecting a correctly-aligned store"); 5205 5206 SDValue StoreVal = Store->getValue(); 5207 MVT VT = StoreVal.getSimpleValueType(); 5208 5209 // If the size less than a byte, we need to pad with zeros to make a byte. 5210 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5211 VT = MVT::v8i1; 5212 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5213 DAG.getConstant(0, DL, VT), StoreVal, 5214 DAG.getIntPtrConstant(0, DL)); 5215 } 5216 5217 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5218 5219 SDValue VL = 5220 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5221 5222 SDValue NewValue = 5223 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5224 return DAG.getMemIntrinsicNode( 5225 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5226 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5227 Store->getMemoryVT(), Store->getMemOperand()); 5228 } 5229 5230 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5231 SelectionDAG &DAG) const { 5232 SDLoc DL(Op); 5233 MVT VT = Op.getSimpleValueType(); 5234 5235 const auto *MemSD = cast<MemSDNode>(Op); 5236 EVT MemVT = MemSD->getMemoryVT(); 5237 MachineMemOperand *MMO = MemSD->getMemOperand(); 5238 SDValue Chain = MemSD->getChain(); 5239 SDValue BasePtr = MemSD->getBasePtr(); 5240 5241 SDValue Mask, PassThru, VL; 5242 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5243 Mask = VPLoad->getMask(); 5244 PassThru = DAG.getUNDEF(VT); 5245 VL = VPLoad->getVectorLength(); 5246 } else { 5247 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5248 Mask = MLoad->getMask(); 5249 PassThru = MLoad->getPassThru(); 5250 } 5251 5252 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5253 5254 MVT XLenVT = Subtarget.getXLenVT(); 5255 5256 MVT ContainerVT = VT; 5257 if (VT.isFixedLengthVector()) { 5258 ContainerVT = getContainerForFixedLengthVector(VT); 5259 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5260 if (!IsUnmasked) { 5261 MVT MaskVT = 5262 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5263 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5264 } 5265 } 5266 5267 if (!VL) 5268 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5269 5270 unsigned IntID = 5271 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5272 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5273 if (!IsUnmasked) 5274 Ops.push_back(PassThru); 5275 Ops.push_back(BasePtr); 5276 if (!IsUnmasked) 5277 Ops.push_back(Mask); 5278 Ops.push_back(VL); 5279 if (!IsUnmasked) 5280 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5281 5282 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5283 5284 SDValue Result = 5285 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5286 Chain = Result.getValue(1); 5287 5288 if (VT.isFixedLengthVector()) 5289 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5290 5291 return DAG.getMergeValues({Result, Chain}, DL); 5292 } 5293 5294 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5295 SelectionDAG &DAG) const { 5296 SDLoc DL(Op); 5297 5298 const auto *MemSD = cast<MemSDNode>(Op); 5299 EVT MemVT = MemSD->getMemoryVT(); 5300 MachineMemOperand *MMO = MemSD->getMemOperand(); 5301 SDValue Chain = MemSD->getChain(); 5302 SDValue BasePtr = MemSD->getBasePtr(); 5303 SDValue Val, Mask, VL; 5304 5305 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5306 Val = VPStore->getValue(); 5307 Mask = VPStore->getMask(); 5308 VL = VPStore->getVectorLength(); 5309 } else { 5310 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5311 Val = MStore->getValue(); 5312 Mask = MStore->getMask(); 5313 } 5314 5315 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5316 5317 MVT VT = Val.getSimpleValueType(); 5318 MVT XLenVT = Subtarget.getXLenVT(); 5319 5320 MVT ContainerVT = VT; 5321 if (VT.isFixedLengthVector()) { 5322 ContainerVT = getContainerForFixedLengthVector(VT); 5323 5324 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5325 if (!IsUnmasked) { 5326 MVT MaskVT = 5327 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5328 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5329 } 5330 } 5331 5332 if (!VL) 5333 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5334 5335 unsigned IntID = 5336 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5337 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5338 Ops.push_back(Val); 5339 Ops.push_back(BasePtr); 5340 if (!IsUnmasked) 5341 Ops.push_back(Mask); 5342 Ops.push_back(VL); 5343 5344 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5345 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5346 } 5347 5348 SDValue 5349 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5350 SelectionDAG &DAG) const { 5351 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5352 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5353 5354 MVT VT = Op.getSimpleValueType(); 5355 5356 SDValue Op1 = 5357 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5358 SDValue Op2 = 5359 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5360 5361 SDLoc DL(Op); 5362 SDValue VL = 5363 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5364 5365 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5366 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5367 5368 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5369 Op.getOperand(2), Mask, VL); 5370 5371 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5372 } 5373 5374 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5375 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5376 MVT VT = Op.getSimpleValueType(); 5377 5378 if (VT.getVectorElementType() == MVT::i1) 5379 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5380 5381 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5382 } 5383 5384 SDValue 5385 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5386 SelectionDAG &DAG) const { 5387 unsigned Opc; 5388 switch (Op.getOpcode()) { 5389 default: llvm_unreachable("Unexpected opcode!"); 5390 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5391 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5392 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5393 } 5394 5395 return lowerToScalableOp(Op, DAG, Opc); 5396 } 5397 5398 // Lower vector ABS to smax(X, sub(0, X)). 5399 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5400 SDLoc DL(Op); 5401 MVT VT = Op.getSimpleValueType(); 5402 SDValue X = Op.getOperand(0); 5403 5404 assert(VT.isFixedLengthVector() && "Unexpected type"); 5405 5406 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5407 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5408 5409 SDValue Mask, VL; 5410 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5411 5412 SDValue SplatZero = 5413 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5414 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5415 SDValue NegX = 5416 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5417 SDValue Max = 5418 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5419 5420 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5421 } 5422 5423 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5424 SDValue Op, SelectionDAG &DAG) const { 5425 SDLoc DL(Op); 5426 MVT VT = Op.getSimpleValueType(); 5427 SDValue Mag = Op.getOperand(0); 5428 SDValue Sign = Op.getOperand(1); 5429 assert(Mag.getValueType() == Sign.getValueType() && 5430 "Can only handle COPYSIGN with matching types."); 5431 5432 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5433 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5434 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5435 5436 SDValue Mask, VL; 5437 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5438 5439 SDValue CopySign = 5440 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5441 5442 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5443 } 5444 5445 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5446 SDValue Op, SelectionDAG &DAG) const { 5447 MVT VT = Op.getSimpleValueType(); 5448 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5449 5450 MVT I1ContainerVT = 5451 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5452 5453 SDValue CC = 5454 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5455 SDValue Op1 = 5456 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5457 SDValue Op2 = 5458 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5459 5460 SDLoc DL(Op); 5461 SDValue Mask, VL; 5462 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5463 5464 SDValue Select = 5465 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5466 5467 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5468 } 5469 5470 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5471 unsigned NewOpc, 5472 bool HasMask) const { 5473 MVT VT = Op.getSimpleValueType(); 5474 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5475 5476 // Create list of operands by converting existing ones to scalable types. 5477 SmallVector<SDValue, 6> Ops; 5478 for (const SDValue &V : Op->op_values()) { 5479 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5480 5481 // Pass through non-vector operands. 5482 if (!V.getValueType().isVector()) { 5483 Ops.push_back(V); 5484 continue; 5485 } 5486 5487 // "cast" fixed length vector to a scalable vector. 5488 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5489 "Only fixed length vectors are supported!"); 5490 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5491 } 5492 5493 SDLoc DL(Op); 5494 SDValue Mask, VL; 5495 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5496 if (HasMask) 5497 Ops.push_back(Mask); 5498 Ops.push_back(VL); 5499 5500 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5501 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5502 } 5503 5504 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5505 // * Operands of each node are assumed to be in the same order. 5506 // * The EVL operand is promoted from i32 to i64 on RV64. 5507 // * Fixed-length vectors are converted to their scalable-vector container 5508 // types. 5509 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5510 unsigned RISCVISDOpc) const { 5511 SDLoc DL(Op); 5512 MVT VT = Op.getSimpleValueType(); 5513 SmallVector<SDValue, 4> Ops; 5514 5515 for (const auto &OpIdx : enumerate(Op->ops())) { 5516 SDValue V = OpIdx.value(); 5517 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5518 // Pass through operands which aren't fixed-length vectors. 5519 if (!V.getValueType().isFixedLengthVector()) { 5520 Ops.push_back(V); 5521 continue; 5522 } 5523 // "cast" fixed length vector to a scalable vector. 5524 MVT OpVT = V.getSimpleValueType(); 5525 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5526 assert(useRVVForFixedLengthVectorVT(OpVT) && 5527 "Only fixed length vectors are supported!"); 5528 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5529 } 5530 5531 if (!VT.isFixedLengthVector()) 5532 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5533 5534 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5535 5536 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5537 5538 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5539 } 5540 5541 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 5542 unsigned MaskOpc, 5543 unsigned VecOpc) const { 5544 MVT VT = Op.getSimpleValueType(); 5545 if (VT.getVectorElementType() != MVT::i1) 5546 return lowerVPOp(Op, DAG, VecOpc); 5547 5548 // It is safe to drop mask parameter as masked-off elements are undef. 5549 SDValue Op1 = Op->getOperand(0); 5550 SDValue Op2 = Op->getOperand(1); 5551 SDValue VL = Op->getOperand(3); 5552 5553 MVT ContainerVT = VT; 5554 const bool IsFixed = VT.isFixedLengthVector(); 5555 if (IsFixed) { 5556 ContainerVT = getContainerForFixedLengthVector(VT); 5557 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 5558 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 5559 } 5560 5561 SDLoc DL(Op); 5562 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 5563 if (!IsFixed) 5564 return Val; 5565 return convertFromScalableVector(VT, Val, DAG, Subtarget); 5566 } 5567 5568 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5569 // matched to a RVV indexed load. The RVV indexed load instructions only 5570 // support the "unsigned unscaled" addressing mode; indices are implicitly 5571 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5572 // signed or scaled indexing is extended to the XLEN value type and scaled 5573 // accordingly. 5574 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5575 SelectionDAG &DAG) const { 5576 SDLoc DL(Op); 5577 MVT VT = Op.getSimpleValueType(); 5578 5579 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5580 EVT MemVT = MemSD->getMemoryVT(); 5581 MachineMemOperand *MMO = MemSD->getMemOperand(); 5582 SDValue Chain = MemSD->getChain(); 5583 SDValue BasePtr = MemSD->getBasePtr(); 5584 5585 ISD::LoadExtType LoadExtType; 5586 SDValue Index, Mask, PassThru, VL; 5587 5588 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5589 Index = VPGN->getIndex(); 5590 Mask = VPGN->getMask(); 5591 PassThru = DAG.getUNDEF(VT); 5592 VL = VPGN->getVectorLength(); 5593 // VP doesn't support extending loads. 5594 LoadExtType = ISD::NON_EXTLOAD; 5595 } else { 5596 // Else it must be a MGATHER. 5597 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5598 Index = MGN->getIndex(); 5599 Mask = MGN->getMask(); 5600 PassThru = MGN->getPassThru(); 5601 LoadExtType = MGN->getExtensionType(); 5602 } 5603 5604 MVT IndexVT = Index.getSimpleValueType(); 5605 MVT XLenVT = Subtarget.getXLenVT(); 5606 5607 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5608 "Unexpected VTs!"); 5609 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5610 // Targets have to explicitly opt-in for extending vector loads. 5611 assert(LoadExtType == ISD::NON_EXTLOAD && 5612 "Unexpected extending MGATHER/VP_GATHER"); 5613 (void)LoadExtType; 5614 5615 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5616 // the selection of the masked intrinsics doesn't do this for us. 5617 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5618 5619 MVT ContainerVT = VT; 5620 if (VT.isFixedLengthVector()) { 5621 // We need to use the larger of the result and index type to determine the 5622 // scalable type to use so we don't increase LMUL for any operand/result. 5623 if (VT.bitsGE(IndexVT)) { 5624 ContainerVT = getContainerForFixedLengthVector(VT); 5625 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5626 ContainerVT.getVectorElementCount()); 5627 } else { 5628 IndexVT = getContainerForFixedLengthVector(IndexVT); 5629 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5630 IndexVT.getVectorElementCount()); 5631 } 5632 5633 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5634 5635 if (!IsUnmasked) { 5636 MVT MaskVT = 5637 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5638 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5639 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5640 } 5641 } 5642 5643 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5644 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5645 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 5646 } 5647 5648 if (!VL) 5649 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5650 5651 unsigned IntID = 5652 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5653 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5654 if (!IsUnmasked) 5655 Ops.push_back(PassThru); 5656 Ops.push_back(BasePtr); 5657 Ops.push_back(Index); 5658 if (!IsUnmasked) 5659 Ops.push_back(Mask); 5660 Ops.push_back(VL); 5661 if (!IsUnmasked) 5662 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5663 5664 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5665 SDValue Result = 5666 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5667 Chain = Result.getValue(1); 5668 5669 if (VT.isFixedLengthVector()) 5670 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5671 5672 return DAG.getMergeValues({Result, Chain}, DL); 5673 } 5674 5675 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5676 // matched to a RVV indexed store. The RVV indexed store instructions only 5677 // support the "unsigned unscaled" addressing mode; indices are implicitly 5678 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5679 // signed or scaled indexing is extended to the XLEN value type and scaled 5680 // accordingly. 5681 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5682 SelectionDAG &DAG) const { 5683 SDLoc DL(Op); 5684 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5685 EVT MemVT = MemSD->getMemoryVT(); 5686 MachineMemOperand *MMO = MemSD->getMemOperand(); 5687 SDValue Chain = MemSD->getChain(); 5688 SDValue BasePtr = MemSD->getBasePtr(); 5689 5690 bool IsTruncatingStore = false; 5691 SDValue Index, Mask, Val, VL; 5692 5693 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5694 Index = VPSN->getIndex(); 5695 Mask = VPSN->getMask(); 5696 Val = VPSN->getValue(); 5697 VL = VPSN->getVectorLength(); 5698 // VP doesn't support truncating stores. 5699 IsTruncatingStore = false; 5700 } else { 5701 // Else it must be a MSCATTER. 5702 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5703 Index = MSN->getIndex(); 5704 Mask = MSN->getMask(); 5705 Val = MSN->getValue(); 5706 IsTruncatingStore = MSN->isTruncatingStore(); 5707 } 5708 5709 MVT VT = Val.getSimpleValueType(); 5710 MVT IndexVT = Index.getSimpleValueType(); 5711 MVT XLenVT = Subtarget.getXLenVT(); 5712 5713 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5714 "Unexpected VTs!"); 5715 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5716 // Targets have to explicitly opt-in for extending vector loads and 5717 // truncating vector stores. 5718 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5719 (void)IsTruncatingStore; 5720 5721 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5722 // the selection of the masked intrinsics doesn't do this for us. 5723 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5724 5725 MVT ContainerVT = VT; 5726 if (VT.isFixedLengthVector()) { 5727 // We need to use the larger of the value and index type to determine the 5728 // scalable type to use so we don't increase LMUL for any operand/result. 5729 if (VT.bitsGE(IndexVT)) { 5730 ContainerVT = getContainerForFixedLengthVector(VT); 5731 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5732 ContainerVT.getVectorElementCount()); 5733 } else { 5734 IndexVT = getContainerForFixedLengthVector(IndexVT); 5735 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5736 IndexVT.getVectorElementCount()); 5737 } 5738 5739 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5740 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5741 5742 if (!IsUnmasked) { 5743 MVT MaskVT = 5744 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5745 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5746 } 5747 } 5748 5749 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5750 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5751 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 5752 } 5753 5754 if (!VL) 5755 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5756 5757 unsigned IntID = 5758 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5759 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5760 Ops.push_back(Val); 5761 Ops.push_back(BasePtr); 5762 Ops.push_back(Index); 5763 if (!IsUnmasked) 5764 Ops.push_back(Mask); 5765 Ops.push_back(VL); 5766 5767 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5768 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5769 } 5770 5771 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5772 SelectionDAG &DAG) const { 5773 const MVT XLenVT = Subtarget.getXLenVT(); 5774 SDLoc DL(Op); 5775 SDValue Chain = Op->getOperand(0); 5776 SDValue SysRegNo = DAG.getTargetConstant( 5777 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5778 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5779 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5780 5781 // Encoding used for rounding mode in RISCV differs from that used in 5782 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5783 // table, which consists of a sequence of 4-bit fields, each representing 5784 // corresponding FLT_ROUNDS mode. 5785 static const int Table = 5786 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5787 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5788 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5789 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5790 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5791 5792 SDValue Shift = 5793 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5794 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5795 DAG.getConstant(Table, DL, XLenVT), Shift); 5796 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5797 DAG.getConstant(7, DL, XLenVT)); 5798 5799 return DAG.getMergeValues({Masked, Chain}, DL); 5800 } 5801 5802 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5803 SelectionDAG &DAG) const { 5804 const MVT XLenVT = Subtarget.getXLenVT(); 5805 SDLoc DL(Op); 5806 SDValue Chain = Op->getOperand(0); 5807 SDValue RMValue = Op->getOperand(1); 5808 SDValue SysRegNo = DAG.getTargetConstant( 5809 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5810 5811 // Encoding used for rounding mode in RISCV differs from that used in 5812 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5813 // a table, which consists of a sequence of 4-bit fields, each representing 5814 // corresponding RISCV mode. 5815 static const unsigned Table = 5816 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5817 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5818 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5819 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5820 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5821 5822 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5823 DAG.getConstant(2, DL, XLenVT)); 5824 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5825 DAG.getConstant(Table, DL, XLenVT), Shift); 5826 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5827 DAG.getConstant(0x7, DL, XLenVT)); 5828 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5829 RMValue); 5830 } 5831 5832 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 5833 switch (IntNo) { 5834 default: 5835 llvm_unreachable("Unexpected Intrinsic"); 5836 case Intrinsic::riscv_grev: 5837 return RISCVISD::GREVW; 5838 case Intrinsic::riscv_gorc: 5839 return RISCVISD::GORCW; 5840 case Intrinsic::riscv_bcompress: 5841 return RISCVISD::BCOMPRESSW; 5842 case Intrinsic::riscv_bdecompress: 5843 return RISCVISD::BDECOMPRESSW; 5844 case Intrinsic::riscv_bfp: 5845 return RISCVISD::BFPW; 5846 } 5847 } 5848 5849 // Converts the given intrinsic to a i64 operation with any extension. 5850 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 5851 unsigned IntNo) { 5852 SDLoc DL(N); 5853 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 5854 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5855 SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5856 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); 5857 // ReplaceNodeResults requires we maintain the same type for the return value. 5858 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5859 } 5860 5861 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5862 // form of the given Opcode. 5863 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5864 switch (Opcode) { 5865 default: 5866 llvm_unreachable("Unexpected opcode"); 5867 case ISD::SHL: 5868 return RISCVISD::SLLW; 5869 case ISD::SRA: 5870 return RISCVISD::SRAW; 5871 case ISD::SRL: 5872 return RISCVISD::SRLW; 5873 case ISD::SDIV: 5874 return RISCVISD::DIVW; 5875 case ISD::UDIV: 5876 return RISCVISD::DIVUW; 5877 case ISD::UREM: 5878 return RISCVISD::REMUW; 5879 case ISD::ROTL: 5880 return RISCVISD::ROLW; 5881 case ISD::ROTR: 5882 return RISCVISD::RORW; 5883 case RISCVISD::GREV: 5884 return RISCVISD::GREVW; 5885 case RISCVISD::GORC: 5886 return RISCVISD::GORCW; 5887 } 5888 } 5889 5890 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5891 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5892 // otherwise be promoted to i64, making it difficult to select the 5893 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5894 // type i8/i16/i32 is lost. 5895 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5896 unsigned ExtOpc = ISD::ANY_EXTEND) { 5897 SDLoc DL(N); 5898 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5899 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5900 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5901 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5902 // ReplaceNodeResults requires we maintain the same type for the return value. 5903 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5904 } 5905 5906 // Converts the given 32-bit operation to a i64 operation with signed extension 5907 // semantic to reduce the signed extension instructions. 5908 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5909 SDLoc DL(N); 5910 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5911 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5912 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5913 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5914 DAG.getValueType(MVT::i32)); 5915 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5916 } 5917 5918 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5919 SmallVectorImpl<SDValue> &Results, 5920 SelectionDAG &DAG) const { 5921 SDLoc DL(N); 5922 switch (N->getOpcode()) { 5923 default: 5924 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5925 case ISD::STRICT_FP_TO_SINT: 5926 case ISD::STRICT_FP_TO_UINT: 5927 case ISD::FP_TO_SINT: 5928 case ISD::FP_TO_UINT: { 5929 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5930 "Unexpected custom legalisation"); 5931 bool IsStrict = N->isStrictFPOpcode(); 5932 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5933 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5934 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5935 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5936 TargetLowering::TypeSoftenFloat) { 5937 if (!isTypeLegal(Op0.getValueType())) 5938 return; 5939 if (IsStrict) { 5940 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 5941 : RISCVISD::STRICT_FCVT_WU_RV64; 5942 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 5943 SDValue Res = DAG.getNode( 5944 Opc, DL, VTs, N->getOperand(0), Op0, 5945 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 5946 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5947 Results.push_back(Res.getValue(1)); 5948 return; 5949 } 5950 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 5951 SDValue Res = 5952 DAG.getNode(Opc, DL, MVT::i64, Op0, 5953 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 5954 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5955 return; 5956 } 5957 // If the FP type needs to be softened, emit a library call using the 'si' 5958 // version. If we left it to default legalization we'd end up with 'di'. If 5959 // the FP type doesn't need to be softened just let generic type 5960 // legalization promote the result type. 5961 RTLIB::Libcall LC; 5962 if (IsSigned) 5963 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5964 else 5965 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5966 MakeLibCallOptions CallOptions; 5967 EVT OpVT = Op0.getValueType(); 5968 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5969 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5970 SDValue Result; 5971 std::tie(Result, Chain) = 5972 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5973 Results.push_back(Result); 5974 if (IsStrict) 5975 Results.push_back(Chain); 5976 break; 5977 } 5978 case ISD::READCYCLECOUNTER: { 5979 assert(!Subtarget.is64Bit() && 5980 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5981 5982 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5983 SDValue RCW = 5984 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5985 5986 Results.push_back( 5987 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5988 Results.push_back(RCW.getValue(2)); 5989 break; 5990 } 5991 case ISD::MUL: { 5992 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5993 unsigned XLen = Subtarget.getXLen(); 5994 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5995 if (Size > XLen) { 5996 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5997 SDValue LHS = N->getOperand(0); 5998 SDValue RHS = N->getOperand(1); 5999 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6000 6001 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6002 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6003 // We need exactly one side to be unsigned. 6004 if (LHSIsU == RHSIsU) 6005 return; 6006 6007 auto MakeMULPair = [&](SDValue S, SDValue U) { 6008 MVT XLenVT = Subtarget.getXLenVT(); 6009 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6010 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6011 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6012 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6013 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6014 }; 6015 6016 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6017 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6018 6019 // The other operand should be signed, but still prefer MULH when 6020 // possible. 6021 if (RHSIsU && LHSIsS && !RHSIsS) 6022 Results.push_back(MakeMULPair(LHS, RHS)); 6023 else if (LHSIsU && RHSIsS && !LHSIsS) 6024 Results.push_back(MakeMULPair(RHS, LHS)); 6025 6026 return; 6027 } 6028 LLVM_FALLTHROUGH; 6029 } 6030 case ISD::ADD: 6031 case ISD::SUB: 6032 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6033 "Unexpected custom legalisation"); 6034 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6035 break; 6036 case ISD::SHL: 6037 case ISD::SRA: 6038 case ISD::SRL: 6039 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6040 "Unexpected custom legalisation"); 6041 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6042 Results.push_back(customLegalizeToWOp(N, DAG)); 6043 break; 6044 } 6045 6046 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6047 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6048 // shift amount. 6049 if (N->getOpcode() == ISD::SHL) { 6050 SDLoc DL(N); 6051 SDValue NewOp0 = 6052 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6053 SDValue NewOp1 = 6054 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6055 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6056 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6057 DAG.getValueType(MVT::i32)); 6058 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6059 } 6060 6061 break; 6062 case ISD::ROTL: 6063 case ISD::ROTR: 6064 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6065 "Unexpected custom legalisation"); 6066 Results.push_back(customLegalizeToWOp(N, DAG)); 6067 break; 6068 case ISD::CTTZ: 6069 case ISD::CTTZ_ZERO_UNDEF: 6070 case ISD::CTLZ: 6071 case ISD::CTLZ_ZERO_UNDEF: { 6072 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6073 "Unexpected custom legalisation"); 6074 6075 SDValue NewOp0 = 6076 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6077 bool IsCTZ = 6078 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6079 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6080 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6081 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6082 return; 6083 } 6084 case ISD::SDIV: 6085 case ISD::UDIV: 6086 case ISD::UREM: { 6087 MVT VT = N->getSimpleValueType(0); 6088 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6089 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6090 "Unexpected custom legalisation"); 6091 // Don't promote division/remainder by constant since we should expand those 6092 // to multiply by magic constant. 6093 // FIXME: What if the expansion is disabled for minsize. 6094 if (N->getOperand(1).getOpcode() == ISD::Constant) 6095 return; 6096 6097 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6098 // the upper 32 bits. For other types we need to sign or zero extend 6099 // based on the opcode. 6100 unsigned ExtOpc = ISD::ANY_EXTEND; 6101 if (VT != MVT::i32) 6102 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6103 : ISD::ZERO_EXTEND; 6104 6105 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6106 break; 6107 } 6108 case ISD::UADDO: 6109 case ISD::USUBO: { 6110 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6111 "Unexpected custom legalisation"); 6112 bool IsAdd = N->getOpcode() == ISD::UADDO; 6113 // Create an ADDW or SUBW. 6114 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6115 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6116 SDValue Res = 6117 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6118 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6119 DAG.getValueType(MVT::i32)); 6120 6121 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6122 // Since the inputs are sign extended from i32, this is equivalent to 6123 // comparing the lower 32 bits. 6124 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6125 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6126 IsAdd ? ISD::SETULT : ISD::SETUGT); 6127 6128 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6129 Results.push_back(Overflow); 6130 return; 6131 } 6132 case ISD::UADDSAT: 6133 case ISD::USUBSAT: { 6134 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6135 "Unexpected custom legalisation"); 6136 if (Subtarget.hasStdExtZbb()) { 6137 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6138 // sign extend allows overflow of the lower 32 bits to be detected on 6139 // the promoted size. 6140 SDValue LHS = 6141 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6142 SDValue RHS = 6143 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6144 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6145 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6146 return; 6147 } 6148 6149 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6150 // promotion for UADDO/USUBO. 6151 Results.push_back(expandAddSubSat(N, DAG)); 6152 return; 6153 } 6154 case ISD::BITCAST: { 6155 EVT VT = N->getValueType(0); 6156 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6157 SDValue Op0 = N->getOperand(0); 6158 EVT Op0VT = Op0.getValueType(); 6159 MVT XLenVT = Subtarget.getXLenVT(); 6160 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6161 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6162 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6163 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6164 Subtarget.hasStdExtF()) { 6165 SDValue FPConv = 6166 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6167 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6168 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6169 isTypeLegal(Op0VT)) { 6170 // Custom-legalize bitcasts from fixed-length vector types to illegal 6171 // scalar types in order to improve codegen. Bitcast the vector to a 6172 // one-element vector type whose element type is the same as the result 6173 // type, and extract the first element. 6174 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6175 if (isTypeLegal(BVT)) { 6176 SDValue BVec = DAG.getBitcast(BVT, Op0); 6177 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6178 DAG.getConstant(0, DL, XLenVT))); 6179 } 6180 } 6181 break; 6182 } 6183 case RISCVISD::GREV: 6184 case RISCVISD::GORC: { 6185 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6186 "Unexpected custom legalisation"); 6187 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6188 // This is similar to customLegalizeToWOp, except that we pass the second 6189 // operand (a TargetConstant) straight through: it is already of type 6190 // XLenVT. 6191 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6192 SDValue NewOp0 = 6193 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6194 SDValue NewOp1 = 6195 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6196 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6197 // ReplaceNodeResults requires we maintain the same type for the return 6198 // value. 6199 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6200 break; 6201 } 6202 case RISCVISD::SHFL: { 6203 // There is no SHFLIW instruction, but we can just promote the operation. 6204 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6205 "Unexpected custom legalisation"); 6206 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6207 SDValue NewOp0 = 6208 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6209 SDValue NewOp1 = 6210 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6211 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 6212 // ReplaceNodeResults requires we maintain the same type for the return 6213 // value. 6214 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6215 break; 6216 } 6217 case ISD::BSWAP: 6218 case ISD::BITREVERSE: { 6219 MVT VT = N->getSimpleValueType(0); 6220 MVT XLenVT = Subtarget.getXLenVT(); 6221 assert((VT == MVT::i8 || VT == MVT::i16 || 6222 (VT == MVT::i32 && Subtarget.is64Bit())) && 6223 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6224 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6225 unsigned Imm = VT.getSizeInBits() - 1; 6226 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6227 if (N->getOpcode() == ISD::BSWAP) 6228 Imm &= ~0x7U; 6229 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 6230 SDValue GREVI = 6231 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 6232 // ReplaceNodeResults requires we maintain the same type for the return 6233 // value. 6234 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6235 break; 6236 } 6237 case ISD::FSHL: 6238 case ISD::FSHR: { 6239 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6240 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6241 SDValue NewOp0 = 6242 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6243 SDValue NewOp1 = 6244 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6245 SDValue NewShAmt = 6246 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6247 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6248 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 6249 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 6250 DAG.getConstant(0x1f, DL, MVT::i64)); 6251 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 6252 // instruction use different orders. fshl will return its first operand for 6253 // shift of zero, fshr will return its second operand. fsl and fsr both 6254 // return rs1 so the ISD nodes need to have different operand orders. 6255 // Shift amount is in rs2. 6256 unsigned Opc = RISCVISD::FSLW; 6257 if (N->getOpcode() == ISD::FSHR) { 6258 std::swap(NewOp0, NewOp1); 6259 Opc = RISCVISD::FSRW; 6260 } 6261 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 6262 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6263 break; 6264 } 6265 case ISD::EXTRACT_VECTOR_ELT: { 6266 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6267 // type is illegal (currently only vXi64 RV32). 6268 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6269 // transferred to the destination register. We issue two of these from the 6270 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6271 // first element. 6272 SDValue Vec = N->getOperand(0); 6273 SDValue Idx = N->getOperand(1); 6274 6275 // The vector type hasn't been legalized yet so we can't issue target 6276 // specific nodes if it needs legalization. 6277 // FIXME: We would manually legalize if it's important. 6278 if (!isTypeLegal(Vec.getValueType())) 6279 return; 6280 6281 MVT VecVT = Vec.getSimpleValueType(); 6282 6283 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6284 VecVT.getVectorElementType() == MVT::i64 && 6285 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6286 6287 // If this is a fixed vector, we need to convert it to a scalable vector. 6288 MVT ContainerVT = VecVT; 6289 if (VecVT.isFixedLengthVector()) { 6290 ContainerVT = getContainerForFixedLengthVector(VecVT); 6291 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6292 } 6293 6294 MVT XLenVT = Subtarget.getXLenVT(); 6295 6296 // Use a VL of 1 to avoid processing more elements than we need. 6297 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6298 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6299 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6300 6301 // Unless the index is known to be 0, we must slide the vector down to get 6302 // the desired element into index 0. 6303 if (!isNullConstant(Idx)) { 6304 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6305 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6306 } 6307 6308 // Extract the lower XLEN bits of the correct vector element. 6309 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6310 6311 // To extract the upper XLEN bits of the vector element, shift the first 6312 // element right by 32 bits and re-extract the lower XLEN bits. 6313 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6314 DAG.getConstant(32, DL, XLenVT), VL); 6315 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6316 ThirtyTwoV, Mask, VL); 6317 6318 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6319 6320 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6321 break; 6322 } 6323 case ISD::INTRINSIC_WO_CHAIN: { 6324 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6325 switch (IntNo) { 6326 default: 6327 llvm_unreachable( 6328 "Don't know how to custom type legalize this intrinsic!"); 6329 case Intrinsic::riscv_grev: 6330 case Intrinsic::riscv_gorc: 6331 case Intrinsic::riscv_bcompress: 6332 case Intrinsic::riscv_bdecompress: 6333 case Intrinsic::riscv_bfp: { 6334 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6335 "Unexpected custom legalisation"); 6336 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 6337 break; 6338 } 6339 case Intrinsic::riscv_orc_b: { 6340 // Lower to the GORCI encoding for orc.b with the operand extended. 6341 SDValue NewOp = 6342 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6343 // If Zbp is enabled, use GORCIW which will sign extend the result. 6344 unsigned Opc = 6345 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6346 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6347 DAG.getConstant(7, DL, MVT::i64)); 6348 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6349 return; 6350 } 6351 case Intrinsic::riscv_shfl: 6352 case Intrinsic::riscv_unshfl: { 6353 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6354 "Unexpected custom legalisation"); 6355 SDValue NewOp1 = 6356 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6357 SDValue NewOp2 = 6358 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6359 unsigned Opc = 6360 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6361 if (isa<ConstantSDNode>(N->getOperand(2))) { 6362 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6363 DAG.getConstant(0xf, DL, MVT::i64)); 6364 Opc = 6365 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6366 } 6367 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6368 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6369 break; 6370 } 6371 case Intrinsic::riscv_vmv_x_s: { 6372 EVT VT = N->getValueType(0); 6373 MVT XLenVT = Subtarget.getXLenVT(); 6374 if (VT.bitsLT(XLenVT)) { 6375 // Simple case just extract using vmv.x.s and truncate. 6376 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6377 Subtarget.getXLenVT(), N->getOperand(1)); 6378 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6379 return; 6380 } 6381 6382 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6383 "Unexpected custom legalization"); 6384 6385 // We need to do the move in two steps. 6386 SDValue Vec = N->getOperand(1); 6387 MVT VecVT = Vec.getSimpleValueType(); 6388 6389 // First extract the lower XLEN bits of the element. 6390 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6391 6392 // To extract the upper XLEN bits of the vector element, shift the first 6393 // element right by 32 bits and re-extract the lower XLEN bits. 6394 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6395 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6396 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6397 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6398 DAG.getConstant(32, DL, XLenVT), VL); 6399 SDValue LShr32 = 6400 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6401 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6402 6403 Results.push_back( 6404 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6405 break; 6406 } 6407 } 6408 break; 6409 } 6410 case ISD::VECREDUCE_ADD: 6411 case ISD::VECREDUCE_AND: 6412 case ISD::VECREDUCE_OR: 6413 case ISD::VECREDUCE_XOR: 6414 case ISD::VECREDUCE_SMAX: 6415 case ISD::VECREDUCE_UMAX: 6416 case ISD::VECREDUCE_SMIN: 6417 case ISD::VECREDUCE_UMIN: 6418 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6419 Results.push_back(V); 6420 break; 6421 case ISD::VP_REDUCE_ADD: 6422 case ISD::VP_REDUCE_AND: 6423 case ISD::VP_REDUCE_OR: 6424 case ISD::VP_REDUCE_XOR: 6425 case ISD::VP_REDUCE_SMAX: 6426 case ISD::VP_REDUCE_UMAX: 6427 case ISD::VP_REDUCE_SMIN: 6428 case ISD::VP_REDUCE_UMIN: 6429 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6430 Results.push_back(V); 6431 break; 6432 case ISD::FLT_ROUNDS_: { 6433 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6434 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6435 Results.push_back(Res.getValue(0)); 6436 Results.push_back(Res.getValue(1)); 6437 break; 6438 } 6439 } 6440 } 6441 6442 // A structure to hold one of the bit-manipulation patterns below. Together, a 6443 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6444 // (or (and (shl x, 1), 0xAAAAAAAA), 6445 // (and (srl x, 1), 0x55555555)) 6446 struct RISCVBitmanipPat { 6447 SDValue Op; 6448 unsigned ShAmt; 6449 bool IsSHL; 6450 6451 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6452 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6453 } 6454 }; 6455 6456 // Matches patterns of the form 6457 // (and (shl x, C2), (C1 << C2)) 6458 // (and (srl x, C2), C1) 6459 // (shl (and x, C1), C2) 6460 // (srl (and x, (C1 << C2)), C2) 6461 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6462 // The expected masks for each shift amount are specified in BitmanipMasks where 6463 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6464 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6465 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6466 // XLen is 64. 6467 static Optional<RISCVBitmanipPat> 6468 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6469 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6470 "Unexpected number of masks"); 6471 Optional<uint64_t> Mask; 6472 // Optionally consume a mask around the shift operation. 6473 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6474 Mask = Op.getConstantOperandVal(1); 6475 Op = Op.getOperand(0); 6476 } 6477 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6478 return None; 6479 bool IsSHL = Op.getOpcode() == ISD::SHL; 6480 6481 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6482 return None; 6483 uint64_t ShAmt = Op.getConstantOperandVal(1); 6484 6485 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6486 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6487 return None; 6488 // If we don't have enough masks for 64 bit, then we must be trying to 6489 // match SHFL so we're only allowed to shift 1/4 of the width. 6490 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6491 return None; 6492 6493 SDValue Src = Op.getOperand(0); 6494 6495 // The expected mask is shifted left when the AND is found around SHL 6496 // patterns. 6497 // ((x >> 1) & 0x55555555) 6498 // ((x << 1) & 0xAAAAAAAA) 6499 bool SHLExpMask = IsSHL; 6500 6501 if (!Mask) { 6502 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6503 // the mask is all ones: consume that now. 6504 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6505 Mask = Src.getConstantOperandVal(1); 6506 Src = Src.getOperand(0); 6507 // The expected mask is now in fact shifted left for SRL, so reverse the 6508 // decision. 6509 // ((x & 0xAAAAAAAA) >> 1) 6510 // ((x & 0x55555555) << 1) 6511 SHLExpMask = !SHLExpMask; 6512 } else { 6513 // Use a default shifted mask of all-ones if there's no AND, truncated 6514 // down to the expected width. This simplifies the logic later on. 6515 Mask = maskTrailingOnes<uint64_t>(Width); 6516 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6517 } 6518 } 6519 6520 unsigned MaskIdx = Log2_32(ShAmt); 6521 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6522 6523 if (SHLExpMask) 6524 ExpMask <<= ShAmt; 6525 6526 if (Mask != ExpMask) 6527 return None; 6528 6529 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6530 } 6531 6532 // Matches any of the following bit-manipulation patterns: 6533 // (and (shl x, 1), (0x55555555 << 1)) 6534 // (and (srl x, 1), 0x55555555) 6535 // (shl (and x, 0x55555555), 1) 6536 // (srl (and x, (0x55555555 << 1)), 1) 6537 // where the shift amount and mask may vary thus: 6538 // [1] = 0x55555555 / 0xAAAAAAAA 6539 // [2] = 0x33333333 / 0xCCCCCCCC 6540 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6541 // [8] = 0x00FF00FF / 0xFF00FF00 6542 // [16] = 0x0000FFFF / 0xFFFFFFFF 6543 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6544 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6545 // These are the unshifted masks which we use to match bit-manipulation 6546 // patterns. They may be shifted left in certain circumstances. 6547 static const uint64_t BitmanipMasks[] = { 6548 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6549 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6550 6551 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6552 } 6553 6554 // Match the following pattern as a GREVI(W) operation 6555 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6556 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6557 const RISCVSubtarget &Subtarget) { 6558 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6559 EVT VT = Op.getValueType(); 6560 6561 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6562 auto LHS = matchGREVIPat(Op.getOperand(0)); 6563 auto RHS = matchGREVIPat(Op.getOperand(1)); 6564 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6565 SDLoc DL(Op); 6566 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6567 DAG.getConstant(LHS->ShAmt, DL, VT)); 6568 } 6569 } 6570 return SDValue(); 6571 } 6572 6573 // Matches any the following pattern as a GORCI(W) operation 6574 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6575 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6576 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6577 // Note that with the variant of 3., 6578 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6579 // the inner pattern will first be matched as GREVI and then the outer 6580 // pattern will be matched to GORC via the first rule above. 6581 // 4. (or (rotl/rotr x, bitwidth/2), x) 6582 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6583 const RISCVSubtarget &Subtarget) { 6584 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6585 EVT VT = Op.getValueType(); 6586 6587 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6588 SDLoc DL(Op); 6589 SDValue Op0 = Op.getOperand(0); 6590 SDValue Op1 = Op.getOperand(1); 6591 6592 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6593 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6594 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6595 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6596 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6597 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6598 if ((Reverse.getOpcode() == ISD::ROTL || 6599 Reverse.getOpcode() == ISD::ROTR) && 6600 Reverse.getOperand(0) == X && 6601 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6602 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6603 if (RotAmt == (VT.getSizeInBits() / 2)) 6604 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6605 DAG.getConstant(RotAmt, DL, VT)); 6606 } 6607 return SDValue(); 6608 }; 6609 6610 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6611 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6612 return V; 6613 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6614 return V; 6615 6616 // OR is commutable so canonicalize its OR operand to the left 6617 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6618 std::swap(Op0, Op1); 6619 if (Op0.getOpcode() != ISD::OR) 6620 return SDValue(); 6621 SDValue OrOp0 = Op0.getOperand(0); 6622 SDValue OrOp1 = Op0.getOperand(1); 6623 auto LHS = matchGREVIPat(OrOp0); 6624 // OR is commutable so swap the operands and try again: x might have been 6625 // on the left 6626 if (!LHS) { 6627 std::swap(OrOp0, OrOp1); 6628 LHS = matchGREVIPat(OrOp0); 6629 } 6630 auto RHS = matchGREVIPat(Op1); 6631 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6632 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6633 DAG.getConstant(LHS->ShAmt, DL, VT)); 6634 } 6635 } 6636 return SDValue(); 6637 } 6638 6639 // Matches any of the following bit-manipulation patterns: 6640 // (and (shl x, 1), (0x22222222 << 1)) 6641 // (and (srl x, 1), 0x22222222) 6642 // (shl (and x, 0x22222222), 1) 6643 // (srl (and x, (0x22222222 << 1)), 1) 6644 // where the shift amount and mask may vary thus: 6645 // [1] = 0x22222222 / 0x44444444 6646 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6647 // [4] = 0x00F000F0 / 0x0F000F00 6648 // [8] = 0x0000FF00 / 0x00FF0000 6649 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6650 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6651 // These are the unshifted masks which we use to match bit-manipulation 6652 // patterns. They may be shifted left in certain circumstances. 6653 static const uint64_t BitmanipMasks[] = { 6654 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6655 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6656 6657 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6658 } 6659 6660 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6661 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6662 const RISCVSubtarget &Subtarget) { 6663 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6664 EVT VT = Op.getValueType(); 6665 6666 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6667 return SDValue(); 6668 6669 SDValue Op0 = Op.getOperand(0); 6670 SDValue Op1 = Op.getOperand(1); 6671 6672 // Or is commutable so canonicalize the second OR to the LHS. 6673 if (Op0.getOpcode() != ISD::OR) 6674 std::swap(Op0, Op1); 6675 if (Op0.getOpcode() != ISD::OR) 6676 return SDValue(); 6677 6678 // We found an inner OR, so our operands are the operands of the inner OR 6679 // and the other operand of the outer OR. 6680 SDValue A = Op0.getOperand(0); 6681 SDValue B = Op0.getOperand(1); 6682 SDValue C = Op1; 6683 6684 auto Match1 = matchSHFLPat(A); 6685 auto Match2 = matchSHFLPat(B); 6686 6687 // If neither matched, we failed. 6688 if (!Match1 && !Match2) 6689 return SDValue(); 6690 6691 // We had at least one match. if one failed, try the remaining C operand. 6692 if (!Match1) { 6693 std::swap(A, C); 6694 Match1 = matchSHFLPat(A); 6695 if (!Match1) 6696 return SDValue(); 6697 } else if (!Match2) { 6698 std::swap(B, C); 6699 Match2 = matchSHFLPat(B); 6700 if (!Match2) 6701 return SDValue(); 6702 } 6703 assert(Match1 && Match2); 6704 6705 // Make sure our matches pair up. 6706 if (!Match1->formsPairWith(*Match2)) 6707 return SDValue(); 6708 6709 // All the remains is to make sure C is an AND with the same input, that masks 6710 // out the bits that are being shuffled. 6711 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6712 C.getOperand(0) != Match1->Op) 6713 return SDValue(); 6714 6715 uint64_t Mask = C.getConstantOperandVal(1); 6716 6717 static const uint64_t BitmanipMasks[] = { 6718 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6719 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6720 }; 6721 6722 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6723 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6724 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6725 6726 if (Mask != ExpMask) 6727 return SDValue(); 6728 6729 SDLoc DL(Op); 6730 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6731 DAG.getConstant(Match1->ShAmt, DL, VT)); 6732 } 6733 6734 // Optimize (add (shl x, c0), (shl y, c1)) -> 6735 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6736 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6737 const RISCVSubtarget &Subtarget) { 6738 // Perform this optimization only in the zba extension. 6739 if (!Subtarget.hasStdExtZba()) 6740 return SDValue(); 6741 6742 // Skip for vector types and larger types. 6743 EVT VT = N->getValueType(0); 6744 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6745 return SDValue(); 6746 6747 // The two operand nodes must be SHL and have no other use. 6748 SDValue N0 = N->getOperand(0); 6749 SDValue N1 = N->getOperand(1); 6750 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6751 !N0->hasOneUse() || !N1->hasOneUse()) 6752 return SDValue(); 6753 6754 // Check c0 and c1. 6755 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6756 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6757 if (!N0C || !N1C) 6758 return SDValue(); 6759 int64_t C0 = N0C->getSExtValue(); 6760 int64_t C1 = N1C->getSExtValue(); 6761 if (C0 <= 0 || C1 <= 0) 6762 return SDValue(); 6763 6764 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6765 int64_t Bits = std::min(C0, C1); 6766 int64_t Diff = std::abs(C0 - C1); 6767 if (Diff != 1 && Diff != 2 && Diff != 3) 6768 return SDValue(); 6769 6770 // Build nodes. 6771 SDLoc DL(N); 6772 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6773 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6774 SDValue NA0 = 6775 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6776 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6777 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6778 } 6779 6780 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6781 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6782 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6783 // not undo itself, but they are redundant. 6784 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6785 SDValue Src = N->getOperand(0); 6786 6787 if (Src.getOpcode() != N->getOpcode()) 6788 return SDValue(); 6789 6790 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6791 !isa<ConstantSDNode>(Src.getOperand(1))) 6792 return SDValue(); 6793 6794 unsigned ShAmt1 = N->getConstantOperandVal(1); 6795 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6796 Src = Src.getOperand(0); 6797 6798 unsigned CombinedShAmt; 6799 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6800 CombinedShAmt = ShAmt1 | ShAmt2; 6801 else 6802 CombinedShAmt = ShAmt1 ^ ShAmt2; 6803 6804 if (CombinedShAmt == 0) 6805 return Src; 6806 6807 SDLoc DL(N); 6808 return DAG.getNode( 6809 N->getOpcode(), DL, N->getValueType(0), Src, 6810 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6811 } 6812 6813 // Combine a constant select operand into its use: 6814 // 6815 // (and (select cond, -1, c), x) 6816 // -> (select cond, x, (and x, c)) [AllOnes=1] 6817 // (or (select cond, 0, c), x) 6818 // -> (select cond, x, (or x, c)) [AllOnes=0] 6819 // (xor (select cond, 0, c), x) 6820 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6821 // (add (select cond, 0, c), x) 6822 // -> (select cond, x, (add x, c)) [AllOnes=0] 6823 // (sub x, (select cond, 0, c)) 6824 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6825 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6826 SelectionDAG &DAG, bool AllOnes) { 6827 EVT VT = N->getValueType(0); 6828 6829 // Skip vectors. 6830 if (VT.isVector()) 6831 return SDValue(); 6832 6833 if ((Slct.getOpcode() != ISD::SELECT && 6834 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6835 !Slct.hasOneUse()) 6836 return SDValue(); 6837 6838 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6839 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6840 }; 6841 6842 bool SwapSelectOps; 6843 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6844 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6845 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6846 SDValue NonConstantVal; 6847 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6848 SwapSelectOps = false; 6849 NonConstantVal = FalseVal; 6850 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6851 SwapSelectOps = true; 6852 NonConstantVal = TrueVal; 6853 } else 6854 return SDValue(); 6855 6856 // Slct is now know to be the desired identity constant when CC is true. 6857 TrueVal = OtherOp; 6858 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6859 // Unless SwapSelectOps says the condition should be false. 6860 if (SwapSelectOps) 6861 std::swap(TrueVal, FalseVal); 6862 6863 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6864 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6865 {Slct.getOperand(0), Slct.getOperand(1), 6866 Slct.getOperand(2), TrueVal, FalseVal}); 6867 6868 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6869 {Slct.getOperand(0), TrueVal, FalseVal}); 6870 } 6871 6872 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6873 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6874 bool AllOnes) { 6875 SDValue N0 = N->getOperand(0); 6876 SDValue N1 = N->getOperand(1); 6877 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6878 return Result; 6879 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6880 return Result; 6881 return SDValue(); 6882 } 6883 6884 // Transform (add (mul x, c0), c1) -> 6885 // (add (mul (add x, c1/c0), c0), c1%c0). 6886 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 6887 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 6888 // to an infinite loop in DAGCombine if transformed. 6889 // Or transform (add (mul x, c0), c1) -> 6890 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 6891 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 6892 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 6893 // lead to an infinite loop in DAGCombine if transformed. 6894 // Or transform (add (mul x, c0), c1) -> 6895 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 6896 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 6897 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 6898 // lead to an infinite loop in DAGCombine if transformed. 6899 // Or transform (add (mul x, c0), c1) -> 6900 // (mul (add x, c1/c0), c0). 6901 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6902 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6903 const RISCVSubtarget &Subtarget) { 6904 // Skip for vector types and larger types. 6905 EVT VT = N->getValueType(0); 6906 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6907 return SDValue(); 6908 // The first operand node must be a MUL and has no other use. 6909 SDValue N0 = N->getOperand(0); 6910 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6911 return SDValue(); 6912 // Check if c0 and c1 match above conditions. 6913 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6914 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6915 if (!N0C || !N1C) 6916 return SDValue(); 6917 int64_t C0 = N0C->getSExtValue(); 6918 int64_t C1 = N1C->getSExtValue(); 6919 int64_t CA, CB; 6920 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 6921 return SDValue(); 6922 // Search for proper CA (non-zero) and CB that both are simm12. 6923 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 6924 !isInt<12>(C0 * (C1 / C0))) { 6925 CA = C1 / C0; 6926 CB = C1 % C0; 6927 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 6928 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 6929 CA = C1 / C0 + 1; 6930 CB = C1 % C0 - C0; 6931 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 6932 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 6933 CA = C1 / C0 - 1; 6934 CB = C1 % C0 + C0; 6935 } else 6936 return SDValue(); 6937 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6938 SDLoc DL(N); 6939 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6940 DAG.getConstant(CA, DL, VT)); 6941 SDValue New1 = 6942 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6943 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 6944 } 6945 6946 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6947 const RISCVSubtarget &Subtarget) { 6948 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6949 return V; 6950 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6951 return V; 6952 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6953 // (select lhs, rhs, cc, x, (add x, y)) 6954 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6955 } 6956 6957 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6958 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6959 // (select lhs, rhs, cc, x, (sub x, y)) 6960 SDValue N0 = N->getOperand(0); 6961 SDValue N1 = N->getOperand(1); 6962 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6963 } 6964 6965 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6966 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6967 // (select lhs, rhs, cc, x, (and x, y)) 6968 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6969 } 6970 6971 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6972 const RISCVSubtarget &Subtarget) { 6973 if (Subtarget.hasStdExtZbp()) { 6974 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6975 return GREV; 6976 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6977 return GORC; 6978 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6979 return SHFL; 6980 } 6981 6982 // fold (or (select cond, 0, y), x) -> 6983 // (select cond, x, (or x, y)) 6984 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6985 } 6986 6987 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6988 // fold (xor (select cond, 0, y), x) -> 6989 // (select cond, x, (xor x, y)) 6990 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6991 } 6992 6993 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6994 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6995 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6996 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6997 // ADDW/SUBW/MULW. 6998 static SDValue performANY_EXTENDCombine(SDNode *N, 6999 TargetLowering::DAGCombinerInfo &DCI, 7000 const RISCVSubtarget &Subtarget) { 7001 if (!Subtarget.is64Bit()) 7002 return SDValue(); 7003 7004 SelectionDAG &DAG = DCI.DAG; 7005 7006 SDValue Src = N->getOperand(0); 7007 EVT VT = N->getValueType(0); 7008 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 7009 return SDValue(); 7010 7011 // The opcode must be one that can implicitly sign_extend. 7012 // FIXME: Additional opcodes. 7013 switch (Src.getOpcode()) { 7014 default: 7015 return SDValue(); 7016 case ISD::MUL: 7017 if (!Subtarget.hasStdExtM()) 7018 return SDValue(); 7019 LLVM_FALLTHROUGH; 7020 case ISD::ADD: 7021 case ISD::SUB: 7022 break; 7023 } 7024 7025 // Only handle cases where the result is used by a CopyToReg. That likely 7026 // means the value is a liveout of the basic block. This helps prevent 7027 // infinite combine loops like PR51206. 7028 if (none_of(N->uses(), 7029 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 7030 return SDValue(); 7031 7032 SmallVector<SDNode *, 4> SetCCs; 7033 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 7034 UE = Src.getNode()->use_end(); 7035 UI != UE; ++UI) { 7036 SDNode *User = *UI; 7037 if (User == N) 7038 continue; 7039 if (UI.getUse().getResNo() != Src.getResNo()) 7040 continue; 7041 // All i32 setccs are legalized by sign extending operands. 7042 if (User->getOpcode() == ISD::SETCC) { 7043 SetCCs.push_back(User); 7044 continue; 7045 } 7046 // We don't know if we can extend this user. 7047 break; 7048 } 7049 7050 // If we don't have any SetCCs, this isn't worthwhile. 7051 if (SetCCs.empty()) 7052 return SDValue(); 7053 7054 SDLoc DL(N); 7055 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 7056 DCI.CombineTo(N, SExt); 7057 7058 // Promote all the setccs. 7059 for (SDNode *SetCC : SetCCs) { 7060 SmallVector<SDValue, 4> Ops; 7061 7062 for (unsigned j = 0; j != 2; ++j) { 7063 SDValue SOp = SetCC->getOperand(j); 7064 if (SOp == Src) 7065 Ops.push_back(SExt); 7066 else 7067 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 7068 } 7069 7070 Ops.push_back(SetCC->getOperand(2)); 7071 DCI.CombineTo(SetCC, 7072 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 7073 } 7074 return SDValue(N, 0); 7075 } 7076 7077 // Try to form VWMUL or VWMULU. 7078 // FIXME: Support VWMULSU. 7079 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1, 7080 SelectionDAG &DAG) { 7081 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7082 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7083 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7084 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7085 return SDValue(); 7086 7087 SDValue Mask = N->getOperand(2); 7088 SDValue VL = N->getOperand(3); 7089 7090 // Make sure the mask and VL match. 7091 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 7092 return SDValue(); 7093 7094 MVT VT = N->getSimpleValueType(0); 7095 7096 // Determine the narrow size for a widening multiply. 7097 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7098 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7099 VT.getVectorElementCount()); 7100 7101 SDLoc DL(N); 7102 7103 // See if the other operand is the same opcode. 7104 if (Op0.getOpcode() == Op1.getOpcode()) { 7105 if (!Op1.hasOneUse()) 7106 return SDValue(); 7107 7108 // Make sure the mask and VL match. 7109 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 7110 return SDValue(); 7111 7112 Op1 = Op1.getOperand(0); 7113 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 7114 // The operand is a splat of a scalar. 7115 7116 // The VL must be the same. 7117 if (Op1.getOperand(1) != VL) 7118 return SDValue(); 7119 7120 // Get the scalar value. 7121 Op1 = Op1.getOperand(0); 7122 7123 // See if have enough sign bits or zero bits in the scalar to use a 7124 // widening multiply by splatting to smaller element size. 7125 unsigned EltBits = VT.getScalarSizeInBits(); 7126 unsigned ScalarBits = Op1.getValueSizeInBits(); 7127 // Make sure we're getting all element bits from the scalar register. 7128 // FIXME: Support implicit sign extension of vmv.v.x? 7129 if (ScalarBits < EltBits) 7130 return SDValue(); 7131 7132 if (IsSignExt) { 7133 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 7134 return SDValue(); 7135 } else { 7136 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7137 if (!DAG.MaskedValueIsZero(Op1, Mask)) 7138 return SDValue(); 7139 } 7140 7141 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 7142 } else 7143 return SDValue(); 7144 7145 Op0 = Op0.getOperand(0); 7146 7147 // Re-introduce narrower extends if needed. 7148 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7149 if (Op0.getValueType() != NarrowVT) 7150 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7151 if (Op1.getValueType() != NarrowVT) 7152 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7153 7154 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7155 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7156 } 7157 7158 // Fold 7159 // (fp_to_int (froundeven X)) -> fcvt X, rne 7160 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 7161 // (fp_to_int (ffloor X)) -> fcvt X, rdn 7162 // (fp_to_int (fceil X)) -> fcvt X, rup 7163 // (fp_to_int (fround X)) -> fcvt X, rmm 7164 // FIXME: We should also do this for fp_to_int_sat. 7165 static SDValue performFP_TO_INTCombine(SDNode *N, 7166 TargetLowering::DAGCombinerInfo &DCI, 7167 const RISCVSubtarget &Subtarget) { 7168 SelectionDAG &DAG = DCI.DAG; 7169 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7170 MVT XLenVT = Subtarget.getXLenVT(); 7171 7172 // Only handle XLen or i32 types. Other types narrower than XLen will 7173 // eventually be legalized to XLenVT. 7174 EVT VT = N->getValueType(0); 7175 if (VT != MVT::i32 && VT != XLenVT) 7176 return SDValue(); 7177 7178 SDValue Src = N->getOperand(0); 7179 7180 // Ensure the FP type is also legal. 7181 if (!TLI.isTypeLegal(Src.getValueType())) 7182 return SDValue(); 7183 7184 // Don't do this for f16 with Zfhmin and not Zfh. 7185 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7186 return SDValue(); 7187 7188 RISCVFPRndMode::RoundingMode FRM; 7189 switch (Src->getOpcode()) { 7190 default: 7191 return SDValue(); 7192 case ISD::FROUNDEVEN: FRM = RISCVFPRndMode::RNE; break; 7193 case ISD::FTRUNC: FRM = RISCVFPRndMode::RTZ; break; 7194 case ISD::FFLOOR: FRM = RISCVFPRndMode::RDN; break; 7195 case ISD::FCEIL: FRM = RISCVFPRndMode::RUP; break; 7196 case ISD::FROUND: FRM = RISCVFPRndMode::RMM; break; 7197 } 7198 7199 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 7200 7201 unsigned Opc; 7202 if (VT == XLenVT) 7203 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7204 else 7205 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7206 7207 SDLoc DL(N); 7208 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 7209 DAG.getTargetConstant(FRM, DL, XLenVT)); 7210 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 7211 } 7212 7213 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 7214 DAGCombinerInfo &DCI) const { 7215 SelectionDAG &DAG = DCI.DAG; 7216 7217 // Helper to call SimplifyDemandedBits on an operand of N where only some low 7218 // bits are demanded. N will be added to the Worklist if it was not deleted. 7219 // Caller should return SDValue(N, 0) if this returns true. 7220 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 7221 SDValue Op = N->getOperand(OpNo); 7222 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 7223 if (!SimplifyDemandedBits(Op, Mask, DCI)) 7224 return false; 7225 7226 if (N->getOpcode() != ISD::DELETED_NODE) 7227 DCI.AddToWorklist(N); 7228 return true; 7229 }; 7230 7231 switch (N->getOpcode()) { 7232 default: 7233 break; 7234 case RISCVISD::SplitF64: { 7235 SDValue Op0 = N->getOperand(0); 7236 // If the input to SplitF64 is just BuildPairF64 then the operation is 7237 // redundant. Instead, use BuildPairF64's operands directly. 7238 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 7239 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 7240 7241 SDLoc DL(N); 7242 7243 // It's cheaper to materialise two 32-bit integers than to load a double 7244 // from the constant pool and transfer it to integer registers through the 7245 // stack. 7246 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 7247 APInt V = C->getValueAPF().bitcastToAPInt(); 7248 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 7249 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 7250 return DCI.CombineTo(N, Lo, Hi); 7251 } 7252 7253 // This is a target-specific version of a DAGCombine performed in 7254 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7255 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7256 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7257 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7258 !Op0.getNode()->hasOneUse()) 7259 break; 7260 SDValue NewSplitF64 = 7261 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 7262 Op0.getOperand(0)); 7263 SDValue Lo = NewSplitF64.getValue(0); 7264 SDValue Hi = NewSplitF64.getValue(1); 7265 APInt SignBit = APInt::getSignMask(32); 7266 if (Op0.getOpcode() == ISD::FNEG) { 7267 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 7268 DAG.getConstant(SignBit, DL, MVT::i32)); 7269 return DCI.CombineTo(N, Lo, NewHi); 7270 } 7271 assert(Op0.getOpcode() == ISD::FABS); 7272 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 7273 DAG.getConstant(~SignBit, DL, MVT::i32)); 7274 return DCI.CombineTo(N, Lo, NewHi); 7275 } 7276 case RISCVISD::SLLW: 7277 case RISCVISD::SRAW: 7278 case RISCVISD::SRLW: 7279 case RISCVISD::ROLW: 7280 case RISCVISD::RORW: { 7281 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7282 if (SimplifyDemandedLowBitsHelper(0, 32) || 7283 SimplifyDemandedLowBitsHelper(1, 5)) 7284 return SDValue(N, 0); 7285 break; 7286 } 7287 case RISCVISD::CLZW: 7288 case RISCVISD::CTZW: { 7289 // Only the lower 32 bits of the first operand are read 7290 if (SimplifyDemandedLowBitsHelper(0, 32)) 7291 return SDValue(N, 0); 7292 break; 7293 } 7294 case RISCVISD::GREV: 7295 case RISCVISD::GORC: { 7296 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 7297 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7298 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7299 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 7300 return SDValue(N, 0); 7301 7302 return combineGREVI_GORCI(N, DAG); 7303 } 7304 case RISCVISD::GREVW: 7305 case RISCVISD::GORCW: { 7306 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7307 if (SimplifyDemandedLowBitsHelper(0, 32) || 7308 SimplifyDemandedLowBitsHelper(1, 5)) 7309 return SDValue(N, 0); 7310 7311 return combineGREVI_GORCI(N, DAG); 7312 } 7313 case RISCVISD::SHFL: 7314 case RISCVISD::UNSHFL: { 7315 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 7316 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7317 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7318 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 7319 return SDValue(N, 0); 7320 7321 break; 7322 } 7323 case RISCVISD::SHFLW: 7324 case RISCVISD::UNSHFLW: { 7325 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 7326 SDValue LHS = N->getOperand(0); 7327 SDValue RHS = N->getOperand(1); 7328 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 7329 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 7330 if (SimplifyDemandedLowBitsHelper(0, 32) || 7331 SimplifyDemandedLowBitsHelper(1, 4)) 7332 return SDValue(N, 0); 7333 7334 break; 7335 } 7336 case RISCVISD::BCOMPRESSW: 7337 case RISCVISD::BDECOMPRESSW: { 7338 // Only the lower 32 bits of LHS and RHS are read. 7339 if (SimplifyDemandedLowBitsHelper(0, 32) || 7340 SimplifyDemandedLowBitsHelper(1, 32)) 7341 return SDValue(N, 0); 7342 7343 break; 7344 } 7345 case RISCVISD::FMV_X_ANYEXTH: 7346 case RISCVISD::FMV_X_ANYEXTW_RV64: { 7347 SDLoc DL(N); 7348 SDValue Op0 = N->getOperand(0); 7349 MVT VT = N->getSimpleValueType(0); 7350 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 7351 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 7352 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 7353 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 7354 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 7355 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7356 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 7357 assert(Op0.getOperand(0).getValueType() == VT && 7358 "Unexpected value type!"); 7359 return Op0.getOperand(0); 7360 } 7361 7362 // This is a target-specific version of a DAGCombine performed in 7363 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7364 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7365 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7366 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7367 !Op0.getNode()->hasOneUse()) 7368 break; 7369 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 7370 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 7371 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 7372 if (Op0.getOpcode() == ISD::FNEG) 7373 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 7374 DAG.getConstant(SignBit, DL, VT)); 7375 7376 assert(Op0.getOpcode() == ISD::FABS); 7377 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 7378 DAG.getConstant(~SignBit, DL, VT)); 7379 } 7380 case ISD::ADD: 7381 return performADDCombine(N, DAG, Subtarget); 7382 case ISD::SUB: 7383 return performSUBCombine(N, DAG); 7384 case ISD::AND: 7385 return performANDCombine(N, DAG); 7386 case ISD::OR: 7387 return performORCombine(N, DAG, Subtarget); 7388 case ISD::XOR: 7389 return performXORCombine(N, DAG); 7390 case ISD::ANY_EXTEND: 7391 return performANY_EXTENDCombine(N, DCI, Subtarget); 7392 case ISD::ZERO_EXTEND: 7393 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 7394 // type legalization. This is safe because fp_to_uint produces poison if 7395 // it overflows. 7396 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 7397 SDValue Src = N->getOperand(0); 7398 if (Src.getOpcode() == ISD::FP_TO_UINT && 7399 isTypeLegal(Src.getOperand(0).getValueType())) 7400 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 7401 Src.getOperand(0)); 7402 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 7403 isTypeLegal(Src.getOperand(1).getValueType())) { 7404 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 7405 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 7406 Src.getOperand(0), Src.getOperand(1)); 7407 DCI.CombineTo(N, Res); 7408 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 7409 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 7410 return SDValue(N, 0); // Return N so it doesn't get rechecked. 7411 } 7412 } 7413 return SDValue(); 7414 case RISCVISD::SELECT_CC: { 7415 // Transform 7416 SDValue LHS = N->getOperand(0); 7417 SDValue RHS = N->getOperand(1); 7418 SDValue TrueV = N->getOperand(3); 7419 SDValue FalseV = N->getOperand(4); 7420 7421 // If the True and False values are the same, we don't need a select_cc. 7422 if (TrueV == FalseV) 7423 return TrueV; 7424 7425 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 7426 if (!ISD::isIntEqualitySetCC(CCVal)) 7427 break; 7428 7429 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 7430 // (select_cc X, Y, lt, trueV, falseV) 7431 // Sometimes the setcc is introduced after select_cc has been formed. 7432 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7433 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7434 // If we're looking for eq 0 instead of ne 0, we need to invert the 7435 // condition. 7436 bool Invert = CCVal == ISD::SETEQ; 7437 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7438 if (Invert) 7439 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7440 7441 SDLoc DL(N); 7442 RHS = LHS.getOperand(1); 7443 LHS = LHS.getOperand(0); 7444 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7445 7446 SDValue TargetCC = DAG.getCondCode(CCVal); 7447 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7448 {LHS, RHS, TargetCC, TrueV, FalseV}); 7449 } 7450 7451 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 7452 // (select_cc X, Y, eq/ne, trueV, falseV) 7453 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7454 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 7455 {LHS.getOperand(0), LHS.getOperand(1), 7456 N->getOperand(2), TrueV, FalseV}); 7457 // (select_cc X, 1, setne, trueV, falseV) -> 7458 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 7459 // This can occur when legalizing some floating point comparisons. 7460 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7461 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7462 SDLoc DL(N); 7463 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7464 SDValue TargetCC = DAG.getCondCode(CCVal); 7465 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7466 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7467 {LHS, RHS, TargetCC, TrueV, FalseV}); 7468 } 7469 7470 break; 7471 } 7472 case RISCVISD::BR_CC: { 7473 SDValue LHS = N->getOperand(1); 7474 SDValue RHS = N->getOperand(2); 7475 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 7476 if (!ISD::isIntEqualitySetCC(CCVal)) 7477 break; 7478 7479 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 7480 // (br_cc X, Y, lt, dest) 7481 // Sometimes the setcc is introduced after br_cc has been formed. 7482 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7483 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7484 // If we're looking for eq 0 instead of ne 0, we need to invert the 7485 // condition. 7486 bool Invert = CCVal == ISD::SETEQ; 7487 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7488 if (Invert) 7489 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7490 7491 SDLoc DL(N); 7492 RHS = LHS.getOperand(1); 7493 LHS = LHS.getOperand(0); 7494 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7495 7496 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7497 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7498 N->getOperand(4)); 7499 } 7500 7501 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7502 // (br_cc X, Y, eq/ne, trueV, falseV) 7503 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7504 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7505 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7506 N->getOperand(3), N->getOperand(4)); 7507 7508 // (br_cc X, 1, setne, br_cc) -> 7509 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7510 // This can occur when legalizing some floating point comparisons. 7511 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7512 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7513 SDLoc DL(N); 7514 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7515 SDValue TargetCC = DAG.getCondCode(CCVal); 7516 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7517 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7518 N->getOperand(0), LHS, RHS, TargetCC, 7519 N->getOperand(4)); 7520 } 7521 break; 7522 } 7523 case ISD::FP_TO_SINT: 7524 case ISD::FP_TO_UINT: 7525 return performFP_TO_INTCombine(N, DCI, Subtarget); 7526 case ISD::FCOPYSIGN: { 7527 EVT VT = N->getValueType(0); 7528 if (!VT.isVector()) 7529 break; 7530 // There is a form of VFSGNJ which injects the negated sign of its second 7531 // operand. Try and bubble any FNEG up after the extend/round to produce 7532 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7533 // TRUNC=1. 7534 SDValue In2 = N->getOperand(1); 7535 // Avoid cases where the extend/round has multiple uses, as duplicating 7536 // those is typically more expensive than removing a fneg. 7537 if (!In2.hasOneUse()) 7538 break; 7539 if (In2.getOpcode() != ISD::FP_EXTEND && 7540 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7541 break; 7542 In2 = In2.getOperand(0); 7543 if (In2.getOpcode() != ISD::FNEG) 7544 break; 7545 SDLoc DL(N); 7546 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7547 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7548 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7549 } 7550 case ISD::MGATHER: 7551 case ISD::MSCATTER: 7552 case ISD::VP_GATHER: 7553 case ISD::VP_SCATTER: { 7554 if (!DCI.isBeforeLegalize()) 7555 break; 7556 SDValue Index, ScaleOp; 7557 bool IsIndexScaled = false; 7558 bool IsIndexSigned = false; 7559 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7560 Index = VPGSN->getIndex(); 7561 ScaleOp = VPGSN->getScale(); 7562 IsIndexScaled = VPGSN->isIndexScaled(); 7563 IsIndexSigned = VPGSN->isIndexSigned(); 7564 } else { 7565 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7566 Index = MGSN->getIndex(); 7567 ScaleOp = MGSN->getScale(); 7568 IsIndexScaled = MGSN->isIndexScaled(); 7569 IsIndexSigned = MGSN->isIndexSigned(); 7570 } 7571 EVT IndexVT = Index.getValueType(); 7572 MVT XLenVT = Subtarget.getXLenVT(); 7573 // RISCV indexed loads only support the "unsigned unscaled" addressing 7574 // mode, so anything else must be manually legalized. 7575 bool NeedsIdxLegalization = 7576 IsIndexScaled || 7577 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7578 if (!NeedsIdxLegalization) 7579 break; 7580 7581 SDLoc DL(N); 7582 7583 // Any index legalization should first promote to XLenVT, so we don't lose 7584 // bits when scaling. This may create an illegal index type so we let 7585 // LLVM's legalization take care of the splitting. 7586 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7587 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7588 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7589 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7590 DL, IndexVT, Index); 7591 } 7592 7593 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7594 if (IsIndexScaled && Scale != 1) { 7595 // Manually scale the indices by the element size. 7596 // TODO: Sanitize the scale operand here? 7597 // TODO: For VP nodes, should we use VP_SHL here? 7598 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7599 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7600 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7601 } 7602 7603 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7604 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7605 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7606 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7607 VPGN->getScale(), VPGN->getMask(), 7608 VPGN->getVectorLength()}, 7609 VPGN->getMemOperand(), NewIndexTy); 7610 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7611 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7612 {VPSN->getChain(), VPSN->getValue(), 7613 VPSN->getBasePtr(), Index, VPSN->getScale(), 7614 VPSN->getMask(), VPSN->getVectorLength()}, 7615 VPSN->getMemOperand(), NewIndexTy); 7616 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7617 return DAG.getMaskedGather( 7618 N->getVTList(), MGN->getMemoryVT(), DL, 7619 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7620 MGN->getBasePtr(), Index, MGN->getScale()}, 7621 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7622 const auto *MSN = cast<MaskedScatterSDNode>(N); 7623 return DAG.getMaskedScatter( 7624 N->getVTList(), MSN->getMemoryVT(), DL, 7625 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7626 Index, MSN->getScale()}, 7627 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7628 } 7629 case RISCVISD::SRA_VL: 7630 case RISCVISD::SRL_VL: 7631 case RISCVISD::SHL_VL: { 7632 SDValue ShAmt = N->getOperand(1); 7633 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7634 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7635 SDLoc DL(N); 7636 SDValue VL = N->getOperand(3); 7637 EVT VT = N->getValueType(0); 7638 ShAmt = 7639 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7640 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7641 N->getOperand(2), N->getOperand(3)); 7642 } 7643 break; 7644 } 7645 case ISD::SRA: 7646 case ISD::SRL: 7647 case ISD::SHL: { 7648 SDValue ShAmt = N->getOperand(1); 7649 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7650 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7651 SDLoc DL(N); 7652 EVT VT = N->getValueType(0); 7653 ShAmt = 7654 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7655 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7656 } 7657 break; 7658 } 7659 case RISCVISD::MUL_VL: { 7660 SDValue Op0 = N->getOperand(0); 7661 SDValue Op1 = N->getOperand(1); 7662 if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG)) 7663 return V; 7664 if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG)) 7665 return V; 7666 return SDValue(); 7667 } 7668 case ISD::STORE: { 7669 auto *Store = cast<StoreSDNode>(N); 7670 SDValue Val = Store->getValue(); 7671 // Combine store of vmv.x.s to vse with VL of 1. 7672 // FIXME: Support FP. 7673 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7674 SDValue Src = Val.getOperand(0); 7675 EVT VecVT = Src.getValueType(); 7676 EVT MemVT = Store->getMemoryVT(); 7677 // The memory VT and the element type must match. 7678 if (VecVT.getVectorElementType() == MemVT) { 7679 SDLoc DL(N); 7680 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7681 return DAG.getStoreVP( 7682 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 7683 DAG.getConstant(1, DL, MaskVT), 7684 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 7685 Store->getMemOperand(), Store->getAddressingMode(), 7686 Store->isTruncatingStore(), /*IsCompress*/ false); 7687 } 7688 } 7689 7690 break; 7691 } 7692 } 7693 7694 return SDValue(); 7695 } 7696 7697 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7698 const SDNode *N, CombineLevel Level) const { 7699 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7700 // materialised in fewer instructions than `(OP _, c1)`: 7701 // 7702 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7703 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7704 SDValue N0 = N->getOperand(0); 7705 EVT Ty = N0.getValueType(); 7706 if (Ty.isScalarInteger() && 7707 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7708 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7709 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7710 if (C1 && C2) { 7711 const APInt &C1Int = C1->getAPIntValue(); 7712 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7713 7714 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7715 // and the combine should happen, to potentially allow further combines 7716 // later. 7717 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7718 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7719 return true; 7720 7721 // We can materialise `c1` in an add immediate, so it's "free", and the 7722 // combine should be prevented. 7723 if (C1Int.getMinSignedBits() <= 64 && 7724 isLegalAddImmediate(C1Int.getSExtValue())) 7725 return false; 7726 7727 // Neither constant will fit into an immediate, so find materialisation 7728 // costs. 7729 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7730 Subtarget.getFeatureBits(), 7731 /*CompressionCost*/true); 7732 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7733 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7734 /*CompressionCost*/true); 7735 7736 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7737 // combine should be prevented. 7738 if (C1Cost < ShiftedC1Cost) 7739 return false; 7740 } 7741 } 7742 return true; 7743 } 7744 7745 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7746 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7747 TargetLoweringOpt &TLO) const { 7748 // Delay this optimization as late as possible. 7749 if (!TLO.LegalOps) 7750 return false; 7751 7752 EVT VT = Op.getValueType(); 7753 if (VT.isVector()) 7754 return false; 7755 7756 // Only handle AND for now. 7757 if (Op.getOpcode() != ISD::AND) 7758 return false; 7759 7760 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7761 if (!C) 7762 return false; 7763 7764 const APInt &Mask = C->getAPIntValue(); 7765 7766 // Clear all non-demanded bits initially. 7767 APInt ShrunkMask = Mask & DemandedBits; 7768 7769 // Try to make a smaller immediate by setting undemanded bits. 7770 7771 APInt ExpandedMask = Mask | ~DemandedBits; 7772 7773 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7774 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7775 }; 7776 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7777 if (NewMask == Mask) 7778 return true; 7779 SDLoc DL(Op); 7780 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7781 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7782 return TLO.CombineTo(Op, NewOp); 7783 }; 7784 7785 // If the shrunk mask fits in sign extended 12 bits, let the target 7786 // independent code apply it. 7787 if (ShrunkMask.isSignedIntN(12)) 7788 return false; 7789 7790 // Preserve (and X, 0xffff) when zext.h is supported. 7791 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7792 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7793 if (IsLegalMask(NewMask)) 7794 return UseMask(NewMask); 7795 } 7796 7797 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7798 if (VT == MVT::i64) { 7799 APInt NewMask = APInt(64, 0xffffffff); 7800 if (IsLegalMask(NewMask)) 7801 return UseMask(NewMask); 7802 } 7803 7804 // For the remaining optimizations, we need to be able to make a negative 7805 // number through a combination of mask and undemanded bits. 7806 if (!ExpandedMask.isNegative()) 7807 return false; 7808 7809 // What is the fewest number of bits we need to represent the negative number. 7810 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7811 7812 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7813 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7814 APInt NewMask = ShrunkMask; 7815 if (MinSignedBits <= 12) 7816 NewMask.setBitsFrom(11); 7817 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7818 NewMask.setBitsFrom(31); 7819 else 7820 return false; 7821 7822 // Check that our new mask is a subset of the demanded mask. 7823 assert(IsLegalMask(NewMask)); 7824 return UseMask(NewMask); 7825 } 7826 7827 static void computeGREV(APInt &Src, unsigned ShAmt) { 7828 ShAmt &= Src.getBitWidth() - 1; 7829 uint64_t x = Src.getZExtValue(); 7830 if (ShAmt & 1) 7831 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7832 if (ShAmt & 2) 7833 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7834 if (ShAmt & 4) 7835 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7836 if (ShAmt & 8) 7837 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7838 if (ShAmt & 16) 7839 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7840 if (ShAmt & 32) 7841 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7842 Src = x; 7843 } 7844 7845 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7846 KnownBits &Known, 7847 const APInt &DemandedElts, 7848 const SelectionDAG &DAG, 7849 unsigned Depth) const { 7850 unsigned BitWidth = Known.getBitWidth(); 7851 unsigned Opc = Op.getOpcode(); 7852 assert((Opc >= ISD::BUILTIN_OP_END || 7853 Opc == ISD::INTRINSIC_WO_CHAIN || 7854 Opc == ISD::INTRINSIC_W_CHAIN || 7855 Opc == ISD::INTRINSIC_VOID) && 7856 "Should use MaskedValueIsZero if you don't know whether Op" 7857 " is a target node!"); 7858 7859 Known.resetAll(); 7860 switch (Opc) { 7861 default: break; 7862 case RISCVISD::SELECT_CC: { 7863 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7864 // If we don't know any bits, early out. 7865 if (Known.isUnknown()) 7866 break; 7867 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7868 7869 // Only known if known in both the LHS and RHS. 7870 Known = KnownBits::commonBits(Known, Known2); 7871 break; 7872 } 7873 case RISCVISD::REMUW: { 7874 KnownBits Known2; 7875 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7876 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7877 // We only care about the lower 32 bits. 7878 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7879 // Restore the original width by sign extending. 7880 Known = Known.sext(BitWidth); 7881 break; 7882 } 7883 case RISCVISD::DIVUW: { 7884 KnownBits Known2; 7885 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7886 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7887 // We only care about the lower 32 bits. 7888 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7889 // Restore the original width by sign extending. 7890 Known = Known.sext(BitWidth); 7891 break; 7892 } 7893 case RISCVISD::CTZW: { 7894 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7895 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7896 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7897 Known.Zero.setBitsFrom(LowBits); 7898 break; 7899 } 7900 case RISCVISD::CLZW: { 7901 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7902 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7903 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7904 Known.Zero.setBitsFrom(LowBits); 7905 break; 7906 } 7907 case RISCVISD::GREV: 7908 case RISCVISD::GREVW: { 7909 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7910 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7911 if (Opc == RISCVISD::GREVW) 7912 Known = Known.trunc(32); 7913 unsigned ShAmt = C->getZExtValue(); 7914 computeGREV(Known.Zero, ShAmt); 7915 computeGREV(Known.One, ShAmt); 7916 if (Opc == RISCVISD::GREVW) 7917 Known = Known.sext(BitWidth); 7918 } 7919 break; 7920 } 7921 case RISCVISD::READ_VLENB: 7922 // We assume VLENB is at least 16 bytes. 7923 Known.Zero.setLowBits(4); 7924 // We assume VLENB is no more than 65536 / 8 bytes. 7925 Known.Zero.setBitsFrom(14); 7926 break; 7927 case ISD::INTRINSIC_W_CHAIN: { 7928 unsigned IntNo = Op.getConstantOperandVal(1); 7929 switch (IntNo) { 7930 default: 7931 // We can't do anything for most intrinsics. 7932 break; 7933 case Intrinsic::riscv_vsetvli: 7934 case Intrinsic::riscv_vsetvlimax: 7935 // Assume that VL output is positive and would fit in an int32_t. 7936 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7937 if (BitWidth >= 32) 7938 Known.Zero.setBitsFrom(31); 7939 break; 7940 } 7941 break; 7942 } 7943 } 7944 } 7945 7946 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7947 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7948 unsigned Depth) const { 7949 switch (Op.getOpcode()) { 7950 default: 7951 break; 7952 case RISCVISD::SELECT_CC: { 7953 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7954 if (Tmp == 1) return 1; // Early out. 7955 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7956 return std::min(Tmp, Tmp2); 7957 } 7958 case RISCVISD::SLLW: 7959 case RISCVISD::SRAW: 7960 case RISCVISD::SRLW: 7961 case RISCVISD::DIVW: 7962 case RISCVISD::DIVUW: 7963 case RISCVISD::REMUW: 7964 case RISCVISD::ROLW: 7965 case RISCVISD::RORW: 7966 case RISCVISD::GREVW: 7967 case RISCVISD::GORCW: 7968 case RISCVISD::FSLW: 7969 case RISCVISD::FSRW: 7970 case RISCVISD::SHFLW: 7971 case RISCVISD::UNSHFLW: 7972 case RISCVISD::BCOMPRESSW: 7973 case RISCVISD::BDECOMPRESSW: 7974 case RISCVISD::BFPW: 7975 case RISCVISD::FCVT_W_RV64: 7976 case RISCVISD::FCVT_WU_RV64: 7977 case RISCVISD::STRICT_FCVT_W_RV64: 7978 case RISCVISD::STRICT_FCVT_WU_RV64: 7979 // TODO: As the result is sign-extended, this is conservatively correct. A 7980 // more precise answer could be calculated for SRAW depending on known 7981 // bits in the shift amount. 7982 return 33; 7983 case RISCVISD::SHFL: 7984 case RISCVISD::UNSHFL: { 7985 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7986 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7987 // will stay within the upper 32 bits. If there were more than 32 sign bits 7988 // before there will be at least 33 sign bits after. 7989 if (Op.getValueType() == MVT::i64 && 7990 isa<ConstantSDNode>(Op.getOperand(1)) && 7991 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7992 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7993 if (Tmp > 32) 7994 return 33; 7995 } 7996 break; 7997 } 7998 case RISCVISD::VMV_X_S: 7999 // The number of sign bits of the scalar result is computed by obtaining the 8000 // element type of the input vector operand, subtracting its width from the 8001 // XLEN, and then adding one (sign bit within the element type). If the 8002 // element type is wider than XLen, the least-significant XLEN bits are 8003 // taken. 8004 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 8005 return 1; 8006 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 8007 } 8008 8009 return 1; 8010 } 8011 8012 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 8013 MachineBasicBlock *BB) { 8014 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 8015 8016 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 8017 // Should the count have wrapped while it was being read, we need to try 8018 // again. 8019 // ... 8020 // read: 8021 // rdcycleh x3 # load high word of cycle 8022 // rdcycle x2 # load low word of cycle 8023 // rdcycleh x4 # load high word of cycle 8024 // bne x3, x4, read # check if high word reads match, otherwise try again 8025 // ... 8026 8027 MachineFunction &MF = *BB->getParent(); 8028 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8029 MachineFunction::iterator It = ++BB->getIterator(); 8030 8031 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8032 MF.insert(It, LoopMBB); 8033 8034 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8035 MF.insert(It, DoneMBB); 8036 8037 // Transfer the remainder of BB and its successor edges to DoneMBB. 8038 DoneMBB->splice(DoneMBB->begin(), BB, 8039 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8040 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 8041 8042 BB->addSuccessor(LoopMBB); 8043 8044 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8045 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8046 Register LoReg = MI.getOperand(0).getReg(); 8047 Register HiReg = MI.getOperand(1).getReg(); 8048 DebugLoc DL = MI.getDebugLoc(); 8049 8050 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 8051 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 8052 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8053 .addReg(RISCV::X0); 8054 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 8055 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 8056 .addReg(RISCV::X0); 8057 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 8058 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8059 .addReg(RISCV::X0); 8060 8061 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 8062 .addReg(HiReg) 8063 .addReg(ReadAgainReg) 8064 .addMBB(LoopMBB); 8065 8066 LoopMBB->addSuccessor(LoopMBB); 8067 LoopMBB->addSuccessor(DoneMBB); 8068 8069 MI.eraseFromParent(); 8070 8071 return DoneMBB; 8072 } 8073 8074 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 8075 MachineBasicBlock *BB) { 8076 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 8077 8078 MachineFunction &MF = *BB->getParent(); 8079 DebugLoc DL = MI.getDebugLoc(); 8080 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8081 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8082 Register LoReg = MI.getOperand(0).getReg(); 8083 Register HiReg = MI.getOperand(1).getReg(); 8084 Register SrcReg = MI.getOperand(2).getReg(); 8085 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 8086 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8087 8088 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 8089 RI); 8090 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8091 MachineMemOperand *MMOLo = 8092 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 8093 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8094 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 8095 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 8096 .addFrameIndex(FI) 8097 .addImm(0) 8098 .addMemOperand(MMOLo); 8099 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 8100 .addFrameIndex(FI) 8101 .addImm(4) 8102 .addMemOperand(MMOHi); 8103 MI.eraseFromParent(); // The pseudo instruction is gone now. 8104 return BB; 8105 } 8106 8107 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 8108 MachineBasicBlock *BB) { 8109 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 8110 "Unexpected instruction"); 8111 8112 MachineFunction &MF = *BB->getParent(); 8113 DebugLoc DL = MI.getDebugLoc(); 8114 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8115 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8116 Register DstReg = MI.getOperand(0).getReg(); 8117 Register LoReg = MI.getOperand(1).getReg(); 8118 Register HiReg = MI.getOperand(2).getReg(); 8119 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 8120 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8121 8122 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8123 MachineMemOperand *MMOLo = 8124 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 8125 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8126 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 8127 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8128 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 8129 .addFrameIndex(FI) 8130 .addImm(0) 8131 .addMemOperand(MMOLo); 8132 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8133 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 8134 .addFrameIndex(FI) 8135 .addImm(4) 8136 .addMemOperand(MMOHi); 8137 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 8138 MI.eraseFromParent(); // The pseudo instruction is gone now. 8139 return BB; 8140 } 8141 8142 static bool isSelectPseudo(MachineInstr &MI) { 8143 switch (MI.getOpcode()) { 8144 default: 8145 return false; 8146 case RISCV::Select_GPR_Using_CC_GPR: 8147 case RISCV::Select_FPR16_Using_CC_GPR: 8148 case RISCV::Select_FPR32_Using_CC_GPR: 8149 case RISCV::Select_FPR64_Using_CC_GPR: 8150 return true; 8151 } 8152 } 8153 8154 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 8155 unsigned RelOpcode, unsigned EqOpcode, 8156 const RISCVSubtarget &Subtarget) { 8157 DebugLoc DL = MI.getDebugLoc(); 8158 Register DstReg = MI.getOperand(0).getReg(); 8159 Register Src1Reg = MI.getOperand(1).getReg(); 8160 Register Src2Reg = MI.getOperand(2).getReg(); 8161 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 8162 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 8163 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 8164 8165 // Save the current FFLAGS. 8166 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 8167 8168 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 8169 .addReg(Src1Reg) 8170 .addReg(Src2Reg); 8171 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8172 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 8173 8174 // Restore the FFLAGS. 8175 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 8176 .addReg(SavedFFlags, RegState::Kill); 8177 8178 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 8179 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 8180 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 8181 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 8182 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8183 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 8184 8185 // Erase the pseudoinstruction. 8186 MI.eraseFromParent(); 8187 return BB; 8188 } 8189 8190 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 8191 MachineBasicBlock *BB, 8192 const RISCVSubtarget &Subtarget) { 8193 // To "insert" Select_* instructions, we actually have to insert the triangle 8194 // control-flow pattern. The incoming instructions know the destination vreg 8195 // to set, the condition code register to branch on, the true/false values to 8196 // select between, and the condcode to use to select the appropriate branch. 8197 // 8198 // We produce the following control flow: 8199 // HeadMBB 8200 // | \ 8201 // | IfFalseMBB 8202 // | / 8203 // TailMBB 8204 // 8205 // When we find a sequence of selects we attempt to optimize their emission 8206 // by sharing the control flow. Currently we only handle cases where we have 8207 // multiple selects with the exact same condition (same LHS, RHS and CC). 8208 // The selects may be interleaved with other instructions if the other 8209 // instructions meet some requirements we deem safe: 8210 // - They are debug instructions. Otherwise, 8211 // - They do not have side-effects, do not access memory and their inputs do 8212 // not depend on the results of the select pseudo-instructions. 8213 // The TrueV/FalseV operands of the selects cannot depend on the result of 8214 // previous selects in the sequence. 8215 // These conditions could be further relaxed. See the X86 target for a 8216 // related approach and more information. 8217 Register LHS = MI.getOperand(1).getReg(); 8218 Register RHS = MI.getOperand(2).getReg(); 8219 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 8220 8221 SmallVector<MachineInstr *, 4> SelectDebugValues; 8222 SmallSet<Register, 4> SelectDests; 8223 SelectDests.insert(MI.getOperand(0).getReg()); 8224 8225 MachineInstr *LastSelectPseudo = &MI; 8226 8227 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 8228 SequenceMBBI != E; ++SequenceMBBI) { 8229 if (SequenceMBBI->isDebugInstr()) 8230 continue; 8231 else if (isSelectPseudo(*SequenceMBBI)) { 8232 if (SequenceMBBI->getOperand(1).getReg() != LHS || 8233 SequenceMBBI->getOperand(2).getReg() != RHS || 8234 SequenceMBBI->getOperand(3).getImm() != CC || 8235 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 8236 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 8237 break; 8238 LastSelectPseudo = &*SequenceMBBI; 8239 SequenceMBBI->collectDebugValues(SelectDebugValues); 8240 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 8241 } else { 8242 if (SequenceMBBI->hasUnmodeledSideEffects() || 8243 SequenceMBBI->mayLoadOrStore()) 8244 break; 8245 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 8246 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 8247 })) 8248 break; 8249 } 8250 } 8251 8252 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 8253 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8254 DebugLoc DL = MI.getDebugLoc(); 8255 MachineFunction::iterator I = ++BB->getIterator(); 8256 8257 MachineBasicBlock *HeadMBB = BB; 8258 MachineFunction *F = BB->getParent(); 8259 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 8260 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 8261 8262 F->insert(I, IfFalseMBB); 8263 F->insert(I, TailMBB); 8264 8265 // Transfer debug instructions associated with the selects to TailMBB. 8266 for (MachineInstr *DebugInstr : SelectDebugValues) { 8267 TailMBB->push_back(DebugInstr->removeFromParent()); 8268 } 8269 8270 // Move all instructions after the sequence to TailMBB. 8271 TailMBB->splice(TailMBB->end(), HeadMBB, 8272 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 8273 // Update machine-CFG edges by transferring all successors of the current 8274 // block to the new block which will contain the Phi nodes for the selects. 8275 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 8276 // Set the successors for HeadMBB. 8277 HeadMBB->addSuccessor(IfFalseMBB); 8278 HeadMBB->addSuccessor(TailMBB); 8279 8280 // Insert appropriate branch. 8281 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 8282 .addReg(LHS) 8283 .addReg(RHS) 8284 .addMBB(TailMBB); 8285 8286 // IfFalseMBB just falls through to TailMBB. 8287 IfFalseMBB->addSuccessor(TailMBB); 8288 8289 // Create PHIs for all of the select pseudo-instructions. 8290 auto SelectMBBI = MI.getIterator(); 8291 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 8292 auto InsertionPoint = TailMBB->begin(); 8293 while (SelectMBBI != SelectEnd) { 8294 auto Next = std::next(SelectMBBI); 8295 if (isSelectPseudo(*SelectMBBI)) { 8296 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 8297 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 8298 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 8299 .addReg(SelectMBBI->getOperand(4).getReg()) 8300 .addMBB(HeadMBB) 8301 .addReg(SelectMBBI->getOperand(5).getReg()) 8302 .addMBB(IfFalseMBB); 8303 SelectMBBI->eraseFromParent(); 8304 } 8305 SelectMBBI = Next; 8306 } 8307 8308 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8309 return TailMBB; 8310 } 8311 8312 MachineBasicBlock * 8313 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 8314 MachineBasicBlock *BB) const { 8315 switch (MI.getOpcode()) { 8316 default: 8317 llvm_unreachable("Unexpected instr type to insert"); 8318 case RISCV::ReadCycleWide: 8319 assert(!Subtarget.is64Bit() && 8320 "ReadCycleWrite is only to be used on riscv32"); 8321 return emitReadCycleWidePseudo(MI, BB); 8322 case RISCV::Select_GPR_Using_CC_GPR: 8323 case RISCV::Select_FPR16_Using_CC_GPR: 8324 case RISCV::Select_FPR32_Using_CC_GPR: 8325 case RISCV::Select_FPR64_Using_CC_GPR: 8326 return emitSelectPseudo(MI, BB, Subtarget); 8327 case RISCV::BuildPairF64Pseudo: 8328 return emitBuildPairF64Pseudo(MI, BB); 8329 case RISCV::SplitF64Pseudo: 8330 return emitSplitF64Pseudo(MI, BB); 8331 case RISCV::PseudoQuietFLE_H: 8332 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 8333 case RISCV::PseudoQuietFLT_H: 8334 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 8335 case RISCV::PseudoQuietFLE_S: 8336 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 8337 case RISCV::PseudoQuietFLT_S: 8338 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 8339 case RISCV::PseudoQuietFLE_D: 8340 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 8341 case RISCV::PseudoQuietFLT_D: 8342 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 8343 } 8344 } 8345 8346 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 8347 SDNode *Node) const { 8348 // Add FRM dependency to any instructions with dynamic rounding mode. 8349 unsigned Opc = MI.getOpcode(); 8350 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 8351 if (Idx < 0) 8352 return; 8353 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 8354 return; 8355 // If the instruction already reads FRM, don't add another read. 8356 if (MI.readsRegister(RISCV::FRM)) 8357 return; 8358 MI.addOperand( 8359 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 8360 } 8361 8362 // Calling Convention Implementation. 8363 // The expectations for frontend ABI lowering vary from target to target. 8364 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 8365 // details, but this is a longer term goal. For now, we simply try to keep the 8366 // role of the frontend as simple and well-defined as possible. The rules can 8367 // be summarised as: 8368 // * Never split up large scalar arguments. We handle them here. 8369 // * If a hardfloat calling convention is being used, and the struct may be 8370 // passed in a pair of registers (fp+fp, int+fp), and both registers are 8371 // available, then pass as two separate arguments. If either the GPRs or FPRs 8372 // are exhausted, then pass according to the rule below. 8373 // * If a struct could never be passed in registers or directly in a stack 8374 // slot (as it is larger than 2*XLEN and the floating point rules don't 8375 // apply), then pass it using a pointer with the byval attribute. 8376 // * If a struct is less than 2*XLEN, then coerce to either a two-element 8377 // word-sized array or a 2*XLEN scalar (depending on alignment). 8378 // * The frontend can determine whether a struct is returned by reference or 8379 // not based on its size and fields. If it will be returned by reference, the 8380 // frontend must modify the prototype so a pointer with the sret annotation is 8381 // passed as the first argument. This is not necessary for large scalar 8382 // returns. 8383 // * Struct return values and varargs should be coerced to structs containing 8384 // register-size fields in the same situations they would be for fixed 8385 // arguments. 8386 8387 static const MCPhysReg ArgGPRs[] = { 8388 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 8389 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 8390 }; 8391 static const MCPhysReg ArgFPR16s[] = { 8392 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 8393 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 8394 }; 8395 static const MCPhysReg ArgFPR32s[] = { 8396 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 8397 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 8398 }; 8399 static const MCPhysReg ArgFPR64s[] = { 8400 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 8401 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 8402 }; 8403 // This is an interim calling convention and it may be changed in the future. 8404 static const MCPhysReg ArgVRs[] = { 8405 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 8406 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 8407 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 8408 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 8409 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 8410 RISCV::V20M2, RISCV::V22M2}; 8411 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 8412 RISCV::V20M4}; 8413 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 8414 8415 // Pass a 2*XLEN argument that has been split into two XLEN values through 8416 // registers or the stack as necessary. 8417 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 8418 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 8419 MVT ValVT2, MVT LocVT2, 8420 ISD::ArgFlagsTy ArgFlags2) { 8421 unsigned XLenInBytes = XLen / 8; 8422 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8423 // At least one half can be passed via register. 8424 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 8425 VA1.getLocVT(), CCValAssign::Full)); 8426 } else { 8427 // Both halves must be passed on the stack, with proper alignment. 8428 Align StackAlign = 8429 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 8430 State.addLoc( 8431 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 8432 State.AllocateStack(XLenInBytes, StackAlign), 8433 VA1.getLocVT(), CCValAssign::Full)); 8434 State.addLoc(CCValAssign::getMem( 8435 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8436 LocVT2, CCValAssign::Full)); 8437 return false; 8438 } 8439 8440 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8441 // The second half can also be passed via register. 8442 State.addLoc( 8443 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 8444 } else { 8445 // The second half is passed via the stack, without additional alignment. 8446 State.addLoc(CCValAssign::getMem( 8447 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8448 LocVT2, CCValAssign::Full)); 8449 } 8450 8451 return false; 8452 } 8453 8454 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 8455 Optional<unsigned> FirstMaskArgument, 8456 CCState &State, const RISCVTargetLowering &TLI) { 8457 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 8458 if (RC == &RISCV::VRRegClass) { 8459 // Assign the first mask argument to V0. 8460 // This is an interim calling convention and it may be changed in the 8461 // future. 8462 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 8463 return State.AllocateReg(RISCV::V0); 8464 return State.AllocateReg(ArgVRs); 8465 } 8466 if (RC == &RISCV::VRM2RegClass) 8467 return State.AllocateReg(ArgVRM2s); 8468 if (RC == &RISCV::VRM4RegClass) 8469 return State.AllocateReg(ArgVRM4s); 8470 if (RC == &RISCV::VRM8RegClass) 8471 return State.AllocateReg(ArgVRM8s); 8472 llvm_unreachable("Unhandled register class for ValueType"); 8473 } 8474 8475 // Implements the RISC-V calling convention. Returns true upon failure. 8476 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 8477 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 8478 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 8479 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 8480 Optional<unsigned> FirstMaskArgument) { 8481 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 8482 assert(XLen == 32 || XLen == 64); 8483 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 8484 8485 // Any return value split in to more than two values can't be returned 8486 // directly. Vectors are returned via the available vector registers. 8487 if (!LocVT.isVector() && IsRet && ValNo > 1) 8488 return true; 8489 8490 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 8491 // variadic argument, or if no F16/F32 argument registers are available. 8492 bool UseGPRForF16_F32 = true; 8493 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 8494 // variadic argument, or if no F64 argument registers are available. 8495 bool UseGPRForF64 = true; 8496 8497 switch (ABI) { 8498 default: 8499 llvm_unreachable("Unexpected ABI"); 8500 case RISCVABI::ABI_ILP32: 8501 case RISCVABI::ABI_LP64: 8502 break; 8503 case RISCVABI::ABI_ILP32F: 8504 case RISCVABI::ABI_LP64F: 8505 UseGPRForF16_F32 = !IsFixed; 8506 break; 8507 case RISCVABI::ABI_ILP32D: 8508 case RISCVABI::ABI_LP64D: 8509 UseGPRForF16_F32 = !IsFixed; 8510 UseGPRForF64 = !IsFixed; 8511 break; 8512 } 8513 8514 // FPR16, FPR32, and FPR64 alias each other. 8515 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 8516 UseGPRForF16_F32 = true; 8517 UseGPRForF64 = true; 8518 } 8519 8520 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 8521 // similar local variables rather than directly checking against the target 8522 // ABI. 8523 8524 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 8525 LocVT = XLenVT; 8526 LocInfo = CCValAssign::BCvt; 8527 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 8528 LocVT = MVT::i64; 8529 LocInfo = CCValAssign::BCvt; 8530 } 8531 8532 // If this is a variadic argument, the RISC-V calling convention requires 8533 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 8534 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 8535 // be used regardless of whether the original argument was split during 8536 // legalisation or not. The argument will not be passed by registers if the 8537 // original type is larger than 2*XLEN, so the register alignment rule does 8538 // not apply. 8539 unsigned TwoXLenInBytes = (2 * XLen) / 8; 8540 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 8541 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 8542 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 8543 // Skip 'odd' register if necessary. 8544 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 8545 State.AllocateReg(ArgGPRs); 8546 } 8547 8548 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 8549 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 8550 State.getPendingArgFlags(); 8551 8552 assert(PendingLocs.size() == PendingArgFlags.size() && 8553 "PendingLocs and PendingArgFlags out of sync"); 8554 8555 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8556 // registers are exhausted. 8557 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8558 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8559 "Can't lower f64 if it is split"); 8560 // Depending on available argument GPRS, f64 may be passed in a pair of 8561 // GPRs, split between a GPR and the stack, or passed completely on the 8562 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8563 // cases. 8564 Register Reg = State.AllocateReg(ArgGPRs); 8565 LocVT = MVT::i32; 8566 if (!Reg) { 8567 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8568 State.addLoc( 8569 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8570 return false; 8571 } 8572 if (!State.AllocateReg(ArgGPRs)) 8573 State.AllocateStack(4, Align(4)); 8574 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8575 return false; 8576 } 8577 8578 // Fixed-length vectors are located in the corresponding scalable-vector 8579 // container types. 8580 if (ValVT.isFixedLengthVector()) 8581 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8582 8583 // Split arguments might be passed indirectly, so keep track of the pending 8584 // values. Split vectors are passed via a mix of registers and indirectly, so 8585 // treat them as we would any other argument. 8586 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8587 LocVT = XLenVT; 8588 LocInfo = CCValAssign::Indirect; 8589 PendingLocs.push_back( 8590 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8591 PendingArgFlags.push_back(ArgFlags); 8592 if (!ArgFlags.isSplitEnd()) { 8593 return false; 8594 } 8595 } 8596 8597 // If the split argument only had two elements, it should be passed directly 8598 // in registers or on the stack. 8599 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8600 PendingLocs.size() <= 2) { 8601 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8602 // Apply the normal calling convention rules to the first half of the 8603 // split argument. 8604 CCValAssign VA = PendingLocs[0]; 8605 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8606 PendingLocs.clear(); 8607 PendingArgFlags.clear(); 8608 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8609 ArgFlags); 8610 } 8611 8612 // Allocate to a register if possible, or else a stack slot. 8613 Register Reg; 8614 unsigned StoreSizeBytes = XLen / 8; 8615 Align StackAlign = Align(XLen / 8); 8616 8617 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8618 Reg = State.AllocateReg(ArgFPR16s); 8619 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8620 Reg = State.AllocateReg(ArgFPR32s); 8621 else if (ValVT == MVT::f64 && !UseGPRForF64) 8622 Reg = State.AllocateReg(ArgFPR64s); 8623 else if (ValVT.isVector()) { 8624 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8625 if (!Reg) { 8626 // For return values, the vector must be passed fully via registers or 8627 // via the stack. 8628 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8629 // but we're using all of them. 8630 if (IsRet) 8631 return true; 8632 // Try using a GPR to pass the address 8633 if ((Reg = State.AllocateReg(ArgGPRs))) { 8634 LocVT = XLenVT; 8635 LocInfo = CCValAssign::Indirect; 8636 } else if (ValVT.isScalableVector()) { 8637 LocVT = XLenVT; 8638 LocInfo = CCValAssign::Indirect; 8639 } else { 8640 // Pass fixed-length vectors on the stack. 8641 LocVT = ValVT; 8642 StoreSizeBytes = ValVT.getStoreSize(); 8643 // Align vectors to their element sizes, being careful for vXi1 8644 // vectors. 8645 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8646 } 8647 } 8648 } else { 8649 Reg = State.AllocateReg(ArgGPRs); 8650 } 8651 8652 unsigned StackOffset = 8653 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8654 8655 // If we reach this point and PendingLocs is non-empty, we must be at the 8656 // end of a split argument that must be passed indirectly. 8657 if (!PendingLocs.empty()) { 8658 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8659 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8660 8661 for (auto &It : PendingLocs) { 8662 if (Reg) 8663 It.convertToReg(Reg); 8664 else 8665 It.convertToMem(StackOffset); 8666 State.addLoc(It); 8667 } 8668 PendingLocs.clear(); 8669 PendingArgFlags.clear(); 8670 return false; 8671 } 8672 8673 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8674 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8675 "Expected an XLenVT or vector types at this stage"); 8676 8677 if (Reg) { 8678 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8679 return false; 8680 } 8681 8682 // When a floating-point value is passed on the stack, no bit-conversion is 8683 // needed. 8684 if (ValVT.isFloatingPoint()) { 8685 LocVT = ValVT; 8686 LocInfo = CCValAssign::Full; 8687 } 8688 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8689 return false; 8690 } 8691 8692 template <typename ArgTy> 8693 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8694 for (const auto &ArgIdx : enumerate(Args)) { 8695 MVT ArgVT = ArgIdx.value().VT; 8696 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8697 return ArgIdx.index(); 8698 } 8699 return None; 8700 } 8701 8702 void RISCVTargetLowering::analyzeInputArgs( 8703 MachineFunction &MF, CCState &CCInfo, 8704 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8705 RISCVCCAssignFn Fn) const { 8706 unsigned NumArgs = Ins.size(); 8707 FunctionType *FType = MF.getFunction().getFunctionType(); 8708 8709 Optional<unsigned> FirstMaskArgument; 8710 if (Subtarget.hasVInstructions()) 8711 FirstMaskArgument = preAssignMask(Ins); 8712 8713 for (unsigned i = 0; i != NumArgs; ++i) { 8714 MVT ArgVT = Ins[i].VT; 8715 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8716 8717 Type *ArgTy = nullptr; 8718 if (IsRet) 8719 ArgTy = FType->getReturnType(); 8720 else if (Ins[i].isOrigArg()) 8721 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8722 8723 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8724 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8725 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8726 FirstMaskArgument)) { 8727 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8728 << EVT(ArgVT).getEVTString() << '\n'); 8729 llvm_unreachable(nullptr); 8730 } 8731 } 8732 } 8733 8734 void RISCVTargetLowering::analyzeOutputArgs( 8735 MachineFunction &MF, CCState &CCInfo, 8736 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8737 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8738 unsigned NumArgs = Outs.size(); 8739 8740 Optional<unsigned> FirstMaskArgument; 8741 if (Subtarget.hasVInstructions()) 8742 FirstMaskArgument = preAssignMask(Outs); 8743 8744 for (unsigned i = 0; i != NumArgs; i++) { 8745 MVT ArgVT = Outs[i].VT; 8746 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8747 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8748 8749 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8750 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8751 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8752 FirstMaskArgument)) { 8753 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8754 << EVT(ArgVT).getEVTString() << "\n"); 8755 llvm_unreachable(nullptr); 8756 } 8757 } 8758 } 8759 8760 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8761 // values. 8762 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8763 const CCValAssign &VA, const SDLoc &DL, 8764 const RISCVSubtarget &Subtarget) { 8765 switch (VA.getLocInfo()) { 8766 default: 8767 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8768 case CCValAssign::Full: 8769 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8770 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8771 break; 8772 case CCValAssign::BCvt: 8773 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8774 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8775 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8776 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8777 else 8778 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8779 break; 8780 } 8781 return Val; 8782 } 8783 8784 // The caller is responsible for loading the full value if the argument is 8785 // passed with CCValAssign::Indirect. 8786 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8787 const CCValAssign &VA, const SDLoc &DL, 8788 const RISCVTargetLowering &TLI) { 8789 MachineFunction &MF = DAG.getMachineFunction(); 8790 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8791 EVT LocVT = VA.getLocVT(); 8792 SDValue Val; 8793 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8794 Register VReg = RegInfo.createVirtualRegister(RC); 8795 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8796 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8797 8798 if (VA.getLocInfo() == CCValAssign::Indirect) 8799 return Val; 8800 8801 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8802 } 8803 8804 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8805 const CCValAssign &VA, const SDLoc &DL, 8806 const RISCVSubtarget &Subtarget) { 8807 EVT LocVT = VA.getLocVT(); 8808 8809 switch (VA.getLocInfo()) { 8810 default: 8811 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8812 case CCValAssign::Full: 8813 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8814 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8815 break; 8816 case CCValAssign::BCvt: 8817 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8818 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8819 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8820 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8821 else 8822 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8823 break; 8824 } 8825 return Val; 8826 } 8827 8828 // The caller is responsible for loading the full value if the argument is 8829 // passed with CCValAssign::Indirect. 8830 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8831 const CCValAssign &VA, const SDLoc &DL) { 8832 MachineFunction &MF = DAG.getMachineFunction(); 8833 MachineFrameInfo &MFI = MF.getFrameInfo(); 8834 EVT LocVT = VA.getLocVT(); 8835 EVT ValVT = VA.getValVT(); 8836 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8837 if (ValVT.isScalableVector()) { 8838 // When the value is a scalable vector, we save the pointer which points to 8839 // the scalable vector value in the stack. The ValVT will be the pointer 8840 // type, instead of the scalable vector type. 8841 ValVT = LocVT; 8842 } 8843 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8844 /*IsImmutable=*/true); 8845 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8846 SDValue Val; 8847 8848 ISD::LoadExtType ExtType; 8849 switch (VA.getLocInfo()) { 8850 default: 8851 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8852 case CCValAssign::Full: 8853 case CCValAssign::Indirect: 8854 case CCValAssign::BCvt: 8855 ExtType = ISD::NON_EXTLOAD; 8856 break; 8857 } 8858 Val = DAG.getExtLoad( 8859 ExtType, DL, LocVT, Chain, FIN, 8860 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8861 return Val; 8862 } 8863 8864 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8865 const CCValAssign &VA, const SDLoc &DL) { 8866 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8867 "Unexpected VA"); 8868 MachineFunction &MF = DAG.getMachineFunction(); 8869 MachineFrameInfo &MFI = MF.getFrameInfo(); 8870 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8871 8872 if (VA.isMemLoc()) { 8873 // f64 is passed on the stack. 8874 int FI = 8875 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 8876 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8877 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8878 MachinePointerInfo::getFixedStack(MF, FI)); 8879 } 8880 8881 assert(VA.isRegLoc() && "Expected register VA assignment"); 8882 8883 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8884 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8885 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8886 SDValue Hi; 8887 if (VA.getLocReg() == RISCV::X17) { 8888 // Second half of f64 is passed on the stack. 8889 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 8890 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8891 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8892 MachinePointerInfo::getFixedStack(MF, FI)); 8893 } else { 8894 // Second half of f64 is passed in another GPR. 8895 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8896 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8897 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8898 } 8899 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8900 } 8901 8902 // FastCC has less than 1% performance improvement for some particular 8903 // benchmark. But theoretically, it may has benenfit for some cases. 8904 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8905 unsigned ValNo, MVT ValVT, MVT LocVT, 8906 CCValAssign::LocInfo LocInfo, 8907 ISD::ArgFlagsTy ArgFlags, CCState &State, 8908 bool IsFixed, bool IsRet, Type *OrigTy, 8909 const RISCVTargetLowering &TLI, 8910 Optional<unsigned> FirstMaskArgument) { 8911 8912 // X5 and X6 might be used for save-restore libcall. 8913 static const MCPhysReg GPRList[] = { 8914 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8915 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8916 RISCV::X29, RISCV::X30, RISCV::X31}; 8917 8918 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8919 if (unsigned Reg = State.AllocateReg(GPRList)) { 8920 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8921 return false; 8922 } 8923 } 8924 8925 if (LocVT == MVT::f16) { 8926 static const MCPhysReg FPR16List[] = { 8927 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8928 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8929 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8930 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8931 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8932 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8933 return false; 8934 } 8935 } 8936 8937 if (LocVT == MVT::f32) { 8938 static const MCPhysReg FPR32List[] = { 8939 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8940 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8941 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8942 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8943 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8944 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8945 return false; 8946 } 8947 } 8948 8949 if (LocVT == MVT::f64) { 8950 static const MCPhysReg FPR64List[] = { 8951 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8952 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8953 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8954 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8955 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8956 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8957 return false; 8958 } 8959 } 8960 8961 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8962 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8963 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8964 return false; 8965 } 8966 8967 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8968 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8969 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8970 return false; 8971 } 8972 8973 if (LocVT.isVector()) { 8974 if (unsigned Reg = 8975 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8976 // Fixed-length vectors are located in the corresponding scalable-vector 8977 // container types. 8978 if (ValVT.isFixedLengthVector()) 8979 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8980 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8981 } else { 8982 // Try and pass the address via a "fast" GPR. 8983 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8984 LocInfo = CCValAssign::Indirect; 8985 LocVT = TLI.getSubtarget().getXLenVT(); 8986 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8987 } else if (ValVT.isFixedLengthVector()) { 8988 auto StackAlign = 8989 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8990 unsigned StackOffset = 8991 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8992 State.addLoc( 8993 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8994 } else { 8995 // Can't pass scalable vectors on the stack. 8996 return true; 8997 } 8998 } 8999 9000 return false; 9001 } 9002 9003 return true; // CC didn't match. 9004 } 9005 9006 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 9007 CCValAssign::LocInfo LocInfo, 9008 ISD::ArgFlagsTy ArgFlags, CCState &State) { 9009 9010 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9011 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 9012 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 9013 static const MCPhysReg GPRList[] = { 9014 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 9015 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 9016 if (unsigned Reg = State.AllocateReg(GPRList)) { 9017 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9018 return false; 9019 } 9020 } 9021 9022 if (LocVT == MVT::f32) { 9023 // Pass in STG registers: F1, ..., F6 9024 // fs0 ... fs5 9025 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 9026 RISCV::F18_F, RISCV::F19_F, 9027 RISCV::F20_F, RISCV::F21_F}; 9028 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9029 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9030 return false; 9031 } 9032 } 9033 9034 if (LocVT == MVT::f64) { 9035 // Pass in STG registers: D1, ..., D6 9036 // fs6 ... fs11 9037 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 9038 RISCV::F24_D, RISCV::F25_D, 9039 RISCV::F26_D, RISCV::F27_D}; 9040 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9041 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9042 return false; 9043 } 9044 } 9045 9046 report_fatal_error("No registers left in GHC calling convention"); 9047 return true; 9048 } 9049 9050 // Transform physical registers into virtual registers. 9051 SDValue RISCVTargetLowering::LowerFormalArguments( 9052 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 9053 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 9054 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 9055 9056 MachineFunction &MF = DAG.getMachineFunction(); 9057 9058 switch (CallConv) { 9059 default: 9060 report_fatal_error("Unsupported calling convention"); 9061 case CallingConv::C: 9062 case CallingConv::Fast: 9063 break; 9064 case CallingConv::GHC: 9065 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 9066 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 9067 report_fatal_error( 9068 "GHC calling convention requires the F and D instruction set extensions"); 9069 } 9070 9071 const Function &Func = MF.getFunction(); 9072 if (Func.hasFnAttribute("interrupt")) { 9073 if (!Func.arg_empty()) 9074 report_fatal_error( 9075 "Functions with the interrupt attribute cannot have arguments!"); 9076 9077 StringRef Kind = 9078 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9079 9080 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 9081 report_fatal_error( 9082 "Function interrupt attribute argument not supported!"); 9083 } 9084 9085 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9086 MVT XLenVT = Subtarget.getXLenVT(); 9087 unsigned XLenInBytes = Subtarget.getXLen() / 8; 9088 // Used with vargs to acumulate store chains. 9089 std::vector<SDValue> OutChains; 9090 9091 // Assign locations to all of the incoming arguments. 9092 SmallVector<CCValAssign, 16> ArgLocs; 9093 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9094 9095 if (CallConv == CallingConv::GHC) 9096 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 9097 else 9098 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 9099 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9100 : CC_RISCV); 9101 9102 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 9103 CCValAssign &VA = ArgLocs[i]; 9104 SDValue ArgValue; 9105 // Passing f64 on RV32D with a soft float ABI must be handled as a special 9106 // case. 9107 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 9108 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 9109 else if (VA.isRegLoc()) 9110 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 9111 else 9112 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 9113 9114 if (VA.getLocInfo() == CCValAssign::Indirect) { 9115 // If the original argument was split and passed by reference (e.g. i128 9116 // on RV32), we need to load all parts of it here (using the same 9117 // address). Vectors may be partly split to registers and partly to the 9118 // stack, in which case the base address is partly offset and subsequent 9119 // stores are relative to that. 9120 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 9121 MachinePointerInfo())); 9122 unsigned ArgIndex = Ins[i].OrigArgIndex; 9123 unsigned ArgPartOffset = Ins[i].PartOffset; 9124 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9125 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 9126 CCValAssign &PartVA = ArgLocs[i + 1]; 9127 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 9128 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9129 if (PartVA.getValVT().isScalableVector()) 9130 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9131 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 9132 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 9133 MachinePointerInfo())); 9134 ++i; 9135 } 9136 continue; 9137 } 9138 InVals.push_back(ArgValue); 9139 } 9140 9141 if (IsVarArg) { 9142 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 9143 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 9144 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 9145 MachineFrameInfo &MFI = MF.getFrameInfo(); 9146 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9147 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 9148 9149 // Offset of the first variable argument from stack pointer, and size of 9150 // the vararg save area. For now, the varargs save area is either zero or 9151 // large enough to hold a0-a7. 9152 int VaArgOffset, VarArgsSaveSize; 9153 9154 // If all registers are allocated, then all varargs must be passed on the 9155 // stack and we don't need to save any argregs. 9156 if (ArgRegs.size() == Idx) { 9157 VaArgOffset = CCInfo.getNextStackOffset(); 9158 VarArgsSaveSize = 0; 9159 } else { 9160 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 9161 VaArgOffset = -VarArgsSaveSize; 9162 } 9163 9164 // Record the frame index of the first variable argument 9165 // which is a value necessary to VASTART. 9166 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9167 RVFI->setVarArgsFrameIndex(FI); 9168 9169 // If saving an odd number of registers then create an extra stack slot to 9170 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 9171 // offsets to even-numbered registered remain 2*XLEN-aligned. 9172 if (Idx % 2) { 9173 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 9174 VarArgsSaveSize += XLenInBytes; 9175 } 9176 9177 // Copy the integer registers that may have been used for passing varargs 9178 // to the vararg save area. 9179 for (unsigned I = Idx; I < ArgRegs.size(); 9180 ++I, VaArgOffset += XLenInBytes) { 9181 const Register Reg = RegInfo.createVirtualRegister(RC); 9182 RegInfo.addLiveIn(ArgRegs[I], Reg); 9183 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 9184 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9185 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9186 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 9187 MachinePointerInfo::getFixedStack(MF, FI)); 9188 cast<StoreSDNode>(Store.getNode()) 9189 ->getMemOperand() 9190 ->setValue((Value *)nullptr); 9191 OutChains.push_back(Store); 9192 } 9193 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 9194 } 9195 9196 // All stores are grouped in one node to allow the matching between 9197 // the size of Ins and InVals. This only happens for vararg functions. 9198 if (!OutChains.empty()) { 9199 OutChains.push_back(Chain); 9200 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 9201 } 9202 9203 return Chain; 9204 } 9205 9206 /// isEligibleForTailCallOptimization - Check whether the call is eligible 9207 /// for tail call optimization. 9208 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 9209 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 9210 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 9211 const SmallVector<CCValAssign, 16> &ArgLocs) const { 9212 9213 auto &Callee = CLI.Callee; 9214 auto CalleeCC = CLI.CallConv; 9215 auto &Outs = CLI.Outs; 9216 auto &Caller = MF.getFunction(); 9217 auto CallerCC = Caller.getCallingConv(); 9218 9219 // Exception-handling functions need a special set of instructions to 9220 // indicate a return to the hardware. Tail-calling another function would 9221 // probably break this. 9222 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 9223 // should be expanded as new function attributes are introduced. 9224 if (Caller.hasFnAttribute("interrupt")) 9225 return false; 9226 9227 // Do not tail call opt if the stack is used to pass parameters. 9228 if (CCInfo.getNextStackOffset() != 0) 9229 return false; 9230 9231 // Do not tail call opt if any parameters need to be passed indirectly. 9232 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 9233 // passed indirectly. So the address of the value will be passed in a 9234 // register, or if not available, then the address is put on the stack. In 9235 // order to pass indirectly, space on the stack often needs to be allocated 9236 // in order to store the value. In this case the CCInfo.getNextStackOffset() 9237 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 9238 // are passed CCValAssign::Indirect. 9239 for (auto &VA : ArgLocs) 9240 if (VA.getLocInfo() == CCValAssign::Indirect) 9241 return false; 9242 9243 // Do not tail call opt if either caller or callee uses struct return 9244 // semantics. 9245 auto IsCallerStructRet = Caller.hasStructRetAttr(); 9246 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 9247 if (IsCallerStructRet || IsCalleeStructRet) 9248 return false; 9249 9250 // Externally-defined functions with weak linkage should not be 9251 // tail-called. The behaviour of branch instructions in this situation (as 9252 // used for tail calls) is implementation-defined, so we cannot rely on the 9253 // linker replacing the tail call with a return. 9254 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 9255 const GlobalValue *GV = G->getGlobal(); 9256 if (GV->hasExternalWeakLinkage()) 9257 return false; 9258 } 9259 9260 // The callee has to preserve all registers the caller needs to preserve. 9261 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9262 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 9263 if (CalleeCC != CallerCC) { 9264 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 9265 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 9266 return false; 9267 } 9268 9269 // Byval parameters hand the function a pointer directly into the stack area 9270 // we want to reuse during a tail call. Working around this *is* possible 9271 // but less efficient and uglier in LowerCall. 9272 for (auto &Arg : Outs) 9273 if (Arg.Flags.isByVal()) 9274 return false; 9275 9276 return true; 9277 } 9278 9279 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 9280 return DAG.getDataLayout().getPrefTypeAlign( 9281 VT.getTypeForEVT(*DAG.getContext())); 9282 } 9283 9284 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 9285 // and output parameter nodes. 9286 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 9287 SmallVectorImpl<SDValue> &InVals) const { 9288 SelectionDAG &DAG = CLI.DAG; 9289 SDLoc &DL = CLI.DL; 9290 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 9291 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 9292 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 9293 SDValue Chain = CLI.Chain; 9294 SDValue Callee = CLI.Callee; 9295 bool &IsTailCall = CLI.IsTailCall; 9296 CallingConv::ID CallConv = CLI.CallConv; 9297 bool IsVarArg = CLI.IsVarArg; 9298 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9299 MVT XLenVT = Subtarget.getXLenVT(); 9300 9301 MachineFunction &MF = DAG.getMachineFunction(); 9302 9303 // Analyze the operands of the call, assigning locations to each operand. 9304 SmallVector<CCValAssign, 16> ArgLocs; 9305 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9306 9307 if (CallConv == CallingConv::GHC) 9308 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 9309 else 9310 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 9311 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9312 : CC_RISCV); 9313 9314 // Check if it's really possible to do a tail call. 9315 if (IsTailCall) 9316 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 9317 9318 if (IsTailCall) 9319 ++NumTailCalls; 9320 else if (CLI.CB && CLI.CB->isMustTailCall()) 9321 report_fatal_error("failed to perform tail call elimination on a call " 9322 "site marked musttail"); 9323 9324 // Get a count of how many bytes are to be pushed on the stack. 9325 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 9326 9327 // Create local copies for byval args 9328 SmallVector<SDValue, 8> ByValArgs; 9329 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9330 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9331 if (!Flags.isByVal()) 9332 continue; 9333 9334 SDValue Arg = OutVals[i]; 9335 unsigned Size = Flags.getByValSize(); 9336 Align Alignment = Flags.getNonZeroByValAlign(); 9337 9338 int FI = 9339 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 9340 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9341 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 9342 9343 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 9344 /*IsVolatile=*/false, 9345 /*AlwaysInline=*/false, IsTailCall, 9346 MachinePointerInfo(), MachinePointerInfo()); 9347 ByValArgs.push_back(FIPtr); 9348 } 9349 9350 if (!IsTailCall) 9351 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 9352 9353 // Copy argument values to their designated locations. 9354 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 9355 SmallVector<SDValue, 8> MemOpChains; 9356 SDValue StackPtr; 9357 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 9358 CCValAssign &VA = ArgLocs[i]; 9359 SDValue ArgValue = OutVals[i]; 9360 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9361 9362 // Handle passing f64 on RV32D with a soft float ABI as a special case. 9363 bool IsF64OnRV32DSoftABI = 9364 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 9365 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 9366 SDValue SplitF64 = DAG.getNode( 9367 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 9368 SDValue Lo = SplitF64.getValue(0); 9369 SDValue Hi = SplitF64.getValue(1); 9370 9371 Register RegLo = VA.getLocReg(); 9372 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 9373 9374 if (RegLo == RISCV::X17) { 9375 // Second half of f64 is passed on the stack. 9376 // Work out the address of the stack slot. 9377 if (!StackPtr.getNode()) 9378 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9379 // Emit the store. 9380 MemOpChains.push_back( 9381 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 9382 } else { 9383 // Second half of f64 is passed in another GPR. 9384 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9385 Register RegHigh = RegLo + 1; 9386 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 9387 } 9388 continue; 9389 } 9390 9391 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 9392 // as any other MemLoc. 9393 9394 // Promote the value if needed. 9395 // For now, only handle fully promoted and indirect arguments. 9396 if (VA.getLocInfo() == CCValAssign::Indirect) { 9397 // Store the argument in a stack slot and pass its address. 9398 Align StackAlign = 9399 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 9400 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 9401 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 9402 // If the original argument was split (e.g. i128), we need 9403 // to store the required parts of it here (and pass just one address). 9404 // Vectors may be partly split to registers and partly to the stack, in 9405 // which case the base address is partly offset and subsequent stores are 9406 // relative to that. 9407 unsigned ArgIndex = Outs[i].OrigArgIndex; 9408 unsigned ArgPartOffset = Outs[i].PartOffset; 9409 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9410 // Calculate the total size to store. We don't have access to what we're 9411 // actually storing other than performing the loop and collecting the 9412 // info. 9413 SmallVector<std::pair<SDValue, SDValue>> Parts; 9414 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 9415 SDValue PartValue = OutVals[i + 1]; 9416 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 9417 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9418 EVT PartVT = PartValue.getValueType(); 9419 if (PartVT.isScalableVector()) 9420 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9421 StoredSize += PartVT.getStoreSize(); 9422 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 9423 Parts.push_back(std::make_pair(PartValue, Offset)); 9424 ++i; 9425 } 9426 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 9427 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 9428 MemOpChains.push_back( 9429 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 9430 MachinePointerInfo::getFixedStack(MF, FI))); 9431 for (const auto &Part : Parts) { 9432 SDValue PartValue = Part.first; 9433 SDValue PartOffset = Part.second; 9434 SDValue Address = 9435 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 9436 MemOpChains.push_back( 9437 DAG.getStore(Chain, DL, PartValue, Address, 9438 MachinePointerInfo::getFixedStack(MF, FI))); 9439 } 9440 ArgValue = SpillSlot; 9441 } else { 9442 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 9443 } 9444 9445 // Use local copy if it is a byval arg. 9446 if (Flags.isByVal()) 9447 ArgValue = ByValArgs[j++]; 9448 9449 if (VA.isRegLoc()) { 9450 // Queue up the argument copies and emit them at the end. 9451 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 9452 } else { 9453 assert(VA.isMemLoc() && "Argument not register or memory"); 9454 assert(!IsTailCall && "Tail call not allowed if stack is used " 9455 "for passing parameters"); 9456 9457 // Work out the address of the stack slot. 9458 if (!StackPtr.getNode()) 9459 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9460 SDValue Address = 9461 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 9462 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 9463 9464 // Emit the store. 9465 MemOpChains.push_back( 9466 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 9467 } 9468 } 9469 9470 // Join the stores, which are independent of one another. 9471 if (!MemOpChains.empty()) 9472 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 9473 9474 SDValue Glue; 9475 9476 // Build a sequence of copy-to-reg nodes, chained and glued together. 9477 for (auto &Reg : RegsToPass) { 9478 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 9479 Glue = Chain.getValue(1); 9480 } 9481 9482 // Validate that none of the argument registers have been marked as 9483 // reserved, if so report an error. Do the same for the return address if this 9484 // is not a tailcall. 9485 validateCCReservedRegs(RegsToPass, MF); 9486 if (!IsTailCall && 9487 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 9488 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9489 MF.getFunction(), 9490 "Return address register required, but has been reserved."}); 9491 9492 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 9493 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 9494 // split it and then direct call can be matched by PseudoCALL. 9495 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 9496 const GlobalValue *GV = S->getGlobal(); 9497 9498 unsigned OpFlags = RISCVII::MO_CALL; 9499 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 9500 OpFlags = RISCVII::MO_PLT; 9501 9502 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 9503 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 9504 unsigned OpFlags = RISCVII::MO_CALL; 9505 9506 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 9507 nullptr)) 9508 OpFlags = RISCVII::MO_PLT; 9509 9510 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 9511 } 9512 9513 // The first call operand is the chain and the second is the target address. 9514 SmallVector<SDValue, 8> Ops; 9515 Ops.push_back(Chain); 9516 Ops.push_back(Callee); 9517 9518 // Add argument registers to the end of the list so that they are 9519 // known live into the call. 9520 for (auto &Reg : RegsToPass) 9521 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 9522 9523 if (!IsTailCall) { 9524 // Add a register mask operand representing the call-preserved registers. 9525 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9526 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 9527 assert(Mask && "Missing call preserved mask for calling convention"); 9528 Ops.push_back(DAG.getRegisterMask(Mask)); 9529 } 9530 9531 // Glue the call to the argument copies, if any. 9532 if (Glue.getNode()) 9533 Ops.push_back(Glue); 9534 9535 // Emit the call. 9536 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9537 9538 if (IsTailCall) { 9539 MF.getFrameInfo().setHasTailCall(); 9540 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 9541 } 9542 9543 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 9544 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 9545 Glue = Chain.getValue(1); 9546 9547 // Mark the end of the call, which is glued to the call itself. 9548 Chain = DAG.getCALLSEQ_END(Chain, 9549 DAG.getConstant(NumBytes, DL, PtrVT, true), 9550 DAG.getConstant(0, DL, PtrVT, true), 9551 Glue, DL); 9552 Glue = Chain.getValue(1); 9553 9554 // Assign locations to each value returned by this call. 9555 SmallVector<CCValAssign, 16> RVLocs; 9556 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 9557 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 9558 9559 // Copy all of the result registers out of their specified physreg. 9560 for (auto &VA : RVLocs) { 9561 // Copy the value out 9562 SDValue RetValue = 9563 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9564 // Glue the RetValue to the end of the call sequence 9565 Chain = RetValue.getValue(1); 9566 Glue = RetValue.getValue(2); 9567 9568 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9569 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9570 SDValue RetValue2 = 9571 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9572 Chain = RetValue2.getValue(1); 9573 Glue = RetValue2.getValue(2); 9574 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9575 RetValue2); 9576 } 9577 9578 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9579 9580 InVals.push_back(RetValue); 9581 } 9582 9583 return Chain; 9584 } 9585 9586 bool RISCVTargetLowering::CanLowerReturn( 9587 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9588 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9589 SmallVector<CCValAssign, 16> RVLocs; 9590 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9591 9592 Optional<unsigned> FirstMaskArgument; 9593 if (Subtarget.hasVInstructions()) 9594 FirstMaskArgument = preAssignMask(Outs); 9595 9596 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9597 MVT VT = Outs[i].VT; 9598 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9599 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9600 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9601 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9602 *this, FirstMaskArgument)) 9603 return false; 9604 } 9605 return true; 9606 } 9607 9608 SDValue 9609 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9610 bool IsVarArg, 9611 const SmallVectorImpl<ISD::OutputArg> &Outs, 9612 const SmallVectorImpl<SDValue> &OutVals, 9613 const SDLoc &DL, SelectionDAG &DAG) const { 9614 const MachineFunction &MF = DAG.getMachineFunction(); 9615 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9616 9617 // Stores the assignment of the return value to a location. 9618 SmallVector<CCValAssign, 16> RVLocs; 9619 9620 // Info about the registers and stack slot. 9621 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9622 *DAG.getContext()); 9623 9624 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9625 nullptr, CC_RISCV); 9626 9627 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9628 report_fatal_error("GHC functions return void only"); 9629 9630 SDValue Glue; 9631 SmallVector<SDValue, 4> RetOps(1, Chain); 9632 9633 // Copy the result values into the output registers. 9634 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9635 SDValue Val = OutVals[i]; 9636 CCValAssign &VA = RVLocs[i]; 9637 assert(VA.isRegLoc() && "Can only return in registers!"); 9638 9639 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9640 // Handle returning f64 on RV32D with a soft float ABI. 9641 assert(VA.isRegLoc() && "Expected return via registers"); 9642 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9643 DAG.getVTList(MVT::i32, MVT::i32), Val); 9644 SDValue Lo = SplitF64.getValue(0); 9645 SDValue Hi = SplitF64.getValue(1); 9646 Register RegLo = VA.getLocReg(); 9647 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9648 Register RegHi = RegLo + 1; 9649 9650 if (STI.isRegisterReservedByUser(RegLo) || 9651 STI.isRegisterReservedByUser(RegHi)) 9652 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9653 MF.getFunction(), 9654 "Return value register required, but has been reserved."}); 9655 9656 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9657 Glue = Chain.getValue(1); 9658 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9659 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9660 Glue = Chain.getValue(1); 9661 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9662 } else { 9663 // Handle a 'normal' return. 9664 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9665 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9666 9667 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9668 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9669 MF.getFunction(), 9670 "Return value register required, but has been reserved."}); 9671 9672 // Guarantee that all emitted copies are stuck together. 9673 Glue = Chain.getValue(1); 9674 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9675 } 9676 } 9677 9678 RetOps[0] = Chain; // Update chain. 9679 9680 // Add the glue node if we have it. 9681 if (Glue.getNode()) { 9682 RetOps.push_back(Glue); 9683 } 9684 9685 unsigned RetOpc = RISCVISD::RET_FLAG; 9686 // Interrupt service routines use different return instructions. 9687 const Function &Func = DAG.getMachineFunction().getFunction(); 9688 if (Func.hasFnAttribute("interrupt")) { 9689 if (!Func.getReturnType()->isVoidTy()) 9690 report_fatal_error( 9691 "Functions with the interrupt attribute must have void return type!"); 9692 9693 MachineFunction &MF = DAG.getMachineFunction(); 9694 StringRef Kind = 9695 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9696 9697 if (Kind == "user") 9698 RetOpc = RISCVISD::URET_FLAG; 9699 else if (Kind == "supervisor") 9700 RetOpc = RISCVISD::SRET_FLAG; 9701 else 9702 RetOpc = RISCVISD::MRET_FLAG; 9703 } 9704 9705 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9706 } 9707 9708 void RISCVTargetLowering::validateCCReservedRegs( 9709 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9710 MachineFunction &MF) const { 9711 const Function &F = MF.getFunction(); 9712 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9713 9714 if (llvm::any_of(Regs, [&STI](auto Reg) { 9715 return STI.isRegisterReservedByUser(Reg.first); 9716 })) 9717 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9718 F, "Argument register required, but has been reserved."}); 9719 } 9720 9721 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9722 return CI->isTailCall(); 9723 } 9724 9725 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9726 #define NODE_NAME_CASE(NODE) \ 9727 case RISCVISD::NODE: \ 9728 return "RISCVISD::" #NODE; 9729 // clang-format off 9730 switch ((RISCVISD::NodeType)Opcode) { 9731 case RISCVISD::FIRST_NUMBER: 9732 break; 9733 NODE_NAME_CASE(RET_FLAG) 9734 NODE_NAME_CASE(URET_FLAG) 9735 NODE_NAME_CASE(SRET_FLAG) 9736 NODE_NAME_CASE(MRET_FLAG) 9737 NODE_NAME_CASE(CALL) 9738 NODE_NAME_CASE(SELECT_CC) 9739 NODE_NAME_CASE(BR_CC) 9740 NODE_NAME_CASE(BuildPairF64) 9741 NODE_NAME_CASE(SplitF64) 9742 NODE_NAME_CASE(TAIL) 9743 NODE_NAME_CASE(MULHSU) 9744 NODE_NAME_CASE(SLLW) 9745 NODE_NAME_CASE(SRAW) 9746 NODE_NAME_CASE(SRLW) 9747 NODE_NAME_CASE(DIVW) 9748 NODE_NAME_CASE(DIVUW) 9749 NODE_NAME_CASE(REMUW) 9750 NODE_NAME_CASE(ROLW) 9751 NODE_NAME_CASE(RORW) 9752 NODE_NAME_CASE(CLZW) 9753 NODE_NAME_CASE(CTZW) 9754 NODE_NAME_CASE(FSLW) 9755 NODE_NAME_CASE(FSRW) 9756 NODE_NAME_CASE(FSL) 9757 NODE_NAME_CASE(FSR) 9758 NODE_NAME_CASE(FMV_H_X) 9759 NODE_NAME_CASE(FMV_X_ANYEXTH) 9760 NODE_NAME_CASE(FMV_W_X_RV64) 9761 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9762 NODE_NAME_CASE(FCVT_X) 9763 NODE_NAME_CASE(FCVT_XU) 9764 NODE_NAME_CASE(FCVT_W_RV64) 9765 NODE_NAME_CASE(FCVT_WU_RV64) 9766 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 9767 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 9768 NODE_NAME_CASE(READ_CYCLE_WIDE) 9769 NODE_NAME_CASE(GREV) 9770 NODE_NAME_CASE(GREVW) 9771 NODE_NAME_CASE(GORC) 9772 NODE_NAME_CASE(GORCW) 9773 NODE_NAME_CASE(SHFL) 9774 NODE_NAME_CASE(SHFLW) 9775 NODE_NAME_CASE(UNSHFL) 9776 NODE_NAME_CASE(UNSHFLW) 9777 NODE_NAME_CASE(BFP) 9778 NODE_NAME_CASE(BFPW) 9779 NODE_NAME_CASE(BCOMPRESS) 9780 NODE_NAME_CASE(BCOMPRESSW) 9781 NODE_NAME_CASE(BDECOMPRESS) 9782 NODE_NAME_CASE(BDECOMPRESSW) 9783 NODE_NAME_CASE(VMV_V_X_VL) 9784 NODE_NAME_CASE(VFMV_V_F_VL) 9785 NODE_NAME_CASE(VMV_X_S) 9786 NODE_NAME_CASE(VMV_S_X_VL) 9787 NODE_NAME_CASE(VFMV_S_F_VL) 9788 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9789 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9790 NODE_NAME_CASE(READ_VLENB) 9791 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9792 NODE_NAME_CASE(VSLIDEUP_VL) 9793 NODE_NAME_CASE(VSLIDE1UP_VL) 9794 NODE_NAME_CASE(VSLIDEDOWN_VL) 9795 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9796 NODE_NAME_CASE(VID_VL) 9797 NODE_NAME_CASE(VFNCVT_ROD_VL) 9798 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9799 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9800 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9801 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9802 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9803 NODE_NAME_CASE(VECREDUCE_AND_VL) 9804 NODE_NAME_CASE(VECREDUCE_OR_VL) 9805 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9806 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9807 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9808 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9809 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9810 NODE_NAME_CASE(ADD_VL) 9811 NODE_NAME_CASE(AND_VL) 9812 NODE_NAME_CASE(MUL_VL) 9813 NODE_NAME_CASE(OR_VL) 9814 NODE_NAME_CASE(SDIV_VL) 9815 NODE_NAME_CASE(SHL_VL) 9816 NODE_NAME_CASE(SREM_VL) 9817 NODE_NAME_CASE(SRA_VL) 9818 NODE_NAME_CASE(SRL_VL) 9819 NODE_NAME_CASE(SUB_VL) 9820 NODE_NAME_CASE(UDIV_VL) 9821 NODE_NAME_CASE(UREM_VL) 9822 NODE_NAME_CASE(XOR_VL) 9823 NODE_NAME_CASE(SADDSAT_VL) 9824 NODE_NAME_CASE(UADDSAT_VL) 9825 NODE_NAME_CASE(SSUBSAT_VL) 9826 NODE_NAME_CASE(USUBSAT_VL) 9827 NODE_NAME_CASE(FADD_VL) 9828 NODE_NAME_CASE(FSUB_VL) 9829 NODE_NAME_CASE(FMUL_VL) 9830 NODE_NAME_CASE(FDIV_VL) 9831 NODE_NAME_CASE(FNEG_VL) 9832 NODE_NAME_CASE(FABS_VL) 9833 NODE_NAME_CASE(FSQRT_VL) 9834 NODE_NAME_CASE(FMA_VL) 9835 NODE_NAME_CASE(FCOPYSIGN_VL) 9836 NODE_NAME_CASE(SMIN_VL) 9837 NODE_NAME_CASE(SMAX_VL) 9838 NODE_NAME_CASE(UMIN_VL) 9839 NODE_NAME_CASE(UMAX_VL) 9840 NODE_NAME_CASE(FMINNUM_VL) 9841 NODE_NAME_CASE(FMAXNUM_VL) 9842 NODE_NAME_CASE(MULHS_VL) 9843 NODE_NAME_CASE(MULHU_VL) 9844 NODE_NAME_CASE(FP_TO_SINT_VL) 9845 NODE_NAME_CASE(FP_TO_UINT_VL) 9846 NODE_NAME_CASE(SINT_TO_FP_VL) 9847 NODE_NAME_CASE(UINT_TO_FP_VL) 9848 NODE_NAME_CASE(FP_EXTEND_VL) 9849 NODE_NAME_CASE(FP_ROUND_VL) 9850 NODE_NAME_CASE(VWMUL_VL) 9851 NODE_NAME_CASE(VWMULU_VL) 9852 NODE_NAME_CASE(SETCC_VL) 9853 NODE_NAME_CASE(VSELECT_VL) 9854 NODE_NAME_CASE(VMAND_VL) 9855 NODE_NAME_CASE(VMOR_VL) 9856 NODE_NAME_CASE(VMXOR_VL) 9857 NODE_NAME_CASE(VMCLR_VL) 9858 NODE_NAME_CASE(VMSET_VL) 9859 NODE_NAME_CASE(VRGATHER_VX_VL) 9860 NODE_NAME_CASE(VRGATHER_VV_VL) 9861 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9862 NODE_NAME_CASE(VSEXT_VL) 9863 NODE_NAME_CASE(VZEXT_VL) 9864 NODE_NAME_CASE(VCPOP_VL) 9865 NODE_NAME_CASE(VLE_VL) 9866 NODE_NAME_CASE(VSE_VL) 9867 NODE_NAME_CASE(READ_CSR) 9868 NODE_NAME_CASE(WRITE_CSR) 9869 NODE_NAME_CASE(SWAP_CSR) 9870 } 9871 // clang-format on 9872 return nullptr; 9873 #undef NODE_NAME_CASE 9874 } 9875 9876 /// getConstraintType - Given a constraint letter, return the type of 9877 /// constraint it is for this target. 9878 RISCVTargetLowering::ConstraintType 9879 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9880 if (Constraint.size() == 1) { 9881 switch (Constraint[0]) { 9882 default: 9883 break; 9884 case 'f': 9885 return C_RegisterClass; 9886 case 'I': 9887 case 'J': 9888 case 'K': 9889 return C_Immediate; 9890 case 'A': 9891 return C_Memory; 9892 case 'S': // A symbolic address 9893 return C_Other; 9894 } 9895 } else { 9896 if (Constraint == "vr" || Constraint == "vm") 9897 return C_RegisterClass; 9898 } 9899 return TargetLowering::getConstraintType(Constraint); 9900 } 9901 9902 std::pair<unsigned, const TargetRegisterClass *> 9903 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9904 StringRef Constraint, 9905 MVT VT) const { 9906 // First, see if this is a constraint that directly corresponds to a 9907 // RISCV register class. 9908 if (Constraint.size() == 1) { 9909 switch (Constraint[0]) { 9910 case 'r': 9911 // TODO: Support fixed vectors up to XLen for P extension? 9912 if (VT.isVector()) 9913 break; 9914 return std::make_pair(0U, &RISCV::GPRRegClass); 9915 case 'f': 9916 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9917 return std::make_pair(0U, &RISCV::FPR16RegClass); 9918 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9919 return std::make_pair(0U, &RISCV::FPR32RegClass); 9920 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9921 return std::make_pair(0U, &RISCV::FPR64RegClass); 9922 break; 9923 default: 9924 break; 9925 } 9926 } else if (Constraint == "vr") { 9927 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9928 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9929 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9930 return std::make_pair(0U, RC); 9931 } 9932 } else if (Constraint == "vm") { 9933 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 9934 return std::make_pair(0U, &RISCV::VMV0RegClass); 9935 } 9936 9937 // Clang will correctly decode the usage of register name aliases into their 9938 // official names. However, other frontends like `rustc` do not. This allows 9939 // users of these frontends to use the ABI names for registers in LLVM-style 9940 // register constraints. 9941 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9942 .Case("{zero}", RISCV::X0) 9943 .Case("{ra}", RISCV::X1) 9944 .Case("{sp}", RISCV::X2) 9945 .Case("{gp}", RISCV::X3) 9946 .Case("{tp}", RISCV::X4) 9947 .Case("{t0}", RISCV::X5) 9948 .Case("{t1}", RISCV::X6) 9949 .Case("{t2}", RISCV::X7) 9950 .Cases("{s0}", "{fp}", RISCV::X8) 9951 .Case("{s1}", RISCV::X9) 9952 .Case("{a0}", RISCV::X10) 9953 .Case("{a1}", RISCV::X11) 9954 .Case("{a2}", RISCV::X12) 9955 .Case("{a3}", RISCV::X13) 9956 .Case("{a4}", RISCV::X14) 9957 .Case("{a5}", RISCV::X15) 9958 .Case("{a6}", RISCV::X16) 9959 .Case("{a7}", RISCV::X17) 9960 .Case("{s2}", RISCV::X18) 9961 .Case("{s3}", RISCV::X19) 9962 .Case("{s4}", RISCV::X20) 9963 .Case("{s5}", RISCV::X21) 9964 .Case("{s6}", RISCV::X22) 9965 .Case("{s7}", RISCV::X23) 9966 .Case("{s8}", RISCV::X24) 9967 .Case("{s9}", RISCV::X25) 9968 .Case("{s10}", RISCV::X26) 9969 .Case("{s11}", RISCV::X27) 9970 .Case("{t3}", RISCV::X28) 9971 .Case("{t4}", RISCV::X29) 9972 .Case("{t5}", RISCV::X30) 9973 .Case("{t6}", RISCV::X31) 9974 .Default(RISCV::NoRegister); 9975 if (XRegFromAlias != RISCV::NoRegister) 9976 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9977 9978 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9979 // TableGen record rather than the AsmName to choose registers for InlineAsm 9980 // constraints, plus we want to match those names to the widest floating point 9981 // register type available, manually select floating point registers here. 9982 // 9983 // The second case is the ABI name of the register, so that frontends can also 9984 // use the ABI names in register constraint lists. 9985 if (Subtarget.hasStdExtF()) { 9986 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9987 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9988 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9989 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9990 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9991 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9992 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9993 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9994 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9995 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9996 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9997 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9998 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9999 .Cases("{f12}", "{fa2}", RISCV::F12_F) 10000 .Cases("{f13}", "{fa3}", RISCV::F13_F) 10001 .Cases("{f14}", "{fa4}", RISCV::F14_F) 10002 .Cases("{f15}", "{fa5}", RISCV::F15_F) 10003 .Cases("{f16}", "{fa6}", RISCV::F16_F) 10004 .Cases("{f17}", "{fa7}", RISCV::F17_F) 10005 .Cases("{f18}", "{fs2}", RISCV::F18_F) 10006 .Cases("{f19}", "{fs3}", RISCV::F19_F) 10007 .Cases("{f20}", "{fs4}", RISCV::F20_F) 10008 .Cases("{f21}", "{fs5}", RISCV::F21_F) 10009 .Cases("{f22}", "{fs6}", RISCV::F22_F) 10010 .Cases("{f23}", "{fs7}", RISCV::F23_F) 10011 .Cases("{f24}", "{fs8}", RISCV::F24_F) 10012 .Cases("{f25}", "{fs9}", RISCV::F25_F) 10013 .Cases("{f26}", "{fs10}", RISCV::F26_F) 10014 .Cases("{f27}", "{fs11}", RISCV::F27_F) 10015 .Cases("{f28}", "{ft8}", RISCV::F28_F) 10016 .Cases("{f29}", "{ft9}", RISCV::F29_F) 10017 .Cases("{f30}", "{ft10}", RISCV::F30_F) 10018 .Cases("{f31}", "{ft11}", RISCV::F31_F) 10019 .Default(RISCV::NoRegister); 10020 if (FReg != RISCV::NoRegister) { 10021 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 10022 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 10023 unsigned RegNo = FReg - RISCV::F0_F; 10024 unsigned DReg = RISCV::F0_D + RegNo; 10025 return std::make_pair(DReg, &RISCV::FPR64RegClass); 10026 } 10027 if (VT == MVT::f32 || VT == MVT::Other) 10028 return std::make_pair(FReg, &RISCV::FPR32RegClass); 10029 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 10030 unsigned RegNo = FReg - RISCV::F0_F; 10031 unsigned HReg = RISCV::F0_H + RegNo; 10032 return std::make_pair(HReg, &RISCV::FPR16RegClass); 10033 } 10034 } 10035 } 10036 10037 if (Subtarget.hasVInstructions()) { 10038 Register VReg = StringSwitch<Register>(Constraint.lower()) 10039 .Case("{v0}", RISCV::V0) 10040 .Case("{v1}", RISCV::V1) 10041 .Case("{v2}", RISCV::V2) 10042 .Case("{v3}", RISCV::V3) 10043 .Case("{v4}", RISCV::V4) 10044 .Case("{v5}", RISCV::V5) 10045 .Case("{v6}", RISCV::V6) 10046 .Case("{v7}", RISCV::V7) 10047 .Case("{v8}", RISCV::V8) 10048 .Case("{v9}", RISCV::V9) 10049 .Case("{v10}", RISCV::V10) 10050 .Case("{v11}", RISCV::V11) 10051 .Case("{v12}", RISCV::V12) 10052 .Case("{v13}", RISCV::V13) 10053 .Case("{v14}", RISCV::V14) 10054 .Case("{v15}", RISCV::V15) 10055 .Case("{v16}", RISCV::V16) 10056 .Case("{v17}", RISCV::V17) 10057 .Case("{v18}", RISCV::V18) 10058 .Case("{v19}", RISCV::V19) 10059 .Case("{v20}", RISCV::V20) 10060 .Case("{v21}", RISCV::V21) 10061 .Case("{v22}", RISCV::V22) 10062 .Case("{v23}", RISCV::V23) 10063 .Case("{v24}", RISCV::V24) 10064 .Case("{v25}", RISCV::V25) 10065 .Case("{v26}", RISCV::V26) 10066 .Case("{v27}", RISCV::V27) 10067 .Case("{v28}", RISCV::V28) 10068 .Case("{v29}", RISCV::V29) 10069 .Case("{v30}", RISCV::V30) 10070 .Case("{v31}", RISCV::V31) 10071 .Default(RISCV::NoRegister); 10072 if (VReg != RISCV::NoRegister) { 10073 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 10074 return std::make_pair(VReg, &RISCV::VMRegClass); 10075 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 10076 return std::make_pair(VReg, &RISCV::VRRegClass); 10077 for (const auto *RC : 10078 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10079 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 10080 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 10081 return std::make_pair(VReg, RC); 10082 } 10083 } 10084 } 10085 } 10086 10087 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10088 } 10089 10090 unsigned 10091 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 10092 // Currently only support length 1 constraints. 10093 if (ConstraintCode.size() == 1) { 10094 switch (ConstraintCode[0]) { 10095 case 'A': 10096 return InlineAsm::Constraint_A; 10097 default: 10098 break; 10099 } 10100 } 10101 10102 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 10103 } 10104 10105 void RISCVTargetLowering::LowerAsmOperandForConstraint( 10106 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 10107 SelectionDAG &DAG) const { 10108 // Currently only support length 1 constraints. 10109 if (Constraint.length() == 1) { 10110 switch (Constraint[0]) { 10111 case 'I': 10112 // Validate & create a 12-bit signed immediate operand. 10113 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10114 uint64_t CVal = C->getSExtValue(); 10115 if (isInt<12>(CVal)) 10116 Ops.push_back( 10117 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10118 } 10119 return; 10120 case 'J': 10121 // Validate & create an integer zero operand. 10122 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 10123 if (C->getZExtValue() == 0) 10124 Ops.push_back( 10125 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 10126 return; 10127 case 'K': 10128 // Validate & create a 5-bit unsigned immediate operand. 10129 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10130 uint64_t CVal = C->getZExtValue(); 10131 if (isUInt<5>(CVal)) 10132 Ops.push_back( 10133 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10134 } 10135 return; 10136 case 'S': 10137 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 10138 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 10139 GA->getValueType(0))); 10140 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 10141 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 10142 BA->getValueType(0))); 10143 } 10144 return; 10145 default: 10146 break; 10147 } 10148 } 10149 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10150 } 10151 10152 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 10153 Instruction *Inst, 10154 AtomicOrdering Ord) const { 10155 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 10156 return Builder.CreateFence(Ord); 10157 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 10158 return Builder.CreateFence(AtomicOrdering::Release); 10159 return nullptr; 10160 } 10161 10162 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 10163 Instruction *Inst, 10164 AtomicOrdering Ord) const { 10165 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 10166 return Builder.CreateFence(AtomicOrdering::Acquire); 10167 return nullptr; 10168 } 10169 10170 TargetLowering::AtomicExpansionKind 10171 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 10172 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 10173 // point operations can't be used in an lr/sc sequence without breaking the 10174 // forward-progress guarantee. 10175 if (AI->isFloatingPointOperation()) 10176 return AtomicExpansionKind::CmpXChg; 10177 10178 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 10179 if (Size == 8 || Size == 16) 10180 return AtomicExpansionKind::MaskedIntrinsic; 10181 return AtomicExpansionKind::None; 10182 } 10183 10184 static Intrinsic::ID 10185 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 10186 if (XLen == 32) { 10187 switch (BinOp) { 10188 default: 10189 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10190 case AtomicRMWInst::Xchg: 10191 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 10192 case AtomicRMWInst::Add: 10193 return Intrinsic::riscv_masked_atomicrmw_add_i32; 10194 case AtomicRMWInst::Sub: 10195 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 10196 case AtomicRMWInst::Nand: 10197 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 10198 case AtomicRMWInst::Max: 10199 return Intrinsic::riscv_masked_atomicrmw_max_i32; 10200 case AtomicRMWInst::Min: 10201 return Intrinsic::riscv_masked_atomicrmw_min_i32; 10202 case AtomicRMWInst::UMax: 10203 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 10204 case AtomicRMWInst::UMin: 10205 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 10206 } 10207 } 10208 10209 if (XLen == 64) { 10210 switch (BinOp) { 10211 default: 10212 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10213 case AtomicRMWInst::Xchg: 10214 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 10215 case AtomicRMWInst::Add: 10216 return Intrinsic::riscv_masked_atomicrmw_add_i64; 10217 case AtomicRMWInst::Sub: 10218 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 10219 case AtomicRMWInst::Nand: 10220 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 10221 case AtomicRMWInst::Max: 10222 return Intrinsic::riscv_masked_atomicrmw_max_i64; 10223 case AtomicRMWInst::Min: 10224 return Intrinsic::riscv_masked_atomicrmw_min_i64; 10225 case AtomicRMWInst::UMax: 10226 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 10227 case AtomicRMWInst::UMin: 10228 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 10229 } 10230 } 10231 10232 llvm_unreachable("Unexpected XLen\n"); 10233 } 10234 10235 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 10236 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 10237 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 10238 unsigned XLen = Subtarget.getXLen(); 10239 Value *Ordering = 10240 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 10241 Type *Tys[] = {AlignedAddr->getType()}; 10242 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 10243 AI->getModule(), 10244 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 10245 10246 if (XLen == 64) { 10247 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 10248 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10249 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 10250 } 10251 10252 Value *Result; 10253 10254 // Must pass the shift amount needed to sign extend the loaded value prior 10255 // to performing a signed comparison for min/max. ShiftAmt is the number of 10256 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 10257 // is the number of bits to left+right shift the value in order to 10258 // sign-extend. 10259 if (AI->getOperation() == AtomicRMWInst::Min || 10260 AI->getOperation() == AtomicRMWInst::Max) { 10261 const DataLayout &DL = AI->getModule()->getDataLayout(); 10262 unsigned ValWidth = 10263 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 10264 Value *SextShamt = 10265 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 10266 Result = Builder.CreateCall(LrwOpScwLoop, 10267 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 10268 } else { 10269 Result = 10270 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 10271 } 10272 10273 if (XLen == 64) 10274 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10275 return Result; 10276 } 10277 10278 TargetLowering::AtomicExpansionKind 10279 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 10280 AtomicCmpXchgInst *CI) const { 10281 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 10282 if (Size == 8 || Size == 16) 10283 return AtomicExpansionKind::MaskedIntrinsic; 10284 return AtomicExpansionKind::None; 10285 } 10286 10287 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 10288 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 10289 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 10290 unsigned XLen = Subtarget.getXLen(); 10291 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 10292 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 10293 if (XLen == 64) { 10294 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 10295 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 10296 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10297 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 10298 } 10299 Type *Tys[] = {AlignedAddr->getType()}; 10300 Function *MaskedCmpXchg = 10301 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 10302 Value *Result = Builder.CreateCall( 10303 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 10304 if (XLen == 64) 10305 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10306 return Result; 10307 } 10308 10309 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 10310 return false; 10311 } 10312 10313 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 10314 EVT VT) const { 10315 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 10316 return false; 10317 10318 switch (FPVT.getSimpleVT().SimpleTy) { 10319 case MVT::f16: 10320 return Subtarget.hasStdExtZfh(); 10321 case MVT::f32: 10322 return Subtarget.hasStdExtF(); 10323 case MVT::f64: 10324 return Subtarget.hasStdExtD(); 10325 default: 10326 return false; 10327 } 10328 } 10329 10330 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 10331 // If we are using the small code model, we can reduce size of jump table 10332 // entry to 4 bytes. 10333 if (Subtarget.is64Bit() && !isPositionIndependent() && 10334 getTargetMachine().getCodeModel() == CodeModel::Small) { 10335 return MachineJumpTableInfo::EK_Custom32; 10336 } 10337 return TargetLowering::getJumpTableEncoding(); 10338 } 10339 10340 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 10341 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 10342 unsigned uid, MCContext &Ctx) const { 10343 assert(Subtarget.is64Bit() && !isPositionIndependent() && 10344 getTargetMachine().getCodeModel() == CodeModel::Small); 10345 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 10346 } 10347 10348 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 10349 EVT VT) const { 10350 VT = VT.getScalarType(); 10351 10352 if (!VT.isSimple()) 10353 return false; 10354 10355 switch (VT.getSimpleVT().SimpleTy) { 10356 case MVT::f16: 10357 return Subtarget.hasStdExtZfh(); 10358 case MVT::f32: 10359 return Subtarget.hasStdExtF(); 10360 case MVT::f64: 10361 return Subtarget.hasStdExtD(); 10362 default: 10363 break; 10364 } 10365 10366 return false; 10367 } 10368 10369 Register RISCVTargetLowering::getExceptionPointerRegister( 10370 const Constant *PersonalityFn) const { 10371 return RISCV::X10; 10372 } 10373 10374 Register RISCVTargetLowering::getExceptionSelectorRegister( 10375 const Constant *PersonalityFn) const { 10376 return RISCV::X11; 10377 } 10378 10379 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 10380 // Return false to suppress the unnecessary extensions if the LibCall 10381 // arguments or return value is f32 type for LP64 ABI. 10382 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 10383 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 10384 return false; 10385 10386 return true; 10387 } 10388 10389 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 10390 if (Subtarget.is64Bit() && Type == MVT::i32) 10391 return true; 10392 10393 return IsSigned; 10394 } 10395 10396 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 10397 SDValue C) const { 10398 // Check integral scalar types. 10399 if (VT.isScalarInteger()) { 10400 // Omit the optimization if the sub target has the M extension and the data 10401 // size exceeds XLen. 10402 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 10403 return false; 10404 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 10405 // Break the MUL to a SLLI and an ADD/SUB. 10406 const APInt &Imm = ConstNode->getAPIntValue(); 10407 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 10408 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 10409 return true; 10410 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 10411 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 10412 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 10413 (Imm - 8).isPowerOf2())) 10414 return true; 10415 // Omit the following optimization if the sub target has the M extension 10416 // and the data size >= XLen. 10417 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 10418 return false; 10419 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 10420 // a pair of LUI/ADDI. 10421 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 10422 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 10423 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 10424 (1 - ImmS).isPowerOf2()) 10425 return true; 10426 } 10427 } 10428 } 10429 10430 return false; 10431 } 10432 10433 bool RISCVTargetLowering::isMulAddWithConstProfitable( 10434 const SDValue &AddNode, const SDValue &ConstNode) const { 10435 // Let the DAGCombiner decide for vectors. 10436 EVT VT = AddNode.getValueType(); 10437 if (VT.isVector()) 10438 return true; 10439 10440 // Let the DAGCombiner decide for larger types. 10441 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 10442 return true; 10443 10444 // It is worse if c1 is simm12 while c1*c2 is not. 10445 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 10446 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 10447 const APInt &C1 = C1Node->getAPIntValue(); 10448 const APInt &C2 = C2Node->getAPIntValue(); 10449 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 10450 return false; 10451 10452 // Default to true and let the DAGCombiner decide. 10453 return true; 10454 } 10455 10456 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 10457 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 10458 bool *Fast) const { 10459 if (!VT.isVector()) 10460 return false; 10461 10462 EVT ElemVT = VT.getVectorElementType(); 10463 if (Alignment >= ElemVT.getStoreSize()) { 10464 if (Fast) 10465 *Fast = true; 10466 return true; 10467 } 10468 10469 return false; 10470 } 10471 10472 bool RISCVTargetLowering::splitValueIntoRegisterParts( 10473 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 10474 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 10475 bool IsABIRegCopy = CC.hasValue(); 10476 EVT ValueVT = Val.getValueType(); 10477 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10478 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 10479 // and cast to f32. 10480 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 10481 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 10482 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 10483 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 10484 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 10485 Parts[0] = Val; 10486 return true; 10487 } 10488 10489 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10490 LLVMContext &Context = *DAG.getContext(); 10491 EVT ValueEltVT = ValueVT.getVectorElementType(); 10492 EVT PartEltVT = PartVT.getVectorElementType(); 10493 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10494 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10495 if (PartVTBitSize % ValueVTBitSize == 0) { 10496 assert(PartVTBitSize >= ValueVTBitSize); 10497 // If the element types are different, bitcast to the same element type of 10498 // PartVT first. 10499 // Give an example here, we want copy a <vscale x 1 x i8> value to 10500 // <vscale x 4 x i16>. 10501 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 10502 // subvector, then we can bitcast to <vscale x 4 x i16>. 10503 if (ValueEltVT != PartEltVT) { 10504 if (PartVTBitSize > ValueVTBitSize) { 10505 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10506 assert(Count != 0 && "The number of element should not be zero."); 10507 EVT SameEltTypeVT = 10508 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10509 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 10510 DAG.getUNDEF(SameEltTypeVT), Val, 10511 DAG.getVectorIdxConstant(0, DL)); 10512 } 10513 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 10514 } else { 10515 Val = 10516 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 10517 Val, DAG.getVectorIdxConstant(0, DL)); 10518 } 10519 Parts[0] = Val; 10520 return true; 10521 } 10522 } 10523 return false; 10524 } 10525 10526 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 10527 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 10528 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 10529 bool IsABIRegCopy = CC.hasValue(); 10530 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10531 SDValue Val = Parts[0]; 10532 10533 // Cast the f32 to i32, truncate to i16, and cast back to f16. 10534 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 10535 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 10536 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 10537 return Val; 10538 } 10539 10540 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10541 LLVMContext &Context = *DAG.getContext(); 10542 SDValue Val = Parts[0]; 10543 EVT ValueEltVT = ValueVT.getVectorElementType(); 10544 EVT PartEltVT = PartVT.getVectorElementType(); 10545 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10546 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10547 if (PartVTBitSize % ValueVTBitSize == 0) { 10548 assert(PartVTBitSize >= ValueVTBitSize); 10549 EVT SameEltTypeVT = ValueVT; 10550 // If the element types are different, convert it to the same element type 10551 // of PartVT. 10552 // Give an example here, we want copy a <vscale x 1 x i8> value from 10553 // <vscale x 4 x i16>. 10554 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 10555 // then we can extract <vscale x 1 x i8>. 10556 if (ValueEltVT != PartEltVT) { 10557 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10558 assert(Count != 0 && "The number of element should not be zero."); 10559 SameEltTypeVT = 10560 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10561 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 10562 } 10563 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 10564 DAG.getVectorIdxConstant(0, DL)); 10565 return Val; 10566 } 10567 } 10568 return SDValue(); 10569 } 10570 10571 SDValue 10572 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10573 SelectionDAG &DAG, 10574 SmallVectorImpl<SDNode *> &Created) const { 10575 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 10576 if (isIntDivCheap(N->getValueType(0), Attr)) 10577 return SDValue(N, 0); // Lower SDIV as SDIV 10578 10579 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 10580 "Unexpected divisor!"); 10581 10582 // Conditional move is needed, so do the transformation iff Zbt is enabled. 10583 if (!Subtarget.hasStdExtZbt()) 10584 return SDValue(); 10585 10586 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 10587 // Besides, more critical path instructions will be generated when dividing 10588 // by 2. So we keep using the original DAGs for these cases. 10589 unsigned Lg2 = Divisor.countTrailingZeros(); 10590 if (Lg2 == 1 || Lg2 >= 12) 10591 return SDValue(); 10592 10593 // fold (sdiv X, pow2) 10594 EVT VT = N->getValueType(0); 10595 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 10596 return SDValue(); 10597 10598 SDLoc DL(N); 10599 SDValue N0 = N->getOperand(0); 10600 SDValue Zero = DAG.getConstant(0, DL, VT); 10601 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 10602 10603 // Add (N0 < 0) ? Pow2 - 1 : 0; 10604 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 10605 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 10606 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 10607 10608 Created.push_back(Cmp.getNode()); 10609 Created.push_back(Add.getNode()); 10610 Created.push_back(Sel.getNode()); 10611 10612 // Divide by pow2. 10613 SDValue SRA = 10614 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 10615 10616 // If we're dividing by a positive value, we're done. Otherwise, we must 10617 // negate the result. 10618 if (Divisor.isNonNegative()) 10619 return SRA; 10620 10621 Created.push_back(SRA.getNode()); 10622 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 10623 } 10624 10625 #define GET_REGISTER_MATCHER 10626 #include "RISCVGenAsmMatcher.inc" 10627 10628 Register 10629 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 10630 const MachineFunction &MF) const { 10631 Register Reg = MatchRegisterAltName(RegName); 10632 if (Reg == RISCV::NoRegister) 10633 Reg = MatchRegisterName(RegName); 10634 if (Reg == RISCV::NoRegister) 10635 report_fatal_error( 10636 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 10637 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 10638 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 10639 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 10640 StringRef(RegName) + "\".")); 10641 return Reg; 10642 } 10643 10644 namespace llvm { 10645 namespace RISCVVIntrinsicsTable { 10646 10647 #define GET_RISCVVIntrinsicsTable_IMPL 10648 #include "RISCVGenSearchableTables.inc" 10649 10650 } // namespace RISCVVIntrinsicsTable 10651 10652 } // namespace llvm 10653