1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 254 if (Subtarget.is64Bit()) { 255 setOperationAction(ISD::ROTL, MVT::i32, Custom); 256 setOperationAction(ISD::ROTR, MVT::i32, Custom); 257 } 258 } else { 259 setOperationAction(ISD::ROTL, XLenVT, Expand); 260 setOperationAction(ISD::ROTR, XLenVT, Expand); 261 } 262 263 if (Subtarget.hasStdExtZbp()) { 264 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 265 // more combining. 266 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 267 setOperationAction(ISD::BSWAP, XLenVT, Custom); 268 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 269 // BSWAP i8 doesn't exist. 270 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 271 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 272 273 if (Subtarget.is64Bit()) { 274 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 275 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 276 } 277 } else { 278 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 279 // pattern match it directly in isel. 280 setOperationAction(ISD::BSWAP, XLenVT, 281 Subtarget.hasStdExtZbb() ? Legal : Expand); 282 } 283 284 if (Subtarget.hasStdExtZbb()) { 285 setOperationAction(ISD::SMIN, XLenVT, Legal); 286 setOperationAction(ISD::SMAX, XLenVT, Legal); 287 setOperationAction(ISD::UMIN, XLenVT, Legal); 288 setOperationAction(ISD::UMAX, XLenVT, Legal); 289 290 if (Subtarget.is64Bit()) { 291 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 292 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 294 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 295 } 296 } else { 297 setOperationAction(ISD::CTTZ, XLenVT, Expand); 298 setOperationAction(ISD::CTLZ, XLenVT, Expand); 299 setOperationAction(ISD::CTPOP, XLenVT, Expand); 300 } 301 302 if (Subtarget.hasStdExtZbt()) { 303 setOperationAction(ISD::FSHL, XLenVT, Custom); 304 setOperationAction(ISD::FSHR, XLenVT, Custom); 305 setOperationAction(ISD::SELECT, XLenVT, Legal); 306 307 if (Subtarget.is64Bit()) { 308 setOperationAction(ISD::FSHL, MVT::i32, Custom); 309 setOperationAction(ISD::FSHR, MVT::i32, Custom); 310 } 311 } else { 312 setOperationAction(ISD::SELECT, XLenVT, Custom); 313 } 314 315 static const ISD::CondCode FPCCToExpand[] = { 316 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 317 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 318 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 319 320 static const ISD::NodeType FPOpToExpand[] = { 321 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 322 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 323 324 if (Subtarget.hasStdExtZfh()) 325 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 326 327 if (Subtarget.hasStdExtZfh()) { 328 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 329 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 330 setOperationAction(ISD::LRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 332 setOperationAction(ISD::LROUND, MVT::f16, Legal); 333 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 334 setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal); 335 setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal); 336 setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal); 337 setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal); 338 setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); 339 setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); 340 setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); 341 setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); 342 setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); 343 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 344 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 345 setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); 346 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal); 348 for (auto CC : FPCCToExpand) 349 setCondCodeAction(CC, MVT::f16, Expand); 350 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 351 setOperationAction(ISD::SELECT, MVT::f16, Custom); 352 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 353 354 setOperationAction(ISD::FREM, MVT::f16, Promote); 355 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 356 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 357 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 358 setOperationAction(ISD::FRINT, MVT::f16, Promote); 359 setOperationAction(ISD::FROUND, MVT::f16, Promote); 360 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 361 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 362 setOperationAction(ISD::FPOW, MVT::f16, Promote); 363 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 364 setOperationAction(ISD::FCOS, MVT::f16, Promote); 365 setOperationAction(ISD::FSIN, MVT::f16, Promote); 366 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 367 setOperationAction(ISD::FEXP, MVT::f16, Promote); 368 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 369 setOperationAction(ISD::FLOG, MVT::f16, Promote); 370 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 371 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 372 373 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 374 // complete support for all operations in LegalizeDAG. 375 376 // We need to custom promote this. 377 if (Subtarget.is64Bit()) 378 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 379 } 380 381 if (Subtarget.hasStdExtF()) { 382 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 383 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 384 setOperationAction(ISD::LRINT, MVT::f32, Legal); 385 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 386 setOperationAction(ISD::LROUND, MVT::f32, Legal); 387 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 388 setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal); 389 setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal); 390 setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal); 391 setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal); 392 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 393 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 394 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 395 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 396 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 397 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 398 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 399 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 400 for (auto CC : FPCCToExpand) 401 setCondCodeAction(CC, MVT::f32, Expand); 402 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 403 setOperationAction(ISD::SELECT, MVT::f32, Custom); 404 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 405 for (auto Op : FPOpToExpand) 406 setOperationAction(Op, MVT::f32, Expand); 407 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 408 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 409 } 410 411 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 412 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 413 414 if (Subtarget.hasStdExtD()) { 415 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 416 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 417 setOperationAction(ISD::LRINT, MVT::f64, Legal); 418 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 419 setOperationAction(ISD::LROUND, MVT::f64, Legal); 420 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 421 setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal); 422 setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal); 423 setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal); 424 setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal); 425 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 426 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 427 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 428 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 429 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 430 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 431 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 432 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 433 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 434 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 435 for (auto CC : FPCCToExpand) 436 setCondCodeAction(CC, MVT::f64, Expand); 437 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 438 setOperationAction(ISD::SELECT, MVT::f64, Custom); 439 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 440 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 441 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 442 for (auto Op : FPOpToExpand) 443 setOperationAction(Op, MVT::f64, Expand); 444 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 445 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 446 } 447 448 if (Subtarget.is64Bit()) { 449 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 450 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 451 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 452 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 453 } 454 455 if (Subtarget.hasStdExtF()) { 456 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 457 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 458 459 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 460 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 461 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 462 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 463 464 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 465 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 466 } 467 468 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 469 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 470 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 471 setOperationAction(ISD::JumpTable, XLenVT, Custom); 472 473 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 474 475 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 476 // Unfortunately this can't be determined just from the ISA naming string. 477 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 478 Subtarget.is64Bit() ? Legal : Custom); 479 480 setOperationAction(ISD::TRAP, MVT::Other, Legal); 481 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 482 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 483 if (Subtarget.is64Bit()) 484 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 485 486 if (Subtarget.hasStdExtA()) { 487 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 488 setMinCmpXchgSizeInBits(32); 489 } else { 490 setMaxAtomicSizeInBitsSupported(0); 491 } 492 493 setBooleanContents(ZeroOrOneBooleanContent); 494 495 if (Subtarget.hasVInstructions()) { 496 setBooleanVectorContents(ZeroOrOneBooleanContent); 497 498 setOperationAction(ISD::VSCALE, XLenVT, Custom); 499 500 // RVV intrinsics may have illegal operands. 501 // We also need to custom legalize vmv.x.s. 502 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 503 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 504 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 505 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 506 if (Subtarget.is64Bit()) { 507 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 508 } else { 509 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 510 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 511 } 512 513 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 514 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 515 516 static const unsigned IntegerVPOps[] = { 517 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 518 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 519 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 520 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 521 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 522 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 523 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 524 ISD::VP_SELECT}; 525 526 static const unsigned FloatingPointVPOps[] = { 527 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 528 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 529 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SELECT}; 530 531 if (!Subtarget.is64Bit()) { 532 // We must custom-lower certain vXi64 operations on RV32 due to the vector 533 // element type being illegal. 534 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 535 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 536 537 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 538 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 539 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 540 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 541 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 542 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 543 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 544 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 545 546 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 547 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 548 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 549 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 550 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 551 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 552 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 553 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 554 } 555 556 for (MVT VT : BoolVecVTs) { 557 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 558 559 // Mask VTs are custom-expanded into a series of standard nodes 560 setOperationAction(ISD::TRUNCATE, VT, Custom); 561 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 562 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 563 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 564 565 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 566 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 567 568 setOperationAction(ISD::SELECT, VT, Custom); 569 setOperationAction(ISD::SELECT_CC, VT, Expand); 570 setOperationAction(ISD::VSELECT, VT, Expand); 571 setOperationAction(ISD::VP_SELECT, VT, Expand); 572 573 setOperationAction(ISD::VP_AND, VT, Custom); 574 setOperationAction(ISD::VP_OR, VT, Custom); 575 setOperationAction(ISD::VP_XOR, VT, Custom); 576 577 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 578 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 579 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 580 581 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 582 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 583 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 584 585 // RVV has native int->float & float->int conversions where the 586 // element type sizes are within one power-of-two of each other. Any 587 // wider distances between type sizes have to be lowered as sequences 588 // which progressively narrow the gap in stages. 589 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 590 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 591 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 592 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 593 594 // Expand all extending loads to types larger than this, and truncating 595 // stores from types larger than this. 596 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 597 setTruncStoreAction(OtherVT, VT, Expand); 598 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 599 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 600 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 601 } 602 } 603 604 for (MVT VT : IntVecVTs) { 605 if (VT.getVectorElementType() == MVT::i64 && 606 !Subtarget.hasVInstructionsI64()) 607 continue; 608 609 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 610 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 611 612 // Vectors implement MULHS/MULHU. 613 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 614 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 615 616 setOperationAction(ISD::SMIN, VT, Legal); 617 setOperationAction(ISD::SMAX, VT, Legal); 618 setOperationAction(ISD::UMIN, VT, Legal); 619 setOperationAction(ISD::UMAX, VT, Legal); 620 621 setOperationAction(ISD::ROTL, VT, Expand); 622 setOperationAction(ISD::ROTR, VT, Expand); 623 624 setOperationAction(ISD::CTTZ, VT, Expand); 625 setOperationAction(ISD::CTLZ, VT, Expand); 626 setOperationAction(ISD::CTPOP, VT, Expand); 627 628 setOperationAction(ISD::BSWAP, VT, Expand); 629 630 // Custom-lower extensions and truncations from/to mask types. 631 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 632 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 633 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 634 635 // RVV has native int->float & float->int conversions where the 636 // element type sizes are within one power-of-two of each other. Any 637 // wider distances between type sizes have to be lowered as sequences 638 // which progressively narrow the gap in stages. 639 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 640 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 641 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 642 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 643 644 setOperationAction(ISD::SADDSAT, VT, Legal); 645 setOperationAction(ISD::UADDSAT, VT, Legal); 646 setOperationAction(ISD::SSUBSAT, VT, Legal); 647 setOperationAction(ISD::USUBSAT, VT, Legal); 648 649 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 650 // nodes which truncate by one power of two at a time. 651 setOperationAction(ISD::TRUNCATE, VT, Custom); 652 653 // Custom-lower insert/extract operations to simplify patterns. 654 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 655 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 656 657 // Custom-lower reduction operations to set up the corresponding custom 658 // nodes' operands. 659 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 660 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 661 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 662 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 663 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 664 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 665 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 666 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 667 668 for (unsigned VPOpc : IntegerVPOps) 669 setOperationAction(VPOpc, VT, Custom); 670 671 setOperationAction(ISD::LOAD, VT, Custom); 672 setOperationAction(ISD::STORE, VT, Custom); 673 674 setOperationAction(ISD::MLOAD, VT, Custom); 675 setOperationAction(ISD::MSTORE, VT, Custom); 676 setOperationAction(ISD::MGATHER, VT, Custom); 677 setOperationAction(ISD::MSCATTER, VT, Custom); 678 679 setOperationAction(ISD::VP_LOAD, VT, Custom); 680 setOperationAction(ISD::VP_STORE, VT, Custom); 681 setOperationAction(ISD::VP_GATHER, VT, Custom); 682 setOperationAction(ISD::VP_SCATTER, VT, Custom); 683 684 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 685 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 686 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 687 688 setOperationAction(ISD::SELECT, VT, Custom); 689 setOperationAction(ISD::SELECT_CC, VT, Expand); 690 691 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 692 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 693 694 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 695 setTruncStoreAction(VT, OtherVT, Expand); 696 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 697 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 698 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 699 } 700 701 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 702 // type that can represent the value exactly. 703 if (VT.getVectorElementType() != MVT::i64) { 704 MVT FloatEltVT = 705 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 706 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 707 if (isTypeLegal(FloatVT)) { 708 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 709 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 710 } 711 } 712 } 713 714 // Expand various CCs to best match the RVV ISA, which natively supports UNE 715 // but no other unordered comparisons, and supports all ordered comparisons 716 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 717 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 718 // and we pattern-match those back to the "original", swapping operands once 719 // more. This way we catch both operations and both "vf" and "fv" forms with 720 // fewer patterns. 721 static const ISD::CondCode VFPCCToExpand[] = { 722 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 723 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 724 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 725 }; 726 727 // Sets common operation actions on RVV floating-point vector types. 728 const auto SetCommonVFPActions = [&](MVT VT) { 729 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 730 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 731 // sizes are within one power-of-two of each other. Therefore conversions 732 // between vXf16 and vXf64 must be lowered as sequences which convert via 733 // vXf32. 734 setOperationAction(ISD::FP_ROUND, VT, Custom); 735 setOperationAction(ISD::FP_EXTEND, VT, Custom); 736 // Custom-lower insert/extract operations to simplify patterns. 737 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 738 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 739 // Expand various condition codes (explained above). 740 for (auto CC : VFPCCToExpand) 741 setCondCodeAction(CC, VT, Expand); 742 743 setOperationAction(ISD::FMINNUM, VT, Legal); 744 setOperationAction(ISD::FMAXNUM, VT, Legal); 745 746 setOperationAction(ISD::FTRUNC, VT, Custom); 747 setOperationAction(ISD::FCEIL, VT, Custom); 748 setOperationAction(ISD::FFLOOR, VT, Custom); 749 750 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 751 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 752 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 753 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 754 755 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 756 757 setOperationAction(ISD::LOAD, VT, Custom); 758 setOperationAction(ISD::STORE, VT, Custom); 759 760 setOperationAction(ISD::MLOAD, VT, Custom); 761 setOperationAction(ISD::MSTORE, VT, Custom); 762 setOperationAction(ISD::MGATHER, VT, Custom); 763 setOperationAction(ISD::MSCATTER, VT, Custom); 764 765 setOperationAction(ISD::VP_LOAD, VT, Custom); 766 setOperationAction(ISD::VP_STORE, VT, Custom); 767 setOperationAction(ISD::VP_GATHER, VT, Custom); 768 setOperationAction(ISD::VP_SCATTER, VT, Custom); 769 770 setOperationAction(ISD::SELECT, VT, Custom); 771 setOperationAction(ISD::SELECT_CC, VT, Expand); 772 773 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 774 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 775 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 776 777 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 778 779 for (unsigned VPOpc : FloatingPointVPOps) 780 setOperationAction(VPOpc, VT, Custom); 781 }; 782 783 // Sets common extload/truncstore actions on RVV floating-point vector 784 // types. 785 const auto SetCommonVFPExtLoadTruncStoreActions = 786 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 787 for (auto SmallVT : SmallerVTs) { 788 setTruncStoreAction(VT, SmallVT, Expand); 789 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 790 } 791 }; 792 793 if (Subtarget.hasVInstructionsF16()) 794 for (MVT VT : F16VecVTs) 795 SetCommonVFPActions(VT); 796 797 for (MVT VT : F32VecVTs) { 798 if (Subtarget.hasVInstructionsF32()) 799 SetCommonVFPActions(VT); 800 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 801 } 802 803 for (MVT VT : F64VecVTs) { 804 if (Subtarget.hasVInstructionsF64()) 805 SetCommonVFPActions(VT); 806 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 807 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 808 } 809 810 if (Subtarget.useRVVForFixedLengthVectors()) { 811 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 812 if (!useRVVForFixedLengthVectorVT(VT)) 813 continue; 814 815 // By default everything must be expanded. 816 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 817 setOperationAction(Op, VT, Expand); 818 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 819 setTruncStoreAction(VT, OtherVT, Expand); 820 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 821 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 822 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 823 } 824 825 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 826 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 827 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 828 829 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 830 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 831 832 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 833 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 834 835 setOperationAction(ISD::LOAD, VT, Custom); 836 setOperationAction(ISD::STORE, VT, Custom); 837 838 setOperationAction(ISD::SETCC, VT, Custom); 839 840 setOperationAction(ISD::SELECT, VT, Custom); 841 842 setOperationAction(ISD::TRUNCATE, VT, Custom); 843 844 setOperationAction(ISD::BITCAST, VT, Custom); 845 846 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 847 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 848 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 849 850 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 851 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 852 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 853 854 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 855 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 856 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 857 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 858 859 // Operations below are different for between masks and other vectors. 860 if (VT.getVectorElementType() == MVT::i1) { 861 setOperationAction(ISD::VP_AND, VT, Custom); 862 setOperationAction(ISD::VP_OR, VT, Custom); 863 setOperationAction(ISD::VP_XOR, VT, Custom); 864 setOperationAction(ISD::AND, VT, Custom); 865 setOperationAction(ISD::OR, VT, Custom); 866 setOperationAction(ISD::XOR, VT, Custom); 867 continue; 868 } 869 870 // Use SPLAT_VECTOR to prevent type legalization from destroying the 871 // splats when type legalizing i64 scalar on RV32. 872 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 873 // improvements first. 874 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 875 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 876 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 877 } 878 879 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 880 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 881 882 setOperationAction(ISD::MLOAD, VT, Custom); 883 setOperationAction(ISD::MSTORE, VT, Custom); 884 setOperationAction(ISD::MGATHER, VT, Custom); 885 setOperationAction(ISD::MSCATTER, VT, Custom); 886 887 setOperationAction(ISD::VP_LOAD, VT, Custom); 888 setOperationAction(ISD::VP_STORE, VT, Custom); 889 setOperationAction(ISD::VP_GATHER, VT, Custom); 890 setOperationAction(ISD::VP_SCATTER, VT, Custom); 891 892 setOperationAction(ISD::ADD, VT, Custom); 893 setOperationAction(ISD::MUL, VT, Custom); 894 setOperationAction(ISD::SUB, VT, Custom); 895 setOperationAction(ISD::AND, VT, Custom); 896 setOperationAction(ISD::OR, VT, Custom); 897 setOperationAction(ISD::XOR, VT, Custom); 898 setOperationAction(ISD::SDIV, VT, Custom); 899 setOperationAction(ISD::SREM, VT, Custom); 900 setOperationAction(ISD::UDIV, VT, Custom); 901 setOperationAction(ISD::UREM, VT, Custom); 902 setOperationAction(ISD::SHL, VT, Custom); 903 setOperationAction(ISD::SRA, VT, Custom); 904 setOperationAction(ISD::SRL, VT, Custom); 905 906 setOperationAction(ISD::SMIN, VT, Custom); 907 setOperationAction(ISD::SMAX, VT, Custom); 908 setOperationAction(ISD::UMIN, VT, Custom); 909 setOperationAction(ISD::UMAX, VT, Custom); 910 setOperationAction(ISD::ABS, VT, Custom); 911 912 setOperationAction(ISD::MULHS, VT, Custom); 913 setOperationAction(ISD::MULHU, VT, Custom); 914 915 setOperationAction(ISD::SADDSAT, VT, Custom); 916 setOperationAction(ISD::UADDSAT, VT, Custom); 917 setOperationAction(ISD::SSUBSAT, VT, Custom); 918 setOperationAction(ISD::USUBSAT, VT, Custom); 919 920 setOperationAction(ISD::VSELECT, VT, Custom); 921 setOperationAction(ISD::SELECT_CC, VT, Expand); 922 923 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 924 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 925 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 926 927 // Custom-lower reduction operations to set up the corresponding custom 928 // nodes' operands. 929 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 930 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 931 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 932 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 933 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 934 935 for (unsigned VPOpc : IntegerVPOps) 936 setOperationAction(VPOpc, VT, Custom); 937 938 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 939 // type that can represent the value exactly. 940 if (VT.getVectorElementType() != MVT::i64) { 941 MVT FloatEltVT = 942 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 943 EVT FloatVT = 944 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 945 if (isTypeLegal(FloatVT)) { 946 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 947 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 948 } 949 } 950 } 951 952 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 953 if (!useRVVForFixedLengthVectorVT(VT)) 954 continue; 955 956 // By default everything must be expanded. 957 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 958 setOperationAction(Op, VT, Expand); 959 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 960 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 961 setTruncStoreAction(VT, OtherVT, Expand); 962 } 963 964 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 965 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 966 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 967 968 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 969 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 970 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 971 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 972 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 973 974 setOperationAction(ISD::LOAD, VT, Custom); 975 setOperationAction(ISD::STORE, VT, Custom); 976 setOperationAction(ISD::MLOAD, VT, Custom); 977 setOperationAction(ISD::MSTORE, VT, Custom); 978 setOperationAction(ISD::MGATHER, VT, Custom); 979 setOperationAction(ISD::MSCATTER, VT, Custom); 980 981 setOperationAction(ISD::VP_LOAD, VT, Custom); 982 setOperationAction(ISD::VP_STORE, VT, Custom); 983 setOperationAction(ISD::VP_GATHER, VT, Custom); 984 setOperationAction(ISD::VP_SCATTER, VT, Custom); 985 986 setOperationAction(ISD::FADD, VT, Custom); 987 setOperationAction(ISD::FSUB, VT, Custom); 988 setOperationAction(ISD::FMUL, VT, Custom); 989 setOperationAction(ISD::FDIV, VT, Custom); 990 setOperationAction(ISD::FNEG, VT, Custom); 991 setOperationAction(ISD::FABS, VT, Custom); 992 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 993 setOperationAction(ISD::FSQRT, VT, Custom); 994 setOperationAction(ISD::FMA, VT, Custom); 995 setOperationAction(ISD::FMINNUM, VT, Custom); 996 setOperationAction(ISD::FMAXNUM, VT, Custom); 997 998 setOperationAction(ISD::FP_ROUND, VT, Custom); 999 setOperationAction(ISD::FP_EXTEND, VT, Custom); 1000 1001 setOperationAction(ISD::FTRUNC, VT, Custom); 1002 setOperationAction(ISD::FCEIL, VT, Custom); 1003 setOperationAction(ISD::FFLOOR, VT, Custom); 1004 1005 for (auto CC : VFPCCToExpand) 1006 setCondCodeAction(CC, VT, Expand); 1007 1008 setOperationAction(ISD::VSELECT, VT, Custom); 1009 setOperationAction(ISD::SELECT, VT, Custom); 1010 setOperationAction(ISD::SELECT_CC, VT, Expand); 1011 1012 setOperationAction(ISD::BITCAST, VT, Custom); 1013 1014 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1015 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1016 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1017 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1018 1019 for (unsigned VPOpc : FloatingPointVPOps) 1020 setOperationAction(VPOpc, VT, Custom); 1021 } 1022 1023 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1024 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1025 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1026 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1027 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1028 if (Subtarget.hasStdExtZfh()) 1029 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1030 if (Subtarget.hasStdExtF()) 1031 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1032 if (Subtarget.hasStdExtD()) 1033 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1034 } 1035 } 1036 1037 // Function alignments. 1038 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1039 setMinFunctionAlignment(FunctionAlignment); 1040 setPrefFunctionAlignment(FunctionAlignment); 1041 1042 setMinimumJumpTableEntries(5); 1043 1044 // Jumps are expensive, compared to logic 1045 setJumpIsExpensive(); 1046 1047 setTargetDAGCombine(ISD::ADD); 1048 setTargetDAGCombine(ISD::SUB); 1049 setTargetDAGCombine(ISD::AND); 1050 setTargetDAGCombine(ISD::OR); 1051 setTargetDAGCombine(ISD::XOR); 1052 setTargetDAGCombine(ISD::ANY_EXTEND); 1053 if (Subtarget.hasStdExtF()) { 1054 setTargetDAGCombine(ISD::ZERO_EXTEND); 1055 setTargetDAGCombine(ISD::FP_TO_SINT); 1056 setTargetDAGCombine(ISD::FP_TO_UINT); 1057 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 1058 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 1059 } 1060 if (Subtarget.hasVInstructions()) { 1061 setTargetDAGCombine(ISD::FCOPYSIGN); 1062 setTargetDAGCombine(ISD::MGATHER); 1063 setTargetDAGCombine(ISD::MSCATTER); 1064 setTargetDAGCombine(ISD::VP_GATHER); 1065 setTargetDAGCombine(ISD::VP_SCATTER); 1066 setTargetDAGCombine(ISD::SRA); 1067 setTargetDAGCombine(ISD::SRL); 1068 setTargetDAGCombine(ISD::SHL); 1069 setTargetDAGCombine(ISD::STORE); 1070 } 1071 } 1072 1073 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1074 LLVMContext &Context, 1075 EVT VT) const { 1076 if (!VT.isVector()) 1077 return getPointerTy(DL); 1078 if (Subtarget.hasVInstructions() && 1079 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1080 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1081 return VT.changeVectorElementTypeToInteger(); 1082 } 1083 1084 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1085 return Subtarget.getXLenVT(); 1086 } 1087 1088 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1089 const CallInst &I, 1090 MachineFunction &MF, 1091 unsigned Intrinsic) const { 1092 auto &DL = I.getModule()->getDataLayout(); 1093 switch (Intrinsic) { 1094 default: 1095 return false; 1096 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1097 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1098 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1099 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1100 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1101 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1102 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1103 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1104 case Intrinsic::riscv_masked_cmpxchg_i32: { 1105 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 1106 Info.opc = ISD::INTRINSIC_W_CHAIN; 1107 Info.memVT = MVT::getVT(PtrTy->getElementType()); 1108 Info.ptrVal = I.getArgOperand(0); 1109 Info.offset = 0; 1110 Info.align = Align(4); 1111 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1112 MachineMemOperand::MOVolatile; 1113 return true; 1114 } 1115 case Intrinsic::riscv_masked_strided_load: 1116 Info.opc = ISD::INTRINSIC_W_CHAIN; 1117 Info.ptrVal = I.getArgOperand(1); 1118 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1119 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1120 Info.size = MemoryLocation::UnknownSize; 1121 Info.flags |= MachineMemOperand::MOLoad; 1122 return true; 1123 case Intrinsic::riscv_masked_strided_store: 1124 Info.opc = ISD::INTRINSIC_VOID; 1125 Info.ptrVal = I.getArgOperand(1); 1126 Info.memVT = 1127 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1128 Info.align = Align( 1129 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1130 8); 1131 Info.size = MemoryLocation::UnknownSize; 1132 Info.flags |= MachineMemOperand::MOStore; 1133 return true; 1134 } 1135 } 1136 1137 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1138 const AddrMode &AM, Type *Ty, 1139 unsigned AS, 1140 Instruction *I) const { 1141 // No global is ever allowed as a base. 1142 if (AM.BaseGV) 1143 return false; 1144 1145 // Require a 12-bit signed offset. 1146 if (!isInt<12>(AM.BaseOffs)) 1147 return false; 1148 1149 switch (AM.Scale) { 1150 case 0: // "r+i" or just "i", depending on HasBaseReg. 1151 break; 1152 case 1: 1153 if (!AM.HasBaseReg) // allow "r+i". 1154 break; 1155 return false; // disallow "r+r" or "r+r+i". 1156 default: 1157 return false; 1158 } 1159 1160 return true; 1161 } 1162 1163 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1164 return isInt<12>(Imm); 1165 } 1166 1167 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1168 return isInt<12>(Imm); 1169 } 1170 1171 // On RV32, 64-bit integers are split into their high and low parts and held 1172 // in two different registers, so the trunc is free since the low register can 1173 // just be used. 1174 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1175 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1176 return false; 1177 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1178 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1179 return (SrcBits == 64 && DestBits == 32); 1180 } 1181 1182 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1183 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1184 !SrcVT.isInteger() || !DstVT.isInteger()) 1185 return false; 1186 unsigned SrcBits = SrcVT.getSizeInBits(); 1187 unsigned DestBits = DstVT.getSizeInBits(); 1188 return (SrcBits == 64 && DestBits == 32); 1189 } 1190 1191 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1192 // Zexts are free if they can be combined with a load. 1193 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1194 // poorly with type legalization of compares preferring sext. 1195 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1196 EVT MemVT = LD->getMemoryVT(); 1197 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1198 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1199 LD->getExtensionType() == ISD::ZEXTLOAD)) 1200 return true; 1201 } 1202 1203 return TargetLowering::isZExtFree(Val, VT2); 1204 } 1205 1206 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1207 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1208 } 1209 1210 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1211 return Subtarget.hasStdExtZbb(); 1212 } 1213 1214 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1215 return Subtarget.hasStdExtZbb(); 1216 } 1217 1218 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1219 EVT VT = Y.getValueType(); 1220 1221 // FIXME: Support vectors once we have tests. 1222 if (VT.isVector()) 1223 return false; 1224 1225 return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y); 1226 } 1227 1228 /// Check if sinking \p I's operands to I's basic block is profitable, because 1229 /// the operands can be folded into a target instruction, e.g. 1230 /// splats of scalars can fold into vector instructions. 1231 bool RISCVTargetLowering::shouldSinkOperands( 1232 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1233 using namespace llvm::PatternMatch; 1234 1235 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1236 return false; 1237 1238 auto IsSinker = [&](Instruction *I, int Operand) { 1239 switch (I->getOpcode()) { 1240 case Instruction::Add: 1241 case Instruction::Sub: 1242 case Instruction::Mul: 1243 case Instruction::And: 1244 case Instruction::Or: 1245 case Instruction::Xor: 1246 case Instruction::FAdd: 1247 case Instruction::FSub: 1248 case Instruction::FMul: 1249 case Instruction::FDiv: 1250 case Instruction::ICmp: 1251 case Instruction::FCmp: 1252 return true; 1253 case Instruction::Shl: 1254 case Instruction::LShr: 1255 case Instruction::AShr: 1256 case Instruction::UDiv: 1257 case Instruction::SDiv: 1258 case Instruction::URem: 1259 case Instruction::SRem: 1260 return Operand == 1; 1261 case Instruction::Call: 1262 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1263 switch (II->getIntrinsicID()) { 1264 case Intrinsic::fma: 1265 return Operand == 0 || Operand == 1; 1266 // FIXME: Our patterns can only match vx/vf instructions when the splat 1267 // it on the RHS, because TableGen doesn't recognize our VP operations 1268 // as commutative. 1269 case Intrinsic::vp_add: 1270 case Intrinsic::vp_mul: 1271 case Intrinsic::vp_and: 1272 case Intrinsic::vp_or: 1273 case Intrinsic::vp_xor: 1274 case Intrinsic::vp_fadd: 1275 case Intrinsic::vp_fsub: 1276 case Intrinsic::vp_fmul: 1277 case Intrinsic::vp_fdiv: 1278 case Intrinsic::vp_shl: 1279 case Intrinsic::vp_lshr: 1280 case Intrinsic::vp_ashr: 1281 case Intrinsic::vp_udiv: 1282 case Intrinsic::vp_sdiv: 1283 case Intrinsic::vp_urem: 1284 case Intrinsic::vp_srem: 1285 return Operand == 1; 1286 // ... the one exception is vp.sub which has explicit patterns for both 1287 // LHS and RHS (as vrsub). 1288 case Intrinsic::vp_sub: 1289 return Operand == 0 || Operand == 1; 1290 default: 1291 return false; 1292 } 1293 } 1294 return false; 1295 default: 1296 return false; 1297 } 1298 }; 1299 1300 for (auto OpIdx : enumerate(I->operands())) { 1301 if (!IsSinker(I, OpIdx.index())) 1302 continue; 1303 1304 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1305 // Make sure we are not already sinking this operand 1306 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1307 continue; 1308 1309 // We are looking for a splat that can be sunk. 1310 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1311 m_Undef(), m_ZeroMask()))) 1312 continue; 1313 1314 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1315 // and vector registers 1316 for (Use &U : Op->uses()) { 1317 Instruction *Insn = cast<Instruction>(U.getUser()); 1318 if (!IsSinker(Insn, U.getOperandNo())) 1319 return false; 1320 } 1321 1322 Ops.push_back(&Op->getOperandUse(0)); 1323 Ops.push_back(&OpIdx.value()); 1324 } 1325 return true; 1326 } 1327 1328 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1329 bool ForCodeSize) const { 1330 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1331 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1332 return false; 1333 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1334 return false; 1335 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1336 return false; 1337 return Imm.isZero(); 1338 } 1339 1340 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1341 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1342 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1343 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1344 } 1345 1346 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1347 CallingConv::ID CC, 1348 EVT VT) const { 1349 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1350 // We might still end up using a GPR but that will be decided based on ABI. 1351 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1352 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1353 return MVT::f32; 1354 1355 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1356 } 1357 1358 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1359 CallingConv::ID CC, 1360 EVT VT) const { 1361 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1362 // We might still end up using a GPR but that will be decided based on ABI. 1363 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1364 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1365 return 1; 1366 1367 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1368 } 1369 1370 // Changes the condition code and swaps operands if necessary, so the SetCC 1371 // operation matches one of the comparisons supported directly by branches 1372 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1373 // with 1/-1. 1374 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1375 ISD::CondCode &CC, SelectionDAG &DAG) { 1376 // Convert X > -1 to X >= 0. 1377 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1378 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1379 CC = ISD::SETGE; 1380 return; 1381 } 1382 // Convert X < 1 to 0 >= X. 1383 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1384 RHS = LHS; 1385 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1386 CC = ISD::SETGE; 1387 return; 1388 } 1389 1390 switch (CC) { 1391 default: 1392 break; 1393 case ISD::SETGT: 1394 case ISD::SETLE: 1395 case ISD::SETUGT: 1396 case ISD::SETULE: 1397 CC = ISD::getSetCCSwappedOperands(CC); 1398 std::swap(LHS, RHS); 1399 break; 1400 } 1401 } 1402 1403 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1404 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1405 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1406 if (VT.getVectorElementType() == MVT::i1) 1407 KnownSize *= 8; 1408 1409 switch (KnownSize) { 1410 default: 1411 llvm_unreachable("Invalid LMUL."); 1412 case 8: 1413 return RISCVII::VLMUL::LMUL_F8; 1414 case 16: 1415 return RISCVII::VLMUL::LMUL_F4; 1416 case 32: 1417 return RISCVII::VLMUL::LMUL_F2; 1418 case 64: 1419 return RISCVII::VLMUL::LMUL_1; 1420 case 128: 1421 return RISCVII::VLMUL::LMUL_2; 1422 case 256: 1423 return RISCVII::VLMUL::LMUL_4; 1424 case 512: 1425 return RISCVII::VLMUL::LMUL_8; 1426 } 1427 } 1428 1429 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1430 switch (LMul) { 1431 default: 1432 llvm_unreachable("Invalid LMUL."); 1433 case RISCVII::VLMUL::LMUL_F8: 1434 case RISCVII::VLMUL::LMUL_F4: 1435 case RISCVII::VLMUL::LMUL_F2: 1436 case RISCVII::VLMUL::LMUL_1: 1437 return RISCV::VRRegClassID; 1438 case RISCVII::VLMUL::LMUL_2: 1439 return RISCV::VRM2RegClassID; 1440 case RISCVII::VLMUL::LMUL_4: 1441 return RISCV::VRM4RegClassID; 1442 case RISCVII::VLMUL::LMUL_8: 1443 return RISCV::VRM8RegClassID; 1444 } 1445 } 1446 1447 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1448 RISCVII::VLMUL LMUL = getLMUL(VT); 1449 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1450 LMUL == RISCVII::VLMUL::LMUL_F4 || 1451 LMUL == RISCVII::VLMUL::LMUL_F2 || 1452 LMUL == RISCVII::VLMUL::LMUL_1) { 1453 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1454 "Unexpected subreg numbering"); 1455 return RISCV::sub_vrm1_0 + Index; 1456 } 1457 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1458 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1459 "Unexpected subreg numbering"); 1460 return RISCV::sub_vrm2_0 + Index; 1461 } 1462 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1463 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1464 "Unexpected subreg numbering"); 1465 return RISCV::sub_vrm4_0 + Index; 1466 } 1467 llvm_unreachable("Invalid vector type."); 1468 } 1469 1470 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1471 if (VT.getVectorElementType() == MVT::i1) 1472 return RISCV::VRRegClassID; 1473 return getRegClassIDForLMUL(getLMUL(VT)); 1474 } 1475 1476 // Attempt to decompose a subvector insert/extract between VecVT and 1477 // SubVecVT via subregister indices. Returns the subregister index that 1478 // can perform the subvector insert/extract with the given element index, as 1479 // well as the index corresponding to any leftover subvectors that must be 1480 // further inserted/extracted within the register class for SubVecVT. 1481 std::pair<unsigned, unsigned> 1482 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1483 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1484 const RISCVRegisterInfo *TRI) { 1485 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1486 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1487 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1488 "Register classes not ordered"); 1489 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1490 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1491 // Try to compose a subregister index that takes us from the incoming 1492 // LMUL>1 register class down to the outgoing one. At each step we half 1493 // the LMUL: 1494 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1495 // Note that this is not guaranteed to find a subregister index, such as 1496 // when we are extracting from one VR type to another. 1497 unsigned SubRegIdx = RISCV::NoSubRegister; 1498 for (const unsigned RCID : 1499 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1500 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1501 VecVT = VecVT.getHalfNumVectorElementsVT(); 1502 bool IsHi = 1503 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1504 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1505 getSubregIndexByMVT(VecVT, IsHi)); 1506 if (IsHi) 1507 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1508 } 1509 return {SubRegIdx, InsertExtractIdx}; 1510 } 1511 1512 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1513 // stores for those types. 1514 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1515 return !Subtarget.useRVVForFixedLengthVectors() || 1516 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1517 } 1518 1519 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1520 if (ScalarTy->isPointerTy()) 1521 return true; 1522 1523 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1524 ScalarTy->isIntegerTy(32)) 1525 return true; 1526 1527 if (ScalarTy->isIntegerTy(64)) 1528 return Subtarget.hasVInstructionsI64(); 1529 1530 if (ScalarTy->isHalfTy()) 1531 return Subtarget.hasVInstructionsF16(); 1532 if (ScalarTy->isFloatTy()) 1533 return Subtarget.hasVInstructionsF32(); 1534 if (ScalarTy->isDoubleTy()) 1535 return Subtarget.hasVInstructionsF64(); 1536 1537 return false; 1538 } 1539 1540 static bool useRVVForFixedLengthVectorVT(MVT VT, 1541 const RISCVSubtarget &Subtarget) { 1542 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1543 if (!Subtarget.useRVVForFixedLengthVectors()) 1544 return false; 1545 1546 // We only support a set of vector types with a consistent maximum fixed size 1547 // across all supported vector element types to avoid legalization issues. 1548 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1549 // fixed-length vector type we support is 1024 bytes. 1550 if (VT.getFixedSizeInBits() > 1024 * 8) 1551 return false; 1552 1553 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1554 1555 MVT EltVT = VT.getVectorElementType(); 1556 1557 // Don't use RVV for vectors we cannot scalarize if required. 1558 switch (EltVT.SimpleTy) { 1559 // i1 is supported but has different rules. 1560 default: 1561 return false; 1562 case MVT::i1: 1563 // Masks can only use a single register. 1564 if (VT.getVectorNumElements() > MinVLen) 1565 return false; 1566 MinVLen /= 8; 1567 break; 1568 case MVT::i8: 1569 case MVT::i16: 1570 case MVT::i32: 1571 break; 1572 case MVT::i64: 1573 if (!Subtarget.hasVInstructionsI64()) 1574 return false; 1575 break; 1576 case MVT::f16: 1577 if (!Subtarget.hasVInstructionsF16()) 1578 return false; 1579 break; 1580 case MVT::f32: 1581 if (!Subtarget.hasVInstructionsF32()) 1582 return false; 1583 break; 1584 case MVT::f64: 1585 if (!Subtarget.hasVInstructionsF64()) 1586 return false; 1587 break; 1588 } 1589 1590 // Reject elements larger than ELEN. 1591 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1592 return false; 1593 1594 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1595 // Don't use RVV for types that don't fit. 1596 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1597 return false; 1598 1599 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1600 // the base fixed length RVV support in place. 1601 if (!VT.isPow2VectorType()) 1602 return false; 1603 1604 return true; 1605 } 1606 1607 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1608 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1609 } 1610 1611 // Return the largest legal scalable vector type that matches VT's element type. 1612 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1613 const RISCVSubtarget &Subtarget) { 1614 // This may be called before legal types are setup. 1615 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1616 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1617 "Expected legal fixed length vector!"); 1618 1619 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1620 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1621 1622 MVT EltVT = VT.getVectorElementType(); 1623 switch (EltVT.SimpleTy) { 1624 default: 1625 llvm_unreachable("unexpected element type for RVV container"); 1626 case MVT::i1: 1627 case MVT::i8: 1628 case MVT::i16: 1629 case MVT::i32: 1630 case MVT::i64: 1631 case MVT::f16: 1632 case MVT::f32: 1633 case MVT::f64: { 1634 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1635 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1636 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1637 unsigned NumElts = 1638 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1639 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1640 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1641 return MVT::getScalableVectorVT(EltVT, NumElts); 1642 } 1643 } 1644 } 1645 1646 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1647 const RISCVSubtarget &Subtarget) { 1648 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1649 Subtarget); 1650 } 1651 1652 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1653 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1654 } 1655 1656 // Grow V to consume an entire RVV register. 1657 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1658 const RISCVSubtarget &Subtarget) { 1659 assert(VT.isScalableVector() && 1660 "Expected to convert into a scalable vector!"); 1661 assert(V.getValueType().isFixedLengthVector() && 1662 "Expected a fixed length vector operand!"); 1663 SDLoc DL(V); 1664 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1665 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1666 } 1667 1668 // Shrink V so it's just big enough to maintain a VT's worth of data. 1669 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1670 const RISCVSubtarget &Subtarget) { 1671 assert(VT.isFixedLengthVector() && 1672 "Expected to convert into a fixed length vector!"); 1673 assert(V.getValueType().isScalableVector() && 1674 "Expected a scalable vector operand!"); 1675 SDLoc DL(V); 1676 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1677 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1678 } 1679 1680 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1681 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1682 // the vector type that it is contained in. 1683 static std::pair<SDValue, SDValue> 1684 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1685 const RISCVSubtarget &Subtarget) { 1686 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1687 MVT XLenVT = Subtarget.getXLenVT(); 1688 SDValue VL = VecVT.isFixedLengthVector() 1689 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1690 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1691 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1692 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1693 return {Mask, VL}; 1694 } 1695 1696 // As above but assuming the given type is a scalable vector type. 1697 static std::pair<SDValue, SDValue> 1698 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1699 const RISCVSubtarget &Subtarget) { 1700 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1701 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1702 } 1703 1704 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1705 // of either is (currently) supported. This can get us into an infinite loop 1706 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1707 // as a ..., etc. 1708 // Until either (or both) of these can reliably lower any node, reporting that 1709 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1710 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1711 // which is not desirable. 1712 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1713 EVT VT, unsigned DefinedValues) const { 1714 return false; 1715 } 1716 1717 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1718 // Only splats are currently supported. 1719 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1720 return true; 1721 1722 return false; 1723 } 1724 1725 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1726 const RISCVSubtarget &Subtarget) { 1727 // RISCV FP-to-int conversions saturate to the destination register size, but 1728 // don't produce 0 for nan. We can use a conversion instruction and fix the 1729 // nan case with a compare and a select. 1730 SDValue Src = Op.getOperand(0); 1731 1732 EVT DstVT = Op.getValueType(); 1733 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1734 1735 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1736 unsigned Opc; 1737 if (SatVT == DstVT) 1738 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1739 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1740 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1741 else 1742 return SDValue(); 1743 // FIXME: Support other SatVTs by clamping before or after the conversion. 1744 1745 SDLoc DL(Op); 1746 SDValue FpToInt = DAG.getNode( 1747 Opc, DL, DstVT, Src, 1748 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1749 1750 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1751 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1752 } 1753 1754 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1755 // and back. Taking care to avoid converting values that are nan or already 1756 // correct. 1757 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1758 // have FRM dependencies modeled yet. 1759 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1760 MVT VT = Op.getSimpleValueType(); 1761 assert(VT.isVector() && "Unexpected type"); 1762 1763 SDLoc DL(Op); 1764 1765 // Freeze the source since we are increasing the number of uses. 1766 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1767 1768 // Truncate to integer and convert back to FP. 1769 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1770 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1771 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1772 1773 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1774 1775 if (Op.getOpcode() == ISD::FCEIL) { 1776 // If the truncated value is the greater than or equal to the original 1777 // value, we've computed the ceil. Otherwise, we went the wrong way and 1778 // need to increase by 1. 1779 // FIXME: This should use a masked operation. Handle here or in isel? 1780 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1781 DAG.getConstantFP(1.0, DL, VT)); 1782 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1783 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1784 } else if (Op.getOpcode() == ISD::FFLOOR) { 1785 // If the truncated value is the less than or equal to the original value, 1786 // we've computed the floor. Otherwise, we went the wrong way and need to 1787 // decrease by 1. 1788 // FIXME: This should use a masked operation. Handle here or in isel? 1789 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1790 DAG.getConstantFP(1.0, DL, VT)); 1791 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1792 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1793 } 1794 1795 // Restore the original sign so that -0.0 is preserved. 1796 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1797 1798 // Determine the largest integer that can be represented exactly. This and 1799 // values larger than it don't have any fractional bits so don't need to 1800 // be converted. 1801 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1802 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1803 APFloat MaxVal = APFloat(FltSem); 1804 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1805 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1806 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1807 1808 // If abs(Src) was larger than MaxVal or nan, keep it. 1809 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1810 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1811 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1812 } 1813 1814 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1815 const RISCVSubtarget &Subtarget) { 1816 MVT VT = Op.getSimpleValueType(); 1817 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1818 1819 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1820 1821 SDLoc DL(Op); 1822 SDValue Mask, VL; 1823 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1824 1825 unsigned Opc = 1826 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1827 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1828 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1829 } 1830 1831 struct VIDSequence { 1832 int64_t StepNumerator; 1833 unsigned StepDenominator; 1834 int64_t Addend; 1835 }; 1836 1837 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1838 // to the (non-zero) step S and start value X. This can be then lowered as the 1839 // RVV sequence (VID * S) + X, for example. 1840 // The step S is represented as an integer numerator divided by a positive 1841 // denominator. Note that the implementation currently only identifies 1842 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1843 // cannot detect 2/3, for example. 1844 // Note that this method will also match potentially unappealing index 1845 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1846 // determine whether this is worth generating code for. 1847 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1848 unsigned NumElts = Op.getNumOperands(); 1849 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1850 if (!Op.getValueType().isInteger()) 1851 return None; 1852 1853 Optional<unsigned> SeqStepDenom; 1854 Optional<int64_t> SeqStepNum, SeqAddend; 1855 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1856 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1857 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1858 // Assume undef elements match the sequence; we just have to be careful 1859 // when interpolating across them. 1860 if (Op.getOperand(Idx).isUndef()) 1861 continue; 1862 // The BUILD_VECTOR must be all constants. 1863 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1864 return None; 1865 1866 uint64_t Val = Op.getConstantOperandVal(Idx) & 1867 maskTrailingOnes<uint64_t>(EltSizeInBits); 1868 1869 if (PrevElt) { 1870 // Calculate the step since the last non-undef element, and ensure 1871 // it's consistent across the entire sequence. 1872 unsigned IdxDiff = Idx - PrevElt->second; 1873 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1874 1875 // A zero-value value difference means that we're somewhere in the middle 1876 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1877 // step change before evaluating the sequence. 1878 if (ValDiff != 0) { 1879 int64_t Remainder = ValDiff % IdxDiff; 1880 // Normalize the step if it's greater than 1. 1881 if (Remainder != ValDiff) { 1882 // The difference must cleanly divide the element span. 1883 if (Remainder != 0) 1884 return None; 1885 ValDiff /= IdxDiff; 1886 IdxDiff = 1; 1887 } 1888 1889 if (!SeqStepNum) 1890 SeqStepNum = ValDiff; 1891 else if (ValDiff != SeqStepNum) 1892 return None; 1893 1894 if (!SeqStepDenom) 1895 SeqStepDenom = IdxDiff; 1896 else if (IdxDiff != *SeqStepDenom) 1897 return None; 1898 } 1899 } 1900 1901 // Record and/or check any addend. 1902 if (SeqStepNum && SeqStepDenom) { 1903 uint64_t ExpectedVal = 1904 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1905 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1906 if (!SeqAddend) 1907 SeqAddend = Addend; 1908 else if (SeqAddend != Addend) 1909 return None; 1910 } 1911 1912 // Record this non-undef element for later. 1913 if (!PrevElt || PrevElt->first != Val) 1914 PrevElt = std::make_pair(Val, Idx); 1915 } 1916 // We need to have logged both a step and an addend for this to count as 1917 // a legal index sequence. 1918 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1919 return None; 1920 1921 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1922 } 1923 1924 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1925 const RISCVSubtarget &Subtarget) { 1926 MVT VT = Op.getSimpleValueType(); 1927 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1928 1929 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1930 1931 SDLoc DL(Op); 1932 SDValue Mask, VL; 1933 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1934 1935 MVT XLenVT = Subtarget.getXLenVT(); 1936 unsigned NumElts = Op.getNumOperands(); 1937 1938 if (VT.getVectorElementType() == MVT::i1) { 1939 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1940 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1941 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1942 } 1943 1944 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1945 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1946 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1947 } 1948 1949 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1950 // scalar integer chunks whose bit-width depends on the number of mask 1951 // bits and XLEN. 1952 // First, determine the most appropriate scalar integer type to use. This 1953 // is at most XLenVT, but may be shrunk to a smaller vector element type 1954 // according to the size of the final vector - use i8 chunks rather than 1955 // XLenVT if we're producing a v8i1. This results in more consistent 1956 // codegen across RV32 and RV64. 1957 unsigned NumViaIntegerBits = 1958 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1959 NumViaIntegerBits = std::min(NumViaIntegerBits, 1960 Subtarget.getMaxELENForFixedLengthVectors()); 1961 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1962 // If we have to use more than one INSERT_VECTOR_ELT then this 1963 // optimization is likely to increase code size; avoid peforming it in 1964 // such a case. We can use a load from a constant pool in this case. 1965 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1966 return SDValue(); 1967 // Now we can create our integer vector type. Note that it may be larger 1968 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1969 MVT IntegerViaVecVT = 1970 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1971 divideCeil(NumElts, NumViaIntegerBits)); 1972 1973 uint64_t Bits = 0; 1974 unsigned BitPos = 0, IntegerEltIdx = 0; 1975 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1976 1977 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1978 // Once we accumulate enough bits to fill our scalar type, insert into 1979 // our vector and clear our accumulated data. 1980 if (I != 0 && I % NumViaIntegerBits == 0) { 1981 if (NumViaIntegerBits <= 32) 1982 Bits = SignExtend64(Bits, 32); 1983 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1984 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1985 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1986 Bits = 0; 1987 BitPos = 0; 1988 IntegerEltIdx++; 1989 } 1990 SDValue V = Op.getOperand(I); 1991 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1992 Bits |= ((uint64_t)BitValue << BitPos); 1993 } 1994 1995 // Insert the (remaining) scalar value into position in our integer 1996 // vector type. 1997 if (NumViaIntegerBits <= 32) 1998 Bits = SignExtend64(Bits, 32); 1999 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2000 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2001 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2002 2003 if (NumElts < NumViaIntegerBits) { 2004 // If we're producing a smaller vector than our minimum legal integer 2005 // type, bitcast to the equivalent (known-legal) mask type, and extract 2006 // our final mask. 2007 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2008 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2009 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2010 DAG.getConstant(0, DL, XLenVT)); 2011 } else { 2012 // Else we must have produced an integer type with the same size as the 2013 // mask type; bitcast for the final result. 2014 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2015 Vec = DAG.getBitcast(VT, Vec); 2016 } 2017 2018 return Vec; 2019 } 2020 2021 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2022 // vector type, we have a legal equivalently-sized i8 type, so we can use 2023 // that. 2024 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2025 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2026 2027 SDValue WideVec; 2028 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2029 // For a splat, perform a scalar truncate before creating the wider 2030 // vector. 2031 assert(Splat.getValueType() == XLenVT && 2032 "Unexpected type for i1 splat value"); 2033 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2034 DAG.getConstant(1, DL, XLenVT)); 2035 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2036 } else { 2037 SmallVector<SDValue, 8> Ops(Op->op_values()); 2038 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2039 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2040 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2041 } 2042 2043 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2044 } 2045 2046 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2047 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2048 : RISCVISD::VMV_V_X_VL; 2049 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 2050 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2051 } 2052 2053 // Try and match index sequences, which we can lower to the vid instruction 2054 // with optional modifications. An all-undef vector is matched by 2055 // getSplatValue, above. 2056 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2057 int64_t StepNumerator = SimpleVID->StepNumerator; 2058 unsigned StepDenominator = SimpleVID->StepDenominator; 2059 int64_t Addend = SimpleVID->Addend; 2060 2061 assert(StepNumerator != 0 && "Invalid step"); 2062 bool Negate = false; 2063 int64_t SplatStepVal = StepNumerator; 2064 unsigned StepOpcode = ISD::MUL; 2065 if (StepNumerator != 1) { 2066 if (isPowerOf2_64(std::abs(StepNumerator))) { 2067 Negate = StepNumerator < 0; 2068 StepOpcode = ISD::SHL; 2069 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2070 } 2071 } 2072 2073 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2074 // threshold since it's the immediate value many RVV instructions accept. 2075 // There is no vmul.vi instruction so ensure multiply constant can fit in 2076 // a single addi instruction. 2077 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2078 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2079 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2080 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2081 // Convert right out of the scalable type so we can use standard ISD 2082 // nodes for the rest of the computation. If we used scalable types with 2083 // these, we'd lose the fixed-length vector info and generate worse 2084 // vsetvli code. 2085 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2086 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2087 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2088 SDValue SplatStep = DAG.getSplatVector( 2089 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2090 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2091 } 2092 if (StepDenominator != 1) { 2093 SDValue SplatStep = DAG.getSplatVector( 2094 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2095 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2096 } 2097 if (Addend != 0 || Negate) { 2098 SDValue SplatAddend = 2099 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2100 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2101 } 2102 return VID; 2103 } 2104 } 2105 2106 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2107 // when re-interpreted as a vector with a larger element type. For example, 2108 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2109 // could be instead splat as 2110 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2111 // TODO: This optimization could also work on non-constant splats, but it 2112 // would require bit-manipulation instructions to construct the splat value. 2113 SmallVector<SDValue> Sequence; 2114 unsigned EltBitSize = VT.getScalarSizeInBits(); 2115 const auto *BV = cast<BuildVectorSDNode>(Op); 2116 if (VT.isInteger() && EltBitSize < 64 && 2117 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2118 BV->getRepeatedSequence(Sequence) && 2119 (Sequence.size() * EltBitSize) <= 64) { 2120 unsigned SeqLen = Sequence.size(); 2121 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2122 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2123 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2124 ViaIntVT == MVT::i64) && 2125 "Unexpected sequence type"); 2126 2127 unsigned EltIdx = 0; 2128 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2129 uint64_t SplatValue = 0; 2130 // Construct the amalgamated value which can be splatted as this larger 2131 // vector type. 2132 for (const auto &SeqV : Sequence) { 2133 if (!SeqV.isUndef()) 2134 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2135 << (EltIdx * EltBitSize)); 2136 EltIdx++; 2137 } 2138 2139 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2140 // achieve better constant materializion. 2141 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2142 SplatValue = SignExtend64(SplatValue, 32); 2143 2144 // Since we can't introduce illegal i64 types at this stage, we can only 2145 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2146 // way we can use RVV instructions to splat. 2147 assert((ViaIntVT.bitsLE(XLenVT) || 2148 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2149 "Unexpected bitcast sequence"); 2150 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2151 SDValue ViaVL = 2152 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2153 MVT ViaContainerVT = 2154 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2155 SDValue Splat = 2156 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2157 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2158 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2159 return DAG.getBitcast(VT, Splat); 2160 } 2161 } 2162 2163 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2164 // which constitute a large proportion of the elements. In such cases we can 2165 // splat a vector with the dominant element and make up the shortfall with 2166 // INSERT_VECTOR_ELTs. 2167 // Note that this includes vectors of 2 elements by association. The 2168 // upper-most element is the "dominant" one, allowing us to use a splat to 2169 // "insert" the upper element, and an insert of the lower element at position 2170 // 0, which improves codegen. 2171 SDValue DominantValue; 2172 unsigned MostCommonCount = 0; 2173 DenseMap<SDValue, unsigned> ValueCounts; 2174 unsigned NumUndefElts = 2175 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2176 2177 // Track the number of scalar loads we know we'd be inserting, estimated as 2178 // any non-zero floating-point constant. Other kinds of element are either 2179 // already in registers or are materialized on demand. The threshold at which 2180 // a vector load is more desirable than several scalar materializion and 2181 // vector-insertion instructions is not known. 2182 unsigned NumScalarLoads = 0; 2183 2184 for (SDValue V : Op->op_values()) { 2185 if (V.isUndef()) 2186 continue; 2187 2188 ValueCounts.insert(std::make_pair(V, 0)); 2189 unsigned &Count = ValueCounts[V]; 2190 2191 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2192 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2193 2194 // Is this value dominant? In case of a tie, prefer the highest element as 2195 // it's cheaper to insert near the beginning of a vector than it is at the 2196 // end. 2197 if (++Count >= MostCommonCount) { 2198 DominantValue = V; 2199 MostCommonCount = Count; 2200 } 2201 } 2202 2203 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2204 unsigned NumDefElts = NumElts - NumUndefElts; 2205 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2206 2207 // Don't perform this optimization when optimizing for size, since 2208 // materializing elements and inserting them tends to cause code bloat. 2209 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2210 ((MostCommonCount > DominantValueCountThreshold) || 2211 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2212 // Start by splatting the most common element. 2213 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2214 2215 DenseSet<SDValue> Processed{DominantValue}; 2216 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2217 for (const auto &OpIdx : enumerate(Op->ops())) { 2218 const SDValue &V = OpIdx.value(); 2219 if (V.isUndef() || !Processed.insert(V).second) 2220 continue; 2221 if (ValueCounts[V] == 1) { 2222 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2223 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2224 } else { 2225 // Blend in all instances of this value using a VSELECT, using a 2226 // mask where each bit signals whether that element is the one 2227 // we're after. 2228 SmallVector<SDValue> Ops; 2229 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2230 return DAG.getConstant(V == V1, DL, XLenVT); 2231 }); 2232 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2233 DAG.getBuildVector(SelMaskTy, DL, Ops), 2234 DAG.getSplatBuildVector(VT, DL, V), Vec); 2235 } 2236 } 2237 2238 return Vec; 2239 } 2240 2241 return SDValue(); 2242 } 2243 2244 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2245 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2246 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2247 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2248 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2249 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2250 // node in order to try and match RVV vector/scalar instructions. 2251 if ((LoC >> 31) == HiC) 2252 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2253 2254 // If vl is equal to VLMax and Hi constant is equal to Lo, we could use 2255 // vmv.v.x whose EEW = 32 to lower it. 2256 auto *Const = dyn_cast<ConstantSDNode>(VL); 2257 if (LoC == HiC && Const && Const->getSExtValue() == RISCV::VLMaxSentinel) { 2258 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2259 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2260 // access the subtarget here now. 2261 auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT, Lo, VL); 2262 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2263 } 2264 } 2265 2266 // Fall back to a stack store and stride x0 vector load. 2267 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2268 } 2269 2270 // Called by type legalization to handle splat of i64 on RV32. 2271 // FIXME: We can optimize this when the type has sign or zero bits in one 2272 // of the halves. 2273 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2274 SDValue VL, SelectionDAG &DAG) { 2275 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2276 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2277 DAG.getConstant(0, DL, MVT::i32)); 2278 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2279 DAG.getConstant(1, DL, MVT::i32)); 2280 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2281 } 2282 2283 // This function lowers a splat of a scalar operand Splat with the vector 2284 // length VL. It ensures the final sequence is type legal, which is useful when 2285 // lowering a splat after type legalization. 2286 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2287 SelectionDAG &DAG, 2288 const RISCVSubtarget &Subtarget) { 2289 if (VT.isFloatingPoint()) { 2290 // If VL is 1, we could use vfmv.s.f. 2291 if (isOneConstant(VL)) 2292 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT), 2293 Scalar, VL); 2294 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2295 } 2296 2297 MVT XLenVT = Subtarget.getXLenVT(); 2298 2299 // Simplest case is that the operand needs to be promoted to XLenVT. 2300 if (Scalar.getValueType().bitsLE(XLenVT)) { 2301 // If the operand is a constant, sign extend to increase our chances 2302 // of being able to use a .vi instruction. ANY_EXTEND would become a 2303 // a zero extend and the simm5 check in isel would fail. 2304 // FIXME: Should we ignore the upper bits in isel instead? 2305 unsigned ExtOpc = 2306 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2307 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2308 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2309 // If VL is 1 and the scalar value won't benefit from immediate, we could 2310 // use vmv.s.x. 2311 if (isOneConstant(VL) && 2312 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2313 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar, 2314 VL); 2315 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2316 } 2317 2318 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2319 "Unexpected scalar for splat lowering!"); 2320 2321 if (isOneConstant(VL) && isNullConstant(Scalar)) 2322 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), 2323 DAG.getConstant(0, DL, XLenVT), VL); 2324 2325 // Otherwise use the more complicated splatting algorithm. 2326 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2327 } 2328 2329 // Is the mask a slidedown that shifts in undefs. 2330 static int matchShuffleAsSlideDown(ArrayRef<int> Mask) { 2331 int Size = Mask.size(); 2332 2333 // Elements shifted in should be undef. 2334 auto CheckUndefs = [&](int Shift) { 2335 for (int i = Size - Shift; i != Size; ++i) 2336 if (Mask[i] >= 0) 2337 return false; 2338 return true; 2339 }; 2340 2341 // Elements should be shifted or undef. 2342 auto MatchShift = [&](int Shift) { 2343 for (int i = 0; i != Size - Shift; ++i) 2344 if (Mask[i] >= 0 && Mask[i] != Shift + i) 2345 return false; 2346 return true; 2347 }; 2348 2349 // Try all possible shifts. 2350 for (int Shift = 1; Shift != Size; ++Shift) 2351 if (CheckUndefs(Shift) && MatchShift(Shift)) 2352 return Shift; 2353 2354 // No match. 2355 return -1; 2356 } 2357 2358 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2359 const RISCVSubtarget &Subtarget) { 2360 // We need to be able to widen elements to the next larger integer type. 2361 if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors()) 2362 return false; 2363 2364 int Size = Mask.size(); 2365 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2366 2367 int Srcs[] = {-1, -1}; 2368 for (int i = 0; i != Size; ++i) { 2369 // Ignore undef elements. 2370 if (Mask[i] < 0) 2371 continue; 2372 2373 // Is this an even or odd element. 2374 int Pol = i % 2; 2375 2376 // Ensure we consistently use the same source for this element polarity. 2377 int Src = Mask[i] / Size; 2378 if (Srcs[Pol] < 0) 2379 Srcs[Pol] = Src; 2380 if (Srcs[Pol] != Src) 2381 return false; 2382 2383 // Make sure the element within the source is appropriate for this element 2384 // in the destination. 2385 int Elt = Mask[i] % Size; 2386 if (Elt != i / 2) 2387 return false; 2388 } 2389 2390 // We need to find a source for each polarity and they can't be the same. 2391 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2392 return false; 2393 2394 // Swap the sources if the second source was in the even polarity. 2395 SwapSources = Srcs[0] > Srcs[1]; 2396 2397 return true; 2398 } 2399 2400 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2401 const RISCVSubtarget &Subtarget) { 2402 SDValue V1 = Op.getOperand(0); 2403 SDValue V2 = Op.getOperand(1); 2404 SDLoc DL(Op); 2405 MVT XLenVT = Subtarget.getXLenVT(); 2406 MVT VT = Op.getSimpleValueType(); 2407 unsigned NumElts = VT.getVectorNumElements(); 2408 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2409 2410 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2411 2412 SDValue TrueMask, VL; 2413 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2414 2415 if (SVN->isSplat()) { 2416 const int Lane = SVN->getSplatIndex(); 2417 if (Lane >= 0) { 2418 MVT SVT = VT.getVectorElementType(); 2419 2420 // Turn splatted vector load into a strided load with an X0 stride. 2421 SDValue V = V1; 2422 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2423 // with undef. 2424 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2425 int Offset = Lane; 2426 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2427 int OpElements = 2428 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2429 V = V.getOperand(Offset / OpElements); 2430 Offset %= OpElements; 2431 } 2432 2433 // We need to ensure the load isn't atomic or volatile. 2434 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2435 auto *Ld = cast<LoadSDNode>(V); 2436 Offset *= SVT.getStoreSize(); 2437 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2438 TypeSize::Fixed(Offset), DL); 2439 2440 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2441 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2442 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2443 SDValue IntID = 2444 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2445 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2446 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2447 SDValue NewLoad = DAG.getMemIntrinsicNode( 2448 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2449 DAG.getMachineFunction().getMachineMemOperand( 2450 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2451 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2452 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2453 } 2454 2455 // Otherwise use a scalar load and splat. This will give the best 2456 // opportunity to fold a splat into the operation. ISel can turn it into 2457 // the x0 strided load if we aren't able to fold away the select. 2458 if (SVT.isFloatingPoint()) 2459 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2460 Ld->getPointerInfo().getWithOffset(Offset), 2461 Ld->getOriginalAlign(), 2462 Ld->getMemOperand()->getFlags()); 2463 else 2464 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2465 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2466 Ld->getOriginalAlign(), 2467 Ld->getMemOperand()->getFlags()); 2468 DAG.makeEquivalentMemoryOrdering(Ld, V); 2469 2470 unsigned Opc = 2471 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2472 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2473 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2474 } 2475 2476 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2477 assert(Lane < (int)NumElts && "Unexpected lane!"); 2478 SDValue Gather = 2479 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2480 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2481 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2482 } 2483 } 2484 2485 ArrayRef<int> Mask = SVN->getMask(); 2486 2487 // Try to match as a slidedown. 2488 int SlideAmt = matchShuffleAsSlideDown(Mask); 2489 if (SlideAmt >= 0) { 2490 // TODO: Should we reduce the VL to account for the upper undef elements? 2491 // Requires additional vsetvlis, but might be faster to execute. 2492 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2493 SDValue SlideDown = 2494 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2495 DAG.getUNDEF(ContainerVT), V1, 2496 DAG.getConstant(SlideAmt, DL, XLenVT), 2497 TrueMask, VL); 2498 return convertFromScalableVector(VT, SlideDown, DAG, Subtarget); 2499 } 2500 2501 // Detect an interleave shuffle and lower to 2502 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2503 bool SwapSources; 2504 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2505 // Swap sources if needed. 2506 if (SwapSources) 2507 std::swap(V1, V2); 2508 2509 // Extract the lower half of the vectors. 2510 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2511 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2512 DAG.getConstant(0, DL, XLenVT)); 2513 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2514 DAG.getConstant(0, DL, XLenVT)); 2515 2516 // Double the element width and halve the number of elements in an int type. 2517 unsigned EltBits = VT.getScalarSizeInBits(); 2518 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2519 MVT WideIntVT = 2520 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2521 // Convert this to a scalable vector. We need to base this on the 2522 // destination size to ensure there's always a type with a smaller LMUL. 2523 MVT WideIntContainerVT = 2524 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2525 2526 // Convert sources to scalable vectors with the same element count as the 2527 // larger type. 2528 MVT HalfContainerVT = MVT::getVectorVT( 2529 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2530 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2531 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2532 2533 // Cast sources to integer. 2534 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2535 MVT IntHalfVT = 2536 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2537 V1 = DAG.getBitcast(IntHalfVT, V1); 2538 V2 = DAG.getBitcast(IntHalfVT, V2); 2539 2540 // Freeze V2 since we use it twice and we need to be sure that the add and 2541 // multiply see the same value. 2542 V2 = DAG.getNode(ISD::FREEZE, DL, IntHalfVT, V2); 2543 2544 // Recreate TrueMask using the widened type's element count. 2545 MVT MaskVT = 2546 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2547 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2548 2549 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2550 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2551 V2, TrueMask, VL); 2552 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2553 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2554 DAG.getAllOnesConstant(DL, XLenVT)); 2555 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2556 V2, Multiplier, TrueMask, VL); 2557 // Add the new copies to our previous addition giving us 2^eltbits copies of 2558 // V2. This is equivalent to shifting V2 left by eltbits. This should 2559 // combine with the vwmulu.vv above to form vwmaccu.vv. 2560 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2561 TrueMask, VL); 2562 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2563 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2564 // vector VT. 2565 ContainerVT = 2566 MVT::getVectorVT(VT.getVectorElementType(), 2567 WideIntContainerVT.getVectorElementCount() * 2); 2568 Add = DAG.getBitcast(ContainerVT, Add); 2569 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2570 } 2571 2572 // Detect shuffles which can be re-expressed as vector selects; these are 2573 // shuffles in which each element in the destination is taken from an element 2574 // at the corresponding index in either source vectors. 2575 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2576 int MaskIndex = MaskIdx.value(); 2577 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2578 }); 2579 2580 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2581 2582 SmallVector<SDValue> MaskVals; 2583 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2584 // merged with a second vrgather. 2585 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2586 2587 // By default we preserve the original operand order, and use a mask to 2588 // select LHS as true and RHS as false. However, since RVV vector selects may 2589 // feature splats but only on the LHS, we may choose to invert our mask and 2590 // instead select between RHS and LHS. 2591 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2592 bool InvertMask = IsSelect == SwapOps; 2593 2594 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2595 // half. 2596 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2597 2598 // Now construct the mask that will be used by the vselect or blended 2599 // vrgather operation. For vrgathers, construct the appropriate indices into 2600 // each vector. 2601 for (int MaskIndex : Mask) { 2602 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2603 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2604 if (!IsSelect) { 2605 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2606 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2607 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2608 : DAG.getUNDEF(XLenVT)); 2609 GatherIndicesRHS.push_back( 2610 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2611 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2612 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2613 ++LHSIndexCounts[MaskIndex]; 2614 if (!IsLHSOrUndefIndex) 2615 ++RHSIndexCounts[MaskIndex - NumElts]; 2616 } 2617 } 2618 2619 if (SwapOps) { 2620 std::swap(V1, V2); 2621 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2622 } 2623 2624 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2625 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2626 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2627 2628 if (IsSelect) 2629 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2630 2631 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2632 // On such a large vector we're unable to use i8 as the index type. 2633 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2634 // may involve vector splitting if we're already at LMUL=8, or our 2635 // user-supplied maximum fixed-length LMUL. 2636 return SDValue(); 2637 } 2638 2639 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2640 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2641 MVT IndexVT = VT.changeTypeToInteger(); 2642 // Since we can't introduce illegal index types at this stage, use i16 and 2643 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2644 // than XLenVT. 2645 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2646 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2647 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2648 } 2649 2650 MVT IndexContainerVT = 2651 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2652 2653 SDValue Gather; 2654 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2655 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2656 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2657 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2658 } else { 2659 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2660 // If only one index is used, we can use a "splat" vrgather. 2661 // TODO: We can splat the most-common index and fix-up any stragglers, if 2662 // that's beneficial. 2663 if (LHSIndexCounts.size() == 1) { 2664 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2665 Gather = 2666 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2667 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2668 } else { 2669 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2670 LHSIndices = 2671 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2672 2673 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2674 TrueMask, VL); 2675 } 2676 } 2677 2678 // If a second vector operand is used by this shuffle, blend it in with an 2679 // additional vrgather. 2680 if (!V2.isUndef()) { 2681 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2682 // If only one index is used, we can use a "splat" vrgather. 2683 // TODO: We can splat the most-common index and fix-up any stragglers, if 2684 // that's beneficial. 2685 if (RHSIndexCounts.size() == 1) { 2686 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2687 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2688 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2689 } else { 2690 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2691 RHSIndices = 2692 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2693 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2694 VL); 2695 } 2696 2697 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2698 SelectMask = 2699 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2700 2701 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2702 Gather, VL); 2703 } 2704 2705 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2706 } 2707 2708 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2709 SDLoc DL, SelectionDAG &DAG, 2710 const RISCVSubtarget &Subtarget) { 2711 if (VT.isScalableVector()) 2712 return DAG.getFPExtendOrRound(Op, DL, VT); 2713 assert(VT.isFixedLengthVector() && 2714 "Unexpected value type for RVV FP extend/round lowering"); 2715 SDValue Mask, VL; 2716 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2717 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2718 ? RISCVISD::FP_EXTEND_VL 2719 : RISCVISD::FP_ROUND_VL; 2720 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2721 } 2722 2723 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2724 // the exponent. 2725 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2726 MVT VT = Op.getSimpleValueType(); 2727 unsigned EltSize = VT.getScalarSizeInBits(); 2728 SDValue Src = Op.getOperand(0); 2729 SDLoc DL(Op); 2730 2731 // We need a FP type that can represent the value. 2732 // TODO: Use f16 for i8 when possible? 2733 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2734 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2735 2736 // Legal types should have been checked in the RISCVTargetLowering 2737 // constructor. 2738 // TODO: Splitting may make sense in some cases. 2739 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2740 "Expected legal float type!"); 2741 2742 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2743 // The trailing zero count is equal to log2 of this single bit value. 2744 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2745 SDValue Neg = 2746 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2747 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2748 } 2749 2750 // We have a legal FP type, convert to it. 2751 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2752 // Bitcast to integer and shift the exponent to the LSB. 2753 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2754 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2755 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2756 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2757 DAG.getConstant(ShiftAmt, DL, IntVT)); 2758 // Truncate back to original type to allow vnsrl. 2759 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2760 // The exponent contains log2 of the value in biased form. 2761 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2762 2763 // For trailing zeros, we just need to subtract the bias. 2764 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2765 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2766 DAG.getConstant(ExponentBias, DL, VT)); 2767 2768 // For leading zeros, we need to remove the bias and convert from log2 to 2769 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2770 unsigned Adjust = ExponentBias + (EltSize - 1); 2771 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2772 } 2773 2774 // While RVV has alignment restrictions, we should always be able to load as a 2775 // legal equivalently-sized byte-typed vector instead. This method is 2776 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2777 // the load is already correctly-aligned, it returns SDValue(). 2778 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2779 SelectionDAG &DAG) const { 2780 auto *Load = cast<LoadSDNode>(Op); 2781 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2782 2783 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2784 Load->getMemoryVT(), 2785 *Load->getMemOperand())) 2786 return SDValue(); 2787 2788 SDLoc DL(Op); 2789 MVT VT = Op.getSimpleValueType(); 2790 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2791 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2792 "Unexpected unaligned RVV load type"); 2793 MVT NewVT = 2794 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2795 assert(NewVT.isValid() && 2796 "Expecting equally-sized RVV vector types to be legal"); 2797 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2798 Load->getPointerInfo(), Load->getOriginalAlign(), 2799 Load->getMemOperand()->getFlags()); 2800 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2801 } 2802 2803 // While RVV has alignment restrictions, we should always be able to store as a 2804 // legal equivalently-sized byte-typed vector instead. This method is 2805 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2806 // returns SDValue() if the store is already correctly aligned. 2807 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2808 SelectionDAG &DAG) const { 2809 auto *Store = cast<StoreSDNode>(Op); 2810 assert(Store && Store->getValue().getValueType().isVector() && 2811 "Expected vector store"); 2812 2813 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2814 Store->getMemoryVT(), 2815 *Store->getMemOperand())) 2816 return SDValue(); 2817 2818 SDLoc DL(Op); 2819 SDValue StoredVal = Store->getValue(); 2820 MVT VT = StoredVal.getSimpleValueType(); 2821 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2822 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2823 "Unexpected unaligned RVV store type"); 2824 MVT NewVT = 2825 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2826 assert(NewVT.isValid() && 2827 "Expecting equally-sized RVV vector types to be legal"); 2828 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2829 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2830 Store->getPointerInfo(), Store->getOriginalAlign(), 2831 Store->getMemOperand()->getFlags()); 2832 } 2833 2834 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2835 SelectionDAG &DAG) const { 2836 switch (Op.getOpcode()) { 2837 default: 2838 report_fatal_error("unimplemented operand"); 2839 case ISD::GlobalAddress: 2840 return lowerGlobalAddress(Op, DAG); 2841 case ISD::BlockAddress: 2842 return lowerBlockAddress(Op, DAG); 2843 case ISD::ConstantPool: 2844 return lowerConstantPool(Op, DAG); 2845 case ISD::JumpTable: 2846 return lowerJumpTable(Op, DAG); 2847 case ISD::GlobalTLSAddress: 2848 return lowerGlobalTLSAddress(Op, DAG); 2849 case ISD::SELECT: 2850 return lowerSELECT(Op, DAG); 2851 case ISD::BRCOND: 2852 return lowerBRCOND(Op, DAG); 2853 case ISD::VASTART: 2854 return lowerVASTART(Op, DAG); 2855 case ISD::FRAMEADDR: 2856 return lowerFRAMEADDR(Op, DAG); 2857 case ISD::RETURNADDR: 2858 return lowerRETURNADDR(Op, DAG); 2859 case ISD::SHL_PARTS: 2860 return lowerShiftLeftParts(Op, DAG); 2861 case ISD::SRA_PARTS: 2862 return lowerShiftRightParts(Op, DAG, true); 2863 case ISD::SRL_PARTS: 2864 return lowerShiftRightParts(Op, DAG, false); 2865 case ISD::BITCAST: { 2866 SDLoc DL(Op); 2867 EVT VT = Op.getValueType(); 2868 SDValue Op0 = Op.getOperand(0); 2869 EVT Op0VT = Op0.getValueType(); 2870 MVT XLenVT = Subtarget.getXLenVT(); 2871 if (VT.isFixedLengthVector()) { 2872 // We can handle fixed length vector bitcasts with a simple replacement 2873 // in isel. 2874 if (Op0VT.isFixedLengthVector()) 2875 return Op; 2876 // When bitcasting from scalar to fixed-length vector, insert the scalar 2877 // into a one-element vector of the result type, and perform a vector 2878 // bitcast. 2879 if (!Op0VT.isVector()) { 2880 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2881 if (!isTypeLegal(BVT)) 2882 return SDValue(); 2883 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2884 DAG.getUNDEF(BVT), Op0, 2885 DAG.getConstant(0, DL, XLenVT))); 2886 } 2887 return SDValue(); 2888 } 2889 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2890 // thus: bitcast the vector to a one-element vector type whose element type 2891 // is the same as the result type, and extract the first element. 2892 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2893 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2894 if (!isTypeLegal(BVT)) 2895 return SDValue(); 2896 SDValue BVec = DAG.getBitcast(BVT, Op0); 2897 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2898 DAG.getConstant(0, DL, XLenVT)); 2899 } 2900 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2901 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2902 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2903 return FPConv; 2904 } 2905 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2906 Subtarget.hasStdExtF()) { 2907 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2908 SDValue FPConv = 2909 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2910 return FPConv; 2911 } 2912 return SDValue(); 2913 } 2914 case ISD::INTRINSIC_WO_CHAIN: 2915 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2916 case ISD::INTRINSIC_W_CHAIN: 2917 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2918 case ISD::INTRINSIC_VOID: 2919 return LowerINTRINSIC_VOID(Op, DAG); 2920 case ISD::BSWAP: 2921 case ISD::BITREVERSE: { 2922 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2923 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2924 MVT VT = Op.getSimpleValueType(); 2925 SDLoc DL(Op); 2926 // Start with the maximum immediate value which is the bitwidth - 1. 2927 unsigned Imm = VT.getSizeInBits() - 1; 2928 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2929 if (Op.getOpcode() == ISD::BSWAP) 2930 Imm &= ~0x7U; 2931 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2932 DAG.getConstant(Imm, DL, VT)); 2933 } 2934 case ISD::FSHL: 2935 case ISD::FSHR: { 2936 MVT VT = Op.getSimpleValueType(); 2937 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2938 SDLoc DL(Op); 2939 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2940 // use log(XLen) bits. Mask the shift amount accordingly to prevent 2941 // accidentally setting the extra bit. 2942 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2943 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2944 DAG.getConstant(ShAmtWidth, DL, VT)); 2945 // fshl and fshr concatenate their operands in the same order. fsr and fsl 2946 // instruction use different orders. fshl will return its first operand for 2947 // shift of zero, fshr will return its second operand. fsl and fsr both 2948 // return rs1 so the ISD nodes need to have different operand orders. 2949 // Shift amount is in rs2. 2950 SDValue Op0 = Op.getOperand(0); 2951 SDValue Op1 = Op.getOperand(1); 2952 unsigned Opc = RISCVISD::FSL; 2953 if (Op.getOpcode() == ISD::FSHR) { 2954 std::swap(Op0, Op1); 2955 Opc = RISCVISD::FSR; 2956 } 2957 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 2958 } 2959 case ISD::TRUNCATE: { 2960 SDLoc DL(Op); 2961 MVT VT = Op.getSimpleValueType(); 2962 // Only custom-lower vector truncates 2963 if (!VT.isVector()) 2964 return Op; 2965 2966 // Truncates to mask types are handled differently 2967 if (VT.getVectorElementType() == MVT::i1) 2968 return lowerVectorMaskTrunc(Op, DAG); 2969 2970 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2971 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2972 // truncate by one power of two at a time. 2973 MVT DstEltVT = VT.getVectorElementType(); 2974 2975 SDValue Src = Op.getOperand(0); 2976 MVT SrcVT = Src.getSimpleValueType(); 2977 MVT SrcEltVT = SrcVT.getVectorElementType(); 2978 2979 assert(DstEltVT.bitsLT(SrcEltVT) && 2980 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2981 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2982 "Unexpected vector truncate lowering"); 2983 2984 MVT ContainerVT = SrcVT; 2985 if (SrcVT.isFixedLengthVector()) { 2986 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2987 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2988 } 2989 2990 SDValue Result = Src; 2991 SDValue Mask, VL; 2992 std::tie(Mask, VL) = 2993 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2994 LLVMContext &Context = *DAG.getContext(); 2995 const ElementCount Count = ContainerVT.getVectorElementCount(); 2996 do { 2997 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2998 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2999 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 3000 Mask, VL); 3001 } while (SrcEltVT != DstEltVT); 3002 3003 if (SrcVT.isFixedLengthVector()) 3004 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3005 3006 return Result; 3007 } 3008 case ISD::ANY_EXTEND: 3009 case ISD::ZERO_EXTEND: 3010 if (Op.getOperand(0).getValueType().isVector() && 3011 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3012 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3013 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3014 case ISD::SIGN_EXTEND: 3015 if (Op.getOperand(0).getValueType().isVector() && 3016 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3017 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3018 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3019 case ISD::SPLAT_VECTOR_PARTS: 3020 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3021 case ISD::INSERT_VECTOR_ELT: 3022 return lowerINSERT_VECTOR_ELT(Op, DAG); 3023 case ISD::EXTRACT_VECTOR_ELT: 3024 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3025 case ISD::VSCALE: { 3026 MVT VT = Op.getSimpleValueType(); 3027 SDLoc DL(Op); 3028 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3029 // We define our scalable vector types for lmul=1 to use a 64 bit known 3030 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3031 // vscale as VLENB / 8. 3032 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3033 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3034 // We assume VLENB is a multiple of 8. We manually choose the best shift 3035 // here because SimplifyDemandedBits isn't always able to simplify it. 3036 uint64_t Val = Op.getConstantOperandVal(0); 3037 if (isPowerOf2_64(Val)) { 3038 uint64_t Log2 = Log2_64(Val); 3039 if (Log2 < 3) 3040 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3041 DAG.getConstant(3 - Log2, DL, VT)); 3042 if (Log2 > 3) 3043 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3044 DAG.getConstant(Log2 - 3, DL, VT)); 3045 return VLENB; 3046 } 3047 // If the multiplier is a multiple of 8, scale it down to avoid needing 3048 // to shift the VLENB value. 3049 if ((Val % 8) == 0) 3050 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3051 DAG.getConstant(Val / 8, DL, VT)); 3052 } 3053 3054 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3055 DAG.getConstant(3, DL, VT)); 3056 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3057 } 3058 case ISD::FPOWI: { 3059 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3060 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3061 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3062 Op.getOperand(1).getValueType() == MVT::i32) { 3063 SDLoc DL(Op); 3064 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3065 SDValue Powi = 3066 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3067 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3068 DAG.getIntPtrConstant(0, DL)); 3069 } 3070 return SDValue(); 3071 } 3072 case ISD::FP_EXTEND: { 3073 // RVV can only do fp_extend to types double the size as the source. We 3074 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3075 // via f32. 3076 SDLoc DL(Op); 3077 MVT VT = Op.getSimpleValueType(); 3078 SDValue Src = Op.getOperand(0); 3079 MVT SrcVT = Src.getSimpleValueType(); 3080 3081 // Prepare any fixed-length vector operands. 3082 MVT ContainerVT = VT; 3083 if (SrcVT.isFixedLengthVector()) { 3084 ContainerVT = getContainerForFixedLengthVector(VT); 3085 MVT SrcContainerVT = 3086 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3087 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3088 } 3089 3090 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3091 SrcVT.getVectorElementType() != MVT::f16) { 3092 // For scalable vectors, we only need to close the gap between 3093 // vXf16->vXf64. 3094 if (!VT.isFixedLengthVector()) 3095 return Op; 3096 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3097 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3098 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3099 } 3100 3101 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3102 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3103 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3104 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3105 3106 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3107 DL, DAG, Subtarget); 3108 if (VT.isFixedLengthVector()) 3109 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3110 return Extend; 3111 } 3112 case ISD::FP_ROUND: { 3113 // RVV can only do fp_round to types half the size as the source. We 3114 // custom-lower f64->f16 rounds via RVV's round-to-odd float 3115 // conversion instruction. 3116 SDLoc DL(Op); 3117 MVT VT = Op.getSimpleValueType(); 3118 SDValue Src = Op.getOperand(0); 3119 MVT SrcVT = Src.getSimpleValueType(); 3120 3121 // Prepare any fixed-length vector operands. 3122 MVT ContainerVT = VT; 3123 if (VT.isFixedLengthVector()) { 3124 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3125 ContainerVT = 3126 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3127 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3128 } 3129 3130 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 3131 SrcVT.getVectorElementType() != MVT::f64) { 3132 // For scalable vectors, we only need to close the gap between 3133 // vXf64<->vXf16. 3134 if (!VT.isFixedLengthVector()) 3135 return Op; 3136 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 3137 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3138 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3139 } 3140 3141 SDValue Mask, VL; 3142 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3143 3144 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3145 SDValue IntermediateRound = 3146 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3147 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3148 DL, DAG, Subtarget); 3149 3150 if (VT.isFixedLengthVector()) 3151 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3152 return Round; 3153 } 3154 case ISD::FP_TO_SINT: 3155 case ISD::FP_TO_UINT: 3156 case ISD::SINT_TO_FP: 3157 case ISD::UINT_TO_FP: { 3158 // RVV can only do fp<->int conversions to types half/double the size as 3159 // the source. We custom-lower any conversions that do two hops into 3160 // sequences. 3161 MVT VT = Op.getSimpleValueType(); 3162 if (!VT.isVector()) 3163 return Op; 3164 SDLoc DL(Op); 3165 SDValue Src = Op.getOperand(0); 3166 MVT EltVT = VT.getVectorElementType(); 3167 MVT SrcVT = Src.getSimpleValueType(); 3168 MVT SrcEltVT = SrcVT.getVectorElementType(); 3169 unsigned EltSize = EltVT.getSizeInBits(); 3170 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3171 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3172 "Unexpected vector element types"); 3173 3174 bool IsInt2FP = SrcEltVT.isInteger(); 3175 // Widening conversions 3176 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 3177 if (IsInt2FP) { 3178 // Do a regular integer sign/zero extension then convert to float. 3179 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 3180 VT.getVectorElementCount()); 3181 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3182 ? ISD::ZERO_EXTEND 3183 : ISD::SIGN_EXTEND; 3184 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3185 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3186 } 3187 // FP2Int 3188 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3189 // Do one doubling fp_extend then complete the operation by converting 3190 // to int. 3191 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3192 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3193 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3194 } 3195 3196 // Narrowing conversions 3197 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 3198 if (IsInt2FP) { 3199 // One narrowing int_to_fp, then an fp_round. 3200 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3201 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3202 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3203 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3204 } 3205 // FP2Int 3206 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3207 // representable by the integer, the result is poison. 3208 MVT IVecVT = 3209 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 3210 VT.getVectorElementCount()); 3211 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3212 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3213 } 3214 3215 // Scalable vectors can exit here. Patterns will handle equally-sized 3216 // conversions halving/doubling ones. 3217 if (!VT.isFixedLengthVector()) 3218 return Op; 3219 3220 // For fixed-length vectors we lower to a custom "VL" node. 3221 unsigned RVVOpc = 0; 3222 switch (Op.getOpcode()) { 3223 default: 3224 llvm_unreachable("Impossible opcode"); 3225 case ISD::FP_TO_SINT: 3226 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3227 break; 3228 case ISD::FP_TO_UINT: 3229 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3230 break; 3231 case ISD::SINT_TO_FP: 3232 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3233 break; 3234 case ISD::UINT_TO_FP: 3235 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3236 break; 3237 } 3238 3239 MVT ContainerVT, SrcContainerVT; 3240 // Derive the reference container type from the larger vector type. 3241 if (SrcEltSize > EltSize) { 3242 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3243 ContainerVT = 3244 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3245 } else { 3246 ContainerVT = getContainerForFixedLengthVector(VT); 3247 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3248 } 3249 3250 SDValue Mask, VL; 3251 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3252 3253 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3254 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3255 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3256 } 3257 case ISD::FP_TO_SINT_SAT: 3258 case ISD::FP_TO_UINT_SAT: 3259 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3260 case ISD::FTRUNC: 3261 case ISD::FCEIL: 3262 case ISD::FFLOOR: 3263 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3264 case ISD::VECREDUCE_ADD: 3265 case ISD::VECREDUCE_UMAX: 3266 case ISD::VECREDUCE_SMAX: 3267 case ISD::VECREDUCE_UMIN: 3268 case ISD::VECREDUCE_SMIN: 3269 return lowerVECREDUCE(Op, DAG); 3270 case ISD::VECREDUCE_AND: 3271 case ISD::VECREDUCE_OR: 3272 case ISD::VECREDUCE_XOR: 3273 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3274 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3275 return lowerVECREDUCE(Op, DAG); 3276 case ISD::VECREDUCE_FADD: 3277 case ISD::VECREDUCE_SEQ_FADD: 3278 case ISD::VECREDUCE_FMIN: 3279 case ISD::VECREDUCE_FMAX: 3280 return lowerFPVECREDUCE(Op, DAG); 3281 case ISD::VP_REDUCE_ADD: 3282 case ISD::VP_REDUCE_UMAX: 3283 case ISD::VP_REDUCE_SMAX: 3284 case ISD::VP_REDUCE_UMIN: 3285 case ISD::VP_REDUCE_SMIN: 3286 case ISD::VP_REDUCE_FADD: 3287 case ISD::VP_REDUCE_SEQ_FADD: 3288 case ISD::VP_REDUCE_FMIN: 3289 case ISD::VP_REDUCE_FMAX: 3290 return lowerVPREDUCE(Op, DAG); 3291 case ISD::VP_REDUCE_AND: 3292 case ISD::VP_REDUCE_OR: 3293 case ISD::VP_REDUCE_XOR: 3294 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3295 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3296 return lowerVPREDUCE(Op, DAG); 3297 case ISD::INSERT_SUBVECTOR: 3298 return lowerINSERT_SUBVECTOR(Op, DAG); 3299 case ISD::EXTRACT_SUBVECTOR: 3300 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3301 case ISD::STEP_VECTOR: 3302 return lowerSTEP_VECTOR(Op, DAG); 3303 case ISD::VECTOR_REVERSE: 3304 return lowerVECTOR_REVERSE(Op, DAG); 3305 case ISD::BUILD_VECTOR: 3306 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3307 case ISD::SPLAT_VECTOR: 3308 if (Op.getValueType().getVectorElementType() == MVT::i1) 3309 return lowerVectorMaskSplat(Op, DAG); 3310 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3311 case ISD::VECTOR_SHUFFLE: 3312 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3313 case ISD::CONCAT_VECTORS: { 3314 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3315 // better than going through the stack, as the default expansion does. 3316 SDLoc DL(Op); 3317 MVT VT = Op.getSimpleValueType(); 3318 unsigned NumOpElts = 3319 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3320 SDValue Vec = DAG.getUNDEF(VT); 3321 for (const auto &OpIdx : enumerate(Op->ops())) { 3322 SDValue SubVec = OpIdx.value(); 3323 // Don't insert undef subvectors. 3324 if (SubVec.isUndef()) 3325 continue; 3326 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3327 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3328 } 3329 return Vec; 3330 } 3331 case ISD::LOAD: 3332 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3333 return V; 3334 if (Op.getValueType().isFixedLengthVector()) 3335 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3336 return Op; 3337 case ISD::STORE: 3338 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3339 return V; 3340 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3341 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3342 return Op; 3343 case ISD::MLOAD: 3344 case ISD::VP_LOAD: 3345 return lowerMaskedLoad(Op, DAG); 3346 case ISD::MSTORE: 3347 case ISD::VP_STORE: 3348 return lowerMaskedStore(Op, DAG); 3349 case ISD::SETCC: 3350 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3351 case ISD::ADD: 3352 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3353 case ISD::SUB: 3354 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3355 case ISD::MUL: 3356 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3357 case ISD::MULHS: 3358 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3359 case ISD::MULHU: 3360 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3361 case ISD::AND: 3362 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3363 RISCVISD::AND_VL); 3364 case ISD::OR: 3365 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3366 RISCVISD::OR_VL); 3367 case ISD::XOR: 3368 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3369 RISCVISD::XOR_VL); 3370 case ISD::SDIV: 3371 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3372 case ISD::SREM: 3373 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3374 case ISD::UDIV: 3375 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3376 case ISD::UREM: 3377 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3378 case ISD::SHL: 3379 case ISD::SRA: 3380 case ISD::SRL: 3381 if (Op.getSimpleValueType().isFixedLengthVector()) 3382 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3383 // This can be called for an i32 shift amount that needs to be promoted. 3384 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3385 "Unexpected custom legalisation"); 3386 return SDValue(); 3387 case ISD::SADDSAT: 3388 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3389 case ISD::UADDSAT: 3390 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3391 case ISD::SSUBSAT: 3392 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3393 case ISD::USUBSAT: 3394 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3395 case ISD::FADD: 3396 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3397 case ISD::FSUB: 3398 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3399 case ISD::FMUL: 3400 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3401 case ISD::FDIV: 3402 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3403 case ISD::FNEG: 3404 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3405 case ISD::FABS: 3406 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3407 case ISD::FSQRT: 3408 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3409 case ISD::FMA: 3410 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3411 case ISD::SMIN: 3412 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3413 case ISD::SMAX: 3414 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3415 case ISD::UMIN: 3416 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3417 case ISD::UMAX: 3418 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3419 case ISD::FMINNUM: 3420 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3421 case ISD::FMAXNUM: 3422 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3423 case ISD::ABS: 3424 return lowerABS(Op, DAG); 3425 case ISD::CTLZ_ZERO_UNDEF: 3426 case ISD::CTTZ_ZERO_UNDEF: 3427 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3428 case ISD::VSELECT: 3429 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3430 case ISD::FCOPYSIGN: 3431 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3432 case ISD::MGATHER: 3433 case ISD::VP_GATHER: 3434 return lowerMaskedGather(Op, DAG); 3435 case ISD::MSCATTER: 3436 case ISD::VP_SCATTER: 3437 return lowerMaskedScatter(Op, DAG); 3438 case ISD::FLT_ROUNDS_: 3439 return lowerGET_ROUNDING(Op, DAG); 3440 case ISD::SET_ROUNDING: 3441 return lowerSET_ROUNDING(Op, DAG); 3442 case ISD::VP_SELECT: 3443 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3444 case ISD::VP_ADD: 3445 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3446 case ISD::VP_SUB: 3447 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3448 case ISD::VP_MUL: 3449 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3450 case ISD::VP_SDIV: 3451 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3452 case ISD::VP_UDIV: 3453 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3454 case ISD::VP_SREM: 3455 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3456 case ISD::VP_UREM: 3457 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3458 case ISD::VP_AND: 3459 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3460 case ISD::VP_OR: 3461 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3462 case ISD::VP_XOR: 3463 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3464 case ISD::VP_ASHR: 3465 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3466 case ISD::VP_LSHR: 3467 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3468 case ISD::VP_SHL: 3469 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3470 case ISD::VP_FADD: 3471 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3472 case ISD::VP_FSUB: 3473 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3474 case ISD::VP_FMUL: 3475 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3476 case ISD::VP_FDIV: 3477 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3478 } 3479 } 3480 3481 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3482 SelectionDAG &DAG, unsigned Flags) { 3483 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3484 } 3485 3486 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3487 SelectionDAG &DAG, unsigned Flags) { 3488 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3489 Flags); 3490 } 3491 3492 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3493 SelectionDAG &DAG, unsigned Flags) { 3494 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3495 N->getOffset(), Flags); 3496 } 3497 3498 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3499 SelectionDAG &DAG, unsigned Flags) { 3500 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3501 } 3502 3503 template <class NodeTy> 3504 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3505 bool IsLocal) const { 3506 SDLoc DL(N); 3507 EVT Ty = getPointerTy(DAG.getDataLayout()); 3508 3509 if (isPositionIndependent()) { 3510 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3511 if (IsLocal) 3512 // Use PC-relative addressing to access the symbol. This generates the 3513 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3514 // %pcrel_lo(auipc)). 3515 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3516 3517 // Use PC-relative addressing to access the GOT for this symbol, then load 3518 // the address from the GOT. This generates the pattern (PseudoLA sym), 3519 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3520 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3521 } 3522 3523 switch (getTargetMachine().getCodeModel()) { 3524 default: 3525 report_fatal_error("Unsupported code model for lowering"); 3526 case CodeModel::Small: { 3527 // Generate a sequence for accessing addresses within the first 2 GiB of 3528 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3529 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3530 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3531 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3532 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3533 } 3534 case CodeModel::Medium: { 3535 // Generate a sequence for accessing addresses within any 2GiB range within 3536 // the address space. This generates the pattern (PseudoLLA sym), which 3537 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3538 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3539 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3540 } 3541 } 3542 } 3543 3544 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3545 SelectionDAG &DAG) const { 3546 SDLoc DL(Op); 3547 EVT Ty = Op.getValueType(); 3548 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3549 int64_t Offset = N->getOffset(); 3550 MVT XLenVT = Subtarget.getXLenVT(); 3551 3552 const GlobalValue *GV = N->getGlobal(); 3553 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3554 SDValue Addr = getAddr(N, DAG, IsLocal); 3555 3556 // In order to maximise the opportunity for common subexpression elimination, 3557 // emit a separate ADD node for the global address offset instead of folding 3558 // it in the global address node. Later peephole optimisations may choose to 3559 // fold it back in when profitable. 3560 if (Offset != 0) 3561 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3562 DAG.getConstant(Offset, DL, XLenVT)); 3563 return Addr; 3564 } 3565 3566 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3567 SelectionDAG &DAG) const { 3568 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3569 3570 return getAddr(N, DAG); 3571 } 3572 3573 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3574 SelectionDAG &DAG) const { 3575 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3576 3577 return getAddr(N, DAG); 3578 } 3579 3580 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3581 SelectionDAG &DAG) const { 3582 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3583 3584 return getAddr(N, DAG); 3585 } 3586 3587 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3588 SelectionDAG &DAG, 3589 bool UseGOT) const { 3590 SDLoc DL(N); 3591 EVT Ty = getPointerTy(DAG.getDataLayout()); 3592 const GlobalValue *GV = N->getGlobal(); 3593 MVT XLenVT = Subtarget.getXLenVT(); 3594 3595 if (UseGOT) { 3596 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3597 // load the address from the GOT and add the thread pointer. This generates 3598 // the pattern (PseudoLA_TLS_IE sym), which expands to 3599 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3600 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3601 SDValue Load = 3602 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3603 3604 // Add the thread pointer. 3605 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3606 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3607 } 3608 3609 // Generate a sequence for accessing the address relative to the thread 3610 // pointer, with the appropriate adjustment for the thread pointer offset. 3611 // This generates the pattern 3612 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3613 SDValue AddrHi = 3614 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3615 SDValue AddrAdd = 3616 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3617 SDValue AddrLo = 3618 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3619 3620 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3621 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3622 SDValue MNAdd = SDValue( 3623 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3624 0); 3625 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3626 } 3627 3628 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3629 SelectionDAG &DAG) const { 3630 SDLoc DL(N); 3631 EVT Ty = getPointerTy(DAG.getDataLayout()); 3632 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3633 const GlobalValue *GV = N->getGlobal(); 3634 3635 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3636 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3637 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3638 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3639 SDValue Load = 3640 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3641 3642 // Prepare argument list to generate call. 3643 ArgListTy Args; 3644 ArgListEntry Entry; 3645 Entry.Node = Load; 3646 Entry.Ty = CallTy; 3647 Args.push_back(Entry); 3648 3649 // Setup call to __tls_get_addr. 3650 TargetLowering::CallLoweringInfo CLI(DAG); 3651 CLI.setDebugLoc(DL) 3652 .setChain(DAG.getEntryNode()) 3653 .setLibCallee(CallingConv::C, CallTy, 3654 DAG.getExternalSymbol("__tls_get_addr", Ty), 3655 std::move(Args)); 3656 3657 return LowerCallTo(CLI).first; 3658 } 3659 3660 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3661 SelectionDAG &DAG) const { 3662 SDLoc DL(Op); 3663 EVT Ty = Op.getValueType(); 3664 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3665 int64_t Offset = N->getOffset(); 3666 MVT XLenVT = Subtarget.getXLenVT(); 3667 3668 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3669 3670 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3671 CallingConv::GHC) 3672 report_fatal_error("In GHC calling convention TLS is not supported"); 3673 3674 SDValue Addr; 3675 switch (Model) { 3676 case TLSModel::LocalExec: 3677 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3678 break; 3679 case TLSModel::InitialExec: 3680 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3681 break; 3682 case TLSModel::LocalDynamic: 3683 case TLSModel::GeneralDynamic: 3684 Addr = getDynamicTLSAddr(N, DAG); 3685 break; 3686 } 3687 3688 // In order to maximise the opportunity for common subexpression elimination, 3689 // emit a separate ADD node for the global address offset instead of folding 3690 // it in the global address node. Later peephole optimisations may choose to 3691 // fold it back in when profitable. 3692 if (Offset != 0) 3693 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3694 DAG.getConstant(Offset, DL, XLenVT)); 3695 return Addr; 3696 } 3697 3698 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3699 SDValue CondV = Op.getOperand(0); 3700 SDValue TrueV = Op.getOperand(1); 3701 SDValue FalseV = Op.getOperand(2); 3702 SDLoc DL(Op); 3703 MVT VT = Op.getSimpleValueType(); 3704 MVT XLenVT = Subtarget.getXLenVT(); 3705 3706 // Lower vector SELECTs to VSELECTs by splatting the condition. 3707 if (VT.isVector()) { 3708 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3709 SDValue CondSplat = VT.isScalableVector() 3710 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3711 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3712 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3713 } 3714 3715 // If the result type is XLenVT and CondV is the output of a SETCC node 3716 // which also operated on XLenVT inputs, then merge the SETCC node into the 3717 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3718 // compare+branch instructions. i.e.: 3719 // (select (setcc lhs, rhs, cc), truev, falsev) 3720 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3721 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3722 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3723 SDValue LHS = CondV.getOperand(0); 3724 SDValue RHS = CondV.getOperand(1); 3725 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3726 ISD::CondCode CCVal = CC->get(); 3727 3728 // Special case for a select of 2 constants that have a diffence of 1. 3729 // Normally this is done by DAGCombine, but if the select is introduced by 3730 // type legalization or op legalization, we miss it. Restricting to SETLT 3731 // case for now because that is what signed saturating add/sub need. 3732 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3733 // but we would probably want to swap the true/false values if the condition 3734 // is SETGE/SETLE to avoid an XORI. 3735 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3736 CCVal == ISD::SETLT) { 3737 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3738 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3739 if (TrueVal - 1 == FalseVal) 3740 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3741 if (TrueVal + 1 == FalseVal) 3742 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3743 } 3744 3745 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3746 3747 SDValue TargetCC = DAG.getCondCode(CCVal); 3748 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3749 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3750 } 3751 3752 // Otherwise: 3753 // (select condv, truev, falsev) 3754 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3755 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3756 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3757 3758 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3759 3760 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3761 } 3762 3763 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3764 SDValue CondV = Op.getOperand(1); 3765 SDLoc DL(Op); 3766 MVT XLenVT = Subtarget.getXLenVT(); 3767 3768 if (CondV.getOpcode() == ISD::SETCC && 3769 CondV.getOperand(0).getValueType() == XLenVT) { 3770 SDValue LHS = CondV.getOperand(0); 3771 SDValue RHS = CondV.getOperand(1); 3772 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3773 3774 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3775 3776 SDValue TargetCC = DAG.getCondCode(CCVal); 3777 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3778 LHS, RHS, TargetCC, Op.getOperand(2)); 3779 } 3780 3781 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3782 CondV, DAG.getConstant(0, DL, XLenVT), 3783 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3784 } 3785 3786 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3787 MachineFunction &MF = DAG.getMachineFunction(); 3788 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3789 3790 SDLoc DL(Op); 3791 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3792 getPointerTy(MF.getDataLayout())); 3793 3794 // vastart just stores the address of the VarArgsFrameIndex slot into the 3795 // memory location argument. 3796 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3797 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3798 MachinePointerInfo(SV)); 3799 } 3800 3801 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3802 SelectionDAG &DAG) const { 3803 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3804 MachineFunction &MF = DAG.getMachineFunction(); 3805 MachineFrameInfo &MFI = MF.getFrameInfo(); 3806 MFI.setFrameAddressIsTaken(true); 3807 Register FrameReg = RI.getFrameRegister(MF); 3808 int XLenInBytes = Subtarget.getXLen() / 8; 3809 3810 EVT VT = Op.getValueType(); 3811 SDLoc DL(Op); 3812 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3813 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3814 while (Depth--) { 3815 int Offset = -(XLenInBytes * 2); 3816 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3817 DAG.getIntPtrConstant(Offset, DL)); 3818 FrameAddr = 3819 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3820 } 3821 return FrameAddr; 3822 } 3823 3824 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3825 SelectionDAG &DAG) const { 3826 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3827 MachineFunction &MF = DAG.getMachineFunction(); 3828 MachineFrameInfo &MFI = MF.getFrameInfo(); 3829 MFI.setReturnAddressIsTaken(true); 3830 MVT XLenVT = Subtarget.getXLenVT(); 3831 int XLenInBytes = Subtarget.getXLen() / 8; 3832 3833 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3834 return SDValue(); 3835 3836 EVT VT = Op.getValueType(); 3837 SDLoc DL(Op); 3838 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3839 if (Depth) { 3840 int Off = -XLenInBytes; 3841 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3842 SDValue Offset = DAG.getConstant(Off, DL, VT); 3843 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3844 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3845 MachinePointerInfo()); 3846 } 3847 3848 // Return the value of the return address register, marking it an implicit 3849 // live-in. 3850 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3851 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3852 } 3853 3854 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3855 SelectionDAG &DAG) const { 3856 SDLoc DL(Op); 3857 SDValue Lo = Op.getOperand(0); 3858 SDValue Hi = Op.getOperand(1); 3859 SDValue Shamt = Op.getOperand(2); 3860 EVT VT = Lo.getValueType(); 3861 3862 // if Shamt-XLEN < 0: // Shamt < XLEN 3863 // Lo = Lo << Shamt 3864 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3865 // else: 3866 // Lo = 0 3867 // Hi = Lo << (Shamt-XLEN) 3868 3869 SDValue Zero = DAG.getConstant(0, DL, VT); 3870 SDValue One = DAG.getConstant(1, DL, VT); 3871 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3872 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3873 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3874 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3875 3876 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3877 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3878 SDValue ShiftRightLo = 3879 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3880 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3881 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3882 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3883 3884 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3885 3886 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3887 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3888 3889 SDValue Parts[2] = {Lo, Hi}; 3890 return DAG.getMergeValues(Parts, DL); 3891 } 3892 3893 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3894 bool IsSRA) const { 3895 SDLoc DL(Op); 3896 SDValue Lo = Op.getOperand(0); 3897 SDValue Hi = Op.getOperand(1); 3898 SDValue Shamt = Op.getOperand(2); 3899 EVT VT = Lo.getValueType(); 3900 3901 // SRA expansion: 3902 // if Shamt-XLEN < 0: // Shamt < XLEN 3903 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3904 // Hi = Hi >>s Shamt 3905 // else: 3906 // Lo = Hi >>s (Shamt-XLEN); 3907 // Hi = Hi >>s (XLEN-1) 3908 // 3909 // SRL expansion: 3910 // if Shamt-XLEN < 0: // Shamt < XLEN 3911 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3912 // Hi = Hi >>u Shamt 3913 // else: 3914 // Lo = Hi >>u (Shamt-XLEN); 3915 // Hi = 0; 3916 3917 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3918 3919 SDValue Zero = DAG.getConstant(0, DL, VT); 3920 SDValue One = DAG.getConstant(1, DL, VT); 3921 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3922 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3923 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3924 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3925 3926 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3927 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3928 SDValue ShiftLeftHi = 3929 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3930 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3931 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3932 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3933 SDValue HiFalse = 3934 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3935 3936 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3937 3938 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3939 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3940 3941 SDValue Parts[2] = {Lo, Hi}; 3942 return DAG.getMergeValues(Parts, DL); 3943 } 3944 3945 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3946 // legal equivalently-sized i8 type, so we can use that as a go-between. 3947 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3948 SelectionDAG &DAG) const { 3949 SDLoc DL(Op); 3950 MVT VT = Op.getSimpleValueType(); 3951 SDValue SplatVal = Op.getOperand(0); 3952 // All-zeros or all-ones splats are handled specially. 3953 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3954 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3955 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3956 } 3957 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3958 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3959 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3960 } 3961 MVT XLenVT = Subtarget.getXLenVT(); 3962 assert(SplatVal.getValueType() == XLenVT && 3963 "Unexpected type for i1 splat value"); 3964 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3965 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3966 DAG.getConstant(1, DL, XLenVT)); 3967 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3968 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3969 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3970 } 3971 3972 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3973 // illegal (currently only vXi64 RV32). 3974 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3975 // them to SPLAT_VECTOR_I64 3976 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3977 SelectionDAG &DAG) const { 3978 SDLoc DL(Op); 3979 MVT VecVT = Op.getSimpleValueType(); 3980 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3981 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3982 3983 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3984 SDValue Lo = Op.getOperand(0); 3985 SDValue Hi = Op.getOperand(1); 3986 3987 if (VecVT.isFixedLengthVector()) { 3988 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3989 SDLoc DL(Op); 3990 SDValue Mask, VL; 3991 std::tie(Mask, VL) = 3992 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3993 3994 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3995 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3996 } 3997 3998 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3999 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4000 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4001 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4002 // node in order to try and match RVV vector/scalar instructions. 4003 if ((LoC >> 31) == HiC) 4004 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 4005 } 4006 4007 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4008 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4009 isa<ConstantSDNode>(Hi.getOperand(1)) && 4010 Hi.getConstantOperandVal(1) == 31) 4011 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 4012 4013 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4014 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 4015 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 4016 } 4017 4018 // Custom-lower extensions from mask vectors by using a vselect either with 1 4019 // for zero/any-extension or -1 for sign-extension: 4020 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4021 // Note that any-extension is lowered identically to zero-extension. 4022 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4023 int64_t ExtTrueVal) const { 4024 SDLoc DL(Op); 4025 MVT VecVT = Op.getSimpleValueType(); 4026 SDValue Src = Op.getOperand(0); 4027 // Only custom-lower extensions from mask types 4028 assert(Src.getValueType().isVector() && 4029 Src.getValueType().getVectorElementType() == MVT::i1); 4030 4031 MVT XLenVT = Subtarget.getXLenVT(); 4032 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4033 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4034 4035 if (VecVT.isScalableVector()) { 4036 // Be careful not to introduce illegal scalar types at this stage, and be 4037 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 4038 // illegal and must be expanded. Since we know that the constants are 4039 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 4040 bool IsRV32E64 = 4041 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 4042 4043 if (!IsRV32E64) { 4044 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 4045 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 4046 } else { 4047 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 4048 SplatTrueVal = 4049 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 4050 } 4051 4052 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4053 } 4054 4055 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4056 MVT I1ContainerVT = 4057 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4058 4059 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4060 4061 SDValue Mask, VL; 4062 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4063 4064 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 4065 SplatTrueVal = 4066 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 4067 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4068 SplatTrueVal, SplatZero, VL); 4069 4070 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4071 } 4072 4073 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4074 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4075 MVT ExtVT = Op.getSimpleValueType(); 4076 // Only custom-lower extensions from fixed-length vector types. 4077 if (!ExtVT.isFixedLengthVector()) 4078 return Op; 4079 MVT VT = Op.getOperand(0).getSimpleValueType(); 4080 // Grab the canonical container type for the extended type. Infer the smaller 4081 // type from that to ensure the same number of vector elements, as we know 4082 // the LMUL will be sufficient to hold the smaller type. 4083 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4084 // Get the extended container type manually to ensure the same number of 4085 // vector elements between source and dest. 4086 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4087 ContainerExtVT.getVectorElementCount()); 4088 4089 SDValue Op1 = 4090 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4091 4092 SDLoc DL(Op); 4093 SDValue Mask, VL; 4094 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4095 4096 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4097 4098 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4099 } 4100 4101 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4102 // setcc operation: 4103 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4104 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 4105 SelectionDAG &DAG) const { 4106 SDLoc DL(Op); 4107 EVT MaskVT = Op.getValueType(); 4108 // Only expect to custom-lower truncations to mask types 4109 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4110 "Unexpected type for vector mask lowering"); 4111 SDValue Src = Op.getOperand(0); 4112 MVT VecVT = Src.getSimpleValueType(); 4113 4114 // If this is a fixed vector, we need to convert it to a scalable vector. 4115 MVT ContainerVT = VecVT; 4116 if (VecVT.isFixedLengthVector()) { 4117 ContainerVT = getContainerForFixedLengthVector(VecVT); 4118 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4119 } 4120 4121 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4122 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4123 4124 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 4125 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 4126 4127 if (VecVT.isScalableVector()) { 4128 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 4129 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 4130 } 4131 4132 SDValue Mask, VL; 4133 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4134 4135 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4136 SDValue Trunc = 4137 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4138 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4139 DAG.getCondCode(ISD::SETNE), Mask, VL); 4140 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4141 } 4142 4143 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4144 // first position of a vector, and that vector is slid up to the insert index. 4145 // By limiting the active vector length to index+1 and merging with the 4146 // original vector (with an undisturbed tail policy for elements >= VL), we 4147 // achieve the desired result of leaving all elements untouched except the one 4148 // at VL-1, which is replaced with the desired value. 4149 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4150 SelectionDAG &DAG) const { 4151 SDLoc DL(Op); 4152 MVT VecVT = Op.getSimpleValueType(); 4153 SDValue Vec = Op.getOperand(0); 4154 SDValue Val = Op.getOperand(1); 4155 SDValue Idx = Op.getOperand(2); 4156 4157 if (VecVT.getVectorElementType() == MVT::i1) { 4158 // FIXME: For now we just promote to an i8 vector and insert into that, 4159 // but this is probably not optimal. 4160 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4161 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4162 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4163 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4164 } 4165 4166 MVT ContainerVT = VecVT; 4167 // If the operand is a fixed-length vector, convert to a scalable one. 4168 if (VecVT.isFixedLengthVector()) { 4169 ContainerVT = getContainerForFixedLengthVector(VecVT); 4170 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4171 } 4172 4173 MVT XLenVT = Subtarget.getXLenVT(); 4174 4175 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4176 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4177 // Even i64-element vectors on RV32 can be lowered without scalar 4178 // legalization if the most-significant 32 bits of the value are not affected 4179 // by the sign-extension of the lower 32 bits. 4180 // TODO: We could also catch sign extensions of a 32-bit value. 4181 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4182 const auto *CVal = cast<ConstantSDNode>(Val); 4183 if (isInt<32>(CVal->getSExtValue())) { 4184 IsLegalInsert = true; 4185 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4186 } 4187 } 4188 4189 SDValue Mask, VL; 4190 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4191 4192 SDValue ValInVec; 4193 4194 if (IsLegalInsert) { 4195 unsigned Opc = 4196 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4197 if (isNullConstant(Idx)) { 4198 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4199 if (!VecVT.isFixedLengthVector()) 4200 return Vec; 4201 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4202 } 4203 ValInVec = 4204 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4205 } else { 4206 // On RV32, i64-element vectors must be specially handled to place the 4207 // value at element 0, by using two vslide1up instructions in sequence on 4208 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4209 // this. 4210 SDValue One = DAG.getConstant(1, DL, XLenVT); 4211 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4212 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4213 MVT I32ContainerVT = 4214 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4215 SDValue I32Mask = 4216 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4217 // Limit the active VL to two. 4218 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4219 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4220 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4221 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 4222 InsertI64VL); 4223 // First slide in the hi value, then the lo in underneath it. 4224 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4225 ValHi, I32Mask, InsertI64VL); 4226 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4227 ValLo, I32Mask, InsertI64VL); 4228 // Bitcast back to the right container type. 4229 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4230 } 4231 4232 // Now that the value is in a vector, slide it into position. 4233 SDValue InsertVL = 4234 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4235 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4236 ValInVec, Idx, Mask, InsertVL); 4237 if (!VecVT.isFixedLengthVector()) 4238 return Slideup; 4239 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4240 } 4241 4242 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4243 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4244 // types this is done using VMV_X_S to allow us to glean information about the 4245 // sign bits of the result. 4246 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4247 SelectionDAG &DAG) const { 4248 SDLoc DL(Op); 4249 SDValue Idx = Op.getOperand(1); 4250 SDValue Vec = Op.getOperand(0); 4251 EVT EltVT = Op.getValueType(); 4252 MVT VecVT = Vec.getSimpleValueType(); 4253 MVT XLenVT = Subtarget.getXLenVT(); 4254 4255 if (VecVT.getVectorElementType() == MVT::i1) { 4256 // FIXME: For now we just promote to an i8 vector and extract from that, 4257 // but this is probably not optimal. 4258 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4259 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4260 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4261 } 4262 4263 // If this is a fixed vector, we need to convert it to a scalable vector. 4264 MVT ContainerVT = VecVT; 4265 if (VecVT.isFixedLengthVector()) { 4266 ContainerVT = getContainerForFixedLengthVector(VecVT); 4267 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4268 } 4269 4270 // If the index is 0, the vector is already in the right position. 4271 if (!isNullConstant(Idx)) { 4272 // Use a VL of 1 to avoid processing more elements than we need. 4273 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4274 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4275 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4276 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4277 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4278 } 4279 4280 if (!EltVT.isInteger()) { 4281 // Floating-point extracts are handled in TableGen. 4282 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4283 DAG.getConstant(0, DL, XLenVT)); 4284 } 4285 4286 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4287 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4288 } 4289 4290 // Some RVV intrinsics may claim that they want an integer operand to be 4291 // promoted or expanded. 4292 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 4293 const RISCVSubtarget &Subtarget) { 4294 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4295 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4296 "Unexpected opcode"); 4297 4298 if (!Subtarget.hasVInstructions()) 4299 return SDValue(); 4300 4301 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4302 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4303 SDLoc DL(Op); 4304 4305 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4306 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4307 if (!II || !II->hasSplatOperand()) 4308 return SDValue(); 4309 4310 unsigned SplatOp = II->SplatOperand + 1 + HasChain; 4311 assert(SplatOp < Op.getNumOperands()); 4312 4313 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4314 SDValue &ScalarOp = Operands[SplatOp]; 4315 MVT OpVT = ScalarOp.getSimpleValueType(); 4316 MVT XLenVT = Subtarget.getXLenVT(); 4317 4318 // If this isn't a scalar, or its type is XLenVT we're done. 4319 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4320 return SDValue(); 4321 4322 // Simplest case is that the operand needs to be promoted to XLenVT. 4323 if (OpVT.bitsLT(XLenVT)) { 4324 // If the operand is a constant, sign extend to increase our chances 4325 // of being able to use a .vi instruction. ANY_EXTEND would become a 4326 // a zero extend and the simm5 check in isel would fail. 4327 // FIXME: Should we ignore the upper bits in isel instead? 4328 unsigned ExtOpc = 4329 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4330 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4331 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4332 } 4333 4334 // Use the previous operand to get the vXi64 VT. The result might be a mask 4335 // VT for compares. Using the previous operand assumes that the previous 4336 // operand will never have a smaller element size than a scalar operand and 4337 // that a widening operation never uses SEW=64. 4338 // NOTE: If this fails the below assert, we can probably just find the 4339 // element count from any operand or result and use it to construct the VT. 4340 assert(II->SplatOperand > 0 && "Unexpected splat operand!"); 4341 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4342 4343 // The more complex case is when the scalar is larger than XLenVT. 4344 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4345 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4346 4347 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4348 // on the instruction to sign-extend since SEW>XLEN. 4349 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4350 if (isInt<32>(CVal->getSExtValue())) { 4351 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4352 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4353 } 4354 } 4355 4356 // We need to convert the scalar to a splat vector. 4357 // FIXME: Can we implicitly truncate the scalar if it is known to 4358 // be sign extended? 4359 SDValue VL = Op.getOperand(II->VLOperand + 1 + HasChain); 4360 assert(VL.getValueType() == XLenVT); 4361 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4362 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4363 } 4364 4365 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4366 SelectionDAG &DAG) const { 4367 unsigned IntNo = Op.getConstantOperandVal(0); 4368 SDLoc DL(Op); 4369 MVT XLenVT = Subtarget.getXLenVT(); 4370 4371 switch (IntNo) { 4372 default: 4373 break; // Don't custom lower most intrinsics. 4374 case Intrinsic::thread_pointer: { 4375 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4376 return DAG.getRegister(RISCV::X4, PtrVT); 4377 } 4378 case Intrinsic::riscv_orc_b: 4379 // Lower to the GORCI encoding for orc.b. 4380 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 4381 DAG.getConstant(7, DL, XLenVT)); 4382 case Intrinsic::riscv_grev: 4383 case Intrinsic::riscv_gorc: { 4384 unsigned Opc = 4385 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4386 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4387 } 4388 case Intrinsic::riscv_shfl: 4389 case Intrinsic::riscv_unshfl: { 4390 unsigned Opc = 4391 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4392 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4393 } 4394 case Intrinsic::riscv_bcompress: 4395 case Intrinsic::riscv_bdecompress: { 4396 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4397 : RISCVISD::BDECOMPRESS; 4398 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4399 } 4400 case Intrinsic::riscv_bfp: 4401 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4402 Op.getOperand(2)); 4403 case Intrinsic::riscv_fsl: 4404 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4405 Op.getOperand(2), Op.getOperand(3)); 4406 case Intrinsic::riscv_fsr: 4407 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4408 Op.getOperand(2), Op.getOperand(3)); 4409 case Intrinsic::riscv_vmv_x_s: 4410 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4411 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4412 Op.getOperand(1)); 4413 case Intrinsic::riscv_vmv_v_x: 4414 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4415 Op.getSimpleValueType(), DL, DAG, Subtarget); 4416 case Intrinsic::riscv_vfmv_v_f: 4417 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4418 Op.getOperand(1), Op.getOperand(2)); 4419 case Intrinsic::riscv_vmv_s_x: { 4420 SDValue Scalar = Op.getOperand(2); 4421 4422 if (Scalar.getValueType().bitsLE(XLenVT)) { 4423 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4424 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4425 Op.getOperand(1), Scalar, Op.getOperand(3)); 4426 } 4427 4428 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4429 4430 // This is an i64 value that lives in two scalar registers. We have to 4431 // insert this in a convoluted way. First we build vXi64 splat containing 4432 // the/ two values that we assemble using some bit math. Next we'll use 4433 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4434 // to merge element 0 from our splat into the source vector. 4435 // FIXME: This is probably not the best way to do this, but it is 4436 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4437 // point. 4438 // sw lo, (a0) 4439 // sw hi, 4(a0) 4440 // vlse vX, (a0) 4441 // 4442 // vid.v vVid 4443 // vmseq.vx mMask, vVid, 0 4444 // vmerge.vvm vDest, vSrc, vVal, mMask 4445 MVT VT = Op.getSimpleValueType(); 4446 SDValue Vec = Op.getOperand(1); 4447 SDValue VL = Op.getOperand(3); 4448 4449 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4450 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4451 DAG.getConstant(0, DL, MVT::i32), VL); 4452 4453 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4454 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4455 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4456 SDValue SelectCond = 4457 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4458 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4459 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4460 Vec, VL); 4461 } 4462 case Intrinsic::riscv_vslide1up: 4463 case Intrinsic::riscv_vslide1down: 4464 case Intrinsic::riscv_vslide1up_mask: 4465 case Intrinsic::riscv_vslide1down_mask: { 4466 // We need to special case these when the scalar is larger than XLen. 4467 unsigned NumOps = Op.getNumOperands(); 4468 bool IsMasked = NumOps == 7; 4469 unsigned OpOffset = IsMasked ? 1 : 0; 4470 SDValue Scalar = Op.getOperand(2 + OpOffset); 4471 if (Scalar.getValueType().bitsLE(XLenVT)) 4472 break; 4473 4474 // Splatting a sign extended constant is fine. 4475 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4476 if (isInt<32>(CVal->getSExtValue())) 4477 break; 4478 4479 MVT VT = Op.getSimpleValueType(); 4480 assert(VT.getVectorElementType() == MVT::i64 && 4481 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4482 4483 // Convert the vector source to the equivalent nxvXi32 vector. 4484 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4485 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4486 4487 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4488 DAG.getConstant(0, DL, XLenVT)); 4489 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4490 DAG.getConstant(1, DL, XLenVT)); 4491 4492 // Double the VL since we halved SEW. 4493 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 4494 SDValue I32VL = 4495 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4496 4497 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4498 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4499 4500 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4501 // instructions. 4502 if (IntNo == Intrinsic::riscv_vslide1up || 4503 IntNo == Intrinsic::riscv_vslide1up_mask) { 4504 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4505 I32Mask, I32VL); 4506 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4507 I32Mask, I32VL); 4508 } else { 4509 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4510 I32Mask, I32VL); 4511 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4512 I32Mask, I32VL); 4513 } 4514 4515 // Convert back to nxvXi64. 4516 Vec = DAG.getBitcast(VT, Vec); 4517 4518 if (!IsMasked) 4519 return Vec; 4520 4521 // Apply mask after the operation. 4522 SDValue Mask = Op.getOperand(NumOps - 3); 4523 SDValue MaskedOff = Op.getOperand(1); 4524 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4525 } 4526 } 4527 4528 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4529 } 4530 4531 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4532 SelectionDAG &DAG) const { 4533 unsigned IntNo = Op.getConstantOperandVal(1); 4534 switch (IntNo) { 4535 default: 4536 break; 4537 case Intrinsic::riscv_masked_strided_load: { 4538 SDLoc DL(Op); 4539 MVT XLenVT = Subtarget.getXLenVT(); 4540 4541 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4542 // the selection of the masked intrinsics doesn't do this for us. 4543 SDValue Mask = Op.getOperand(5); 4544 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4545 4546 MVT VT = Op->getSimpleValueType(0); 4547 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4548 4549 SDValue PassThru = Op.getOperand(2); 4550 if (!IsUnmasked) { 4551 MVT MaskVT = 4552 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4553 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4554 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4555 } 4556 4557 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4558 4559 SDValue IntID = DAG.getTargetConstant( 4560 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4561 XLenVT); 4562 4563 auto *Load = cast<MemIntrinsicSDNode>(Op); 4564 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4565 if (!IsUnmasked) 4566 Ops.push_back(PassThru); 4567 Ops.push_back(Op.getOperand(3)); // Ptr 4568 Ops.push_back(Op.getOperand(4)); // Stride 4569 if (!IsUnmasked) 4570 Ops.push_back(Mask); 4571 Ops.push_back(VL); 4572 if (!IsUnmasked) { 4573 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4574 Ops.push_back(Policy); 4575 } 4576 4577 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4578 SDValue Result = 4579 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4580 Load->getMemoryVT(), Load->getMemOperand()); 4581 SDValue Chain = Result.getValue(1); 4582 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4583 return DAG.getMergeValues({Result, Chain}, DL); 4584 } 4585 } 4586 4587 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4588 } 4589 4590 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4591 SelectionDAG &DAG) const { 4592 unsigned IntNo = Op.getConstantOperandVal(1); 4593 switch (IntNo) { 4594 default: 4595 break; 4596 case Intrinsic::riscv_masked_strided_store: { 4597 SDLoc DL(Op); 4598 MVT XLenVT = Subtarget.getXLenVT(); 4599 4600 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4601 // the selection of the masked intrinsics doesn't do this for us. 4602 SDValue Mask = Op.getOperand(5); 4603 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4604 4605 SDValue Val = Op.getOperand(2); 4606 MVT VT = Val.getSimpleValueType(); 4607 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4608 4609 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4610 if (!IsUnmasked) { 4611 MVT MaskVT = 4612 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4613 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4614 } 4615 4616 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4617 4618 SDValue IntID = DAG.getTargetConstant( 4619 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4620 XLenVT); 4621 4622 auto *Store = cast<MemIntrinsicSDNode>(Op); 4623 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4624 Ops.push_back(Val); 4625 Ops.push_back(Op.getOperand(3)); // Ptr 4626 Ops.push_back(Op.getOperand(4)); // Stride 4627 if (!IsUnmasked) 4628 Ops.push_back(Mask); 4629 Ops.push_back(VL); 4630 4631 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4632 Ops, Store->getMemoryVT(), 4633 Store->getMemOperand()); 4634 } 4635 } 4636 4637 return SDValue(); 4638 } 4639 4640 static MVT getLMUL1VT(MVT VT) { 4641 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4642 "Unexpected vector MVT"); 4643 return MVT::getScalableVectorVT( 4644 VT.getVectorElementType(), 4645 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4646 } 4647 4648 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4649 switch (ISDOpcode) { 4650 default: 4651 llvm_unreachable("Unhandled reduction"); 4652 case ISD::VECREDUCE_ADD: 4653 return RISCVISD::VECREDUCE_ADD_VL; 4654 case ISD::VECREDUCE_UMAX: 4655 return RISCVISD::VECREDUCE_UMAX_VL; 4656 case ISD::VECREDUCE_SMAX: 4657 return RISCVISD::VECREDUCE_SMAX_VL; 4658 case ISD::VECREDUCE_UMIN: 4659 return RISCVISD::VECREDUCE_UMIN_VL; 4660 case ISD::VECREDUCE_SMIN: 4661 return RISCVISD::VECREDUCE_SMIN_VL; 4662 case ISD::VECREDUCE_AND: 4663 return RISCVISD::VECREDUCE_AND_VL; 4664 case ISD::VECREDUCE_OR: 4665 return RISCVISD::VECREDUCE_OR_VL; 4666 case ISD::VECREDUCE_XOR: 4667 return RISCVISD::VECREDUCE_XOR_VL; 4668 } 4669 } 4670 4671 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4672 SelectionDAG &DAG, 4673 bool IsVP) const { 4674 SDLoc DL(Op); 4675 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4676 MVT VecVT = Vec.getSimpleValueType(); 4677 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4678 Op.getOpcode() == ISD::VECREDUCE_OR || 4679 Op.getOpcode() == ISD::VECREDUCE_XOR || 4680 Op.getOpcode() == ISD::VP_REDUCE_AND || 4681 Op.getOpcode() == ISD::VP_REDUCE_OR || 4682 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4683 "Unexpected reduction lowering"); 4684 4685 MVT XLenVT = Subtarget.getXLenVT(); 4686 assert(Op.getValueType() == XLenVT && 4687 "Expected reduction output to be legalized to XLenVT"); 4688 4689 MVT ContainerVT = VecVT; 4690 if (VecVT.isFixedLengthVector()) { 4691 ContainerVT = getContainerForFixedLengthVector(VecVT); 4692 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4693 } 4694 4695 SDValue Mask, VL; 4696 if (IsVP) { 4697 Mask = Op.getOperand(2); 4698 VL = Op.getOperand(3); 4699 } else { 4700 std::tie(Mask, VL) = 4701 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4702 } 4703 4704 unsigned BaseOpc; 4705 ISD::CondCode CC; 4706 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4707 4708 switch (Op.getOpcode()) { 4709 default: 4710 llvm_unreachable("Unhandled reduction"); 4711 case ISD::VECREDUCE_AND: 4712 case ISD::VP_REDUCE_AND: { 4713 // vcpop ~x == 0 4714 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4715 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4716 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4717 CC = ISD::SETEQ; 4718 BaseOpc = ISD::AND; 4719 break; 4720 } 4721 case ISD::VECREDUCE_OR: 4722 case ISD::VP_REDUCE_OR: 4723 // vcpop x != 0 4724 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4725 CC = ISD::SETNE; 4726 BaseOpc = ISD::OR; 4727 break; 4728 case ISD::VECREDUCE_XOR: 4729 case ISD::VP_REDUCE_XOR: { 4730 // ((vcpop x) & 1) != 0 4731 SDValue One = DAG.getConstant(1, DL, XLenVT); 4732 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4733 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4734 CC = ISD::SETNE; 4735 BaseOpc = ISD::XOR; 4736 break; 4737 } 4738 } 4739 4740 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4741 4742 if (!IsVP) 4743 return SetCC; 4744 4745 // Now include the start value in the operation. 4746 // Note that we must return the start value when no elements are operated 4747 // upon. The vcpop instructions we've emitted in each case above will return 4748 // 0 for an inactive vector, and so we've already received the neutral value: 4749 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4750 // can simply include the start value. 4751 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4752 } 4753 4754 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4755 SelectionDAG &DAG) const { 4756 SDLoc DL(Op); 4757 SDValue Vec = Op.getOperand(0); 4758 EVT VecEVT = Vec.getValueType(); 4759 4760 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4761 4762 // Due to ordering in legalize types we may have a vector type that needs to 4763 // be split. Do that manually so we can get down to a legal type. 4764 while (getTypeAction(*DAG.getContext(), VecEVT) == 4765 TargetLowering::TypeSplitVector) { 4766 SDValue Lo, Hi; 4767 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4768 VecEVT = Lo.getValueType(); 4769 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4770 } 4771 4772 // TODO: The type may need to be widened rather than split. Or widened before 4773 // it can be split. 4774 if (!isTypeLegal(VecEVT)) 4775 return SDValue(); 4776 4777 MVT VecVT = VecEVT.getSimpleVT(); 4778 MVT VecEltVT = VecVT.getVectorElementType(); 4779 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4780 4781 MVT ContainerVT = VecVT; 4782 if (VecVT.isFixedLengthVector()) { 4783 ContainerVT = getContainerForFixedLengthVector(VecVT); 4784 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4785 } 4786 4787 MVT M1VT = getLMUL1VT(ContainerVT); 4788 MVT XLenVT = Subtarget.getXLenVT(); 4789 4790 SDValue Mask, VL; 4791 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4792 4793 SDValue NeutralElem = 4794 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4795 SDValue IdentitySplat = lowerScalarSplat( 4796 NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4797 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4798 IdentitySplat, Mask, VL); 4799 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4800 DAG.getConstant(0, DL, XLenVT)); 4801 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4802 } 4803 4804 // Given a reduction op, this function returns the matching reduction opcode, 4805 // the vector SDValue and the scalar SDValue required to lower this to a 4806 // RISCVISD node. 4807 static std::tuple<unsigned, SDValue, SDValue> 4808 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4809 SDLoc DL(Op); 4810 auto Flags = Op->getFlags(); 4811 unsigned Opcode = Op.getOpcode(); 4812 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4813 switch (Opcode) { 4814 default: 4815 llvm_unreachable("Unhandled reduction"); 4816 case ISD::VECREDUCE_FADD: { 4817 // Use positive zero if we can. It is cheaper to materialize. 4818 SDValue Zero = 4819 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 4820 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 4821 } 4822 case ISD::VECREDUCE_SEQ_FADD: 4823 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4824 Op.getOperand(0)); 4825 case ISD::VECREDUCE_FMIN: 4826 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4827 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4828 case ISD::VECREDUCE_FMAX: 4829 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4830 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4831 } 4832 } 4833 4834 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4835 SelectionDAG &DAG) const { 4836 SDLoc DL(Op); 4837 MVT VecEltVT = Op.getSimpleValueType(); 4838 4839 unsigned RVVOpcode; 4840 SDValue VectorVal, ScalarVal; 4841 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4842 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4843 MVT VecVT = VectorVal.getSimpleValueType(); 4844 4845 MVT ContainerVT = VecVT; 4846 if (VecVT.isFixedLengthVector()) { 4847 ContainerVT = getContainerForFixedLengthVector(VecVT); 4848 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4849 } 4850 4851 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4852 MVT XLenVT = Subtarget.getXLenVT(); 4853 4854 SDValue Mask, VL; 4855 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4856 4857 SDValue ScalarSplat = lowerScalarSplat( 4858 ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4859 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4860 VectorVal, ScalarSplat, Mask, VL); 4861 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4862 DAG.getConstant(0, DL, XLenVT)); 4863 } 4864 4865 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4866 switch (ISDOpcode) { 4867 default: 4868 llvm_unreachable("Unhandled reduction"); 4869 case ISD::VP_REDUCE_ADD: 4870 return RISCVISD::VECREDUCE_ADD_VL; 4871 case ISD::VP_REDUCE_UMAX: 4872 return RISCVISD::VECREDUCE_UMAX_VL; 4873 case ISD::VP_REDUCE_SMAX: 4874 return RISCVISD::VECREDUCE_SMAX_VL; 4875 case ISD::VP_REDUCE_UMIN: 4876 return RISCVISD::VECREDUCE_UMIN_VL; 4877 case ISD::VP_REDUCE_SMIN: 4878 return RISCVISD::VECREDUCE_SMIN_VL; 4879 case ISD::VP_REDUCE_AND: 4880 return RISCVISD::VECREDUCE_AND_VL; 4881 case ISD::VP_REDUCE_OR: 4882 return RISCVISD::VECREDUCE_OR_VL; 4883 case ISD::VP_REDUCE_XOR: 4884 return RISCVISD::VECREDUCE_XOR_VL; 4885 case ISD::VP_REDUCE_FADD: 4886 return RISCVISD::VECREDUCE_FADD_VL; 4887 case ISD::VP_REDUCE_SEQ_FADD: 4888 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4889 case ISD::VP_REDUCE_FMAX: 4890 return RISCVISD::VECREDUCE_FMAX_VL; 4891 case ISD::VP_REDUCE_FMIN: 4892 return RISCVISD::VECREDUCE_FMIN_VL; 4893 } 4894 } 4895 4896 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4897 SelectionDAG &DAG) const { 4898 SDLoc DL(Op); 4899 SDValue Vec = Op.getOperand(1); 4900 EVT VecEVT = Vec.getValueType(); 4901 4902 // TODO: The type may need to be widened rather than split. Or widened before 4903 // it can be split. 4904 if (!isTypeLegal(VecEVT)) 4905 return SDValue(); 4906 4907 MVT VecVT = VecEVT.getSimpleVT(); 4908 MVT VecEltVT = VecVT.getVectorElementType(); 4909 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4910 4911 MVT ContainerVT = VecVT; 4912 if (VecVT.isFixedLengthVector()) { 4913 ContainerVT = getContainerForFixedLengthVector(VecVT); 4914 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4915 } 4916 4917 SDValue VL = Op.getOperand(3); 4918 SDValue Mask = Op.getOperand(2); 4919 4920 MVT M1VT = getLMUL1VT(ContainerVT); 4921 MVT XLenVT = Subtarget.getXLenVT(); 4922 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4923 4924 SDValue StartSplat = 4925 lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, 4926 DL, DAG, Subtarget); 4927 SDValue Reduction = 4928 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4929 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4930 DAG.getConstant(0, DL, XLenVT)); 4931 if (!VecVT.isInteger()) 4932 return Elt0; 4933 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4934 } 4935 4936 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4937 SelectionDAG &DAG) const { 4938 SDValue Vec = Op.getOperand(0); 4939 SDValue SubVec = Op.getOperand(1); 4940 MVT VecVT = Vec.getSimpleValueType(); 4941 MVT SubVecVT = SubVec.getSimpleValueType(); 4942 4943 SDLoc DL(Op); 4944 MVT XLenVT = Subtarget.getXLenVT(); 4945 unsigned OrigIdx = Op.getConstantOperandVal(2); 4946 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4947 4948 // We don't have the ability to slide mask vectors up indexed by their i1 4949 // elements; the smallest we can do is i8. Often we are able to bitcast to 4950 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4951 // into a scalable one, we might not necessarily have enough scalable 4952 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4953 if (SubVecVT.getVectorElementType() == MVT::i1 && 4954 (OrigIdx != 0 || !Vec.isUndef())) { 4955 if (VecVT.getVectorMinNumElements() >= 8 && 4956 SubVecVT.getVectorMinNumElements() >= 8) { 4957 assert(OrigIdx % 8 == 0 && "Invalid index"); 4958 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4959 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4960 "Unexpected mask vector lowering"); 4961 OrigIdx /= 8; 4962 SubVecVT = 4963 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4964 SubVecVT.isScalableVector()); 4965 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4966 VecVT.isScalableVector()); 4967 Vec = DAG.getBitcast(VecVT, Vec); 4968 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4969 } else { 4970 // We can't slide this mask vector up indexed by its i1 elements. 4971 // This poses a problem when we wish to insert a scalable vector which 4972 // can't be re-expressed as a larger type. Just choose the slow path and 4973 // extend to a larger type, then truncate back down. 4974 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4975 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4976 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4977 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4978 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4979 Op.getOperand(2)); 4980 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4981 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4982 } 4983 } 4984 4985 // If the subvector vector is a fixed-length type, we cannot use subregister 4986 // manipulation to simplify the codegen; we don't know which register of a 4987 // LMUL group contains the specific subvector as we only know the minimum 4988 // register size. Therefore we must slide the vector group up the full 4989 // amount. 4990 if (SubVecVT.isFixedLengthVector()) { 4991 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 4992 return Op; 4993 MVT ContainerVT = VecVT; 4994 if (VecVT.isFixedLengthVector()) { 4995 ContainerVT = getContainerForFixedLengthVector(VecVT); 4996 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4997 } 4998 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4999 DAG.getUNDEF(ContainerVT), SubVec, 5000 DAG.getConstant(0, DL, XLenVT)); 5001 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5002 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5003 return DAG.getBitcast(Op.getValueType(), SubVec); 5004 } 5005 SDValue Mask = 5006 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5007 // Set the vector length to only the number of elements we care about. Note 5008 // that for slideup this includes the offset. 5009 SDValue VL = 5010 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5011 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5012 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5013 SubVec, SlideupAmt, Mask, VL); 5014 if (VecVT.isFixedLengthVector()) 5015 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5016 return DAG.getBitcast(Op.getValueType(), Slideup); 5017 } 5018 5019 unsigned SubRegIdx, RemIdx; 5020 std::tie(SubRegIdx, RemIdx) = 5021 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5022 VecVT, SubVecVT, OrigIdx, TRI); 5023 5024 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5025 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5026 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5027 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5028 5029 // 1. If the Idx has been completely eliminated and this subvector's size is 5030 // a vector register or a multiple thereof, or the surrounding elements are 5031 // undef, then this is a subvector insert which naturally aligns to a vector 5032 // register. These can easily be handled using subregister manipulation. 5033 // 2. If the subvector is smaller than a vector register, then the insertion 5034 // must preserve the undisturbed elements of the register. We do this by 5035 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5036 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5037 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5038 // LMUL=1 type back into the larger vector (resolving to another subregister 5039 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5040 // to avoid allocating a large register group to hold our subvector. 5041 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5042 return Op; 5043 5044 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5045 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5046 // (in our case undisturbed). This means we can set up a subvector insertion 5047 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5048 // size of the subvector. 5049 MVT InterSubVT = VecVT; 5050 SDValue AlignedExtract = Vec; 5051 unsigned AlignedIdx = OrigIdx - RemIdx; 5052 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5053 InterSubVT = getLMUL1VT(VecVT); 5054 // Extract a subvector equal to the nearest full vector register type. This 5055 // should resolve to a EXTRACT_SUBREG instruction. 5056 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5057 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5058 } 5059 5060 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5061 // For scalable vectors this must be further multiplied by vscale. 5062 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5063 5064 SDValue Mask, VL; 5065 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5066 5067 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5068 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5069 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5070 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5071 5072 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5073 DAG.getUNDEF(InterSubVT), SubVec, 5074 DAG.getConstant(0, DL, XLenVT)); 5075 5076 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5077 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5078 5079 // If required, insert this subvector back into the correct vector register. 5080 // This should resolve to an INSERT_SUBREG instruction. 5081 if (VecVT.bitsGT(InterSubVT)) 5082 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5083 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5084 5085 // We might have bitcast from a mask type: cast back to the original type if 5086 // required. 5087 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5088 } 5089 5090 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5091 SelectionDAG &DAG) const { 5092 SDValue Vec = Op.getOperand(0); 5093 MVT SubVecVT = Op.getSimpleValueType(); 5094 MVT VecVT = Vec.getSimpleValueType(); 5095 5096 SDLoc DL(Op); 5097 MVT XLenVT = Subtarget.getXLenVT(); 5098 unsigned OrigIdx = Op.getConstantOperandVal(1); 5099 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5100 5101 // We don't have the ability to slide mask vectors down indexed by their i1 5102 // elements; the smallest we can do is i8. Often we are able to bitcast to 5103 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5104 // from a scalable one, we might not necessarily have enough scalable 5105 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5106 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5107 if (VecVT.getVectorMinNumElements() >= 8 && 5108 SubVecVT.getVectorMinNumElements() >= 8) { 5109 assert(OrigIdx % 8 == 0 && "Invalid index"); 5110 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5111 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5112 "Unexpected mask vector lowering"); 5113 OrigIdx /= 8; 5114 SubVecVT = 5115 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5116 SubVecVT.isScalableVector()); 5117 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5118 VecVT.isScalableVector()); 5119 Vec = DAG.getBitcast(VecVT, Vec); 5120 } else { 5121 // We can't slide this mask vector down, indexed by its i1 elements. 5122 // This poses a problem when we wish to extract a scalable vector which 5123 // can't be re-expressed as a larger type. Just choose the slow path and 5124 // extend to a larger type, then truncate back down. 5125 // TODO: We could probably improve this when extracting certain fixed 5126 // from fixed, where we can extract as i8 and shift the correct element 5127 // right to reach the desired subvector? 5128 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5129 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5130 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5131 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5132 Op.getOperand(1)); 5133 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5134 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5135 } 5136 } 5137 5138 // If the subvector vector is a fixed-length type, we cannot use subregister 5139 // manipulation to simplify the codegen; we don't know which register of a 5140 // LMUL group contains the specific subvector as we only know the minimum 5141 // register size. Therefore we must slide the vector group down the full 5142 // amount. 5143 if (SubVecVT.isFixedLengthVector()) { 5144 // With an index of 0 this is a cast-like subvector, which can be performed 5145 // with subregister operations. 5146 if (OrigIdx == 0) 5147 return Op; 5148 MVT ContainerVT = VecVT; 5149 if (VecVT.isFixedLengthVector()) { 5150 ContainerVT = getContainerForFixedLengthVector(VecVT); 5151 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5152 } 5153 SDValue Mask = 5154 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5155 // Set the vector length to only the number of elements we care about. This 5156 // avoids sliding down elements we're going to discard straight away. 5157 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5158 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5159 SDValue Slidedown = 5160 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5161 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5162 // Now we can use a cast-like subvector extract to get the result. 5163 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5164 DAG.getConstant(0, DL, XLenVT)); 5165 return DAG.getBitcast(Op.getValueType(), Slidedown); 5166 } 5167 5168 unsigned SubRegIdx, RemIdx; 5169 std::tie(SubRegIdx, RemIdx) = 5170 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5171 VecVT, SubVecVT, OrigIdx, TRI); 5172 5173 // If the Idx has been completely eliminated then this is a subvector extract 5174 // which naturally aligns to a vector register. These can easily be handled 5175 // using subregister manipulation. 5176 if (RemIdx == 0) 5177 return Op; 5178 5179 // Else we must shift our vector register directly to extract the subvector. 5180 // Do this using VSLIDEDOWN. 5181 5182 // If the vector type is an LMUL-group type, extract a subvector equal to the 5183 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5184 // instruction. 5185 MVT InterSubVT = VecVT; 5186 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5187 InterSubVT = getLMUL1VT(VecVT); 5188 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5189 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5190 } 5191 5192 // Slide this vector register down by the desired number of elements in order 5193 // to place the desired subvector starting at element 0. 5194 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5195 // For scalable vectors this must be further multiplied by vscale. 5196 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5197 5198 SDValue Mask, VL; 5199 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5200 SDValue Slidedown = 5201 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5202 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5203 5204 // Now the vector is in the right position, extract our final subvector. This 5205 // should resolve to a COPY. 5206 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5207 DAG.getConstant(0, DL, XLenVT)); 5208 5209 // We might have bitcast from a mask type: cast back to the original type if 5210 // required. 5211 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5212 } 5213 5214 // Lower step_vector to the vid instruction. Any non-identity step value must 5215 // be accounted for my manual expansion. 5216 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5217 SelectionDAG &DAG) const { 5218 SDLoc DL(Op); 5219 MVT VT = Op.getSimpleValueType(); 5220 MVT XLenVT = Subtarget.getXLenVT(); 5221 SDValue Mask, VL; 5222 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5223 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5224 uint64_t StepValImm = Op.getConstantOperandVal(0); 5225 if (StepValImm != 1) { 5226 if (isPowerOf2_64(StepValImm)) { 5227 SDValue StepVal = 5228 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 5229 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5230 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5231 } else { 5232 SDValue StepVal = lowerScalarSplat( 5233 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 5234 DL, DAG, Subtarget); 5235 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5236 } 5237 } 5238 return StepVec; 5239 } 5240 5241 // Implement vector_reverse using vrgather.vv with indices determined by 5242 // subtracting the id of each element from (VLMAX-1). This will convert 5243 // the indices like so: 5244 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5245 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5246 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5247 SelectionDAG &DAG) const { 5248 SDLoc DL(Op); 5249 MVT VecVT = Op.getSimpleValueType(); 5250 unsigned EltSize = VecVT.getScalarSizeInBits(); 5251 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5252 5253 unsigned MaxVLMAX = 0; 5254 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5255 if (VectorBitsMax != 0) 5256 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 5257 5258 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5259 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5260 5261 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5262 // to use vrgatherei16.vv. 5263 // TODO: It's also possible to use vrgatherei16.vv for other types to 5264 // decrease register width for the index calculation. 5265 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5266 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5267 // Reverse each half, then reassemble them in reverse order. 5268 // NOTE: It's also possible that after splitting that VLMAX no longer 5269 // requires vrgatherei16.vv. 5270 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5271 SDValue Lo, Hi; 5272 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5273 EVT LoVT, HiVT; 5274 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5275 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5276 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5277 // Reassemble the low and high pieces reversed. 5278 // FIXME: This is a CONCAT_VECTORS. 5279 SDValue Res = 5280 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5281 DAG.getIntPtrConstant(0, DL)); 5282 return DAG.getNode( 5283 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5284 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5285 } 5286 5287 // Just promote the int type to i16 which will double the LMUL. 5288 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5289 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5290 } 5291 5292 MVT XLenVT = Subtarget.getXLenVT(); 5293 SDValue Mask, VL; 5294 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5295 5296 // Calculate VLMAX-1 for the desired SEW. 5297 unsigned MinElts = VecVT.getVectorMinNumElements(); 5298 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5299 DAG.getConstant(MinElts, DL, XLenVT)); 5300 SDValue VLMinus1 = 5301 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5302 5303 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5304 bool IsRV32E64 = 5305 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5306 SDValue SplatVL; 5307 if (!IsRV32E64) 5308 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5309 else 5310 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 5311 5312 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5313 SDValue Indices = 5314 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5315 5316 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5317 } 5318 5319 SDValue 5320 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5321 SelectionDAG &DAG) const { 5322 SDLoc DL(Op); 5323 auto *Load = cast<LoadSDNode>(Op); 5324 5325 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5326 Load->getMemoryVT(), 5327 *Load->getMemOperand()) && 5328 "Expecting a correctly-aligned load"); 5329 5330 MVT VT = Op.getSimpleValueType(); 5331 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5332 5333 SDValue VL = 5334 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5335 5336 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5337 SDValue NewLoad = DAG.getMemIntrinsicNode( 5338 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5339 Load->getMemoryVT(), Load->getMemOperand()); 5340 5341 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5342 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5343 } 5344 5345 SDValue 5346 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5347 SelectionDAG &DAG) const { 5348 SDLoc DL(Op); 5349 auto *Store = cast<StoreSDNode>(Op); 5350 5351 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5352 Store->getMemoryVT(), 5353 *Store->getMemOperand()) && 5354 "Expecting a correctly-aligned store"); 5355 5356 SDValue StoreVal = Store->getValue(); 5357 MVT VT = StoreVal.getSimpleValueType(); 5358 5359 // If the size less than a byte, we need to pad with zeros to make a byte. 5360 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5361 VT = MVT::v8i1; 5362 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5363 DAG.getConstant(0, DL, VT), StoreVal, 5364 DAG.getIntPtrConstant(0, DL)); 5365 } 5366 5367 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5368 5369 SDValue VL = 5370 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5371 5372 SDValue NewValue = 5373 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5374 return DAG.getMemIntrinsicNode( 5375 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5376 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5377 Store->getMemoryVT(), Store->getMemOperand()); 5378 } 5379 5380 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5381 SelectionDAG &DAG) const { 5382 SDLoc DL(Op); 5383 MVT VT = Op.getSimpleValueType(); 5384 5385 const auto *MemSD = cast<MemSDNode>(Op); 5386 EVT MemVT = MemSD->getMemoryVT(); 5387 MachineMemOperand *MMO = MemSD->getMemOperand(); 5388 SDValue Chain = MemSD->getChain(); 5389 SDValue BasePtr = MemSD->getBasePtr(); 5390 5391 SDValue Mask, PassThru, VL; 5392 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5393 Mask = VPLoad->getMask(); 5394 PassThru = DAG.getUNDEF(VT); 5395 VL = VPLoad->getVectorLength(); 5396 } else { 5397 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5398 Mask = MLoad->getMask(); 5399 PassThru = MLoad->getPassThru(); 5400 } 5401 5402 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5403 5404 MVT XLenVT = Subtarget.getXLenVT(); 5405 5406 MVT ContainerVT = VT; 5407 if (VT.isFixedLengthVector()) { 5408 ContainerVT = getContainerForFixedLengthVector(VT); 5409 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5410 if (!IsUnmasked) { 5411 MVT MaskVT = 5412 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5413 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5414 } 5415 } 5416 5417 if (!VL) 5418 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5419 5420 unsigned IntID = 5421 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5422 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5423 if (!IsUnmasked) 5424 Ops.push_back(PassThru); 5425 Ops.push_back(BasePtr); 5426 if (!IsUnmasked) 5427 Ops.push_back(Mask); 5428 Ops.push_back(VL); 5429 if (!IsUnmasked) 5430 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5431 5432 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5433 5434 SDValue Result = 5435 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5436 Chain = Result.getValue(1); 5437 5438 if (VT.isFixedLengthVector()) 5439 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5440 5441 return DAG.getMergeValues({Result, Chain}, DL); 5442 } 5443 5444 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5445 SelectionDAG &DAG) const { 5446 SDLoc DL(Op); 5447 5448 const auto *MemSD = cast<MemSDNode>(Op); 5449 EVT MemVT = MemSD->getMemoryVT(); 5450 MachineMemOperand *MMO = MemSD->getMemOperand(); 5451 SDValue Chain = MemSD->getChain(); 5452 SDValue BasePtr = MemSD->getBasePtr(); 5453 SDValue Val, Mask, VL; 5454 5455 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5456 Val = VPStore->getValue(); 5457 Mask = VPStore->getMask(); 5458 VL = VPStore->getVectorLength(); 5459 } else { 5460 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5461 Val = MStore->getValue(); 5462 Mask = MStore->getMask(); 5463 } 5464 5465 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5466 5467 MVT VT = Val.getSimpleValueType(); 5468 MVT XLenVT = Subtarget.getXLenVT(); 5469 5470 MVT ContainerVT = VT; 5471 if (VT.isFixedLengthVector()) { 5472 ContainerVT = getContainerForFixedLengthVector(VT); 5473 5474 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5475 if (!IsUnmasked) { 5476 MVT MaskVT = 5477 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5478 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5479 } 5480 } 5481 5482 if (!VL) 5483 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5484 5485 unsigned IntID = 5486 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5487 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5488 Ops.push_back(Val); 5489 Ops.push_back(BasePtr); 5490 if (!IsUnmasked) 5491 Ops.push_back(Mask); 5492 Ops.push_back(VL); 5493 5494 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5495 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5496 } 5497 5498 SDValue 5499 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5500 SelectionDAG &DAG) const { 5501 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5502 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5503 5504 MVT VT = Op.getSimpleValueType(); 5505 5506 SDValue Op1 = 5507 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5508 SDValue Op2 = 5509 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5510 5511 SDLoc DL(Op); 5512 SDValue VL = 5513 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5514 5515 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5516 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5517 5518 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5519 Op.getOperand(2), Mask, VL); 5520 5521 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5522 } 5523 5524 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5525 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5526 MVT VT = Op.getSimpleValueType(); 5527 5528 if (VT.getVectorElementType() == MVT::i1) 5529 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5530 5531 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5532 } 5533 5534 SDValue 5535 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5536 SelectionDAG &DAG) const { 5537 unsigned Opc; 5538 switch (Op.getOpcode()) { 5539 default: llvm_unreachable("Unexpected opcode!"); 5540 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5541 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5542 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5543 } 5544 5545 return lowerToScalableOp(Op, DAG, Opc); 5546 } 5547 5548 // Lower vector ABS to smax(X, sub(0, X)). 5549 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5550 SDLoc DL(Op); 5551 MVT VT = Op.getSimpleValueType(); 5552 SDValue X = Op.getOperand(0); 5553 5554 assert(VT.isFixedLengthVector() && "Unexpected type"); 5555 5556 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5557 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5558 5559 SDValue Mask, VL; 5560 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5561 5562 SDValue SplatZero = 5563 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5564 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5565 SDValue NegX = 5566 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5567 SDValue Max = 5568 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5569 5570 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5571 } 5572 5573 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5574 SDValue Op, SelectionDAG &DAG) const { 5575 SDLoc DL(Op); 5576 MVT VT = Op.getSimpleValueType(); 5577 SDValue Mag = Op.getOperand(0); 5578 SDValue Sign = Op.getOperand(1); 5579 assert(Mag.getValueType() == Sign.getValueType() && 5580 "Can only handle COPYSIGN with matching types."); 5581 5582 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5583 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5584 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5585 5586 SDValue Mask, VL; 5587 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5588 5589 SDValue CopySign = 5590 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5591 5592 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5593 } 5594 5595 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5596 SDValue Op, SelectionDAG &DAG) const { 5597 MVT VT = Op.getSimpleValueType(); 5598 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5599 5600 MVT I1ContainerVT = 5601 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5602 5603 SDValue CC = 5604 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5605 SDValue Op1 = 5606 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5607 SDValue Op2 = 5608 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5609 5610 SDLoc DL(Op); 5611 SDValue Mask, VL; 5612 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5613 5614 SDValue Select = 5615 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5616 5617 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5618 } 5619 5620 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5621 unsigned NewOpc, 5622 bool HasMask) const { 5623 MVT VT = Op.getSimpleValueType(); 5624 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5625 5626 // Create list of operands by converting existing ones to scalable types. 5627 SmallVector<SDValue, 6> Ops; 5628 for (const SDValue &V : Op->op_values()) { 5629 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5630 5631 // Pass through non-vector operands. 5632 if (!V.getValueType().isVector()) { 5633 Ops.push_back(V); 5634 continue; 5635 } 5636 5637 // "cast" fixed length vector to a scalable vector. 5638 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5639 "Only fixed length vectors are supported!"); 5640 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5641 } 5642 5643 SDLoc DL(Op); 5644 SDValue Mask, VL; 5645 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5646 if (HasMask) 5647 Ops.push_back(Mask); 5648 Ops.push_back(VL); 5649 5650 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5651 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5652 } 5653 5654 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5655 // * Operands of each node are assumed to be in the same order. 5656 // * The EVL operand is promoted from i32 to i64 on RV64. 5657 // * Fixed-length vectors are converted to their scalable-vector container 5658 // types. 5659 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5660 unsigned RISCVISDOpc) const { 5661 SDLoc DL(Op); 5662 MVT VT = Op.getSimpleValueType(); 5663 SmallVector<SDValue, 4> Ops; 5664 5665 for (const auto &OpIdx : enumerate(Op->ops())) { 5666 SDValue V = OpIdx.value(); 5667 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5668 // Pass through operands which aren't fixed-length vectors. 5669 if (!V.getValueType().isFixedLengthVector()) { 5670 Ops.push_back(V); 5671 continue; 5672 } 5673 // "cast" fixed length vector to a scalable vector. 5674 MVT OpVT = V.getSimpleValueType(); 5675 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5676 assert(useRVVForFixedLengthVectorVT(OpVT) && 5677 "Only fixed length vectors are supported!"); 5678 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5679 } 5680 5681 if (!VT.isFixedLengthVector()) 5682 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5683 5684 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5685 5686 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5687 5688 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5689 } 5690 5691 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 5692 unsigned MaskOpc, 5693 unsigned VecOpc) const { 5694 MVT VT = Op.getSimpleValueType(); 5695 if (VT.getVectorElementType() != MVT::i1) 5696 return lowerVPOp(Op, DAG, VecOpc); 5697 5698 // It is safe to drop mask parameter as masked-off elements are undef. 5699 SDValue Op1 = Op->getOperand(0); 5700 SDValue Op2 = Op->getOperand(1); 5701 SDValue VL = Op->getOperand(3); 5702 5703 MVT ContainerVT = VT; 5704 const bool IsFixed = VT.isFixedLengthVector(); 5705 if (IsFixed) { 5706 ContainerVT = getContainerForFixedLengthVector(VT); 5707 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 5708 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 5709 } 5710 5711 SDLoc DL(Op); 5712 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 5713 if (!IsFixed) 5714 return Val; 5715 return convertFromScalableVector(VT, Val, DAG, Subtarget); 5716 } 5717 5718 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5719 // matched to a RVV indexed load. The RVV indexed load instructions only 5720 // support the "unsigned unscaled" addressing mode; indices are implicitly 5721 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5722 // signed or scaled indexing is extended to the XLEN value type and scaled 5723 // accordingly. 5724 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5725 SelectionDAG &DAG) const { 5726 SDLoc DL(Op); 5727 MVT VT = Op.getSimpleValueType(); 5728 5729 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5730 EVT MemVT = MemSD->getMemoryVT(); 5731 MachineMemOperand *MMO = MemSD->getMemOperand(); 5732 SDValue Chain = MemSD->getChain(); 5733 SDValue BasePtr = MemSD->getBasePtr(); 5734 5735 ISD::LoadExtType LoadExtType; 5736 SDValue Index, Mask, PassThru, VL; 5737 5738 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5739 Index = VPGN->getIndex(); 5740 Mask = VPGN->getMask(); 5741 PassThru = DAG.getUNDEF(VT); 5742 VL = VPGN->getVectorLength(); 5743 // VP doesn't support extending loads. 5744 LoadExtType = ISD::NON_EXTLOAD; 5745 } else { 5746 // Else it must be a MGATHER. 5747 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5748 Index = MGN->getIndex(); 5749 Mask = MGN->getMask(); 5750 PassThru = MGN->getPassThru(); 5751 LoadExtType = MGN->getExtensionType(); 5752 } 5753 5754 MVT IndexVT = Index.getSimpleValueType(); 5755 MVT XLenVT = Subtarget.getXLenVT(); 5756 5757 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5758 "Unexpected VTs!"); 5759 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5760 // Targets have to explicitly opt-in for extending vector loads. 5761 assert(LoadExtType == ISD::NON_EXTLOAD && 5762 "Unexpected extending MGATHER/VP_GATHER"); 5763 (void)LoadExtType; 5764 5765 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5766 // the selection of the masked intrinsics doesn't do this for us. 5767 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5768 5769 MVT ContainerVT = VT; 5770 if (VT.isFixedLengthVector()) { 5771 // We need to use the larger of the result and index type to determine the 5772 // scalable type to use so we don't increase LMUL for any operand/result. 5773 if (VT.bitsGE(IndexVT)) { 5774 ContainerVT = getContainerForFixedLengthVector(VT); 5775 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5776 ContainerVT.getVectorElementCount()); 5777 } else { 5778 IndexVT = getContainerForFixedLengthVector(IndexVT); 5779 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5780 IndexVT.getVectorElementCount()); 5781 } 5782 5783 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5784 5785 if (!IsUnmasked) { 5786 MVT MaskVT = 5787 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5788 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5789 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5790 } 5791 } 5792 5793 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5794 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5795 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 5796 } 5797 5798 if (!VL) 5799 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5800 5801 unsigned IntID = 5802 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5803 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5804 if (!IsUnmasked) 5805 Ops.push_back(PassThru); 5806 Ops.push_back(BasePtr); 5807 Ops.push_back(Index); 5808 if (!IsUnmasked) 5809 Ops.push_back(Mask); 5810 Ops.push_back(VL); 5811 if (!IsUnmasked) 5812 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5813 5814 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5815 SDValue Result = 5816 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5817 Chain = Result.getValue(1); 5818 5819 if (VT.isFixedLengthVector()) 5820 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5821 5822 return DAG.getMergeValues({Result, Chain}, DL); 5823 } 5824 5825 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5826 // matched to a RVV indexed store. The RVV indexed store instructions only 5827 // support the "unsigned unscaled" addressing mode; indices are implicitly 5828 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5829 // signed or scaled indexing is extended to the XLEN value type and scaled 5830 // accordingly. 5831 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5832 SelectionDAG &DAG) const { 5833 SDLoc DL(Op); 5834 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5835 EVT MemVT = MemSD->getMemoryVT(); 5836 MachineMemOperand *MMO = MemSD->getMemOperand(); 5837 SDValue Chain = MemSD->getChain(); 5838 SDValue BasePtr = MemSD->getBasePtr(); 5839 5840 bool IsTruncatingStore = false; 5841 SDValue Index, Mask, Val, VL; 5842 5843 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5844 Index = VPSN->getIndex(); 5845 Mask = VPSN->getMask(); 5846 Val = VPSN->getValue(); 5847 VL = VPSN->getVectorLength(); 5848 // VP doesn't support truncating stores. 5849 IsTruncatingStore = false; 5850 } else { 5851 // Else it must be a MSCATTER. 5852 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5853 Index = MSN->getIndex(); 5854 Mask = MSN->getMask(); 5855 Val = MSN->getValue(); 5856 IsTruncatingStore = MSN->isTruncatingStore(); 5857 } 5858 5859 MVT VT = Val.getSimpleValueType(); 5860 MVT IndexVT = Index.getSimpleValueType(); 5861 MVT XLenVT = Subtarget.getXLenVT(); 5862 5863 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5864 "Unexpected VTs!"); 5865 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5866 // Targets have to explicitly opt-in for extending vector loads and 5867 // truncating vector stores. 5868 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5869 (void)IsTruncatingStore; 5870 5871 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5872 // the selection of the masked intrinsics doesn't do this for us. 5873 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5874 5875 MVT ContainerVT = VT; 5876 if (VT.isFixedLengthVector()) { 5877 // We need to use the larger of the value and index type to determine the 5878 // scalable type to use so we don't increase LMUL for any operand/result. 5879 if (VT.bitsGE(IndexVT)) { 5880 ContainerVT = getContainerForFixedLengthVector(VT); 5881 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5882 ContainerVT.getVectorElementCount()); 5883 } else { 5884 IndexVT = getContainerForFixedLengthVector(IndexVT); 5885 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5886 IndexVT.getVectorElementCount()); 5887 } 5888 5889 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5890 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5891 5892 if (!IsUnmasked) { 5893 MVT MaskVT = 5894 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5895 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5896 } 5897 } 5898 5899 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5900 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5901 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 5902 } 5903 5904 if (!VL) 5905 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5906 5907 unsigned IntID = 5908 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5909 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5910 Ops.push_back(Val); 5911 Ops.push_back(BasePtr); 5912 Ops.push_back(Index); 5913 if (!IsUnmasked) 5914 Ops.push_back(Mask); 5915 Ops.push_back(VL); 5916 5917 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5918 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5919 } 5920 5921 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5922 SelectionDAG &DAG) const { 5923 const MVT XLenVT = Subtarget.getXLenVT(); 5924 SDLoc DL(Op); 5925 SDValue Chain = Op->getOperand(0); 5926 SDValue SysRegNo = DAG.getTargetConstant( 5927 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5928 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5929 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5930 5931 // Encoding used for rounding mode in RISCV differs from that used in 5932 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5933 // table, which consists of a sequence of 4-bit fields, each representing 5934 // corresponding FLT_ROUNDS mode. 5935 static const int Table = 5936 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5937 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5938 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5939 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5940 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5941 5942 SDValue Shift = 5943 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5944 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5945 DAG.getConstant(Table, DL, XLenVT), Shift); 5946 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5947 DAG.getConstant(7, DL, XLenVT)); 5948 5949 return DAG.getMergeValues({Masked, Chain}, DL); 5950 } 5951 5952 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5953 SelectionDAG &DAG) const { 5954 const MVT XLenVT = Subtarget.getXLenVT(); 5955 SDLoc DL(Op); 5956 SDValue Chain = Op->getOperand(0); 5957 SDValue RMValue = Op->getOperand(1); 5958 SDValue SysRegNo = DAG.getTargetConstant( 5959 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5960 5961 // Encoding used for rounding mode in RISCV differs from that used in 5962 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5963 // a table, which consists of a sequence of 4-bit fields, each representing 5964 // corresponding RISCV mode. 5965 static const unsigned Table = 5966 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5967 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5968 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5969 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5970 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5971 5972 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5973 DAG.getConstant(2, DL, XLenVT)); 5974 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5975 DAG.getConstant(Table, DL, XLenVT), Shift); 5976 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5977 DAG.getConstant(0x7, DL, XLenVT)); 5978 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5979 RMValue); 5980 } 5981 5982 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 5983 switch (IntNo) { 5984 default: 5985 llvm_unreachable("Unexpected Intrinsic"); 5986 case Intrinsic::riscv_grev: 5987 return RISCVISD::GREVW; 5988 case Intrinsic::riscv_gorc: 5989 return RISCVISD::GORCW; 5990 case Intrinsic::riscv_bcompress: 5991 return RISCVISD::BCOMPRESSW; 5992 case Intrinsic::riscv_bdecompress: 5993 return RISCVISD::BDECOMPRESSW; 5994 case Intrinsic::riscv_bfp: 5995 return RISCVISD::BFPW; 5996 case Intrinsic::riscv_fsl: 5997 return RISCVISD::FSLW; 5998 case Intrinsic::riscv_fsr: 5999 return RISCVISD::FSRW; 6000 } 6001 } 6002 6003 // Converts the given intrinsic to a i64 operation with any extension. 6004 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6005 unsigned IntNo) { 6006 SDLoc DL(N); 6007 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6008 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6009 SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6010 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); 6011 // ReplaceNodeResults requires we maintain the same type for the return value. 6012 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6013 } 6014 6015 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6016 // form of the given Opcode. 6017 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6018 switch (Opcode) { 6019 default: 6020 llvm_unreachable("Unexpected opcode"); 6021 case ISD::SHL: 6022 return RISCVISD::SLLW; 6023 case ISD::SRA: 6024 return RISCVISD::SRAW; 6025 case ISD::SRL: 6026 return RISCVISD::SRLW; 6027 case ISD::SDIV: 6028 return RISCVISD::DIVW; 6029 case ISD::UDIV: 6030 return RISCVISD::DIVUW; 6031 case ISD::UREM: 6032 return RISCVISD::REMUW; 6033 case ISD::ROTL: 6034 return RISCVISD::ROLW; 6035 case ISD::ROTR: 6036 return RISCVISD::RORW; 6037 case RISCVISD::GREV: 6038 return RISCVISD::GREVW; 6039 case RISCVISD::GORC: 6040 return RISCVISD::GORCW; 6041 } 6042 } 6043 6044 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6045 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6046 // otherwise be promoted to i64, making it difficult to select the 6047 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6048 // type i8/i16/i32 is lost. 6049 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6050 unsigned ExtOpc = ISD::ANY_EXTEND) { 6051 SDLoc DL(N); 6052 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6053 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6054 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6055 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6056 // ReplaceNodeResults requires we maintain the same type for the return value. 6057 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6058 } 6059 6060 // Converts the given 32-bit operation to a i64 operation with signed extension 6061 // semantic to reduce the signed extension instructions. 6062 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6063 SDLoc DL(N); 6064 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6065 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6066 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6067 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6068 DAG.getValueType(MVT::i32)); 6069 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6070 } 6071 6072 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6073 SmallVectorImpl<SDValue> &Results, 6074 SelectionDAG &DAG) const { 6075 SDLoc DL(N); 6076 switch (N->getOpcode()) { 6077 default: 6078 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6079 case ISD::STRICT_FP_TO_SINT: 6080 case ISD::STRICT_FP_TO_UINT: 6081 case ISD::FP_TO_SINT: 6082 case ISD::FP_TO_UINT: { 6083 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6084 "Unexpected custom legalisation"); 6085 bool IsStrict = N->isStrictFPOpcode(); 6086 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6087 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6088 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6089 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6090 TargetLowering::TypeSoftenFloat) { 6091 if (!isTypeLegal(Op0.getValueType())) 6092 return; 6093 if (IsStrict) { 6094 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6095 : RISCVISD::STRICT_FCVT_WU_RV64; 6096 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6097 SDValue Res = DAG.getNode( 6098 Opc, DL, VTs, N->getOperand(0), Op0, 6099 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6100 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6101 Results.push_back(Res.getValue(1)); 6102 return; 6103 } 6104 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6105 SDValue Res = 6106 DAG.getNode(Opc, DL, MVT::i64, Op0, 6107 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6108 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6109 return; 6110 } 6111 // If the FP type needs to be softened, emit a library call using the 'si' 6112 // version. If we left it to default legalization we'd end up with 'di'. If 6113 // the FP type doesn't need to be softened just let generic type 6114 // legalization promote the result type. 6115 RTLIB::Libcall LC; 6116 if (IsSigned) 6117 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6118 else 6119 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6120 MakeLibCallOptions CallOptions; 6121 EVT OpVT = Op0.getValueType(); 6122 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6123 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6124 SDValue Result; 6125 std::tie(Result, Chain) = 6126 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6127 Results.push_back(Result); 6128 if (IsStrict) 6129 Results.push_back(Chain); 6130 break; 6131 } 6132 case ISD::READCYCLECOUNTER: { 6133 assert(!Subtarget.is64Bit() && 6134 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6135 6136 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6137 SDValue RCW = 6138 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6139 6140 Results.push_back( 6141 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6142 Results.push_back(RCW.getValue(2)); 6143 break; 6144 } 6145 case ISD::MUL: { 6146 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6147 unsigned XLen = Subtarget.getXLen(); 6148 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6149 if (Size > XLen) { 6150 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6151 SDValue LHS = N->getOperand(0); 6152 SDValue RHS = N->getOperand(1); 6153 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6154 6155 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6156 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6157 // We need exactly one side to be unsigned. 6158 if (LHSIsU == RHSIsU) 6159 return; 6160 6161 auto MakeMULPair = [&](SDValue S, SDValue U) { 6162 MVT XLenVT = Subtarget.getXLenVT(); 6163 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6164 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6165 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6166 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6167 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6168 }; 6169 6170 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6171 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6172 6173 // The other operand should be signed, but still prefer MULH when 6174 // possible. 6175 if (RHSIsU && LHSIsS && !RHSIsS) 6176 Results.push_back(MakeMULPair(LHS, RHS)); 6177 else if (LHSIsU && RHSIsS && !LHSIsS) 6178 Results.push_back(MakeMULPair(RHS, LHS)); 6179 6180 return; 6181 } 6182 LLVM_FALLTHROUGH; 6183 } 6184 case ISD::ADD: 6185 case ISD::SUB: 6186 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6187 "Unexpected custom legalisation"); 6188 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6189 break; 6190 case ISD::SHL: 6191 case ISD::SRA: 6192 case ISD::SRL: 6193 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6194 "Unexpected custom legalisation"); 6195 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6196 Results.push_back(customLegalizeToWOp(N, DAG)); 6197 break; 6198 } 6199 6200 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6201 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6202 // shift amount. 6203 if (N->getOpcode() == ISD::SHL) { 6204 SDLoc DL(N); 6205 SDValue NewOp0 = 6206 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6207 SDValue NewOp1 = 6208 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6209 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6210 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6211 DAG.getValueType(MVT::i32)); 6212 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6213 } 6214 6215 break; 6216 case ISD::ROTL: 6217 case ISD::ROTR: 6218 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6219 "Unexpected custom legalisation"); 6220 Results.push_back(customLegalizeToWOp(N, DAG)); 6221 break; 6222 case ISD::CTTZ: 6223 case ISD::CTTZ_ZERO_UNDEF: 6224 case ISD::CTLZ: 6225 case ISD::CTLZ_ZERO_UNDEF: { 6226 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6227 "Unexpected custom legalisation"); 6228 6229 SDValue NewOp0 = 6230 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6231 bool IsCTZ = 6232 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6233 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6234 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6235 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6236 return; 6237 } 6238 case ISD::SDIV: 6239 case ISD::UDIV: 6240 case ISD::UREM: { 6241 MVT VT = N->getSimpleValueType(0); 6242 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6243 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6244 "Unexpected custom legalisation"); 6245 // Don't promote division/remainder by constant since we should expand those 6246 // to multiply by magic constant. 6247 // FIXME: What if the expansion is disabled for minsize. 6248 if (N->getOperand(1).getOpcode() == ISD::Constant) 6249 return; 6250 6251 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6252 // the upper 32 bits. For other types we need to sign or zero extend 6253 // based on the opcode. 6254 unsigned ExtOpc = ISD::ANY_EXTEND; 6255 if (VT != MVT::i32) 6256 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6257 : ISD::ZERO_EXTEND; 6258 6259 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6260 break; 6261 } 6262 case ISD::UADDO: 6263 case ISD::USUBO: { 6264 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6265 "Unexpected custom legalisation"); 6266 bool IsAdd = N->getOpcode() == ISD::UADDO; 6267 // Create an ADDW or SUBW. 6268 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6269 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6270 SDValue Res = 6271 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6272 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6273 DAG.getValueType(MVT::i32)); 6274 6275 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6276 // Since the inputs are sign extended from i32, this is equivalent to 6277 // comparing the lower 32 bits. 6278 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6279 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6280 IsAdd ? ISD::SETULT : ISD::SETUGT); 6281 6282 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6283 Results.push_back(Overflow); 6284 return; 6285 } 6286 case ISD::UADDSAT: 6287 case ISD::USUBSAT: { 6288 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6289 "Unexpected custom legalisation"); 6290 if (Subtarget.hasStdExtZbb()) { 6291 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6292 // sign extend allows overflow of the lower 32 bits to be detected on 6293 // the promoted size. 6294 SDValue LHS = 6295 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6296 SDValue RHS = 6297 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6298 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6299 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6300 return; 6301 } 6302 6303 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6304 // promotion for UADDO/USUBO. 6305 Results.push_back(expandAddSubSat(N, DAG)); 6306 return; 6307 } 6308 case ISD::BITCAST: { 6309 EVT VT = N->getValueType(0); 6310 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6311 SDValue Op0 = N->getOperand(0); 6312 EVT Op0VT = Op0.getValueType(); 6313 MVT XLenVT = Subtarget.getXLenVT(); 6314 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6315 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6316 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6317 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6318 Subtarget.hasStdExtF()) { 6319 SDValue FPConv = 6320 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6321 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6322 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6323 isTypeLegal(Op0VT)) { 6324 // Custom-legalize bitcasts from fixed-length vector types to illegal 6325 // scalar types in order to improve codegen. Bitcast the vector to a 6326 // one-element vector type whose element type is the same as the result 6327 // type, and extract the first element. 6328 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6329 if (isTypeLegal(BVT)) { 6330 SDValue BVec = DAG.getBitcast(BVT, Op0); 6331 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6332 DAG.getConstant(0, DL, XLenVT))); 6333 } 6334 } 6335 break; 6336 } 6337 case RISCVISD::GREV: 6338 case RISCVISD::GORC: { 6339 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6340 "Unexpected custom legalisation"); 6341 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6342 // This is similar to customLegalizeToWOp, except that we pass the second 6343 // operand (a TargetConstant) straight through: it is already of type 6344 // XLenVT. 6345 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6346 SDValue NewOp0 = 6347 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6348 SDValue NewOp1 = 6349 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6350 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6351 // ReplaceNodeResults requires we maintain the same type for the return 6352 // value. 6353 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6354 break; 6355 } 6356 case RISCVISD::SHFL: { 6357 // There is no SHFLIW instruction, but we can just promote the operation. 6358 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6359 "Unexpected custom legalisation"); 6360 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6361 SDValue NewOp0 = 6362 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6363 SDValue NewOp1 = 6364 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6365 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 6366 // ReplaceNodeResults requires we maintain the same type for the return 6367 // value. 6368 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6369 break; 6370 } 6371 case ISD::BSWAP: 6372 case ISD::BITREVERSE: { 6373 MVT VT = N->getSimpleValueType(0); 6374 MVT XLenVT = Subtarget.getXLenVT(); 6375 assert((VT == MVT::i8 || VT == MVT::i16 || 6376 (VT == MVT::i32 && Subtarget.is64Bit())) && 6377 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6378 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6379 unsigned Imm = VT.getSizeInBits() - 1; 6380 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6381 if (N->getOpcode() == ISD::BSWAP) 6382 Imm &= ~0x7U; 6383 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 6384 SDValue GREVI = 6385 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 6386 // ReplaceNodeResults requires we maintain the same type for the return 6387 // value. 6388 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6389 break; 6390 } 6391 case ISD::FSHL: 6392 case ISD::FSHR: { 6393 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6394 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6395 SDValue NewOp0 = 6396 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6397 SDValue NewOp1 = 6398 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6399 SDValue NewShAmt = 6400 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6401 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6402 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 6403 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 6404 DAG.getConstant(0x1f, DL, MVT::i64)); 6405 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 6406 // instruction use different orders. fshl will return its first operand for 6407 // shift of zero, fshr will return its second operand. fsl and fsr both 6408 // return rs1 so the ISD nodes need to have different operand orders. 6409 // Shift amount is in rs2. 6410 unsigned Opc = RISCVISD::FSLW; 6411 if (N->getOpcode() == ISD::FSHR) { 6412 std::swap(NewOp0, NewOp1); 6413 Opc = RISCVISD::FSRW; 6414 } 6415 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 6416 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6417 break; 6418 } 6419 case ISD::EXTRACT_VECTOR_ELT: { 6420 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6421 // type is illegal (currently only vXi64 RV32). 6422 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6423 // transferred to the destination register. We issue two of these from the 6424 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6425 // first element. 6426 SDValue Vec = N->getOperand(0); 6427 SDValue Idx = N->getOperand(1); 6428 6429 // The vector type hasn't been legalized yet so we can't issue target 6430 // specific nodes if it needs legalization. 6431 // FIXME: We would manually legalize if it's important. 6432 if (!isTypeLegal(Vec.getValueType())) 6433 return; 6434 6435 MVT VecVT = Vec.getSimpleValueType(); 6436 6437 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6438 VecVT.getVectorElementType() == MVT::i64 && 6439 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6440 6441 // If this is a fixed vector, we need to convert it to a scalable vector. 6442 MVT ContainerVT = VecVT; 6443 if (VecVT.isFixedLengthVector()) { 6444 ContainerVT = getContainerForFixedLengthVector(VecVT); 6445 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6446 } 6447 6448 MVT XLenVT = Subtarget.getXLenVT(); 6449 6450 // Use a VL of 1 to avoid processing more elements than we need. 6451 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6452 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6453 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6454 6455 // Unless the index is known to be 0, we must slide the vector down to get 6456 // the desired element into index 0. 6457 if (!isNullConstant(Idx)) { 6458 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6459 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6460 } 6461 6462 // Extract the lower XLEN bits of the correct vector element. 6463 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6464 6465 // To extract the upper XLEN bits of the vector element, shift the first 6466 // element right by 32 bits and re-extract the lower XLEN bits. 6467 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6468 DAG.getConstant(32, DL, XLenVT), VL); 6469 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6470 ThirtyTwoV, Mask, VL); 6471 6472 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6473 6474 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6475 break; 6476 } 6477 case ISD::INTRINSIC_WO_CHAIN: { 6478 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6479 switch (IntNo) { 6480 default: 6481 llvm_unreachable( 6482 "Don't know how to custom type legalize this intrinsic!"); 6483 case Intrinsic::riscv_grev: 6484 case Intrinsic::riscv_gorc: 6485 case Intrinsic::riscv_bcompress: 6486 case Intrinsic::riscv_bdecompress: 6487 case Intrinsic::riscv_bfp: { 6488 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6489 "Unexpected custom legalisation"); 6490 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 6491 break; 6492 } 6493 case Intrinsic::riscv_fsl: 6494 case Intrinsic::riscv_fsr: { 6495 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6496 "Unexpected custom legalisation"); 6497 SDValue NewOp1 = 6498 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6499 SDValue NewOp2 = 6500 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6501 SDValue NewOp3 = 6502 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)); 6503 unsigned Opc = getRISCVWOpcodeByIntr(IntNo); 6504 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3); 6505 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6506 break; 6507 } 6508 case Intrinsic::riscv_orc_b: { 6509 // Lower to the GORCI encoding for orc.b with the operand extended. 6510 SDValue NewOp = 6511 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6512 // If Zbp is enabled, use GORCIW which will sign extend the result. 6513 unsigned Opc = 6514 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6515 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6516 DAG.getConstant(7, DL, MVT::i64)); 6517 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6518 return; 6519 } 6520 case Intrinsic::riscv_shfl: 6521 case Intrinsic::riscv_unshfl: { 6522 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6523 "Unexpected custom legalisation"); 6524 SDValue NewOp1 = 6525 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6526 SDValue NewOp2 = 6527 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6528 unsigned Opc = 6529 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6530 if (isa<ConstantSDNode>(N->getOperand(2))) { 6531 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6532 DAG.getConstant(0xf, DL, MVT::i64)); 6533 Opc = 6534 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6535 } 6536 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6537 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6538 break; 6539 } 6540 case Intrinsic::riscv_vmv_x_s: { 6541 EVT VT = N->getValueType(0); 6542 MVT XLenVT = Subtarget.getXLenVT(); 6543 if (VT.bitsLT(XLenVT)) { 6544 // Simple case just extract using vmv.x.s and truncate. 6545 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6546 Subtarget.getXLenVT(), N->getOperand(1)); 6547 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6548 return; 6549 } 6550 6551 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6552 "Unexpected custom legalization"); 6553 6554 // We need to do the move in two steps. 6555 SDValue Vec = N->getOperand(1); 6556 MVT VecVT = Vec.getSimpleValueType(); 6557 6558 // First extract the lower XLEN bits of the element. 6559 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6560 6561 // To extract the upper XLEN bits of the vector element, shift the first 6562 // element right by 32 bits and re-extract the lower XLEN bits. 6563 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6564 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6565 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6566 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6567 DAG.getConstant(32, DL, XLenVT), VL); 6568 SDValue LShr32 = 6569 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6570 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6571 6572 Results.push_back( 6573 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6574 break; 6575 } 6576 } 6577 break; 6578 } 6579 case ISD::VECREDUCE_ADD: 6580 case ISD::VECREDUCE_AND: 6581 case ISD::VECREDUCE_OR: 6582 case ISD::VECREDUCE_XOR: 6583 case ISD::VECREDUCE_SMAX: 6584 case ISD::VECREDUCE_UMAX: 6585 case ISD::VECREDUCE_SMIN: 6586 case ISD::VECREDUCE_UMIN: 6587 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6588 Results.push_back(V); 6589 break; 6590 case ISD::VP_REDUCE_ADD: 6591 case ISD::VP_REDUCE_AND: 6592 case ISD::VP_REDUCE_OR: 6593 case ISD::VP_REDUCE_XOR: 6594 case ISD::VP_REDUCE_SMAX: 6595 case ISD::VP_REDUCE_UMAX: 6596 case ISD::VP_REDUCE_SMIN: 6597 case ISD::VP_REDUCE_UMIN: 6598 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6599 Results.push_back(V); 6600 break; 6601 case ISD::FLT_ROUNDS_: { 6602 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6603 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6604 Results.push_back(Res.getValue(0)); 6605 Results.push_back(Res.getValue(1)); 6606 break; 6607 } 6608 } 6609 } 6610 6611 // A structure to hold one of the bit-manipulation patterns below. Together, a 6612 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6613 // (or (and (shl x, 1), 0xAAAAAAAA), 6614 // (and (srl x, 1), 0x55555555)) 6615 struct RISCVBitmanipPat { 6616 SDValue Op; 6617 unsigned ShAmt; 6618 bool IsSHL; 6619 6620 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6621 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6622 } 6623 }; 6624 6625 // Matches patterns of the form 6626 // (and (shl x, C2), (C1 << C2)) 6627 // (and (srl x, C2), C1) 6628 // (shl (and x, C1), C2) 6629 // (srl (and x, (C1 << C2)), C2) 6630 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6631 // The expected masks for each shift amount are specified in BitmanipMasks where 6632 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6633 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6634 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6635 // XLen is 64. 6636 static Optional<RISCVBitmanipPat> 6637 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6638 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6639 "Unexpected number of masks"); 6640 Optional<uint64_t> Mask; 6641 // Optionally consume a mask around the shift operation. 6642 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6643 Mask = Op.getConstantOperandVal(1); 6644 Op = Op.getOperand(0); 6645 } 6646 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6647 return None; 6648 bool IsSHL = Op.getOpcode() == ISD::SHL; 6649 6650 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6651 return None; 6652 uint64_t ShAmt = Op.getConstantOperandVal(1); 6653 6654 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6655 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6656 return None; 6657 // If we don't have enough masks for 64 bit, then we must be trying to 6658 // match SHFL so we're only allowed to shift 1/4 of the width. 6659 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6660 return None; 6661 6662 SDValue Src = Op.getOperand(0); 6663 6664 // The expected mask is shifted left when the AND is found around SHL 6665 // patterns. 6666 // ((x >> 1) & 0x55555555) 6667 // ((x << 1) & 0xAAAAAAAA) 6668 bool SHLExpMask = IsSHL; 6669 6670 if (!Mask) { 6671 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6672 // the mask is all ones: consume that now. 6673 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6674 Mask = Src.getConstantOperandVal(1); 6675 Src = Src.getOperand(0); 6676 // The expected mask is now in fact shifted left for SRL, so reverse the 6677 // decision. 6678 // ((x & 0xAAAAAAAA) >> 1) 6679 // ((x & 0x55555555) << 1) 6680 SHLExpMask = !SHLExpMask; 6681 } else { 6682 // Use a default shifted mask of all-ones if there's no AND, truncated 6683 // down to the expected width. This simplifies the logic later on. 6684 Mask = maskTrailingOnes<uint64_t>(Width); 6685 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6686 } 6687 } 6688 6689 unsigned MaskIdx = Log2_32(ShAmt); 6690 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6691 6692 if (SHLExpMask) 6693 ExpMask <<= ShAmt; 6694 6695 if (Mask != ExpMask) 6696 return None; 6697 6698 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6699 } 6700 6701 // Matches any of the following bit-manipulation patterns: 6702 // (and (shl x, 1), (0x55555555 << 1)) 6703 // (and (srl x, 1), 0x55555555) 6704 // (shl (and x, 0x55555555), 1) 6705 // (srl (and x, (0x55555555 << 1)), 1) 6706 // where the shift amount and mask may vary thus: 6707 // [1] = 0x55555555 / 0xAAAAAAAA 6708 // [2] = 0x33333333 / 0xCCCCCCCC 6709 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6710 // [8] = 0x00FF00FF / 0xFF00FF00 6711 // [16] = 0x0000FFFF / 0xFFFFFFFF 6712 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6713 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6714 // These are the unshifted masks which we use to match bit-manipulation 6715 // patterns. They may be shifted left in certain circumstances. 6716 static const uint64_t BitmanipMasks[] = { 6717 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6718 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6719 6720 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6721 } 6722 6723 // Match the following pattern as a GREVI(W) operation 6724 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6725 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6726 const RISCVSubtarget &Subtarget) { 6727 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6728 EVT VT = Op.getValueType(); 6729 6730 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6731 auto LHS = matchGREVIPat(Op.getOperand(0)); 6732 auto RHS = matchGREVIPat(Op.getOperand(1)); 6733 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6734 SDLoc DL(Op); 6735 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6736 DAG.getConstant(LHS->ShAmt, DL, VT)); 6737 } 6738 } 6739 return SDValue(); 6740 } 6741 6742 // Matches any the following pattern as a GORCI(W) operation 6743 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6744 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6745 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6746 // Note that with the variant of 3., 6747 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6748 // the inner pattern will first be matched as GREVI and then the outer 6749 // pattern will be matched to GORC via the first rule above. 6750 // 4. (or (rotl/rotr x, bitwidth/2), x) 6751 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6752 const RISCVSubtarget &Subtarget) { 6753 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6754 EVT VT = Op.getValueType(); 6755 6756 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6757 SDLoc DL(Op); 6758 SDValue Op0 = Op.getOperand(0); 6759 SDValue Op1 = Op.getOperand(1); 6760 6761 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6762 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6763 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6764 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6765 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6766 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6767 if ((Reverse.getOpcode() == ISD::ROTL || 6768 Reverse.getOpcode() == ISD::ROTR) && 6769 Reverse.getOperand(0) == X && 6770 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6771 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6772 if (RotAmt == (VT.getSizeInBits() / 2)) 6773 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6774 DAG.getConstant(RotAmt, DL, VT)); 6775 } 6776 return SDValue(); 6777 }; 6778 6779 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6780 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6781 return V; 6782 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6783 return V; 6784 6785 // OR is commutable so canonicalize its OR operand to the left 6786 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6787 std::swap(Op0, Op1); 6788 if (Op0.getOpcode() != ISD::OR) 6789 return SDValue(); 6790 SDValue OrOp0 = Op0.getOperand(0); 6791 SDValue OrOp1 = Op0.getOperand(1); 6792 auto LHS = matchGREVIPat(OrOp0); 6793 // OR is commutable so swap the operands and try again: x might have been 6794 // on the left 6795 if (!LHS) { 6796 std::swap(OrOp0, OrOp1); 6797 LHS = matchGREVIPat(OrOp0); 6798 } 6799 auto RHS = matchGREVIPat(Op1); 6800 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6801 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6802 DAG.getConstant(LHS->ShAmt, DL, VT)); 6803 } 6804 } 6805 return SDValue(); 6806 } 6807 6808 // Matches any of the following bit-manipulation patterns: 6809 // (and (shl x, 1), (0x22222222 << 1)) 6810 // (and (srl x, 1), 0x22222222) 6811 // (shl (and x, 0x22222222), 1) 6812 // (srl (and x, (0x22222222 << 1)), 1) 6813 // where the shift amount and mask may vary thus: 6814 // [1] = 0x22222222 / 0x44444444 6815 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6816 // [4] = 0x00F000F0 / 0x0F000F00 6817 // [8] = 0x0000FF00 / 0x00FF0000 6818 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6819 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6820 // These are the unshifted masks which we use to match bit-manipulation 6821 // patterns. They may be shifted left in certain circumstances. 6822 static const uint64_t BitmanipMasks[] = { 6823 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6824 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6825 6826 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6827 } 6828 6829 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6830 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6831 const RISCVSubtarget &Subtarget) { 6832 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6833 EVT VT = Op.getValueType(); 6834 6835 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6836 return SDValue(); 6837 6838 SDValue Op0 = Op.getOperand(0); 6839 SDValue Op1 = Op.getOperand(1); 6840 6841 // Or is commutable so canonicalize the second OR to the LHS. 6842 if (Op0.getOpcode() != ISD::OR) 6843 std::swap(Op0, Op1); 6844 if (Op0.getOpcode() != ISD::OR) 6845 return SDValue(); 6846 6847 // We found an inner OR, so our operands are the operands of the inner OR 6848 // and the other operand of the outer OR. 6849 SDValue A = Op0.getOperand(0); 6850 SDValue B = Op0.getOperand(1); 6851 SDValue C = Op1; 6852 6853 auto Match1 = matchSHFLPat(A); 6854 auto Match2 = matchSHFLPat(B); 6855 6856 // If neither matched, we failed. 6857 if (!Match1 && !Match2) 6858 return SDValue(); 6859 6860 // We had at least one match. if one failed, try the remaining C operand. 6861 if (!Match1) { 6862 std::swap(A, C); 6863 Match1 = matchSHFLPat(A); 6864 if (!Match1) 6865 return SDValue(); 6866 } else if (!Match2) { 6867 std::swap(B, C); 6868 Match2 = matchSHFLPat(B); 6869 if (!Match2) 6870 return SDValue(); 6871 } 6872 assert(Match1 && Match2); 6873 6874 // Make sure our matches pair up. 6875 if (!Match1->formsPairWith(*Match2)) 6876 return SDValue(); 6877 6878 // All the remains is to make sure C is an AND with the same input, that masks 6879 // out the bits that are being shuffled. 6880 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6881 C.getOperand(0) != Match1->Op) 6882 return SDValue(); 6883 6884 uint64_t Mask = C.getConstantOperandVal(1); 6885 6886 static const uint64_t BitmanipMasks[] = { 6887 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6888 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6889 }; 6890 6891 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6892 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6893 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6894 6895 if (Mask != ExpMask) 6896 return SDValue(); 6897 6898 SDLoc DL(Op); 6899 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6900 DAG.getConstant(Match1->ShAmt, DL, VT)); 6901 } 6902 6903 // Optimize (add (shl x, c0), (shl y, c1)) -> 6904 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6905 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6906 const RISCVSubtarget &Subtarget) { 6907 // Perform this optimization only in the zba extension. 6908 if (!Subtarget.hasStdExtZba()) 6909 return SDValue(); 6910 6911 // Skip for vector types and larger types. 6912 EVT VT = N->getValueType(0); 6913 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6914 return SDValue(); 6915 6916 // The two operand nodes must be SHL and have no other use. 6917 SDValue N0 = N->getOperand(0); 6918 SDValue N1 = N->getOperand(1); 6919 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6920 !N0->hasOneUse() || !N1->hasOneUse()) 6921 return SDValue(); 6922 6923 // Check c0 and c1. 6924 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6925 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6926 if (!N0C || !N1C) 6927 return SDValue(); 6928 int64_t C0 = N0C->getSExtValue(); 6929 int64_t C1 = N1C->getSExtValue(); 6930 if (C0 <= 0 || C1 <= 0) 6931 return SDValue(); 6932 6933 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6934 int64_t Bits = std::min(C0, C1); 6935 int64_t Diff = std::abs(C0 - C1); 6936 if (Diff != 1 && Diff != 2 && Diff != 3) 6937 return SDValue(); 6938 6939 // Build nodes. 6940 SDLoc DL(N); 6941 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6942 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6943 SDValue NA0 = 6944 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6945 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6946 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6947 } 6948 6949 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6950 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6951 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6952 // not undo itself, but they are redundant. 6953 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6954 SDValue Src = N->getOperand(0); 6955 6956 if (Src.getOpcode() != N->getOpcode()) 6957 return SDValue(); 6958 6959 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6960 !isa<ConstantSDNode>(Src.getOperand(1))) 6961 return SDValue(); 6962 6963 unsigned ShAmt1 = N->getConstantOperandVal(1); 6964 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6965 Src = Src.getOperand(0); 6966 6967 unsigned CombinedShAmt; 6968 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6969 CombinedShAmt = ShAmt1 | ShAmt2; 6970 else 6971 CombinedShAmt = ShAmt1 ^ ShAmt2; 6972 6973 if (CombinedShAmt == 0) 6974 return Src; 6975 6976 SDLoc DL(N); 6977 return DAG.getNode( 6978 N->getOpcode(), DL, N->getValueType(0), Src, 6979 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6980 } 6981 6982 // Combine a constant select operand into its use: 6983 // 6984 // (and (select cond, -1, c), x) 6985 // -> (select cond, x, (and x, c)) [AllOnes=1] 6986 // (or (select cond, 0, c), x) 6987 // -> (select cond, x, (or x, c)) [AllOnes=0] 6988 // (xor (select cond, 0, c), x) 6989 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6990 // (add (select cond, 0, c), x) 6991 // -> (select cond, x, (add x, c)) [AllOnes=0] 6992 // (sub x, (select cond, 0, c)) 6993 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6994 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6995 SelectionDAG &DAG, bool AllOnes) { 6996 EVT VT = N->getValueType(0); 6997 6998 // Skip vectors. 6999 if (VT.isVector()) 7000 return SDValue(); 7001 7002 if ((Slct.getOpcode() != ISD::SELECT && 7003 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7004 !Slct.hasOneUse()) 7005 return SDValue(); 7006 7007 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7008 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7009 }; 7010 7011 bool SwapSelectOps; 7012 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7013 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7014 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7015 SDValue NonConstantVal; 7016 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7017 SwapSelectOps = false; 7018 NonConstantVal = FalseVal; 7019 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7020 SwapSelectOps = true; 7021 NonConstantVal = TrueVal; 7022 } else 7023 return SDValue(); 7024 7025 // Slct is now know to be the desired identity constant when CC is true. 7026 TrueVal = OtherOp; 7027 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7028 // Unless SwapSelectOps says the condition should be false. 7029 if (SwapSelectOps) 7030 std::swap(TrueVal, FalseVal); 7031 7032 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7033 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7034 {Slct.getOperand(0), Slct.getOperand(1), 7035 Slct.getOperand(2), TrueVal, FalseVal}); 7036 7037 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7038 {Slct.getOperand(0), TrueVal, FalseVal}); 7039 } 7040 7041 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7042 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7043 bool AllOnes) { 7044 SDValue N0 = N->getOperand(0); 7045 SDValue N1 = N->getOperand(1); 7046 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7047 return Result; 7048 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7049 return Result; 7050 return SDValue(); 7051 } 7052 7053 // Transform (add (mul x, c0), c1) -> 7054 // (add (mul (add x, c1/c0), c0), c1%c0). 7055 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7056 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7057 // to an infinite loop in DAGCombine if transformed. 7058 // Or transform (add (mul x, c0), c1) -> 7059 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7060 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7061 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7062 // lead to an infinite loop in DAGCombine if transformed. 7063 // Or transform (add (mul x, c0), c1) -> 7064 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7065 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7066 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7067 // lead to an infinite loop in DAGCombine if transformed. 7068 // Or transform (add (mul x, c0), c1) -> 7069 // (mul (add x, c1/c0), c0). 7070 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7071 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7072 const RISCVSubtarget &Subtarget) { 7073 // Skip for vector types and larger types. 7074 EVT VT = N->getValueType(0); 7075 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7076 return SDValue(); 7077 // The first operand node must be a MUL and has no other use. 7078 SDValue N0 = N->getOperand(0); 7079 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7080 return SDValue(); 7081 // Check if c0 and c1 match above conditions. 7082 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7083 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7084 if (!N0C || !N1C) 7085 return SDValue(); 7086 int64_t C0 = N0C->getSExtValue(); 7087 int64_t C1 = N1C->getSExtValue(); 7088 int64_t CA, CB; 7089 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7090 return SDValue(); 7091 // Search for proper CA (non-zero) and CB that both are simm12. 7092 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7093 !isInt<12>(C0 * (C1 / C0))) { 7094 CA = C1 / C0; 7095 CB = C1 % C0; 7096 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7097 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7098 CA = C1 / C0 + 1; 7099 CB = C1 % C0 - C0; 7100 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7101 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7102 CA = C1 / C0 - 1; 7103 CB = C1 % C0 + C0; 7104 } else 7105 return SDValue(); 7106 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7107 SDLoc DL(N); 7108 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7109 DAG.getConstant(CA, DL, VT)); 7110 SDValue New1 = 7111 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7112 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7113 } 7114 7115 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7116 const RISCVSubtarget &Subtarget) { 7117 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7118 return V; 7119 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7120 return V; 7121 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7122 // (select lhs, rhs, cc, x, (add x, y)) 7123 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7124 } 7125 7126 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7127 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7128 // (select lhs, rhs, cc, x, (sub x, y)) 7129 SDValue N0 = N->getOperand(0); 7130 SDValue N1 = N->getOperand(1); 7131 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7132 } 7133 7134 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7135 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7136 // (select lhs, rhs, cc, x, (and x, y)) 7137 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7138 } 7139 7140 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7141 const RISCVSubtarget &Subtarget) { 7142 if (Subtarget.hasStdExtZbp()) { 7143 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7144 return GREV; 7145 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7146 return GORC; 7147 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7148 return SHFL; 7149 } 7150 7151 // fold (or (select cond, 0, y), x) -> 7152 // (select cond, x, (or x, y)) 7153 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7154 } 7155 7156 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7157 // fold (xor (select cond, 0, y), x) -> 7158 // (select cond, x, (xor x, y)) 7159 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7160 } 7161 7162 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 7163 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 7164 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 7165 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 7166 // ADDW/SUBW/MULW. 7167 static SDValue performANY_EXTENDCombine(SDNode *N, 7168 TargetLowering::DAGCombinerInfo &DCI, 7169 const RISCVSubtarget &Subtarget) { 7170 if (!Subtarget.is64Bit()) 7171 return SDValue(); 7172 7173 SelectionDAG &DAG = DCI.DAG; 7174 7175 SDValue Src = N->getOperand(0); 7176 EVT VT = N->getValueType(0); 7177 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 7178 return SDValue(); 7179 7180 // The opcode must be one that can implicitly sign_extend. 7181 // FIXME: Additional opcodes. 7182 switch (Src.getOpcode()) { 7183 default: 7184 return SDValue(); 7185 case ISD::MUL: 7186 if (!Subtarget.hasStdExtM()) 7187 return SDValue(); 7188 LLVM_FALLTHROUGH; 7189 case ISD::ADD: 7190 case ISD::SUB: 7191 break; 7192 } 7193 7194 // Only handle cases where the result is used by a CopyToReg. That likely 7195 // means the value is a liveout of the basic block. This helps prevent 7196 // infinite combine loops like PR51206. 7197 if (none_of(N->uses(), 7198 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 7199 return SDValue(); 7200 7201 SmallVector<SDNode *, 4> SetCCs; 7202 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 7203 UE = Src.getNode()->use_end(); 7204 UI != UE; ++UI) { 7205 SDNode *User = *UI; 7206 if (User == N) 7207 continue; 7208 if (UI.getUse().getResNo() != Src.getResNo()) 7209 continue; 7210 // All i32 setccs are legalized by sign extending operands. 7211 if (User->getOpcode() == ISD::SETCC) { 7212 SetCCs.push_back(User); 7213 continue; 7214 } 7215 // We don't know if we can extend this user. 7216 break; 7217 } 7218 7219 // If we don't have any SetCCs, this isn't worthwhile. 7220 if (SetCCs.empty()) 7221 return SDValue(); 7222 7223 SDLoc DL(N); 7224 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 7225 DCI.CombineTo(N, SExt); 7226 7227 // Promote all the setccs. 7228 for (SDNode *SetCC : SetCCs) { 7229 SmallVector<SDValue, 4> Ops; 7230 7231 for (unsigned j = 0; j != 2; ++j) { 7232 SDValue SOp = SetCC->getOperand(j); 7233 if (SOp == Src) 7234 Ops.push_back(SExt); 7235 else 7236 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 7237 } 7238 7239 Ops.push_back(SetCC->getOperand(2)); 7240 DCI.CombineTo(SetCC, 7241 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 7242 } 7243 return SDValue(N, 0); 7244 } 7245 7246 // Try to form VWMUL or VWMULU. 7247 // FIXME: Support VWMULSU. 7248 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 7249 bool Commute) { 7250 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7251 SDValue Op0 = N->getOperand(0); 7252 SDValue Op1 = N->getOperand(1); 7253 if (Commute) 7254 std::swap(Op0, Op1); 7255 7256 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7257 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7258 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7259 return SDValue(); 7260 7261 SDValue Mask = N->getOperand(2); 7262 SDValue VL = N->getOperand(3); 7263 7264 // Make sure the mask and VL match. 7265 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 7266 return SDValue(); 7267 7268 MVT VT = N->getSimpleValueType(0); 7269 7270 // Determine the narrow size for a widening multiply. 7271 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7272 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7273 VT.getVectorElementCount()); 7274 7275 SDLoc DL(N); 7276 7277 // See if the other operand is the same opcode. 7278 if (Op0.getOpcode() == Op1.getOpcode()) { 7279 if (!Op1.hasOneUse()) 7280 return SDValue(); 7281 7282 // Make sure the mask and VL match. 7283 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 7284 return SDValue(); 7285 7286 Op1 = Op1.getOperand(0); 7287 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 7288 // The operand is a splat of a scalar. 7289 7290 // The VL must be the same. 7291 if (Op1.getOperand(1) != VL) 7292 return SDValue(); 7293 7294 // Get the scalar value. 7295 Op1 = Op1.getOperand(0); 7296 7297 // See if have enough sign bits or zero bits in the scalar to use a 7298 // widening multiply by splatting to smaller element size. 7299 unsigned EltBits = VT.getScalarSizeInBits(); 7300 unsigned ScalarBits = Op1.getValueSizeInBits(); 7301 // Make sure we're getting all element bits from the scalar register. 7302 // FIXME: Support implicit sign extension of vmv.v.x? 7303 if (ScalarBits < EltBits) 7304 return SDValue(); 7305 7306 if (IsSignExt) { 7307 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 7308 return SDValue(); 7309 } else { 7310 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7311 if (!DAG.MaskedValueIsZero(Op1, Mask)) 7312 return SDValue(); 7313 } 7314 7315 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 7316 } else 7317 return SDValue(); 7318 7319 Op0 = Op0.getOperand(0); 7320 7321 // Re-introduce narrower extends if needed. 7322 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7323 if (Op0.getValueType() != NarrowVT) 7324 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7325 if (Op1.getValueType() != NarrowVT) 7326 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7327 7328 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7329 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7330 } 7331 7332 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 7333 switch (Op.getOpcode()) { 7334 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 7335 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 7336 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 7337 case ISD::FCEIL: return RISCVFPRndMode::RUP; 7338 case ISD::FROUND: return RISCVFPRndMode::RMM; 7339 } 7340 7341 return RISCVFPRndMode::Invalid; 7342 } 7343 7344 // Fold 7345 // (fp_to_int (froundeven X)) -> fcvt X, rne 7346 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 7347 // (fp_to_int (ffloor X)) -> fcvt X, rdn 7348 // (fp_to_int (fceil X)) -> fcvt X, rup 7349 // (fp_to_int (fround X)) -> fcvt X, rmm 7350 static SDValue performFP_TO_INTCombine(SDNode *N, 7351 TargetLowering::DAGCombinerInfo &DCI, 7352 const RISCVSubtarget &Subtarget) { 7353 SelectionDAG &DAG = DCI.DAG; 7354 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7355 MVT XLenVT = Subtarget.getXLenVT(); 7356 7357 // Only handle XLen or i32 types. Other types narrower than XLen will 7358 // eventually be legalized to XLenVT. 7359 EVT VT = N->getValueType(0); 7360 if (VT != MVT::i32 && VT != XLenVT) 7361 return SDValue(); 7362 7363 SDValue Src = N->getOperand(0); 7364 7365 // Ensure the FP type is also legal. 7366 if (!TLI.isTypeLegal(Src.getValueType())) 7367 return SDValue(); 7368 7369 // Don't do this for f16 with Zfhmin and not Zfh. 7370 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7371 return SDValue(); 7372 7373 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7374 if (FRM == RISCVFPRndMode::Invalid) 7375 return SDValue(); 7376 7377 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 7378 7379 unsigned Opc; 7380 if (VT == XLenVT) 7381 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7382 else 7383 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7384 7385 SDLoc DL(N); 7386 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 7387 DAG.getTargetConstant(FRM, DL, XLenVT)); 7388 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 7389 } 7390 7391 // Fold 7392 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 7393 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 7394 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 7395 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 7396 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 7397 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 7398 TargetLowering::DAGCombinerInfo &DCI, 7399 const RISCVSubtarget &Subtarget) { 7400 SelectionDAG &DAG = DCI.DAG; 7401 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7402 MVT XLenVT = Subtarget.getXLenVT(); 7403 7404 // Only handle XLen types. Other types narrower than XLen will eventually be 7405 // legalized to XLenVT. 7406 EVT DstVT = N->getValueType(0); 7407 if (DstVT != XLenVT) 7408 return SDValue(); 7409 7410 SDValue Src = N->getOperand(0); 7411 7412 // Ensure the FP type is also legal. 7413 if (!TLI.isTypeLegal(Src.getValueType())) 7414 return SDValue(); 7415 7416 // Don't do this for f16 with Zfhmin and not Zfh. 7417 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7418 return SDValue(); 7419 7420 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 7421 7422 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7423 if (FRM == RISCVFPRndMode::Invalid) 7424 return SDValue(); 7425 7426 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 7427 7428 unsigned Opc; 7429 if (SatVT == DstVT) 7430 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7431 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 7432 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7433 else 7434 return SDValue(); 7435 // FIXME: Support other SatVTs by clamping before or after the conversion. 7436 7437 Src = Src.getOperand(0); 7438 7439 SDLoc DL(N); 7440 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 7441 DAG.getTargetConstant(FRM, DL, XLenVT)); 7442 7443 // RISCV FP-to-int conversions saturate to the destination register size, but 7444 // don't produce 0 for nan. 7445 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 7446 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 7447 } 7448 7449 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 7450 DAGCombinerInfo &DCI) const { 7451 SelectionDAG &DAG = DCI.DAG; 7452 7453 // Helper to call SimplifyDemandedBits on an operand of N where only some low 7454 // bits are demanded. N will be added to the Worklist if it was not deleted. 7455 // Caller should return SDValue(N, 0) if this returns true. 7456 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 7457 SDValue Op = N->getOperand(OpNo); 7458 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 7459 if (!SimplifyDemandedBits(Op, Mask, DCI)) 7460 return false; 7461 7462 if (N->getOpcode() != ISD::DELETED_NODE) 7463 DCI.AddToWorklist(N); 7464 return true; 7465 }; 7466 7467 switch (N->getOpcode()) { 7468 default: 7469 break; 7470 case RISCVISD::SplitF64: { 7471 SDValue Op0 = N->getOperand(0); 7472 // If the input to SplitF64 is just BuildPairF64 then the operation is 7473 // redundant. Instead, use BuildPairF64's operands directly. 7474 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 7475 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 7476 7477 SDLoc DL(N); 7478 7479 // It's cheaper to materialise two 32-bit integers than to load a double 7480 // from the constant pool and transfer it to integer registers through the 7481 // stack. 7482 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 7483 APInt V = C->getValueAPF().bitcastToAPInt(); 7484 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 7485 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 7486 return DCI.CombineTo(N, Lo, Hi); 7487 } 7488 7489 // This is a target-specific version of a DAGCombine performed in 7490 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7491 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7492 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7493 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7494 !Op0.getNode()->hasOneUse()) 7495 break; 7496 SDValue NewSplitF64 = 7497 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 7498 Op0.getOperand(0)); 7499 SDValue Lo = NewSplitF64.getValue(0); 7500 SDValue Hi = NewSplitF64.getValue(1); 7501 APInt SignBit = APInt::getSignMask(32); 7502 if (Op0.getOpcode() == ISD::FNEG) { 7503 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 7504 DAG.getConstant(SignBit, DL, MVT::i32)); 7505 return DCI.CombineTo(N, Lo, NewHi); 7506 } 7507 assert(Op0.getOpcode() == ISD::FABS); 7508 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 7509 DAG.getConstant(~SignBit, DL, MVT::i32)); 7510 return DCI.CombineTo(N, Lo, NewHi); 7511 } 7512 case RISCVISD::SLLW: 7513 case RISCVISD::SRAW: 7514 case RISCVISD::SRLW: 7515 case RISCVISD::ROLW: 7516 case RISCVISD::RORW: { 7517 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7518 if (SimplifyDemandedLowBitsHelper(0, 32) || 7519 SimplifyDemandedLowBitsHelper(1, 5)) 7520 return SDValue(N, 0); 7521 break; 7522 } 7523 case RISCVISD::CLZW: 7524 case RISCVISD::CTZW: { 7525 // Only the lower 32 bits of the first operand are read 7526 if (SimplifyDemandedLowBitsHelper(0, 32)) 7527 return SDValue(N, 0); 7528 break; 7529 } 7530 case RISCVISD::GREV: 7531 case RISCVISD::GORC: { 7532 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 7533 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7534 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7535 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 7536 return SDValue(N, 0); 7537 7538 return combineGREVI_GORCI(N, DAG); 7539 } 7540 case RISCVISD::GREVW: 7541 case RISCVISD::GORCW: { 7542 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7543 if (SimplifyDemandedLowBitsHelper(0, 32) || 7544 SimplifyDemandedLowBitsHelper(1, 5)) 7545 return SDValue(N, 0); 7546 7547 return combineGREVI_GORCI(N, DAG); 7548 } 7549 case RISCVISD::SHFL: 7550 case RISCVISD::UNSHFL: { 7551 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 7552 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7553 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7554 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 7555 return SDValue(N, 0); 7556 7557 break; 7558 } 7559 case RISCVISD::SHFLW: 7560 case RISCVISD::UNSHFLW: { 7561 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 7562 SDValue LHS = N->getOperand(0); 7563 SDValue RHS = N->getOperand(1); 7564 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 7565 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 7566 if (SimplifyDemandedLowBitsHelper(0, 32) || 7567 SimplifyDemandedLowBitsHelper(1, 4)) 7568 return SDValue(N, 0); 7569 7570 break; 7571 } 7572 case RISCVISD::BCOMPRESSW: 7573 case RISCVISD::BDECOMPRESSW: { 7574 // Only the lower 32 bits of LHS and RHS are read. 7575 if (SimplifyDemandedLowBitsHelper(0, 32) || 7576 SimplifyDemandedLowBitsHelper(1, 32)) 7577 return SDValue(N, 0); 7578 7579 break; 7580 } 7581 case RISCVISD::FMV_X_ANYEXTH: 7582 case RISCVISD::FMV_X_ANYEXTW_RV64: { 7583 SDLoc DL(N); 7584 SDValue Op0 = N->getOperand(0); 7585 MVT VT = N->getSimpleValueType(0); 7586 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 7587 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 7588 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 7589 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 7590 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 7591 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7592 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 7593 assert(Op0.getOperand(0).getValueType() == VT && 7594 "Unexpected value type!"); 7595 return Op0.getOperand(0); 7596 } 7597 7598 // This is a target-specific version of a DAGCombine performed in 7599 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7600 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7601 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7602 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7603 !Op0.getNode()->hasOneUse()) 7604 break; 7605 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 7606 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 7607 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 7608 if (Op0.getOpcode() == ISD::FNEG) 7609 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 7610 DAG.getConstant(SignBit, DL, VT)); 7611 7612 assert(Op0.getOpcode() == ISD::FABS); 7613 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 7614 DAG.getConstant(~SignBit, DL, VT)); 7615 } 7616 case ISD::ADD: 7617 return performADDCombine(N, DAG, Subtarget); 7618 case ISD::SUB: 7619 return performSUBCombine(N, DAG); 7620 case ISD::AND: 7621 return performANDCombine(N, DAG); 7622 case ISD::OR: 7623 return performORCombine(N, DAG, Subtarget); 7624 case ISD::XOR: 7625 return performXORCombine(N, DAG); 7626 case ISD::ANY_EXTEND: 7627 return performANY_EXTENDCombine(N, DCI, Subtarget); 7628 case ISD::ZERO_EXTEND: 7629 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 7630 // type legalization. This is safe because fp_to_uint produces poison if 7631 // it overflows. 7632 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 7633 SDValue Src = N->getOperand(0); 7634 if (Src.getOpcode() == ISD::FP_TO_UINT && 7635 isTypeLegal(Src.getOperand(0).getValueType())) 7636 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 7637 Src.getOperand(0)); 7638 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 7639 isTypeLegal(Src.getOperand(1).getValueType())) { 7640 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 7641 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 7642 Src.getOperand(0), Src.getOperand(1)); 7643 DCI.CombineTo(N, Res); 7644 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 7645 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 7646 return SDValue(N, 0); // Return N so it doesn't get rechecked. 7647 } 7648 } 7649 return SDValue(); 7650 case RISCVISD::SELECT_CC: { 7651 // Transform 7652 SDValue LHS = N->getOperand(0); 7653 SDValue RHS = N->getOperand(1); 7654 SDValue TrueV = N->getOperand(3); 7655 SDValue FalseV = N->getOperand(4); 7656 7657 // If the True and False values are the same, we don't need a select_cc. 7658 if (TrueV == FalseV) 7659 return TrueV; 7660 7661 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 7662 if (!ISD::isIntEqualitySetCC(CCVal)) 7663 break; 7664 7665 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 7666 // (select_cc X, Y, lt, trueV, falseV) 7667 // Sometimes the setcc is introduced after select_cc has been formed. 7668 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7669 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7670 // If we're looking for eq 0 instead of ne 0, we need to invert the 7671 // condition. 7672 bool Invert = CCVal == ISD::SETEQ; 7673 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7674 if (Invert) 7675 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7676 7677 SDLoc DL(N); 7678 RHS = LHS.getOperand(1); 7679 LHS = LHS.getOperand(0); 7680 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7681 7682 SDValue TargetCC = DAG.getCondCode(CCVal); 7683 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7684 {LHS, RHS, TargetCC, TrueV, FalseV}); 7685 } 7686 7687 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 7688 // (select_cc X, Y, eq/ne, trueV, falseV) 7689 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7690 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 7691 {LHS.getOperand(0), LHS.getOperand(1), 7692 N->getOperand(2), TrueV, FalseV}); 7693 // (select_cc X, 1, setne, trueV, falseV) -> 7694 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 7695 // This can occur when legalizing some floating point comparisons. 7696 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7697 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7698 SDLoc DL(N); 7699 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7700 SDValue TargetCC = DAG.getCondCode(CCVal); 7701 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7702 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7703 {LHS, RHS, TargetCC, TrueV, FalseV}); 7704 } 7705 7706 break; 7707 } 7708 case RISCVISD::BR_CC: { 7709 SDValue LHS = N->getOperand(1); 7710 SDValue RHS = N->getOperand(2); 7711 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 7712 if (!ISD::isIntEqualitySetCC(CCVal)) 7713 break; 7714 7715 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 7716 // (br_cc X, Y, lt, dest) 7717 // Sometimes the setcc is introduced after br_cc has been formed. 7718 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7719 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7720 // If we're looking for eq 0 instead of ne 0, we need to invert the 7721 // condition. 7722 bool Invert = CCVal == ISD::SETEQ; 7723 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7724 if (Invert) 7725 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7726 7727 SDLoc DL(N); 7728 RHS = LHS.getOperand(1); 7729 LHS = LHS.getOperand(0); 7730 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7731 7732 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7733 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7734 N->getOperand(4)); 7735 } 7736 7737 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7738 // (br_cc X, Y, eq/ne, trueV, falseV) 7739 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7740 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7741 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7742 N->getOperand(3), N->getOperand(4)); 7743 7744 // (br_cc X, 1, setne, br_cc) -> 7745 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7746 // This can occur when legalizing some floating point comparisons. 7747 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7748 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7749 SDLoc DL(N); 7750 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7751 SDValue TargetCC = DAG.getCondCode(CCVal); 7752 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7753 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7754 N->getOperand(0), LHS, RHS, TargetCC, 7755 N->getOperand(4)); 7756 } 7757 break; 7758 } 7759 case ISD::FP_TO_SINT: 7760 case ISD::FP_TO_UINT: 7761 return performFP_TO_INTCombine(N, DCI, Subtarget); 7762 case ISD::FP_TO_SINT_SAT: 7763 case ISD::FP_TO_UINT_SAT: 7764 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 7765 case ISD::FCOPYSIGN: { 7766 EVT VT = N->getValueType(0); 7767 if (!VT.isVector()) 7768 break; 7769 // There is a form of VFSGNJ which injects the negated sign of its second 7770 // operand. Try and bubble any FNEG up after the extend/round to produce 7771 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7772 // TRUNC=1. 7773 SDValue In2 = N->getOperand(1); 7774 // Avoid cases where the extend/round has multiple uses, as duplicating 7775 // those is typically more expensive than removing a fneg. 7776 if (!In2.hasOneUse()) 7777 break; 7778 if (In2.getOpcode() != ISD::FP_EXTEND && 7779 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7780 break; 7781 In2 = In2.getOperand(0); 7782 if (In2.getOpcode() != ISD::FNEG) 7783 break; 7784 SDLoc DL(N); 7785 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7786 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7787 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7788 } 7789 case ISD::MGATHER: 7790 case ISD::MSCATTER: 7791 case ISD::VP_GATHER: 7792 case ISD::VP_SCATTER: { 7793 if (!DCI.isBeforeLegalize()) 7794 break; 7795 SDValue Index, ScaleOp; 7796 bool IsIndexScaled = false; 7797 bool IsIndexSigned = false; 7798 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7799 Index = VPGSN->getIndex(); 7800 ScaleOp = VPGSN->getScale(); 7801 IsIndexScaled = VPGSN->isIndexScaled(); 7802 IsIndexSigned = VPGSN->isIndexSigned(); 7803 } else { 7804 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7805 Index = MGSN->getIndex(); 7806 ScaleOp = MGSN->getScale(); 7807 IsIndexScaled = MGSN->isIndexScaled(); 7808 IsIndexSigned = MGSN->isIndexSigned(); 7809 } 7810 EVT IndexVT = Index.getValueType(); 7811 MVT XLenVT = Subtarget.getXLenVT(); 7812 // RISCV indexed loads only support the "unsigned unscaled" addressing 7813 // mode, so anything else must be manually legalized. 7814 bool NeedsIdxLegalization = 7815 IsIndexScaled || 7816 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7817 if (!NeedsIdxLegalization) 7818 break; 7819 7820 SDLoc DL(N); 7821 7822 // Any index legalization should first promote to XLenVT, so we don't lose 7823 // bits when scaling. This may create an illegal index type so we let 7824 // LLVM's legalization take care of the splitting. 7825 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7826 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7827 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7828 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7829 DL, IndexVT, Index); 7830 } 7831 7832 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7833 if (IsIndexScaled && Scale != 1) { 7834 // Manually scale the indices by the element size. 7835 // TODO: Sanitize the scale operand here? 7836 // TODO: For VP nodes, should we use VP_SHL here? 7837 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7838 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7839 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7840 } 7841 7842 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7843 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7844 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7845 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7846 VPGN->getScale(), VPGN->getMask(), 7847 VPGN->getVectorLength()}, 7848 VPGN->getMemOperand(), NewIndexTy); 7849 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7850 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7851 {VPSN->getChain(), VPSN->getValue(), 7852 VPSN->getBasePtr(), Index, VPSN->getScale(), 7853 VPSN->getMask(), VPSN->getVectorLength()}, 7854 VPSN->getMemOperand(), NewIndexTy); 7855 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7856 return DAG.getMaskedGather( 7857 N->getVTList(), MGN->getMemoryVT(), DL, 7858 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7859 MGN->getBasePtr(), Index, MGN->getScale()}, 7860 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7861 const auto *MSN = cast<MaskedScatterSDNode>(N); 7862 return DAG.getMaskedScatter( 7863 N->getVTList(), MSN->getMemoryVT(), DL, 7864 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7865 Index, MSN->getScale()}, 7866 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7867 } 7868 case RISCVISD::SRA_VL: 7869 case RISCVISD::SRL_VL: 7870 case RISCVISD::SHL_VL: { 7871 SDValue ShAmt = N->getOperand(1); 7872 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7873 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7874 SDLoc DL(N); 7875 SDValue VL = N->getOperand(3); 7876 EVT VT = N->getValueType(0); 7877 ShAmt = 7878 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7879 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7880 N->getOperand(2), N->getOperand(3)); 7881 } 7882 break; 7883 } 7884 case ISD::SRA: 7885 case ISD::SRL: 7886 case ISD::SHL: { 7887 SDValue ShAmt = N->getOperand(1); 7888 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7889 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7890 SDLoc DL(N); 7891 EVT VT = N->getValueType(0); 7892 ShAmt = 7893 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7894 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7895 } 7896 break; 7897 } 7898 case RISCVISD::MUL_VL: 7899 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 7900 return V; 7901 // Mul is commutative. 7902 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 7903 case ISD::STORE: { 7904 auto *Store = cast<StoreSDNode>(N); 7905 SDValue Val = Store->getValue(); 7906 // Combine store of vmv.x.s to vse with VL of 1. 7907 // FIXME: Support FP. 7908 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7909 SDValue Src = Val.getOperand(0); 7910 EVT VecVT = Src.getValueType(); 7911 EVT MemVT = Store->getMemoryVT(); 7912 // The memory VT and the element type must match. 7913 if (VecVT.getVectorElementType() == MemVT) { 7914 SDLoc DL(N); 7915 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7916 return DAG.getStoreVP( 7917 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 7918 DAG.getConstant(1, DL, MaskVT), 7919 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 7920 Store->getMemOperand(), Store->getAddressingMode(), 7921 Store->isTruncatingStore(), /*IsCompress*/ false); 7922 } 7923 } 7924 7925 break; 7926 } 7927 } 7928 7929 return SDValue(); 7930 } 7931 7932 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7933 const SDNode *N, CombineLevel Level) const { 7934 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7935 // materialised in fewer instructions than `(OP _, c1)`: 7936 // 7937 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7938 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7939 SDValue N0 = N->getOperand(0); 7940 EVT Ty = N0.getValueType(); 7941 if (Ty.isScalarInteger() && 7942 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7943 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7944 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7945 if (C1 && C2) { 7946 const APInt &C1Int = C1->getAPIntValue(); 7947 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7948 7949 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7950 // and the combine should happen, to potentially allow further combines 7951 // later. 7952 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7953 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7954 return true; 7955 7956 // We can materialise `c1` in an add immediate, so it's "free", and the 7957 // combine should be prevented. 7958 if (C1Int.getMinSignedBits() <= 64 && 7959 isLegalAddImmediate(C1Int.getSExtValue())) 7960 return false; 7961 7962 // Neither constant will fit into an immediate, so find materialisation 7963 // costs. 7964 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7965 Subtarget.getFeatureBits(), 7966 /*CompressionCost*/true); 7967 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7968 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7969 /*CompressionCost*/true); 7970 7971 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7972 // combine should be prevented. 7973 if (C1Cost < ShiftedC1Cost) 7974 return false; 7975 } 7976 } 7977 return true; 7978 } 7979 7980 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7981 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7982 TargetLoweringOpt &TLO) const { 7983 // Delay this optimization as late as possible. 7984 if (!TLO.LegalOps) 7985 return false; 7986 7987 EVT VT = Op.getValueType(); 7988 if (VT.isVector()) 7989 return false; 7990 7991 // Only handle AND for now. 7992 if (Op.getOpcode() != ISD::AND) 7993 return false; 7994 7995 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7996 if (!C) 7997 return false; 7998 7999 const APInt &Mask = C->getAPIntValue(); 8000 8001 // Clear all non-demanded bits initially. 8002 APInt ShrunkMask = Mask & DemandedBits; 8003 8004 // Try to make a smaller immediate by setting undemanded bits. 8005 8006 APInt ExpandedMask = Mask | ~DemandedBits; 8007 8008 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 8009 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 8010 }; 8011 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 8012 if (NewMask == Mask) 8013 return true; 8014 SDLoc DL(Op); 8015 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 8016 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 8017 return TLO.CombineTo(Op, NewOp); 8018 }; 8019 8020 // If the shrunk mask fits in sign extended 12 bits, let the target 8021 // independent code apply it. 8022 if (ShrunkMask.isSignedIntN(12)) 8023 return false; 8024 8025 // Preserve (and X, 0xffff) when zext.h is supported. 8026 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 8027 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 8028 if (IsLegalMask(NewMask)) 8029 return UseMask(NewMask); 8030 } 8031 8032 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 8033 if (VT == MVT::i64) { 8034 APInt NewMask = APInt(64, 0xffffffff); 8035 if (IsLegalMask(NewMask)) 8036 return UseMask(NewMask); 8037 } 8038 8039 // For the remaining optimizations, we need to be able to make a negative 8040 // number through a combination of mask and undemanded bits. 8041 if (!ExpandedMask.isNegative()) 8042 return false; 8043 8044 // What is the fewest number of bits we need to represent the negative number. 8045 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 8046 8047 // Try to make a 12 bit negative immediate. If that fails try to make a 32 8048 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 8049 APInt NewMask = ShrunkMask; 8050 if (MinSignedBits <= 12) 8051 NewMask.setBitsFrom(11); 8052 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 8053 NewMask.setBitsFrom(31); 8054 else 8055 return false; 8056 8057 // Check that our new mask is a subset of the demanded mask. 8058 assert(IsLegalMask(NewMask)); 8059 return UseMask(NewMask); 8060 } 8061 8062 static void computeGREV(APInt &Src, unsigned ShAmt) { 8063 ShAmt &= Src.getBitWidth() - 1; 8064 uint64_t x = Src.getZExtValue(); 8065 if (ShAmt & 1) 8066 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 8067 if (ShAmt & 2) 8068 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 8069 if (ShAmt & 4) 8070 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 8071 if (ShAmt & 8) 8072 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 8073 if (ShAmt & 16) 8074 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 8075 if (ShAmt & 32) 8076 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 8077 Src = x; 8078 } 8079 8080 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 8081 KnownBits &Known, 8082 const APInt &DemandedElts, 8083 const SelectionDAG &DAG, 8084 unsigned Depth) const { 8085 unsigned BitWidth = Known.getBitWidth(); 8086 unsigned Opc = Op.getOpcode(); 8087 assert((Opc >= ISD::BUILTIN_OP_END || 8088 Opc == ISD::INTRINSIC_WO_CHAIN || 8089 Opc == ISD::INTRINSIC_W_CHAIN || 8090 Opc == ISD::INTRINSIC_VOID) && 8091 "Should use MaskedValueIsZero if you don't know whether Op" 8092 " is a target node!"); 8093 8094 Known.resetAll(); 8095 switch (Opc) { 8096 default: break; 8097 case RISCVISD::SELECT_CC: { 8098 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 8099 // If we don't know any bits, early out. 8100 if (Known.isUnknown()) 8101 break; 8102 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 8103 8104 // Only known if known in both the LHS and RHS. 8105 Known = KnownBits::commonBits(Known, Known2); 8106 break; 8107 } 8108 case RISCVISD::REMUW: { 8109 KnownBits Known2; 8110 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8111 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8112 // We only care about the lower 32 bits. 8113 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 8114 // Restore the original width by sign extending. 8115 Known = Known.sext(BitWidth); 8116 break; 8117 } 8118 case RISCVISD::DIVUW: { 8119 KnownBits Known2; 8120 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8121 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8122 // We only care about the lower 32 bits. 8123 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 8124 // Restore the original width by sign extending. 8125 Known = Known.sext(BitWidth); 8126 break; 8127 } 8128 case RISCVISD::CTZW: { 8129 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8130 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 8131 unsigned LowBits = Log2_32(PossibleTZ) + 1; 8132 Known.Zero.setBitsFrom(LowBits); 8133 break; 8134 } 8135 case RISCVISD::CLZW: { 8136 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8137 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 8138 unsigned LowBits = Log2_32(PossibleLZ) + 1; 8139 Known.Zero.setBitsFrom(LowBits); 8140 break; 8141 } 8142 case RISCVISD::GREV: 8143 case RISCVISD::GREVW: { 8144 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8145 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8146 if (Opc == RISCVISD::GREVW) 8147 Known = Known.trunc(32); 8148 unsigned ShAmt = C->getZExtValue(); 8149 computeGREV(Known.Zero, ShAmt); 8150 computeGREV(Known.One, ShAmt); 8151 if (Opc == RISCVISD::GREVW) 8152 Known = Known.sext(BitWidth); 8153 } 8154 break; 8155 } 8156 case RISCVISD::READ_VLENB: 8157 // We assume VLENB is at least 16 bytes. 8158 Known.Zero.setLowBits(4); 8159 // We assume VLENB is no more than 65536 / 8 bytes. 8160 Known.Zero.setBitsFrom(14); 8161 break; 8162 case ISD::INTRINSIC_W_CHAIN: { 8163 unsigned IntNo = Op.getConstantOperandVal(1); 8164 switch (IntNo) { 8165 default: 8166 // We can't do anything for most intrinsics. 8167 break; 8168 case Intrinsic::riscv_vsetvli: 8169 case Intrinsic::riscv_vsetvlimax: 8170 // Assume that VL output is positive and would fit in an int32_t. 8171 // TODO: VLEN might be capped at 16 bits in a future V spec update. 8172 if (BitWidth >= 32) 8173 Known.Zero.setBitsFrom(31); 8174 break; 8175 } 8176 break; 8177 } 8178 } 8179 } 8180 8181 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 8182 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 8183 unsigned Depth) const { 8184 switch (Op.getOpcode()) { 8185 default: 8186 break; 8187 case RISCVISD::SELECT_CC: { 8188 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 8189 if (Tmp == 1) return 1; // Early out. 8190 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 8191 return std::min(Tmp, Tmp2); 8192 } 8193 case RISCVISD::SLLW: 8194 case RISCVISD::SRAW: 8195 case RISCVISD::SRLW: 8196 case RISCVISD::DIVW: 8197 case RISCVISD::DIVUW: 8198 case RISCVISD::REMUW: 8199 case RISCVISD::ROLW: 8200 case RISCVISD::RORW: 8201 case RISCVISD::GREVW: 8202 case RISCVISD::GORCW: 8203 case RISCVISD::FSLW: 8204 case RISCVISD::FSRW: 8205 case RISCVISD::SHFLW: 8206 case RISCVISD::UNSHFLW: 8207 case RISCVISD::BCOMPRESSW: 8208 case RISCVISD::BDECOMPRESSW: 8209 case RISCVISD::BFPW: 8210 case RISCVISD::FCVT_W_RV64: 8211 case RISCVISD::FCVT_WU_RV64: 8212 case RISCVISD::STRICT_FCVT_W_RV64: 8213 case RISCVISD::STRICT_FCVT_WU_RV64: 8214 // TODO: As the result is sign-extended, this is conservatively correct. A 8215 // more precise answer could be calculated for SRAW depending on known 8216 // bits in the shift amount. 8217 return 33; 8218 case RISCVISD::SHFL: 8219 case RISCVISD::UNSHFL: { 8220 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 8221 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 8222 // will stay within the upper 32 bits. If there were more than 32 sign bits 8223 // before there will be at least 33 sign bits after. 8224 if (Op.getValueType() == MVT::i64 && 8225 isa<ConstantSDNode>(Op.getOperand(1)) && 8226 (Op.getConstantOperandVal(1) & 0x10) == 0) { 8227 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 8228 if (Tmp > 32) 8229 return 33; 8230 } 8231 break; 8232 } 8233 case RISCVISD::VMV_X_S: 8234 // The number of sign bits of the scalar result is computed by obtaining the 8235 // element type of the input vector operand, subtracting its width from the 8236 // XLEN, and then adding one (sign bit within the element type). If the 8237 // element type is wider than XLen, the least-significant XLEN bits are 8238 // taken. 8239 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 8240 return 1; 8241 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 8242 } 8243 8244 return 1; 8245 } 8246 8247 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 8248 MachineBasicBlock *BB) { 8249 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 8250 8251 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 8252 // Should the count have wrapped while it was being read, we need to try 8253 // again. 8254 // ... 8255 // read: 8256 // rdcycleh x3 # load high word of cycle 8257 // rdcycle x2 # load low word of cycle 8258 // rdcycleh x4 # load high word of cycle 8259 // bne x3, x4, read # check if high word reads match, otherwise try again 8260 // ... 8261 8262 MachineFunction &MF = *BB->getParent(); 8263 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8264 MachineFunction::iterator It = ++BB->getIterator(); 8265 8266 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8267 MF.insert(It, LoopMBB); 8268 8269 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8270 MF.insert(It, DoneMBB); 8271 8272 // Transfer the remainder of BB and its successor edges to DoneMBB. 8273 DoneMBB->splice(DoneMBB->begin(), BB, 8274 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8275 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 8276 8277 BB->addSuccessor(LoopMBB); 8278 8279 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8280 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8281 Register LoReg = MI.getOperand(0).getReg(); 8282 Register HiReg = MI.getOperand(1).getReg(); 8283 DebugLoc DL = MI.getDebugLoc(); 8284 8285 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 8286 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 8287 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8288 .addReg(RISCV::X0); 8289 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 8290 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 8291 .addReg(RISCV::X0); 8292 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 8293 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8294 .addReg(RISCV::X0); 8295 8296 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 8297 .addReg(HiReg) 8298 .addReg(ReadAgainReg) 8299 .addMBB(LoopMBB); 8300 8301 LoopMBB->addSuccessor(LoopMBB); 8302 LoopMBB->addSuccessor(DoneMBB); 8303 8304 MI.eraseFromParent(); 8305 8306 return DoneMBB; 8307 } 8308 8309 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 8310 MachineBasicBlock *BB) { 8311 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 8312 8313 MachineFunction &MF = *BB->getParent(); 8314 DebugLoc DL = MI.getDebugLoc(); 8315 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8316 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8317 Register LoReg = MI.getOperand(0).getReg(); 8318 Register HiReg = MI.getOperand(1).getReg(); 8319 Register SrcReg = MI.getOperand(2).getReg(); 8320 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 8321 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8322 8323 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 8324 RI); 8325 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8326 MachineMemOperand *MMOLo = 8327 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 8328 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8329 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 8330 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 8331 .addFrameIndex(FI) 8332 .addImm(0) 8333 .addMemOperand(MMOLo); 8334 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 8335 .addFrameIndex(FI) 8336 .addImm(4) 8337 .addMemOperand(MMOHi); 8338 MI.eraseFromParent(); // The pseudo instruction is gone now. 8339 return BB; 8340 } 8341 8342 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 8343 MachineBasicBlock *BB) { 8344 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 8345 "Unexpected instruction"); 8346 8347 MachineFunction &MF = *BB->getParent(); 8348 DebugLoc DL = MI.getDebugLoc(); 8349 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8350 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8351 Register DstReg = MI.getOperand(0).getReg(); 8352 Register LoReg = MI.getOperand(1).getReg(); 8353 Register HiReg = MI.getOperand(2).getReg(); 8354 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 8355 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8356 8357 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8358 MachineMemOperand *MMOLo = 8359 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 8360 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8361 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 8362 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8363 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 8364 .addFrameIndex(FI) 8365 .addImm(0) 8366 .addMemOperand(MMOLo); 8367 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8368 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 8369 .addFrameIndex(FI) 8370 .addImm(4) 8371 .addMemOperand(MMOHi); 8372 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 8373 MI.eraseFromParent(); // The pseudo instruction is gone now. 8374 return BB; 8375 } 8376 8377 static bool isSelectPseudo(MachineInstr &MI) { 8378 switch (MI.getOpcode()) { 8379 default: 8380 return false; 8381 case RISCV::Select_GPR_Using_CC_GPR: 8382 case RISCV::Select_FPR16_Using_CC_GPR: 8383 case RISCV::Select_FPR32_Using_CC_GPR: 8384 case RISCV::Select_FPR64_Using_CC_GPR: 8385 return true; 8386 } 8387 } 8388 8389 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 8390 unsigned RelOpcode, unsigned EqOpcode, 8391 const RISCVSubtarget &Subtarget) { 8392 DebugLoc DL = MI.getDebugLoc(); 8393 Register DstReg = MI.getOperand(0).getReg(); 8394 Register Src1Reg = MI.getOperand(1).getReg(); 8395 Register Src2Reg = MI.getOperand(2).getReg(); 8396 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 8397 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 8398 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 8399 8400 // Save the current FFLAGS. 8401 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 8402 8403 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 8404 .addReg(Src1Reg) 8405 .addReg(Src2Reg); 8406 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8407 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 8408 8409 // Restore the FFLAGS. 8410 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 8411 .addReg(SavedFFlags, RegState::Kill); 8412 8413 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 8414 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 8415 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 8416 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 8417 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8418 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 8419 8420 // Erase the pseudoinstruction. 8421 MI.eraseFromParent(); 8422 return BB; 8423 } 8424 8425 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 8426 MachineBasicBlock *BB, 8427 const RISCVSubtarget &Subtarget) { 8428 // To "insert" Select_* instructions, we actually have to insert the triangle 8429 // control-flow pattern. The incoming instructions know the destination vreg 8430 // to set, the condition code register to branch on, the true/false values to 8431 // select between, and the condcode to use to select the appropriate branch. 8432 // 8433 // We produce the following control flow: 8434 // HeadMBB 8435 // | \ 8436 // | IfFalseMBB 8437 // | / 8438 // TailMBB 8439 // 8440 // When we find a sequence of selects we attempt to optimize their emission 8441 // by sharing the control flow. Currently we only handle cases where we have 8442 // multiple selects with the exact same condition (same LHS, RHS and CC). 8443 // The selects may be interleaved with other instructions if the other 8444 // instructions meet some requirements we deem safe: 8445 // - They are debug instructions. Otherwise, 8446 // - They do not have side-effects, do not access memory and their inputs do 8447 // not depend on the results of the select pseudo-instructions. 8448 // The TrueV/FalseV operands of the selects cannot depend on the result of 8449 // previous selects in the sequence. 8450 // These conditions could be further relaxed. See the X86 target for a 8451 // related approach and more information. 8452 Register LHS = MI.getOperand(1).getReg(); 8453 Register RHS = MI.getOperand(2).getReg(); 8454 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 8455 8456 SmallVector<MachineInstr *, 4> SelectDebugValues; 8457 SmallSet<Register, 4> SelectDests; 8458 SelectDests.insert(MI.getOperand(0).getReg()); 8459 8460 MachineInstr *LastSelectPseudo = &MI; 8461 8462 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 8463 SequenceMBBI != E; ++SequenceMBBI) { 8464 if (SequenceMBBI->isDebugInstr()) 8465 continue; 8466 else if (isSelectPseudo(*SequenceMBBI)) { 8467 if (SequenceMBBI->getOperand(1).getReg() != LHS || 8468 SequenceMBBI->getOperand(2).getReg() != RHS || 8469 SequenceMBBI->getOperand(3).getImm() != CC || 8470 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 8471 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 8472 break; 8473 LastSelectPseudo = &*SequenceMBBI; 8474 SequenceMBBI->collectDebugValues(SelectDebugValues); 8475 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 8476 } else { 8477 if (SequenceMBBI->hasUnmodeledSideEffects() || 8478 SequenceMBBI->mayLoadOrStore()) 8479 break; 8480 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 8481 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 8482 })) 8483 break; 8484 } 8485 } 8486 8487 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 8488 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8489 DebugLoc DL = MI.getDebugLoc(); 8490 MachineFunction::iterator I = ++BB->getIterator(); 8491 8492 MachineBasicBlock *HeadMBB = BB; 8493 MachineFunction *F = BB->getParent(); 8494 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 8495 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 8496 8497 F->insert(I, IfFalseMBB); 8498 F->insert(I, TailMBB); 8499 8500 // Transfer debug instructions associated with the selects to TailMBB. 8501 for (MachineInstr *DebugInstr : SelectDebugValues) { 8502 TailMBB->push_back(DebugInstr->removeFromParent()); 8503 } 8504 8505 // Move all instructions after the sequence to TailMBB. 8506 TailMBB->splice(TailMBB->end(), HeadMBB, 8507 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 8508 // Update machine-CFG edges by transferring all successors of the current 8509 // block to the new block which will contain the Phi nodes for the selects. 8510 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 8511 // Set the successors for HeadMBB. 8512 HeadMBB->addSuccessor(IfFalseMBB); 8513 HeadMBB->addSuccessor(TailMBB); 8514 8515 // Insert appropriate branch. 8516 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 8517 .addReg(LHS) 8518 .addReg(RHS) 8519 .addMBB(TailMBB); 8520 8521 // IfFalseMBB just falls through to TailMBB. 8522 IfFalseMBB->addSuccessor(TailMBB); 8523 8524 // Create PHIs for all of the select pseudo-instructions. 8525 auto SelectMBBI = MI.getIterator(); 8526 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 8527 auto InsertionPoint = TailMBB->begin(); 8528 while (SelectMBBI != SelectEnd) { 8529 auto Next = std::next(SelectMBBI); 8530 if (isSelectPseudo(*SelectMBBI)) { 8531 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 8532 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 8533 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 8534 .addReg(SelectMBBI->getOperand(4).getReg()) 8535 .addMBB(HeadMBB) 8536 .addReg(SelectMBBI->getOperand(5).getReg()) 8537 .addMBB(IfFalseMBB); 8538 SelectMBBI->eraseFromParent(); 8539 } 8540 SelectMBBI = Next; 8541 } 8542 8543 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8544 return TailMBB; 8545 } 8546 8547 MachineBasicBlock * 8548 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 8549 MachineBasicBlock *BB) const { 8550 switch (MI.getOpcode()) { 8551 default: 8552 llvm_unreachable("Unexpected instr type to insert"); 8553 case RISCV::ReadCycleWide: 8554 assert(!Subtarget.is64Bit() && 8555 "ReadCycleWrite is only to be used on riscv32"); 8556 return emitReadCycleWidePseudo(MI, BB); 8557 case RISCV::Select_GPR_Using_CC_GPR: 8558 case RISCV::Select_FPR16_Using_CC_GPR: 8559 case RISCV::Select_FPR32_Using_CC_GPR: 8560 case RISCV::Select_FPR64_Using_CC_GPR: 8561 return emitSelectPseudo(MI, BB, Subtarget); 8562 case RISCV::BuildPairF64Pseudo: 8563 return emitBuildPairF64Pseudo(MI, BB); 8564 case RISCV::SplitF64Pseudo: 8565 return emitSplitF64Pseudo(MI, BB); 8566 case RISCV::PseudoQuietFLE_H: 8567 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 8568 case RISCV::PseudoQuietFLT_H: 8569 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 8570 case RISCV::PseudoQuietFLE_S: 8571 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 8572 case RISCV::PseudoQuietFLT_S: 8573 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 8574 case RISCV::PseudoQuietFLE_D: 8575 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 8576 case RISCV::PseudoQuietFLT_D: 8577 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 8578 } 8579 } 8580 8581 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 8582 SDNode *Node) const { 8583 // Add FRM dependency to any instructions with dynamic rounding mode. 8584 unsigned Opc = MI.getOpcode(); 8585 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 8586 if (Idx < 0) 8587 return; 8588 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 8589 return; 8590 // If the instruction already reads FRM, don't add another read. 8591 if (MI.readsRegister(RISCV::FRM)) 8592 return; 8593 MI.addOperand( 8594 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 8595 } 8596 8597 // Calling Convention Implementation. 8598 // The expectations for frontend ABI lowering vary from target to target. 8599 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 8600 // details, but this is a longer term goal. For now, we simply try to keep the 8601 // role of the frontend as simple and well-defined as possible. The rules can 8602 // be summarised as: 8603 // * Never split up large scalar arguments. We handle them here. 8604 // * If a hardfloat calling convention is being used, and the struct may be 8605 // passed in a pair of registers (fp+fp, int+fp), and both registers are 8606 // available, then pass as two separate arguments. If either the GPRs or FPRs 8607 // are exhausted, then pass according to the rule below. 8608 // * If a struct could never be passed in registers or directly in a stack 8609 // slot (as it is larger than 2*XLEN and the floating point rules don't 8610 // apply), then pass it using a pointer with the byval attribute. 8611 // * If a struct is less than 2*XLEN, then coerce to either a two-element 8612 // word-sized array or a 2*XLEN scalar (depending on alignment). 8613 // * The frontend can determine whether a struct is returned by reference or 8614 // not based on its size and fields. If it will be returned by reference, the 8615 // frontend must modify the prototype so a pointer with the sret annotation is 8616 // passed as the first argument. This is not necessary for large scalar 8617 // returns. 8618 // * Struct return values and varargs should be coerced to structs containing 8619 // register-size fields in the same situations they would be for fixed 8620 // arguments. 8621 8622 static const MCPhysReg ArgGPRs[] = { 8623 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 8624 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 8625 }; 8626 static const MCPhysReg ArgFPR16s[] = { 8627 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 8628 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 8629 }; 8630 static const MCPhysReg ArgFPR32s[] = { 8631 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 8632 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 8633 }; 8634 static const MCPhysReg ArgFPR64s[] = { 8635 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 8636 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 8637 }; 8638 // This is an interim calling convention and it may be changed in the future. 8639 static const MCPhysReg ArgVRs[] = { 8640 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 8641 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 8642 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 8643 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 8644 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 8645 RISCV::V20M2, RISCV::V22M2}; 8646 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 8647 RISCV::V20M4}; 8648 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 8649 8650 // Pass a 2*XLEN argument that has been split into two XLEN values through 8651 // registers or the stack as necessary. 8652 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 8653 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 8654 MVT ValVT2, MVT LocVT2, 8655 ISD::ArgFlagsTy ArgFlags2) { 8656 unsigned XLenInBytes = XLen / 8; 8657 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8658 // At least one half can be passed via register. 8659 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 8660 VA1.getLocVT(), CCValAssign::Full)); 8661 } else { 8662 // Both halves must be passed on the stack, with proper alignment. 8663 Align StackAlign = 8664 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 8665 State.addLoc( 8666 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 8667 State.AllocateStack(XLenInBytes, StackAlign), 8668 VA1.getLocVT(), CCValAssign::Full)); 8669 State.addLoc(CCValAssign::getMem( 8670 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8671 LocVT2, CCValAssign::Full)); 8672 return false; 8673 } 8674 8675 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8676 // The second half can also be passed via register. 8677 State.addLoc( 8678 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 8679 } else { 8680 // The second half is passed via the stack, without additional alignment. 8681 State.addLoc(CCValAssign::getMem( 8682 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8683 LocVT2, CCValAssign::Full)); 8684 } 8685 8686 return false; 8687 } 8688 8689 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 8690 Optional<unsigned> FirstMaskArgument, 8691 CCState &State, const RISCVTargetLowering &TLI) { 8692 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 8693 if (RC == &RISCV::VRRegClass) { 8694 // Assign the first mask argument to V0. 8695 // This is an interim calling convention and it may be changed in the 8696 // future. 8697 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 8698 return State.AllocateReg(RISCV::V0); 8699 return State.AllocateReg(ArgVRs); 8700 } 8701 if (RC == &RISCV::VRM2RegClass) 8702 return State.AllocateReg(ArgVRM2s); 8703 if (RC == &RISCV::VRM4RegClass) 8704 return State.AllocateReg(ArgVRM4s); 8705 if (RC == &RISCV::VRM8RegClass) 8706 return State.AllocateReg(ArgVRM8s); 8707 llvm_unreachable("Unhandled register class for ValueType"); 8708 } 8709 8710 // Implements the RISC-V calling convention. Returns true upon failure. 8711 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 8712 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 8713 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 8714 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 8715 Optional<unsigned> FirstMaskArgument) { 8716 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 8717 assert(XLen == 32 || XLen == 64); 8718 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 8719 8720 // Any return value split in to more than two values can't be returned 8721 // directly. Vectors are returned via the available vector registers. 8722 if (!LocVT.isVector() && IsRet && ValNo > 1) 8723 return true; 8724 8725 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 8726 // variadic argument, or if no F16/F32 argument registers are available. 8727 bool UseGPRForF16_F32 = true; 8728 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 8729 // variadic argument, or if no F64 argument registers are available. 8730 bool UseGPRForF64 = true; 8731 8732 switch (ABI) { 8733 default: 8734 llvm_unreachable("Unexpected ABI"); 8735 case RISCVABI::ABI_ILP32: 8736 case RISCVABI::ABI_LP64: 8737 break; 8738 case RISCVABI::ABI_ILP32F: 8739 case RISCVABI::ABI_LP64F: 8740 UseGPRForF16_F32 = !IsFixed; 8741 break; 8742 case RISCVABI::ABI_ILP32D: 8743 case RISCVABI::ABI_LP64D: 8744 UseGPRForF16_F32 = !IsFixed; 8745 UseGPRForF64 = !IsFixed; 8746 break; 8747 } 8748 8749 // FPR16, FPR32, and FPR64 alias each other. 8750 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 8751 UseGPRForF16_F32 = true; 8752 UseGPRForF64 = true; 8753 } 8754 8755 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 8756 // similar local variables rather than directly checking against the target 8757 // ABI. 8758 8759 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 8760 LocVT = XLenVT; 8761 LocInfo = CCValAssign::BCvt; 8762 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 8763 LocVT = MVT::i64; 8764 LocInfo = CCValAssign::BCvt; 8765 } 8766 8767 // If this is a variadic argument, the RISC-V calling convention requires 8768 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 8769 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 8770 // be used regardless of whether the original argument was split during 8771 // legalisation or not. The argument will not be passed by registers if the 8772 // original type is larger than 2*XLEN, so the register alignment rule does 8773 // not apply. 8774 unsigned TwoXLenInBytes = (2 * XLen) / 8; 8775 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 8776 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 8777 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 8778 // Skip 'odd' register if necessary. 8779 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 8780 State.AllocateReg(ArgGPRs); 8781 } 8782 8783 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 8784 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 8785 State.getPendingArgFlags(); 8786 8787 assert(PendingLocs.size() == PendingArgFlags.size() && 8788 "PendingLocs and PendingArgFlags out of sync"); 8789 8790 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8791 // registers are exhausted. 8792 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8793 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8794 "Can't lower f64 if it is split"); 8795 // Depending on available argument GPRS, f64 may be passed in a pair of 8796 // GPRs, split between a GPR and the stack, or passed completely on the 8797 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8798 // cases. 8799 Register Reg = State.AllocateReg(ArgGPRs); 8800 LocVT = MVT::i32; 8801 if (!Reg) { 8802 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8803 State.addLoc( 8804 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8805 return false; 8806 } 8807 if (!State.AllocateReg(ArgGPRs)) 8808 State.AllocateStack(4, Align(4)); 8809 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8810 return false; 8811 } 8812 8813 // Fixed-length vectors are located in the corresponding scalable-vector 8814 // container types. 8815 if (ValVT.isFixedLengthVector()) 8816 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8817 8818 // Split arguments might be passed indirectly, so keep track of the pending 8819 // values. Split vectors are passed via a mix of registers and indirectly, so 8820 // treat them as we would any other argument. 8821 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8822 LocVT = XLenVT; 8823 LocInfo = CCValAssign::Indirect; 8824 PendingLocs.push_back( 8825 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8826 PendingArgFlags.push_back(ArgFlags); 8827 if (!ArgFlags.isSplitEnd()) { 8828 return false; 8829 } 8830 } 8831 8832 // If the split argument only had two elements, it should be passed directly 8833 // in registers or on the stack. 8834 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8835 PendingLocs.size() <= 2) { 8836 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8837 // Apply the normal calling convention rules to the first half of the 8838 // split argument. 8839 CCValAssign VA = PendingLocs[0]; 8840 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8841 PendingLocs.clear(); 8842 PendingArgFlags.clear(); 8843 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8844 ArgFlags); 8845 } 8846 8847 // Allocate to a register if possible, or else a stack slot. 8848 Register Reg; 8849 unsigned StoreSizeBytes = XLen / 8; 8850 Align StackAlign = Align(XLen / 8); 8851 8852 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8853 Reg = State.AllocateReg(ArgFPR16s); 8854 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8855 Reg = State.AllocateReg(ArgFPR32s); 8856 else if (ValVT == MVT::f64 && !UseGPRForF64) 8857 Reg = State.AllocateReg(ArgFPR64s); 8858 else if (ValVT.isVector()) { 8859 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8860 if (!Reg) { 8861 // For return values, the vector must be passed fully via registers or 8862 // via the stack. 8863 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8864 // but we're using all of them. 8865 if (IsRet) 8866 return true; 8867 // Try using a GPR to pass the address 8868 if ((Reg = State.AllocateReg(ArgGPRs))) { 8869 LocVT = XLenVT; 8870 LocInfo = CCValAssign::Indirect; 8871 } else if (ValVT.isScalableVector()) { 8872 LocVT = XLenVT; 8873 LocInfo = CCValAssign::Indirect; 8874 } else { 8875 // Pass fixed-length vectors on the stack. 8876 LocVT = ValVT; 8877 StoreSizeBytes = ValVT.getStoreSize(); 8878 // Align vectors to their element sizes, being careful for vXi1 8879 // vectors. 8880 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8881 } 8882 } 8883 } else { 8884 Reg = State.AllocateReg(ArgGPRs); 8885 } 8886 8887 unsigned StackOffset = 8888 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8889 8890 // If we reach this point and PendingLocs is non-empty, we must be at the 8891 // end of a split argument that must be passed indirectly. 8892 if (!PendingLocs.empty()) { 8893 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8894 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8895 8896 for (auto &It : PendingLocs) { 8897 if (Reg) 8898 It.convertToReg(Reg); 8899 else 8900 It.convertToMem(StackOffset); 8901 State.addLoc(It); 8902 } 8903 PendingLocs.clear(); 8904 PendingArgFlags.clear(); 8905 return false; 8906 } 8907 8908 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8909 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8910 "Expected an XLenVT or vector types at this stage"); 8911 8912 if (Reg) { 8913 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8914 return false; 8915 } 8916 8917 // When a floating-point value is passed on the stack, no bit-conversion is 8918 // needed. 8919 if (ValVT.isFloatingPoint()) { 8920 LocVT = ValVT; 8921 LocInfo = CCValAssign::Full; 8922 } 8923 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8924 return false; 8925 } 8926 8927 template <typename ArgTy> 8928 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8929 for (const auto &ArgIdx : enumerate(Args)) { 8930 MVT ArgVT = ArgIdx.value().VT; 8931 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8932 return ArgIdx.index(); 8933 } 8934 return None; 8935 } 8936 8937 void RISCVTargetLowering::analyzeInputArgs( 8938 MachineFunction &MF, CCState &CCInfo, 8939 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8940 RISCVCCAssignFn Fn) const { 8941 unsigned NumArgs = Ins.size(); 8942 FunctionType *FType = MF.getFunction().getFunctionType(); 8943 8944 Optional<unsigned> FirstMaskArgument; 8945 if (Subtarget.hasVInstructions()) 8946 FirstMaskArgument = preAssignMask(Ins); 8947 8948 for (unsigned i = 0; i != NumArgs; ++i) { 8949 MVT ArgVT = Ins[i].VT; 8950 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8951 8952 Type *ArgTy = nullptr; 8953 if (IsRet) 8954 ArgTy = FType->getReturnType(); 8955 else if (Ins[i].isOrigArg()) 8956 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8957 8958 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8959 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8960 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8961 FirstMaskArgument)) { 8962 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8963 << EVT(ArgVT).getEVTString() << '\n'); 8964 llvm_unreachable(nullptr); 8965 } 8966 } 8967 } 8968 8969 void RISCVTargetLowering::analyzeOutputArgs( 8970 MachineFunction &MF, CCState &CCInfo, 8971 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8972 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8973 unsigned NumArgs = Outs.size(); 8974 8975 Optional<unsigned> FirstMaskArgument; 8976 if (Subtarget.hasVInstructions()) 8977 FirstMaskArgument = preAssignMask(Outs); 8978 8979 for (unsigned i = 0; i != NumArgs; i++) { 8980 MVT ArgVT = Outs[i].VT; 8981 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8982 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8983 8984 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8985 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8986 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8987 FirstMaskArgument)) { 8988 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8989 << EVT(ArgVT).getEVTString() << "\n"); 8990 llvm_unreachable(nullptr); 8991 } 8992 } 8993 } 8994 8995 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8996 // values. 8997 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8998 const CCValAssign &VA, const SDLoc &DL, 8999 const RISCVSubtarget &Subtarget) { 9000 switch (VA.getLocInfo()) { 9001 default: 9002 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9003 case CCValAssign::Full: 9004 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 9005 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 9006 break; 9007 case CCValAssign::BCvt: 9008 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9009 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 9010 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9011 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 9012 else 9013 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 9014 break; 9015 } 9016 return Val; 9017 } 9018 9019 // The caller is responsible for loading the full value if the argument is 9020 // passed with CCValAssign::Indirect. 9021 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 9022 const CCValAssign &VA, const SDLoc &DL, 9023 const RISCVTargetLowering &TLI) { 9024 MachineFunction &MF = DAG.getMachineFunction(); 9025 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9026 EVT LocVT = VA.getLocVT(); 9027 SDValue Val; 9028 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 9029 Register VReg = RegInfo.createVirtualRegister(RC); 9030 RegInfo.addLiveIn(VA.getLocReg(), VReg); 9031 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 9032 9033 if (VA.getLocInfo() == CCValAssign::Indirect) 9034 return Val; 9035 9036 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 9037 } 9038 9039 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 9040 const CCValAssign &VA, const SDLoc &DL, 9041 const RISCVSubtarget &Subtarget) { 9042 EVT LocVT = VA.getLocVT(); 9043 9044 switch (VA.getLocInfo()) { 9045 default: 9046 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9047 case CCValAssign::Full: 9048 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 9049 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 9050 break; 9051 case CCValAssign::BCvt: 9052 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9053 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 9054 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9055 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 9056 else 9057 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 9058 break; 9059 } 9060 return Val; 9061 } 9062 9063 // The caller is responsible for loading the full value if the argument is 9064 // passed with CCValAssign::Indirect. 9065 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 9066 const CCValAssign &VA, const SDLoc &DL) { 9067 MachineFunction &MF = DAG.getMachineFunction(); 9068 MachineFrameInfo &MFI = MF.getFrameInfo(); 9069 EVT LocVT = VA.getLocVT(); 9070 EVT ValVT = VA.getValVT(); 9071 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 9072 if (ValVT.isScalableVector()) { 9073 // When the value is a scalable vector, we save the pointer which points to 9074 // the scalable vector value in the stack. The ValVT will be the pointer 9075 // type, instead of the scalable vector type. 9076 ValVT = LocVT; 9077 } 9078 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 9079 /*IsImmutable=*/true); 9080 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 9081 SDValue Val; 9082 9083 ISD::LoadExtType ExtType; 9084 switch (VA.getLocInfo()) { 9085 default: 9086 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9087 case CCValAssign::Full: 9088 case CCValAssign::Indirect: 9089 case CCValAssign::BCvt: 9090 ExtType = ISD::NON_EXTLOAD; 9091 break; 9092 } 9093 Val = DAG.getExtLoad( 9094 ExtType, DL, LocVT, Chain, FIN, 9095 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 9096 return Val; 9097 } 9098 9099 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 9100 const CCValAssign &VA, const SDLoc &DL) { 9101 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 9102 "Unexpected VA"); 9103 MachineFunction &MF = DAG.getMachineFunction(); 9104 MachineFrameInfo &MFI = MF.getFrameInfo(); 9105 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9106 9107 if (VA.isMemLoc()) { 9108 // f64 is passed on the stack. 9109 int FI = 9110 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 9111 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9112 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 9113 MachinePointerInfo::getFixedStack(MF, FI)); 9114 } 9115 9116 assert(VA.isRegLoc() && "Expected register VA assignment"); 9117 9118 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9119 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 9120 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 9121 SDValue Hi; 9122 if (VA.getLocReg() == RISCV::X17) { 9123 // Second half of f64 is passed on the stack. 9124 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 9125 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9126 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 9127 MachinePointerInfo::getFixedStack(MF, FI)); 9128 } else { 9129 // Second half of f64 is passed in another GPR. 9130 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9131 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 9132 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 9133 } 9134 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 9135 } 9136 9137 // FastCC has less than 1% performance improvement for some particular 9138 // benchmark. But theoretically, it may has benenfit for some cases. 9139 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 9140 unsigned ValNo, MVT ValVT, MVT LocVT, 9141 CCValAssign::LocInfo LocInfo, 9142 ISD::ArgFlagsTy ArgFlags, CCState &State, 9143 bool IsFixed, bool IsRet, Type *OrigTy, 9144 const RISCVTargetLowering &TLI, 9145 Optional<unsigned> FirstMaskArgument) { 9146 9147 // X5 and X6 might be used for save-restore libcall. 9148 static const MCPhysReg GPRList[] = { 9149 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 9150 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 9151 RISCV::X29, RISCV::X30, RISCV::X31}; 9152 9153 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9154 if (unsigned Reg = State.AllocateReg(GPRList)) { 9155 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9156 return false; 9157 } 9158 } 9159 9160 if (LocVT == MVT::f16) { 9161 static const MCPhysReg FPR16List[] = { 9162 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 9163 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 9164 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 9165 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 9166 if (unsigned Reg = State.AllocateReg(FPR16List)) { 9167 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9168 return false; 9169 } 9170 } 9171 9172 if (LocVT == MVT::f32) { 9173 static const MCPhysReg FPR32List[] = { 9174 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 9175 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 9176 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 9177 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 9178 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9179 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9180 return false; 9181 } 9182 } 9183 9184 if (LocVT == MVT::f64) { 9185 static const MCPhysReg FPR64List[] = { 9186 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 9187 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 9188 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 9189 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 9190 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9191 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9192 return false; 9193 } 9194 } 9195 9196 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 9197 unsigned Offset4 = State.AllocateStack(4, Align(4)); 9198 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 9199 return false; 9200 } 9201 9202 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 9203 unsigned Offset5 = State.AllocateStack(8, Align(8)); 9204 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 9205 return false; 9206 } 9207 9208 if (LocVT.isVector()) { 9209 if (unsigned Reg = 9210 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 9211 // Fixed-length vectors are located in the corresponding scalable-vector 9212 // container types. 9213 if (ValVT.isFixedLengthVector()) 9214 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9215 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9216 } else { 9217 // Try and pass the address via a "fast" GPR. 9218 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 9219 LocInfo = CCValAssign::Indirect; 9220 LocVT = TLI.getSubtarget().getXLenVT(); 9221 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 9222 } else if (ValVT.isFixedLengthVector()) { 9223 auto StackAlign = 9224 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9225 unsigned StackOffset = 9226 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 9227 State.addLoc( 9228 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9229 } else { 9230 // Can't pass scalable vectors on the stack. 9231 return true; 9232 } 9233 } 9234 9235 return false; 9236 } 9237 9238 return true; // CC didn't match. 9239 } 9240 9241 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 9242 CCValAssign::LocInfo LocInfo, 9243 ISD::ArgFlagsTy ArgFlags, CCState &State) { 9244 9245 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9246 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 9247 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 9248 static const MCPhysReg GPRList[] = { 9249 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 9250 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 9251 if (unsigned Reg = State.AllocateReg(GPRList)) { 9252 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9253 return false; 9254 } 9255 } 9256 9257 if (LocVT == MVT::f32) { 9258 // Pass in STG registers: F1, ..., F6 9259 // fs0 ... fs5 9260 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 9261 RISCV::F18_F, RISCV::F19_F, 9262 RISCV::F20_F, RISCV::F21_F}; 9263 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9264 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9265 return false; 9266 } 9267 } 9268 9269 if (LocVT == MVT::f64) { 9270 // Pass in STG registers: D1, ..., D6 9271 // fs6 ... fs11 9272 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 9273 RISCV::F24_D, RISCV::F25_D, 9274 RISCV::F26_D, RISCV::F27_D}; 9275 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9276 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9277 return false; 9278 } 9279 } 9280 9281 report_fatal_error("No registers left in GHC calling convention"); 9282 return true; 9283 } 9284 9285 // Transform physical registers into virtual registers. 9286 SDValue RISCVTargetLowering::LowerFormalArguments( 9287 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 9288 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 9289 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 9290 9291 MachineFunction &MF = DAG.getMachineFunction(); 9292 9293 switch (CallConv) { 9294 default: 9295 report_fatal_error("Unsupported calling convention"); 9296 case CallingConv::C: 9297 case CallingConv::Fast: 9298 break; 9299 case CallingConv::GHC: 9300 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 9301 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 9302 report_fatal_error( 9303 "GHC calling convention requires the F and D instruction set extensions"); 9304 } 9305 9306 const Function &Func = MF.getFunction(); 9307 if (Func.hasFnAttribute("interrupt")) { 9308 if (!Func.arg_empty()) 9309 report_fatal_error( 9310 "Functions with the interrupt attribute cannot have arguments!"); 9311 9312 StringRef Kind = 9313 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9314 9315 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 9316 report_fatal_error( 9317 "Function interrupt attribute argument not supported!"); 9318 } 9319 9320 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9321 MVT XLenVT = Subtarget.getXLenVT(); 9322 unsigned XLenInBytes = Subtarget.getXLen() / 8; 9323 // Used with vargs to acumulate store chains. 9324 std::vector<SDValue> OutChains; 9325 9326 // Assign locations to all of the incoming arguments. 9327 SmallVector<CCValAssign, 16> ArgLocs; 9328 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9329 9330 if (CallConv == CallingConv::GHC) 9331 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 9332 else 9333 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 9334 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9335 : CC_RISCV); 9336 9337 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 9338 CCValAssign &VA = ArgLocs[i]; 9339 SDValue ArgValue; 9340 // Passing f64 on RV32D with a soft float ABI must be handled as a special 9341 // case. 9342 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 9343 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 9344 else if (VA.isRegLoc()) 9345 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 9346 else 9347 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 9348 9349 if (VA.getLocInfo() == CCValAssign::Indirect) { 9350 // If the original argument was split and passed by reference (e.g. i128 9351 // on RV32), we need to load all parts of it here (using the same 9352 // address). Vectors may be partly split to registers and partly to the 9353 // stack, in which case the base address is partly offset and subsequent 9354 // stores are relative to that. 9355 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 9356 MachinePointerInfo())); 9357 unsigned ArgIndex = Ins[i].OrigArgIndex; 9358 unsigned ArgPartOffset = Ins[i].PartOffset; 9359 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9360 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 9361 CCValAssign &PartVA = ArgLocs[i + 1]; 9362 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 9363 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9364 if (PartVA.getValVT().isScalableVector()) 9365 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9366 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 9367 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 9368 MachinePointerInfo())); 9369 ++i; 9370 } 9371 continue; 9372 } 9373 InVals.push_back(ArgValue); 9374 } 9375 9376 if (IsVarArg) { 9377 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 9378 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 9379 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 9380 MachineFrameInfo &MFI = MF.getFrameInfo(); 9381 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9382 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 9383 9384 // Offset of the first variable argument from stack pointer, and size of 9385 // the vararg save area. For now, the varargs save area is either zero or 9386 // large enough to hold a0-a7. 9387 int VaArgOffset, VarArgsSaveSize; 9388 9389 // If all registers are allocated, then all varargs must be passed on the 9390 // stack and we don't need to save any argregs. 9391 if (ArgRegs.size() == Idx) { 9392 VaArgOffset = CCInfo.getNextStackOffset(); 9393 VarArgsSaveSize = 0; 9394 } else { 9395 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 9396 VaArgOffset = -VarArgsSaveSize; 9397 } 9398 9399 // Record the frame index of the first variable argument 9400 // which is a value necessary to VASTART. 9401 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9402 RVFI->setVarArgsFrameIndex(FI); 9403 9404 // If saving an odd number of registers then create an extra stack slot to 9405 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 9406 // offsets to even-numbered registered remain 2*XLEN-aligned. 9407 if (Idx % 2) { 9408 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 9409 VarArgsSaveSize += XLenInBytes; 9410 } 9411 9412 // Copy the integer registers that may have been used for passing varargs 9413 // to the vararg save area. 9414 for (unsigned I = Idx; I < ArgRegs.size(); 9415 ++I, VaArgOffset += XLenInBytes) { 9416 const Register Reg = RegInfo.createVirtualRegister(RC); 9417 RegInfo.addLiveIn(ArgRegs[I], Reg); 9418 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 9419 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9420 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9421 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 9422 MachinePointerInfo::getFixedStack(MF, FI)); 9423 cast<StoreSDNode>(Store.getNode()) 9424 ->getMemOperand() 9425 ->setValue((Value *)nullptr); 9426 OutChains.push_back(Store); 9427 } 9428 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 9429 } 9430 9431 // All stores are grouped in one node to allow the matching between 9432 // the size of Ins and InVals. This only happens for vararg functions. 9433 if (!OutChains.empty()) { 9434 OutChains.push_back(Chain); 9435 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 9436 } 9437 9438 return Chain; 9439 } 9440 9441 /// isEligibleForTailCallOptimization - Check whether the call is eligible 9442 /// for tail call optimization. 9443 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 9444 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 9445 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 9446 const SmallVector<CCValAssign, 16> &ArgLocs) const { 9447 9448 auto &Callee = CLI.Callee; 9449 auto CalleeCC = CLI.CallConv; 9450 auto &Outs = CLI.Outs; 9451 auto &Caller = MF.getFunction(); 9452 auto CallerCC = Caller.getCallingConv(); 9453 9454 // Exception-handling functions need a special set of instructions to 9455 // indicate a return to the hardware. Tail-calling another function would 9456 // probably break this. 9457 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 9458 // should be expanded as new function attributes are introduced. 9459 if (Caller.hasFnAttribute("interrupt")) 9460 return false; 9461 9462 // Do not tail call opt if the stack is used to pass parameters. 9463 if (CCInfo.getNextStackOffset() != 0) 9464 return false; 9465 9466 // Do not tail call opt if any parameters need to be passed indirectly. 9467 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 9468 // passed indirectly. So the address of the value will be passed in a 9469 // register, or if not available, then the address is put on the stack. In 9470 // order to pass indirectly, space on the stack often needs to be allocated 9471 // in order to store the value. In this case the CCInfo.getNextStackOffset() 9472 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 9473 // are passed CCValAssign::Indirect. 9474 for (auto &VA : ArgLocs) 9475 if (VA.getLocInfo() == CCValAssign::Indirect) 9476 return false; 9477 9478 // Do not tail call opt if either caller or callee uses struct return 9479 // semantics. 9480 auto IsCallerStructRet = Caller.hasStructRetAttr(); 9481 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 9482 if (IsCallerStructRet || IsCalleeStructRet) 9483 return false; 9484 9485 // Externally-defined functions with weak linkage should not be 9486 // tail-called. The behaviour of branch instructions in this situation (as 9487 // used for tail calls) is implementation-defined, so we cannot rely on the 9488 // linker replacing the tail call with a return. 9489 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 9490 const GlobalValue *GV = G->getGlobal(); 9491 if (GV->hasExternalWeakLinkage()) 9492 return false; 9493 } 9494 9495 // The callee has to preserve all registers the caller needs to preserve. 9496 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9497 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 9498 if (CalleeCC != CallerCC) { 9499 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 9500 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 9501 return false; 9502 } 9503 9504 // Byval parameters hand the function a pointer directly into the stack area 9505 // we want to reuse during a tail call. Working around this *is* possible 9506 // but less efficient and uglier in LowerCall. 9507 for (auto &Arg : Outs) 9508 if (Arg.Flags.isByVal()) 9509 return false; 9510 9511 return true; 9512 } 9513 9514 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 9515 return DAG.getDataLayout().getPrefTypeAlign( 9516 VT.getTypeForEVT(*DAG.getContext())); 9517 } 9518 9519 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 9520 // and output parameter nodes. 9521 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 9522 SmallVectorImpl<SDValue> &InVals) const { 9523 SelectionDAG &DAG = CLI.DAG; 9524 SDLoc &DL = CLI.DL; 9525 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 9526 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 9527 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 9528 SDValue Chain = CLI.Chain; 9529 SDValue Callee = CLI.Callee; 9530 bool &IsTailCall = CLI.IsTailCall; 9531 CallingConv::ID CallConv = CLI.CallConv; 9532 bool IsVarArg = CLI.IsVarArg; 9533 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9534 MVT XLenVT = Subtarget.getXLenVT(); 9535 9536 MachineFunction &MF = DAG.getMachineFunction(); 9537 9538 // Analyze the operands of the call, assigning locations to each operand. 9539 SmallVector<CCValAssign, 16> ArgLocs; 9540 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9541 9542 if (CallConv == CallingConv::GHC) 9543 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 9544 else 9545 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 9546 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9547 : CC_RISCV); 9548 9549 // Check if it's really possible to do a tail call. 9550 if (IsTailCall) 9551 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 9552 9553 if (IsTailCall) 9554 ++NumTailCalls; 9555 else if (CLI.CB && CLI.CB->isMustTailCall()) 9556 report_fatal_error("failed to perform tail call elimination on a call " 9557 "site marked musttail"); 9558 9559 // Get a count of how many bytes are to be pushed on the stack. 9560 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 9561 9562 // Create local copies for byval args 9563 SmallVector<SDValue, 8> ByValArgs; 9564 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9565 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9566 if (!Flags.isByVal()) 9567 continue; 9568 9569 SDValue Arg = OutVals[i]; 9570 unsigned Size = Flags.getByValSize(); 9571 Align Alignment = Flags.getNonZeroByValAlign(); 9572 9573 int FI = 9574 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 9575 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9576 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 9577 9578 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 9579 /*IsVolatile=*/false, 9580 /*AlwaysInline=*/false, IsTailCall, 9581 MachinePointerInfo(), MachinePointerInfo()); 9582 ByValArgs.push_back(FIPtr); 9583 } 9584 9585 if (!IsTailCall) 9586 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 9587 9588 // Copy argument values to their designated locations. 9589 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 9590 SmallVector<SDValue, 8> MemOpChains; 9591 SDValue StackPtr; 9592 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 9593 CCValAssign &VA = ArgLocs[i]; 9594 SDValue ArgValue = OutVals[i]; 9595 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9596 9597 // Handle passing f64 on RV32D with a soft float ABI as a special case. 9598 bool IsF64OnRV32DSoftABI = 9599 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 9600 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 9601 SDValue SplitF64 = DAG.getNode( 9602 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 9603 SDValue Lo = SplitF64.getValue(0); 9604 SDValue Hi = SplitF64.getValue(1); 9605 9606 Register RegLo = VA.getLocReg(); 9607 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 9608 9609 if (RegLo == RISCV::X17) { 9610 // Second half of f64 is passed on the stack. 9611 // Work out the address of the stack slot. 9612 if (!StackPtr.getNode()) 9613 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9614 // Emit the store. 9615 MemOpChains.push_back( 9616 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 9617 } else { 9618 // Second half of f64 is passed in another GPR. 9619 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9620 Register RegHigh = RegLo + 1; 9621 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 9622 } 9623 continue; 9624 } 9625 9626 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 9627 // as any other MemLoc. 9628 9629 // Promote the value if needed. 9630 // For now, only handle fully promoted and indirect arguments. 9631 if (VA.getLocInfo() == CCValAssign::Indirect) { 9632 // Store the argument in a stack slot and pass its address. 9633 Align StackAlign = 9634 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 9635 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 9636 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 9637 // If the original argument was split (e.g. i128), we need 9638 // to store the required parts of it here (and pass just one address). 9639 // Vectors may be partly split to registers and partly to the stack, in 9640 // which case the base address is partly offset and subsequent stores are 9641 // relative to that. 9642 unsigned ArgIndex = Outs[i].OrigArgIndex; 9643 unsigned ArgPartOffset = Outs[i].PartOffset; 9644 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9645 // Calculate the total size to store. We don't have access to what we're 9646 // actually storing other than performing the loop and collecting the 9647 // info. 9648 SmallVector<std::pair<SDValue, SDValue>> Parts; 9649 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 9650 SDValue PartValue = OutVals[i + 1]; 9651 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 9652 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9653 EVT PartVT = PartValue.getValueType(); 9654 if (PartVT.isScalableVector()) 9655 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9656 StoredSize += PartVT.getStoreSize(); 9657 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 9658 Parts.push_back(std::make_pair(PartValue, Offset)); 9659 ++i; 9660 } 9661 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 9662 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 9663 MemOpChains.push_back( 9664 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 9665 MachinePointerInfo::getFixedStack(MF, FI))); 9666 for (const auto &Part : Parts) { 9667 SDValue PartValue = Part.first; 9668 SDValue PartOffset = Part.second; 9669 SDValue Address = 9670 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 9671 MemOpChains.push_back( 9672 DAG.getStore(Chain, DL, PartValue, Address, 9673 MachinePointerInfo::getFixedStack(MF, FI))); 9674 } 9675 ArgValue = SpillSlot; 9676 } else { 9677 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 9678 } 9679 9680 // Use local copy if it is a byval arg. 9681 if (Flags.isByVal()) 9682 ArgValue = ByValArgs[j++]; 9683 9684 if (VA.isRegLoc()) { 9685 // Queue up the argument copies and emit them at the end. 9686 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 9687 } else { 9688 assert(VA.isMemLoc() && "Argument not register or memory"); 9689 assert(!IsTailCall && "Tail call not allowed if stack is used " 9690 "for passing parameters"); 9691 9692 // Work out the address of the stack slot. 9693 if (!StackPtr.getNode()) 9694 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9695 SDValue Address = 9696 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 9697 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 9698 9699 // Emit the store. 9700 MemOpChains.push_back( 9701 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 9702 } 9703 } 9704 9705 // Join the stores, which are independent of one another. 9706 if (!MemOpChains.empty()) 9707 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 9708 9709 SDValue Glue; 9710 9711 // Build a sequence of copy-to-reg nodes, chained and glued together. 9712 for (auto &Reg : RegsToPass) { 9713 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 9714 Glue = Chain.getValue(1); 9715 } 9716 9717 // Validate that none of the argument registers have been marked as 9718 // reserved, if so report an error. Do the same for the return address if this 9719 // is not a tailcall. 9720 validateCCReservedRegs(RegsToPass, MF); 9721 if (!IsTailCall && 9722 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 9723 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9724 MF.getFunction(), 9725 "Return address register required, but has been reserved."}); 9726 9727 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 9728 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 9729 // split it and then direct call can be matched by PseudoCALL. 9730 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 9731 const GlobalValue *GV = S->getGlobal(); 9732 9733 unsigned OpFlags = RISCVII::MO_CALL; 9734 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 9735 OpFlags = RISCVII::MO_PLT; 9736 9737 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 9738 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 9739 unsigned OpFlags = RISCVII::MO_CALL; 9740 9741 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 9742 nullptr)) 9743 OpFlags = RISCVII::MO_PLT; 9744 9745 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 9746 } 9747 9748 // The first call operand is the chain and the second is the target address. 9749 SmallVector<SDValue, 8> Ops; 9750 Ops.push_back(Chain); 9751 Ops.push_back(Callee); 9752 9753 // Add argument registers to the end of the list so that they are 9754 // known live into the call. 9755 for (auto &Reg : RegsToPass) 9756 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 9757 9758 if (!IsTailCall) { 9759 // Add a register mask operand representing the call-preserved registers. 9760 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9761 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 9762 assert(Mask && "Missing call preserved mask for calling convention"); 9763 Ops.push_back(DAG.getRegisterMask(Mask)); 9764 } 9765 9766 // Glue the call to the argument copies, if any. 9767 if (Glue.getNode()) 9768 Ops.push_back(Glue); 9769 9770 // Emit the call. 9771 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9772 9773 if (IsTailCall) { 9774 MF.getFrameInfo().setHasTailCall(); 9775 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 9776 } 9777 9778 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 9779 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 9780 Glue = Chain.getValue(1); 9781 9782 // Mark the end of the call, which is glued to the call itself. 9783 Chain = DAG.getCALLSEQ_END(Chain, 9784 DAG.getConstant(NumBytes, DL, PtrVT, true), 9785 DAG.getConstant(0, DL, PtrVT, true), 9786 Glue, DL); 9787 Glue = Chain.getValue(1); 9788 9789 // Assign locations to each value returned by this call. 9790 SmallVector<CCValAssign, 16> RVLocs; 9791 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 9792 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 9793 9794 // Copy all of the result registers out of their specified physreg. 9795 for (auto &VA : RVLocs) { 9796 // Copy the value out 9797 SDValue RetValue = 9798 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9799 // Glue the RetValue to the end of the call sequence 9800 Chain = RetValue.getValue(1); 9801 Glue = RetValue.getValue(2); 9802 9803 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9804 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9805 SDValue RetValue2 = 9806 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9807 Chain = RetValue2.getValue(1); 9808 Glue = RetValue2.getValue(2); 9809 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9810 RetValue2); 9811 } 9812 9813 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9814 9815 InVals.push_back(RetValue); 9816 } 9817 9818 return Chain; 9819 } 9820 9821 bool RISCVTargetLowering::CanLowerReturn( 9822 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9823 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9824 SmallVector<CCValAssign, 16> RVLocs; 9825 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9826 9827 Optional<unsigned> FirstMaskArgument; 9828 if (Subtarget.hasVInstructions()) 9829 FirstMaskArgument = preAssignMask(Outs); 9830 9831 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9832 MVT VT = Outs[i].VT; 9833 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9834 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9835 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9836 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9837 *this, FirstMaskArgument)) 9838 return false; 9839 } 9840 return true; 9841 } 9842 9843 SDValue 9844 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9845 bool IsVarArg, 9846 const SmallVectorImpl<ISD::OutputArg> &Outs, 9847 const SmallVectorImpl<SDValue> &OutVals, 9848 const SDLoc &DL, SelectionDAG &DAG) const { 9849 const MachineFunction &MF = DAG.getMachineFunction(); 9850 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9851 9852 // Stores the assignment of the return value to a location. 9853 SmallVector<CCValAssign, 16> RVLocs; 9854 9855 // Info about the registers and stack slot. 9856 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9857 *DAG.getContext()); 9858 9859 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9860 nullptr, CC_RISCV); 9861 9862 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9863 report_fatal_error("GHC functions return void only"); 9864 9865 SDValue Glue; 9866 SmallVector<SDValue, 4> RetOps(1, Chain); 9867 9868 // Copy the result values into the output registers. 9869 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9870 SDValue Val = OutVals[i]; 9871 CCValAssign &VA = RVLocs[i]; 9872 assert(VA.isRegLoc() && "Can only return in registers!"); 9873 9874 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9875 // Handle returning f64 on RV32D with a soft float ABI. 9876 assert(VA.isRegLoc() && "Expected return via registers"); 9877 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9878 DAG.getVTList(MVT::i32, MVT::i32), Val); 9879 SDValue Lo = SplitF64.getValue(0); 9880 SDValue Hi = SplitF64.getValue(1); 9881 Register RegLo = VA.getLocReg(); 9882 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9883 Register RegHi = RegLo + 1; 9884 9885 if (STI.isRegisterReservedByUser(RegLo) || 9886 STI.isRegisterReservedByUser(RegHi)) 9887 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9888 MF.getFunction(), 9889 "Return value register required, but has been reserved."}); 9890 9891 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9892 Glue = Chain.getValue(1); 9893 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9894 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9895 Glue = Chain.getValue(1); 9896 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9897 } else { 9898 // Handle a 'normal' return. 9899 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9900 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9901 9902 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9903 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9904 MF.getFunction(), 9905 "Return value register required, but has been reserved."}); 9906 9907 // Guarantee that all emitted copies are stuck together. 9908 Glue = Chain.getValue(1); 9909 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9910 } 9911 } 9912 9913 RetOps[0] = Chain; // Update chain. 9914 9915 // Add the glue node if we have it. 9916 if (Glue.getNode()) { 9917 RetOps.push_back(Glue); 9918 } 9919 9920 unsigned RetOpc = RISCVISD::RET_FLAG; 9921 // Interrupt service routines use different return instructions. 9922 const Function &Func = DAG.getMachineFunction().getFunction(); 9923 if (Func.hasFnAttribute("interrupt")) { 9924 if (!Func.getReturnType()->isVoidTy()) 9925 report_fatal_error( 9926 "Functions with the interrupt attribute must have void return type!"); 9927 9928 MachineFunction &MF = DAG.getMachineFunction(); 9929 StringRef Kind = 9930 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9931 9932 if (Kind == "user") 9933 RetOpc = RISCVISD::URET_FLAG; 9934 else if (Kind == "supervisor") 9935 RetOpc = RISCVISD::SRET_FLAG; 9936 else 9937 RetOpc = RISCVISD::MRET_FLAG; 9938 } 9939 9940 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9941 } 9942 9943 void RISCVTargetLowering::validateCCReservedRegs( 9944 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9945 MachineFunction &MF) const { 9946 const Function &F = MF.getFunction(); 9947 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9948 9949 if (llvm::any_of(Regs, [&STI](auto Reg) { 9950 return STI.isRegisterReservedByUser(Reg.first); 9951 })) 9952 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9953 F, "Argument register required, but has been reserved."}); 9954 } 9955 9956 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9957 return CI->isTailCall(); 9958 } 9959 9960 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9961 #define NODE_NAME_CASE(NODE) \ 9962 case RISCVISD::NODE: \ 9963 return "RISCVISD::" #NODE; 9964 // clang-format off 9965 switch ((RISCVISD::NodeType)Opcode) { 9966 case RISCVISD::FIRST_NUMBER: 9967 break; 9968 NODE_NAME_CASE(RET_FLAG) 9969 NODE_NAME_CASE(URET_FLAG) 9970 NODE_NAME_CASE(SRET_FLAG) 9971 NODE_NAME_CASE(MRET_FLAG) 9972 NODE_NAME_CASE(CALL) 9973 NODE_NAME_CASE(SELECT_CC) 9974 NODE_NAME_CASE(BR_CC) 9975 NODE_NAME_CASE(BuildPairF64) 9976 NODE_NAME_CASE(SplitF64) 9977 NODE_NAME_CASE(TAIL) 9978 NODE_NAME_CASE(MULHSU) 9979 NODE_NAME_CASE(SLLW) 9980 NODE_NAME_CASE(SRAW) 9981 NODE_NAME_CASE(SRLW) 9982 NODE_NAME_CASE(DIVW) 9983 NODE_NAME_CASE(DIVUW) 9984 NODE_NAME_CASE(REMUW) 9985 NODE_NAME_CASE(ROLW) 9986 NODE_NAME_CASE(RORW) 9987 NODE_NAME_CASE(CLZW) 9988 NODE_NAME_CASE(CTZW) 9989 NODE_NAME_CASE(FSLW) 9990 NODE_NAME_CASE(FSRW) 9991 NODE_NAME_CASE(FSL) 9992 NODE_NAME_CASE(FSR) 9993 NODE_NAME_CASE(FMV_H_X) 9994 NODE_NAME_CASE(FMV_X_ANYEXTH) 9995 NODE_NAME_CASE(FMV_W_X_RV64) 9996 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9997 NODE_NAME_CASE(FCVT_X) 9998 NODE_NAME_CASE(FCVT_XU) 9999 NODE_NAME_CASE(FCVT_W_RV64) 10000 NODE_NAME_CASE(FCVT_WU_RV64) 10001 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 10002 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 10003 NODE_NAME_CASE(READ_CYCLE_WIDE) 10004 NODE_NAME_CASE(GREV) 10005 NODE_NAME_CASE(GREVW) 10006 NODE_NAME_CASE(GORC) 10007 NODE_NAME_CASE(GORCW) 10008 NODE_NAME_CASE(SHFL) 10009 NODE_NAME_CASE(SHFLW) 10010 NODE_NAME_CASE(UNSHFL) 10011 NODE_NAME_CASE(UNSHFLW) 10012 NODE_NAME_CASE(BFP) 10013 NODE_NAME_CASE(BFPW) 10014 NODE_NAME_CASE(BCOMPRESS) 10015 NODE_NAME_CASE(BCOMPRESSW) 10016 NODE_NAME_CASE(BDECOMPRESS) 10017 NODE_NAME_CASE(BDECOMPRESSW) 10018 NODE_NAME_CASE(VMV_V_X_VL) 10019 NODE_NAME_CASE(VFMV_V_F_VL) 10020 NODE_NAME_CASE(VMV_X_S) 10021 NODE_NAME_CASE(VMV_S_X_VL) 10022 NODE_NAME_CASE(VFMV_S_F_VL) 10023 NODE_NAME_CASE(SPLAT_VECTOR_I64) 10024 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 10025 NODE_NAME_CASE(READ_VLENB) 10026 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 10027 NODE_NAME_CASE(VSLIDEUP_VL) 10028 NODE_NAME_CASE(VSLIDE1UP_VL) 10029 NODE_NAME_CASE(VSLIDEDOWN_VL) 10030 NODE_NAME_CASE(VSLIDE1DOWN_VL) 10031 NODE_NAME_CASE(VID_VL) 10032 NODE_NAME_CASE(VFNCVT_ROD_VL) 10033 NODE_NAME_CASE(VECREDUCE_ADD_VL) 10034 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 10035 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 10036 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 10037 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 10038 NODE_NAME_CASE(VECREDUCE_AND_VL) 10039 NODE_NAME_CASE(VECREDUCE_OR_VL) 10040 NODE_NAME_CASE(VECREDUCE_XOR_VL) 10041 NODE_NAME_CASE(VECREDUCE_FADD_VL) 10042 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 10043 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 10044 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 10045 NODE_NAME_CASE(ADD_VL) 10046 NODE_NAME_CASE(AND_VL) 10047 NODE_NAME_CASE(MUL_VL) 10048 NODE_NAME_CASE(OR_VL) 10049 NODE_NAME_CASE(SDIV_VL) 10050 NODE_NAME_CASE(SHL_VL) 10051 NODE_NAME_CASE(SREM_VL) 10052 NODE_NAME_CASE(SRA_VL) 10053 NODE_NAME_CASE(SRL_VL) 10054 NODE_NAME_CASE(SUB_VL) 10055 NODE_NAME_CASE(UDIV_VL) 10056 NODE_NAME_CASE(UREM_VL) 10057 NODE_NAME_CASE(XOR_VL) 10058 NODE_NAME_CASE(SADDSAT_VL) 10059 NODE_NAME_CASE(UADDSAT_VL) 10060 NODE_NAME_CASE(SSUBSAT_VL) 10061 NODE_NAME_CASE(USUBSAT_VL) 10062 NODE_NAME_CASE(FADD_VL) 10063 NODE_NAME_CASE(FSUB_VL) 10064 NODE_NAME_CASE(FMUL_VL) 10065 NODE_NAME_CASE(FDIV_VL) 10066 NODE_NAME_CASE(FNEG_VL) 10067 NODE_NAME_CASE(FABS_VL) 10068 NODE_NAME_CASE(FSQRT_VL) 10069 NODE_NAME_CASE(FMA_VL) 10070 NODE_NAME_CASE(FCOPYSIGN_VL) 10071 NODE_NAME_CASE(SMIN_VL) 10072 NODE_NAME_CASE(SMAX_VL) 10073 NODE_NAME_CASE(UMIN_VL) 10074 NODE_NAME_CASE(UMAX_VL) 10075 NODE_NAME_CASE(FMINNUM_VL) 10076 NODE_NAME_CASE(FMAXNUM_VL) 10077 NODE_NAME_CASE(MULHS_VL) 10078 NODE_NAME_CASE(MULHU_VL) 10079 NODE_NAME_CASE(FP_TO_SINT_VL) 10080 NODE_NAME_CASE(FP_TO_UINT_VL) 10081 NODE_NAME_CASE(SINT_TO_FP_VL) 10082 NODE_NAME_CASE(UINT_TO_FP_VL) 10083 NODE_NAME_CASE(FP_EXTEND_VL) 10084 NODE_NAME_CASE(FP_ROUND_VL) 10085 NODE_NAME_CASE(VWMUL_VL) 10086 NODE_NAME_CASE(VWMULU_VL) 10087 NODE_NAME_CASE(VWADDU_VL) 10088 NODE_NAME_CASE(SETCC_VL) 10089 NODE_NAME_CASE(VSELECT_VL) 10090 NODE_NAME_CASE(VMAND_VL) 10091 NODE_NAME_CASE(VMOR_VL) 10092 NODE_NAME_CASE(VMXOR_VL) 10093 NODE_NAME_CASE(VMCLR_VL) 10094 NODE_NAME_CASE(VMSET_VL) 10095 NODE_NAME_CASE(VRGATHER_VX_VL) 10096 NODE_NAME_CASE(VRGATHER_VV_VL) 10097 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 10098 NODE_NAME_CASE(VSEXT_VL) 10099 NODE_NAME_CASE(VZEXT_VL) 10100 NODE_NAME_CASE(VCPOP_VL) 10101 NODE_NAME_CASE(VLE_VL) 10102 NODE_NAME_CASE(VSE_VL) 10103 NODE_NAME_CASE(READ_CSR) 10104 NODE_NAME_CASE(WRITE_CSR) 10105 NODE_NAME_CASE(SWAP_CSR) 10106 } 10107 // clang-format on 10108 return nullptr; 10109 #undef NODE_NAME_CASE 10110 } 10111 10112 /// getConstraintType - Given a constraint letter, return the type of 10113 /// constraint it is for this target. 10114 RISCVTargetLowering::ConstraintType 10115 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 10116 if (Constraint.size() == 1) { 10117 switch (Constraint[0]) { 10118 default: 10119 break; 10120 case 'f': 10121 return C_RegisterClass; 10122 case 'I': 10123 case 'J': 10124 case 'K': 10125 return C_Immediate; 10126 case 'A': 10127 return C_Memory; 10128 case 'S': // A symbolic address 10129 return C_Other; 10130 } 10131 } else { 10132 if (Constraint == "vr" || Constraint == "vm") 10133 return C_RegisterClass; 10134 } 10135 return TargetLowering::getConstraintType(Constraint); 10136 } 10137 10138 std::pair<unsigned, const TargetRegisterClass *> 10139 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10140 StringRef Constraint, 10141 MVT VT) const { 10142 // First, see if this is a constraint that directly corresponds to a 10143 // RISCV register class. 10144 if (Constraint.size() == 1) { 10145 switch (Constraint[0]) { 10146 case 'r': 10147 // TODO: Support fixed vectors up to XLen for P extension? 10148 if (VT.isVector()) 10149 break; 10150 return std::make_pair(0U, &RISCV::GPRRegClass); 10151 case 'f': 10152 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 10153 return std::make_pair(0U, &RISCV::FPR16RegClass); 10154 if (Subtarget.hasStdExtF() && VT == MVT::f32) 10155 return std::make_pair(0U, &RISCV::FPR32RegClass); 10156 if (Subtarget.hasStdExtD() && VT == MVT::f64) 10157 return std::make_pair(0U, &RISCV::FPR64RegClass); 10158 break; 10159 default: 10160 break; 10161 } 10162 } else if (Constraint == "vr") { 10163 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 10164 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10165 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 10166 return std::make_pair(0U, RC); 10167 } 10168 } else if (Constraint == "vm") { 10169 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 10170 return std::make_pair(0U, &RISCV::VMV0RegClass); 10171 } 10172 10173 // Clang will correctly decode the usage of register name aliases into their 10174 // official names. However, other frontends like `rustc` do not. This allows 10175 // users of these frontends to use the ABI names for registers in LLVM-style 10176 // register constraints. 10177 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 10178 .Case("{zero}", RISCV::X0) 10179 .Case("{ra}", RISCV::X1) 10180 .Case("{sp}", RISCV::X2) 10181 .Case("{gp}", RISCV::X3) 10182 .Case("{tp}", RISCV::X4) 10183 .Case("{t0}", RISCV::X5) 10184 .Case("{t1}", RISCV::X6) 10185 .Case("{t2}", RISCV::X7) 10186 .Cases("{s0}", "{fp}", RISCV::X8) 10187 .Case("{s1}", RISCV::X9) 10188 .Case("{a0}", RISCV::X10) 10189 .Case("{a1}", RISCV::X11) 10190 .Case("{a2}", RISCV::X12) 10191 .Case("{a3}", RISCV::X13) 10192 .Case("{a4}", RISCV::X14) 10193 .Case("{a5}", RISCV::X15) 10194 .Case("{a6}", RISCV::X16) 10195 .Case("{a7}", RISCV::X17) 10196 .Case("{s2}", RISCV::X18) 10197 .Case("{s3}", RISCV::X19) 10198 .Case("{s4}", RISCV::X20) 10199 .Case("{s5}", RISCV::X21) 10200 .Case("{s6}", RISCV::X22) 10201 .Case("{s7}", RISCV::X23) 10202 .Case("{s8}", RISCV::X24) 10203 .Case("{s9}", RISCV::X25) 10204 .Case("{s10}", RISCV::X26) 10205 .Case("{s11}", RISCV::X27) 10206 .Case("{t3}", RISCV::X28) 10207 .Case("{t4}", RISCV::X29) 10208 .Case("{t5}", RISCV::X30) 10209 .Case("{t6}", RISCV::X31) 10210 .Default(RISCV::NoRegister); 10211 if (XRegFromAlias != RISCV::NoRegister) 10212 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 10213 10214 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 10215 // TableGen record rather than the AsmName to choose registers for InlineAsm 10216 // constraints, plus we want to match those names to the widest floating point 10217 // register type available, manually select floating point registers here. 10218 // 10219 // The second case is the ABI name of the register, so that frontends can also 10220 // use the ABI names in register constraint lists. 10221 if (Subtarget.hasStdExtF()) { 10222 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 10223 .Cases("{f0}", "{ft0}", RISCV::F0_F) 10224 .Cases("{f1}", "{ft1}", RISCV::F1_F) 10225 .Cases("{f2}", "{ft2}", RISCV::F2_F) 10226 .Cases("{f3}", "{ft3}", RISCV::F3_F) 10227 .Cases("{f4}", "{ft4}", RISCV::F4_F) 10228 .Cases("{f5}", "{ft5}", RISCV::F5_F) 10229 .Cases("{f6}", "{ft6}", RISCV::F6_F) 10230 .Cases("{f7}", "{ft7}", RISCV::F7_F) 10231 .Cases("{f8}", "{fs0}", RISCV::F8_F) 10232 .Cases("{f9}", "{fs1}", RISCV::F9_F) 10233 .Cases("{f10}", "{fa0}", RISCV::F10_F) 10234 .Cases("{f11}", "{fa1}", RISCV::F11_F) 10235 .Cases("{f12}", "{fa2}", RISCV::F12_F) 10236 .Cases("{f13}", "{fa3}", RISCV::F13_F) 10237 .Cases("{f14}", "{fa4}", RISCV::F14_F) 10238 .Cases("{f15}", "{fa5}", RISCV::F15_F) 10239 .Cases("{f16}", "{fa6}", RISCV::F16_F) 10240 .Cases("{f17}", "{fa7}", RISCV::F17_F) 10241 .Cases("{f18}", "{fs2}", RISCV::F18_F) 10242 .Cases("{f19}", "{fs3}", RISCV::F19_F) 10243 .Cases("{f20}", "{fs4}", RISCV::F20_F) 10244 .Cases("{f21}", "{fs5}", RISCV::F21_F) 10245 .Cases("{f22}", "{fs6}", RISCV::F22_F) 10246 .Cases("{f23}", "{fs7}", RISCV::F23_F) 10247 .Cases("{f24}", "{fs8}", RISCV::F24_F) 10248 .Cases("{f25}", "{fs9}", RISCV::F25_F) 10249 .Cases("{f26}", "{fs10}", RISCV::F26_F) 10250 .Cases("{f27}", "{fs11}", RISCV::F27_F) 10251 .Cases("{f28}", "{ft8}", RISCV::F28_F) 10252 .Cases("{f29}", "{ft9}", RISCV::F29_F) 10253 .Cases("{f30}", "{ft10}", RISCV::F30_F) 10254 .Cases("{f31}", "{ft11}", RISCV::F31_F) 10255 .Default(RISCV::NoRegister); 10256 if (FReg != RISCV::NoRegister) { 10257 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 10258 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 10259 unsigned RegNo = FReg - RISCV::F0_F; 10260 unsigned DReg = RISCV::F0_D + RegNo; 10261 return std::make_pair(DReg, &RISCV::FPR64RegClass); 10262 } 10263 if (VT == MVT::f32 || VT == MVT::Other) 10264 return std::make_pair(FReg, &RISCV::FPR32RegClass); 10265 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 10266 unsigned RegNo = FReg - RISCV::F0_F; 10267 unsigned HReg = RISCV::F0_H + RegNo; 10268 return std::make_pair(HReg, &RISCV::FPR16RegClass); 10269 } 10270 } 10271 } 10272 10273 if (Subtarget.hasVInstructions()) { 10274 Register VReg = StringSwitch<Register>(Constraint.lower()) 10275 .Case("{v0}", RISCV::V0) 10276 .Case("{v1}", RISCV::V1) 10277 .Case("{v2}", RISCV::V2) 10278 .Case("{v3}", RISCV::V3) 10279 .Case("{v4}", RISCV::V4) 10280 .Case("{v5}", RISCV::V5) 10281 .Case("{v6}", RISCV::V6) 10282 .Case("{v7}", RISCV::V7) 10283 .Case("{v8}", RISCV::V8) 10284 .Case("{v9}", RISCV::V9) 10285 .Case("{v10}", RISCV::V10) 10286 .Case("{v11}", RISCV::V11) 10287 .Case("{v12}", RISCV::V12) 10288 .Case("{v13}", RISCV::V13) 10289 .Case("{v14}", RISCV::V14) 10290 .Case("{v15}", RISCV::V15) 10291 .Case("{v16}", RISCV::V16) 10292 .Case("{v17}", RISCV::V17) 10293 .Case("{v18}", RISCV::V18) 10294 .Case("{v19}", RISCV::V19) 10295 .Case("{v20}", RISCV::V20) 10296 .Case("{v21}", RISCV::V21) 10297 .Case("{v22}", RISCV::V22) 10298 .Case("{v23}", RISCV::V23) 10299 .Case("{v24}", RISCV::V24) 10300 .Case("{v25}", RISCV::V25) 10301 .Case("{v26}", RISCV::V26) 10302 .Case("{v27}", RISCV::V27) 10303 .Case("{v28}", RISCV::V28) 10304 .Case("{v29}", RISCV::V29) 10305 .Case("{v30}", RISCV::V30) 10306 .Case("{v31}", RISCV::V31) 10307 .Default(RISCV::NoRegister); 10308 if (VReg != RISCV::NoRegister) { 10309 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 10310 return std::make_pair(VReg, &RISCV::VMRegClass); 10311 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 10312 return std::make_pair(VReg, &RISCV::VRRegClass); 10313 for (const auto *RC : 10314 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10315 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 10316 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 10317 return std::make_pair(VReg, RC); 10318 } 10319 } 10320 } 10321 } 10322 10323 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10324 } 10325 10326 unsigned 10327 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 10328 // Currently only support length 1 constraints. 10329 if (ConstraintCode.size() == 1) { 10330 switch (ConstraintCode[0]) { 10331 case 'A': 10332 return InlineAsm::Constraint_A; 10333 default: 10334 break; 10335 } 10336 } 10337 10338 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 10339 } 10340 10341 void RISCVTargetLowering::LowerAsmOperandForConstraint( 10342 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 10343 SelectionDAG &DAG) const { 10344 // Currently only support length 1 constraints. 10345 if (Constraint.length() == 1) { 10346 switch (Constraint[0]) { 10347 case 'I': 10348 // Validate & create a 12-bit signed immediate operand. 10349 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10350 uint64_t CVal = C->getSExtValue(); 10351 if (isInt<12>(CVal)) 10352 Ops.push_back( 10353 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10354 } 10355 return; 10356 case 'J': 10357 // Validate & create an integer zero operand. 10358 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 10359 if (C->getZExtValue() == 0) 10360 Ops.push_back( 10361 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 10362 return; 10363 case 'K': 10364 // Validate & create a 5-bit unsigned immediate operand. 10365 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10366 uint64_t CVal = C->getZExtValue(); 10367 if (isUInt<5>(CVal)) 10368 Ops.push_back( 10369 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10370 } 10371 return; 10372 case 'S': 10373 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 10374 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 10375 GA->getValueType(0))); 10376 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 10377 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 10378 BA->getValueType(0))); 10379 } 10380 return; 10381 default: 10382 break; 10383 } 10384 } 10385 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10386 } 10387 10388 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 10389 Instruction *Inst, 10390 AtomicOrdering Ord) const { 10391 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 10392 return Builder.CreateFence(Ord); 10393 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 10394 return Builder.CreateFence(AtomicOrdering::Release); 10395 return nullptr; 10396 } 10397 10398 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 10399 Instruction *Inst, 10400 AtomicOrdering Ord) const { 10401 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 10402 return Builder.CreateFence(AtomicOrdering::Acquire); 10403 return nullptr; 10404 } 10405 10406 TargetLowering::AtomicExpansionKind 10407 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 10408 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 10409 // point operations can't be used in an lr/sc sequence without breaking the 10410 // forward-progress guarantee. 10411 if (AI->isFloatingPointOperation()) 10412 return AtomicExpansionKind::CmpXChg; 10413 10414 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 10415 if (Size == 8 || Size == 16) 10416 return AtomicExpansionKind::MaskedIntrinsic; 10417 return AtomicExpansionKind::None; 10418 } 10419 10420 static Intrinsic::ID 10421 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 10422 if (XLen == 32) { 10423 switch (BinOp) { 10424 default: 10425 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10426 case AtomicRMWInst::Xchg: 10427 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 10428 case AtomicRMWInst::Add: 10429 return Intrinsic::riscv_masked_atomicrmw_add_i32; 10430 case AtomicRMWInst::Sub: 10431 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 10432 case AtomicRMWInst::Nand: 10433 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 10434 case AtomicRMWInst::Max: 10435 return Intrinsic::riscv_masked_atomicrmw_max_i32; 10436 case AtomicRMWInst::Min: 10437 return Intrinsic::riscv_masked_atomicrmw_min_i32; 10438 case AtomicRMWInst::UMax: 10439 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 10440 case AtomicRMWInst::UMin: 10441 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 10442 } 10443 } 10444 10445 if (XLen == 64) { 10446 switch (BinOp) { 10447 default: 10448 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10449 case AtomicRMWInst::Xchg: 10450 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 10451 case AtomicRMWInst::Add: 10452 return Intrinsic::riscv_masked_atomicrmw_add_i64; 10453 case AtomicRMWInst::Sub: 10454 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 10455 case AtomicRMWInst::Nand: 10456 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 10457 case AtomicRMWInst::Max: 10458 return Intrinsic::riscv_masked_atomicrmw_max_i64; 10459 case AtomicRMWInst::Min: 10460 return Intrinsic::riscv_masked_atomicrmw_min_i64; 10461 case AtomicRMWInst::UMax: 10462 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 10463 case AtomicRMWInst::UMin: 10464 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 10465 } 10466 } 10467 10468 llvm_unreachable("Unexpected XLen\n"); 10469 } 10470 10471 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 10472 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 10473 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 10474 unsigned XLen = Subtarget.getXLen(); 10475 Value *Ordering = 10476 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 10477 Type *Tys[] = {AlignedAddr->getType()}; 10478 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 10479 AI->getModule(), 10480 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 10481 10482 if (XLen == 64) { 10483 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 10484 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10485 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 10486 } 10487 10488 Value *Result; 10489 10490 // Must pass the shift amount needed to sign extend the loaded value prior 10491 // to performing a signed comparison for min/max. ShiftAmt is the number of 10492 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 10493 // is the number of bits to left+right shift the value in order to 10494 // sign-extend. 10495 if (AI->getOperation() == AtomicRMWInst::Min || 10496 AI->getOperation() == AtomicRMWInst::Max) { 10497 const DataLayout &DL = AI->getModule()->getDataLayout(); 10498 unsigned ValWidth = 10499 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 10500 Value *SextShamt = 10501 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 10502 Result = Builder.CreateCall(LrwOpScwLoop, 10503 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 10504 } else { 10505 Result = 10506 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 10507 } 10508 10509 if (XLen == 64) 10510 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10511 return Result; 10512 } 10513 10514 TargetLowering::AtomicExpansionKind 10515 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 10516 AtomicCmpXchgInst *CI) const { 10517 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 10518 if (Size == 8 || Size == 16) 10519 return AtomicExpansionKind::MaskedIntrinsic; 10520 return AtomicExpansionKind::None; 10521 } 10522 10523 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 10524 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 10525 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 10526 unsigned XLen = Subtarget.getXLen(); 10527 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 10528 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 10529 if (XLen == 64) { 10530 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 10531 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 10532 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10533 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 10534 } 10535 Type *Tys[] = {AlignedAddr->getType()}; 10536 Function *MaskedCmpXchg = 10537 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 10538 Value *Result = Builder.CreateCall( 10539 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 10540 if (XLen == 64) 10541 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10542 return Result; 10543 } 10544 10545 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 10546 return false; 10547 } 10548 10549 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 10550 EVT VT) const { 10551 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 10552 return false; 10553 10554 switch (FPVT.getSimpleVT().SimpleTy) { 10555 case MVT::f16: 10556 return Subtarget.hasStdExtZfh(); 10557 case MVT::f32: 10558 return Subtarget.hasStdExtF(); 10559 case MVT::f64: 10560 return Subtarget.hasStdExtD(); 10561 default: 10562 return false; 10563 } 10564 } 10565 10566 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 10567 // If we are using the small code model, we can reduce size of jump table 10568 // entry to 4 bytes. 10569 if (Subtarget.is64Bit() && !isPositionIndependent() && 10570 getTargetMachine().getCodeModel() == CodeModel::Small) { 10571 return MachineJumpTableInfo::EK_Custom32; 10572 } 10573 return TargetLowering::getJumpTableEncoding(); 10574 } 10575 10576 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 10577 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 10578 unsigned uid, MCContext &Ctx) const { 10579 assert(Subtarget.is64Bit() && !isPositionIndependent() && 10580 getTargetMachine().getCodeModel() == CodeModel::Small); 10581 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 10582 } 10583 10584 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 10585 EVT VT) const { 10586 VT = VT.getScalarType(); 10587 10588 if (!VT.isSimple()) 10589 return false; 10590 10591 switch (VT.getSimpleVT().SimpleTy) { 10592 case MVT::f16: 10593 return Subtarget.hasStdExtZfh(); 10594 case MVT::f32: 10595 return Subtarget.hasStdExtF(); 10596 case MVT::f64: 10597 return Subtarget.hasStdExtD(); 10598 default: 10599 break; 10600 } 10601 10602 return false; 10603 } 10604 10605 Register RISCVTargetLowering::getExceptionPointerRegister( 10606 const Constant *PersonalityFn) const { 10607 return RISCV::X10; 10608 } 10609 10610 Register RISCVTargetLowering::getExceptionSelectorRegister( 10611 const Constant *PersonalityFn) const { 10612 return RISCV::X11; 10613 } 10614 10615 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 10616 // Return false to suppress the unnecessary extensions if the LibCall 10617 // arguments or return value is f32 type for LP64 ABI. 10618 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 10619 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 10620 return false; 10621 10622 return true; 10623 } 10624 10625 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 10626 if (Subtarget.is64Bit() && Type == MVT::i32) 10627 return true; 10628 10629 return IsSigned; 10630 } 10631 10632 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 10633 SDValue C) const { 10634 // Check integral scalar types. 10635 if (VT.isScalarInteger()) { 10636 // Omit the optimization if the sub target has the M extension and the data 10637 // size exceeds XLen. 10638 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 10639 return false; 10640 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 10641 // Break the MUL to a SLLI and an ADD/SUB. 10642 const APInt &Imm = ConstNode->getAPIntValue(); 10643 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 10644 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 10645 return true; 10646 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 10647 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 10648 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 10649 (Imm - 8).isPowerOf2())) 10650 return true; 10651 // Omit the following optimization if the sub target has the M extension 10652 // and the data size >= XLen. 10653 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 10654 return false; 10655 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 10656 // a pair of LUI/ADDI. 10657 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 10658 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 10659 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 10660 (1 - ImmS).isPowerOf2()) 10661 return true; 10662 } 10663 } 10664 } 10665 10666 return false; 10667 } 10668 10669 bool RISCVTargetLowering::isMulAddWithConstProfitable( 10670 const SDValue &AddNode, const SDValue &ConstNode) const { 10671 // Let the DAGCombiner decide for vectors. 10672 EVT VT = AddNode.getValueType(); 10673 if (VT.isVector()) 10674 return true; 10675 10676 // Let the DAGCombiner decide for larger types. 10677 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 10678 return true; 10679 10680 // It is worse if c1 is simm12 while c1*c2 is not. 10681 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 10682 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 10683 const APInt &C1 = C1Node->getAPIntValue(); 10684 const APInt &C2 = C2Node->getAPIntValue(); 10685 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 10686 return false; 10687 10688 // Default to true and let the DAGCombiner decide. 10689 return true; 10690 } 10691 10692 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 10693 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 10694 bool *Fast) const { 10695 if (!VT.isVector()) 10696 return false; 10697 10698 EVT ElemVT = VT.getVectorElementType(); 10699 if (Alignment >= ElemVT.getStoreSize()) { 10700 if (Fast) 10701 *Fast = true; 10702 return true; 10703 } 10704 10705 return false; 10706 } 10707 10708 bool RISCVTargetLowering::splitValueIntoRegisterParts( 10709 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 10710 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 10711 bool IsABIRegCopy = CC.hasValue(); 10712 EVT ValueVT = Val.getValueType(); 10713 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10714 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 10715 // and cast to f32. 10716 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 10717 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 10718 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 10719 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 10720 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 10721 Parts[0] = Val; 10722 return true; 10723 } 10724 10725 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10726 LLVMContext &Context = *DAG.getContext(); 10727 EVT ValueEltVT = ValueVT.getVectorElementType(); 10728 EVT PartEltVT = PartVT.getVectorElementType(); 10729 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10730 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10731 if (PartVTBitSize % ValueVTBitSize == 0) { 10732 assert(PartVTBitSize >= ValueVTBitSize); 10733 // If the element types are different, bitcast to the same element type of 10734 // PartVT first. 10735 // Give an example here, we want copy a <vscale x 1 x i8> value to 10736 // <vscale x 4 x i16>. 10737 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 10738 // subvector, then we can bitcast to <vscale x 4 x i16>. 10739 if (ValueEltVT != PartEltVT) { 10740 if (PartVTBitSize > ValueVTBitSize) { 10741 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10742 assert(Count != 0 && "The number of element should not be zero."); 10743 EVT SameEltTypeVT = 10744 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10745 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 10746 DAG.getUNDEF(SameEltTypeVT), Val, 10747 DAG.getVectorIdxConstant(0, DL)); 10748 } 10749 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 10750 } else { 10751 Val = 10752 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 10753 Val, DAG.getVectorIdxConstant(0, DL)); 10754 } 10755 Parts[0] = Val; 10756 return true; 10757 } 10758 } 10759 return false; 10760 } 10761 10762 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 10763 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 10764 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 10765 bool IsABIRegCopy = CC.hasValue(); 10766 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10767 SDValue Val = Parts[0]; 10768 10769 // Cast the f32 to i32, truncate to i16, and cast back to f16. 10770 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 10771 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 10772 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 10773 return Val; 10774 } 10775 10776 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10777 LLVMContext &Context = *DAG.getContext(); 10778 SDValue Val = Parts[0]; 10779 EVT ValueEltVT = ValueVT.getVectorElementType(); 10780 EVT PartEltVT = PartVT.getVectorElementType(); 10781 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10782 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10783 if (PartVTBitSize % ValueVTBitSize == 0) { 10784 assert(PartVTBitSize >= ValueVTBitSize); 10785 EVT SameEltTypeVT = ValueVT; 10786 // If the element types are different, convert it to the same element type 10787 // of PartVT. 10788 // Give an example here, we want copy a <vscale x 1 x i8> value from 10789 // <vscale x 4 x i16>. 10790 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 10791 // then we can extract <vscale x 1 x i8>. 10792 if (ValueEltVT != PartEltVT) { 10793 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10794 assert(Count != 0 && "The number of element should not be zero."); 10795 SameEltTypeVT = 10796 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10797 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 10798 } 10799 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 10800 DAG.getVectorIdxConstant(0, DL)); 10801 return Val; 10802 } 10803 } 10804 return SDValue(); 10805 } 10806 10807 SDValue 10808 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10809 SelectionDAG &DAG, 10810 SmallVectorImpl<SDNode *> &Created) const { 10811 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 10812 if (isIntDivCheap(N->getValueType(0), Attr)) 10813 return SDValue(N, 0); // Lower SDIV as SDIV 10814 10815 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 10816 "Unexpected divisor!"); 10817 10818 // Conditional move is needed, so do the transformation iff Zbt is enabled. 10819 if (!Subtarget.hasStdExtZbt()) 10820 return SDValue(); 10821 10822 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 10823 // Besides, more critical path instructions will be generated when dividing 10824 // by 2. So we keep using the original DAGs for these cases. 10825 unsigned Lg2 = Divisor.countTrailingZeros(); 10826 if (Lg2 == 1 || Lg2 >= 12) 10827 return SDValue(); 10828 10829 // fold (sdiv X, pow2) 10830 EVT VT = N->getValueType(0); 10831 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 10832 return SDValue(); 10833 10834 SDLoc DL(N); 10835 SDValue N0 = N->getOperand(0); 10836 SDValue Zero = DAG.getConstant(0, DL, VT); 10837 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 10838 10839 // Add (N0 < 0) ? Pow2 - 1 : 0; 10840 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 10841 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 10842 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 10843 10844 Created.push_back(Cmp.getNode()); 10845 Created.push_back(Add.getNode()); 10846 Created.push_back(Sel.getNode()); 10847 10848 // Divide by pow2. 10849 SDValue SRA = 10850 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 10851 10852 // If we're dividing by a positive value, we're done. Otherwise, we must 10853 // negate the result. 10854 if (Divisor.isNonNegative()) 10855 return SRA; 10856 10857 Created.push_back(SRA.getNode()); 10858 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 10859 } 10860 10861 #define GET_REGISTER_MATCHER 10862 #include "RISCVGenAsmMatcher.inc" 10863 10864 Register 10865 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 10866 const MachineFunction &MF) const { 10867 Register Reg = MatchRegisterAltName(RegName); 10868 if (Reg == RISCV::NoRegister) 10869 Reg = MatchRegisterName(RegName); 10870 if (Reg == RISCV::NoRegister) 10871 report_fatal_error( 10872 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 10873 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 10874 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 10875 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 10876 StringRef(RegName) + "\".")); 10877 return Reg; 10878 } 10879 10880 namespace llvm { 10881 namespace RISCVVIntrinsicsTable { 10882 10883 #define GET_RISCVVIntrinsicsTable_IMPL 10884 #include "RISCVGenSearchableTables.inc" 10885 10886 } // namespace RISCVVIntrinsicsTable 10887 10888 } // namespace llvm 10889