1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IntrinsicsRISCV.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "riscv-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
46                                          const RISCVSubtarget &STI)
47     : TargetLowering(TM), Subtarget(STI) {
48 
49   if (Subtarget.isRV32E())
50     report_fatal_error("Codegen not yet implemented for RV32E");
51 
52   RISCVABI::ABI ABI = Subtarget.getTargetABI();
53   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
54 
55   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
56       !Subtarget.hasStdExtF()) {
57     errs() << "Hard-float 'f' ABI can't be used for a target that "
58                 "doesn't support the F instruction set extension (ignoring "
59                           "target-abi)\n";
60     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
61   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
62              !Subtarget.hasStdExtD()) {
63     errs() << "Hard-float 'd' ABI can't be used for a target that "
64               "doesn't support the D instruction set extension (ignoring "
65               "target-abi)\n";
66     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
67   }
68 
69   switch (ABI) {
70   default:
71     report_fatal_error("Don't know how to lower this ABI");
72   case RISCVABI::ABI_ILP32:
73   case RISCVABI::ABI_ILP32F:
74   case RISCVABI::ABI_ILP32D:
75   case RISCVABI::ABI_LP64:
76   case RISCVABI::ABI_LP64F:
77   case RISCVABI::ABI_LP64D:
78     break;
79   }
80 
81   MVT XLenVT = Subtarget.getXLenVT();
82 
83   // Set up the register classes.
84   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
85 
86   if (Subtarget.hasStdExtZfh())
87     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
88   if (Subtarget.hasStdExtF())
89     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
90   if (Subtarget.hasStdExtD())
91     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
92 
93   static const MVT::SimpleValueType BoolVecVTs[] = {
94       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
95       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
96   static const MVT::SimpleValueType IntVecVTs[] = {
97       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
98       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
99       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
100       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
101       MVT::nxv4i64, MVT::nxv8i64};
102   static const MVT::SimpleValueType F16VecVTs[] = {
103       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
104       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
105   static const MVT::SimpleValueType F32VecVTs[] = {
106       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
107   static const MVT::SimpleValueType F64VecVTs[] = {
108       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
109 
110   if (Subtarget.hasStdExtV()) {
111     auto addRegClassForRVV = [this](MVT VT) {
112       unsigned Size = VT.getSizeInBits().getKnownMinValue();
113       assert(Size <= 512 && isPowerOf2_32(Size));
114       const TargetRegisterClass *RC;
115       if (Size <= 64)
116         RC = &RISCV::VRRegClass;
117       else if (Size == 128)
118         RC = &RISCV::VRM2RegClass;
119       else if (Size == 256)
120         RC = &RISCV::VRM4RegClass;
121       else
122         RC = &RISCV::VRM8RegClass;
123 
124       addRegisterClass(VT, RC);
125     };
126 
127     for (MVT VT : BoolVecVTs)
128       addRegClassForRVV(VT);
129     for (MVT VT : IntVecVTs)
130       addRegClassForRVV(VT);
131 
132     if (Subtarget.hasStdExtZfh())
133       for (MVT VT : F16VecVTs)
134         addRegClassForRVV(VT);
135 
136     if (Subtarget.hasStdExtF())
137       for (MVT VT : F32VecVTs)
138         addRegClassForRVV(VT);
139 
140     if (Subtarget.hasStdExtD())
141       for (MVT VT : F64VecVTs)
142         addRegClassForRVV(VT);
143 
144     if (Subtarget.useRVVForFixedLengthVectors()) {
145       auto addRegClassForFixedVectors = [this](MVT VT) {
146         unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
147         const TargetRegisterClass *RC;
148         if (LMul == 1 || VT.getVectorElementType() == MVT::i1)
149           RC = &RISCV::VRRegClass;
150         else if (LMul == 2)
151           RC = &RISCV::VRM2RegClass;
152         else if (LMul == 4)
153           RC = &RISCV::VRM4RegClass;
154         else if (LMul == 8)
155           RC = &RISCV::VRM8RegClass;
156         else
157           llvm_unreachable("Unexpected LMul!");
158 
159         addRegisterClass(VT, RC);
160       };
161       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
162         if (useRVVForFixedLengthVectorVT(VT))
163           addRegClassForFixedVectors(VT);
164 
165       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
166         if (useRVVForFixedLengthVectorVT(VT))
167           addRegClassForFixedVectors(VT);
168     }
169   }
170 
171   // Compute derived properties from the register classes.
172   computeRegisterProperties(STI.getRegisterInfo());
173 
174   setStackPointerRegisterToSaveRestore(RISCV::X2);
175 
176   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
177     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
178 
179   // TODO: add all necessary setOperationAction calls.
180   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
181 
182   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
183   setOperationAction(ISD::BR_CC, XLenVT, Expand);
184   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
185   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
186 
187   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
188   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
189 
190   setOperationAction(ISD::VASTART, MVT::Other, Custom);
191   setOperationAction(ISD::VAARG, MVT::Other, Expand);
192   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
193   setOperationAction(ISD::VAEND, MVT::Other, Expand);
194 
195   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
196   if (!Subtarget.hasStdExtZbb()) {
197     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
198     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
199   }
200 
201   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit())
202     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
203 
204   if (Subtarget.is64Bit()) {
205     setOperationAction(ISD::ADD, MVT::i32, Custom);
206     setOperationAction(ISD::SUB, MVT::i32, Custom);
207     setOperationAction(ISD::SHL, MVT::i32, Custom);
208     setOperationAction(ISD::SRA, MVT::i32, Custom);
209     setOperationAction(ISD::SRL, MVT::i32, Custom);
210 
211     setOperationAction(ISD::UADDO, MVT::i32, Custom);
212     setOperationAction(ISD::USUBO, MVT::i32, Custom);
213     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
214     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
254     if (Subtarget.is64Bit()) {
255       setOperationAction(ISD::ROTL, MVT::i32, Custom);
256       setOperationAction(ISD::ROTR, MVT::i32, Custom);
257     }
258   } else {
259     setOperationAction(ISD::ROTL, XLenVT, Expand);
260     setOperationAction(ISD::ROTR, XLenVT, Expand);
261   }
262 
263   if (Subtarget.hasStdExtZbp()) {
264     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
265     // more combining.
266     setOperationAction(ISD::BITREVERSE, XLenVT, Custom);
267     setOperationAction(ISD::BSWAP, XLenVT, Custom);
268 
269     if (Subtarget.is64Bit()) {
270       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
271       setOperationAction(ISD::BSWAP, MVT::i32, Custom);
272     }
273   } else {
274     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
275     // pattern match it directly in isel.
276     setOperationAction(ISD::BSWAP, XLenVT,
277                        Subtarget.hasStdExtZbb() ? Legal : Expand);
278   }
279 
280   if (Subtarget.hasStdExtZbb()) {
281     setOperationAction(ISD::SMIN, XLenVT, Legal);
282     setOperationAction(ISD::SMAX, XLenVT, Legal);
283     setOperationAction(ISD::UMIN, XLenVT, Legal);
284     setOperationAction(ISD::UMAX, XLenVT, Legal);
285 
286     if (Subtarget.is64Bit()) {
287       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
288       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
289       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
290       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
291     }
292   } else {
293     setOperationAction(ISD::CTTZ, XLenVT, Expand);
294     setOperationAction(ISD::CTLZ, XLenVT, Expand);
295     setOperationAction(ISD::CTPOP, XLenVT, Expand);
296   }
297 
298   if (Subtarget.hasStdExtZbt()) {
299     setOperationAction(ISD::FSHL, XLenVT, Custom);
300     setOperationAction(ISD::FSHR, XLenVT, Custom);
301     setOperationAction(ISD::SELECT, XLenVT, Legal);
302 
303     if (Subtarget.is64Bit()) {
304       setOperationAction(ISD::FSHL, MVT::i32, Custom);
305       setOperationAction(ISD::FSHR, MVT::i32, Custom);
306     }
307   } else {
308     setOperationAction(ISD::SELECT, XLenVT, Custom);
309   }
310 
311   ISD::CondCode FPCCToExpand[] = {
312       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
313       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
314       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
315 
316   ISD::NodeType FPOpToExpand[] = {
317       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
318       ISD::FP_TO_FP16};
319 
320   if (Subtarget.hasStdExtZfh())
321     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
322 
323   if (Subtarget.hasStdExtZfh()) {
324     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
325     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
326     for (auto CC : FPCCToExpand)
327       setCondCodeAction(CC, MVT::f16, Expand);
328     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
329     setOperationAction(ISD::SELECT, MVT::f16, Custom);
330     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
331     for (auto Op : FPOpToExpand)
332       setOperationAction(Op, MVT::f16, Expand);
333   }
334 
335   if (Subtarget.hasStdExtF()) {
336     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
337     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
338     for (auto CC : FPCCToExpand)
339       setCondCodeAction(CC, MVT::f32, Expand);
340     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
341     setOperationAction(ISD::SELECT, MVT::f32, Custom);
342     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
343     for (auto Op : FPOpToExpand)
344       setOperationAction(Op, MVT::f32, Expand);
345     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
346     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
347   }
348 
349   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
350     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
351 
352   if (Subtarget.hasStdExtD()) {
353     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
354     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
355     for (auto CC : FPCCToExpand)
356       setCondCodeAction(CC, MVT::f64, Expand);
357     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
358     setOperationAction(ISD::SELECT, MVT::f64, Custom);
359     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
360     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
361     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
362     for (auto Op : FPOpToExpand)
363       setOperationAction(Op, MVT::f64, Expand);
364     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
365     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
366   }
367 
368   if (Subtarget.is64Bit()) {
369     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
370     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
371     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
372     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
373   }
374 
375   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
376   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
377   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
378   setOperationAction(ISD::JumpTable, XLenVT, Custom);
379 
380   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
381 
382   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
383   // Unfortunately this can't be determined just from the ISA naming string.
384   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
385                      Subtarget.is64Bit() ? Legal : Custom);
386 
387   setOperationAction(ISD::TRAP, MVT::Other, Legal);
388   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
389   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
390 
391   if (Subtarget.hasStdExtA()) {
392     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
393     setMinCmpXchgSizeInBits(32);
394   } else {
395     setMaxAtomicSizeInBitsSupported(0);
396   }
397 
398   setBooleanContents(ZeroOrOneBooleanContent);
399 
400   if (Subtarget.hasStdExtV()) {
401     setBooleanVectorContents(ZeroOrOneBooleanContent);
402 
403     setOperationAction(ISD::VSCALE, XLenVT, Custom);
404 
405     // RVV intrinsics may have illegal operands.
406     // We also need to custom legalize vmv.x.s.
407     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
408     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
409     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
410     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
411     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
412     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
413     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
414     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
415 
416     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
417 
418     if (!Subtarget.is64Bit()) {
419       // We must custom-lower certain vXi64 operations on RV32 due to the vector
420       // element type being illegal.
421       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
422       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
423 
424       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
425       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
426       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
427       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
428       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
429       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
430       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
431       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
432     }
433 
434     for (MVT VT : BoolVecVTs) {
435       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
436 
437       // Mask VTs are custom-expanded into a series of standard nodes
438       setOperationAction(ISD::TRUNCATE, VT, Custom);
439       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
440       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
441 
442       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
443 
444       // Expand all extending loads to types larger than this, and truncating
445       // stores from types larger than this.
446       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
447         setTruncStoreAction(OtherVT, VT, Expand);
448         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
449         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
450         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
451       }
452     }
453 
454     for (MVT VT : IntVecVTs) {
455       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
456       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
457 
458       setOperationAction(ISD::SMIN, VT, Legal);
459       setOperationAction(ISD::SMAX, VT, Legal);
460       setOperationAction(ISD::UMIN, VT, Legal);
461       setOperationAction(ISD::UMAX, VT, Legal);
462 
463       setOperationAction(ISD::ROTL, VT, Expand);
464       setOperationAction(ISD::ROTR, VT, Expand);
465 
466       // Custom-lower extensions and truncations from/to mask types.
467       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
468       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
469       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
470 
471       // RVV has native int->float & float->int conversions where the
472       // element type sizes are within one power-of-two of each other. Any
473       // wider distances between type sizes have to be lowered as sequences
474       // which progressively narrow the gap in stages.
475       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
476       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
477       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
478       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
479 
480       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
481       // nodes which truncate by one power of two at a time.
482       setOperationAction(ISD::TRUNCATE, VT, Custom);
483 
484       // Custom-lower insert/extract operations to simplify patterns.
485       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
486       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
487 
488       // Custom-lower reduction operations to set up the corresponding custom
489       // nodes' operands.
490       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
491       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
492       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
493       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
494       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
495       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
496       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
497       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
498 
499       setOperationAction(ISD::MLOAD, VT, Custom);
500       setOperationAction(ISD::MSTORE, VT, Custom);
501       setOperationAction(ISD::MGATHER, VT, Custom);
502       setOperationAction(ISD::MSCATTER, VT, Custom);
503 
504       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
505       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
506       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
507 
508       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
509       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
510 
511       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
512         setTruncStoreAction(VT, OtherVT, Expand);
513         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
514         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
515         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
516       }
517     }
518 
519     // Expand various CCs to best match the RVV ISA, which natively supports UNE
520     // but no other unordered comparisons, and supports all ordered comparisons
521     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
522     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
523     // and we pattern-match those back to the "original", swapping operands once
524     // more. This way we catch both operations and both "vf" and "fv" forms with
525     // fewer patterns.
526     ISD::CondCode VFPCCToExpand[] = {
527         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
528         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
529         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
530     };
531 
532     // Sets common operation actions on RVV floating-point vector types.
533     const auto SetCommonVFPActions = [&](MVT VT) {
534       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
535       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
536       // sizes are within one power-of-two of each other. Therefore conversions
537       // between vXf16 and vXf64 must be lowered as sequences which convert via
538       // vXf32.
539       setOperationAction(ISD::FP_ROUND, VT, Custom);
540       setOperationAction(ISD::FP_EXTEND, VT, Custom);
541       // Custom-lower insert/extract operations to simplify patterns.
542       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
543       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
544       // Expand various condition codes (explained above).
545       for (auto CC : VFPCCToExpand)
546         setCondCodeAction(CC, VT, Expand);
547 
548       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
549       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
550       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
551 
552       setOperationAction(ISD::MLOAD, VT, Custom);
553       setOperationAction(ISD::MSTORE, VT, Custom);
554       setOperationAction(ISD::MGATHER, VT, Custom);
555       setOperationAction(ISD::MSCATTER, VT, Custom);
556 
557       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
558       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
559       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
560 
561       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
562     };
563 
564     // Sets common extload/truncstore actions on RVV floating-point vector
565     // types.
566     const auto SetCommonVFPExtLoadTruncStoreActions =
567         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
568           for (auto SmallVT : SmallerVTs) {
569             setTruncStoreAction(VT, SmallVT, Expand);
570             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
571           }
572         };
573 
574     if (Subtarget.hasStdExtZfh())
575       for (MVT VT : F16VecVTs)
576         SetCommonVFPActions(VT);
577 
578     for (MVT VT : F32VecVTs) {
579       if (Subtarget.hasStdExtF())
580         SetCommonVFPActions(VT);
581       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
582     }
583 
584     for (MVT VT : F64VecVTs) {
585       if (Subtarget.hasStdExtD())
586         SetCommonVFPActions(VT);
587       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
588       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
589     }
590 
591     if (Subtarget.useRVVForFixedLengthVectors()) {
592       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
593         if (!useRVVForFixedLengthVectorVT(VT))
594           continue;
595 
596         // By default everything must be expanded.
597         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
598           setOperationAction(Op, VT, Expand);
599         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
600           setTruncStoreAction(VT, OtherVT, Expand);
601           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
602           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
603           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
604         }
605 
606         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
607         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
608         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
609 
610         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
611         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
612 
613         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
614 
615         setOperationAction(ISD::LOAD, VT, Custom);
616         setOperationAction(ISD::STORE, VT, Custom);
617 
618         setOperationAction(ISD::SETCC, VT, Custom);
619 
620         setOperationAction(ISD::TRUNCATE, VT, Custom);
621 
622         setOperationAction(ISD::BITCAST, VT, Custom);
623 
624         // Operations below are different for between masks and other vectors.
625         if (VT.getVectorElementType() == MVT::i1) {
626           setOperationAction(ISD::AND, VT, Custom);
627           setOperationAction(ISD::OR, VT, Custom);
628           setOperationAction(ISD::XOR, VT, Custom);
629           continue;
630         }
631 
632         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
633         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
634 
635         setOperationAction(ISD::MLOAD, VT, Custom);
636         setOperationAction(ISD::MSTORE, VT, Custom);
637         setOperationAction(ISD::MGATHER, VT, Custom);
638         setOperationAction(ISD::MSCATTER, VT, Custom);
639         setOperationAction(ISD::ADD, VT, Custom);
640         setOperationAction(ISD::MUL, VT, Custom);
641         setOperationAction(ISD::SUB, VT, Custom);
642         setOperationAction(ISD::AND, VT, Custom);
643         setOperationAction(ISD::OR, VT, Custom);
644         setOperationAction(ISD::XOR, VT, Custom);
645         setOperationAction(ISD::SDIV, VT, Custom);
646         setOperationAction(ISD::SREM, VT, Custom);
647         setOperationAction(ISD::UDIV, VT, Custom);
648         setOperationAction(ISD::UREM, VT, Custom);
649         setOperationAction(ISD::SHL, VT, Custom);
650         setOperationAction(ISD::SRA, VT, Custom);
651         setOperationAction(ISD::SRL, VT, Custom);
652 
653         setOperationAction(ISD::SMIN, VT, Custom);
654         setOperationAction(ISD::SMAX, VT, Custom);
655         setOperationAction(ISD::UMIN, VT, Custom);
656         setOperationAction(ISD::UMAX, VT, Custom);
657         setOperationAction(ISD::ABS,  VT, Custom);
658 
659         setOperationAction(ISD::MULHS, VT, Custom);
660         setOperationAction(ISD::MULHU, VT, Custom);
661 
662         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
663         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
664         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
665         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
666 
667         setOperationAction(ISD::VSELECT, VT, Custom);
668 
669         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
670         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
671         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
672 
673         // Custom-lower reduction operations to set up the corresponding custom
674         // nodes' operands.
675         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
676         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
677         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
678         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
679         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
680         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
681         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
682         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
683       }
684 
685       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
686         if (!useRVVForFixedLengthVectorVT(VT))
687           continue;
688 
689         // By default everything must be expanded.
690         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
691           setOperationAction(Op, VT, Expand);
692         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
693           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
694           setTruncStoreAction(VT, OtherVT, Expand);
695         }
696 
697         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
698         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
699         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
700 
701         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
702         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
703         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
704         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
705 
706         setOperationAction(ISD::LOAD, VT, Custom);
707         setOperationAction(ISD::STORE, VT, Custom);
708         setOperationAction(ISD::MLOAD, VT, Custom);
709         setOperationAction(ISD::MSTORE, VT, Custom);
710         setOperationAction(ISD::MGATHER, VT, Custom);
711         setOperationAction(ISD::MSCATTER, VT, Custom);
712         setOperationAction(ISD::FADD, VT, Custom);
713         setOperationAction(ISD::FSUB, VT, Custom);
714         setOperationAction(ISD::FMUL, VT, Custom);
715         setOperationAction(ISD::FDIV, VT, Custom);
716         setOperationAction(ISD::FNEG, VT, Custom);
717         setOperationAction(ISD::FABS, VT, Custom);
718         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
719         setOperationAction(ISD::FSQRT, VT, Custom);
720         setOperationAction(ISD::FMA, VT, Custom);
721 
722         setOperationAction(ISD::FP_ROUND, VT, Custom);
723         setOperationAction(ISD::FP_EXTEND, VT, Custom);
724 
725         for (auto CC : VFPCCToExpand)
726           setCondCodeAction(CC, VT, Expand);
727 
728         setOperationAction(ISD::VSELECT, VT, Custom);
729 
730         setOperationAction(ISD::BITCAST, VT, Custom);
731 
732         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
733         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
734       }
735 
736       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
737       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
738       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
739       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
740       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
741       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
742       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
743       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
744     }
745   }
746 
747   // Function alignments.
748   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
749   setMinFunctionAlignment(FunctionAlignment);
750   setPrefFunctionAlignment(FunctionAlignment);
751 
752   setMinimumJumpTableEntries(5);
753 
754   // Jumps are expensive, compared to logic
755   setJumpIsExpensive();
756 
757   // We can use any register for comparisons
758   setHasMultipleConditionRegisters();
759 
760   if (Subtarget.hasStdExtZbp()) {
761     setTargetDAGCombine(ISD::OR);
762   }
763   if (Subtarget.hasStdExtV()) {
764     setTargetDAGCombine(ISD::FCOPYSIGN);
765     setTargetDAGCombine(ISD::MGATHER);
766     setTargetDAGCombine(ISD::MSCATTER);
767   }
768 }
769 
770 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
771                                             LLVMContext &Context,
772                                             EVT VT) const {
773   if (!VT.isVector())
774     return getPointerTy(DL);
775   if (Subtarget.hasStdExtV() &&
776       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
777     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
778   return VT.changeVectorElementTypeToInteger();
779 }
780 
781 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
782                                              const CallInst &I,
783                                              MachineFunction &MF,
784                                              unsigned Intrinsic) const {
785   switch (Intrinsic) {
786   default:
787     return false;
788   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
789   case Intrinsic::riscv_masked_atomicrmw_add_i32:
790   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
791   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
792   case Intrinsic::riscv_masked_atomicrmw_max_i32:
793   case Intrinsic::riscv_masked_atomicrmw_min_i32:
794   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
795   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
796   case Intrinsic::riscv_masked_cmpxchg_i32:
797     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
798     Info.opc = ISD::INTRINSIC_W_CHAIN;
799     Info.memVT = MVT::getVT(PtrTy->getElementType());
800     Info.ptrVal = I.getArgOperand(0);
801     Info.offset = 0;
802     Info.align = Align(4);
803     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
804                  MachineMemOperand::MOVolatile;
805     return true;
806   }
807 }
808 
809 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
810                                                 const AddrMode &AM, Type *Ty,
811                                                 unsigned AS,
812                                                 Instruction *I) const {
813   // No global is ever allowed as a base.
814   if (AM.BaseGV)
815     return false;
816 
817   // Require a 12-bit signed offset.
818   if (!isInt<12>(AM.BaseOffs))
819     return false;
820 
821   switch (AM.Scale) {
822   case 0: // "r+i" or just "i", depending on HasBaseReg.
823     break;
824   case 1:
825     if (!AM.HasBaseReg) // allow "r+i".
826       break;
827     return false; // disallow "r+r" or "r+r+i".
828   default:
829     return false;
830   }
831 
832   return true;
833 }
834 
835 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
836   return isInt<12>(Imm);
837 }
838 
839 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
840   return isInt<12>(Imm);
841 }
842 
843 // On RV32, 64-bit integers are split into their high and low parts and held
844 // in two different registers, so the trunc is free since the low register can
845 // just be used.
846 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
847   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
848     return false;
849   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
850   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
851   return (SrcBits == 64 && DestBits == 32);
852 }
853 
854 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
855   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
856       !SrcVT.isInteger() || !DstVT.isInteger())
857     return false;
858   unsigned SrcBits = SrcVT.getSizeInBits();
859   unsigned DestBits = DstVT.getSizeInBits();
860   return (SrcBits == 64 && DestBits == 32);
861 }
862 
863 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
864   // Zexts are free if they can be combined with a load.
865   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
866     EVT MemVT = LD->getMemoryVT();
867     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
868          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
869         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
870          LD->getExtensionType() == ISD::ZEXTLOAD))
871       return true;
872   }
873 
874   return TargetLowering::isZExtFree(Val, VT2);
875 }
876 
877 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
878   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
879 }
880 
881 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
882   return Subtarget.hasStdExtZbb();
883 }
884 
885 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
886   return Subtarget.hasStdExtZbb();
887 }
888 
889 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
890                                        bool ForCodeSize) const {
891   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
892     return false;
893   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
894     return false;
895   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
896     return false;
897   if (Imm.isNegZero())
898     return false;
899   return Imm.isZero();
900 }
901 
902 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
903   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
904          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
905          (VT == MVT::f64 && Subtarget.hasStdExtD());
906 }
907 
908 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
909                                                       CallingConv::ID CC,
910                                                       EVT VT) const {
911   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
912   // end up using a GPR but that will be decided based on ABI.
913   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
914     return MVT::f32;
915 
916   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
917 }
918 
919 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
920                                                            CallingConv::ID CC,
921                                                            EVT VT) const {
922   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
923   // end up using a GPR but that will be decided based on ABI.
924   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
925     return 1;
926 
927   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
928 }
929 
930 // Changes the condition code and swaps operands if necessary, so the SetCC
931 // operation matches one of the comparisons supported directly by branches
932 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
933 // with 1/-1.
934 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
935                                     ISD::CondCode &CC, SelectionDAG &DAG) {
936   // Convert X > -1 to X >= 0.
937   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
938     RHS = DAG.getConstant(0, DL, RHS.getValueType());
939     CC = ISD::SETGE;
940     return;
941   }
942   // Convert X < 1 to 0 >= X.
943   if (CC == ISD::SETLT && isOneConstant(RHS)) {
944     RHS = LHS;
945     LHS = DAG.getConstant(0, DL, RHS.getValueType());
946     CC = ISD::SETGE;
947     return;
948   }
949 
950   switch (CC) {
951   default:
952     break;
953   case ISD::SETGT:
954   case ISD::SETLE:
955   case ISD::SETUGT:
956   case ISD::SETULE:
957     CC = ISD::getSetCCSwappedOperands(CC);
958     std::swap(LHS, RHS);
959     break;
960   }
961 }
962 
963 // Return the RISC-V branch opcode that matches the given DAG integer
964 // condition code. The CondCode must be one of those supported by the RISC-V
965 // ISA (see translateSetCCForBranch).
966 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
967   switch (CC) {
968   default:
969     llvm_unreachable("Unsupported CondCode");
970   case ISD::SETEQ:
971     return RISCV::BEQ;
972   case ISD::SETNE:
973     return RISCV::BNE;
974   case ISD::SETLT:
975     return RISCV::BLT;
976   case ISD::SETGE:
977     return RISCV::BGE;
978   case ISD::SETULT:
979     return RISCV::BLTU;
980   case ISD::SETUGE:
981     return RISCV::BGEU;
982   }
983 }
984 
985 RISCVVLMUL RISCVTargetLowering::getLMUL(MVT VT) {
986   assert(VT.isScalableVector() && "Expecting a scalable vector type");
987   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
988   if (VT.getVectorElementType() == MVT::i1)
989     KnownSize *= 8;
990 
991   switch (KnownSize) {
992   default:
993     llvm_unreachable("Invalid LMUL.");
994   case 8:
995     return RISCVVLMUL::LMUL_F8;
996   case 16:
997     return RISCVVLMUL::LMUL_F4;
998   case 32:
999     return RISCVVLMUL::LMUL_F2;
1000   case 64:
1001     return RISCVVLMUL::LMUL_1;
1002   case 128:
1003     return RISCVVLMUL::LMUL_2;
1004   case 256:
1005     return RISCVVLMUL::LMUL_4;
1006   case 512:
1007     return RISCVVLMUL::LMUL_8;
1008   }
1009 }
1010 
1011 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVVLMUL LMul) {
1012   switch (LMul) {
1013   default:
1014     llvm_unreachable("Invalid LMUL.");
1015   case RISCVVLMUL::LMUL_F8:
1016   case RISCVVLMUL::LMUL_F4:
1017   case RISCVVLMUL::LMUL_F2:
1018   case RISCVVLMUL::LMUL_1:
1019     return RISCV::VRRegClassID;
1020   case RISCVVLMUL::LMUL_2:
1021     return RISCV::VRM2RegClassID;
1022   case RISCVVLMUL::LMUL_4:
1023     return RISCV::VRM4RegClassID;
1024   case RISCVVLMUL::LMUL_8:
1025     return RISCV::VRM8RegClassID;
1026   }
1027 }
1028 
1029 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1030   RISCVVLMUL LMUL = getLMUL(VT);
1031   if (LMUL == RISCVVLMUL::LMUL_F8 || LMUL == RISCVVLMUL::LMUL_F4 ||
1032       LMUL == RISCVVLMUL::LMUL_F2 || LMUL == RISCVVLMUL::LMUL_1) {
1033     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1034                   "Unexpected subreg numbering");
1035     return RISCV::sub_vrm1_0 + Index;
1036   }
1037   if (LMUL == RISCVVLMUL::LMUL_2) {
1038     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1039                   "Unexpected subreg numbering");
1040     return RISCV::sub_vrm2_0 + Index;
1041   }
1042   if (LMUL == RISCVVLMUL::LMUL_4) {
1043     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1044                   "Unexpected subreg numbering");
1045     return RISCV::sub_vrm4_0 + Index;
1046   }
1047   llvm_unreachable("Invalid vector type.");
1048 }
1049 
1050 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1051   if (VT.getVectorElementType() == MVT::i1)
1052     return RISCV::VRRegClassID;
1053   return getRegClassIDForLMUL(getLMUL(VT));
1054 }
1055 
1056 // Attempt to decompose a subvector insert/extract between VecVT and
1057 // SubVecVT via subregister indices. Returns the subregister index that
1058 // can perform the subvector insert/extract with the given element index, as
1059 // well as the index corresponding to any leftover subvectors that must be
1060 // further inserted/extracted within the register class for SubVecVT.
1061 std::pair<unsigned, unsigned>
1062 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1063     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1064     const RISCVRegisterInfo *TRI) {
1065   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1066                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1067                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1068                 "Register classes not ordered");
1069   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1070   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1071   // Try to compose a subregister index that takes us from the incoming
1072   // LMUL>1 register class down to the outgoing one. At each step we half
1073   // the LMUL:
1074   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1075   // Note that this is not guaranteed to find a subregister index, such as
1076   // when we are extracting from one VR type to another.
1077   unsigned SubRegIdx = RISCV::NoSubRegister;
1078   for (const unsigned RCID :
1079        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1080     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1081       VecVT = VecVT.getHalfNumVectorElementsVT();
1082       bool IsHi =
1083           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1084       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1085                                             getSubregIndexByMVT(VecVT, IsHi));
1086       if (IsHi)
1087         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1088     }
1089   return {SubRegIdx, InsertExtractIdx};
1090 }
1091 
1092 // Return the largest legal scalable vector type that matches VT's element type.
1093 MVT RISCVTargetLowering::getContainerForFixedLengthVector(
1094     const TargetLowering &TLI, MVT VT, const RISCVSubtarget &Subtarget) {
1095   assert(VT.isFixedLengthVector() && TLI.isTypeLegal(VT) &&
1096          "Expected legal fixed length vector!");
1097 
1098   unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
1099   assert(LMul <= 8 && isPowerOf2_32(LMul) && "Unexpected LMUL!");
1100 
1101   MVT EltVT = VT.getVectorElementType();
1102   switch (EltVT.SimpleTy) {
1103   default:
1104     llvm_unreachable("unexpected element type for RVV container");
1105   case MVT::i1: {
1106     // Masks are calculated assuming 8-bit elements since that's when we need
1107     // the most elements.
1108     unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / 8;
1109     return MVT::getScalableVectorVT(MVT::i1, LMul * EltsPerBlock);
1110   }
1111   case MVT::i8:
1112   case MVT::i16:
1113   case MVT::i32:
1114   case MVT::i64:
1115   case MVT::f16:
1116   case MVT::f32:
1117   case MVT::f64: {
1118     unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / EltVT.getSizeInBits();
1119     return MVT::getScalableVectorVT(EltVT, LMul * EltsPerBlock);
1120   }
1121   }
1122 }
1123 
1124 MVT RISCVTargetLowering::getContainerForFixedLengthVector(
1125     SelectionDAG &DAG, MVT VT, const RISCVSubtarget &Subtarget) {
1126   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1127                                           Subtarget);
1128 }
1129 
1130 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1131   return getContainerForFixedLengthVector(*this, VT, getSubtarget());
1132 }
1133 
1134 // Grow V to consume an entire RVV register.
1135 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1136                                        const RISCVSubtarget &Subtarget) {
1137   assert(VT.isScalableVector() &&
1138          "Expected to convert into a scalable vector!");
1139   assert(V.getValueType().isFixedLengthVector() &&
1140          "Expected a fixed length vector operand!");
1141   SDLoc DL(V);
1142   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1143   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1144 }
1145 
1146 // Shrink V so it's just big enough to maintain a VT's worth of data.
1147 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1148                                          const RISCVSubtarget &Subtarget) {
1149   assert(VT.isFixedLengthVector() &&
1150          "Expected to convert into a fixed length vector!");
1151   assert(V.getValueType().isScalableVector() &&
1152          "Expected a scalable vector operand!");
1153   SDLoc DL(V);
1154   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1155   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1156 }
1157 
1158 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1159 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1160 // the vector type that it is contained in.
1161 static std::pair<SDValue, SDValue>
1162 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1163                 const RISCVSubtarget &Subtarget) {
1164   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1165   MVT XLenVT = Subtarget.getXLenVT();
1166   SDValue VL = VecVT.isFixedLengthVector()
1167                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1168                    : DAG.getRegister(RISCV::X0, XLenVT);
1169   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1170   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1171   return {Mask, VL};
1172 }
1173 
1174 // As above but assuming the given type is a scalable vector type.
1175 static std::pair<SDValue, SDValue>
1176 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1177                         const RISCVSubtarget &Subtarget) {
1178   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1179   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1180 }
1181 
1182 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1183 // of either is (currently) supported. This can get us into an infinite loop
1184 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1185 // as a ..., etc.
1186 // Until either (or both) of these can reliably lower any node, reporting that
1187 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1188 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1189 // which is not desirable.
1190 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1191     EVT VT, unsigned DefinedValues) const {
1192   return false;
1193 }
1194 
1195 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1196   // Only splats are currently supported.
1197   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1198     return true;
1199 
1200   return false;
1201 }
1202 
1203 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1204                                  const RISCVSubtarget &Subtarget) {
1205   MVT VT = Op.getSimpleValueType();
1206   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1207 
1208   MVT ContainerVT =
1209       RISCVTargetLowering::getContainerForFixedLengthVector(DAG, VT, Subtarget);
1210 
1211   SDLoc DL(Op);
1212   SDValue Mask, VL;
1213   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1214 
1215   MVT XLenVT = Subtarget.getXLenVT();
1216   unsigned NumElts = Op.getNumOperands();
1217 
1218   if (VT.getVectorElementType() == MVT::i1) {
1219     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1220       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1221       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1222     }
1223 
1224     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1225       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1226       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1227     }
1228 
1229     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1230     // scalar integer chunks whose bit-width depends on the number of mask
1231     // bits and XLEN.
1232     // First, determine the most appropriate scalar integer type to use. This
1233     // is at most XLenVT, but may be shrunk to a smaller vector element type
1234     // according to the size of the final vector - use i8 chunks rather than
1235     // XLenVT if we're producing a v8i1. This results in more consistent
1236     // codegen across RV32 and RV64.
1237     // If we have to use more than one INSERT_VECTOR_ELT then this optimization
1238     // is likely to increase code size; avoid peforming it in such a case.
1239     unsigned NumViaIntegerBits =
1240         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1241     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1242         (!DAG.shouldOptForSize() || NumElts <= NumViaIntegerBits)) {
1243       // Now we can create our integer vector type. Note that it may be larger
1244       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1245       MVT IntegerViaVecVT =
1246           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1247                            divideCeil(NumElts, NumViaIntegerBits));
1248 
1249       uint64_t Bits = 0;
1250       unsigned BitPos = 0, IntegerEltIdx = 0;
1251       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1252 
1253       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1254         // Once we accumulate enough bits to fill our scalar type, insert into
1255         // our vector and clear our accumulated data.
1256         if (I != 0 && I % NumViaIntegerBits == 0) {
1257           if (NumViaIntegerBits <= 32)
1258             Bits = SignExtend64(Bits, 32);
1259           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1260           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1261                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1262           Bits = 0;
1263           BitPos = 0;
1264           IntegerEltIdx++;
1265         }
1266         SDValue V = Op.getOperand(I);
1267         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1268         Bits |= ((uint64_t)BitValue << BitPos);
1269       }
1270 
1271       // Insert the (remaining) scalar value into position in our integer
1272       // vector type.
1273       if (NumViaIntegerBits <= 32)
1274         Bits = SignExtend64(Bits, 32);
1275       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1276       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1277                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1278 
1279       if (NumElts < NumViaIntegerBits) {
1280         // If we're producing a smaller vector than our minimum legal integer
1281         // type, bitcast to the equivalent (known-legal) mask type, and extract
1282         // our final mask.
1283         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1284         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1285         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1286                           DAG.getConstant(0, DL, XLenVT));
1287       } else {
1288         // Else we must have produced an integer type with the same size as the
1289         // mask type; bitcast for the final result.
1290         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1291         Vec = DAG.getBitcast(VT, Vec);
1292       }
1293 
1294       return Vec;
1295     }
1296 
1297     return SDValue();
1298   }
1299 
1300   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1301     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1302                                         : RISCVISD::VMV_V_X_VL;
1303     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1304     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1305   }
1306 
1307   // Try and match an index sequence, which we can lower directly to the vid
1308   // instruction. An all-undef vector is matched by getSplatValue, above.
1309   if (VT.isInteger()) {
1310     bool IsVID = true;
1311     for (unsigned I = 0; I < NumElts && IsVID; I++)
1312       IsVID &= Op.getOperand(I).isUndef() ||
1313                (isa<ConstantSDNode>(Op.getOperand(I)) &&
1314                 Op.getConstantOperandVal(I) == I);
1315 
1316     if (IsVID) {
1317       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1318       return convertFromScalableVector(VT, VID, DAG, Subtarget);
1319     }
1320   }
1321 
1322   // Attempt to detect "hidden" splats, which only reveal themselves as splats
1323   // when re-interpreted as a vector with a larger element type. For example,
1324   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
1325   // could be instead splat as
1326   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
1327   // TODO: This optimization could also work on non-constant splats, but it
1328   // would require bit-manipulation instructions to construct the splat value.
1329   SmallVector<SDValue> Sequence;
1330   unsigned EltBitSize = VT.getScalarSizeInBits();
1331   const auto *BV = cast<BuildVectorSDNode>(Op);
1332   if (VT.isInteger() && EltBitSize < 64 &&
1333       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1334       BV->getRepeatedSequence(Sequence) &&
1335       (Sequence.size() * EltBitSize) <= 64) {
1336     unsigned SeqLen = Sequence.size();
1337     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
1338     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
1339     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
1340             ViaIntVT == MVT::i64) &&
1341            "Unexpected sequence type");
1342 
1343     unsigned EltIdx = 0;
1344     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
1345     uint64_t SplatValue = 0;
1346     // Construct the amalgamated value which can be splatted as this larger
1347     // vector type.
1348     for (const auto &SeqV : Sequence) {
1349       if (!SeqV.isUndef())
1350         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
1351                        << (EltIdx * EltBitSize));
1352       EltIdx++;
1353     }
1354 
1355     // On RV64, sign-extend from 32 to 64 bits where possible in order to
1356     // achieve better constant materializion.
1357     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
1358       SplatValue = SignExtend64(SplatValue, 32);
1359 
1360     // Since we can't introduce illegal i64 types at this stage, we can only
1361     // perform an i64 splat on RV32 if it is its own sign-extended value. That
1362     // way we can use RVV instructions to splat.
1363     assert((ViaIntVT.bitsLE(XLenVT) ||
1364             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
1365            "Unexpected bitcast sequence");
1366     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
1367       SDValue ViaVL =
1368           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
1369       MVT ViaContainerVT =
1370           RISCVTargetLowering::getContainerForFixedLengthVector(DAG, ViaVecVT,
1371                                                                 Subtarget);
1372       SDValue Splat =
1373           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
1374                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
1375       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
1376       return DAG.getBitcast(VT, Splat);
1377     }
1378   }
1379 
1380   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1381   // which constitute a large proportion of the elements. In such cases we can
1382   // splat a vector with the dominant element and make up the shortfall with
1383   // INSERT_VECTOR_ELTs.
1384   // Note that this includes vectors of 2 elements by association. The
1385   // upper-most element is the "dominant" one, allowing us to use a splat to
1386   // "insert" the upper element, and an insert of the lower element at position
1387   // 0, which improves codegen.
1388   SDValue DominantValue;
1389   unsigned MostCommonCount = 0;
1390   DenseMap<SDValue, unsigned> ValueCounts;
1391   unsigned NumUndefElts =
1392       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
1393 
1394   for (SDValue V : Op->op_values()) {
1395     if (V.isUndef())
1396       continue;
1397 
1398     ValueCounts.insert(std::make_pair(V, 0));
1399     unsigned &Count = ValueCounts[V];
1400 
1401     // Is this value dominant? In case of a tie, prefer the highest element as
1402     // it's cheaper to insert near the beginning of a vector than it is at the
1403     // end.
1404     if (++Count >= MostCommonCount) {
1405       DominantValue = V;
1406       MostCommonCount = Count;
1407     }
1408   }
1409 
1410   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
1411   unsigned NumDefElts = NumElts - NumUndefElts;
1412   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
1413 
1414   // Don't perform this optimization when optimizing for size, since
1415   // materializing elements and inserting them tends to cause code bloat.
1416   if (!DAG.shouldOptForSize() &&
1417       ((MostCommonCount > DominantValueCountThreshold) ||
1418        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
1419     // Start by splatting the most common element.
1420     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
1421 
1422     DenseSet<SDValue> Processed{DominantValue};
1423     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
1424     for (const auto &OpIdx : enumerate(Op->ops())) {
1425       const SDValue &V = OpIdx.value();
1426       if (V.isUndef() || !Processed.insert(V).second)
1427         continue;
1428       if (ValueCounts[V] == 1) {
1429         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
1430                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
1431       } else {
1432         // Blend in all instances of this value using a VSELECT, using a
1433         // mask where each bit signals whether that element is the one
1434         // we're after.
1435         SmallVector<SDValue> Ops;
1436         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
1437           return DAG.getConstant(V == V1, DL, XLenVT);
1438         });
1439         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
1440                           DAG.getBuildVector(SelMaskTy, DL, Ops),
1441                           DAG.getSplatBuildVector(VT, DL, V), Vec);
1442       }
1443     }
1444 
1445     return Vec;
1446   }
1447 
1448   return SDValue();
1449 }
1450 
1451 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
1452                                    const RISCVSubtarget &Subtarget) {
1453   SDValue V1 = Op.getOperand(0);
1454   SDValue V2 = Op.getOperand(1);
1455   SDLoc DL(Op);
1456   MVT XLenVT = Subtarget.getXLenVT();
1457   MVT VT = Op.getSimpleValueType();
1458   unsigned NumElts = VT.getVectorNumElements();
1459   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
1460 
1461   if (SVN->isSplat()) {
1462     int Lane = SVN->getSplatIndex();
1463     if (Lane >= 0) {
1464       MVT ContainerVT = RISCVTargetLowering::getContainerForFixedLengthVector(
1465           DAG, VT, Subtarget);
1466 
1467       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1468       assert(Lane < (int)NumElts && "Unexpected lane!");
1469 
1470       SDValue Mask, VL;
1471       std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1472       SDValue Gather =
1473           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
1474                       DAG.getConstant(Lane, DL, XLenVT), Mask, VL);
1475       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1476     }
1477   }
1478 
1479   // Detect shuffles which can be re-expressed as vector selects.
1480   SmallVector<SDValue> MaskVals;
1481   // By default we preserve the original operand order, and select LHS as true
1482   // and RHS as false. However, since RVV vector selects may feature splats but
1483   // only on the LHS, we may choose to invert our mask and instead select
1484   // between RHS and LHS.
1485   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
1486 
1487   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
1488     int MaskIndex = MaskIdx.value();
1489     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ SwapOps;
1490     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
1491     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
1492   });
1493 
1494   if (IsSelect) {
1495     assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
1496     MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
1497     SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
1498     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, SwapOps ? V2 : V1,
1499                        SwapOps ? V1 : V2);
1500   }
1501 
1502   return SDValue();
1503 }
1504 
1505 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
1506                                      SDLoc DL, SelectionDAG &DAG,
1507                                      const RISCVSubtarget &Subtarget) {
1508   if (VT.isScalableVector())
1509     return DAG.getFPExtendOrRound(Op, DL, VT);
1510   assert(VT.isFixedLengthVector() &&
1511          "Unexpected value type for RVV FP extend/round lowering");
1512   SDValue Mask, VL;
1513   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1514   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
1515                         ? RISCVISD::FP_EXTEND_VL
1516                         : RISCVISD::FP_ROUND_VL;
1517   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
1518 }
1519 
1520 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
1521                                             SelectionDAG &DAG) const {
1522   switch (Op.getOpcode()) {
1523   default:
1524     report_fatal_error("unimplemented operand");
1525   case ISD::GlobalAddress:
1526     return lowerGlobalAddress(Op, DAG);
1527   case ISD::BlockAddress:
1528     return lowerBlockAddress(Op, DAG);
1529   case ISD::ConstantPool:
1530     return lowerConstantPool(Op, DAG);
1531   case ISD::JumpTable:
1532     return lowerJumpTable(Op, DAG);
1533   case ISD::GlobalTLSAddress:
1534     return lowerGlobalTLSAddress(Op, DAG);
1535   case ISD::SELECT:
1536     return lowerSELECT(Op, DAG);
1537   case ISD::BRCOND:
1538     return lowerBRCOND(Op, DAG);
1539   case ISD::VASTART:
1540     return lowerVASTART(Op, DAG);
1541   case ISD::FRAMEADDR:
1542     return lowerFRAMEADDR(Op, DAG);
1543   case ISD::RETURNADDR:
1544     return lowerRETURNADDR(Op, DAG);
1545   case ISD::SHL_PARTS:
1546     return lowerShiftLeftParts(Op, DAG);
1547   case ISD::SRA_PARTS:
1548     return lowerShiftRightParts(Op, DAG, true);
1549   case ISD::SRL_PARTS:
1550     return lowerShiftRightParts(Op, DAG, false);
1551   case ISD::BITCAST: {
1552     SDLoc DL(Op);
1553     EVT VT = Op.getValueType();
1554     SDValue Op0 = Op.getOperand(0);
1555     EVT Op0VT = Op0.getValueType();
1556     MVT XLenVT = Subtarget.getXLenVT();
1557     if (VT.isFixedLengthVector()) {
1558       // We can handle fixed length vector bitcasts with a simple replacement
1559       // in isel.
1560       if (Op0VT.isFixedLengthVector())
1561         return Op;
1562       // When bitcasting from scalar to fixed-length vector, insert the scalar
1563       // into a one-element vector of the result type, and perform a vector
1564       // bitcast.
1565       if (!Op0VT.isVector()) {
1566         auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
1567         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
1568                                               DAG.getUNDEF(BVT), Op0,
1569                                               DAG.getConstant(0, DL, XLenVT)));
1570       }
1571       return SDValue();
1572     }
1573     // Custom-legalize bitcasts from fixed-length vector types to scalar types
1574     // thus: bitcast the vector to a one-element vector type whose element type
1575     // is the same as the result type, and extract the first element.
1576     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
1577       LLVMContext &Context = *DAG.getContext();
1578       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
1579       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
1580                          DAG.getConstant(0, DL, XLenVT));
1581     }
1582     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
1583       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
1584       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
1585       return FPConv;
1586     }
1587     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
1588         Subtarget.hasStdExtF()) {
1589       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
1590       SDValue FPConv =
1591           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
1592       return FPConv;
1593     }
1594     return SDValue();
1595   }
1596   case ISD::INTRINSIC_WO_CHAIN:
1597     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1598   case ISD::INTRINSIC_W_CHAIN:
1599     return LowerINTRINSIC_W_CHAIN(Op, DAG);
1600   case ISD::BSWAP:
1601   case ISD::BITREVERSE: {
1602     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
1603     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
1604     MVT VT = Op.getSimpleValueType();
1605     SDLoc DL(Op);
1606     // Start with the maximum immediate value which is the bitwidth - 1.
1607     unsigned Imm = VT.getSizeInBits() - 1;
1608     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
1609     if (Op.getOpcode() == ISD::BSWAP)
1610       Imm &= ~0x7U;
1611     return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0),
1612                        DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT()));
1613   }
1614   case ISD::FSHL:
1615   case ISD::FSHR: {
1616     MVT VT = Op.getSimpleValueType();
1617     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
1618     SDLoc DL(Op);
1619     if (Op.getOperand(2).getOpcode() == ISD::Constant)
1620       return Op;
1621     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
1622     // use log(XLen) bits. Mask the shift amount accordingly.
1623     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
1624     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
1625                                 DAG.getConstant(ShAmtWidth, DL, VT));
1626     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
1627     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
1628   }
1629   case ISD::TRUNCATE: {
1630     SDLoc DL(Op);
1631     MVT VT = Op.getSimpleValueType();
1632     // Only custom-lower vector truncates
1633     if (!VT.isVector())
1634       return Op;
1635 
1636     // Truncates to mask types are handled differently
1637     if (VT.getVectorElementType() == MVT::i1)
1638       return lowerVectorMaskTrunc(Op, DAG);
1639 
1640     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
1641     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
1642     // truncate by one power of two at a time.
1643     MVT DstEltVT = VT.getVectorElementType();
1644 
1645     SDValue Src = Op.getOperand(0);
1646     MVT SrcVT = Src.getSimpleValueType();
1647     MVT SrcEltVT = SrcVT.getVectorElementType();
1648 
1649     assert(DstEltVT.bitsLT(SrcEltVT) &&
1650            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
1651            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
1652            "Unexpected vector truncate lowering");
1653 
1654     MVT ContainerVT = SrcVT;
1655     if (SrcVT.isFixedLengthVector()) {
1656       ContainerVT = getContainerForFixedLengthVector(SrcVT);
1657       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
1658     }
1659 
1660     SDValue Result = Src;
1661     SDValue Mask, VL;
1662     std::tie(Mask, VL) =
1663         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
1664     LLVMContext &Context = *DAG.getContext();
1665     const ElementCount Count = ContainerVT.getVectorElementCount();
1666     do {
1667       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
1668       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
1669       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
1670                            Mask, VL);
1671     } while (SrcEltVT != DstEltVT);
1672 
1673     if (SrcVT.isFixedLengthVector())
1674       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
1675 
1676     return Result;
1677   }
1678   case ISD::ANY_EXTEND:
1679   case ISD::ZERO_EXTEND:
1680     if (Op.getOperand(0).getValueType().isVector() &&
1681         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
1682       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
1683     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
1684   case ISD::SIGN_EXTEND:
1685     if (Op.getOperand(0).getValueType().isVector() &&
1686         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
1687       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
1688     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
1689   case ISD::SPLAT_VECTOR_PARTS:
1690     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
1691   case ISD::INSERT_VECTOR_ELT:
1692     return lowerINSERT_VECTOR_ELT(Op, DAG);
1693   case ISD::EXTRACT_VECTOR_ELT:
1694     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
1695   case ISD::VSCALE: {
1696     MVT VT = Op.getSimpleValueType();
1697     SDLoc DL(Op);
1698     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
1699     // We define our scalable vector types for lmul=1 to use a 64 bit known
1700     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
1701     // vscale as VLENB / 8.
1702     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
1703                                  DAG.getConstant(3, DL, VT));
1704     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
1705   }
1706   case ISD::FP_EXTEND: {
1707     // RVV can only do fp_extend to types double the size as the source. We
1708     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
1709     // via f32.
1710     SDLoc DL(Op);
1711     MVT VT = Op.getSimpleValueType();
1712     SDValue Src = Op.getOperand(0);
1713     MVT SrcVT = Src.getSimpleValueType();
1714 
1715     // Prepare any fixed-length vector operands.
1716     MVT ContainerVT = VT;
1717     if (SrcVT.isFixedLengthVector()) {
1718       ContainerVT = getContainerForFixedLengthVector(VT);
1719       MVT SrcContainerVT =
1720           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
1721       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
1722     }
1723 
1724     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
1725         SrcVT.getVectorElementType() != MVT::f16) {
1726       // For scalable vectors, we only need to close the gap between
1727       // vXf16->vXf64.
1728       if (!VT.isFixedLengthVector())
1729         return Op;
1730       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
1731       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
1732       return convertFromScalableVector(VT, Src, DAG, Subtarget);
1733     }
1734 
1735     MVT InterVT = VT.changeVectorElementType(MVT::f32);
1736     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
1737     SDValue IntermediateExtend = getRVVFPExtendOrRound(
1738         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
1739 
1740     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
1741                                            DL, DAG, Subtarget);
1742     if (VT.isFixedLengthVector())
1743       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
1744     return Extend;
1745   }
1746   case ISD::FP_ROUND: {
1747     // RVV can only do fp_round to types half the size as the source. We
1748     // custom-lower f64->f16 rounds via RVV's round-to-odd float
1749     // conversion instruction.
1750     SDLoc DL(Op);
1751     MVT VT = Op.getSimpleValueType();
1752     SDValue Src = Op.getOperand(0);
1753     MVT SrcVT = Src.getSimpleValueType();
1754 
1755     // Prepare any fixed-length vector operands.
1756     MVT ContainerVT = VT;
1757     if (VT.isFixedLengthVector()) {
1758       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
1759       ContainerVT =
1760           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
1761       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
1762     }
1763 
1764     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
1765         SrcVT.getVectorElementType() != MVT::f64) {
1766       // For scalable vectors, we only need to close the gap between
1767       // vXf64<->vXf16.
1768       if (!VT.isFixedLengthVector())
1769         return Op;
1770       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
1771       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
1772       return convertFromScalableVector(VT, Src, DAG, Subtarget);
1773     }
1774 
1775     SDValue Mask, VL;
1776     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1777 
1778     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
1779     SDValue IntermediateRound =
1780         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
1781     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
1782                                           DL, DAG, Subtarget);
1783 
1784     if (VT.isFixedLengthVector())
1785       return convertFromScalableVector(VT, Round, DAG, Subtarget);
1786     return Round;
1787   }
1788   case ISD::FP_TO_SINT:
1789   case ISD::FP_TO_UINT:
1790   case ISD::SINT_TO_FP:
1791   case ISD::UINT_TO_FP: {
1792     // RVV can only do fp<->int conversions to types half/double the size as
1793     // the source. We custom-lower any conversions that do two hops into
1794     // sequences.
1795     MVT VT = Op.getSimpleValueType();
1796     if (!VT.isVector())
1797       return Op;
1798     SDLoc DL(Op);
1799     SDValue Src = Op.getOperand(0);
1800     MVT EltVT = VT.getVectorElementType();
1801     MVT SrcVT = Src.getSimpleValueType();
1802     MVT SrcEltVT = SrcVT.getVectorElementType();
1803     unsigned EltSize = EltVT.getSizeInBits();
1804     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
1805     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
1806            "Unexpected vector element types");
1807 
1808     bool IsInt2FP = SrcEltVT.isInteger();
1809     // Widening conversions
1810     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
1811       if (IsInt2FP) {
1812         // Do a regular integer sign/zero extension then convert to float.
1813         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
1814                                       VT.getVectorElementCount());
1815         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
1816                                  ? ISD::ZERO_EXTEND
1817                                  : ISD::SIGN_EXTEND;
1818         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
1819         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
1820       }
1821       // FP2Int
1822       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
1823       // Do one doubling fp_extend then complete the operation by converting
1824       // to int.
1825       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
1826       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
1827       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
1828     }
1829 
1830     // Narrowing conversions
1831     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
1832       if (IsInt2FP) {
1833         // One narrowing int_to_fp, then an fp_round.
1834         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
1835         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
1836         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
1837         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
1838       }
1839       // FP2Int
1840       // One narrowing fp_to_int, then truncate the integer. If the float isn't
1841       // representable by the integer, the result is poison.
1842       MVT IVecVT =
1843           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
1844                            VT.getVectorElementCount());
1845       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
1846       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
1847     }
1848 
1849     // Scalable vectors can exit here. Patterns will handle equally-sized
1850     // conversions halving/doubling ones.
1851     if (!VT.isFixedLengthVector())
1852       return Op;
1853 
1854     // For fixed-length vectors we lower to a custom "VL" node.
1855     unsigned RVVOpc = 0;
1856     switch (Op.getOpcode()) {
1857     default:
1858       llvm_unreachable("Impossible opcode");
1859     case ISD::FP_TO_SINT:
1860       RVVOpc = RISCVISD::FP_TO_SINT_VL;
1861       break;
1862     case ISD::FP_TO_UINT:
1863       RVVOpc = RISCVISD::FP_TO_UINT_VL;
1864       break;
1865     case ISD::SINT_TO_FP:
1866       RVVOpc = RISCVISD::SINT_TO_FP_VL;
1867       break;
1868     case ISD::UINT_TO_FP:
1869       RVVOpc = RISCVISD::UINT_TO_FP_VL;
1870       break;
1871     }
1872 
1873     MVT ContainerVT, SrcContainerVT;
1874     // Derive the reference container type from the larger vector type.
1875     if (SrcEltSize > EltSize) {
1876       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
1877       ContainerVT =
1878           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
1879     } else {
1880       ContainerVT = getContainerForFixedLengthVector(VT);
1881       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
1882     }
1883 
1884     SDValue Mask, VL;
1885     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1886 
1887     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
1888     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
1889     return convertFromScalableVector(VT, Src, DAG, Subtarget);
1890   }
1891   case ISD::VECREDUCE_ADD:
1892   case ISD::VECREDUCE_UMAX:
1893   case ISD::VECREDUCE_SMAX:
1894   case ISD::VECREDUCE_UMIN:
1895   case ISD::VECREDUCE_SMIN:
1896   case ISD::VECREDUCE_AND:
1897   case ISD::VECREDUCE_OR:
1898   case ISD::VECREDUCE_XOR:
1899     return lowerVECREDUCE(Op, DAG);
1900   case ISD::VECREDUCE_FADD:
1901   case ISD::VECREDUCE_SEQ_FADD:
1902     return lowerFPVECREDUCE(Op, DAG);
1903   case ISD::INSERT_SUBVECTOR:
1904     return lowerINSERT_SUBVECTOR(Op, DAG);
1905   case ISD::EXTRACT_SUBVECTOR:
1906     return lowerEXTRACT_SUBVECTOR(Op, DAG);
1907   case ISD::STEP_VECTOR:
1908     return lowerSTEP_VECTOR(Op, DAG);
1909   case ISD::VECTOR_REVERSE:
1910     return lowerVECTOR_REVERSE(Op, DAG);
1911   case ISD::BUILD_VECTOR:
1912     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
1913   case ISD::VECTOR_SHUFFLE:
1914     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
1915   case ISD::CONCAT_VECTORS: {
1916     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
1917     // better than going through the stack, as the default expansion does.
1918     SDLoc DL(Op);
1919     MVT VT = Op.getSimpleValueType();
1920     unsigned NumOpElts =
1921         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
1922     SDValue Vec = DAG.getUNDEF(VT);
1923     for (const auto &OpIdx : enumerate(Op->ops()))
1924       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
1925                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
1926     return Vec;
1927   }
1928   case ISD::LOAD:
1929     return lowerFixedLengthVectorLoadToRVV(Op, DAG);
1930   case ISD::STORE:
1931     return lowerFixedLengthVectorStoreToRVV(Op, DAG);
1932   case ISD::MLOAD:
1933     return lowerMLOAD(Op, DAG);
1934   case ISD::MSTORE:
1935     return lowerMSTORE(Op, DAG);
1936   case ISD::SETCC:
1937     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
1938   case ISD::ADD:
1939     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
1940   case ISD::SUB:
1941     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
1942   case ISD::MUL:
1943     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
1944   case ISD::MULHS:
1945     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
1946   case ISD::MULHU:
1947     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
1948   case ISD::AND:
1949     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
1950                                               RISCVISD::AND_VL);
1951   case ISD::OR:
1952     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
1953                                               RISCVISD::OR_VL);
1954   case ISD::XOR:
1955     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
1956                                               RISCVISD::XOR_VL);
1957   case ISD::SDIV:
1958     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
1959   case ISD::SREM:
1960     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
1961   case ISD::UDIV:
1962     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
1963   case ISD::UREM:
1964     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
1965   case ISD::SHL:
1966     return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL);
1967   case ISD::SRA:
1968     return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL);
1969   case ISD::SRL:
1970     return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL);
1971   case ISD::FADD:
1972     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
1973   case ISD::FSUB:
1974     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
1975   case ISD::FMUL:
1976     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
1977   case ISD::FDIV:
1978     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
1979   case ISD::FNEG:
1980     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
1981   case ISD::FABS:
1982     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
1983   case ISD::FSQRT:
1984     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
1985   case ISD::FMA:
1986     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
1987   case ISD::SMIN:
1988     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
1989   case ISD::SMAX:
1990     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
1991   case ISD::UMIN:
1992     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
1993   case ISD::UMAX:
1994     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
1995   case ISD::ABS:
1996     return lowerABS(Op, DAG);
1997   case ISD::VSELECT:
1998     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
1999   case ISD::FCOPYSIGN:
2000     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
2001   case ISD::MGATHER:
2002     return lowerMGATHER(Op, DAG);
2003   case ISD::MSCATTER:
2004     return lowerMSCATTER(Op, DAG);
2005   }
2006 }
2007 
2008 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
2009                              SelectionDAG &DAG, unsigned Flags) {
2010   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
2011 }
2012 
2013 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
2014                              SelectionDAG &DAG, unsigned Flags) {
2015   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
2016                                    Flags);
2017 }
2018 
2019 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
2020                              SelectionDAG &DAG, unsigned Flags) {
2021   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
2022                                    N->getOffset(), Flags);
2023 }
2024 
2025 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
2026                              SelectionDAG &DAG, unsigned Flags) {
2027   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
2028 }
2029 
2030 template <class NodeTy>
2031 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
2032                                      bool IsLocal) const {
2033   SDLoc DL(N);
2034   EVT Ty = getPointerTy(DAG.getDataLayout());
2035 
2036   if (isPositionIndependent()) {
2037     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2038     if (IsLocal)
2039       // Use PC-relative addressing to access the symbol. This generates the
2040       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
2041       // %pcrel_lo(auipc)).
2042       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2043 
2044     // Use PC-relative addressing to access the GOT for this symbol, then load
2045     // the address from the GOT. This generates the pattern (PseudoLA sym),
2046     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
2047     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
2048   }
2049 
2050   switch (getTargetMachine().getCodeModel()) {
2051   default:
2052     report_fatal_error("Unsupported code model for lowering");
2053   case CodeModel::Small: {
2054     // Generate a sequence for accessing addresses within the first 2 GiB of
2055     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
2056     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
2057     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
2058     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2059     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
2060   }
2061   case CodeModel::Medium: {
2062     // Generate a sequence for accessing addresses within any 2GiB range within
2063     // the address space. This generates the pattern (PseudoLLA sym), which
2064     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
2065     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2066     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2067   }
2068   }
2069 }
2070 
2071 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
2072                                                 SelectionDAG &DAG) const {
2073   SDLoc DL(Op);
2074   EVT Ty = Op.getValueType();
2075   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2076   int64_t Offset = N->getOffset();
2077   MVT XLenVT = Subtarget.getXLenVT();
2078 
2079   const GlobalValue *GV = N->getGlobal();
2080   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
2081   SDValue Addr = getAddr(N, DAG, IsLocal);
2082 
2083   // In order to maximise the opportunity for common subexpression elimination,
2084   // emit a separate ADD node for the global address offset instead of folding
2085   // it in the global address node. Later peephole optimisations may choose to
2086   // fold it back in when profitable.
2087   if (Offset != 0)
2088     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2089                        DAG.getConstant(Offset, DL, XLenVT));
2090   return Addr;
2091 }
2092 
2093 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
2094                                                SelectionDAG &DAG) const {
2095   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2096 
2097   return getAddr(N, DAG);
2098 }
2099 
2100 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
2101                                                SelectionDAG &DAG) const {
2102   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2103 
2104   return getAddr(N, DAG);
2105 }
2106 
2107 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
2108                                             SelectionDAG &DAG) const {
2109   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2110 
2111   return getAddr(N, DAG);
2112 }
2113 
2114 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
2115                                               SelectionDAG &DAG,
2116                                               bool UseGOT) const {
2117   SDLoc DL(N);
2118   EVT Ty = getPointerTy(DAG.getDataLayout());
2119   const GlobalValue *GV = N->getGlobal();
2120   MVT XLenVT = Subtarget.getXLenVT();
2121 
2122   if (UseGOT) {
2123     // Use PC-relative addressing to access the GOT for this TLS symbol, then
2124     // load the address from the GOT and add the thread pointer. This generates
2125     // the pattern (PseudoLA_TLS_IE sym), which expands to
2126     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
2127     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2128     SDValue Load =
2129         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
2130 
2131     // Add the thread pointer.
2132     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2133     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
2134   }
2135 
2136   // Generate a sequence for accessing the address relative to the thread
2137   // pointer, with the appropriate adjustment for the thread pointer offset.
2138   // This generates the pattern
2139   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
2140   SDValue AddrHi =
2141       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
2142   SDValue AddrAdd =
2143       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
2144   SDValue AddrLo =
2145       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
2146 
2147   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2148   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2149   SDValue MNAdd = SDValue(
2150       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
2151       0);
2152   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
2153 }
2154 
2155 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
2156                                                SelectionDAG &DAG) const {
2157   SDLoc DL(N);
2158   EVT Ty = getPointerTy(DAG.getDataLayout());
2159   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
2160   const GlobalValue *GV = N->getGlobal();
2161 
2162   // Use a PC-relative addressing mode to access the global dynamic GOT address.
2163   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
2164   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
2165   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2166   SDValue Load =
2167       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
2168 
2169   // Prepare argument list to generate call.
2170   ArgListTy Args;
2171   ArgListEntry Entry;
2172   Entry.Node = Load;
2173   Entry.Ty = CallTy;
2174   Args.push_back(Entry);
2175 
2176   // Setup call to __tls_get_addr.
2177   TargetLowering::CallLoweringInfo CLI(DAG);
2178   CLI.setDebugLoc(DL)
2179       .setChain(DAG.getEntryNode())
2180       .setLibCallee(CallingConv::C, CallTy,
2181                     DAG.getExternalSymbol("__tls_get_addr", Ty),
2182                     std::move(Args));
2183 
2184   return LowerCallTo(CLI).first;
2185 }
2186 
2187 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
2188                                                    SelectionDAG &DAG) const {
2189   SDLoc DL(Op);
2190   EVT Ty = Op.getValueType();
2191   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2192   int64_t Offset = N->getOffset();
2193   MVT XLenVT = Subtarget.getXLenVT();
2194 
2195   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
2196 
2197   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
2198       CallingConv::GHC)
2199     report_fatal_error("In GHC calling convention TLS is not supported");
2200 
2201   SDValue Addr;
2202   switch (Model) {
2203   case TLSModel::LocalExec:
2204     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
2205     break;
2206   case TLSModel::InitialExec:
2207     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
2208     break;
2209   case TLSModel::LocalDynamic:
2210   case TLSModel::GeneralDynamic:
2211     Addr = getDynamicTLSAddr(N, DAG);
2212     break;
2213   }
2214 
2215   // In order to maximise the opportunity for common subexpression elimination,
2216   // emit a separate ADD node for the global address offset instead of folding
2217   // it in the global address node. Later peephole optimisations may choose to
2218   // fold it back in when profitable.
2219   if (Offset != 0)
2220     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2221                        DAG.getConstant(Offset, DL, XLenVT));
2222   return Addr;
2223 }
2224 
2225 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2226   SDValue CondV = Op.getOperand(0);
2227   SDValue TrueV = Op.getOperand(1);
2228   SDValue FalseV = Op.getOperand(2);
2229   SDLoc DL(Op);
2230   MVT XLenVT = Subtarget.getXLenVT();
2231 
2232   // If the result type is XLenVT and CondV is the output of a SETCC node
2233   // which also operated on XLenVT inputs, then merge the SETCC node into the
2234   // lowered RISCVISD::SELECT_CC to take advantage of the integer
2235   // compare+branch instructions. i.e.:
2236   // (select (setcc lhs, rhs, cc), truev, falsev)
2237   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
2238   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
2239       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
2240     SDValue LHS = CondV.getOperand(0);
2241     SDValue RHS = CondV.getOperand(1);
2242     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
2243     ISD::CondCode CCVal = CC->get();
2244 
2245     // Special case for a select of 2 constants that have a diffence of 1.
2246     // Normally this is done by DAGCombine, but if the select is introduced by
2247     // type legalization or op legalization, we miss it. Restricting to SETLT
2248     // case for now because that is what signed saturating add/sub need.
2249     // FIXME: We don't need the condition to be SETLT or even a SETCC,
2250     // but we would probably want to swap the true/false values if the condition
2251     // is SETGE/SETLE to avoid an XORI.
2252     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
2253         CCVal == ISD::SETLT) {
2254       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
2255       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
2256       if (TrueVal - 1 == FalseVal)
2257         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
2258       if (TrueVal + 1 == FalseVal)
2259         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
2260     }
2261 
2262     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2263 
2264     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
2265     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
2266     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2267   }
2268 
2269   // Otherwise:
2270   // (select condv, truev, falsev)
2271   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
2272   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
2273   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
2274 
2275   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
2276 
2277   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2278 }
2279 
2280 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
2281   SDValue CondV = Op.getOperand(1);
2282   SDLoc DL(Op);
2283   MVT XLenVT = Subtarget.getXLenVT();
2284 
2285   if (CondV.getOpcode() == ISD::SETCC &&
2286       CondV.getOperand(0).getValueType() == XLenVT) {
2287     SDValue LHS = CondV.getOperand(0);
2288     SDValue RHS = CondV.getOperand(1);
2289     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
2290 
2291     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2292 
2293     SDValue TargetCC = DAG.getCondCode(CCVal);
2294     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2295                        LHS, RHS, TargetCC, Op.getOperand(2));
2296   }
2297 
2298   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2299                      CondV, DAG.getConstant(0, DL, XLenVT),
2300                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
2301 }
2302 
2303 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2304   MachineFunction &MF = DAG.getMachineFunction();
2305   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
2306 
2307   SDLoc DL(Op);
2308   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2309                                  getPointerTy(MF.getDataLayout()));
2310 
2311   // vastart just stores the address of the VarArgsFrameIndex slot into the
2312   // memory location argument.
2313   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2314   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2315                       MachinePointerInfo(SV));
2316 }
2317 
2318 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
2319                                             SelectionDAG &DAG) const {
2320   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2321   MachineFunction &MF = DAG.getMachineFunction();
2322   MachineFrameInfo &MFI = MF.getFrameInfo();
2323   MFI.setFrameAddressIsTaken(true);
2324   Register FrameReg = RI.getFrameRegister(MF);
2325   int XLenInBytes = Subtarget.getXLen() / 8;
2326 
2327   EVT VT = Op.getValueType();
2328   SDLoc DL(Op);
2329   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
2330   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2331   while (Depth--) {
2332     int Offset = -(XLenInBytes * 2);
2333     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
2334                               DAG.getIntPtrConstant(Offset, DL));
2335     FrameAddr =
2336         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2337   }
2338   return FrameAddr;
2339 }
2340 
2341 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
2342                                              SelectionDAG &DAG) const {
2343   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2344   MachineFunction &MF = DAG.getMachineFunction();
2345   MachineFrameInfo &MFI = MF.getFrameInfo();
2346   MFI.setReturnAddressIsTaken(true);
2347   MVT XLenVT = Subtarget.getXLenVT();
2348   int XLenInBytes = Subtarget.getXLen() / 8;
2349 
2350   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2351     return SDValue();
2352 
2353   EVT VT = Op.getValueType();
2354   SDLoc DL(Op);
2355   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2356   if (Depth) {
2357     int Off = -XLenInBytes;
2358     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
2359     SDValue Offset = DAG.getConstant(Off, DL, VT);
2360     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
2361                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
2362                        MachinePointerInfo());
2363   }
2364 
2365   // Return the value of the return address register, marking it an implicit
2366   // live-in.
2367   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
2368   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
2369 }
2370 
2371 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
2372                                                  SelectionDAG &DAG) const {
2373   SDLoc DL(Op);
2374   SDValue Lo = Op.getOperand(0);
2375   SDValue Hi = Op.getOperand(1);
2376   SDValue Shamt = Op.getOperand(2);
2377   EVT VT = Lo.getValueType();
2378 
2379   // if Shamt-XLEN < 0: // Shamt < XLEN
2380   //   Lo = Lo << Shamt
2381   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
2382   // else:
2383   //   Lo = 0
2384   //   Hi = Lo << (Shamt-XLEN)
2385 
2386   SDValue Zero = DAG.getConstant(0, DL, VT);
2387   SDValue One = DAG.getConstant(1, DL, VT);
2388   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
2389   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
2390   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
2391   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
2392 
2393   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2394   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
2395   SDValue ShiftRightLo =
2396       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
2397   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2398   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2399   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
2400 
2401   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2402 
2403   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
2404   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2405 
2406   SDValue Parts[2] = {Lo, Hi};
2407   return DAG.getMergeValues(Parts, DL);
2408 }
2409 
2410 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2411                                                   bool IsSRA) const {
2412   SDLoc DL(Op);
2413   SDValue Lo = Op.getOperand(0);
2414   SDValue Hi = Op.getOperand(1);
2415   SDValue Shamt = Op.getOperand(2);
2416   EVT VT = Lo.getValueType();
2417 
2418   // SRA expansion:
2419   //   if Shamt-XLEN < 0: // Shamt < XLEN
2420   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2421   //     Hi = Hi >>s Shamt
2422   //   else:
2423   //     Lo = Hi >>s (Shamt-XLEN);
2424   //     Hi = Hi >>s (XLEN-1)
2425   //
2426   // SRL expansion:
2427   //   if Shamt-XLEN < 0: // Shamt < XLEN
2428   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2429   //     Hi = Hi >>u Shamt
2430   //   else:
2431   //     Lo = Hi >>u (Shamt-XLEN);
2432   //     Hi = 0;
2433 
2434   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
2435 
2436   SDValue Zero = DAG.getConstant(0, DL, VT);
2437   SDValue One = DAG.getConstant(1, DL, VT);
2438   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
2439   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
2440   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
2441   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
2442 
2443   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2444   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
2445   SDValue ShiftLeftHi =
2446       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
2447   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
2448   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
2449   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
2450   SDValue HiFalse =
2451       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
2452 
2453   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2454 
2455   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
2456   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2457 
2458   SDValue Parts[2] = {Lo, Hi};
2459   return DAG.getMergeValues(Parts, DL);
2460 }
2461 
2462 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
2463 // illegal (currently only vXi64 RV32).
2464 // FIXME: We could also catch non-constant sign-extended i32 values and lower
2465 // them to SPLAT_VECTOR_I64
2466 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
2467                                                      SelectionDAG &DAG) const {
2468   SDLoc DL(Op);
2469   EVT VecVT = Op.getValueType();
2470   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
2471          "Unexpected SPLAT_VECTOR_PARTS lowering");
2472 
2473   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
2474   SDValue Lo = Op.getOperand(0);
2475   SDValue Hi = Op.getOperand(1);
2476 
2477   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2478     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2479     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2480     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2481     // node in order to try and match RVV vector/scalar instructions.
2482     if ((LoC >> 31) == HiC)
2483       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2484   }
2485 
2486   // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not
2487   // to accidentally sign-extend the 32-bit halves to the e64 SEW:
2488   // vmv.v.x vX, hi
2489   // vsll.vx vX, vX, /*32*/
2490   // vmv.v.x vY, lo
2491   // vsll.vx vY, vY, /*32*/
2492   // vsrl.vx vY, vY, /*32*/
2493   // vor.vv vX, vX, vY
2494   SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT);
2495 
2496   Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2497   Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV);
2498   Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV);
2499 
2500   if (isNullConstant(Hi))
2501     return Lo;
2502 
2503   Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi);
2504   Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV);
2505 
2506   return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi);
2507 }
2508 
2509 // Custom-lower extensions from mask vectors by using a vselect either with 1
2510 // for zero/any-extension or -1 for sign-extension:
2511 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
2512 // Note that any-extension is lowered identically to zero-extension.
2513 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
2514                                                 int64_t ExtTrueVal) const {
2515   SDLoc DL(Op);
2516   MVT VecVT = Op.getSimpleValueType();
2517   SDValue Src = Op.getOperand(0);
2518   // Only custom-lower extensions from mask types
2519   assert(Src.getValueType().isVector() &&
2520          Src.getValueType().getVectorElementType() == MVT::i1);
2521 
2522   MVT XLenVT = Subtarget.getXLenVT();
2523   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
2524   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
2525 
2526   if (VecVT.isScalableVector()) {
2527     // Be careful not to introduce illegal scalar types at this stage, and be
2528     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
2529     // illegal and must be expanded. Since we know that the constants are
2530     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
2531     bool IsRV32E64 =
2532         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
2533 
2534     if (!IsRV32E64) {
2535       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
2536       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
2537     } else {
2538       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
2539       SplatTrueVal =
2540           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
2541     }
2542 
2543     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
2544   }
2545 
2546   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
2547   MVT I1ContainerVT =
2548       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
2549 
2550   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
2551 
2552   SDValue Mask, VL;
2553   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2554 
2555   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
2556   SplatTrueVal =
2557       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
2558   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
2559                                SplatTrueVal, SplatZero, VL);
2560 
2561   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
2562 }
2563 
2564 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
2565     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
2566   MVT ExtVT = Op.getSimpleValueType();
2567   // Only custom-lower extensions from fixed-length vector types.
2568   if (!ExtVT.isFixedLengthVector())
2569     return Op;
2570   MVT VT = Op.getOperand(0).getSimpleValueType();
2571   // Grab the canonical container type for the extended type. Infer the smaller
2572   // type from that to ensure the same number of vector elements, as we know
2573   // the LMUL will be sufficient to hold the smaller type.
2574   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
2575   // Get the extended container type manually to ensure the same number of
2576   // vector elements between source and dest.
2577   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
2578                                      ContainerExtVT.getVectorElementCount());
2579 
2580   SDValue Op1 =
2581       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
2582 
2583   SDLoc DL(Op);
2584   SDValue Mask, VL;
2585   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2586 
2587   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
2588 
2589   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
2590 }
2591 
2592 // Custom-lower truncations from vectors to mask vectors by using a mask and a
2593 // setcc operation:
2594 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
2595 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
2596                                                   SelectionDAG &DAG) const {
2597   SDLoc DL(Op);
2598   EVT MaskVT = Op.getValueType();
2599   // Only expect to custom-lower truncations to mask types
2600   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
2601          "Unexpected type for vector mask lowering");
2602   SDValue Src = Op.getOperand(0);
2603   MVT VecVT = Src.getSimpleValueType();
2604 
2605   // If this is a fixed vector, we need to convert it to a scalable vector.
2606   MVT ContainerVT = VecVT;
2607   if (VecVT.isFixedLengthVector()) {
2608     ContainerVT = getContainerForFixedLengthVector(VecVT);
2609     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2610   }
2611 
2612   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
2613   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
2614 
2615   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
2616   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
2617 
2618   if (VecVT.isScalableVector()) {
2619     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
2620     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
2621   }
2622 
2623   SDValue Mask, VL;
2624   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2625 
2626   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2627   SDValue Trunc =
2628       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
2629   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
2630                       DAG.getCondCode(ISD::SETNE), Mask, VL);
2631   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
2632 }
2633 
2634 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
2635 // first position of a vector, and that vector is slid up to the insert index.
2636 // By limiting the active vector length to index+1 and merging with the
2637 // original vector (with an undisturbed tail policy for elements >= VL), we
2638 // achieve the desired result of leaving all elements untouched except the one
2639 // at VL-1, which is replaced with the desired value.
2640 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
2641                                                     SelectionDAG &DAG) const {
2642   SDLoc DL(Op);
2643   MVT VecVT = Op.getSimpleValueType();
2644   SDValue Vec = Op.getOperand(0);
2645   SDValue Val = Op.getOperand(1);
2646   SDValue Idx = Op.getOperand(2);
2647 
2648   MVT ContainerVT = VecVT;
2649   // If the operand is a fixed-length vector, convert to a scalable one.
2650   if (VecVT.isFixedLengthVector()) {
2651     ContainerVT = getContainerForFixedLengthVector(VecVT);
2652     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2653   }
2654 
2655   MVT XLenVT = Subtarget.getXLenVT();
2656 
2657   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
2658   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
2659   // Even i64-element vectors on RV32 can be lowered without scalar
2660   // legalization if the most-significant 32 bits of the value are not affected
2661   // by the sign-extension of the lower 32 bits.
2662   // TODO: We could also catch sign extensions of a 32-bit value.
2663   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
2664     const auto *CVal = cast<ConstantSDNode>(Val);
2665     if (isInt<32>(CVal->getSExtValue())) {
2666       IsLegalInsert = true;
2667       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
2668     }
2669   }
2670 
2671   SDValue Mask, VL;
2672   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2673 
2674   SDValue ValInVec;
2675 
2676   if (IsLegalInsert) {
2677     unsigned Opc =
2678         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
2679     if (isNullConstant(Idx)) {
2680       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
2681       if (!VecVT.isFixedLengthVector())
2682         return Vec;
2683       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
2684     }
2685     ValInVec =
2686         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
2687   } else {
2688     // On RV32, i64-element vectors must be specially handled to place the
2689     // value at element 0, by using two vslide1up instructions in sequence on
2690     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
2691     // this.
2692     SDValue One = DAG.getConstant(1, DL, XLenVT);
2693     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
2694     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
2695     MVT I32ContainerVT =
2696         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
2697     SDValue I32Mask =
2698         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
2699     // Limit the active VL to two.
2700     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
2701     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
2702     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
2703     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
2704                            InsertI64VL);
2705     // First slide in the hi value, then the lo in underneath it.
2706     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
2707                            ValHi, I32Mask, InsertI64VL);
2708     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
2709                            ValLo, I32Mask, InsertI64VL);
2710     // Bitcast back to the right container type.
2711     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
2712   }
2713 
2714   // Now that the value is in a vector, slide it into position.
2715   SDValue InsertVL =
2716       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
2717   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
2718                                 ValInVec, Idx, Mask, InsertVL);
2719   if (!VecVT.isFixedLengthVector())
2720     return Slideup;
2721   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
2722 }
2723 
2724 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
2725 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
2726 // types this is done using VMV_X_S to allow us to glean information about the
2727 // sign bits of the result.
2728 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
2729                                                      SelectionDAG &DAG) const {
2730   SDLoc DL(Op);
2731   SDValue Idx = Op.getOperand(1);
2732   SDValue Vec = Op.getOperand(0);
2733   EVT EltVT = Op.getValueType();
2734   MVT VecVT = Vec.getSimpleValueType();
2735   MVT XLenVT = Subtarget.getXLenVT();
2736 
2737   if (VecVT.getVectorElementType() == MVT::i1) {
2738     // FIXME: For now we just promote to an i8 vector and extract from that,
2739     // but this is probably not optimal.
2740     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
2741     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
2742     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
2743   }
2744 
2745   // If this is a fixed vector, we need to convert it to a scalable vector.
2746   MVT ContainerVT = VecVT;
2747   if (VecVT.isFixedLengthVector()) {
2748     ContainerVT = getContainerForFixedLengthVector(VecVT);
2749     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2750   }
2751 
2752   // If the index is 0, the vector is already in the right position.
2753   if (!isNullConstant(Idx)) {
2754     // Use a VL of 1 to avoid processing more elements than we need.
2755     SDValue VL = DAG.getConstant(1, DL, XLenVT);
2756     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
2757     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2758     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
2759                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
2760   }
2761 
2762   if (!EltVT.isInteger()) {
2763     // Floating-point extracts are handled in TableGen.
2764     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
2765                        DAG.getConstant(0, DL, XLenVT));
2766   }
2767 
2768   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
2769   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
2770 }
2771 
2772 // Called by type legalization to handle splat of i64 on RV32.
2773 // FIXME: We can optimize this when the type has sign or zero bits in one
2774 // of the halves.
2775 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
2776                                    SDValue VL, SelectionDAG &DAG) {
2777   SDValue ThirtyTwoV = DAG.getConstant(32, DL, VT);
2778   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2779                            DAG.getConstant(0, DL, MVT::i32));
2780   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2781                            DAG.getConstant(1, DL, MVT::i32));
2782 
2783   // vmv.v.x vX, hi
2784   // vsll.vx vX, vX, /*32*/
2785   // vmv.v.x vY, lo
2786   // vsll.vx vY, vY, /*32*/
2787   // vsrl.vx vY, vY, /*32*/
2788   // vor.vv vX, vX, vY
2789   MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
2790   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2791   Lo = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
2792   Lo = DAG.getNode(RISCVISD::SHL_VL, DL, VT, Lo, ThirtyTwoV, Mask, VL);
2793   Lo = DAG.getNode(RISCVISD::SRL_VL, DL, VT, Lo, ThirtyTwoV, Mask, VL);
2794 
2795   Hi = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Hi, VL);
2796   Hi = DAG.getNode(RISCVISD::SHL_VL, DL, VT, Hi, ThirtyTwoV, Mask, VL);
2797 
2798   return DAG.getNode(RISCVISD::OR_VL, DL, VT, Lo, Hi, Mask, VL);
2799 }
2800 
2801 // Some RVV intrinsics may claim that they want an integer operand to be
2802 // promoted or expanded.
2803 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
2804                                           const RISCVSubtarget &Subtarget) {
2805   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2806           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
2807          "Unexpected opcode");
2808 
2809   if (!Subtarget.hasStdExtV())
2810     return SDValue();
2811 
2812   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
2813   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
2814   SDLoc DL(Op);
2815 
2816   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
2817       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
2818   if (!II || !II->SplatOperand)
2819     return SDValue();
2820 
2821   unsigned SplatOp = II->SplatOperand + HasChain;
2822   assert(SplatOp < Op.getNumOperands());
2823 
2824   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
2825   SDValue &ScalarOp = Operands[SplatOp];
2826   MVT OpVT = ScalarOp.getSimpleValueType();
2827   MVT XLenVT = Subtarget.getXLenVT();
2828 
2829   // If this isn't a scalar, or its type is XLenVT we're done.
2830   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
2831     return SDValue();
2832 
2833   // Simplest case is that the operand needs to be promoted to XLenVT.
2834   if (OpVT.bitsLT(XLenVT)) {
2835     // If the operand is a constant, sign extend to increase our chances
2836     // of being able to use a .vi instruction. ANY_EXTEND would become a
2837     // a zero extend and the simm5 check in isel would fail.
2838     // FIXME: Should we ignore the upper bits in isel instead?
2839     unsigned ExtOpc =
2840         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2841     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
2842     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
2843   }
2844 
2845   // Use the previous operand to get the vXi64 VT. The result might be a mask
2846   // VT for compares. Using the previous operand assumes that the previous
2847   // operand will never have a smaller element size than a scalar operand and
2848   // that a widening operation never uses SEW=64.
2849   // NOTE: If this fails the below assert, we can probably just find the
2850   // element count from any operand or result and use it to construct the VT.
2851   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
2852   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
2853 
2854   // The more complex case is when the scalar is larger than XLenVT.
2855   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
2856          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
2857 
2858   // If this is a sign-extended 32-bit constant, we can truncate it and rely
2859   // on the instruction to sign-extend since SEW>XLEN.
2860   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
2861     if (isInt<32>(CVal->getSExtValue())) {
2862       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
2863       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
2864     }
2865   }
2866 
2867   // We need to convert the scalar to a splat vector.
2868   // FIXME: Can we implicitly truncate the scalar if it is known to
2869   // be sign extended?
2870   // VL should be the last operand.
2871   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
2872   assert(VL.getValueType() == XLenVT);
2873   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
2874   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
2875 }
2876 
2877 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2878                                                      SelectionDAG &DAG) const {
2879   unsigned IntNo = Op.getConstantOperandVal(0);
2880   SDLoc DL(Op);
2881   MVT XLenVT = Subtarget.getXLenVT();
2882 
2883   switch (IntNo) {
2884   default:
2885     break; // Don't custom lower most intrinsics.
2886   case Intrinsic::thread_pointer: {
2887     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2888     return DAG.getRegister(RISCV::X4, PtrVT);
2889   }
2890   case Intrinsic::riscv_orc_b:
2891     // Lower to the GORCI encoding for orc.b.
2892     return DAG.getNode(RISCVISD::GORCI, DL, XLenVT, Op.getOperand(1),
2893                        DAG.getTargetConstant(7, DL, XLenVT));
2894   case Intrinsic::riscv_vmv_x_s:
2895     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
2896     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
2897                        Op.getOperand(1));
2898   case Intrinsic::riscv_vmv_v_x: {
2899     SDValue Scalar = Op.getOperand(1);
2900     if (Scalar.getValueType().bitsLE(XLenVT)) {
2901       unsigned ExtOpc =
2902           isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2903       Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2904       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, Op.getValueType(), Scalar,
2905                          Op.getOperand(2));
2906     }
2907 
2908     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
2909 
2910     // If this is a sign-extended 32-bit constant, we can truncate it and rely
2911     // on the instruction to sign-extend since SEW>XLEN.
2912     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) {
2913       if (isInt<32>(CVal->getSExtValue()))
2914         return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, Op.getValueType(),
2915                            DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32),
2916                            Op.getOperand(2));
2917     }
2918 
2919     // Otherwise use the more complicated splatting algorithm.
2920     return splatSplitI64WithVL(DL, Op.getSimpleValueType(), Scalar,
2921                                Op.getOperand(2), DAG);
2922   }
2923   case Intrinsic::riscv_vfmv_v_f:
2924     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
2925                        Op.getOperand(1), Op.getOperand(2));
2926   case Intrinsic::riscv_vmv_s_x: {
2927     SDValue Scalar = Op.getOperand(2);
2928 
2929     if (Scalar.getValueType().bitsLE(XLenVT)) {
2930       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
2931       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
2932                          Op.getOperand(1), Scalar, Op.getOperand(3));
2933     }
2934 
2935     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
2936 
2937     // This is an i64 value that lives in two scalar registers. We have to
2938     // insert this in a convoluted way. First we build vXi64 splat containing
2939     // the/ two values that we assemble using some bit math. Next we'll use
2940     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
2941     // to merge element 0 from our splat into the source vector.
2942     // FIXME: This is probably not the best way to do this, but it is
2943     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
2944     // point.
2945     //   vmv.v.x vX, hi
2946     //   vsll.vx vX, vX, /*32*/
2947     //   vmv.v.x vY, lo
2948     //   vsll.vx vY, vY, /*32*/
2949     //   vsrl.vx vY, vY, /*32*/
2950     //   vor.vv vX, vX, vY
2951     //
2952     //   vid.v      vVid
2953     //   vmseq.vx   mMask, vVid, 0
2954     //   vmerge.vvm vDest, vSrc, vVal, mMask
2955     MVT VT = Op.getSimpleValueType();
2956     SDValue Vec = Op.getOperand(1);
2957     SDValue VL = Op.getOperand(3);
2958 
2959     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
2960     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
2961                                       DAG.getConstant(0, DL, MVT::i32), VL);
2962 
2963     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
2964     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2965     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
2966     SDValue SelectCond =
2967         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
2968                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
2969     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
2970                        Vec, VL);
2971   }
2972   case Intrinsic::riscv_vslide1up:
2973   case Intrinsic::riscv_vslide1down:
2974   case Intrinsic::riscv_vslide1up_mask:
2975   case Intrinsic::riscv_vslide1down_mask: {
2976     // We need to special case these when the scalar is larger than XLen.
2977     unsigned NumOps = Op.getNumOperands();
2978     bool IsMasked = NumOps == 6;
2979     unsigned OpOffset = IsMasked ? 1 : 0;
2980     SDValue Scalar = Op.getOperand(2 + OpOffset);
2981     if (Scalar.getValueType().bitsLE(XLenVT))
2982       break;
2983 
2984     // Splatting a sign extended constant is fine.
2985     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
2986       if (isInt<32>(CVal->getSExtValue()))
2987         break;
2988 
2989     MVT VT = Op.getSimpleValueType();
2990     assert(VT.getVectorElementType() == MVT::i64 &&
2991            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
2992 
2993     // Convert the vector source to the equivalent nxvXi32 vector.
2994     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2995     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
2996 
2997     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2998                                    DAG.getConstant(0, DL, XLenVT));
2999     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3000                                    DAG.getConstant(1, DL, XLenVT));
3001 
3002     // Double the VL since we halved SEW.
3003     SDValue VL = Op.getOperand(NumOps - 1);
3004     SDValue I32VL =
3005         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
3006 
3007     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
3008     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
3009 
3010     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
3011     // instructions.
3012     if (IntNo == Intrinsic::riscv_vslide1up ||
3013         IntNo == Intrinsic::riscv_vslide1up_mask) {
3014       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
3015                         I32Mask, I32VL);
3016       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
3017                         I32Mask, I32VL);
3018     } else {
3019       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
3020                         I32Mask, I32VL);
3021       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
3022                         I32Mask, I32VL);
3023     }
3024 
3025     // Convert back to nxvXi64.
3026     Vec = DAG.getBitcast(VT, Vec);
3027 
3028     if (!IsMasked)
3029       return Vec;
3030 
3031     // Apply mask after the operation.
3032     SDValue Mask = Op.getOperand(NumOps - 2);
3033     SDValue MaskedOff = Op.getOperand(1);
3034     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
3035   }
3036   }
3037 
3038   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3039 }
3040 
3041 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
3042                                                     SelectionDAG &DAG) const {
3043   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3044 }
3045 
3046 static MVT getLMUL1VT(MVT VT) {
3047   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
3048          "Unexpected vector MVT");
3049   return MVT::getScalableVectorVT(
3050       VT.getVectorElementType(),
3051       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
3052 }
3053 
3054 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
3055   switch (ISDOpcode) {
3056   default:
3057     llvm_unreachable("Unhandled reduction");
3058   case ISD::VECREDUCE_ADD:
3059     return RISCVISD::VECREDUCE_ADD_VL;
3060   case ISD::VECREDUCE_UMAX:
3061     return RISCVISD::VECREDUCE_UMAX_VL;
3062   case ISD::VECREDUCE_SMAX:
3063     return RISCVISD::VECREDUCE_SMAX_VL;
3064   case ISD::VECREDUCE_UMIN:
3065     return RISCVISD::VECREDUCE_UMIN_VL;
3066   case ISD::VECREDUCE_SMIN:
3067     return RISCVISD::VECREDUCE_SMIN_VL;
3068   case ISD::VECREDUCE_AND:
3069     return RISCVISD::VECREDUCE_AND_VL;
3070   case ISD::VECREDUCE_OR:
3071     return RISCVISD::VECREDUCE_OR_VL;
3072   case ISD::VECREDUCE_XOR:
3073     return RISCVISD::VECREDUCE_XOR_VL;
3074   }
3075 }
3076 
3077 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
3078                                             SelectionDAG &DAG) const {
3079   SDLoc DL(Op);
3080   SDValue Vec = Op.getOperand(0);
3081   EVT VecEVT = Vec.getValueType();
3082 
3083   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
3084 
3085   // Due to ordering in legalize types we may have a vector type that needs to
3086   // be split. Do that manually so we can get down to a legal type.
3087   while (getTypeAction(*DAG.getContext(), VecEVT) ==
3088          TargetLowering::TypeSplitVector) {
3089     SDValue Lo, Hi;
3090     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
3091     VecEVT = Lo.getValueType();
3092     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
3093   }
3094 
3095   // TODO: The type may need to be widened rather than split. Or widened before
3096   // it can be split.
3097   if (!isTypeLegal(VecEVT))
3098     return SDValue();
3099 
3100   MVT VecVT = VecEVT.getSimpleVT();
3101   MVT VecEltVT = VecVT.getVectorElementType();
3102   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
3103 
3104   MVT ContainerVT = VecVT;
3105   if (VecVT.isFixedLengthVector()) {
3106     ContainerVT = getContainerForFixedLengthVector(VecVT);
3107     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3108   }
3109 
3110   MVT M1VT = getLMUL1VT(ContainerVT);
3111 
3112   SDValue Mask, VL;
3113   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3114 
3115   // FIXME: This is a VLMAX splat which might be too large and can prevent
3116   // vsetvli removal.
3117   SDValue NeutralElem =
3118       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
3119   SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
3120   SDValue Reduction =
3121       DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL);
3122   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3123                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3124   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
3125 }
3126 
3127 // Given a reduction op, this function returns the matching reduction opcode,
3128 // the vector SDValue and the scalar SDValue required to lower this to a
3129 // RISCVISD node.
3130 static std::tuple<unsigned, SDValue, SDValue>
3131 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
3132   SDLoc DL(Op);
3133   switch (Op.getOpcode()) {
3134   default:
3135     llvm_unreachable("Unhandled reduction");
3136   case ISD::VECREDUCE_FADD:
3137     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
3138                            DAG.getConstantFP(0.0, DL, EltVT));
3139   case ISD::VECREDUCE_SEQ_FADD:
3140     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
3141                            Op.getOperand(0));
3142   }
3143 }
3144 
3145 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
3146                                               SelectionDAG &DAG) const {
3147   SDLoc DL(Op);
3148   MVT VecEltVT = Op.getSimpleValueType();
3149 
3150   unsigned RVVOpcode;
3151   SDValue VectorVal, ScalarVal;
3152   std::tie(RVVOpcode, VectorVal, ScalarVal) =
3153       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
3154   MVT VecVT = VectorVal.getSimpleValueType();
3155 
3156   MVT ContainerVT = VecVT;
3157   if (VecVT.isFixedLengthVector()) {
3158     ContainerVT = getContainerForFixedLengthVector(VecVT);
3159     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
3160   }
3161 
3162   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
3163 
3164   SDValue Mask, VL;
3165   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3166 
3167   // FIXME: This is a VLMAX splat which might be too large and can prevent
3168   // vsetvli removal.
3169   SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
3170   SDValue Reduction =
3171       DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL);
3172   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3173                      DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3174 }
3175 
3176 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
3177                                                    SelectionDAG &DAG) const {
3178   SDValue Vec = Op.getOperand(0);
3179   SDValue SubVec = Op.getOperand(1);
3180   MVT VecVT = Vec.getSimpleValueType();
3181   MVT SubVecVT = SubVec.getSimpleValueType();
3182 
3183   SDLoc DL(Op);
3184   MVT XLenVT = Subtarget.getXLenVT();
3185   unsigned OrigIdx = Op.getConstantOperandVal(2);
3186   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3187 
3188   // We don't have the ability to slide mask vectors up indexed by their i1
3189   // elements; the smallest we can do is i8. Often we are able to bitcast to
3190   // equivalent i8 vectors. Note that when inserting a fixed-length vector
3191   // into a scalable one, we might not necessarily have enough scalable
3192   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
3193   if (SubVecVT.getVectorElementType() == MVT::i1 &&
3194       (OrigIdx != 0 || !Vec.isUndef())) {
3195     if (VecVT.getVectorMinNumElements() >= 8 &&
3196         SubVecVT.getVectorMinNumElements() >= 8) {
3197       assert(OrigIdx % 8 == 0 && "Invalid index");
3198       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
3199              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
3200              "Unexpected mask vector lowering");
3201       OrigIdx /= 8;
3202       SubVecVT =
3203           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
3204                            SubVecVT.isScalableVector());
3205       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
3206                                VecVT.isScalableVector());
3207       Vec = DAG.getBitcast(VecVT, Vec);
3208       SubVec = DAG.getBitcast(SubVecVT, SubVec);
3209     } else {
3210       // We can't slide this mask vector up indexed by its i1 elements.
3211       // This poses a problem when we wish to insert a scalable vector which
3212       // can't be re-expressed as a larger type. Just choose the slow path and
3213       // extend to a larger type, then truncate back down.
3214       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
3215       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
3216       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
3217       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
3218       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
3219                         Op.getOperand(2));
3220       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
3221       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
3222     }
3223   }
3224 
3225   // If the subvector vector is a fixed-length type, we cannot use subregister
3226   // manipulation to simplify the codegen; we don't know which register of a
3227   // LMUL group contains the specific subvector as we only know the minimum
3228   // register size. Therefore we must slide the vector group up the full
3229   // amount.
3230   if (SubVecVT.isFixedLengthVector()) {
3231     if (OrigIdx == 0 && Vec.isUndef())
3232       return Op;
3233     MVT ContainerVT = VecVT;
3234     if (VecVT.isFixedLengthVector()) {
3235       ContainerVT = getContainerForFixedLengthVector(VecVT);
3236       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3237     }
3238     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
3239                          DAG.getUNDEF(ContainerVT), SubVec,
3240                          DAG.getConstant(0, DL, XLenVT));
3241     SDValue Mask =
3242         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
3243     // Set the vector length to only the number of elements we care about. Note
3244     // that for slideup this includes the offset.
3245     SDValue VL =
3246         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
3247     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
3248     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3249                                   SubVec, SlideupAmt, Mask, VL);
3250     if (VecVT.isFixedLengthVector())
3251       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3252     return DAG.getBitcast(Op.getValueType(), Slideup);
3253   }
3254 
3255   unsigned SubRegIdx, RemIdx;
3256   std::tie(SubRegIdx, RemIdx) =
3257       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
3258           VecVT, SubVecVT, OrigIdx, TRI);
3259 
3260   RISCVVLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
3261   bool IsSubVecPartReg = SubVecLMUL == RISCVVLMUL::LMUL_F2 ||
3262                          SubVecLMUL == RISCVVLMUL::LMUL_F4 ||
3263                          SubVecLMUL == RISCVVLMUL::LMUL_F8;
3264 
3265   // 1. If the Idx has been completely eliminated and this subvector's size is
3266   // a vector register or a multiple thereof, or the surrounding elements are
3267   // undef, then this is a subvector insert which naturally aligns to a vector
3268   // register. These can easily be handled using subregister manipulation.
3269   // 2. If the subvector is smaller than a vector register, then the insertion
3270   // must preserve the undisturbed elements of the register. We do this by
3271   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
3272   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
3273   // subvector within the vector register, and an INSERT_SUBVECTOR of that
3274   // LMUL=1 type back into the larger vector (resolving to another subregister
3275   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
3276   // to avoid allocating a large register group to hold our subvector.
3277   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
3278     return Op;
3279 
3280   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
3281   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
3282   // (in our case undisturbed). This means we can set up a subvector insertion
3283   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
3284   // size of the subvector.
3285   MVT InterSubVT = VecVT;
3286   SDValue AlignedExtract = Vec;
3287   unsigned AlignedIdx = OrigIdx - RemIdx;
3288   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
3289     InterSubVT = getLMUL1VT(VecVT);
3290     // Extract a subvector equal to the nearest full vector register type. This
3291     // should resolve to a EXTRACT_SUBREG instruction.
3292     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
3293                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
3294   }
3295 
3296   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
3297   // For scalable vectors this must be further multiplied by vscale.
3298   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
3299 
3300   SDValue Mask, VL;
3301   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
3302 
3303   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
3304   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
3305   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
3306   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
3307 
3308   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
3309                        DAG.getUNDEF(InterSubVT), SubVec,
3310                        DAG.getConstant(0, DL, XLenVT));
3311 
3312   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
3313                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
3314 
3315   // If required, insert this subvector back into the correct vector register.
3316   // This should resolve to an INSERT_SUBREG instruction.
3317   if (VecVT.bitsGT(InterSubVT))
3318     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
3319                           DAG.getConstant(AlignedIdx, DL, XLenVT));
3320 
3321   // We might have bitcast from a mask type: cast back to the original type if
3322   // required.
3323   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
3324 }
3325 
3326 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
3327                                                     SelectionDAG &DAG) const {
3328   SDValue Vec = Op.getOperand(0);
3329   MVT SubVecVT = Op.getSimpleValueType();
3330   MVT VecVT = Vec.getSimpleValueType();
3331 
3332   SDLoc DL(Op);
3333   MVT XLenVT = Subtarget.getXLenVT();
3334   unsigned OrigIdx = Op.getConstantOperandVal(1);
3335   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3336 
3337   // We don't have the ability to slide mask vectors down indexed by their i1
3338   // elements; the smallest we can do is i8. Often we are able to bitcast to
3339   // equivalent i8 vectors. Note that when extracting a fixed-length vector
3340   // from a scalable one, we might not necessarily have enough scalable
3341   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
3342   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
3343     if (VecVT.getVectorMinNumElements() >= 8 &&
3344         SubVecVT.getVectorMinNumElements() >= 8) {
3345       assert(OrigIdx % 8 == 0 && "Invalid index");
3346       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
3347              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
3348              "Unexpected mask vector lowering");
3349       OrigIdx /= 8;
3350       SubVecVT =
3351           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
3352                            SubVecVT.isScalableVector());
3353       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
3354                                VecVT.isScalableVector());
3355       Vec = DAG.getBitcast(VecVT, Vec);
3356     } else {
3357       // We can't slide this mask vector down, indexed by its i1 elements.
3358       // This poses a problem when we wish to extract a scalable vector which
3359       // can't be re-expressed as a larger type. Just choose the slow path and
3360       // extend to a larger type, then truncate back down.
3361       // TODO: We could probably improve this when extracting certain fixed
3362       // from fixed, where we can extract as i8 and shift the correct element
3363       // right to reach the desired subvector?
3364       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
3365       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
3366       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
3367       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
3368                         Op.getOperand(1));
3369       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
3370       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
3371     }
3372   }
3373 
3374   // If the subvector vector is a fixed-length type, we cannot use subregister
3375   // manipulation to simplify the codegen; we don't know which register of a
3376   // LMUL group contains the specific subvector as we only know the minimum
3377   // register size. Therefore we must slide the vector group down the full
3378   // amount.
3379   if (SubVecVT.isFixedLengthVector()) {
3380     // With an index of 0 this is a cast-like subvector, which can be performed
3381     // with subregister operations.
3382     if (OrigIdx == 0)
3383       return Op;
3384     MVT ContainerVT = VecVT;
3385     if (VecVT.isFixedLengthVector()) {
3386       ContainerVT = getContainerForFixedLengthVector(VecVT);
3387       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3388     }
3389     SDValue Mask =
3390         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
3391     // Set the vector length to only the number of elements we care about. This
3392     // avoids sliding down elements we're going to discard straight away.
3393     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
3394     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
3395     SDValue Slidedown =
3396         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3397                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
3398     // Now we can use a cast-like subvector extract to get the result.
3399     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
3400                             DAG.getConstant(0, DL, XLenVT));
3401     return DAG.getBitcast(Op.getValueType(), Slidedown);
3402   }
3403 
3404   unsigned SubRegIdx, RemIdx;
3405   std::tie(SubRegIdx, RemIdx) =
3406       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
3407           VecVT, SubVecVT, OrigIdx, TRI);
3408 
3409   // If the Idx has been completely eliminated then this is a subvector extract
3410   // which naturally aligns to a vector register. These can easily be handled
3411   // using subregister manipulation.
3412   if (RemIdx == 0)
3413     return Op;
3414 
3415   // Else we must shift our vector register directly to extract the subvector.
3416   // Do this using VSLIDEDOWN.
3417 
3418   // If the vector type is an LMUL-group type, extract a subvector equal to the
3419   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
3420   // instruction.
3421   MVT InterSubVT = VecVT;
3422   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
3423     InterSubVT = getLMUL1VT(VecVT);
3424     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
3425                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
3426   }
3427 
3428   // Slide this vector register down by the desired number of elements in order
3429   // to place the desired subvector starting at element 0.
3430   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
3431   // For scalable vectors this must be further multiplied by vscale.
3432   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
3433 
3434   SDValue Mask, VL;
3435   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
3436   SDValue Slidedown =
3437       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
3438                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
3439 
3440   // Now the vector is in the right position, extract our final subvector. This
3441   // should resolve to a COPY.
3442   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
3443                           DAG.getConstant(0, DL, XLenVT));
3444 
3445   // We might have bitcast from a mask type: cast back to the original type if
3446   // required.
3447   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
3448 }
3449 
3450 // Implement step_vector to the vid instruction.
3451 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
3452                                               SelectionDAG &DAG) const {
3453   SDLoc DL(Op);
3454   assert(Op.getConstantOperandAPInt(0) == 1 && "Unexpected step value");
3455   MVT VT = Op.getSimpleValueType();
3456   SDValue Mask, VL;
3457   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
3458   return DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3459 }
3460 
3461 // Implement vector_reverse using vrgather.vv with indices determined by
3462 // subtracting the id of each element from (VLMAX-1). This will convert
3463 // the indices like so:
3464 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
3465 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
3466 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
3467                                                  SelectionDAG &DAG) const {
3468   SDLoc DL(Op);
3469   MVT VecVT = Op.getSimpleValueType();
3470   unsigned EltSize = VecVT.getScalarSizeInBits();
3471   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
3472 
3473   unsigned MaxVLMAX = 0;
3474   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
3475   if (VectorBitsMax != 0)
3476     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
3477 
3478   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
3479   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
3480 
3481   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
3482   // to use vrgatherei16.vv.
3483   // TODO: It's also possible to use vrgatherei16.vv for other types to
3484   // decrease register width for the index calculation.
3485   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
3486     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
3487     // Reverse each half, then reassemble them in reverse order.
3488     // NOTE: It's also possible that after splitting that VLMAX no longer
3489     // requires vrgatherei16.vv.
3490     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
3491       SDValue Lo, Hi;
3492       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
3493       EVT LoVT, HiVT;
3494       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
3495       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
3496       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
3497       // Reassemble the low and high pieces reversed.
3498       // FIXME: This is a CONCAT_VECTORS.
3499       SDValue Res =
3500           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
3501                       DAG.getIntPtrConstant(0, DL));
3502       return DAG.getNode(
3503           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
3504           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
3505     }
3506 
3507     // Just promote the int type to i16 which will double the LMUL.
3508     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
3509     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
3510   }
3511 
3512   MVT XLenVT = Subtarget.getXLenVT();
3513   SDValue Mask, VL;
3514   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
3515 
3516   // Calculate VLMAX-1 for the desired SEW.
3517   unsigned MinElts = VecVT.getVectorMinNumElements();
3518   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
3519                               DAG.getConstant(MinElts, DL, XLenVT));
3520   SDValue VLMinus1 =
3521       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
3522 
3523   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
3524   bool IsRV32E64 =
3525       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
3526   SDValue SplatVL;
3527   if (!IsRV32E64)
3528     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
3529   else
3530     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
3531 
3532   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
3533   SDValue Indices =
3534       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
3535 
3536   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
3537 }
3538 
3539 SDValue
3540 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
3541                                                      SelectionDAG &DAG) const {
3542   auto *Load = cast<LoadSDNode>(Op);
3543 
3544   SDLoc DL(Op);
3545   MVT VT = Op.getSimpleValueType();
3546   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3547 
3548   SDValue VL =
3549       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
3550 
3551   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
3552   SDValue NewLoad = DAG.getMemIntrinsicNode(
3553       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
3554       Load->getMemoryVT(), Load->getMemOperand());
3555 
3556   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
3557   return DAG.getMergeValues({Result, Load->getChain()}, DL);
3558 }
3559 
3560 SDValue
3561 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
3562                                                       SelectionDAG &DAG) const {
3563   auto *Store = cast<StoreSDNode>(Op);
3564 
3565   SDLoc DL(Op);
3566   MVT VT = Store->getValue().getSimpleValueType();
3567 
3568   // FIXME: We probably need to zero any extra bits in a byte for mask stores.
3569   // This is tricky to do.
3570 
3571   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3572 
3573   SDValue VL =
3574       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
3575 
3576   SDValue NewValue =
3577       convertToScalableVector(ContainerVT, Store->getValue(), DAG, Subtarget);
3578   return DAG.getMemIntrinsicNode(
3579       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
3580       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
3581       Store->getMemoryVT(), Store->getMemOperand());
3582 }
3583 
3584 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const {
3585   auto *Load = cast<MaskedLoadSDNode>(Op);
3586 
3587   SDLoc DL(Op);
3588   MVT VT = Op.getSimpleValueType();
3589   MVT XLenVT = Subtarget.getXLenVT();
3590 
3591   SDValue Mask = Load->getMask();
3592   SDValue PassThru = Load->getPassThru();
3593   SDValue VL;
3594 
3595   MVT ContainerVT = VT;
3596   if (VT.isFixedLengthVector()) {
3597     ContainerVT = getContainerForFixedLengthVector(VT);
3598     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3599 
3600     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
3601     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
3602     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
3603   } else
3604     VL = DAG.getRegister(RISCV::X0, XLenVT);
3605 
3606   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
3607   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT);
3608   SDValue Ops[] = {Load->getChain(),   IntID, PassThru,
3609                    Load->getBasePtr(), Mask,  VL};
3610   SDValue Result =
3611       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
3612                               Load->getMemoryVT(), Load->getMemOperand());
3613   SDValue Chain = Result.getValue(1);
3614 
3615   if (VT.isFixedLengthVector())
3616     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3617 
3618   return DAG.getMergeValues({Result, Chain}, DL);
3619 }
3620 
3621 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const {
3622   auto *Store = cast<MaskedStoreSDNode>(Op);
3623 
3624   SDLoc DL(Op);
3625   SDValue Val = Store->getValue();
3626   SDValue Mask = Store->getMask();
3627   MVT VT = Val.getSimpleValueType();
3628   MVT XLenVT = Subtarget.getXLenVT();
3629   SDValue VL;
3630 
3631   MVT ContainerVT = VT;
3632   if (VT.isFixedLengthVector()) {
3633     ContainerVT = getContainerForFixedLengthVector(VT);
3634     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3635 
3636     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
3637     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
3638     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
3639   } else
3640     VL = DAG.getRegister(RISCV::X0, XLenVT);
3641 
3642   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT);
3643   return DAG.getMemIntrinsicNode(
3644       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
3645       {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL},
3646       Store->getMemoryVT(), Store->getMemOperand());
3647 }
3648 
3649 SDValue
3650 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
3651                                                       SelectionDAG &DAG) const {
3652   MVT InVT = Op.getOperand(0).getSimpleValueType();
3653   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
3654 
3655   MVT VT = Op.getSimpleValueType();
3656 
3657   SDValue Op1 =
3658       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3659   SDValue Op2 =
3660       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
3661 
3662   SDLoc DL(Op);
3663   SDValue VL =
3664       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
3665 
3666   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3667   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3668 
3669   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
3670                             Op.getOperand(2), Mask, VL);
3671 
3672   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
3673 }
3674 
3675 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
3676     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
3677   MVT VT = Op.getSimpleValueType();
3678 
3679   if (VT.getVectorElementType() == MVT::i1)
3680     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
3681 
3682   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
3683 }
3684 
3685 // Lower vector ABS to smax(X, sub(0, X)).
3686 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
3687   SDLoc DL(Op);
3688   MVT VT = Op.getSimpleValueType();
3689   SDValue X = Op.getOperand(0);
3690 
3691   assert(VT.isFixedLengthVector() && "Unexpected type");
3692 
3693   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3694   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
3695 
3696   SDValue Mask, VL;
3697   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3698 
3699   SDValue SplatZero =
3700       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
3701                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3702   SDValue NegX =
3703       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
3704   SDValue Max =
3705       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
3706 
3707   return convertFromScalableVector(VT, Max, DAG, Subtarget);
3708 }
3709 
3710 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
3711     SDValue Op, SelectionDAG &DAG) const {
3712   SDLoc DL(Op);
3713   MVT VT = Op.getSimpleValueType();
3714   SDValue Mag = Op.getOperand(0);
3715   SDValue Sign = Op.getOperand(1);
3716   assert(Mag.getValueType() == Sign.getValueType() &&
3717          "Can only handle COPYSIGN with matching types.");
3718 
3719   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3720   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
3721   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
3722 
3723   SDValue Mask, VL;
3724   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3725 
3726   SDValue CopySign =
3727       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
3728 
3729   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
3730 }
3731 
3732 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
3733     SDValue Op, SelectionDAG &DAG) const {
3734   MVT VT = Op.getSimpleValueType();
3735   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3736 
3737   MVT I1ContainerVT =
3738       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3739 
3740   SDValue CC =
3741       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
3742   SDValue Op1 =
3743       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
3744   SDValue Op2 =
3745       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
3746 
3747   SDLoc DL(Op);
3748   SDValue Mask, VL;
3749   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3750 
3751   SDValue Select =
3752       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
3753 
3754   return convertFromScalableVector(VT, Select, DAG, Subtarget);
3755 }
3756 
3757 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
3758                                                unsigned NewOpc,
3759                                                bool HasMask) const {
3760   MVT VT = Op.getSimpleValueType();
3761   assert(useRVVForFixedLengthVectorVT(VT) &&
3762          "Only expected to lower fixed length vector operation!");
3763   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3764 
3765   // Create list of operands by converting existing ones to scalable types.
3766   SmallVector<SDValue, 6> Ops;
3767   for (const SDValue &V : Op->op_values()) {
3768     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
3769 
3770     // Pass through non-vector operands.
3771     if (!V.getValueType().isVector()) {
3772       Ops.push_back(V);
3773       continue;
3774     }
3775 
3776     // "cast" fixed length vector to a scalable vector.
3777     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
3778            "Only fixed length vectors are supported!");
3779     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
3780   }
3781 
3782   SDLoc DL(Op);
3783   SDValue Mask, VL;
3784   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3785   if (HasMask)
3786     Ops.push_back(Mask);
3787   Ops.push_back(VL);
3788 
3789   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
3790   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
3791 }
3792 
3793 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to
3794 // a RVV indexed load. The RVV indexed load instructions only support the
3795 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
3796 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
3797 // indexing is extended to the XLEN value type and scaled accordingly.
3798 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const {
3799   auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
3800   SDLoc DL(Op);
3801 
3802   SDValue Index = MGN->getIndex();
3803   SDValue Mask = MGN->getMask();
3804   SDValue PassThru = MGN->getPassThru();
3805 
3806   MVT VT = Op.getSimpleValueType();
3807   MVT IndexVT = Index.getSimpleValueType();
3808   MVT XLenVT = Subtarget.getXLenVT();
3809 
3810   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
3811          "Unexpected VTs!");
3812   assert(MGN->getBasePtr().getSimpleValueType() == XLenVT &&
3813          "Unexpected pointer type");
3814   // Targets have to explicitly opt-in for extending vector loads.
3815   assert(MGN->getExtensionType() == ISD::NON_EXTLOAD &&
3816          "Unexpected extending MGATHER");
3817 
3818   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
3819   // the selection of the masked intrinsics doesn't do this for us.
3820   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
3821 
3822   SDValue VL;
3823   MVT ContainerVT = VT;
3824   if (VT.isFixedLengthVector()) {
3825     // We need to use the larger of the result and index type to determine the
3826     // scalable type to use so we don't increase LMUL for any operand/result.
3827     if (VT.bitsGE(IndexVT)) {
3828       ContainerVT = getContainerForFixedLengthVector(VT);
3829       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
3830                                  ContainerVT.getVectorElementCount());
3831     } else {
3832       IndexVT = getContainerForFixedLengthVector(IndexVT);
3833       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
3834                                      IndexVT.getVectorElementCount());
3835     }
3836 
3837     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
3838 
3839     if (!IsUnmasked) {
3840       MVT MaskVT =
3841           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3842       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
3843       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
3844     }
3845 
3846     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
3847   } else
3848     VL = DAG.getRegister(RISCV::X0, XLenVT);
3849 
3850   unsigned IntID =
3851       IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask;
3852   SmallVector<SDValue, 8> Ops{MGN->getChain(),
3853                               DAG.getTargetConstant(IntID, DL, XLenVT)};
3854   if (!IsUnmasked)
3855     Ops.push_back(PassThru);
3856   Ops.push_back(MGN->getBasePtr());
3857   Ops.push_back(Index);
3858   if (!IsUnmasked)
3859     Ops.push_back(Mask);
3860   Ops.push_back(VL);
3861 
3862   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
3863   SDValue Result =
3864       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
3865                               MGN->getMemoryVT(), MGN->getMemOperand());
3866   SDValue Chain = Result.getValue(1);
3867 
3868   if (VT.isFixedLengthVector())
3869     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3870 
3871   return DAG.getMergeValues({Result, Chain}, DL);
3872 }
3873 
3874 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to
3875 // a RVV indexed store. The RVV indexed store instructions only support the
3876 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
3877 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
3878 // indexing is extended to the XLEN value type and scaled accordingly.
3879 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op,
3880                                            SelectionDAG &DAG) const {
3881   auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
3882   SDLoc DL(Op);
3883   SDValue Index = MSN->getIndex();
3884   SDValue Mask = MSN->getMask();
3885   SDValue Val = MSN->getValue();
3886 
3887   MVT VT = Val.getSimpleValueType();
3888   MVT IndexVT = Index.getSimpleValueType();
3889   MVT XLenVT = Subtarget.getXLenVT();
3890 
3891   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
3892          "Unexpected VTs!");
3893   assert(MSN->getBasePtr().getSimpleValueType() == XLenVT &&
3894          "Unexpected pointer type");
3895   // Targets have to explicitly opt-in for extending vector loads and
3896   // truncating vector stores.
3897   assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER");
3898 
3899   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
3900   // the selection of the masked intrinsics doesn't do this for us.
3901   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
3902 
3903   SDValue VL;
3904   if (VT.isFixedLengthVector()) {
3905     // We need to use the larger of the value and index type to determine the
3906     // scalable type to use so we don't increase LMUL for any operand/result.
3907     if (VT.bitsGE(IndexVT)) {
3908       VT = getContainerForFixedLengthVector(VT);
3909       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
3910                                  VT.getVectorElementCount());
3911     } else {
3912       IndexVT = getContainerForFixedLengthVector(IndexVT);
3913       VT = MVT::getVectorVT(VT.getVectorElementType(),
3914                             IndexVT.getVectorElementCount());
3915     }
3916 
3917     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
3918     Val = convertToScalableVector(VT, Val, DAG, Subtarget);
3919 
3920     if (!IsUnmasked) {
3921       MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
3922       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
3923     }
3924 
3925     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
3926   } else
3927     VL = DAG.getRegister(RISCV::X0, XLenVT);
3928 
3929   unsigned IntID =
3930       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
3931   SmallVector<SDValue, 8> Ops{MSN->getChain(),
3932                               DAG.getTargetConstant(IntID, DL, XLenVT)};
3933   Ops.push_back(Val);
3934   Ops.push_back(MSN->getBasePtr());
3935   Ops.push_back(Index);
3936   if (!IsUnmasked)
3937     Ops.push_back(Mask);
3938   Ops.push_back(VL);
3939 
3940   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops,
3941                                  MSN->getMemoryVT(), MSN->getMemOperand());
3942 }
3943 
3944 // Returns the opcode of the target-specific SDNode that implements the 32-bit
3945 // form of the given Opcode.
3946 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
3947   switch (Opcode) {
3948   default:
3949     llvm_unreachable("Unexpected opcode");
3950   case ISD::SHL:
3951     return RISCVISD::SLLW;
3952   case ISD::SRA:
3953     return RISCVISD::SRAW;
3954   case ISD::SRL:
3955     return RISCVISD::SRLW;
3956   case ISD::SDIV:
3957     return RISCVISD::DIVW;
3958   case ISD::UDIV:
3959     return RISCVISD::DIVUW;
3960   case ISD::UREM:
3961     return RISCVISD::REMUW;
3962   case ISD::ROTL:
3963     return RISCVISD::ROLW;
3964   case ISD::ROTR:
3965     return RISCVISD::RORW;
3966   case RISCVISD::GREVI:
3967     return RISCVISD::GREVIW;
3968   case RISCVISD::GORCI:
3969     return RISCVISD::GORCIW;
3970   }
3971 }
3972 
3973 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
3974 // Because i32 isn't a legal type for RV64, these operations would otherwise
3975 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
3976 // later one because the fact the operation was originally of type i32 is
3977 // lost.
3978 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
3979                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
3980   SDLoc DL(N);
3981   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
3982   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
3983   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
3984   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
3985   // ReplaceNodeResults requires we maintain the same type for the return value.
3986   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
3987 }
3988 
3989 // Converts the given 32-bit operation to a i64 operation with signed extension
3990 // semantic to reduce the signed extension instructions.
3991 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
3992   SDLoc DL(N);
3993   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
3994   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
3995   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
3996   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
3997                                DAG.getValueType(MVT::i32));
3998   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
3999 }
4000 
4001 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
4002                                              SmallVectorImpl<SDValue> &Results,
4003                                              SelectionDAG &DAG) const {
4004   SDLoc DL(N);
4005   switch (N->getOpcode()) {
4006   default:
4007     llvm_unreachable("Don't know how to custom type legalize this operation!");
4008   case ISD::STRICT_FP_TO_SINT:
4009   case ISD::STRICT_FP_TO_UINT:
4010   case ISD::FP_TO_SINT:
4011   case ISD::FP_TO_UINT: {
4012     bool IsStrict = N->isStrictFPOpcode();
4013     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4014            "Unexpected custom legalisation");
4015     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
4016     // If the FP type needs to be softened, emit a library call using the 'si'
4017     // version. If we left it to default legalization we'd end up with 'di'. If
4018     // the FP type doesn't need to be softened just let generic type
4019     // legalization promote the result type.
4020     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
4021         TargetLowering::TypeSoftenFloat)
4022       return;
4023     RTLIB::Libcall LC;
4024     if (N->getOpcode() == ISD::FP_TO_SINT ||
4025         N->getOpcode() == ISD::STRICT_FP_TO_SINT)
4026       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
4027     else
4028       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
4029     MakeLibCallOptions CallOptions;
4030     EVT OpVT = Op0.getValueType();
4031     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
4032     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4033     SDValue Result;
4034     std::tie(Result, Chain) =
4035         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
4036     Results.push_back(Result);
4037     if (IsStrict)
4038       Results.push_back(Chain);
4039     break;
4040   }
4041   case ISD::READCYCLECOUNTER: {
4042     assert(!Subtarget.is64Bit() &&
4043            "READCYCLECOUNTER only has custom type legalization on riscv32");
4044 
4045     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4046     SDValue RCW =
4047         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
4048 
4049     Results.push_back(
4050         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
4051     Results.push_back(RCW.getValue(2));
4052     break;
4053   }
4054   case ISD::MUL: {
4055     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
4056     unsigned XLen = Subtarget.getXLen();
4057     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
4058     if (Size > XLen) {
4059       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
4060       SDValue LHS = N->getOperand(0);
4061       SDValue RHS = N->getOperand(1);
4062       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
4063 
4064       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
4065       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
4066       // We need exactly one side to be unsigned.
4067       if (LHSIsU == RHSIsU)
4068         return;
4069 
4070       auto MakeMULPair = [&](SDValue S, SDValue U) {
4071         MVT XLenVT = Subtarget.getXLenVT();
4072         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
4073         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
4074         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
4075         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
4076         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
4077       };
4078 
4079       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
4080       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
4081 
4082       // The other operand should be signed, but still prefer MULH when
4083       // possible.
4084       if (RHSIsU && LHSIsS && !RHSIsS)
4085         Results.push_back(MakeMULPair(LHS, RHS));
4086       else if (LHSIsU && RHSIsS && !LHSIsS)
4087         Results.push_back(MakeMULPair(RHS, LHS));
4088 
4089       return;
4090     }
4091     LLVM_FALLTHROUGH;
4092   }
4093   case ISD::ADD:
4094   case ISD::SUB:
4095     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4096            "Unexpected custom legalisation");
4097     if (N->getOperand(1).getOpcode() == ISD::Constant)
4098       return;
4099     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
4100     break;
4101   case ISD::SHL:
4102   case ISD::SRA:
4103   case ISD::SRL:
4104     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4105            "Unexpected custom legalisation");
4106     if (N->getOperand(1).getOpcode() == ISD::Constant)
4107       return;
4108     Results.push_back(customLegalizeToWOp(N, DAG));
4109     break;
4110   case ISD::ROTL:
4111   case ISD::ROTR:
4112     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4113            "Unexpected custom legalisation");
4114     Results.push_back(customLegalizeToWOp(N, DAG));
4115     break;
4116   case ISD::CTTZ:
4117   case ISD::CTTZ_ZERO_UNDEF:
4118   case ISD::CTLZ:
4119   case ISD::CTLZ_ZERO_UNDEF: {
4120     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4121            "Unexpected custom legalisation");
4122 
4123     SDValue NewOp0 =
4124         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4125     bool IsCTZ =
4126         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
4127     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
4128     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
4129     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4130     return;
4131   }
4132   case ISD::SDIV:
4133   case ISD::UDIV:
4134   case ISD::UREM: {
4135     MVT VT = N->getSimpleValueType(0);
4136     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
4137            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
4138            "Unexpected custom legalisation");
4139     if (N->getOperand(0).getOpcode() == ISD::Constant ||
4140         N->getOperand(1).getOpcode() == ISD::Constant)
4141       return;
4142 
4143     // If the input is i32, use ANY_EXTEND since the W instructions don't read
4144     // the upper 32 bits. For other types we need to sign or zero extend
4145     // based on the opcode.
4146     unsigned ExtOpc = ISD::ANY_EXTEND;
4147     if (VT != MVT::i32)
4148       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
4149                                            : ISD::ZERO_EXTEND;
4150 
4151     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
4152     break;
4153   }
4154   case ISD::UADDO:
4155   case ISD::USUBO: {
4156     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4157            "Unexpected custom legalisation");
4158     bool IsAdd = N->getOpcode() == ISD::UADDO;
4159     // Create an ADDW or SUBW.
4160     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4161     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4162     SDValue Res =
4163         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
4164     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
4165                       DAG.getValueType(MVT::i32));
4166 
4167     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
4168     // Since the inputs are sign extended from i32, this is equivalent to
4169     // comparing the lower 32 bits.
4170     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
4171     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
4172                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
4173 
4174     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4175     Results.push_back(Overflow);
4176     return;
4177   }
4178   case ISD::UADDSAT:
4179   case ISD::USUBSAT: {
4180     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4181            "Unexpected custom legalisation");
4182     if (Subtarget.hasStdExtZbb()) {
4183       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
4184       // sign extend allows overflow of the lower 32 bits to be detected on
4185       // the promoted size.
4186       SDValue LHS =
4187           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
4188       SDValue RHS =
4189           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
4190       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
4191       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4192       return;
4193     }
4194 
4195     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
4196     // promotion for UADDO/USUBO.
4197     Results.push_back(expandAddSubSat(N, DAG));
4198     return;
4199   }
4200   case ISD::BITCAST: {
4201     EVT VT = N->getValueType(0);
4202     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
4203     SDValue Op0 = N->getOperand(0);
4204     EVT Op0VT = Op0.getValueType();
4205     MVT XLenVT = Subtarget.getXLenVT();
4206     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
4207       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
4208       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
4209     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
4210                Subtarget.hasStdExtF()) {
4211       SDValue FPConv =
4212           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
4213       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
4214     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
4215                isTypeLegal(Op0VT)) {
4216       // Custom-legalize bitcasts from fixed-length vector types to illegal
4217       // scalar types in order to improve codegen. Bitcast the vector to a
4218       // one-element vector type whose element type is the same as the result
4219       // type, and extract the first element.
4220       LLVMContext &Context = *DAG.getContext();
4221       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
4222       Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
4223                                     DAG.getConstant(0, DL, XLenVT)));
4224     }
4225     break;
4226   }
4227   case RISCVISD::GREVI:
4228   case RISCVISD::GORCI: {
4229     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4230            "Unexpected custom legalisation");
4231     // This is similar to customLegalizeToWOp, except that we pass the second
4232     // operand (a TargetConstant) straight through: it is already of type
4233     // XLenVT.
4234     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
4235     SDValue NewOp0 =
4236         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4237     SDValue NewRes =
4238         DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1));
4239     // ReplaceNodeResults requires we maintain the same type for the return
4240     // value.
4241     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
4242     break;
4243   }
4244   case RISCVISD::SHFLI: {
4245     // There is no SHFLIW instruction, but we can just promote the operation.
4246     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4247            "Unexpected custom legalisation");
4248     SDValue NewOp0 =
4249         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4250     SDValue NewRes =
4251         DAG.getNode(RISCVISD::SHFLI, DL, MVT::i64, NewOp0, N->getOperand(1));
4252     // ReplaceNodeResults requires we maintain the same type for the return
4253     // value.
4254     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
4255     break;
4256   }
4257   case ISD::BSWAP:
4258   case ISD::BITREVERSE: {
4259     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4260            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
4261     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
4262                                  N->getOperand(0));
4263     unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24;
4264     SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0,
4265                                  DAG.getTargetConstant(Imm, DL,
4266                                                        Subtarget.getXLenVT()));
4267     // ReplaceNodeResults requires we maintain the same type for the return
4268     // value.
4269     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW));
4270     break;
4271   }
4272   case ISD::FSHL:
4273   case ISD::FSHR: {
4274     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4275            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
4276     SDValue NewOp0 =
4277         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4278     SDValue NewOp1 =
4279         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4280     SDValue NewOp2 =
4281         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
4282     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
4283     // Mask the shift amount to 5 bits.
4284     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
4285                          DAG.getConstant(0x1f, DL, MVT::i64));
4286     unsigned Opc =
4287         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
4288     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
4289     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
4290     break;
4291   }
4292   case ISD::EXTRACT_VECTOR_ELT: {
4293     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
4294     // type is illegal (currently only vXi64 RV32).
4295     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
4296     // transferred to the destination register. We issue two of these from the
4297     // upper- and lower- halves of the SEW-bit vector element, slid down to the
4298     // first element.
4299     SDValue Vec = N->getOperand(0);
4300     SDValue Idx = N->getOperand(1);
4301 
4302     // The vector type hasn't been legalized yet so we can't issue target
4303     // specific nodes if it needs legalization.
4304     // FIXME: We would manually legalize if it's important.
4305     if (!isTypeLegal(Vec.getValueType()))
4306       return;
4307 
4308     MVT VecVT = Vec.getSimpleValueType();
4309 
4310     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
4311            VecVT.getVectorElementType() == MVT::i64 &&
4312            "Unexpected EXTRACT_VECTOR_ELT legalization");
4313 
4314     // If this is a fixed vector, we need to convert it to a scalable vector.
4315     MVT ContainerVT = VecVT;
4316     if (VecVT.isFixedLengthVector()) {
4317       ContainerVT = getContainerForFixedLengthVector(VecVT);
4318       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4319     }
4320 
4321     MVT XLenVT = Subtarget.getXLenVT();
4322 
4323     // Use a VL of 1 to avoid processing more elements than we need.
4324     MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
4325     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4326     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4327 
4328     // Unless the index is known to be 0, we must slide the vector down to get
4329     // the desired element into index 0.
4330     if (!isNullConstant(Idx)) {
4331       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4332                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4333     }
4334 
4335     // Extract the lower XLEN bits of the correct vector element.
4336     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4337 
4338     // To extract the upper XLEN bits of the vector element, shift the first
4339     // element right by 32 bits and re-extract the lower XLEN bits.
4340     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4341                                      DAG.getConstant(32, DL, XLenVT), VL);
4342     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
4343                                  ThirtyTwoV, Mask, VL);
4344 
4345     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
4346 
4347     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
4348     break;
4349   }
4350   case ISD::INTRINSIC_WO_CHAIN: {
4351     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4352     switch (IntNo) {
4353     default:
4354       llvm_unreachable(
4355           "Don't know how to custom type legalize this intrinsic!");
4356     case Intrinsic::riscv_orc_b: {
4357       // Lower to the GORCI encoding for orc.b with the operand extended.
4358       SDValue NewOp =
4359           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4360       // If Zbp is enabled, use GORCIW which will sign extend the result.
4361       unsigned Opc =
4362           Subtarget.hasStdExtZbp() ? RISCVISD::GORCIW : RISCVISD::GORCI;
4363       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
4364                                 DAG.getTargetConstant(7, DL, MVT::i64));
4365       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4366       return;
4367     }
4368     case Intrinsic::riscv_vmv_x_s: {
4369       EVT VT = N->getValueType(0);
4370       MVT XLenVT = Subtarget.getXLenVT();
4371       if (VT.bitsLT(XLenVT)) {
4372         // Simple case just extract using vmv.x.s and truncate.
4373         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
4374                                       Subtarget.getXLenVT(), N->getOperand(1));
4375         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
4376         return;
4377       }
4378 
4379       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
4380              "Unexpected custom legalization");
4381 
4382       // We need to do the move in two steps.
4383       SDValue Vec = N->getOperand(1);
4384       MVT VecVT = Vec.getSimpleValueType();
4385 
4386       // First extract the lower XLEN bits of the element.
4387       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4388 
4389       // To extract the upper XLEN bits of the vector element, shift the first
4390       // element right by 32 bits and re-extract the lower XLEN bits.
4391       SDValue VL = DAG.getConstant(1, DL, XLenVT);
4392       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
4393       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4394       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
4395                                        DAG.getConstant(32, DL, XLenVT), VL);
4396       SDValue LShr32 =
4397           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
4398       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
4399 
4400       Results.push_back(
4401           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
4402       break;
4403     }
4404     }
4405     break;
4406   }
4407   case ISD::VECREDUCE_ADD:
4408   case ISD::VECREDUCE_AND:
4409   case ISD::VECREDUCE_OR:
4410   case ISD::VECREDUCE_XOR:
4411   case ISD::VECREDUCE_SMAX:
4412   case ISD::VECREDUCE_UMAX:
4413   case ISD::VECREDUCE_SMIN:
4414   case ISD::VECREDUCE_UMIN:
4415     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
4416       Results.push_back(V);
4417     break;
4418   }
4419 }
4420 
4421 // A structure to hold one of the bit-manipulation patterns below. Together, a
4422 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
4423 //   (or (and (shl x, 1), 0xAAAAAAAA),
4424 //       (and (srl x, 1), 0x55555555))
4425 struct RISCVBitmanipPat {
4426   SDValue Op;
4427   unsigned ShAmt;
4428   bool IsSHL;
4429 
4430   bool formsPairWith(const RISCVBitmanipPat &Other) const {
4431     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
4432   }
4433 };
4434 
4435 // Matches patterns of the form
4436 //   (and (shl x, C2), (C1 << C2))
4437 //   (and (srl x, C2), C1)
4438 //   (shl (and x, C1), C2)
4439 //   (srl (and x, (C1 << C2)), C2)
4440 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
4441 // The expected masks for each shift amount are specified in BitmanipMasks where
4442 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
4443 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
4444 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
4445 // XLen is 64.
4446 static Optional<RISCVBitmanipPat>
4447 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
4448   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
4449          "Unexpected number of masks");
4450   Optional<uint64_t> Mask;
4451   // Optionally consume a mask around the shift operation.
4452   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
4453     Mask = Op.getConstantOperandVal(1);
4454     Op = Op.getOperand(0);
4455   }
4456   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
4457     return None;
4458   bool IsSHL = Op.getOpcode() == ISD::SHL;
4459 
4460   if (!isa<ConstantSDNode>(Op.getOperand(1)))
4461     return None;
4462   uint64_t ShAmt = Op.getConstantOperandVal(1);
4463 
4464   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
4465   if (ShAmt >= Width && !isPowerOf2_64(ShAmt))
4466     return None;
4467   // If we don't have enough masks for 64 bit, then we must be trying to
4468   // match SHFL so we're only allowed to shift 1/4 of the width.
4469   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
4470     return None;
4471 
4472   SDValue Src = Op.getOperand(0);
4473 
4474   // The expected mask is shifted left when the AND is found around SHL
4475   // patterns.
4476   //   ((x >> 1) & 0x55555555)
4477   //   ((x << 1) & 0xAAAAAAAA)
4478   bool SHLExpMask = IsSHL;
4479 
4480   if (!Mask) {
4481     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
4482     // the mask is all ones: consume that now.
4483     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
4484       Mask = Src.getConstantOperandVal(1);
4485       Src = Src.getOperand(0);
4486       // The expected mask is now in fact shifted left for SRL, so reverse the
4487       // decision.
4488       //   ((x & 0xAAAAAAAA) >> 1)
4489       //   ((x & 0x55555555) << 1)
4490       SHLExpMask = !SHLExpMask;
4491     } else {
4492       // Use a default shifted mask of all-ones if there's no AND, truncated
4493       // down to the expected width. This simplifies the logic later on.
4494       Mask = maskTrailingOnes<uint64_t>(Width);
4495       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
4496     }
4497   }
4498 
4499   unsigned MaskIdx = Log2_32(ShAmt);
4500   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
4501 
4502   if (SHLExpMask)
4503     ExpMask <<= ShAmt;
4504 
4505   if (Mask != ExpMask)
4506     return None;
4507 
4508   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
4509 }
4510 
4511 // Matches any of the following bit-manipulation patterns:
4512 //   (and (shl x, 1), (0x55555555 << 1))
4513 //   (and (srl x, 1), 0x55555555)
4514 //   (shl (and x, 0x55555555), 1)
4515 //   (srl (and x, (0x55555555 << 1)), 1)
4516 // where the shift amount and mask may vary thus:
4517 //   [1]  = 0x55555555 / 0xAAAAAAAA
4518 //   [2]  = 0x33333333 / 0xCCCCCCCC
4519 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
4520 //   [8]  = 0x00FF00FF / 0xFF00FF00
4521 //   [16] = 0x0000FFFF / 0xFFFFFFFF
4522 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
4523 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
4524   // These are the unshifted masks which we use to match bit-manipulation
4525   // patterns. They may be shifted left in certain circumstances.
4526   static const uint64_t BitmanipMasks[] = {
4527       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
4528       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
4529 
4530   return matchRISCVBitmanipPat(Op, BitmanipMasks);
4531 }
4532 
4533 // Match the following pattern as a GREVI(W) operation
4534 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
4535 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
4536                                const RISCVSubtarget &Subtarget) {
4537   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
4538   EVT VT = Op.getValueType();
4539 
4540   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
4541     auto LHS = matchGREVIPat(Op.getOperand(0));
4542     auto RHS = matchGREVIPat(Op.getOperand(1));
4543     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
4544       SDLoc DL(Op);
4545       return DAG.getNode(
4546           RISCVISD::GREVI, DL, VT, LHS->Op,
4547           DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT()));
4548     }
4549   }
4550   return SDValue();
4551 }
4552 
4553 // Matches any the following pattern as a GORCI(W) operation
4554 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
4555 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
4556 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
4557 // Note that with the variant of 3.,
4558 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
4559 // the inner pattern will first be matched as GREVI and then the outer
4560 // pattern will be matched to GORC via the first rule above.
4561 // 4.  (or (rotl/rotr x, bitwidth/2), x)
4562 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
4563                                const RISCVSubtarget &Subtarget) {
4564   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
4565   EVT VT = Op.getValueType();
4566 
4567   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
4568     SDLoc DL(Op);
4569     SDValue Op0 = Op.getOperand(0);
4570     SDValue Op1 = Op.getOperand(1);
4571 
4572     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
4573       if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X &&
4574           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
4575         return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1));
4576       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
4577       if ((Reverse.getOpcode() == ISD::ROTL ||
4578            Reverse.getOpcode() == ISD::ROTR) &&
4579           Reverse.getOperand(0) == X &&
4580           isa<ConstantSDNode>(Reverse.getOperand(1))) {
4581         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
4582         if (RotAmt == (VT.getSizeInBits() / 2))
4583           return DAG.getNode(
4584               RISCVISD::GORCI, DL, VT, X,
4585               DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT()));
4586       }
4587       return SDValue();
4588     };
4589 
4590     // Check for either commutable permutation of (or (GREVI x, shamt), x)
4591     if (SDValue V = MatchOROfReverse(Op0, Op1))
4592       return V;
4593     if (SDValue V = MatchOROfReverse(Op1, Op0))
4594       return V;
4595 
4596     // OR is commutable so canonicalize its OR operand to the left
4597     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
4598       std::swap(Op0, Op1);
4599     if (Op0.getOpcode() != ISD::OR)
4600       return SDValue();
4601     SDValue OrOp0 = Op0.getOperand(0);
4602     SDValue OrOp1 = Op0.getOperand(1);
4603     auto LHS = matchGREVIPat(OrOp0);
4604     // OR is commutable so swap the operands and try again: x might have been
4605     // on the left
4606     if (!LHS) {
4607       std::swap(OrOp0, OrOp1);
4608       LHS = matchGREVIPat(OrOp0);
4609     }
4610     auto RHS = matchGREVIPat(Op1);
4611     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
4612       return DAG.getNode(
4613           RISCVISD::GORCI, DL, VT, LHS->Op,
4614           DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT()));
4615     }
4616   }
4617   return SDValue();
4618 }
4619 
4620 // Matches any of the following bit-manipulation patterns:
4621 //   (and (shl x, 1), (0x22222222 << 1))
4622 //   (and (srl x, 1), 0x22222222)
4623 //   (shl (and x, 0x22222222), 1)
4624 //   (srl (and x, (0x22222222 << 1)), 1)
4625 // where the shift amount and mask may vary thus:
4626 //   [1]  = 0x22222222 / 0x44444444
4627 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
4628 //   [4]  = 0x00F000F0 / 0x0F000F00
4629 //   [8]  = 0x0000FF00 / 0x00FF0000
4630 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
4631 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
4632   // These are the unshifted masks which we use to match bit-manipulation
4633   // patterns. They may be shifted left in certain circumstances.
4634   static const uint64_t BitmanipMasks[] = {
4635       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
4636       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
4637 
4638   return matchRISCVBitmanipPat(Op, BitmanipMasks);
4639 }
4640 
4641 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
4642 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
4643                                const RISCVSubtarget &Subtarget) {
4644   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
4645   EVT VT = Op.getValueType();
4646 
4647   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
4648     return SDValue();
4649 
4650   SDValue Op0 = Op.getOperand(0);
4651   SDValue Op1 = Op.getOperand(1);
4652 
4653   // Or is commutable so canonicalize the second OR to the LHS.
4654   if (Op0.getOpcode() != ISD::OR)
4655     std::swap(Op0, Op1);
4656   if (Op0.getOpcode() != ISD::OR)
4657     return SDValue();
4658 
4659   // We found an inner OR, so our operands are the operands of the inner OR
4660   // and the other operand of the outer OR.
4661   SDValue A = Op0.getOperand(0);
4662   SDValue B = Op0.getOperand(1);
4663   SDValue C = Op1;
4664 
4665   auto Match1 = matchSHFLPat(A);
4666   auto Match2 = matchSHFLPat(B);
4667 
4668   // If neither matched, we failed.
4669   if (!Match1 && !Match2)
4670     return SDValue();
4671 
4672   // We had at least one match. if one failed, try the remaining C operand.
4673   if (!Match1) {
4674     std::swap(A, C);
4675     Match1 = matchSHFLPat(A);
4676     if (!Match1)
4677       return SDValue();
4678   } else if (!Match2) {
4679     std::swap(B, C);
4680     Match2 = matchSHFLPat(B);
4681     if (!Match2)
4682       return SDValue();
4683   }
4684   assert(Match1 && Match2);
4685 
4686   // Make sure our matches pair up.
4687   if (!Match1->formsPairWith(*Match2))
4688     return SDValue();
4689 
4690   // All the remains is to make sure C is an AND with the same input, that masks
4691   // out the bits that are being shuffled.
4692   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
4693       C.getOperand(0) != Match1->Op)
4694     return SDValue();
4695 
4696   uint64_t Mask = C.getConstantOperandVal(1);
4697 
4698   static const uint64_t BitmanipMasks[] = {
4699       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
4700       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
4701   };
4702 
4703   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
4704   unsigned MaskIdx = Log2_32(Match1->ShAmt);
4705   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
4706 
4707   if (Mask != ExpMask)
4708     return SDValue();
4709 
4710   SDLoc DL(Op);
4711   return DAG.getNode(
4712       RISCVISD::SHFLI, DL, VT, Match1->Op,
4713       DAG.getTargetConstant(Match1->ShAmt, DL, Subtarget.getXLenVT()));
4714 }
4715 
4716 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
4717 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
4718 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
4719 // not undo itself, but they are redundant.
4720 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
4721   unsigned ShAmt1 = N->getConstantOperandVal(1);
4722   SDValue Src = N->getOperand(0);
4723 
4724   if (Src.getOpcode() != N->getOpcode())
4725     return SDValue();
4726 
4727   unsigned ShAmt2 = Src.getConstantOperandVal(1);
4728   Src = Src.getOperand(0);
4729 
4730   unsigned CombinedShAmt;
4731   if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW)
4732     CombinedShAmt = ShAmt1 | ShAmt2;
4733   else
4734     CombinedShAmt = ShAmt1 ^ ShAmt2;
4735 
4736   if (CombinedShAmt == 0)
4737     return Src;
4738 
4739   SDLoc DL(N);
4740   return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src,
4741                      DAG.getTargetConstant(CombinedShAmt, DL,
4742                                            N->getOperand(1).getValueType()));
4743 }
4744 
4745 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
4746                                                DAGCombinerInfo &DCI) const {
4747   SelectionDAG &DAG = DCI.DAG;
4748 
4749   switch (N->getOpcode()) {
4750   default:
4751     break;
4752   case RISCVISD::SplitF64: {
4753     SDValue Op0 = N->getOperand(0);
4754     // If the input to SplitF64 is just BuildPairF64 then the operation is
4755     // redundant. Instead, use BuildPairF64's operands directly.
4756     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
4757       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
4758 
4759     SDLoc DL(N);
4760 
4761     // It's cheaper to materialise two 32-bit integers than to load a double
4762     // from the constant pool and transfer it to integer registers through the
4763     // stack.
4764     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
4765       APInt V = C->getValueAPF().bitcastToAPInt();
4766       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
4767       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
4768       return DCI.CombineTo(N, Lo, Hi);
4769     }
4770 
4771     // This is a target-specific version of a DAGCombine performed in
4772     // DAGCombiner::visitBITCAST. It performs the equivalent of:
4773     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
4774     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
4775     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
4776         !Op0.getNode()->hasOneUse())
4777       break;
4778     SDValue NewSplitF64 =
4779         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
4780                     Op0.getOperand(0));
4781     SDValue Lo = NewSplitF64.getValue(0);
4782     SDValue Hi = NewSplitF64.getValue(1);
4783     APInt SignBit = APInt::getSignMask(32);
4784     if (Op0.getOpcode() == ISD::FNEG) {
4785       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
4786                                   DAG.getConstant(SignBit, DL, MVT::i32));
4787       return DCI.CombineTo(N, Lo, NewHi);
4788     }
4789     assert(Op0.getOpcode() == ISD::FABS);
4790     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
4791                                 DAG.getConstant(~SignBit, DL, MVT::i32));
4792     return DCI.CombineTo(N, Lo, NewHi);
4793   }
4794   case RISCVISD::SLLW:
4795   case RISCVISD::SRAW:
4796   case RISCVISD::SRLW:
4797   case RISCVISD::ROLW:
4798   case RISCVISD::RORW: {
4799     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
4800     SDValue LHS = N->getOperand(0);
4801     SDValue RHS = N->getOperand(1);
4802     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
4803     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
4804     if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) ||
4805         SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) {
4806       if (N->getOpcode() != ISD::DELETED_NODE)
4807         DCI.AddToWorklist(N);
4808       return SDValue(N, 0);
4809     }
4810     break;
4811   }
4812   case RISCVISD::CLZW:
4813   case RISCVISD::CTZW: {
4814     // Only the lower 32 bits of the first operand are read
4815     SDValue Op0 = N->getOperand(0);
4816     APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
4817     if (SimplifyDemandedBits(Op0, Mask, DCI)) {
4818       if (N->getOpcode() != ISD::DELETED_NODE)
4819         DCI.AddToWorklist(N);
4820       return SDValue(N, 0);
4821     }
4822     break;
4823   }
4824   case RISCVISD::FSL:
4825   case RISCVISD::FSR: {
4826     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
4827     SDValue ShAmt = N->getOperand(2);
4828     unsigned BitWidth = ShAmt.getValueSizeInBits();
4829     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
4830     APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1);
4831     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
4832       if (N->getOpcode() != ISD::DELETED_NODE)
4833         DCI.AddToWorklist(N);
4834       return SDValue(N, 0);
4835     }
4836     break;
4837   }
4838   case RISCVISD::FSLW:
4839   case RISCVISD::FSRW: {
4840     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
4841     // read.
4842     SDValue Op0 = N->getOperand(0);
4843     SDValue Op1 = N->getOperand(1);
4844     SDValue ShAmt = N->getOperand(2);
4845     APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
4846     APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6);
4847     if (SimplifyDemandedBits(Op0, OpMask, DCI) ||
4848         SimplifyDemandedBits(Op1, OpMask, DCI) ||
4849         SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
4850       if (N->getOpcode() != ISD::DELETED_NODE)
4851         DCI.AddToWorklist(N);
4852       return SDValue(N, 0);
4853     }
4854     break;
4855   }
4856   case RISCVISD::GREVIW:
4857   case RISCVISD::GORCIW: {
4858     // Only the lower 32 bits of the first operand are read
4859     SDValue Op0 = N->getOperand(0);
4860     APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
4861     if (SimplifyDemandedBits(Op0, Mask, DCI)) {
4862       if (N->getOpcode() != ISD::DELETED_NODE)
4863         DCI.AddToWorklist(N);
4864       return SDValue(N, 0);
4865     }
4866 
4867     return combineGREVI_GORCI(N, DCI.DAG);
4868   }
4869   case RISCVISD::FMV_X_ANYEXTW_RV64: {
4870     SDLoc DL(N);
4871     SDValue Op0 = N->getOperand(0);
4872     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
4873     // conversion is unnecessary and can be replaced with an ANY_EXTEND
4874     // of the FMV_W_X_RV64 operand.
4875     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
4876       assert(Op0.getOperand(0).getValueType() == MVT::i64 &&
4877              "Unexpected value type!");
4878       return Op0.getOperand(0);
4879     }
4880 
4881     // This is a target-specific version of a DAGCombine performed in
4882     // DAGCombiner::visitBITCAST. It performs the equivalent of:
4883     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
4884     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
4885     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
4886         !Op0.getNode()->hasOneUse())
4887       break;
4888     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
4889                                  Op0.getOperand(0));
4890     APInt SignBit = APInt::getSignMask(32).sext(64);
4891     if (Op0.getOpcode() == ISD::FNEG)
4892       return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
4893                          DAG.getConstant(SignBit, DL, MVT::i64));
4894 
4895     assert(Op0.getOpcode() == ISD::FABS);
4896     return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
4897                        DAG.getConstant(~SignBit, DL, MVT::i64));
4898   }
4899   case RISCVISD::GREVI:
4900   case RISCVISD::GORCI:
4901     return combineGREVI_GORCI(N, DCI.DAG);
4902   case ISD::OR:
4903     if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget))
4904       return GREV;
4905     if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget))
4906       return GORC;
4907     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DCI.DAG, Subtarget))
4908       return SHFL;
4909     break;
4910   case RISCVISD::SELECT_CC: {
4911     // Transform
4912     SDValue LHS = N->getOperand(0);
4913     SDValue RHS = N->getOperand(1);
4914     auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2));
4915     if (!ISD::isIntEqualitySetCC(CCVal))
4916       break;
4917 
4918     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
4919     //      (select_cc X, Y, lt, trueV, falseV)
4920     // Sometimes the setcc is introduced after select_cc has been formed.
4921     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
4922         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
4923       // If we're looking for eq 0 instead of ne 0, we need to invert the
4924       // condition.
4925       bool Invert = CCVal == ISD::SETEQ;
4926       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
4927       if (Invert)
4928         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
4929 
4930       SDLoc DL(N);
4931       RHS = LHS.getOperand(1);
4932       LHS = LHS.getOperand(0);
4933       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
4934 
4935       SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT());
4936       return DAG.getNode(
4937           RISCVISD::SELECT_CC, DL, N->getValueType(0),
4938           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
4939     }
4940 
4941     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
4942     //      (select_cc X, Y, eq/ne, trueV, falseV)
4943     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
4944       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
4945                          {LHS.getOperand(0), LHS.getOperand(1),
4946                           N->getOperand(2), N->getOperand(3),
4947                           N->getOperand(4)});
4948     // (select_cc X, 1, setne, trueV, falseV) ->
4949     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
4950     // This can occur when legalizing some floating point comparisons.
4951     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
4952     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
4953       SDLoc DL(N);
4954       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
4955       SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT());
4956       RHS = DAG.getConstant(0, DL, LHS.getValueType());
4957       return DAG.getNode(
4958           RISCVISD::SELECT_CC, DL, N->getValueType(0),
4959           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
4960     }
4961 
4962     break;
4963   }
4964   case RISCVISD::BR_CC: {
4965     SDValue LHS = N->getOperand(1);
4966     SDValue RHS = N->getOperand(2);
4967     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
4968     if (!ISD::isIntEqualitySetCC(CCVal))
4969       break;
4970 
4971     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
4972     //      (br_cc X, Y, lt, dest)
4973     // Sometimes the setcc is introduced after br_cc has been formed.
4974     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
4975         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
4976       // If we're looking for eq 0 instead of ne 0, we need to invert the
4977       // condition.
4978       bool Invert = CCVal == ISD::SETEQ;
4979       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
4980       if (Invert)
4981         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
4982 
4983       SDLoc DL(N);
4984       RHS = LHS.getOperand(1);
4985       LHS = LHS.getOperand(0);
4986       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
4987 
4988       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
4989                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
4990                          N->getOperand(4));
4991     }
4992 
4993     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
4994     //      (br_cc X, Y, eq/ne, trueV, falseV)
4995     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
4996       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
4997                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
4998                          N->getOperand(3), N->getOperand(4));
4999 
5000     // (br_cc X, 1, setne, br_cc) ->
5001     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
5002     // This can occur when legalizing some floating point comparisons.
5003     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
5004     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
5005       SDLoc DL(N);
5006       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5007       SDValue TargetCC = DAG.getCondCode(CCVal);
5008       RHS = DAG.getConstant(0, DL, LHS.getValueType());
5009       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
5010                          N->getOperand(0), LHS, RHS, TargetCC,
5011                          N->getOperand(4));
5012     }
5013     break;
5014   }
5015   case ISD::FCOPYSIGN: {
5016     EVT VT = N->getValueType(0);
5017     if (!VT.isVector())
5018       break;
5019     // There is a form of VFSGNJ which injects the negated sign of its second
5020     // operand. Try and bubble any FNEG up after the extend/round to produce
5021     // this optimized pattern. Avoid modifying cases where FP_ROUND and
5022     // TRUNC=1.
5023     SDValue In2 = N->getOperand(1);
5024     // Avoid cases where the extend/round has multiple uses, as duplicating
5025     // those is typically more expensive than removing a fneg.
5026     if (!In2.hasOneUse())
5027       break;
5028     if (In2.getOpcode() != ISD::FP_EXTEND &&
5029         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
5030       break;
5031     In2 = In2.getOperand(0);
5032     if (In2.getOpcode() != ISD::FNEG)
5033       break;
5034     SDLoc DL(N);
5035     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
5036     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
5037                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
5038   }
5039   case ISD::MGATHER:
5040   case ISD::MSCATTER: {
5041     if (!DCI.isBeforeLegalize())
5042       break;
5043     MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N);
5044     SDValue Index = MGSN->getIndex();
5045     EVT IndexVT = Index.getValueType();
5046     MVT XLenVT = Subtarget.getXLenVT();
5047     // RISCV indexed loads only support the "unsigned unscaled" addressing
5048     // mode, so anything else must be manually legalized.
5049     bool NeedsIdxLegalization = MGSN->isIndexScaled() ||
5050                                 (MGSN->isIndexSigned() &&
5051                                  IndexVT.getVectorElementType().bitsLT(XLenVT));
5052     if (!NeedsIdxLegalization)
5053       break;
5054 
5055     SDLoc DL(N);
5056 
5057     // Any index legalization should first promote to XLenVT, so we don't lose
5058     // bits when scaling. This may create an illegal index type so we let
5059     // LLVM's legalization take care of the splitting.
5060     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
5061       IndexVT = IndexVT.changeVectorElementType(XLenVT);
5062       Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND
5063                                                 : ISD::ZERO_EXTEND,
5064                           DL, IndexVT, Index);
5065     }
5066 
5067     unsigned Scale = N->getConstantOperandVal(5);
5068     if (MGSN->isIndexScaled() && Scale != 1) {
5069       // Manually scale the indices by the element size.
5070       // TODO: Sanitize the scale operand here?
5071       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
5072       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
5073       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
5074     }
5075 
5076     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
5077     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) {
5078       return DAG.getMaskedGather(
5079           N->getVTList(), MGSN->getMemoryVT(), DL,
5080           {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(),
5081            MGSN->getBasePtr(), Index, MGN->getScale()},
5082           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
5083     }
5084     const auto *MSN = cast<MaskedScatterSDNode>(N);
5085     return DAG.getMaskedScatter(
5086         N->getVTList(), MGSN->getMemoryVT(), DL,
5087         {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(),
5088          Index, MGSN->getScale()},
5089         MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
5090   }
5091   }
5092 
5093   return SDValue();
5094 }
5095 
5096 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
5097     const SDNode *N, CombineLevel Level) const {
5098   // The following folds are only desirable if `(OP _, c1 << c2)` can be
5099   // materialised in fewer instructions than `(OP _, c1)`:
5100   //
5101   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
5102   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
5103   SDValue N0 = N->getOperand(0);
5104   EVT Ty = N0.getValueType();
5105   if (Ty.isScalarInteger() &&
5106       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
5107     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
5108     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
5109     if (C1 && C2) {
5110       const APInt &C1Int = C1->getAPIntValue();
5111       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
5112 
5113       // We can materialise `c1 << c2` into an add immediate, so it's "free",
5114       // and the combine should happen, to potentially allow further combines
5115       // later.
5116       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
5117           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
5118         return true;
5119 
5120       // We can materialise `c1` in an add immediate, so it's "free", and the
5121       // combine should be prevented.
5122       if (C1Int.getMinSignedBits() <= 64 &&
5123           isLegalAddImmediate(C1Int.getSExtValue()))
5124         return false;
5125 
5126       // Neither constant will fit into an immediate, so find materialisation
5127       // costs.
5128       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
5129                                               Subtarget.is64Bit());
5130       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
5131           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
5132 
5133       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
5134       // combine should be prevented.
5135       if (C1Cost < ShiftedC1Cost)
5136         return false;
5137     }
5138   }
5139   return true;
5140 }
5141 
5142 bool RISCVTargetLowering::targetShrinkDemandedConstant(
5143     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
5144     TargetLoweringOpt &TLO) const {
5145   // Delay this optimization as late as possible.
5146   if (!TLO.LegalOps)
5147     return false;
5148 
5149   EVT VT = Op.getValueType();
5150   if (VT.isVector())
5151     return false;
5152 
5153   // Only handle AND for now.
5154   if (Op.getOpcode() != ISD::AND)
5155     return false;
5156 
5157   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5158   if (!C)
5159     return false;
5160 
5161   const APInt &Mask = C->getAPIntValue();
5162 
5163   // Clear all non-demanded bits initially.
5164   APInt ShrunkMask = Mask & DemandedBits;
5165 
5166   // Try to make a smaller immediate by setting undemanded bits.
5167 
5168   APInt ExpandedMask = Mask | ~DemandedBits;
5169 
5170   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
5171     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
5172   };
5173   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
5174     if (NewMask == Mask)
5175       return true;
5176     SDLoc DL(Op);
5177     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
5178     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
5179     return TLO.CombineTo(Op, NewOp);
5180   };
5181 
5182   // If the shrunk mask fits in sign extended 12 bits, let the target
5183   // independent code apply it.
5184   if (ShrunkMask.isSignedIntN(12))
5185     return false;
5186 
5187   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
5188   if (VT == MVT::i64) {
5189     APInt NewMask = APInt(64, 0xffffffff);
5190     if (IsLegalMask(NewMask))
5191       return UseMask(NewMask);
5192   }
5193 
5194   // For the remaining optimizations, we need to be able to make a negative
5195   // number through a combination of mask and undemanded bits.
5196   if (!ExpandedMask.isNegative())
5197     return false;
5198 
5199   // What is the fewest number of bits we need to represent the negative number.
5200   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
5201 
5202   // Try to make a 12 bit negative immediate. If that fails try to make a 32
5203   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
5204   APInt NewMask = ShrunkMask;
5205   if (MinSignedBits <= 12)
5206     NewMask.setBitsFrom(11);
5207   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
5208     NewMask.setBitsFrom(31);
5209   else
5210     return false;
5211 
5212   // Sanity check that our new mask is a subset of the demanded mask.
5213   assert(IsLegalMask(NewMask));
5214   return UseMask(NewMask);
5215 }
5216 
5217 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
5218                                                         KnownBits &Known,
5219                                                         const APInt &DemandedElts,
5220                                                         const SelectionDAG &DAG,
5221                                                         unsigned Depth) const {
5222   unsigned BitWidth = Known.getBitWidth();
5223   unsigned Opc = Op.getOpcode();
5224   assert((Opc >= ISD::BUILTIN_OP_END ||
5225           Opc == ISD::INTRINSIC_WO_CHAIN ||
5226           Opc == ISD::INTRINSIC_W_CHAIN ||
5227           Opc == ISD::INTRINSIC_VOID) &&
5228          "Should use MaskedValueIsZero if you don't know whether Op"
5229          " is a target node!");
5230 
5231   Known.resetAll();
5232   switch (Opc) {
5233   default: break;
5234   case RISCVISD::SELECT_CC: {
5235     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
5236     // If we don't know any bits, early out.
5237     if (Known.isUnknown())
5238       break;
5239     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
5240 
5241     // Only known if known in both the LHS and RHS.
5242     Known = KnownBits::commonBits(Known, Known2);
5243     break;
5244   }
5245   case RISCVISD::REMUW: {
5246     KnownBits Known2;
5247     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
5248     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
5249     // We only care about the lower 32 bits.
5250     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
5251     // Restore the original width by sign extending.
5252     Known = Known.sext(BitWidth);
5253     break;
5254   }
5255   case RISCVISD::DIVUW: {
5256     KnownBits Known2;
5257     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
5258     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
5259     // We only care about the lower 32 bits.
5260     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
5261     // Restore the original width by sign extending.
5262     Known = Known.sext(BitWidth);
5263     break;
5264   }
5265   case RISCVISD::CTZW: {
5266     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
5267     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
5268     unsigned LowBits = Log2_32(PossibleTZ) + 1;
5269     Known.Zero.setBitsFrom(LowBits);
5270     break;
5271   }
5272   case RISCVISD::CLZW: {
5273     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
5274     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
5275     unsigned LowBits = Log2_32(PossibleLZ) + 1;
5276     Known.Zero.setBitsFrom(LowBits);
5277     break;
5278   }
5279   case RISCVISD::READ_VLENB:
5280     // We assume VLENB is at least 8 bytes.
5281     // FIXME: The 1.0 draft spec defines minimum VLEN as 128 bits.
5282     Known.Zero.setLowBits(3);
5283     break;
5284   }
5285 }
5286 
5287 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
5288     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
5289     unsigned Depth) const {
5290   switch (Op.getOpcode()) {
5291   default:
5292     break;
5293   case RISCVISD::SLLW:
5294   case RISCVISD::SRAW:
5295   case RISCVISD::SRLW:
5296   case RISCVISD::DIVW:
5297   case RISCVISD::DIVUW:
5298   case RISCVISD::REMUW:
5299   case RISCVISD::ROLW:
5300   case RISCVISD::RORW:
5301   case RISCVISD::GREVIW:
5302   case RISCVISD::GORCIW:
5303   case RISCVISD::FSLW:
5304   case RISCVISD::FSRW:
5305     // TODO: As the result is sign-extended, this is conservatively correct. A
5306     // more precise answer could be calculated for SRAW depending on known
5307     // bits in the shift amount.
5308     return 33;
5309   case RISCVISD::SHFLI: {
5310     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
5311     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
5312     // will stay within the upper 32 bits. If there were more than 32 sign bits
5313     // before there will be at least 33 sign bits after.
5314     if (Op.getValueType() == MVT::i64 &&
5315         (Op.getConstantOperandVal(1) & 0x10) == 0) {
5316       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5317       if (Tmp > 32)
5318         return 33;
5319     }
5320     break;
5321   }
5322   case RISCVISD::VMV_X_S:
5323     // The number of sign bits of the scalar result is computed by obtaining the
5324     // element type of the input vector operand, subtracting its width from the
5325     // XLEN, and then adding one (sign bit within the element type). If the
5326     // element type is wider than XLen, the least-significant XLEN bits are
5327     // taken.
5328     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
5329       return 1;
5330     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
5331   }
5332 
5333   return 1;
5334 }
5335 
5336 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
5337                                                   MachineBasicBlock *BB) {
5338   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
5339 
5340   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
5341   // Should the count have wrapped while it was being read, we need to try
5342   // again.
5343   // ...
5344   // read:
5345   // rdcycleh x3 # load high word of cycle
5346   // rdcycle  x2 # load low word of cycle
5347   // rdcycleh x4 # load high word of cycle
5348   // bne x3, x4, read # check if high word reads match, otherwise try again
5349   // ...
5350 
5351   MachineFunction &MF = *BB->getParent();
5352   const BasicBlock *LLVM_BB = BB->getBasicBlock();
5353   MachineFunction::iterator It = ++BB->getIterator();
5354 
5355   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
5356   MF.insert(It, LoopMBB);
5357 
5358   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
5359   MF.insert(It, DoneMBB);
5360 
5361   // Transfer the remainder of BB and its successor edges to DoneMBB.
5362   DoneMBB->splice(DoneMBB->begin(), BB,
5363                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
5364   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
5365 
5366   BB->addSuccessor(LoopMBB);
5367 
5368   MachineRegisterInfo &RegInfo = MF.getRegInfo();
5369   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
5370   Register LoReg = MI.getOperand(0).getReg();
5371   Register HiReg = MI.getOperand(1).getReg();
5372   DebugLoc DL = MI.getDebugLoc();
5373 
5374   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
5375   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
5376       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
5377       .addReg(RISCV::X0);
5378   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
5379       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
5380       .addReg(RISCV::X0);
5381   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
5382       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
5383       .addReg(RISCV::X0);
5384 
5385   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
5386       .addReg(HiReg)
5387       .addReg(ReadAgainReg)
5388       .addMBB(LoopMBB);
5389 
5390   LoopMBB->addSuccessor(LoopMBB);
5391   LoopMBB->addSuccessor(DoneMBB);
5392 
5393   MI.eraseFromParent();
5394 
5395   return DoneMBB;
5396 }
5397 
5398 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
5399                                              MachineBasicBlock *BB) {
5400   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
5401 
5402   MachineFunction &MF = *BB->getParent();
5403   DebugLoc DL = MI.getDebugLoc();
5404   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
5405   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
5406   Register LoReg = MI.getOperand(0).getReg();
5407   Register HiReg = MI.getOperand(1).getReg();
5408   Register SrcReg = MI.getOperand(2).getReg();
5409   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
5410   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
5411 
5412   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
5413                           RI);
5414   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
5415   MachineMemOperand *MMOLo =
5416       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
5417   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
5418       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
5419   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
5420       .addFrameIndex(FI)
5421       .addImm(0)
5422       .addMemOperand(MMOLo);
5423   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
5424       .addFrameIndex(FI)
5425       .addImm(4)
5426       .addMemOperand(MMOHi);
5427   MI.eraseFromParent(); // The pseudo instruction is gone now.
5428   return BB;
5429 }
5430 
5431 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
5432                                                  MachineBasicBlock *BB) {
5433   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
5434          "Unexpected instruction");
5435 
5436   MachineFunction &MF = *BB->getParent();
5437   DebugLoc DL = MI.getDebugLoc();
5438   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
5439   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
5440   Register DstReg = MI.getOperand(0).getReg();
5441   Register LoReg = MI.getOperand(1).getReg();
5442   Register HiReg = MI.getOperand(2).getReg();
5443   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
5444   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
5445 
5446   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
5447   MachineMemOperand *MMOLo =
5448       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
5449   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
5450       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
5451   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
5452       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
5453       .addFrameIndex(FI)
5454       .addImm(0)
5455       .addMemOperand(MMOLo);
5456   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
5457       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
5458       .addFrameIndex(FI)
5459       .addImm(4)
5460       .addMemOperand(MMOHi);
5461   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
5462   MI.eraseFromParent(); // The pseudo instruction is gone now.
5463   return BB;
5464 }
5465 
5466 static bool isSelectPseudo(MachineInstr &MI) {
5467   switch (MI.getOpcode()) {
5468   default:
5469     return false;
5470   case RISCV::Select_GPR_Using_CC_GPR:
5471   case RISCV::Select_FPR16_Using_CC_GPR:
5472   case RISCV::Select_FPR32_Using_CC_GPR:
5473   case RISCV::Select_FPR64_Using_CC_GPR:
5474     return true;
5475   }
5476 }
5477 
5478 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
5479                                            MachineBasicBlock *BB) {
5480   // To "insert" Select_* instructions, we actually have to insert the triangle
5481   // control-flow pattern.  The incoming instructions know the destination vreg
5482   // to set, the condition code register to branch on, the true/false values to
5483   // select between, and the condcode to use to select the appropriate branch.
5484   //
5485   // We produce the following control flow:
5486   //     HeadMBB
5487   //     |  \
5488   //     |  IfFalseMBB
5489   //     | /
5490   //    TailMBB
5491   //
5492   // When we find a sequence of selects we attempt to optimize their emission
5493   // by sharing the control flow. Currently we only handle cases where we have
5494   // multiple selects with the exact same condition (same LHS, RHS and CC).
5495   // The selects may be interleaved with other instructions if the other
5496   // instructions meet some requirements we deem safe:
5497   // - They are debug instructions. Otherwise,
5498   // - They do not have side-effects, do not access memory and their inputs do
5499   //   not depend on the results of the select pseudo-instructions.
5500   // The TrueV/FalseV operands of the selects cannot depend on the result of
5501   // previous selects in the sequence.
5502   // These conditions could be further relaxed. See the X86 target for a
5503   // related approach and more information.
5504   Register LHS = MI.getOperand(1).getReg();
5505   Register RHS = MI.getOperand(2).getReg();
5506   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
5507 
5508   SmallVector<MachineInstr *, 4> SelectDebugValues;
5509   SmallSet<Register, 4> SelectDests;
5510   SelectDests.insert(MI.getOperand(0).getReg());
5511 
5512   MachineInstr *LastSelectPseudo = &MI;
5513 
5514   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
5515        SequenceMBBI != E; ++SequenceMBBI) {
5516     if (SequenceMBBI->isDebugInstr())
5517       continue;
5518     else if (isSelectPseudo(*SequenceMBBI)) {
5519       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
5520           SequenceMBBI->getOperand(2).getReg() != RHS ||
5521           SequenceMBBI->getOperand(3).getImm() != CC ||
5522           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
5523           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
5524         break;
5525       LastSelectPseudo = &*SequenceMBBI;
5526       SequenceMBBI->collectDebugValues(SelectDebugValues);
5527       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
5528     } else {
5529       if (SequenceMBBI->hasUnmodeledSideEffects() ||
5530           SequenceMBBI->mayLoadOrStore())
5531         break;
5532       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
5533             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
5534           }))
5535         break;
5536     }
5537   }
5538 
5539   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
5540   const BasicBlock *LLVM_BB = BB->getBasicBlock();
5541   DebugLoc DL = MI.getDebugLoc();
5542   MachineFunction::iterator I = ++BB->getIterator();
5543 
5544   MachineBasicBlock *HeadMBB = BB;
5545   MachineFunction *F = BB->getParent();
5546   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
5547   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
5548 
5549   F->insert(I, IfFalseMBB);
5550   F->insert(I, TailMBB);
5551 
5552   // Transfer debug instructions associated with the selects to TailMBB.
5553   for (MachineInstr *DebugInstr : SelectDebugValues) {
5554     TailMBB->push_back(DebugInstr->removeFromParent());
5555   }
5556 
5557   // Move all instructions after the sequence to TailMBB.
5558   TailMBB->splice(TailMBB->end(), HeadMBB,
5559                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
5560   // Update machine-CFG edges by transferring all successors of the current
5561   // block to the new block which will contain the Phi nodes for the selects.
5562   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
5563   // Set the successors for HeadMBB.
5564   HeadMBB->addSuccessor(IfFalseMBB);
5565   HeadMBB->addSuccessor(TailMBB);
5566 
5567   // Insert appropriate branch.
5568   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
5569 
5570   BuildMI(HeadMBB, DL, TII.get(Opcode))
5571     .addReg(LHS)
5572     .addReg(RHS)
5573     .addMBB(TailMBB);
5574 
5575   // IfFalseMBB just falls through to TailMBB.
5576   IfFalseMBB->addSuccessor(TailMBB);
5577 
5578   // Create PHIs for all of the select pseudo-instructions.
5579   auto SelectMBBI = MI.getIterator();
5580   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
5581   auto InsertionPoint = TailMBB->begin();
5582   while (SelectMBBI != SelectEnd) {
5583     auto Next = std::next(SelectMBBI);
5584     if (isSelectPseudo(*SelectMBBI)) {
5585       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
5586       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
5587               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
5588           .addReg(SelectMBBI->getOperand(4).getReg())
5589           .addMBB(HeadMBB)
5590           .addReg(SelectMBBI->getOperand(5).getReg())
5591           .addMBB(IfFalseMBB);
5592       SelectMBBI->eraseFromParent();
5593     }
5594     SelectMBBI = Next;
5595   }
5596 
5597   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
5598   return TailMBB;
5599 }
5600 
5601 static MachineInstr *elideCopies(MachineInstr *MI,
5602                                  const MachineRegisterInfo &MRI) {
5603   while (true) {
5604     if (!MI->isFullCopy())
5605       return MI;
5606     if (!Register::isVirtualRegister(MI->getOperand(1).getReg()))
5607       return nullptr;
5608     MI = MRI.getVRegDef(MI->getOperand(1).getReg());
5609     if (!MI)
5610       return nullptr;
5611   }
5612 }
5613 
5614 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB,
5615                                     int VLIndex, unsigned SEWIndex,
5616                                     RISCVVLMUL VLMul, bool ForceTailAgnostic) {
5617   MachineFunction &MF = *BB->getParent();
5618   DebugLoc DL = MI.getDebugLoc();
5619   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
5620 
5621   unsigned SEW = MI.getOperand(SEWIndex).getImm();
5622   assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");
5623   RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8));
5624 
5625   MachineRegisterInfo &MRI = MF.getRegInfo();
5626 
5627   auto BuildVSETVLI = [&]() {
5628     if (VLIndex >= 0) {
5629       Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
5630       Register VLReg = MI.getOperand(VLIndex).getReg();
5631 
5632       // VL might be a compile time constant, but isel would have to put it
5633       // in a register. See if VL comes from an ADDI X0, imm.
5634       if (VLReg.isVirtual()) {
5635         MachineInstr *Def = MRI.getVRegDef(VLReg);
5636         if (Def && Def->getOpcode() == RISCV::ADDI &&
5637             Def->getOperand(1).getReg() == RISCV::X0 &&
5638             Def->getOperand(2).isImm()) {
5639           uint64_t Imm = Def->getOperand(2).getImm();
5640           // VSETIVLI allows a 5-bit zero extended immediate.
5641           if (isUInt<5>(Imm))
5642             return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETIVLI))
5643                 .addReg(DestReg, RegState::Define | RegState::Dead)
5644                 .addImm(Imm);
5645         }
5646       }
5647 
5648       return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI))
5649           .addReg(DestReg, RegState::Define | RegState::Dead)
5650           .addReg(VLReg);
5651     }
5652 
5653     // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0).
5654     return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI))
5655         .addReg(RISCV::X0, RegState::Define | RegState::Dead)
5656         .addReg(RISCV::X0, RegState::Kill);
5657   };
5658 
5659   MachineInstrBuilder MIB = BuildVSETVLI();
5660 
5661   // Default to tail agnostic unless the destination is tied to a source. In
5662   // that case the user would have some control over the tail values. The tail
5663   // policy is also ignored on instructions that only update element 0 like
5664   // vmv.s.x or reductions so use agnostic there to match the common case.
5665   // FIXME: This is conservatively correct, but we might want to detect that
5666   // the input is undefined.
5667   bool TailAgnostic = true;
5668   unsigned UseOpIdx;
5669   if (!ForceTailAgnostic && MI.isRegTiedToUseOperand(0, &UseOpIdx)) {
5670     TailAgnostic = false;
5671     // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic.
5672     const MachineOperand &UseMO = MI.getOperand(UseOpIdx);
5673     MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg());
5674     if (UseMI) {
5675       UseMI = elideCopies(UseMI, MRI);
5676       if (UseMI && UseMI->isImplicitDef())
5677         TailAgnostic = true;
5678     }
5679   }
5680 
5681   // For simplicity we reuse the vtype representation here.
5682   MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth,
5683                                      /*TailAgnostic*/ TailAgnostic,
5684                                      /*MaskAgnostic*/ false));
5685 
5686   // Remove (now) redundant operands from pseudo
5687   if (VLIndex >= 0) {
5688     MI.getOperand(VLIndex).setReg(RISCV::NoRegister);
5689     MI.getOperand(VLIndex).setIsKill(false);
5690   }
5691 
5692   return BB;
5693 }
5694 
5695 MachineBasicBlock *
5696 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
5697                                                  MachineBasicBlock *BB) const {
5698   uint64_t TSFlags = MI.getDesc().TSFlags;
5699 
5700   if (TSFlags & RISCVII::HasSEWOpMask) {
5701     unsigned NumOperands = MI.getNumExplicitOperands();
5702     int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1;
5703     unsigned SEWIndex = NumOperands - 1;
5704     bool ForceTailAgnostic = TSFlags & RISCVII::ForceTailAgnosticMask;
5705 
5706     RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >>
5707                                                RISCVII::VLMulShift);
5708     return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, ForceTailAgnostic);
5709   }
5710 
5711   switch (MI.getOpcode()) {
5712   default:
5713     llvm_unreachable("Unexpected instr type to insert");
5714   case RISCV::ReadCycleWide:
5715     assert(!Subtarget.is64Bit() &&
5716            "ReadCycleWrite is only to be used on riscv32");
5717     return emitReadCycleWidePseudo(MI, BB);
5718   case RISCV::Select_GPR_Using_CC_GPR:
5719   case RISCV::Select_FPR16_Using_CC_GPR:
5720   case RISCV::Select_FPR32_Using_CC_GPR:
5721   case RISCV::Select_FPR64_Using_CC_GPR:
5722     return emitSelectPseudo(MI, BB);
5723   case RISCV::BuildPairF64Pseudo:
5724     return emitBuildPairF64Pseudo(MI, BB);
5725   case RISCV::SplitF64Pseudo:
5726     return emitSplitF64Pseudo(MI, BB);
5727   }
5728 }
5729 
5730 // Calling Convention Implementation.
5731 // The expectations for frontend ABI lowering vary from target to target.
5732 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
5733 // details, but this is a longer term goal. For now, we simply try to keep the
5734 // role of the frontend as simple and well-defined as possible. The rules can
5735 // be summarised as:
5736 // * Never split up large scalar arguments. We handle them here.
5737 // * If a hardfloat calling convention is being used, and the struct may be
5738 // passed in a pair of registers (fp+fp, int+fp), and both registers are
5739 // available, then pass as two separate arguments. If either the GPRs or FPRs
5740 // are exhausted, then pass according to the rule below.
5741 // * If a struct could never be passed in registers or directly in a stack
5742 // slot (as it is larger than 2*XLEN and the floating point rules don't
5743 // apply), then pass it using a pointer with the byval attribute.
5744 // * If a struct is less than 2*XLEN, then coerce to either a two-element
5745 // word-sized array or a 2*XLEN scalar (depending on alignment).
5746 // * The frontend can determine whether a struct is returned by reference or
5747 // not based on its size and fields. If it will be returned by reference, the
5748 // frontend must modify the prototype so a pointer with the sret annotation is
5749 // passed as the first argument. This is not necessary for large scalar
5750 // returns.
5751 // * Struct return values and varargs should be coerced to structs containing
5752 // register-size fields in the same situations they would be for fixed
5753 // arguments.
5754 
5755 static const MCPhysReg ArgGPRs[] = {
5756   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
5757   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
5758 };
5759 static const MCPhysReg ArgFPR16s[] = {
5760   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
5761   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
5762 };
5763 static const MCPhysReg ArgFPR32s[] = {
5764   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
5765   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
5766 };
5767 static const MCPhysReg ArgFPR64s[] = {
5768   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
5769   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
5770 };
5771 // This is an interim calling convention and it may be changed in the future.
5772 static const MCPhysReg ArgVRs[] = {
5773     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
5774     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
5775     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
5776 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
5777                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
5778                                      RISCV::V20M2, RISCV::V22M2};
5779 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
5780                                      RISCV::V20M4};
5781 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
5782 
5783 // Pass a 2*XLEN argument that has been split into two XLEN values through
5784 // registers or the stack as necessary.
5785 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
5786                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
5787                                 MVT ValVT2, MVT LocVT2,
5788                                 ISD::ArgFlagsTy ArgFlags2) {
5789   unsigned XLenInBytes = XLen / 8;
5790   if (Register Reg = State.AllocateReg(ArgGPRs)) {
5791     // At least one half can be passed via register.
5792     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
5793                                      VA1.getLocVT(), CCValAssign::Full));
5794   } else {
5795     // Both halves must be passed on the stack, with proper alignment.
5796     Align StackAlign =
5797         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
5798     State.addLoc(
5799         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
5800                             State.AllocateStack(XLenInBytes, StackAlign),
5801                             VA1.getLocVT(), CCValAssign::Full));
5802     State.addLoc(CCValAssign::getMem(
5803         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
5804         LocVT2, CCValAssign::Full));
5805     return false;
5806   }
5807 
5808   if (Register Reg = State.AllocateReg(ArgGPRs)) {
5809     // The second half can also be passed via register.
5810     State.addLoc(
5811         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
5812   } else {
5813     // The second half is passed via the stack, without additional alignment.
5814     State.addLoc(CCValAssign::getMem(
5815         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
5816         LocVT2, CCValAssign::Full));
5817   }
5818 
5819   return false;
5820 }
5821 
5822 // Implements the RISC-V calling convention. Returns true upon failure.
5823 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
5824                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
5825                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
5826                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
5827                      Optional<unsigned> FirstMaskArgument) {
5828   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
5829   assert(XLen == 32 || XLen == 64);
5830   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
5831 
5832   // Any return value split in to more than two values can't be returned
5833   // directly. Vectors are returned via the available vector registers.
5834   if (!LocVT.isVector() && IsRet && ValNo > 1)
5835     return true;
5836 
5837   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
5838   // variadic argument, or if no F16/F32 argument registers are available.
5839   bool UseGPRForF16_F32 = true;
5840   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
5841   // variadic argument, or if no F64 argument registers are available.
5842   bool UseGPRForF64 = true;
5843 
5844   switch (ABI) {
5845   default:
5846     llvm_unreachable("Unexpected ABI");
5847   case RISCVABI::ABI_ILP32:
5848   case RISCVABI::ABI_LP64:
5849     break;
5850   case RISCVABI::ABI_ILP32F:
5851   case RISCVABI::ABI_LP64F:
5852     UseGPRForF16_F32 = !IsFixed;
5853     break;
5854   case RISCVABI::ABI_ILP32D:
5855   case RISCVABI::ABI_LP64D:
5856     UseGPRForF16_F32 = !IsFixed;
5857     UseGPRForF64 = !IsFixed;
5858     break;
5859   }
5860 
5861   // FPR16, FPR32, and FPR64 alias each other.
5862   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
5863     UseGPRForF16_F32 = true;
5864     UseGPRForF64 = true;
5865   }
5866 
5867   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
5868   // similar local variables rather than directly checking against the target
5869   // ABI.
5870 
5871   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
5872     LocVT = XLenVT;
5873     LocInfo = CCValAssign::BCvt;
5874   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
5875     LocVT = MVT::i64;
5876     LocInfo = CCValAssign::BCvt;
5877   }
5878 
5879   // If this is a variadic argument, the RISC-V calling convention requires
5880   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
5881   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
5882   // be used regardless of whether the original argument was split during
5883   // legalisation or not. The argument will not be passed by registers if the
5884   // original type is larger than 2*XLEN, so the register alignment rule does
5885   // not apply.
5886   unsigned TwoXLenInBytes = (2 * XLen) / 8;
5887   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
5888       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
5889     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
5890     // Skip 'odd' register if necessary.
5891     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
5892       State.AllocateReg(ArgGPRs);
5893   }
5894 
5895   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
5896   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
5897       State.getPendingArgFlags();
5898 
5899   assert(PendingLocs.size() == PendingArgFlags.size() &&
5900          "PendingLocs and PendingArgFlags out of sync");
5901 
5902   // Handle passing f64 on RV32D with a soft float ABI or when floating point
5903   // registers are exhausted.
5904   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
5905     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
5906            "Can't lower f64 if it is split");
5907     // Depending on available argument GPRS, f64 may be passed in a pair of
5908     // GPRs, split between a GPR and the stack, or passed completely on the
5909     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
5910     // cases.
5911     Register Reg = State.AllocateReg(ArgGPRs);
5912     LocVT = MVT::i32;
5913     if (!Reg) {
5914       unsigned StackOffset = State.AllocateStack(8, Align(8));
5915       State.addLoc(
5916           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
5917       return false;
5918     }
5919     if (!State.AllocateReg(ArgGPRs))
5920       State.AllocateStack(4, Align(4));
5921     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5922     return false;
5923   }
5924 
5925   // Fixed-length vectors are located in the corresponding scalable-vector
5926   // container types.
5927   if (ValVT.isFixedLengthVector())
5928     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
5929 
5930   // Split arguments might be passed indirectly, so keep track of the pending
5931   // values. Split vectors are passed via a mix of registers and indirectly, so
5932   // treat them as we would any other argument.
5933   if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
5934     LocVT = XLenVT;
5935     LocInfo = CCValAssign::Indirect;
5936     PendingLocs.push_back(
5937         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
5938     PendingArgFlags.push_back(ArgFlags);
5939     if (!ArgFlags.isSplitEnd()) {
5940       return false;
5941     }
5942   }
5943 
5944   // If the split argument only had two elements, it should be passed directly
5945   // in registers or on the stack.
5946   if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
5947     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
5948     // Apply the normal calling convention rules to the first half of the
5949     // split argument.
5950     CCValAssign VA = PendingLocs[0];
5951     ISD::ArgFlagsTy AF = PendingArgFlags[0];
5952     PendingLocs.clear();
5953     PendingArgFlags.clear();
5954     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
5955                                ArgFlags);
5956   }
5957 
5958   // Allocate to a register if possible, or else a stack slot.
5959   Register Reg;
5960   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
5961     Reg = State.AllocateReg(ArgFPR16s);
5962   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
5963     Reg = State.AllocateReg(ArgFPR32s);
5964   else if (ValVT == MVT::f64 && !UseGPRForF64)
5965     Reg = State.AllocateReg(ArgFPR64s);
5966   else if (ValVT.isVector()) {
5967     const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
5968     if (RC == &RISCV::VRRegClass) {
5969       // Assign the first mask argument to V0.
5970       // This is an interim calling convention and it may be changed in the
5971       // future.
5972       if (FirstMaskArgument.hasValue() &&
5973           ValNo == FirstMaskArgument.getValue()) {
5974         Reg = State.AllocateReg(RISCV::V0);
5975       } else {
5976         Reg = State.AllocateReg(ArgVRs);
5977       }
5978     } else if (RC == &RISCV::VRM2RegClass) {
5979       Reg = State.AllocateReg(ArgVRM2s);
5980     } else if (RC == &RISCV::VRM4RegClass) {
5981       Reg = State.AllocateReg(ArgVRM4s);
5982     } else if (RC == &RISCV::VRM8RegClass) {
5983       Reg = State.AllocateReg(ArgVRM8s);
5984     } else {
5985       llvm_unreachable("Unhandled class register for ValueType");
5986     }
5987     if (!Reg) {
5988       // For return values, the vector must be passed fully via registers or
5989       // via the stack.
5990       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
5991       // but we're using all of them.
5992       if (IsRet)
5993         return true;
5994       LocInfo = CCValAssign::Indirect;
5995       // Try using a GPR to pass the address
5996       Reg = State.AllocateReg(ArgGPRs);
5997       LocVT = XLenVT;
5998     }
5999   } else
6000     Reg = State.AllocateReg(ArgGPRs);
6001   unsigned StackOffset =
6002       Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8));
6003 
6004   // If we reach this point and PendingLocs is non-empty, we must be at the
6005   // end of a split argument that must be passed indirectly.
6006   if (!PendingLocs.empty()) {
6007     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
6008     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
6009 
6010     for (auto &It : PendingLocs) {
6011       if (Reg)
6012         It.convertToReg(Reg);
6013       else
6014         It.convertToMem(StackOffset);
6015       State.addLoc(It);
6016     }
6017     PendingLocs.clear();
6018     PendingArgFlags.clear();
6019     return false;
6020   }
6021 
6022   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
6023           (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) &&
6024          "Expected an XLenVT or vector types at this stage");
6025 
6026   if (Reg) {
6027     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6028     return false;
6029   }
6030 
6031   // When a floating-point value is passed on the stack, no bit-conversion is
6032   // needed.
6033   if (ValVT.isFloatingPoint()) {
6034     LocVT = ValVT;
6035     LocInfo = CCValAssign::Full;
6036   }
6037   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
6038   return false;
6039 }
6040 
6041 template <typename ArgTy>
6042 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
6043   for (const auto &ArgIdx : enumerate(Args)) {
6044     MVT ArgVT = ArgIdx.value().VT;
6045     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
6046       return ArgIdx.index();
6047   }
6048   return None;
6049 }
6050 
6051 void RISCVTargetLowering::analyzeInputArgs(
6052     MachineFunction &MF, CCState &CCInfo,
6053     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
6054   unsigned NumArgs = Ins.size();
6055   FunctionType *FType = MF.getFunction().getFunctionType();
6056 
6057   Optional<unsigned> FirstMaskArgument;
6058   if (Subtarget.hasStdExtV())
6059     FirstMaskArgument = preAssignMask(Ins);
6060 
6061   for (unsigned i = 0; i != NumArgs; ++i) {
6062     MVT ArgVT = Ins[i].VT;
6063     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
6064 
6065     Type *ArgTy = nullptr;
6066     if (IsRet)
6067       ArgTy = FType->getReturnType();
6068     else if (Ins[i].isOrigArg())
6069       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
6070 
6071     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
6072     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
6073                  ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
6074                  FirstMaskArgument)) {
6075       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
6076                         << EVT(ArgVT).getEVTString() << '\n');
6077       llvm_unreachable(nullptr);
6078     }
6079   }
6080 }
6081 
6082 void RISCVTargetLowering::analyzeOutputArgs(
6083     MachineFunction &MF, CCState &CCInfo,
6084     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
6085     CallLoweringInfo *CLI) const {
6086   unsigned NumArgs = Outs.size();
6087 
6088   Optional<unsigned> FirstMaskArgument;
6089   if (Subtarget.hasStdExtV())
6090     FirstMaskArgument = preAssignMask(Outs);
6091 
6092   for (unsigned i = 0; i != NumArgs; i++) {
6093     MVT ArgVT = Outs[i].VT;
6094     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
6095     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
6096 
6097     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
6098     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
6099                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
6100                  FirstMaskArgument)) {
6101       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
6102                         << EVT(ArgVT).getEVTString() << "\n");
6103       llvm_unreachable(nullptr);
6104     }
6105   }
6106 }
6107 
6108 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
6109 // values.
6110 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
6111                                    const CCValAssign &VA, const SDLoc &DL,
6112                                    const RISCVSubtarget &Subtarget) {
6113   switch (VA.getLocInfo()) {
6114   default:
6115     llvm_unreachable("Unexpected CCValAssign::LocInfo");
6116   case CCValAssign::Full:
6117     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
6118       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
6119     break;
6120   case CCValAssign::BCvt:
6121     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
6122       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
6123     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
6124       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
6125     else
6126       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
6127     break;
6128   }
6129   return Val;
6130 }
6131 
6132 // The caller is responsible for loading the full value if the argument is
6133 // passed with CCValAssign::Indirect.
6134 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
6135                                 const CCValAssign &VA, const SDLoc &DL,
6136                                 const RISCVTargetLowering &TLI) {
6137   MachineFunction &MF = DAG.getMachineFunction();
6138   MachineRegisterInfo &RegInfo = MF.getRegInfo();
6139   EVT LocVT = VA.getLocVT();
6140   SDValue Val;
6141   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
6142   Register VReg = RegInfo.createVirtualRegister(RC);
6143   RegInfo.addLiveIn(VA.getLocReg(), VReg);
6144   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
6145 
6146   if (VA.getLocInfo() == CCValAssign::Indirect)
6147     return Val;
6148 
6149   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
6150 }
6151 
6152 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
6153                                    const CCValAssign &VA, const SDLoc &DL,
6154                                    const RISCVSubtarget &Subtarget) {
6155   EVT LocVT = VA.getLocVT();
6156 
6157   switch (VA.getLocInfo()) {
6158   default:
6159     llvm_unreachable("Unexpected CCValAssign::LocInfo");
6160   case CCValAssign::Full:
6161     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
6162       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
6163     break;
6164   case CCValAssign::BCvt:
6165     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
6166       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
6167     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
6168       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
6169     else
6170       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
6171     break;
6172   }
6173   return Val;
6174 }
6175 
6176 // The caller is responsible for loading the full value if the argument is
6177 // passed with CCValAssign::Indirect.
6178 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
6179                                 const CCValAssign &VA, const SDLoc &DL) {
6180   MachineFunction &MF = DAG.getMachineFunction();
6181   MachineFrameInfo &MFI = MF.getFrameInfo();
6182   EVT LocVT = VA.getLocVT();
6183   EVT ValVT = VA.getValVT();
6184   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
6185   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
6186                                  VA.getLocMemOffset(), /*Immutable=*/true);
6187   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6188   SDValue Val;
6189 
6190   ISD::LoadExtType ExtType;
6191   switch (VA.getLocInfo()) {
6192   default:
6193     llvm_unreachable("Unexpected CCValAssign::LocInfo");
6194   case CCValAssign::Full:
6195   case CCValAssign::Indirect:
6196   case CCValAssign::BCvt:
6197     ExtType = ISD::NON_EXTLOAD;
6198     break;
6199   }
6200   Val = DAG.getExtLoad(
6201       ExtType, DL, LocVT, Chain, FIN,
6202       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
6203   return Val;
6204 }
6205 
6206 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
6207                                        const CCValAssign &VA, const SDLoc &DL) {
6208   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
6209          "Unexpected VA");
6210   MachineFunction &MF = DAG.getMachineFunction();
6211   MachineFrameInfo &MFI = MF.getFrameInfo();
6212   MachineRegisterInfo &RegInfo = MF.getRegInfo();
6213 
6214   if (VA.isMemLoc()) {
6215     // f64 is passed on the stack.
6216     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
6217     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
6218     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
6219                        MachinePointerInfo::getFixedStack(MF, FI));
6220   }
6221 
6222   assert(VA.isRegLoc() && "Expected register VA assignment");
6223 
6224   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
6225   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
6226   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
6227   SDValue Hi;
6228   if (VA.getLocReg() == RISCV::X17) {
6229     // Second half of f64 is passed on the stack.
6230     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
6231     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
6232     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
6233                      MachinePointerInfo::getFixedStack(MF, FI));
6234   } else {
6235     // Second half of f64 is passed in another GPR.
6236     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
6237     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
6238     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
6239   }
6240   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
6241 }
6242 
6243 // FastCC has less than 1% performance improvement for some particular
6244 // benchmark. But theoretically, it may has benenfit for some cases.
6245 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
6246                             CCValAssign::LocInfo LocInfo,
6247                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
6248 
6249   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
6250     // X5 and X6 might be used for save-restore libcall.
6251     static const MCPhysReg GPRList[] = {
6252         RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
6253         RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
6254         RISCV::X29, RISCV::X30, RISCV::X31};
6255     if (unsigned Reg = State.AllocateReg(GPRList)) {
6256       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6257       return false;
6258     }
6259   }
6260 
6261   if (LocVT == MVT::f16) {
6262     static const MCPhysReg FPR16List[] = {
6263         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
6264         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
6265         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
6266         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
6267     if (unsigned Reg = State.AllocateReg(FPR16List)) {
6268       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6269       return false;
6270     }
6271   }
6272 
6273   if (LocVT == MVT::f32) {
6274     static const MCPhysReg FPR32List[] = {
6275         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
6276         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
6277         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
6278         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
6279     if (unsigned Reg = State.AllocateReg(FPR32List)) {
6280       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6281       return false;
6282     }
6283   }
6284 
6285   if (LocVT == MVT::f64) {
6286     static const MCPhysReg FPR64List[] = {
6287         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
6288         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
6289         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
6290         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
6291     if (unsigned Reg = State.AllocateReg(FPR64List)) {
6292       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6293       return false;
6294     }
6295   }
6296 
6297   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
6298     unsigned Offset4 = State.AllocateStack(4, Align(4));
6299     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
6300     return false;
6301   }
6302 
6303   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
6304     unsigned Offset5 = State.AllocateStack(8, Align(8));
6305     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
6306     return false;
6307   }
6308 
6309   return true; // CC didn't match.
6310 }
6311 
6312 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
6313                          CCValAssign::LocInfo LocInfo,
6314                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
6315 
6316   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
6317     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
6318     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
6319     static const MCPhysReg GPRList[] = {
6320         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
6321         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
6322     if (unsigned Reg = State.AllocateReg(GPRList)) {
6323       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6324       return false;
6325     }
6326   }
6327 
6328   if (LocVT == MVT::f32) {
6329     // Pass in STG registers: F1, ..., F6
6330     //                        fs0 ... fs5
6331     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
6332                                           RISCV::F18_F, RISCV::F19_F,
6333                                           RISCV::F20_F, RISCV::F21_F};
6334     if (unsigned Reg = State.AllocateReg(FPR32List)) {
6335       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6336       return false;
6337     }
6338   }
6339 
6340   if (LocVT == MVT::f64) {
6341     // Pass in STG registers: D1, ..., D6
6342     //                        fs6 ... fs11
6343     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
6344                                           RISCV::F24_D, RISCV::F25_D,
6345                                           RISCV::F26_D, RISCV::F27_D};
6346     if (unsigned Reg = State.AllocateReg(FPR64List)) {
6347       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6348       return false;
6349     }
6350   }
6351 
6352   report_fatal_error("No registers left in GHC calling convention");
6353   return true;
6354 }
6355 
6356 // Transform physical registers into virtual registers.
6357 SDValue RISCVTargetLowering::LowerFormalArguments(
6358     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
6359     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
6360     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6361 
6362   MachineFunction &MF = DAG.getMachineFunction();
6363 
6364   switch (CallConv) {
6365   default:
6366     report_fatal_error("Unsupported calling convention");
6367   case CallingConv::C:
6368   case CallingConv::Fast:
6369     break;
6370   case CallingConv::GHC:
6371     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
6372         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
6373       report_fatal_error(
6374         "GHC calling convention requires the F and D instruction set extensions");
6375   }
6376 
6377   const Function &Func = MF.getFunction();
6378   if (Func.hasFnAttribute("interrupt")) {
6379     if (!Func.arg_empty())
6380       report_fatal_error(
6381         "Functions with the interrupt attribute cannot have arguments!");
6382 
6383     StringRef Kind =
6384       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
6385 
6386     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
6387       report_fatal_error(
6388         "Function interrupt attribute argument not supported!");
6389   }
6390 
6391   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6392   MVT XLenVT = Subtarget.getXLenVT();
6393   unsigned XLenInBytes = Subtarget.getXLen() / 8;
6394   // Used with vargs to acumulate store chains.
6395   std::vector<SDValue> OutChains;
6396 
6397   // Assign locations to all of the incoming arguments.
6398   SmallVector<CCValAssign, 16> ArgLocs;
6399   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
6400 
6401   if (CallConv == CallingConv::Fast)
6402     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
6403   else if (CallConv == CallingConv::GHC)
6404     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
6405   else
6406     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
6407 
6408   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
6409     CCValAssign &VA = ArgLocs[i];
6410     SDValue ArgValue;
6411     // Passing f64 on RV32D with a soft float ABI must be handled as a special
6412     // case.
6413     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
6414       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
6415     else if (VA.isRegLoc())
6416       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
6417     else
6418       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
6419 
6420     if (VA.getLocInfo() == CCValAssign::Indirect) {
6421       // If the original argument was split and passed by reference (e.g. i128
6422       // on RV32), we need to load all parts of it here (using the same
6423       // address). Vectors may be partly split to registers and partly to the
6424       // stack, in which case the base address is partly offset and subsequent
6425       // stores are relative to that.
6426       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
6427                                    MachinePointerInfo()));
6428       unsigned ArgIndex = Ins[i].OrigArgIndex;
6429       unsigned ArgPartOffset = Ins[i].PartOffset;
6430       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
6431       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
6432         CCValAssign &PartVA = ArgLocs[i + 1];
6433         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
6434         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
6435                                       DAG.getIntPtrConstant(PartOffset, DL));
6436         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
6437                                      MachinePointerInfo()));
6438         ++i;
6439       }
6440       continue;
6441     }
6442     InVals.push_back(ArgValue);
6443   }
6444 
6445   if (IsVarArg) {
6446     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
6447     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
6448     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
6449     MachineFrameInfo &MFI = MF.getFrameInfo();
6450     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6451     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
6452 
6453     // Offset of the first variable argument from stack pointer, and size of
6454     // the vararg save area. For now, the varargs save area is either zero or
6455     // large enough to hold a0-a7.
6456     int VaArgOffset, VarArgsSaveSize;
6457 
6458     // If all registers are allocated, then all varargs must be passed on the
6459     // stack and we don't need to save any argregs.
6460     if (ArgRegs.size() == Idx) {
6461       VaArgOffset = CCInfo.getNextStackOffset();
6462       VarArgsSaveSize = 0;
6463     } else {
6464       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
6465       VaArgOffset = -VarArgsSaveSize;
6466     }
6467 
6468     // Record the frame index of the first variable argument
6469     // which is a value necessary to VASTART.
6470     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
6471     RVFI->setVarArgsFrameIndex(FI);
6472 
6473     // If saving an odd number of registers then create an extra stack slot to
6474     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
6475     // offsets to even-numbered registered remain 2*XLEN-aligned.
6476     if (Idx % 2) {
6477       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
6478       VarArgsSaveSize += XLenInBytes;
6479     }
6480 
6481     // Copy the integer registers that may have been used for passing varargs
6482     // to the vararg save area.
6483     for (unsigned I = Idx; I < ArgRegs.size();
6484          ++I, VaArgOffset += XLenInBytes) {
6485       const Register Reg = RegInfo.createVirtualRegister(RC);
6486       RegInfo.addLiveIn(ArgRegs[I], Reg);
6487       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
6488       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
6489       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
6490       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
6491                                    MachinePointerInfo::getFixedStack(MF, FI));
6492       cast<StoreSDNode>(Store.getNode())
6493           ->getMemOperand()
6494           ->setValue((Value *)nullptr);
6495       OutChains.push_back(Store);
6496     }
6497     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
6498   }
6499 
6500   // All stores are grouped in one node to allow the matching between
6501   // the size of Ins and InVals. This only happens for vararg functions.
6502   if (!OutChains.empty()) {
6503     OutChains.push_back(Chain);
6504     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
6505   }
6506 
6507   return Chain;
6508 }
6509 
6510 /// isEligibleForTailCallOptimization - Check whether the call is eligible
6511 /// for tail call optimization.
6512 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
6513 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
6514     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
6515     const SmallVector<CCValAssign, 16> &ArgLocs) const {
6516 
6517   auto &Callee = CLI.Callee;
6518   auto CalleeCC = CLI.CallConv;
6519   auto &Outs = CLI.Outs;
6520   auto &Caller = MF.getFunction();
6521   auto CallerCC = Caller.getCallingConv();
6522 
6523   // Exception-handling functions need a special set of instructions to
6524   // indicate a return to the hardware. Tail-calling another function would
6525   // probably break this.
6526   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
6527   // should be expanded as new function attributes are introduced.
6528   if (Caller.hasFnAttribute("interrupt"))
6529     return false;
6530 
6531   // Do not tail call opt if the stack is used to pass parameters.
6532   if (CCInfo.getNextStackOffset() != 0)
6533     return false;
6534 
6535   // Do not tail call opt if any parameters need to be passed indirectly.
6536   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
6537   // passed indirectly. So the address of the value will be passed in a
6538   // register, or if not available, then the address is put on the stack. In
6539   // order to pass indirectly, space on the stack often needs to be allocated
6540   // in order to store the value. In this case the CCInfo.getNextStackOffset()
6541   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
6542   // are passed CCValAssign::Indirect.
6543   for (auto &VA : ArgLocs)
6544     if (VA.getLocInfo() == CCValAssign::Indirect)
6545       return false;
6546 
6547   // Do not tail call opt if either caller or callee uses struct return
6548   // semantics.
6549   auto IsCallerStructRet = Caller.hasStructRetAttr();
6550   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
6551   if (IsCallerStructRet || IsCalleeStructRet)
6552     return false;
6553 
6554   // Externally-defined functions with weak linkage should not be
6555   // tail-called. The behaviour of branch instructions in this situation (as
6556   // used for tail calls) is implementation-defined, so we cannot rely on the
6557   // linker replacing the tail call with a return.
6558   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
6559     const GlobalValue *GV = G->getGlobal();
6560     if (GV->hasExternalWeakLinkage())
6561       return false;
6562   }
6563 
6564   // The callee has to preserve all registers the caller needs to preserve.
6565   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
6566   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
6567   if (CalleeCC != CallerCC) {
6568     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
6569     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
6570       return false;
6571   }
6572 
6573   // Byval parameters hand the function a pointer directly into the stack area
6574   // we want to reuse during a tail call. Working around this *is* possible
6575   // but less efficient and uglier in LowerCall.
6576   for (auto &Arg : Outs)
6577     if (Arg.Flags.isByVal())
6578       return false;
6579 
6580   return true;
6581 }
6582 
6583 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
6584 // and output parameter nodes.
6585 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
6586                                        SmallVectorImpl<SDValue> &InVals) const {
6587   SelectionDAG &DAG = CLI.DAG;
6588   SDLoc &DL = CLI.DL;
6589   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
6590   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
6591   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
6592   SDValue Chain = CLI.Chain;
6593   SDValue Callee = CLI.Callee;
6594   bool &IsTailCall = CLI.IsTailCall;
6595   CallingConv::ID CallConv = CLI.CallConv;
6596   bool IsVarArg = CLI.IsVarArg;
6597   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6598   MVT XLenVT = Subtarget.getXLenVT();
6599 
6600   MachineFunction &MF = DAG.getMachineFunction();
6601 
6602   // Analyze the operands of the call, assigning locations to each operand.
6603   SmallVector<CCValAssign, 16> ArgLocs;
6604   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
6605 
6606   if (CallConv == CallingConv::Fast)
6607     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
6608   else if (CallConv == CallingConv::GHC)
6609     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
6610   else
6611     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
6612 
6613   // Check if it's really possible to do a tail call.
6614   if (IsTailCall)
6615     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
6616 
6617   if (IsTailCall)
6618     ++NumTailCalls;
6619   else if (CLI.CB && CLI.CB->isMustTailCall())
6620     report_fatal_error("failed to perform tail call elimination on a call "
6621                        "site marked musttail");
6622 
6623   // Get a count of how many bytes are to be pushed on the stack.
6624   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
6625 
6626   // Create local copies for byval args
6627   SmallVector<SDValue, 8> ByValArgs;
6628   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
6629     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6630     if (!Flags.isByVal())
6631       continue;
6632 
6633     SDValue Arg = OutVals[i];
6634     unsigned Size = Flags.getByValSize();
6635     Align Alignment = Flags.getNonZeroByValAlign();
6636 
6637     int FI =
6638         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
6639     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
6640     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
6641 
6642     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
6643                           /*IsVolatile=*/false,
6644                           /*AlwaysInline=*/false, IsTailCall,
6645                           MachinePointerInfo(), MachinePointerInfo());
6646     ByValArgs.push_back(FIPtr);
6647   }
6648 
6649   if (!IsTailCall)
6650     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
6651 
6652   // Copy argument values to their designated locations.
6653   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
6654   SmallVector<SDValue, 8> MemOpChains;
6655   SDValue StackPtr;
6656   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
6657     CCValAssign &VA = ArgLocs[i];
6658     SDValue ArgValue = OutVals[i];
6659     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6660 
6661     // Handle passing f64 on RV32D with a soft float ABI as a special case.
6662     bool IsF64OnRV32DSoftABI =
6663         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
6664     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
6665       SDValue SplitF64 = DAG.getNode(
6666           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
6667       SDValue Lo = SplitF64.getValue(0);
6668       SDValue Hi = SplitF64.getValue(1);
6669 
6670       Register RegLo = VA.getLocReg();
6671       RegsToPass.push_back(std::make_pair(RegLo, Lo));
6672 
6673       if (RegLo == RISCV::X17) {
6674         // Second half of f64 is passed on the stack.
6675         // Work out the address of the stack slot.
6676         if (!StackPtr.getNode())
6677           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
6678         // Emit the store.
6679         MemOpChains.push_back(
6680             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
6681       } else {
6682         // Second half of f64 is passed in another GPR.
6683         assert(RegLo < RISCV::X31 && "Invalid register pair");
6684         Register RegHigh = RegLo + 1;
6685         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
6686       }
6687       continue;
6688     }
6689 
6690     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
6691     // as any other MemLoc.
6692 
6693     // Promote the value if needed.
6694     // For now, only handle fully promoted and indirect arguments.
6695     if (VA.getLocInfo() == CCValAssign::Indirect) {
6696       // Store the argument in a stack slot and pass its address.
6697       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
6698       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
6699       MemOpChains.push_back(
6700           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
6701                        MachinePointerInfo::getFixedStack(MF, FI)));
6702       // If the original argument was split (e.g. i128), we need
6703       // to store the required parts of it here (and pass just one address).
6704       // Vectors may be partly split to registers and partly to the stack, in
6705       // which case the base address is partly offset and subsequent stores are
6706       // relative to that.
6707       unsigned ArgIndex = Outs[i].OrigArgIndex;
6708       unsigned ArgPartOffset = Outs[i].PartOffset;
6709       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
6710       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
6711         SDValue PartValue = OutVals[i + 1];
6712         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
6713         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
6714                                       DAG.getIntPtrConstant(PartOffset, DL));
6715         MemOpChains.push_back(
6716             DAG.getStore(Chain, DL, PartValue, Address,
6717                          MachinePointerInfo::getFixedStack(MF, FI)));
6718         ++i;
6719       }
6720       ArgValue = SpillSlot;
6721     } else {
6722       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
6723     }
6724 
6725     // Use local copy if it is a byval arg.
6726     if (Flags.isByVal())
6727       ArgValue = ByValArgs[j++];
6728 
6729     if (VA.isRegLoc()) {
6730       // Queue up the argument copies and emit them at the end.
6731       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
6732     } else {
6733       assert(VA.isMemLoc() && "Argument not register or memory");
6734       assert(!IsTailCall && "Tail call not allowed if stack is used "
6735                             "for passing parameters");
6736 
6737       // Work out the address of the stack slot.
6738       if (!StackPtr.getNode())
6739         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
6740       SDValue Address =
6741           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
6742                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
6743 
6744       // Emit the store.
6745       MemOpChains.push_back(
6746           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
6747     }
6748   }
6749 
6750   // Join the stores, which are independent of one another.
6751   if (!MemOpChains.empty())
6752     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
6753 
6754   SDValue Glue;
6755 
6756   // Build a sequence of copy-to-reg nodes, chained and glued together.
6757   for (auto &Reg : RegsToPass) {
6758     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
6759     Glue = Chain.getValue(1);
6760   }
6761 
6762   // Validate that none of the argument registers have been marked as
6763   // reserved, if so report an error. Do the same for the return address if this
6764   // is not a tailcall.
6765   validateCCReservedRegs(RegsToPass, MF);
6766   if (!IsTailCall &&
6767       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
6768     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
6769         MF.getFunction(),
6770         "Return address register required, but has been reserved."});
6771 
6772   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
6773   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
6774   // split it and then direct call can be matched by PseudoCALL.
6775   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
6776     const GlobalValue *GV = S->getGlobal();
6777 
6778     unsigned OpFlags = RISCVII::MO_CALL;
6779     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
6780       OpFlags = RISCVII::MO_PLT;
6781 
6782     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
6783   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
6784     unsigned OpFlags = RISCVII::MO_CALL;
6785 
6786     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
6787                                                  nullptr))
6788       OpFlags = RISCVII::MO_PLT;
6789 
6790     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
6791   }
6792 
6793   // The first call operand is the chain and the second is the target address.
6794   SmallVector<SDValue, 8> Ops;
6795   Ops.push_back(Chain);
6796   Ops.push_back(Callee);
6797 
6798   // Add argument registers to the end of the list so that they are
6799   // known live into the call.
6800   for (auto &Reg : RegsToPass)
6801     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
6802 
6803   if (!IsTailCall) {
6804     // Add a register mask operand representing the call-preserved registers.
6805     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
6806     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
6807     assert(Mask && "Missing call preserved mask for calling convention");
6808     Ops.push_back(DAG.getRegisterMask(Mask));
6809   }
6810 
6811   // Glue the call to the argument copies, if any.
6812   if (Glue.getNode())
6813     Ops.push_back(Glue);
6814 
6815   // Emit the call.
6816   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6817 
6818   if (IsTailCall) {
6819     MF.getFrameInfo().setHasTailCall();
6820     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
6821   }
6822 
6823   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
6824   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
6825   Glue = Chain.getValue(1);
6826 
6827   // Mark the end of the call, which is glued to the call itself.
6828   Chain = DAG.getCALLSEQ_END(Chain,
6829                              DAG.getConstant(NumBytes, DL, PtrVT, true),
6830                              DAG.getConstant(0, DL, PtrVT, true),
6831                              Glue, DL);
6832   Glue = Chain.getValue(1);
6833 
6834   // Assign locations to each value returned by this call.
6835   SmallVector<CCValAssign, 16> RVLocs;
6836   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
6837   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
6838 
6839   // Copy all of the result registers out of their specified physreg.
6840   for (auto &VA : RVLocs) {
6841     // Copy the value out
6842     SDValue RetValue =
6843         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
6844     // Glue the RetValue to the end of the call sequence
6845     Chain = RetValue.getValue(1);
6846     Glue = RetValue.getValue(2);
6847 
6848     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
6849       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
6850       SDValue RetValue2 =
6851           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
6852       Chain = RetValue2.getValue(1);
6853       Glue = RetValue2.getValue(2);
6854       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
6855                              RetValue2);
6856     }
6857 
6858     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
6859 
6860     InVals.push_back(RetValue);
6861   }
6862 
6863   return Chain;
6864 }
6865 
6866 bool RISCVTargetLowering::CanLowerReturn(
6867     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
6868     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
6869   SmallVector<CCValAssign, 16> RVLocs;
6870   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
6871 
6872   Optional<unsigned> FirstMaskArgument;
6873   if (Subtarget.hasStdExtV())
6874     FirstMaskArgument = preAssignMask(Outs);
6875 
6876   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
6877     MVT VT = Outs[i].VT;
6878     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
6879     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
6880     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
6881                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
6882                  *this, FirstMaskArgument))
6883       return false;
6884   }
6885   return true;
6886 }
6887 
6888 SDValue
6889 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6890                                  bool IsVarArg,
6891                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
6892                                  const SmallVectorImpl<SDValue> &OutVals,
6893                                  const SDLoc &DL, SelectionDAG &DAG) const {
6894   const MachineFunction &MF = DAG.getMachineFunction();
6895   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
6896 
6897   // Stores the assignment of the return value to a location.
6898   SmallVector<CCValAssign, 16> RVLocs;
6899 
6900   // Info about the registers and stack slot.
6901   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
6902                  *DAG.getContext());
6903 
6904   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
6905                     nullptr);
6906 
6907   if (CallConv == CallingConv::GHC && !RVLocs.empty())
6908     report_fatal_error("GHC functions return void only");
6909 
6910   SDValue Glue;
6911   SmallVector<SDValue, 4> RetOps(1, Chain);
6912 
6913   // Copy the result values into the output registers.
6914   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
6915     SDValue Val = OutVals[i];
6916     CCValAssign &VA = RVLocs[i];
6917     assert(VA.isRegLoc() && "Can only return in registers!");
6918 
6919     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
6920       // Handle returning f64 on RV32D with a soft float ABI.
6921       assert(VA.isRegLoc() && "Expected return via registers");
6922       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
6923                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
6924       SDValue Lo = SplitF64.getValue(0);
6925       SDValue Hi = SplitF64.getValue(1);
6926       Register RegLo = VA.getLocReg();
6927       assert(RegLo < RISCV::X31 && "Invalid register pair");
6928       Register RegHi = RegLo + 1;
6929 
6930       if (STI.isRegisterReservedByUser(RegLo) ||
6931           STI.isRegisterReservedByUser(RegHi))
6932         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
6933             MF.getFunction(),
6934             "Return value register required, but has been reserved."});
6935 
6936       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
6937       Glue = Chain.getValue(1);
6938       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
6939       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
6940       Glue = Chain.getValue(1);
6941       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
6942     } else {
6943       // Handle a 'normal' return.
6944       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
6945       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
6946 
6947       if (STI.isRegisterReservedByUser(VA.getLocReg()))
6948         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
6949             MF.getFunction(),
6950             "Return value register required, but has been reserved."});
6951 
6952       // Guarantee that all emitted copies are stuck together.
6953       Glue = Chain.getValue(1);
6954       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6955     }
6956   }
6957 
6958   RetOps[0] = Chain; // Update chain.
6959 
6960   // Add the glue node if we have it.
6961   if (Glue.getNode()) {
6962     RetOps.push_back(Glue);
6963   }
6964 
6965   // Interrupt service routines use different return instructions.
6966   const Function &Func = DAG.getMachineFunction().getFunction();
6967   if (Func.hasFnAttribute("interrupt")) {
6968     if (!Func.getReturnType()->isVoidTy())
6969       report_fatal_error(
6970           "Functions with the interrupt attribute must have void return type!");
6971 
6972     MachineFunction &MF = DAG.getMachineFunction();
6973     StringRef Kind =
6974       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
6975 
6976     unsigned RetOpc;
6977     if (Kind == "user")
6978       RetOpc = RISCVISD::URET_FLAG;
6979     else if (Kind == "supervisor")
6980       RetOpc = RISCVISD::SRET_FLAG;
6981     else
6982       RetOpc = RISCVISD::MRET_FLAG;
6983 
6984     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
6985   }
6986 
6987   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
6988 }
6989 
6990 void RISCVTargetLowering::validateCCReservedRegs(
6991     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
6992     MachineFunction &MF) const {
6993   const Function &F = MF.getFunction();
6994   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
6995 
6996   if (llvm::any_of(Regs, [&STI](auto Reg) {
6997         return STI.isRegisterReservedByUser(Reg.first);
6998       }))
6999     F.getContext().diagnose(DiagnosticInfoUnsupported{
7000         F, "Argument register required, but has been reserved."});
7001 }
7002 
7003 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
7004   return CI->isTailCall();
7005 }
7006 
7007 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
7008 #define NODE_NAME_CASE(NODE)                                                   \
7009   case RISCVISD::NODE:                                                         \
7010     return "RISCVISD::" #NODE;
7011   // clang-format off
7012   switch ((RISCVISD::NodeType)Opcode) {
7013   case RISCVISD::FIRST_NUMBER:
7014     break;
7015   NODE_NAME_CASE(RET_FLAG)
7016   NODE_NAME_CASE(URET_FLAG)
7017   NODE_NAME_CASE(SRET_FLAG)
7018   NODE_NAME_CASE(MRET_FLAG)
7019   NODE_NAME_CASE(CALL)
7020   NODE_NAME_CASE(SELECT_CC)
7021   NODE_NAME_CASE(BR_CC)
7022   NODE_NAME_CASE(BuildPairF64)
7023   NODE_NAME_CASE(SplitF64)
7024   NODE_NAME_CASE(TAIL)
7025   NODE_NAME_CASE(MULHSU)
7026   NODE_NAME_CASE(SLLW)
7027   NODE_NAME_CASE(SRAW)
7028   NODE_NAME_CASE(SRLW)
7029   NODE_NAME_CASE(DIVW)
7030   NODE_NAME_CASE(DIVUW)
7031   NODE_NAME_CASE(REMUW)
7032   NODE_NAME_CASE(ROLW)
7033   NODE_NAME_CASE(RORW)
7034   NODE_NAME_CASE(CLZW)
7035   NODE_NAME_CASE(CTZW)
7036   NODE_NAME_CASE(FSLW)
7037   NODE_NAME_CASE(FSRW)
7038   NODE_NAME_CASE(FSL)
7039   NODE_NAME_CASE(FSR)
7040   NODE_NAME_CASE(FMV_H_X)
7041   NODE_NAME_CASE(FMV_X_ANYEXTH)
7042   NODE_NAME_CASE(FMV_W_X_RV64)
7043   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
7044   NODE_NAME_CASE(READ_CYCLE_WIDE)
7045   NODE_NAME_CASE(GREVI)
7046   NODE_NAME_CASE(GREVIW)
7047   NODE_NAME_CASE(GORCI)
7048   NODE_NAME_CASE(GORCIW)
7049   NODE_NAME_CASE(SHFLI)
7050   NODE_NAME_CASE(VMV_V_X_VL)
7051   NODE_NAME_CASE(VFMV_V_F_VL)
7052   NODE_NAME_CASE(VMV_X_S)
7053   NODE_NAME_CASE(VMV_S_X_VL)
7054   NODE_NAME_CASE(VFMV_S_F_VL)
7055   NODE_NAME_CASE(SPLAT_VECTOR_I64)
7056   NODE_NAME_CASE(READ_VLENB)
7057   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
7058   NODE_NAME_CASE(VLEFF)
7059   NODE_NAME_CASE(VLEFF_MASK)
7060   NODE_NAME_CASE(VSLIDEUP_VL)
7061   NODE_NAME_CASE(VSLIDE1UP_VL)
7062   NODE_NAME_CASE(VSLIDEDOWN_VL)
7063   NODE_NAME_CASE(VSLIDE1DOWN_VL)
7064   NODE_NAME_CASE(VID_VL)
7065   NODE_NAME_CASE(VFNCVT_ROD_VL)
7066   NODE_NAME_CASE(VECREDUCE_ADD_VL)
7067   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
7068   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
7069   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
7070   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
7071   NODE_NAME_CASE(VECREDUCE_AND_VL)
7072   NODE_NAME_CASE(VECREDUCE_OR_VL)
7073   NODE_NAME_CASE(VECREDUCE_XOR_VL)
7074   NODE_NAME_CASE(VECREDUCE_FADD_VL)
7075   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
7076   NODE_NAME_CASE(ADD_VL)
7077   NODE_NAME_CASE(AND_VL)
7078   NODE_NAME_CASE(MUL_VL)
7079   NODE_NAME_CASE(OR_VL)
7080   NODE_NAME_CASE(SDIV_VL)
7081   NODE_NAME_CASE(SHL_VL)
7082   NODE_NAME_CASE(SREM_VL)
7083   NODE_NAME_CASE(SRA_VL)
7084   NODE_NAME_CASE(SRL_VL)
7085   NODE_NAME_CASE(SUB_VL)
7086   NODE_NAME_CASE(UDIV_VL)
7087   NODE_NAME_CASE(UREM_VL)
7088   NODE_NAME_CASE(XOR_VL)
7089   NODE_NAME_CASE(FADD_VL)
7090   NODE_NAME_CASE(FSUB_VL)
7091   NODE_NAME_CASE(FMUL_VL)
7092   NODE_NAME_CASE(FDIV_VL)
7093   NODE_NAME_CASE(FNEG_VL)
7094   NODE_NAME_CASE(FABS_VL)
7095   NODE_NAME_CASE(FSQRT_VL)
7096   NODE_NAME_CASE(FMA_VL)
7097   NODE_NAME_CASE(FCOPYSIGN_VL)
7098   NODE_NAME_CASE(SMIN_VL)
7099   NODE_NAME_CASE(SMAX_VL)
7100   NODE_NAME_CASE(UMIN_VL)
7101   NODE_NAME_CASE(UMAX_VL)
7102   NODE_NAME_CASE(MULHS_VL)
7103   NODE_NAME_CASE(MULHU_VL)
7104   NODE_NAME_CASE(FP_TO_SINT_VL)
7105   NODE_NAME_CASE(FP_TO_UINT_VL)
7106   NODE_NAME_CASE(SINT_TO_FP_VL)
7107   NODE_NAME_CASE(UINT_TO_FP_VL)
7108   NODE_NAME_CASE(FP_EXTEND_VL)
7109   NODE_NAME_CASE(FP_ROUND_VL)
7110   NODE_NAME_CASE(SETCC_VL)
7111   NODE_NAME_CASE(VSELECT_VL)
7112   NODE_NAME_CASE(VMAND_VL)
7113   NODE_NAME_CASE(VMOR_VL)
7114   NODE_NAME_CASE(VMXOR_VL)
7115   NODE_NAME_CASE(VMCLR_VL)
7116   NODE_NAME_CASE(VMSET_VL)
7117   NODE_NAME_CASE(VRGATHER_VX_VL)
7118   NODE_NAME_CASE(VRGATHER_VV_VL)
7119   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
7120   NODE_NAME_CASE(VSEXT_VL)
7121   NODE_NAME_CASE(VZEXT_VL)
7122   NODE_NAME_CASE(VLE_VL)
7123   NODE_NAME_CASE(VSE_VL)
7124   }
7125   // clang-format on
7126   return nullptr;
7127 #undef NODE_NAME_CASE
7128 }
7129 
7130 /// getConstraintType - Given a constraint letter, return the type of
7131 /// constraint it is for this target.
7132 RISCVTargetLowering::ConstraintType
7133 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
7134   if (Constraint.size() == 1) {
7135     switch (Constraint[0]) {
7136     default:
7137       break;
7138     case 'f':
7139     case 'v':
7140       return C_RegisterClass;
7141     case 'I':
7142     case 'J':
7143     case 'K':
7144       return C_Immediate;
7145     case 'A':
7146       return C_Memory;
7147     }
7148   }
7149   return TargetLowering::getConstraintType(Constraint);
7150 }
7151 
7152 std::pair<unsigned, const TargetRegisterClass *>
7153 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
7154                                                   StringRef Constraint,
7155                                                   MVT VT) const {
7156   // First, see if this is a constraint that directly corresponds to a
7157   // RISCV register class.
7158   if (Constraint.size() == 1) {
7159     switch (Constraint[0]) {
7160     case 'r':
7161       return std::make_pair(0U, &RISCV::GPRRegClass);
7162     case 'f':
7163       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
7164         return std::make_pair(0U, &RISCV::FPR16RegClass);
7165       if (Subtarget.hasStdExtF() && VT == MVT::f32)
7166         return std::make_pair(0U, &RISCV::FPR32RegClass);
7167       if (Subtarget.hasStdExtD() && VT == MVT::f64)
7168         return std::make_pair(0U, &RISCV::FPR64RegClass);
7169       break;
7170     case 'v':
7171       for (const auto *RC :
7172            {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass,
7173             &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
7174         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
7175           return std::make_pair(0U, RC);
7176       }
7177       break;
7178     default:
7179       break;
7180     }
7181   }
7182 
7183   // Clang will correctly decode the usage of register name aliases into their
7184   // official names. However, other frontends like `rustc` do not. This allows
7185   // users of these frontends to use the ABI names for registers in LLVM-style
7186   // register constraints.
7187   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
7188                                .Case("{zero}", RISCV::X0)
7189                                .Case("{ra}", RISCV::X1)
7190                                .Case("{sp}", RISCV::X2)
7191                                .Case("{gp}", RISCV::X3)
7192                                .Case("{tp}", RISCV::X4)
7193                                .Case("{t0}", RISCV::X5)
7194                                .Case("{t1}", RISCV::X6)
7195                                .Case("{t2}", RISCV::X7)
7196                                .Cases("{s0}", "{fp}", RISCV::X8)
7197                                .Case("{s1}", RISCV::X9)
7198                                .Case("{a0}", RISCV::X10)
7199                                .Case("{a1}", RISCV::X11)
7200                                .Case("{a2}", RISCV::X12)
7201                                .Case("{a3}", RISCV::X13)
7202                                .Case("{a4}", RISCV::X14)
7203                                .Case("{a5}", RISCV::X15)
7204                                .Case("{a6}", RISCV::X16)
7205                                .Case("{a7}", RISCV::X17)
7206                                .Case("{s2}", RISCV::X18)
7207                                .Case("{s3}", RISCV::X19)
7208                                .Case("{s4}", RISCV::X20)
7209                                .Case("{s5}", RISCV::X21)
7210                                .Case("{s6}", RISCV::X22)
7211                                .Case("{s7}", RISCV::X23)
7212                                .Case("{s8}", RISCV::X24)
7213                                .Case("{s9}", RISCV::X25)
7214                                .Case("{s10}", RISCV::X26)
7215                                .Case("{s11}", RISCV::X27)
7216                                .Case("{t3}", RISCV::X28)
7217                                .Case("{t4}", RISCV::X29)
7218                                .Case("{t5}", RISCV::X30)
7219                                .Case("{t6}", RISCV::X31)
7220                                .Default(RISCV::NoRegister);
7221   if (XRegFromAlias != RISCV::NoRegister)
7222     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
7223 
7224   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
7225   // TableGen record rather than the AsmName to choose registers for InlineAsm
7226   // constraints, plus we want to match those names to the widest floating point
7227   // register type available, manually select floating point registers here.
7228   //
7229   // The second case is the ABI name of the register, so that frontends can also
7230   // use the ABI names in register constraint lists.
7231   if (Subtarget.hasStdExtF()) {
7232     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
7233                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
7234                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
7235                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
7236                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
7237                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
7238                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
7239                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
7240                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
7241                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
7242                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
7243                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
7244                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
7245                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
7246                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
7247                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
7248                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
7249                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
7250                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
7251                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
7252                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
7253                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
7254                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
7255                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
7256                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
7257                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
7258                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
7259                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
7260                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
7261                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
7262                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
7263                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
7264                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
7265                         .Default(RISCV::NoRegister);
7266     if (FReg != RISCV::NoRegister) {
7267       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
7268       if (Subtarget.hasStdExtD()) {
7269         unsigned RegNo = FReg - RISCV::F0_F;
7270         unsigned DReg = RISCV::F0_D + RegNo;
7271         return std::make_pair(DReg, &RISCV::FPR64RegClass);
7272       }
7273       return std::make_pair(FReg, &RISCV::FPR32RegClass);
7274     }
7275   }
7276 
7277   if (Subtarget.hasStdExtV()) {
7278     Register VReg = StringSwitch<Register>(Constraint.lower())
7279                         .Case("{v0}", RISCV::V0)
7280                         .Case("{v1}", RISCV::V1)
7281                         .Case("{v2}", RISCV::V2)
7282                         .Case("{v3}", RISCV::V3)
7283                         .Case("{v4}", RISCV::V4)
7284                         .Case("{v5}", RISCV::V5)
7285                         .Case("{v6}", RISCV::V6)
7286                         .Case("{v7}", RISCV::V7)
7287                         .Case("{v8}", RISCV::V8)
7288                         .Case("{v9}", RISCV::V9)
7289                         .Case("{v10}", RISCV::V10)
7290                         .Case("{v11}", RISCV::V11)
7291                         .Case("{v12}", RISCV::V12)
7292                         .Case("{v13}", RISCV::V13)
7293                         .Case("{v14}", RISCV::V14)
7294                         .Case("{v15}", RISCV::V15)
7295                         .Case("{v16}", RISCV::V16)
7296                         .Case("{v17}", RISCV::V17)
7297                         .Case("{v18}", RISCV::V18)
7298                         .Case("{v19}", RISCV::V19)
7299                         .Case("{v20}", RISCV::V20)
7300                         .Case("{v21}", RISCV::V21)
7301                         .Case("{v22}", RISCV::V22)
7302                         .Case("{v23}", RISCV::V23)
7303                         .Case("{v24}", RISCV::V24)
7304                         .Case("{v25}", RISCV::V25)
7305                         .Case("{v26}", RISCV::V26)
7306                         .Case("{v27}", RISCV::V27)
7307                         .Case("{v28}", RISCV::V28)
7308                         .Case("{v29}", RISCV::V29)
7309                         .Case("{v30}", RISCV::V30)
7310                         .Case("{v31}", RISCV::V31)
7311                         .Default(RISCV::NoRegister);
7312     if (VReg != RISCV::NoRegister) {
7313       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
7314         return std::make_pair(VReg, &RISCV::VMRegClass);
7315       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
7316         return std::make_pair(VReg, &RISCV::VRRegClass);
7317       for (const auto *RC :
7318            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
7319         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
7320           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
7321           return std::make_pair(VReg, RC);
7322         }
7323       }
7324     }
7325   }
7326 
7327   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
7328 }
7329 
7330 unsigned
7331 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
7332   // Currently only support length 1 constraints.
7333   if (ConstraintCode.size() == 1) {
7334     switch (ConstraintCode[0]) {
7335     case 'A':
7336       return InlineAsm::Constraint_A;
7337     default:
7338       break;
7339     }
7340   }
7341 
7342   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
7343 }
7344 
7345 void RISCVTargetLowering::LowerAsmOperandForConstraint(
7346     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
7347     SelectionDAG &DAG) const {
7348   // Currently only support length 1 constraints.
7349   if (Constraint.length() == 1) {
7350     switch (Constraint[0]) {
7351     case 'I':
7352       // Validate & create a 12-bit signed immediate operand.
7353       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
7354         uint64_t CVal = C->getSExtValue();
7355         if (isInt<12>(CVal))
7356           Ops.push_back(
7357               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
7358       }
7359       return;
7360     case 'J':
7361       // Validate & create an integer zero operand.
7362       if (auto *C = dyn_cast<ConstantSDNode>(Op))
7363         if (C->getZExtValue() == 0)
7364           Ops.push_back(
7365               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
7366       return;
7367     case 'K':
7368       // Validate & create a 5-bit unsigned immediate operand.
7369       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
7370         uint64_t CVal = C->getZExtValue();
7371         if (isUInt<5>(CVal))
7372           Ops.push_back(
7373               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
7374       }
7375       return;
7376     default:
7377       break;
7378     }
7379   }
7380   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7381 }
7382 
7383 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
7384                                                    Instruction *Inst,
7385                                                    AtomicOrdering Ord) const {
7386   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
7387     return Builder.CreateFence(Ord);
7388   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
7389     return Builder.CreateFence(AtomicOrdering::Release);
7390   return nullptr;
7391 }
7392 
7393 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
7394                                                     Instruction *Inst,
7395                                                     AtomicOrdering Ord) const {
7396   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
7397     return Builder.CreateFence(AtomicOrdering::Acquire);
7398   return nullptr;
7399 }
7400 
7401 TargetLowering::AtomicExpansionKind
7402 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
7403   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
7404   // point operations can't be used in an lr/sc sequence without breaking the
7405   // forward-progress guarantee.
7406   if (AI->isFloatingPointOperation())
7407     return AtomicExpansionKind::CmpXChg;
7408 
7409   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
7410   if (Size == 8 || Size == 16)
7411     return AtomicExpansionKind::MaskedIntrinsic;
7412   return AtomicExpansionKind::None;
7413 }
7414 
7415 static Intrinsic::ID
7416 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
7417   if (XLen == 32) {
7418     switch (BinOp) {
7419     default:
7420       llvm_unreachable("Unexpected AtomicRMW BinOp");
7421     case AtomicRMWInst::Xchg:
7422       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
7423     case AtomicRMWInst::Add:
7424       return Intrinsic::riscv_masked_atomicrmw_add_i32;
7425     case AtomicRMWInst::Sub:
7426       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
7427     case AtomicRMWInst::Nand:
7428       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
7429     case AtomicRMWInst::Max:
7430       return Intrinsic::riscv_masked_atomicrmw_max_i32;
7431     case AtomicRMWInst::Min:
7432       return Intrinsic::riscv_masked_atomicrmw_min_i32;
7433     case AtomicRMWInst::UMax:
7434       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
7435     case AtomicRMWInst::UMin:
7436       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
7437     }
7438   }
7439 
7440   if (XLen == 64) {
7441     switch (BinOp) {
7442     default:
7443       llvm_unreachable("Unexpected AtomicRMW BinOp");
7444     case AtomicRMWInst::Xchg:
7445       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
7446     case AtomicRMWInst::Add:
7447       return Intrinsic::riscv_masked_atomicrmw_add_i64;
7448     case AtomicRMWInst::Sub:
7449       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
7450     case AtomicRMWInst::Nand:
7451       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
7452     case AtomicRMWInst::Max:
7453       return Intrinsic::riscv_masked_atomicrmw_max_i64;
7454     case AtomicRMWInst::Min:
7455       return Intrinsic::riscv_masked_atomicrmw_min_i64;
7456     case AtomicRMWInst::UMax:
7457       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
7458     case AtomicRMWInst::UMin:
7459       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
7460     }
7461   }
7462 
7463   llvm_unreachable("Unexpected XLen\n");
7464 }
7465 
7466 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
7467     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
7468     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
7469   unsigned XLen = Subtarget.getXLen();
7470   Value *Ordering =
7471       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
7472   Type *Tys[] = {AlignedAddr->getType()};
7473   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
7474       AI->getModule(),
7475       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
7476 
7477   if (XLen == 64) {
7478     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
7479     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
7480     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
7481   }
7482 
7483   Value *Result;
7484 
7485   // Must pass the shift amount needed to sign extend the loaded value prior
7486   // to performing a signed comparison for min/max. ShiftAmt is the number of
7487   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
7488   // is the number of bits to left+right shift the value in order to
7489   // sign-extend.
7490   if (AI->getOperation() == AtomicRMWInst::Min ||
7491       AI->getOperation() == AtomicRMWInst::Max) {
7492     const DataLayout &DL = AI->getModule()->getDataLayout();
7493     unsigned ValWidth =
7494         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
7495     Value *SextShamt =
7496         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
7497     Result = Builder.CreateCall(LrwOpScwLoop,
7498                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
7499   } else {
7500     Result =
7501         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
7502   }
7503 
7504   if (XLen == 64)
7505     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
7506   return Result;
7507 }
7508 
7509 TargetLowering::AtomicExpansionKind
7510 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
7511     AtomicCmpXchgInst *CI) const {
7512   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
7513   if (Size == 8 || Size == 16)
7514     return AtomicExpansionKind::MaskedIntrinsic;
7515   return AtomicExpansionKind::None;
7516 }
7517 
7518 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
7519     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
7520     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
7521   unsigned XLen = Subtarget.getXLen();
7522   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
7523   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
7524   if (XLen == 64) {
7525     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
7526     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
7527     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
7528     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
7529   }
7530   Type *Tys[] = {AlignedAddr->getType()};
7531   Function *MaskedCmpXchg =
7532       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
7533   Value *Result = Builder.CreateCall(
7534       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
7535   if (XLen == 64)
7536     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
7537   return Result;
7538 }
7539 
7540 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
7541   return false;
7542 }
7543 
7544 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
7545                                                      EVT VT) const {
7546   VT = VT.getScalarType();
7547 
7548   if (!VT.isSimple())
7549     return false;
7550 
7551   switch (VT.getSimpleVT().SimpleTy) {
7552   case MVT::f16:
7553     return Subtarget.hasStdExtZfh();
7554   case MVT::f32:
7555     return Subtarget.hasStdExtF();
7556   case MVT::f64:
7557     return Subtarget.hasStdExtD();
7558   default:
7559     break;
7560   }
7561 
7562   return false;
7563 }
7564 
7565 Register RISCVTargetLowering::getExceptionPointerRegister(
7566     const Constant *PersonalityFn) const {
7567   return RISCV::X10;
7568 }
7569 
7570 Register RISCVTargetLowering::getExceptionSelectorRegister(
7571     const Constant *PersonalityFn) const {
7572   return RISCV::X11;
7573 }
7574 
7575 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
7576   // Return false to suppress the unnecessary extensions if the LibCall
7577   // arguments or return value is f32 type for LP64 ABI.
7578   RISCVABI::ABI ABI = Subtarget.getTargetABI();
7579   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
7580     return false;
7581 
7582   return true;
7583 }
7584 
7585 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
7586   if (Subtarget.is64Bit() && Type == MVT::i32)
7587     return true;
7588 
7589   return IsSigned;
7590 }
7591 
7592 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
7593                                                  SDValue C) const {
7594   // Check integral scalar types.
7595   if (VT.isScalarInteger()) {
7596     // Omit the optimization if the sub target has the M extension and the data
7597     // size exceeds XLen.
7598     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
7599       return false;
7600     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
7601       // Break the MUL to a SLLI and an ADD/SUB.
7602       const APInt &Imm = ConstNode->getAPIntValue();
7603       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
7604           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
7605         return true;
7606       // Omit the following optimization if the sub target has the M extension
7607       // and the data size >= XLen.
7608       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
7609         return false;
7610       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
7611       // a pair of LUI/ADDI.
7612       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
7613         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
7614         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
7615             (1 - ImmS).isPowerOf2())
7616         return true;
7617       }
7618     }
7619   }
7620 
7621   return false;
7622 }
7623 
7624 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
7625   if (!Subtarget.useRVVForFixedLengthVectors())
7626     return false;
7627 
7628   if (!VT.isFixedLengthVector())
7629     return false;
7630 
7631   // Don't use RVV for vectors we cannot scalarize if required.
7632   switch (VT.getVectorElementType().SimpleTy) {
7633   // i1 is supported but has different rules.
7634   default:
7635     return false;
7636   case MVT::i1:
7637     // Masks can only use a single register.
7638     if (VT.getVectorNumElements() > Subtarget.getMinRVVVectorSizeInBits())
7639       return false;
7640     break;
7641   case MVT::i8:
7642   case MVT::i16:
7643   case MVT::i32:
7644   case MVT::i64:
7645     break;
7646   case MVT::f16:
7647     if (!Subtarget.hasStdExtZfh())
7648       return false;
7649     break;
7650   case MVT::f32:
7651     if (!Subtarget.hasStdExtF())
7652       return false;
7653     break;
7654   case MVT::f64:
7655     if (!Subtarget.hasStdExtD())
7656       return false;
7657     break;
7658   }
7659 
7660   unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
7661   // Don't use RVV for types that don't fit.
7662   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
7663     return false;
7664 
7665   // TODO: Perhaps an artificial restriction, but worth having whilst getting
7666   // the base fixed length RVV support in place.
7667   if (!VT.isPow2VectorType())
7668     return false;
7669 
7670   return true;
7671 }
7672 
7673 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
7674     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
7675     bool *Fast) const {
7676   if (!VT.isScalableVector())
7677     return false;
7678 
7679   EVT ElemVT = VT.getVectorElementType();
7680   if (Alignment >= ElemVT.getStoreSize()) {
7681     if (Fast)
7682       *Fast = true;
7683     return true;
7684   }
7685 
7686   return false;
7687 }
7688 
7689 bool RISCVTargetLowering::splitValueIntoRegisterParts(
7690     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
7691     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
7692   bool IsABIRegCopy = CC.hasValue();
7693   EVT ValueVT = Val.getValueType();
7694   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
7695     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
7696     // and cast to f32.
7697     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
7698     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
7699     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
7700                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
7701     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
7702     Parts[0] = Val;
7703     return true;
7704   }
7705 
7706   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
7707     LLVMContext &Context = *DAG.getContext();
7708     EVT ValueEltVT = ValueVT.getVectorElementType();
7709     EVT PartEltVT = PartVT.getVectorElementType();
7710     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
7711     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
7712     if (PartVTBitSize % ValueVTBitSize == 0) {
7713       // If the element types are different, bitcast to the same element type of
7714       // PartVT first.
7715       if (ValueEltVT != PartEltVT) {
7716         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
7717         assert(Count != 0 && "The number of element should not be zero.");
7718         EVT SameEltTypeVT =
7719             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
7720         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
7721       }
7722       Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
7723                         Val, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
7724       Parts[0] = Val;
7725       return true;
7726     }
7727   }
7728   return false;
7729 }
7730 
7731 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
7732     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
7733     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
7734   bool IsABIRegCopy = CC.hasValue();
7735   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
7736     SDValue Val = Parts[0];
7737 
7738     // Cast the f32 to i32, truncate to i16, and cast back to f16.
7739     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
7740     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
7741     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
7742     return Val;
7743   }
7744 
7745   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
7746     LLVMContext &Context = *DAG.getContext();
7747     SDValue Val = Parts[0];
7748     EVT ValueEltVT = ValueVT.getVectorElementType();
7749     EVT PartEltVT = PartVT.getVectorElementType();
7750     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
7751     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
7752     if (PartVTBitSize % ValueVTBitSize == 0) {
7753       EVT SameEltTypeVT = ValueVT;
7754       // If the element types are different, convert it to the same element type
7755       // of PartVT.
7756       if (ValueEltVT != PartEltVT) {
7757         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
7758         assert(Count != 0 && "The number of element should not be zero.");
7759         SameEltTypeVT =
7760             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
7761       }
7762       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val,
7763                         DAG.getConstant(0, DL, Subtarget.getXLenVT()));
7764       if (ValueEltVT != PartEltVT)
7765         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
7766       return Val;
7767     }
7768   }
7769   return SDValue();
7770 }
7771 
7772 #define GET_REGISTER_MATCHER
7773 #include "RISCVGenAsmMatcher.inc"
7774 
7775 Register
7776 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
7777                                        const MachineFunction &MF) const {
7778   Register Reg = MatchRegisterAltName(RegName);
7779   if (Reg == RISCV::NoRegister)
7780     Reg = MatchRegisterName(RegName);
7781   if (Reg == RISCV::NoRegister)
7782     report_fatal_error(
7783         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
7784   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
7785   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
7786     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
7787                              StringRef(RegName) + "\"."));
7788   return Reg;
7789 }
7790 
7791 namespace llvm {
7792 namespace RISCVVIntrinsicsTable {
7793 
7794 #define GET_RISCVVIntrinsicsTable_IMPL
7795 #include "RISCVGenSearchableTables.inc"
7796 
7797 } // namespace RISCVVIntrinsicsTable
7798 
7799 } // namespace llvm
7800