1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 254 Subtarget.hasStdExtZbkb()) { 255 if (Subtarget.is64Bit()) { 256 setOperationAction(ISD::ROTL, MVT::i32, Custom); 257 setOperationAction(ISD::ROTR, MVT::i32, Custom); 258 } 259 } else { 260 setOperationAction(ISD::ROTL, XLenVT, Expand); 261 setOperationAction(ISD::ROTR, XLenVT, Expand); 262 } 263 264 if (Subtarget.hasStdExtZbp()) { 265 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 266 // more combining. 267 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 268 setOperationAction(ISD::BSWAP, XLenVT, Custom); 269 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 270 // BSWAP i8 doesn't exist. 271 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 272 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 273 274 if (Subtarget.is64Bit()) { 275 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 276 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 277 } 278 } else { 279 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 280 // pattern match it directly in isel. 281 setOperationAction(ISD::BSWAP, XLenVT, 282 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 283 ? Legal 284 : Expand); 285 // Zbkb can use rev8+brev8 to implement bitreverse. 286 setOperationAction(ISD::BITREVERSE, XLenVT, 287 Subtarget.hasStdExtZbkb() ? Custom : Expand); 288 } 289 290 if (Subtarget.hasStdExtZbb()) { 291 setOperationAction(ISD::SMIN, XLenVT, Legal); 292 setOperationAction(ISD::SMAX, XLenVT, Legal); 293 setOperationAction(ISD::UMIN, XLenVT, Legal); 294 setOperationAction(ISD::UMAX, XLenVT, Legal); 295 296 if (Subtarget.is64Bit()) { 297 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 298 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 299 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 300 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 301 } 302 } else { 303 setOperationAction(ISD::CTTZ, XLenVT, Expand); 304 setOperationAction(ISD::CTLZ, XLenVT, Expand); 305 setOperationAction(ISD::CTPOP, XLenVT, Expand); 306 } 307 308 if (Subtarget.hasStdExtZbt()) { 309 setOperationAction(ISD::FSHL, XLenVT, Custom); 310 setOperationAction(ISD::FSHR, XLenVT, Custom); 311 setOperationAction(ISD::SELECT, XLenVT, Legal); 312 313 if (Subtarget.is64Bit()) { 314 setOperationAction(ISD::FSHL, MVT::i32, Custom); 315 setOperationAction(ISD::FSHR, MVT::i32, Custom); 316 } 317 } else { 318 setOperationAction(ISD::SELECT, XLenVT, Custom); 319 } 320 321 static const ISD::CondCode FPCCToExpand[] = { 322 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 323 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 324 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 325 326 static const ISD::NodeType FPOpToExpand[] = { 327 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 328 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 329 330 if (Subtarget.hasStdExtZfh()) 331 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 332 333 if (Subtarget.hasStdExtZfh()) { 334 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 335 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 336 setOperationAction(ISD::LRINT, MVT::f16, Legal); 337 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 338 setOperationAction(ISD::LROUND, MVT::f16, Legal); 339 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 340 setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal); 341 setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal); 342 setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal); 343 setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal); 344 setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); 345 setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); 346 setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); 348 setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); 349 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 350 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); 352 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal); 353 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal); 354 for (auto CC : FPCCToExpand) 355 setCondCodeAction(CC, MVT::f16, Expand); 356 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 357 setOperationAction(ISD::SELECT, MVT::f16, Custom); 358 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 359 360 setOperationAction(ISD::FREM, MVT::f16, Promote); 361 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 362 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 363 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 364 setOperationAction(ISD::FRINT, MVT::f16, Promote); 365 setOperationAction(ISD::FROUND, MVT::f16, Promote); 366 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 367 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 368 setOperationAction(ISD::FPOW, MVT::f16, Promote); 369 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 370 setOperationAction(ISD::FCOS, MVT::f16, Promote); 371 setOperationAction(ISD::FSIN, MVT::f16, Promote); 372 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 373 setOperationAction(ISD::FEXP, MVT::f16, Promote); 374 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 375 setOperationAction(ISD::FLOG, MVT::f16, Promote); 376 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 377 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 378 379 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 380 // complete support for all operations in LegalizeDAG. 381 382 // We need to custom promote this. 383 if (Subtarget.is64Bit()) 384 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 385 } 386 387 if (Subtarget.hasStdExtF()) { 388 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 389 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 390 setOperationAction(ISD::LRINT, MVT::f32, Legal); 391 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 392 setOperationAction(ISD::LROUND, MVT::f32, Legal); 393 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 394 setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal); 395 setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal); 396 setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal); 397 setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal); 398 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 399 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 400 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 401 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 402 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 403 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 404 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 405 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 406 for (auto CC : FPCCToExpand) 407 setCondCodeAction(CC, MVT::f32, Expand); 408 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 409 setOperationAction(ISD::SELECT, MVT::f32, Custom); 410 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 411 for (auto Op : FPOpToExpand) 412 setOperationAction(Op, MVT::f32, Expand); 413 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 414 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 415 } 416 417 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 418 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 419 420 if (Subtarget.hasStdExtD()) { 421 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 422 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 423 setOperationAction(ISD::LRINT, MVT::f64, Legal); 424 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 425 setOperationAction(ISD::LROUND, MVT::f64, Legal); 426 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 427 setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal); 428 setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal); 429 setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal); 430 setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal); 431 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 432 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 433 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 434 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 435 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 436 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 437 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 438 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 439 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 440 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 441 for (auto CC : FPCCToExpand) 442 setCondCodeAction(CC, MVT::f64, Expand); 443 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 444 setOperationAction(ISD::SELECT, MVT::f64, Custom); 445 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 446 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 447 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 448 for (auto Op : FPOpToExpand) 449 setOperationAction(Op, MVT::f64, Expand); 450 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 451 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 452 } 453 454 if (Subtarget.is64Bit()) { 455 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 456 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 457 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 458 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 459 } 460 461 if (Subtarget.hasStdExtF()) { 462 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 463 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 464 465 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 466 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 467 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 468 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 469 470 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 471 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 472 } 473 474 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 475 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 476 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 477 setOperationAction(ISD::JumpTable, XLenVT, Custom); 478 479 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 480 481 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 482 // Unfortunately this can't be determined just from the ISA naming string. 483 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 484 Subtarget.is64Bit() ? Legal : Custom); 485 486 setOperationAction(ISD::TRAP, MVT::Other, Legal); 487 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 488 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 489 if (Subtarget.is64Bit()) 490 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 491 492 if (Subtarget.hasStdExtA()) { 493 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 494 setMinCmpXchgSizeInBits(32); 495 } else { 496 setMaxAtomicSizeInBitsSupported(0); 497 } 498 499 setBooleanContents(ZeroOrOneBooleanContent); 500 501 if (Subtarget.hasVInstructions()) { 502 setBooleanVectorContents(ZeroOrOneBooleanContent); 503 504 setOperationAction(ISD::VSCALE, XLenVT, Custom); 505 506 // RVV intrinsics may have illegal operands. 507 // We also need to custom legalize vmv.x.s. 508 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 509 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 510 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 511 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 512 if (Subtarget.is64Bit()) { 513 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 514 } else { 515 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 516 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 517 } 518 519 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 520 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 521 522 static const unsigned IntegerVPOps[] = { 523 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 524 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 525 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 526 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 527 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 528 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 529 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 530 ISD::VP_MERGE, ISD::VP_SELECT}; 531 532 static const unsigned FloatingPointVPOps[] = { 533 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 534 ISD::VP_FDIV, ISD::VP_FNEG, ISD::VP_FMA, 535 ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN, 536 ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, ISD::VP_SELECT}; 537 538 if (!Subtarget.is64Bit()) { 539 // We must custom-lower certain vXi64 operations on RV32 due to the vector 540 // element type being illegal. 541 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 542 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 543 544 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 545 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 546 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 547 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 548 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 549 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 550 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 551 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 552 553 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 554 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 555 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 556 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 557 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 558 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 559 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 560 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 561 } 562 563 for (MVT VT : BoolVecVTs) { 564 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 565 566 // Mask VTs are custom-expanded into a series of standard nodes 567 setOperationAction(ISD::TRUNCATE, VT, Custom); 568 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 569 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 570 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 571 572 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 573 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 574 575 setOperationAction(ISD::SELECT, VT, Custom); 576 setOperationAction(ISD::SELECT_CC, VT, Expand); 577 setOperationAction(ISD::VSELECT, VT, Expand); 578 setOperationAction(ISD::VP_MERGE, VT, Expand); 579 setOperationAction(ISD::VP_SELECT, VT, Expand); 580 581 setOperationAction(ISD::VP_AND, VT, Custom); 582 setOperationAction(ISD::VP_OR, VT, Custom); 583 setOperationAction(ISD::VP_XOR, VT, Custom); 584 585 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 586 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 587 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 588 589 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 590 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 591 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 592 593 // RVV has native int->float & float->int conversions where the 594 // element type sizes are within one power-of-two of each other. Any 595 // wider distances between type sizes have to be lowered as sequences 596 // which progressively narrow the gap in stages. 597 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 598 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 599 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 600 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 601 602 // Expand all extending loads to types larger than this, and truncating 603 // stores from types larger than this. 604 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 605 setTruncStoreAction(OtherVT, VT, Expand); 606 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 607 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 608 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 609 } 610 } 611 612 for (MVT VT : IntVecVTs) { 613 if (VT.getVectorElementType() == MVT::i64 && 614 !Subtarget.hasVInstructionsI64()) 615 continue; 616 617 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 618 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 619 620 // Vectors implement MULHS/MULHU. 621 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 622 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 623 624 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 625 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) { 626 setOperationAction(ISD::MULHU, VT, Expand); 627 setOperationAction(ISD::MULHS, VT, Expand); 628 } 629 630 setOperationAction(ISD::SMIN, VT, Legal); 631 setOperationAction(ISD::SMAX, VT, Legal); 632 setOperationAction(ISD::UMIN, VT, Legal); 633 setOperationAction(ISD::UMAX, VT, Legal); 634 635 setOperationAction(ISD::ROTL, VT, Expand); 636 setOperationAction(ISD::ROTR, VT, Expand); 637 638 setOperationAction(ISD::CTTZ, VT, Expand); 639 setOperationAction(ISD::CTLZ, VT, Expand); 640 setOperationAction(ISD::CTPOP, VT, Expand); 641 642 setOperationAction(ISD::BSWAP, VT, Expand); 643 644 // Custom-lower extensions and truncations from/to mask types. 645 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 646 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 647 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 648 649 // RVV has native int->float & float->int conversions where the 650 // element type sizes are within one power-of-two of each other. Any 651 // wider distances between type sizes have to be lowered as sequences 652 // which progressively narrow the gap in stages. 653 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 654 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 655 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 656 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 657 658 setOperationAction(ISD::SADDSAT, VT, Legal); 659 setOperationAction(ISD::UADDSAT, VT, Legal); 660 setOperationAction(ISD::SSUBSAT, VT, Legal); 661 setOperationAction(ISD::USUBSAT, VT, Legal); 662 663 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 664 // nodes which truncate by one power of two at a time. 665 setOperationAction(ISD::TRUNCATE, VT, Custom); 666 667 // Custom-lower insert/extract operations to simplify patterns. 668 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 669 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 670 671 // Custom-lower reduction operations to set up the corresponding custom 672 // nodes' operands. 673 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 674 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 675 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 676 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 677 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 678 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 679 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 680 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 681 682 for (unsigned VPOpc : IntegerVPOps) 683 setOperationAction(VPOpc, VT, Custom); 684 685 setOperationAction(ISD::LOAD, VT, Custom); 686 setOperationAction(ISD::STORE, VT, Custom); 687 688 setOperationAction(ISD::MLOAD, VT, Custom); 689 setOperationAction(ISD::MSTORE, VT, Custom); 690 setOperationAction(ISD::MGATHER, VT, Custom); 691 setOperationAction(ISD::MSCATTER, VT, Custom); 692 693 setOperationAction(ISD::VP_LOAD, VT, Custom); 694 setOperationAction(ISD::VP_STORE, VT, Custom); 695 setOperationAction(ISD::VP_GATHER, VT, Custom); 696 setOperationAction(ISD::VP_SCATTER, VT, Custom); 697 698 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 699 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 700 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 701 702 setOperationAction(ISD::SELECT, VT, Custom); 703 setOperationAction(ISD::SELECT_CC, VT, Expand); 704 705 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 706 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 707 708 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 709 setTruncStoreAction(VT, OtherVT, Expand); 710 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 711 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 712 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 713 } 714 715 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 716 // type that can represent the value exactly. 717 if (VT.getVectorElementType() != MVT::i64) { 718 MVT FloatEltVT = 719 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 720 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 721 if (isTypeLegal(FloatVT)) { 722 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 723 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 724 } 725 } 726 } 727 728 // Expand various CCs to best match the RVV ISA, which natively supports UNE 729 // but no other unordered comparisons, and supports all ordered comparisons 730 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 731 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 732 // and we pattern-match those back to the "original", swapping operands once 733 // more. This way we catch both operations and both "vf" and "fv" forms with 734 // fewer patterns. 735 static const ISD::CondCode VFPCCToExpand[] = { 736 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 737 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 738 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 739 }; 740 741 // Sets common operation actions on RVV floating-point vector types. 742 const auto SetCommonVFPActions = [&](MVT VT) { 743 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 744 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 745 // sizes are within one power-of-two of each other. Therefore conversions 746 // between vXf16 and vXf64 must be lowered as sequences which convert via 747 // vXf32. 748 setOperationAction(ISD::FP_ROUND, VT, Custom); 749 setOperationAction(ISD::FP_EXTEND, VT, Custom); 750 // Custom-lower insert/extract operations to simplify patterns. 751 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 752 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 753 // Expand various condition codes (explained above). 754 for (auto CC : VFPCCToExpand) 755 setCondCodeAction(CC, VT, Expand); 756 757 setOperationAction(ISD::FMINNUM, VT, Legal); 758 setOperationAction(ISD::FMAXNUM, VT, Legal); 759 760 setOperationAction(ISD::FTRUNC, VT, Custom); 761 setOperationAction(ISD::FCEIL, VT, Custom); 762 setOperationAction(ISD::FFLOOR, VT, Custom); 763 setOperationAction(ISD::FROUND, VT, Custom); 764 765 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 766 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 767 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 768 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 769 770 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 771 772 setOperationAction(ISD::LOAD, VT, Custom); 773 setOperationAction(ISD::STORE, VT, Custom); 774 775 setOperationAction(ISD::MLOAD, VT, Custom); 776 setOperationAction(ISD::MSTORE, VT, Custom); 777 setOperationAction(ISD::MGATHER, VT, Custom); 778 setOperationAction(ISD::MSCATTER, VT, Custom); 779 780 setOperationAction(ISD::VP_LOAD, VT, Custom); 781 setOperationAction(ISD::VP_STORE, VT, Custom); 782 setOperationAction(ISD::VP_GATHER, VT, Custom); 783 setOperationAction(ISD::VP_SCATTER, VT, Custom); 784 785 setOperationAction(ISD::SELECT, VT, Custom); 786 setOperationAction(ISD::SELECT_CC, VT, Expand); 787 788 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 789 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 790 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 791 792 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 793 794 for (unsigned VPOpc : FloatingPointVPOps) 795 setOperationAction(VPOpc, VT, Custom); 796 }; 797 798 // Sets common extload/truncstore actions on RVV floating-point vector 799 // types. 800 const auto SetCommonVFPExtLoadTruncStoreActions = 801 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 802 for (auto SmallVT : SmallerVTs) { 803 setTruncStoreAction(VT, SmallVT, Expand); 804 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 805 } 806 }; 807 808 if (Subtarget.hasVInstructionsF16()) 809 for (MVT VT : F16VecVTs) 810 SetCommonVFPActions(VT); 811 812 for (MVT VT : F32VecVTs) { 813 if (Subtarget.hasVInstructionsF32()) 814 SetCommonVFPActions(VT); 815 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 816 } 817 818 for (MVT VT : F64VecVTs) { 819 if (Subtarget.hasVInstructionsF64()) 820 SetCommonVFPActions(VT); 821 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 822 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 823 } 824 825 if (Subtarget.useRVVForFixedLengthVectors()) { 826 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 827 if (!useRVVForFixedLengthVectorVT(VT)) 828 continue; 829 830 // By default everything must be expanded. 831 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 832 setOperationAction(Op, VT, Expand); 833 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 834 setTruncStoreAction(VT, OtherVT, Expand); 835 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 836 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 837 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 838 } 839 840 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 841 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 842 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 843 844 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 845 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 846 847 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 848 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 849 850 setOperationAction(ISD::LOAD, VT, Custom); 851 setOperationAction(ISD::STORE, VT, Custom); 852 853 setOperationAction(ISD::SETCC, VT, Custom); 854 855 setOperationAction(ISD::SELECT, VT, Custom); 856 857 setOperationAction(ISD::TRUNCATE, VT, Custom); 858 859 setOperationAction(ISD::BITCAST, VT, Custom); 860 861 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 862 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 863 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 864 865 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 866 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 867 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 868 869 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 870 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 871 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 872 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 873 874 // Operations below are different for between masks and other vectors. 875 if (VT.getVectorElementType() == MVT::i1) { 876 setOperationAction(ISD::VP_AND, VT, Custom); 877 setOperationAction(ISD::VP_OR, VT, Custom); 878 setOperationAction(ISD::VP_XOR, VT, Custom); 879 setOperationAction(ISD::AND, VT, Custom); 880 setOperationAction(ISD::OR, VT, Custom); 881 setOperationAction(ISD::XOR, VT, Custom); 882 continue; 883 } 884 885 // Use SPLAT_VECTOR to prevent type legalization from destroying the 886 // splats when type legalizing i64 scalar on RV32. 887 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 888 // improvements first. 889 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 890 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 891 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 892 } 893 894 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 895 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 896 897 setOperationAction(ISD::MLOAD, VT, Custom); 898 setOperationAction(ISD::MSTORE, VT, Custom); 899 setOperationAction(ISD::MGATHER, VT, Custom); 900 setOperationAction(ISD::MSCATTER, VT, Custom); 901 902 setOperationAction(ISD::VP_LOAD, VT, Custom); 903 setOperationAction(ISD::VP_STORE, VT, Custom); 904 setOperationAction(ISD::VP_GATHER, VT, Custom); 905 setOperationAction(ISD::VP_SCATTER, VT, Custom); 906 907 setOperationAction(ISD::ADD, VT, Custom); 908 setOperationAction(ISD::MUL, VT, Custom); 909 setOperationAction(ISD::SUB, VT, Custom); 910 setOperationAction(ISD::AND, VT, Custom); 911 setOperationAction(ISD::OR, VT, Custom); 912 setOperationAction(ISD::XOR, VT, Custom); 913 setOperationAction(ISD::SDIV, VT, Custom); 914 setOperationAction(ISD::SREM, VT, Custom); 915 setOperationAction(ISD::UDIV, VT, Custom); 916 setOperationAction(ISD::UREM, VT, Custom); 917 setOperationAction(ISD::SHL, VT, Custom); 918 setOperationAction(ISD::SRA, VT, Custom); 919 setOperationAction(ISD::SRL, VT, Custom); 920 921 setOperationAction(ISD::SMIN, VT, Custom); 922 setOperationAction(ISD::SMAX, VT, Custom); 923 setOperationAction(ISD::UMIN, VT, Custom); 924 setOperationAction(ISD::UMAX, VT, Custom); 925 setOperationAction(ISD::ABS, VT, Custom); 926 927 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 928 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) { 929 setOperationAction(ISD::MULHS, VT, Custom); 930 setOperationAction(ISD::MULHU, VT, Custom); 931 } 932 933 setOperationAction(ISD::SADDSAT, VT, Custom); 934 setOperationAction(ISD::UADDSAT, VT, Custom); 935 setOperationAction(ISD::SSUBSAT, VT, Custom); 936 setOperationAction(ISD::USUBSAT, VT, Custom); 937 938 setOperationAction(ISD::VSELECT, VT, Custom); 939 setOperationAction(ISD::SELECT_CC, VT, Expand); 940 941 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 942 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 943 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 944 945 // Custom-lower reduction operations to set up the corresponding custom 946 // nodes' operands. 947 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 948 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 949 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 950 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 951 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 952 953 for (unsigned VPOpc : IntegerVPOps) 954 setOperationAction(VPOpc, VT, Custom); 955 956 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 957 // type that can represent the value exactly. 958 if (VT.getVectorElementType() != MVT::i64) { 959 MVT FloatEltVT = 960 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 961 EVT FloatVT = 962 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 963 if (isTypeLegal(FloatVT)) { 964 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 965 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 966 } 967 } 968 } 969 970 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 971 if (!useRVVForFixedLengthVectorVT(VT)) 972 continue; 973 974 // By default everything must be expanded. 975 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 976 setOperationAction(Op, VT, Expand); 977 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 978 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 979 setTruncStoreAction(VT, OtherVT, Expand); 980 } 981 982 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 983 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 984 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 985 986 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 987 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 988 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 989 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 990 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 991 992 setOperationAction(ISD::LOAD, VT, Custom); 993 setOperationAction(ISD::STORE, VT, Custom); 994 setOperationAction(ISD::MLOAD, VT, Custom); 995 setOperationAction(ISD::MSTORE, VT, Custom); 996 setOperationAction(ISD::MGATHER, VT, Custom); 997 setOperationAction(ISD::MSCATTER, VT, Custom); 998 999 setOperationAction(ISD::VP_LOAD, VT, Custom); 1000 setOperationAction(ISD::VP_STORE, VT, Custom); 1001 setOperationAction(ISD::VP_GATHER, VT, Custom); 1002 setOperationAction(ISD::VP_SCATTER, VT, Custom); 1003 1004 setOperationAction(ISD::FADD, VT, Custom); 1005 setOperationAction(ISD::FSUB, VT, Custom); 1006 setOperationAction(ISD::FMUL, VT, Custom); 1007 setOperationAction(ISD::FDIV, VT, Custom); 1008 setOperationAction(ISD::FNEG, VT, Custom); 1009 setOperationAction(ISD::FABS, VT, Custom); 1010 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 1011 setOperationAction(ISD::FSQRT, VT, Custom); 1012 setOperationAction(ISD::FMA, VT, Custom); 1013 setOperationAction(ISD::FMINNUM, VT, Custom); 1014 setOperationAction(ISD::FMAXNUM, VT, Custom); 1015 1016 setOperationAction(ISD::FP_ROUND, VT, Custom); 1017 setOperationAction(ISD::FP_EXTEND, VT, Custom); 1018 1019 setOperationAction(ISD::FTRUNC, VT, Custom); 1020 setOperationAction(ISD::FCEIL, VT, Custom); 1021 setOperationAction(ISD::FFLOOR, VT, Custom); 1022 setOperationAction(ISD::FROUND, VT, Custom); 1023 1024 for (auto CC : VFPCCToExpand) 1025 setCondCodeAction(CC, VT, Expand); 1026 1027 setOperationAction(ISD::VSELECT, VT, Custom); 1028 setOperationAction(ISD::SELECT, VT, Custom); 1029 setOperationAction(ISD::SELECT_CC, VT, Expand); 1030 1031 setOperationAction(ISD::BITCAST, VT, Custom); 1032 1033 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1034 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1035 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1036 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1037 1038 for (unsigned VPOpc : FloatingPointVPOps) 1039 setOperationAction(VPOpc, VT, Custom); 1040 } 1041 1042 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1043 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1044 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1045 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1046 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1047 if (Subtarget.hasStdExtZfh()) 1048 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1049 if (Subtarget.hasStdExtF()) 1050 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1051 if (Subtarget.hasStdExtD()) 1052 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1053 } 1054 } 1055 1056 // Function alignments. 1057 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1058 setMinFunctionAlignment(FunctionAlignment); 1059 setPrefFunctionAlignment(FunctionAlignment); 1060 1061 setMinimumJumpTableEntries(5); 1062 1063 // Jumps are expensive, compared to logic 1064 setJumpIsExpensive(); 1065 1066 setTargetDAGCombine(ISD::ADD); 1067 setTargetDAGCombine(ISD::SUB); 1068 setTargetDAGCombine(ISD::AND); 1069 setTargetDAGCombine(ISD::OR); 1070 setTargetDAGCombine(ISD::XOR); 1071 setTargetDAGCombine(ISD::ROTL); 1072 setTargetDAGCombine(ISD::ROTR); 1073 setTargetDAGCombine(ISD::ANY_EXTEND); 1074 if (Subtarget.hasStdExtF()) { 1075 setTargetDAGCombine(ISD::ZERO_EXTEND); 1076 setTargetDAGCombine(ISD::FP_TO_SINT); 1077 setTargetDAGCombine(ISD::FP_TO_UINT); 1078 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 1079 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 1080 } 1081 if (Subtarget.hasVInstructions()) { 1082 setTargetDAGCombine(ISD::FCOPYSIGN); 1083 setTargetDAGCombine(ISD::MGATHER); 1084 setTargetDAGCombine(ISD::MSCATTER); 1085 setTargetDAGCombine(ISD::VP_GATHER); 1086 setTargetDAGCombine(ISD::VP_SCATTER); 1087 setTargetDAGCombine(ISD::SRA); 1088 setTargetDAGCombine(ISD::SRL); 1089 setTargetDAGCombine(ISD::SHL); 1090 setTargetDAGCombine(ISD::STORE); 1091 setTargetDAGCombine(ISD::SPLAT_VECTOR); 1092 } 1093 1094 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 1095 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 1096 } 1097 1098 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1099 LLVMContext &Context, 1100 EVT VT) const { 1101 if (!VT.isVector()) 1102 return getPointerTy(DL); 1103 if (Subtarget.hasVInstructions() && 1104 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1105 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1106 return VT.changeVectorElementTypeToInteger(); 1107 } 1108 1109 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1110 return Subtarget.getXLenVT(); 1111 } 1112 1113 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1114 const CallInst &I, 1115 MachineFunction &MF, 1116 unsigned Intrinsic) const { 1117 auto &DL = I.getModule()->getDataLayout(); 1118 switch (Intrinsic) { 1119 default: 1120 return false; 1121 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1122 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1123 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1124 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1125 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1126 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1127 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1128 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1129 case Intrinsic::riscv_masked_cmpxchg_i32: 1130 Info.opc = ISD::INTRINSIC_W_CHAIN; 1131 Info.memVT = MVT::i32; 1132 Info.ptrVal = I.getArgOperand(0); 1133 Info.offset = 0; 1134 Info.align = Align(4); 1135 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1136 MachineMemOperand::MOVolatile; 1137 return true; 1138 case Intrinsic::riscv_masked_strided_load: 1139 Info.opc = ISD::INTRINSIC_W_CHAIN; 1140 Info.ptrVal = I.getArgOperand(1); 1141 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1142 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1143 Info.size = MemoryLocation::UnknownSize; 1144 Info.flags |= MachineMemOperand::MOLoad; 1145 return true; 1146 case Intrinsic::riscv_masked_strided_store: 1147 Info.opc = ISD::INTRINSIC_VOID; 1148 Info.ptrVal = I.getArgOperand(1); 1149 Info.memVT = 1150 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1151 Info.align = Align( 1152 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1153 8); 1154 Info.size = MemoryLocation::UnknownSize; 1155 Info.flags |= MachineMemOperand::MOStore; 1156 return true; 1157 } 1158 } 1159 1160 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1161 const AddrMode &AM, Type *Ty, 1162 unsigned AS, 1163 Instruction *I) const { 1164 // No global is ever allowed as a base. 1165 if (AM.BaseGV) 1166 return false; 1167 1168 // Require a 12-bit signed offset. 1169 if (!isInt<12>(AM.BaseOffs)) 1170 return false; 1171 1172 switch (AM.Scale) { 1173 case 0: // "r+i" or just "i", depending on HasBaseReg. 1174 break; 1175 case 1: 1176 if (!AM.HasBaseReg) // allow "r+i". 1177 break; 1178 return false; // disallow "r+r" or "r+r+i". 1179 default: 1180 return false; 1181 } 1182 1183 return true; 1184 } 1185 1186 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1187 return isInt<12>(Imm); 1188 } 1189 1190 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1191 return isInt<12>(Imm); 1192 } 1193 1194 // On RV32, 64-bit integers are split into their high and low parts and held 1195 // in two different registers, so the trunc is free since the low register can 1196 // just be used. 1197 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1198 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1199 return false; 1200 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1201 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1202 return (SrcBits == 64 && DestBits == 32); 1203 } 1204 1205 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1206 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1207 !SrcVT.isInteger() || !DstVT.isInteger()) 1208 return false; 1209 unsigned SrcBits = SrcVT.getSizeInBits(); 1210 unsigned DestBits = DstVT.getSizeInBits(); 1211 return (SrcBits == 64 && DestBits == 32); 1212 } 1213 1214 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1215 // Zexts are free if they can be combined with a load. 1216 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1217 // poorly with type legalization of compares preferring sext. 1218 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1219 EVT MemVT = LD->getMemoryVT(); 1220 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1221 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1222 LD->getExtensionType() == ISD::ZEXTLOAD)) 1223 return true; 1224 } 1225 1226 return TargetLowering::isZExtFree(Val, VT2); 1227 } 1228 1229 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1230 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1231 } 1232 1233 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1234 return Subtarget.hasStdExtZbb(); 1235 } 1236 1237 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1238 return Subtarget.hasStdExtZbb(); 1239 } 1240 1241 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1242 EVT VT = Y.getValueType(); 1243 1244 // FIXME: Support vectors once we have tests. 1245 if (VT.isVector()) 1246 return false; 1247 1248 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1249 Subtarget.hasStdExtZbkb()) && 1250 !isa<ConstantSDNode>(Y); 1251 } 1252 1253 /// Check if sinking \p I's operands to I's basic block is profitable, because 1254 /// the operands can be folded into a target instruction, e.g. 1255 /// splats of scalars can fold into vector instructions. 1256 bool RISCVTargetLowering::shouldSinkOperands( 1257 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1258 using namespace llvm::PatternMatch; 1259 1260 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1261 return false; 1262 1263 auto IsSinker = [&](Instruction *I, int Operand) { 1264 switch (I->getOpcode()) { 1265 case Instruction::Add: 1266 case Instruction::Sub: 1267 case Instruction::Mul: 1268 case Instruction::And: 1269 case Instruction::Or: 1270 case Instruction::Xor: 1271 case Instruction::FAdd: 1272 case Instruction::FSub: 1273 case Instruction::FMul: 1274 case Instruction::FDiv: 1275 case Instruction::ICmp: 1276 case Instruction::FCmp: 1277 return true; 1278 case Instruction::Shl: 1279 case Instruction::LShr: 1280 case Instruction::AShr: 1281 case Instruction::UDiv: 1282 case Instruction::SDiv: 1283 case Instruction::URem: 1284 case Instruction::SRem: 1285 return Operand == 1; 1286 case Instruction::Call: 1287 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1288 switch (II->getIntrinsicID()) { 1289 case Intrinsic::fma: 1290 return Operand == 0 || Operand == 1; 1291 // FIXME: Our patterns can only match vx/vf instructions when the splat 1292 // it on the RHS, because TableGen doesn't recognize our VP operations 1293 // as commutative. 1294 case Intrinsic::vp_add: 1295 case Intrinsic::vp_mul: 1296 case Intrinsic::vp_and: 1297 case Intrinsic::vp_or: 1298 case Intrinsic::vp_xor: 1299 case Intrinsic::vp_fadd: 1300 case Intrinsic::vp_fmul: 1301 case Intrinsic::vp_shl: 1302 case Intrinsic::vp_lshr: 1303 case Intrinsic::vp_ashr: 1304 case Intrinsic::vp_udiv: 1305 case Intrinsic::vp_sdiv: 1306 case Intrinsic::vp_urem: 1307 case Intrinsic::vp_srem: 1308 return Operand == 1; 1309 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1310 // explicit patterns for both LHS and RHS (as 'vr' versions). 1311 case Intrinsic::vp_sub: 1312 case Intrinsic::vp_fsub: 1313 case Intrinsic::vp_fdiv: 1314 return Operand == 0 || Operand == 1; 1315 default: 1316 return false; 1317 } 1318 } 1319 return false; 1320 default: 1321 return false; 1322 } 1323 }; 1324 1325 for (auto OpIdx : enumerate(I->operands())) { 1326 if (!IsSinker(I, OpIdx.index())) 1327 continue; 1328 1329 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1330 // Make sure we are not already sinking this operand 1331 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1332 continue; 1333 1334 // We are looking for a splat that can be sunk. 1335 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1336 m_Undef(), m_ZeroMask()))) 1337 continue; 1338 1339 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1340 // and vector registers 1341 for (Use &U : Op->uses()) { 1342 Instruction *Insn = cast<Instruction>(U.getUser()); 1343 if (!IsSinker(Insn, U.getOperandNo())) 1344 return false; 1345 } 1346 1347 Ops.push_back(&Op->getOperandUse(0)); 1348 Ops.push_back(&OpIdx.value()); 1349 } 1350 return true; 1351 } 1352 1353 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1354 bool ForCodeSize) const { 1355 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1356 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1357 return false; 1358 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1359 return false; 1360 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1361 return false; 1362 return Imm.isZero(); 1363 } 1364 1365 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1366 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1367 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1368 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1369 } 1370 1371 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1372 CallingConv::ID CC, 1373 EVT VT) const { 1374 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1375 // We might still end up using a GPR but that will be decided based on ABI. 1376 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1377 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1378 return MVT::f32; 1379 1380 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1381 } 1382 1383 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1384 CallingConv::ID CC, 1385 EVT VT) const { 1386 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1387 // We might still end up using a GPR but that will be decided based on ABI. 1388 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1389 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1390 return 1; 1391 1392 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1393 } 1394 1395 // Changes the condition code and swaps operands if necessary, so the SetCC 1396 // operation matches one of the comparisons supported directly by branches 1397 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1398 // with 1/-1. 1399 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1400 ISD::CondCode &CC, SelectionDAG &DAG) { 1401 // Convert X > -1 to X >= 0. 1402 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1403 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1404 CC = ISD::SETGE; 1405 return; 1406 } 1407 // Convert X < 1 to 0 >= X. 1408 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1409 RHS = LHS; 1410 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1411 CC = ISD::SETGE; 1412 return; 1413 } 1414 1415 switch (CC) { 1416 default: 1417 break; 1418 case ISD::SETGT: 1419 case ISD::SETLE: 1420 case ISD::SETUGT: 1421 case ISD::SETULE: 1422 CC = ISD::getSetCCSwappedOperands(CC); 1423 std::swap(LHS, RHS); 1424 break; 1425 } 1426 } 1427 1428 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1429 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1430 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1431 if (VT.getVectorElementType() == MVT::i1) 1432 KnownSize *= 8; 1433 1434 switch (KnownSize) { 1435 default: 1436 llvm_unreachable("Invalid LMUL."); 1437 case 8: 1438 return RISCVII::VLMUL::LMUL_F8; 1439 case 16: 1440 return RISCVII::VLMUL::LMUL_F4; 1441 case 32: 1442 return RISCVII::VLMUL::LMUL_F2; 1443 case 64: 1444 return RISCVII::VLMUL::LMUL_1; 1445 case 128: 1446 return RISCVII::VLMUL::LMUL_2; 1447 case 256: 1448 return RISCVII::VLMUL::LMUL_4; 1449 case 512: 1450 return RISCVII::VLMUL::LMUL_8; 1451 } 1452 } 1453 1454 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1455 switch (LMul) { 1456 default: 1457 llvm_unreachable("Invalid LMUL."); 1458 case RISCVII::VLMUL::LMUL_F8: 1459 case RISCVII::VLMUL::LMUL_F4: 1460 case RISCVII::VLMUL::LMUL_F2: 1461 case RISCVII::VLMUL::LMUL_1: 1462 return RISCV::VRRegClassID; 1463 case RISCVII::VLMUL::LMUL_2: 1464 return RISCV::VRM2RegClassID; 1465 case RISCVII::VLMUL::LMUL_4: 1466 return RISCV::VRM4RegClassID; 1467 case RISCVII::VLMUL::LMUL_8: 1468 return RISCV::VRM8RegClassID; 1469 } 1470 } 1471 1472 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1473 RISCVII::VLMUL LMUL = getLMUL(VT); 1474 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1475 LMUL == RISCVII::VLMUL::LMUL_F4 || 1476 LMUL == RISCVII::VLMUL::LMUL_F2 || 1477 LMUL == RISCVII::VLMUL::LMUL_1) { 1478 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1479 "Unexpected subreg numbering"); 1480 return RISCV::sub_vrm1_0 + Index; 1481 } 1482 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1483 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1484 "Unexpected subreg numbering"); 1485 return RISCV::sub_vrm2_0 + Index; 1486 } 1487 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1488 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1489 "Unexpected subreg numbering"); 1490 return RISCV::sub_vrm4_0 + Index; 1491 } 1492 llvm_unreachable("Invalid vector type."); 1493 } 1494 1495 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1496 if (VT.getVectorElementType() == MVT::i1) 1497 return RISCV::VRRegClassID; 1498 return getRegClassIDForLMUL(getLMUL(VT)); 1499 } 1500 1501 // Attempt to decompose a subvector insert/extract between VecVT and 1502 // SubVecVT via subregister indices. Returns the subregister index that 1503 // can perform the subvector insert/extract with the given element index, as 1504 // well as the index corresponding to any leftover subvectors that must be 1505 // further inserted/extracted within the register class for SubVecVT. 1506 std::pair<unsigned, unsigned> 1507 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1508 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1509 const RISCVRegisterInfo *TRI) { 1510 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1511 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1512 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1513 "Register classes not ordered"); 1514 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1515 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1516 // Try to compose a subregister index that takes us from the incoming 1517 // LMUL>1 register class down to the outgoing one. At each step we half 1518 // the LMUL: 1519 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1520 // Note that this is not guaranteed to find a subregister index, such as 1521 // when we are extracting from one VR type to another. 1522 unsigned SubRegIdx = RISCV::NoSubRegister; 1523 for (const unsigned RCID : 1524 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1525 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1526 VecVT = VecVT.getHalfNumVectorElementsVT(); 1527 bool IsHi = 1528 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1529 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1530 getSubregIndexByMVT(VecVT, IsHi)); 1531 if (IsHi) 1532 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1533 } 1534 return {SubRegIdx, InsertExtractIdx}; 1535 } 1536 1537 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1538 // stores for those types. 1539 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1540 return !Subtarget.useRVVForFixedLengthVectors() || 1541 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1542 } 1543 1544 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1545 if (ScalarTy->isPointerTy()) 1546 return true; 1547 1548 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1549 ScalarTy->isIntegerTy(32)) 1550 return true; 1551 1552 if (ScalarTy->isIntegerTy(64)) 1553 return Subtarget.hasVInstructionsI64(); 1554 1555 if (ScalarTy->isHalfTy()) 1556 return Subtarget.hasVInstructionsF16(); 1557 if (ScalarTy->isFloatTy()) 1558 return Subtarget.hasVInstructionsF32(); 1559 if (ScalarTy->isDoubleTy()) 1560 return Subtarget.hasVInstructionsF64(); 1561 1562 return false; 1563 } 1564 1565 static SDValue getVLOperand(SDValue Op) { 1566 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1567 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1568 "Unexpected opcode"); 1569 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1570 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1571 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1572 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1573 if (!II) 1574 return SDValue(); 1575 return Op.getOperand(II->VLOperand + 1 + HasChain); 1576 } 1577 1578 static bool useRVVForFixedLengthVectorVT(MVT VT, 1579 const RISCVSubtarget &Subtarget) { 1580 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1581 if (!Subtarget.useRVVForFixedLengthVectors()) 1582 return false; 1583 1584 // We only support a set of vector types with a consistent maximum fixed size 1585 // across all supported vector element types to avoid legalization issues. 1586 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1587 // fixed-length vector type we support is 1024 bytes. 1588 if (VT.getFixedSizeInBits() > 1024 * 8) 1589 return false; 1590 1591 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1592 1593 MVT EltVT = VT.getVectorElementType(); 1594 1595 // Don't use RVV for vectors we cannot scalarize if required. 1596 switch (EltVT.SimpleTy) { 1597 // i1 is supported but has different rules. 1598 default: 1599 return false; 1600 case MVT::i1: 1601 // Masks can only use a single register. 1602 if (VT.getVectorNumElements() > MinVLen) 1603 return false; 1604 MinVLen /= 8; 1605 break; 1606 case MVT::i8: 1607 case MVT::i16: 1608 case MVT::i32: 1609 break; 1610 case MVT::i64: 1611 if (!Subtarget.hasVInstructionsI64()) 1612 return false; 1613 break; 1614 case MVT::f16: 1615 if (!Subtarget.hasVInstructionsF16()) 1616 return false; 1617 break; 1618 case MVT::f32: 1619 if (!Subtarget.hasVInstructionsF32()) 1620 return false; 1621 break; 1622 case MVT::f64: 1623 if (!Subtarget.hasVInstructionsF64()) 1624 return false; 1625 break; 1626 } 1627 1628 // Reject elements larger than ELEN. 1629 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1630 return false; 1631 1632 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1633 // Don't use RVV for types that don't fit. 1634 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1635 return false; 1636 1637 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1638 // the base fixed length RVV support in place. 1639 if (!VT.isPow2VectorType()) 1640 return false; 1641 1642 return true; 1643 } 1644 1645 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1646 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1647 } 1648 1649 // Return the largest legal scalable vector type that matches VT's element type. 1650 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1651 const RISCVSubtarget &Subtarget) { 1652 // This may be called before legal types are setup. 1653 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1654 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1655 "Expected legal fixed length vector!"); 1656 1657 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1658 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1659 1660 MVT EltVT = VT.getVectorElementType(); 1661 switch (EltVT.SimpleTy) { 1662 default: 1663 llvm_unreachable("unexpected element type for RVV container"); 1664 case MVT::i1: 1665 case MVT::i8: 1666 case MVT::i16: 1667 case MVT::i32: 1668 case MVT::i64: 1669 case MVT::f16: 1670 case MVT::f32: 1671 case MVT::f64: { 1672 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1673 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1674 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1675 unsigned NumElts = 1676 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1677 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1678 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1679 return MVT::getScalableVectorVT(EltVT, NumElts); 1680 } 1681 } 1682 } 1683 1684 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1685 const RISCVSubtarget &Subtarget) { 1686 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1687 Subtarget); 1688 } 1689 1690 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1691 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1692 } 1693 1694 // Grow V to consume an entire RVV register. 1695 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1696 const RISCVSubtarget &Subtarget) { 1697 assert(VT.isScalableVector() && 1698 "Expected to convert into a scalable vector!"); 1699 assert(V.getValueType().isFixedLengthVector() && 1700 "Expected a fixed length vector operand!"); 1701 SDLoc DL(V); 1702 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1703 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1704 } 1705 1706 // Shrink V so it's just big enough to maintain a VT's worth of data. 1707 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1708 const RISCVSubtarget &Subtarget) { 1709 assert(VT.isFixedLengthVector() && 1710 "Expected to convert into a fixed length vector!"); 1711 assert(V.getValueType().isScalableVector() && 1712 "Expected a scalable vector operand!"); 1713 SDLoc DL(V); 1714 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1715 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1716 } 1717 1718 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1719 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1720 // the vector type that it is contained in. 1721 static std::pair<SDValue, SDValue> 1722 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1723 const RISCVSubtarget &Subtarget) { 1724 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1725 MVT XLenVT = Subtarget.getXLenVT(); 1726 SDValue VL = VecVT.isFixedLengthVector() 1727 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1728 : DAG.getRegister(RISCV::X0, XLenVT); 1729 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1730 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1731 return {Mask, VL}; 1732 } 1733 1734 // As above but assuming the given type is a scalable vector type. 1735 static std::pair<SDValue, SDValue> 1736 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1737 const RISCVSubtarget &Subtarget) { 1738 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1739 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1740 } 1741 1742 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1743 // of either is (currently) supported. This can get us into an infinite loop 1744 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1745 // as a ..., etc. 1746 // Until either (or both) of these can reliably lower any node, reporting that 1747 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1748 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1749 // which is not desirable. 1750 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1751 EVT VT, unsigned DefinedValues) const { 1752 return false; 1753 } 1754 1755 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1756 const RISCVSubtarget &Subtarget) { 1757 // RISCV FP-to-int conversions saturate to the destination register size, but 1758 // don't produce 0 for nan. We can use a conversion instruction and fix the 1759 // nan case with a compare and a select. 1760 SDValue Src = Op.getOperand(0); 1761 1762 EVT DstVT = Op.getValueType(); 1763 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1764 1765 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1766 unsigned Opc; 1767 if (SatVT == DstVT) 1768 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1769 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1770 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1771 else 1772 return SDValue(); 1773 // FIXME: Support other SatVTs by clamping before or after the conversion. 1774 1775 SDLoc DL(Op); 1776 SDValue FpToInt = DAG.getNode( 1777 Opc, DL, DstVT, Src, 1778 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1779 1780 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1781 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1782 } 1783 1784 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1785 // and back. Taking care to avoid converting values that are nan or already 1786 // correct. 1787 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1788 // have FRM dependencies modeled yet. 1789 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1790 MVT VT = Op.getSimpleValueType(); 1791 assert(VT.isVector() && "Unexpected type"); 1792 1793 SDLoc DL(Op); 1794 1795 // Freeze the source since we are increasing the number of uses. 1796 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1797 1798 // Truncate to integer and convert back to FP. 1799 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1800 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1801 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1802 1803 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1804 1805 if (Op.getOpcode() == ISD::FCEIL) { 1806 // If the truncated value is the greater than or equal to the original 1807 // value, we've computed the ceil. Otherwise, we went the wrong way and 1808 // need to increase by 1. 1809 // FIXME: This should use a masked operation. Handle here or in isel? 1810 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1811 DAG.getConstantFP(1.0, DL, VT)); 1812 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1813 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1814 } else if (Op.getOpcode() == ISD::FFLOOR) { 1815 // If the truncated value is the less than or equal to the original value, 1816 // we've computed the floor. Otherwise, we went the wrong way and need to 1817 // decrease by 1. 1818 // FIXME: This should use a masked operation. Handle here or in isel? 1819 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1820 DAG.getConstantFP(1.0, DL, VT)); 1821 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1822 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1823 } 1824 1825 // Restore the original sign so that -0.0 is preserved. 1826 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1827 1828 // Determine the largest integer that can be represented exactly. This and 1829 // values larger than it don't have any fractional bits so don't need to 1830 // be converted. 1831 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1832 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1833 APFloat MaxVal = APFloat(FltSem); 1834 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1835 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1836 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1837 1838 // If abs(Src) was larger than MaxVal or nan, keep it. 1839 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1840 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1841 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1842 } 1843 1844 // ISD::FROUND is defined to round to nearest with ties rounding away from 0. 1845 // This mode isn't supported in vector hardware on RISCV. But as long as we 1846 // aren't compiling with trapping math, we can emulate this with 1847 // floor(X + copysign(nextafter(0.5, 0.0), X)). 1848 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM 1849 // dependencies modeled yet. 1850 // FIXME: Use masked operations to avoid final merge. 1851 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) { 1852 MVT VT = Op.getSimpleValueType(); 1853 assert(VT.isVector() && "Unexpected type"); 1854 1855 SDLoc DL(Op); 1856 1857 // Freeze the source since we are increasing the number of uses. 1858 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1859 1860 // We do the conversion on the absolute value and fix the sign at the end. 1861 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1862 1863 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1864 bool Ignored; 1865 APFloat Point5Pred = APFloat(0.5f); 1866 Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored); 1867 Point5Pred.next(/*nextDown*/ true); 1868 1869 // Add the adjustment. 1870 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs, 1871 DAG.getConstantFP(Point5Pred, DL, VT)); 1872 1873 // Truncate to integer and convert back to fp. 1874 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1875 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust); 1876 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1877 1878 // Restore the original sign. 1879 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1880 1881 // Determine the largest integer that can be represented exactly. This and 1882 // values larger than it don't have any fractional bits so don't need to 1883 // be converted. 1884 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1885 APFloat MaxVal = APFloat(FltSem); 1886 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1887 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1888 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1889 1890 // If abs(Src) was larger than MaxVal or nan, keep it. 1891 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1892 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1893 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1894 } 1895 1896 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1897 const RISCVSubtarget &Subtarget) { 1898 MVT VT = Op.getSimpleValueType(); 1899 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1900 1901 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1902 1903 SDLoc DL(Op); 1904 SDValue Mask, VL; 1905 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1906 1907 unsigned Opc = 1908 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1909 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1910 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1911 } 1912 1913 struct VIDSequence { 1914 int64_t StepNumerator; 1915 unsigned StepDenominator; 1916 int64_t Addend; 1917 }; 1918 1919 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1920 // to the (non-zero) step S and start value X. This can be then lowered as the 1921 // RVV sequence (VID * S) + X, for example. 1922 // The step S is represented as an integer numerator divided by a positive 1923 // denominator. Note that the implementation currently only identifies 1924 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1925 // cannot detect 2/3, for example. 1926 // Note that this method will also match potentially unappealing index 1927 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1928 // determine whether this is worth generating code for. 1929 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1930 unsigned NumElts = Op.getNumOperands(); 1931 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1932 if (!Op.getValueType().isInteger()) 1933 return None; 1934 1935 Optional<unsigned> SeqStepDenom; 1936 Optional<int64_t> SeqStepNum, SeqAddend; 1937 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1938 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1939 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1940 // Assume undef elements match the sequence; we just have to be careful 1941 // when interpolating across them. 1942 if (Op.getOperand(Idx).isUndef()) 1943 continue; 1944 // The BUILD_VECTOR must be all constants. 1945 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1946 return None; 1947 1948 uint64_t Val = Op.getConstantOperandVal(Idx) & 1949 maskTrailingOnes<uint64_t>(EltSizeInBits); 1950 1951 if (PrevElt) { 1952 // Calculate the step since the last non-undef element, and ensure 1953 // it's consistent across the entire sequence. 1954 unsigned IdxDiff = Idx - PrevElt->second; 1955 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1956 1957 // A zero-value value difference means that we're somewhere in the middle 1958 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1959 // step change before evaluating the sequence. 1960 if (ValDiff != 0) { 1961 int64_t Remainder = ValDiff % IdxDiff; 1962 // Normalize the step if it's greater than 1. 1963 if (Remainder != ValDiff) { 1964 // The difference must cleanly divide the element span. 1965 if (Remainder != 0) 1966 return None; 1967 ValDiff /= IdxDiff; 1968 IdxDiff = 1; 1969 } 1970 1971 if (!SeqStepNum) 1972 SeqStepNum = ValDiff; 1973 else if (ValDiff != SeqStepNum) 1974 return None; 1975 1976 if (!SeqStepDenom) 1977 SeqStepDenom = IdxDiff; 1978 else if (IdxDiff != *SeqStepDenom) 1979 return None; 1980 } 1981 } 1982 1983 // Record and/or check any addend. 1984 if (SeqStepNum && SeqStepDenom) { 1985 uint64_t ExpectedVal = 1986 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1987 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1988 if (!SeqAddend) 1989 SeqAddend = Addend; 1990 else if (SeqAddend != Addend) 1991 return None; 1992 } 1993 1994 // Record this non-undef element for later. 1995 if (!PrevElt || PrevElt->first != Val) 1996 PrevElt = std::make_pair(Val, Idx); 1997 } 1998 // We need to have logged both a step and an addend for this to count as 1999 // a legal index sequence. 2000 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 2001 return None; 2002 2003 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 2004 } 2005 2006 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT 2007 // and lower it as a VRGATHER_VX_VL from the source vector. 2008 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, 2009 SelectionDAG &DAG, 2010 const RISCVSubtarget &Subtarget) { 2011 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2012 return SDValue(); 2013 SDValue Vec = SplatVal.getOperand(0); 2014 // Only perform this optimization on vectors of the same size for simplicity. 2015 if (Vec.getValueType() != VT) 2016 return SDValue(); 2017 SDValue Idx = SplatVal.getOperand(1); 2018 // The index must be a legal type. 2019 if (Idx.getValueType() != Subtarget.getXLenVT()) 2020 return SDValue(); 2021 2022 MVT ContainerVT = VT; 2023 if (VT.isFixedLengthVector()) { 2024 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2025 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2026 } 2027 2028 SDValue Mask, VL; 2029 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2030 2031 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, 2032 Idx, Mask, VL); 2033 2034 if (!VT.isFixedLengthVector()) 2035 return Gather; 2036 2037 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2038 } 2039 2040 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 2041 const RISCVSubtarget &Subtarget) { 2042 MVT VT = Op.getSimpleValueType(); 2043 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 2044 2045 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2046 2047 SDLoc DL(Op); 2048 SDValue Mask, VL; 2049 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2050 2051 MVT XLenVT = Subtarget.getXLenVT(); 2052 unsigned NumElts = Op.getNumOperands(); 2053 2054 if (VT.getVectorElementType() == MVT::i1) { 2055 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 2056 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 2057 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 2058 } 2059 2060 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 2061 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 2062 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 2063 } 2064 2065 // Lower constant mask BUILD_VECTORs via an integer vector type, in 2066 // scalar integer chunks whose bit-width depends on the number of mask 2067 // bits and XLEN. 2068 // First, determine the most appropriate scalar integer type to use. This 2069 // is at most XLenVT, but may be shrunk to a smaller vector element type 2070 // according to the size of the final vector - use i8 chunks rather than 2071 // XLenVT if we're producing a v8i1. This results in more consistent 2072 // codegen across RV32 and RV64. 2073 unsigned NumViaIntegerBits = 2074 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 2075 NumViaIntegerBits = std::min(NumViaIntegerBits, 2076 Subtarget.getMaxELENForFixedLengthVectors()); 2077 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 2078 // If we have to use more than one INSERT_VECTOR_ELT then this 2079 // optimization is likely to increase code size; avoid peforming it in 2080 // such a case. We can use a load from a constant pool in this case. 2081 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 2082 return SDValue(); 2083 // Now we can create our integer vector type. Note that it may be larger 2084 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2085 MVT IntegerViaVecVT = 2086 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2087 divideCeil(NumElts, NumViaIntegerBits)); 2088 2089 uint64_t Bits = 0; 2090 unsigned BitPos = 0, IntegerEltIdx = 0; 2091 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2092 2093 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2094 // Once we accumulate enough bits to fill our scalar type, insert into 2095 // our vector and clear our accumulated data. 2096 if (I != 0 && I % NumViaIntegerBits == 0) { 2097 if (NumViaIntegerBits <= 32) 2098 Bits = SignExtend64(Bits, 32); 2099 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2100 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2101 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2102 Bits = 0; 2103 BitPos = 0; 2104 IntegerEltIdx++; 2105 } 2106 SDValue V = Op.getOperand(I); 2107 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2108 Bits |= ((uint64_t)BitValue << BitPos); 2109 } 2110 2111 // Insert the (remaining) scalar value into position in our integer 2112 // vector type. 2113 if (NumViaIntegerBits <= 32) 2114 Bits = SignExtend64(Bits, 32); 2115 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2116 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2117 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2118 2119 if (NumElts < NumViaIntegerBits) { 2120 // If we're producing a smaller vector than our minimum legal integer 2121 // type, bitcast to the equivalent (known-legal) mask type, and extract 2122 // our final mask. 2123 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2124 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2125 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2126 DAG.getConstant(0, DL, XLenVT)); 2127 } else { 2128 // Else we must have produced an integer type with the same size as the 2129 // mask type; bitcast for the final result. 2130 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2131 Vec = DAG.getBitcast(VT, Vec); 2132 } 2133 2134 return Vec; 2135 } 2136 2137 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2138 // vector type, we have a legal equivalently-sized i8 type, so we can use 2139 // that. 2140 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2141 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2142 2143 SDValue WideVec; 2144 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2145 // For a splat, perform a scalar truncate before creating the wider 2146 // vector. 2147 assert(Splat.getValueType() == XLenVT && 2148 "Unexpected type for i1 splat value"); 2149 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2150 DAG.getConstant(1, DL, XLenVT)); 2151 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2152 } else { 2153 SmallVector<SDValue, 8> Ops(Op->op_values()); 2154 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2155 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2156 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2157 } 2158 2159 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2160 } 2161 2162 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2163 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) 2164 return Gather; 2165 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2166 : RISCVISD::VMV_V_X_VL; 2167 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 2168 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2169 } 2170 2171 // Try and match index sequences, which we can lower to the vid instruction 2172 // with optional modifications. An all-undef vector is matched by 2173 // getSplatValue, above. 2174 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2175 int64_t StepNumerator = SimpleVID->StepNumerator; 2176 unsigned StepDenominator = SimpleVID->StepDenominator; 2177 int64_t Addend = SimpleVID->Addend; 2178 2179 assert(StepNumerator != 0 && "Invalid step"); 2180 bool Negate = false; 2181 int64_t SplatStepVal = StepNumerator; 2182 unsigned StepOpcode = ISD::MUL; 2183 if (StepNumerator != 1) { 2184 if (isPowerOf2_64(std::abs(StepNumerator))) { 2185 Negate = StepNumerator < 0; 2186 StepOpcode = ISD::SHL; 2187 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2188 } 2189 } 2190 2191 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2192 // threshold since it's the immediate value many RVV instructions accept. 2193 // There is no vmul.vi instruction so ensure multiply constant can fit in 2194 // a single addi instruction. 2195 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2196 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2197 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2198 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2199 // Convert right out of the scalable type so we can use standard ISD 2200 // nodes for the rest of the computation. If we used scalable types with 2201 // these, we'd lose the fixed-length vector info and generate worse 2202 // vsetvli code. 2203 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2204 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2205 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2206 SDValue SplatStep = DAG.getSplatVector( 2207 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2208 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2209 } 2210 if (StepDenominator != 1) { 2211 SDValue SplatStep = DAG.getSplatVector( 2212 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2213 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2214 } 2215 if (Addend != 0 || Negate) { 2216 SDValue SplatAddend = 2217 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2218 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2219 } 2220 return VID; 2221 } 2222 } 2223 2224 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2225 // when re-interpreted as a vector with a larger element type. For example, 2226 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2227 // could be instead splat as 2228 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2229 // TODO: This optimization could also work on non-constant splats, but it 2230 // would require bit-manipulation instructions to construct the splat value. 2231 SmallVector<SDValue> Sequence; 2232 unsigned EltBitSize = VT.getScalarSizeInBits(); 2233 const auto *BV = cast<BuildVectorSDNode>(Op); 2234 if (VT.isInteger() && EltBitSize < 64 && 2235 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2236 BV->getRepeatedSequence(Sequence) && 2237 (Sequence.size() * EltBitSize) <= 64) { 2238 unsigned SeqLen = Sequence.size(); 2239 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2240 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2241 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2242 ViaIntVT == MVT::i64) && 2243 "Unexpected sequence type"); 2244 2245 unsigned EltIdx = 0; 2246 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2247 uint64_t SplatValue = 0; 2248 // Construct the amalgamated value which can be splatted as this larger 2249 // vector type. 2250 for (const auto &SeqV : Sequence) { 2251 if (!SeqV.isUndef()) 2252 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2253 << (EltIdx * EltBitSize)); 2254 EltIdx++; 2255 } 2256 2257 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2258 // achieve better constant materializion. 2259 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2260 SplatValue = SignExtend64(SplatValue, 32); 2261 2262 // Since we can't introduce illegal i64 types at this stage, we can only 2263 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2264 // way we can use RVV instructions to splat. 2265 assert((ViaIntVT.bitsLE(XLenVT) || 2266 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2267 "Unexpected bitcast sequence"); 2268 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2269 SDValue ViaVL = 2270 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2271 MVT ViaContainerVT = 2272 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2273 SDValue Splat = 2274 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2275 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2276 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2277 return DAG.getBitcast(VT, Splat); 2278 } 2279 } 2280 2281 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2282 // which constitute a large proportion of the elements. In such cases we can 2283 // splat a vector with the dominant element and make up the shortfall with 2284 // INSERT_VECTOR_ELTs. 2285 // Note that this includes vectors of 2 elements by association. The 2286 // upper-most element is the "dominant" one, allowing us to use a splat to 2287 // "insert" the upper element, and an insert of the lower element at position 2288 // 0, which improves codegen. 2289 SDValue DominantValue; 2290 unsigned MostCommonCount = 0; 2291 DenseMap<SDValue, unsigned> ValueCounts; 2292 unsigned NumUndefElts = 2293 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2294 2295 // Track the number of scalar loads we know we'd be inserting, estimated as 2296 // any non-zero floating-point constant. Other kinds of element are either 2297 // already in registers or are materialized on demand. The threshold at which 2298 // a vector load is more desirable than several scalar materializion and 2299 // vector-insertion instructions is not known. 2300 unsigned NumScalarLoads = 0; 2301 2302 for (SDValue V : Op->op_values()) { 2303 if (V.isUndef()) 2304 continue; 2305 2306 ValueCounts.insert(std::make_pair(V, 0)); 2307 unsigned &Count = ValueCounts[V]; 2308 2309 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2310 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2311 2312 // Is this value dominant? In case of a tie, prefer the highest element as 2313 // it's cheaper to insert near the beginning of a vector than it is at the 2314 // end. 2315 if (++Count >= MostCommonCount) { 2316 DominantValue = V; 2317 MostCommonCount = Count; 2318 } 2319 } 2320 2321 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2322 unsigned NumDefElts = NumElts - NumUndefElts; 2323 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2324 2325 // Don't perform this optimization when optimizing for size, since 2326 // materializing elements and inserting them tends to cause code bloat. 2327 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2328 ((MostCommonCount > DominantValueCountThreshold) || 2329 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2330 // Start by splatting the most common element. 2331 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2332 2333 DenseSet<SDValue> Processed{DominantValue}; 2334 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2335 for (const auto &OpIdx : enumerate(Op->ops())) { 2336 const SDValue &V = OpIdx.value(); 2337 if (V.isUndef() || !Processed.insert(V).second) 2338 continue; 2339 if (ValueCounts[V] == 1) { 2340 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2341 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2342 } else { 2343 // Blend in all instances of this value using a VSELECT, using a 2344 // mask where each bit signals whether that element is the one 2345 // we're after. 2346 SmallVector<SDValue> Ops; 2347 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2348 return DAG.getConstant(V == V1, DL, XLenVT); 2349 }); 2350 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2351 DAG.getBuildVector(SelMaskTy, DL, Ops), 2352 DAG.getSplatBuildVector(VT, DL, V), Vec); 2353 } 2354 } 2355 2356 return Vec; 2357 } 2358 2359 return SDValue(); 2360 } 2361 2362 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2363 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2364 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2365 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2366 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2367 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2368 // node in order to try and match RVV vector/scalar instructions. 2369 if ((LoC >> 31) == HiC) 2370 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2371 2372 // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use 2373 // vmv.v.x whose EEW = 32 to lower it. 2374 auto *Const = dyn_cast<ConstantSDNode>(VL); 2375 if (LoC == HiC && Const && Const->isAllOnesValue()) { 2376 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2377 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2378 // access the subtarget here now. 2379 auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT, Lo, 2380 DAG.getRegister(RISCV::X0, MVT::i32)); 2381 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2382 } 2383 } 2384 2385 // Fall back to a stack store and stride x0 vector load. 2386 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2387 } 2388 2389 // Called by type legalization to handle splat of i64 on RV32. 2390 // FIXME: We can optimize this when the type has sign or zero bits in one 2391 // of the halves. 2392 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2393 SDValue VL, SelectionDAG &DAG) { 2394 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2395 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2396 DAG.getConstant(0, DL, MVT::i32)); 2397 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2398 DAG.getConstant(1, DL, MVT::i32)); 2399 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2400 } 2401 2402 // This function lowers a splat of a scalar operand Splat with the vector 2403 // length VL. It ensures the final sequence is type legal, which is useful when 2404 // lowering a splat after type legalization. 2405 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2406 SelectionDAG &DAG, 2407 const RISCVSubtarget &Subtarget) { 2408 if (VT.isFloatingPoint()) { 2409 // If VL is 1, we could use vfmv.s.f. 2410 if (isOneConstant(VL)) 2411 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT), 2412 Scalar, VL); 2413 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2414 } 2415 2416 MVT XLenVT = Subtarget.getXLenVT(); 2417 2418 // Simplest case is that the operand needs to be promoted to XLenVT. 2419 if (Scalar.getValueType().bitsLE(XLenVT)) { 2420 // If the operand is a constant, sign extend to increase our chances 2421 // of being able to use a .vi instruction. ANY_EXTEND would become a 2422 // a zero extend and the simm5 check in isel would fail. 2423 // FIXME: Should we ignore the upper bits in isel instead? 2424 unsigned ExtOpc = 2425 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2426 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2427 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2428 // If VL is 1 and the scalar value won't benefit from immediate, we could 2429 // use vmv.s.x. 2430 if (isOneConstant(VL) && 2431 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2432 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar, 2433 VL); 2434 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2435 } 2436 2437 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2438 "Unexpected scalar for splat lowering!"); 2439 2440 if (isOneConstant(VL) && isNullConstant(Scalar)) 2441 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), 2442 DAG.getConstant(0, DL, XLenVT), VL); 2443 2444 // Otherwise use the more complicated splatting algorithm. 2445 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2446 } 2447 2448 // Is the mask a slidedown that shifts in undefs. 2449 static int matchShuffleAsSlideDown(ArrayRef<int> Mask) { 2450 int Size = Mask.size(); 2451 2452 // Elements shifted in should be undef. 2453 auto CheckUndefs = [&](int Shift) { 2454 for (int i = Size - Shift; i != Size; ++i) 2455 if (Mask[i] >= 0) 2456 return false; 2457 return true; 2458 }; 2459 2460 // Elements should be shifted or undef. 2461 auto MatchShift = [&](int Shift) { 2462 for (int i = 0; i != Size - Shift; ++i) 2463 if (Mask[i] >= 0 && Mask[i] != Shift + i) 2464 return false; 2465 return true; 2466 }; 2467 2468 // Try all possible shifts. 2469 for (int Shift = 1; Shift != Size; ++Shift) 2470 if (CheckUndefs(Shift) && MatchShift(Shift)) 2471 return Shift; 2472 2473 // No match. 2474 return -1; 2475 } 2476 2477 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2478 const RISCVSubtarget &Subtarget) { 2479 // We need to be able to widen elements to the next larger integer type. 2480 if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors()) 2481 return false; 2482 2483 int Size = Mask.size(); 2484 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2485 2486 int Srcs[] = {-1, -1}; 2487 for (int i = 0; i != Size; ++i) { 2488 // Ignore undef elements. 2489 if (Mask[i] < 0) 2490 continue; 2491 2492 // Is this an even or odd element. 2493 int Pol = i % 2; 2494 2495 // Ensure we consistently use the same source for this element polarity. 2496 int Src = Mask[i] / Size; 2497 if (Srcs[Pol] < 0) 2498 Srcs[Pol] = Src; 2499 if (Srcs[Pol] != Src) 2500 return false; 2501 2502 // Make sure the element within the source is appropriate for this element 2503 // in the destination. 2504 int Elt = Mask[i] % Size; 2505 if (Elt != i / 2) 2506 return false; 2507 } 2508 2509 // We need to find a source for each polarity and they can't be the same. 2510 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2511 return false; 2512 2513 // Swap the sources if the second source was in the even polarity. 2514 SwapSources = Srcs[0] > Srcs[1]; 2515 2516 return true; 2517 } 2518 2519 static int isElementRotate(SDValue &V1, SDValue &V2, ArrayRef<int> Mask) { 2520 int Size = Mask.size(); 2521 2522 // We need to detect various ways of spelling a rotation: 2523 // [11, 12, 13, 14, 15, 0, 1, 2] 2524 // [-1, 12, 13, 14, -1, -1, 1, -1] 2525 // [-1, -1, -1, -1, -1, -1, 1, 2] 2526 // [ 3, 4, 5, 6, 7, 8, 9, 10] 2527 // [-1, 4, 5, 6, -1, -1, 9, -1] 2528 // [-1, 4, 5, 6, -1, -1, -1, -1] 2529 int Rotation = 0; 2530 SDValue Lo, Hi; 2531 for (int i = 0; i != Size; ++i) { 2532 int M = Mask[i]; 2533 if (M < 0) 2534 continue; 2535 2536 // Determine where a rotate vector would have started. 2537 int StartIdx = i - (M % Size); 2538 // The identity rotation isn't interesting, stop. 2539 if (StartIdx == 0) 2540 return -1; 2541 2542 // If we found the tail of a vector the rotation must be the missing 2543 // front. If we found the head of a vector, it must be how much of the 2544 // head. 2545 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; 2546 2547 if (Rotation == 0) 2548 Rotation = CandidateRotation; 2549 else if (Rotation != CandidateRotation) 2550 // The rotations don't match, so we can't match this mask. 2551 return -1; 2552 2553 // Compute which value this mask is pointing at. 2554 SDValue MaskV = M < Size ? V1 : V2; 2555 2556 // Compute which of the two target values this index should be assigned to. 2557 // This reflects whether the high elements are remaining or the low elemnts 2558 // are remaining. 2559 SDValue &TargetV = StartIdx < 0 ? Hi : Lo; 2560 2561 // Either set up this value if we've not encountered it before, or check 2562 // that it remains consistent. 2563 if (!TargetV) 2564 TargetV = MaskV; 2565 else if (TargetV != MaskV) 2566 // This may be a rotation, but it pulls from the inputs in some 2567 // unsupported interleaving. 2568 return -1; 2569 } 2570 2571 // Check that we successfully analyzed the mask, and normalize the results. 2572 assert(Rotation != 0 && "Failed to locate a viable rotation!"); 2573 assert((Lo || Hi) && "Failed to find a rotated input vector!"); 2574 2575 // Make sure we've found a value for both halves. 2576 if (!Lo || !Hi) 2577 return -1; 2578 2579 V1 = Lo; 2580 V2 = Hi; 2581 2582 return Rotation; 2583 } 2584 2585 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2586 const RISCVSubtarget &Subtarget) { 2587 SDValue V1 = Op.getOperand(0); 2588 SDValue V2 = Op.getOperand(1); 2589 SDLoc DL(Op); 2590 MVT XLenVT = Subtarget.getXLenVT(); 2591 MVT VT = Op.getSimpleValueType(); 2592 unsigned NumElts = VT.getVectorNumElements(); 2593 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2594 2595 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2596 2597 SDValue TrueMask, VL; 2598 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2599 2600 if (SVN->isSplat()) { 2601 const int Lane = SVN->getSplatIndex(); 2602 if (Lane >= 0) { 2603 MVT SVT = VT.getVectorElementType(); 2604 2605 // Turn splatted vector load into a strided load with an X0 stride. 2606 SDValue V = V1; 2607 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2608 // with undef. 2609 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2610 int Offset = Lane; 2611 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2612 int OpElements = 2613 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2614 V = V.getOperand(Offset / OpElements); 2615 Offset %= OpElements; 2616 } 2617 2618 // We need to ensure the load isn't atomic or volatile. 2619 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2620 auto *Ld = cast<LoadSDNode>(V); 2621 Offset *= SVT.getStoreSize(); 2622 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2623 TypeSize::Fixed(Offset), DL); 2624 2625 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2626 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2627 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2628 SDValue IntID = 2629 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2630 SDValue Ops[] = {Ld->getChain(), 2631 IntID, 2632 DAG.getUNDEF(ContainerVT), 2633 NewAddr, 2634 DAG.getRegister(RISCV::X0, XLenVT), 2635 VL}; 2636 SDValue NewLoad = DAG.getMemIntrinsicNode( 2637 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2638 DAG.getMachineFunction().getMachineMemOperand( 2639 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2640 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2641 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2642 } 2643 2644 // Otherwise use a scalar load and splat. This will give the best 2645 // opportunity to fold a splat into the operation. ISel can turn it into 2646 // the x0 strided load if we aren't able to fold away the select. 2647 if (SVT.isFloatingPoint()) 2648 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2649 Ld->getPointerInfo().getWithOffset(Offset), 2650 Ld->getOriginalAlign(), 2651 Ld->getMemOperand()->getFlags()); 2652 else 2653 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2654 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2655 Ld->getOriginalAlign(), 2656 Ld->getMemOperand()->getFlags()); 2657 DAG.makeEquivalentMemoryOrdering(Ld, V); 2658 2659 unsigned Opc = 2660 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2661 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2662 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2663 } 2664 2665 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2666 assert(Lane < (int)NumElts && "Unexpected lane!"); 2667 SDValue Gather = 2668 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2669 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2670 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2671 } 2672 } 2673 2674 ArrayRef<int> Mask = SVN->getMask(); 2675 2676 // Try to match as a slidedown. 2677 int SlideAmt = matchShuffleAsSlideDown(Mask); 2678 if (SlideAmt >= 0) { 2679 // TODO: Should we reduce the VL to account for the upper undef elements? 2680 // Requires additional vsetvlis, but might be faster to execute. 2681 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2682 SDValue SlideDown = 2683 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2684 DAG.getUNDEF(ContainerVT), V1, 2685 DAG.getConstant(SlideAmt, DL, XLenVT), 2686 TrueMask, VL); 2687 return convertFromScalableVector(VT, SlideDown, DAG, Subtarget); 2688 } 2689 2690 // Match shuffles that concatenate two vectors, rotate the concatenation, 2691 // and then extract the original number of elements from the rotated result. 2692 // This is equivalent to vector.splice or X86's PALIGNR instruction. Lower 2693 // it to a SLIDEDOWN and a SLIDEUP. 2694 // FIXME: We don't really need it to be a concatenation. We just need two 2695 // regions with contiguous elements that need to be shifted down and up. 2696 int Rotation = isElementRotate(V1, V2, Mask); 2697 if (Rotation > 0) { 2698 // We found a rotation. We need to slide V1 down by Rotation. Using 2699 // (NumElts - Rotation) for VL. Then we need to slide V2 up by 2700 // (NumElts - Rotation) using NumElts for VL. 2701 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2702 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2703 2704 unsigned InvRotate = NumElts - Rotation; 2705 SDValue SlideDown = 2706 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2707 DAG.getUNDEF(ContainerVT), V2, 2708 DAG.getConstant(Rotation, DL, XLenVT), 2709 TrueMask, DAG.getConstant(InvRotate, DL, XLenVT)); 2710 SDValue SlideUp = 2711 DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, SlideDown, V1, 2712 DAG.getConstant(InvRotate, DL, XLenVT), 2713 TrueMask, VL); 2714 return convertFromScalableVector(VT, SlideUp, DAG, Subtarget); 2715 } 2716 2717 // Detect an interleave shuffle and lower to 2718 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2719 bool SwapSources; 2720 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2721 // Swap sources if needed. 2722 if (SwapSources) 2723 std::swap(V1, V2); 2724 2725 // Extract the lower half of the vectors. 2726 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2727 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2728 DAG.getConstant(0, DL, XLenVT)); 2729 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2730 DAG.getConstant(0, DL, XLenVT)); 2731 2732 // Double the element width and halve the number of elements in an int type. 2733 unsigned EltBits = VT.getScalarSizeInBits(); 2734 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2735 MVT WideIntVT = 2736 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2737 // Convert this to a scalable vector. We need to base this on the 2738 // destination size to ensure there's always a type with a smaller LMUL. 2739 MVT WideIntContainerVT = 2740 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2741 2742 // Convert sources to scalable vectors with the same element count as the 2743 // larger type. 2744 MVT HalfContainerVT = MVT::getVectorVT( 2745 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2746 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2747 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2748 2749 // Cast sources to integer. 2750 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2751 MVT IntHalfVT = 2752 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2753 V1 = DAG.getBitcast(IntHalfVT, V1); 2754 V2 = DAG.getBitcast(IntHalfVT, V2); 2755 2756 // Freeze V2 since we use it twice and we need to be sure that the add and 2757 // multiply see the same value. 2758 V2 = DAG.getNode(ISD::FREEZE, DL, IntHalfVT, V2); 2759 2760 // Recreate TrueMask using the widened type's element count. 2761 MVT MaskVT = 2762 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2763 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2764 2765 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2766 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2767 V2, TrueMask, VL); 2768 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2769 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2770 DAG.getAllOnesConstant(DL, XLenVT)); 2771 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2772 V2, Multiplier, TrueMask, VL); 2773 // Add the new copies to our previous addition giving us 2^eltbits copies of 2774 // V2. This is equivalent to shifting V2 left by eltbits. This should 2775 // combine with the vwmulu.vv above to form vwmaccu.vv. 2776 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2777 TrueMask, VL); 2778 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2779 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2780 // vector VT. 2781 ContainerVT = 2782 MVT::getVectorVT(VT.getVectorElementType(), 2783 WideIntContainerVT.getVectorElementCount() * 2); 2784 Add = DAG.getBitcast(ContainerVT, Add); 2785 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2786 } 2787 2788 // Detect shuffles which can be re-expressed as vector selects; these are 2789 // shuffles in which each element in the destination is taken from an element 2790 // at the corresponding index in either source vectors. 2791 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2792 int MaskIndex = MaskIdx.value(); 2793 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2794 }); 2795 2796 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2797 2798 SmallVector<SDValue> MaskVals; 2799 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2800 // merged with a second vrgather. 2801 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2802 2803 // By default we preserve the original operand order, and use a mask to 2804 // select LHS as true and RHS as false. However, since RVV vector selects may 2805 // feature splats but only on the LHS, we may choose to invert our mask and 2806 // instead select between RHS and LHS. 2807 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2808 bool InvertMask = IsSelect == SwapOps; 2809 2810 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2811 // half. 2812 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2813 2814 // Now construct the mask that will be used by the vselect or blended 2815 // vrgather operation. For vrgathers, construct the appropriate indices into 2816 // each vector. 2817 for (int MaskIndex : Mask) { 2818 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2819 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2820 if (!IsSelect) { 2821 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2822 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2823 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2824 : DAG.getUNDEF(XLenVT)); 2825 GatherIndicesRHS.push_back( 2826 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2827 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2828 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2829 ++LHSIndexCounts[MaskIndex]; 2830 if (!IsLHSOrUndefIndex) 2831 ++RHSIndexCounts[MaskIndex - NumElts]; 2832 } 2833 } 2834 2835 if (SwapOps) { 2836 std::swap(V1, V2); 2837 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2838 } 2839 2840 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2841 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2842 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2843 2844 if (IsSelect) 2845 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2846 2847 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2848 // On such a large vector we're unable to use i8 as the index type. 2849 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2850 // may involve vector splitting if we're already at LMUL=8, or our 2851 // user-supplied maximum fixed-length LMUL. 2852 return SDValue(); 2853 } 2854 2855 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2856 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2857 MVT IndexVT = VT.changeTypeToInteger(); 2858 // Since we can't introduce illegal index types at this stage, use i16 and 2859 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2860 // than XLenVT. 2861 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2862 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2863 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2864 } 2865 2866 MVT IndexContainerVT = 2867 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2868 2869 SDValue Gather; 2870 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2871 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2872 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2873 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2874 } else { 2875 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2876 // If only one index is used, we can use a "splat" vrgather. 2877 // TODO: We can splat the most-common index and fix-up any stragglers, if 2878 // that's beneficial. 2879 if (LHSIndexCounts.size() == 1) { 2880 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2881 Gather = 2882 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2883 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2884 } else { 2885 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2886 LHSIndices = 2887 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2888 2889 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2890 TrueMask, VL); 2891 } 2892 } 2893 2894 // If a second vector operand is used by this shuffle, blend it in with an 2895 // additional vrgather. 2896 if (!V2.isUndef()) { 2897 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2898 // If only one index is used, we can use a "splat" vrgather. 2899 // TODO: We can splat the most-common index and fix-up any stragglers, if 2900 // that's beneficial. 2901 if (RHSIndexCounts.size() == 1) { 2902 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2903 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2904 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2905 } else { 2906 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2907 RHSIndices = 2908 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2909 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2910 VL); 2911 } 2912 2913 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2914 SelectMask = 2915 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2916 2917 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2918 Gather, VL); 2919 } 2920 2921 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2922 } 2923 2924 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 2925 // Support splats for any type. These should type legalize well. 2926 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 2927 return true; 2928 2929 // Only support legal VTs for other shuffles for now. 2930 if (!isTypeLegal(VT)) 2931 return false; 2932 2933 MVT SVT = VT.getSimpleVT(); 2934 2935 bool SwapSources; 2936 return (matchShuffleAsSlideDown(M) >= 0) || 2937 isInterleaveShuffle(M, SVT, SwapSources, Subtarget); 2938 } 2939 2940 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2941 SDLoc DL, SelectionDAG &DAG, 2942 const RISCVSubtarget &Subtarget) { 2943 if (VT.isScalableVector()) 2944 return DAG.getFPExtendOrRound(Op, DL, VT); 2945 assert(VT.isFixedLengthVector() && 2946 "Unexpected value type for RVV FP extend/round lowering"); 2947 SDValue Mask, VL; 2948 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2949 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2950 ? RISCVISD::FP_EXTEND_VL 2951 : RISCVISD::FP_ROUND_VL; 2952 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2953 } 2954 2955 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2956 // the exponent. 2957 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2958 MVT VT = Op.getSimpleValueType(); 2959 unsigned EltSize = VT.getScalarSizeInBits(); 2960 SDValue Src = Op.getOperand(0); 2961 SDLoc DL(Op); 2962 2963 // We need a FP type that can represent the value. 2964 // TODO: Use f16 for i8 when possible? 2965 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2966 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2967 2968 // Legal types should have been checked in the RISCVTargetLowering 2969 // constructor. 2970 // TODO: Splitting may make sense in some cases. 2971 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2972 "Expected legal float type!"); 2973 2974 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2975 // The trailing zero count is equal to log2 of this single bit value. 2976 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2977 SDValue Neg = 2978 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2979 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2980 } 2981 2982 // We have a legal FP type, convert to it. 2983 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2984 // Bitcast to integer and shift the exponent to the LSB. 2985 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2986 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2987 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2988 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2989 DAG.getConstant(ShiftAmt, DL, IntVT)); 2990 // Truncate back to original type to allow vnsrl. 2991 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2992 // The exponent contains log2 of the value in biased form. 2993 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2994 2995 // For trailing zeros, we just need to subtract the bias. 2996 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2997 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2998 DAG.getConstant(ExponentBias, DL, VT)); 2999 3000 // For leading zeros, we need to remove the bias and convert from log2 to 3001 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 3002 unsigned Adjust = ExponentBias + (EltSize - 1); 3003 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 3004 } 3005 3006 // While RVV has alignment restrictions, we should always be able to load as a 3007 // legal equivalently-sized byte-typed vector instead. This method is 3008 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 3009 // the load is already correctly-aligned, it returns SDValue(). 3010 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 3011 SelectionDAG &DAG) const { 3012 auto *Load = cast<LoadSDNode>(Op); 3013 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 3014 3015 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 3016 Load->getMemoryVT(), 3017 *Load->getMemOperand())) 3018 return SDValue(); 3019 3020 SDLoc DL(Op); 3021 MVT VT = Op.getSimpleValueType(); 3022 unsigned EltSizeBits = VT.getScalarSizeInBits(); 3023 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 3024 "Unexpected unaligned RVV load type"); 3025 MVT NewVT = 3026 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 3027 assert(NewVT.isValid() && 3028 "Expecting equally-sized RVV vector types to be legal"); 3029 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 3030 Load->getPointerInfo(), Load->getOriginalAlign(), 3031 Load->getMemOperand()->getFlags()); 3032 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 3033 } 3034 3035 // While RVV has alignment restrictions, we should always be able to store as a 3036 // legal equivalently-sized byte-typed vector instead. This method is 3037 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 3038 // returns SDValue() if the store is already correctly aligned. 3039 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 3040 SelectionDAG &DAG) const { 3041 auto *Store = cast<StoreSDNode>(Op); 3042 assert(Store && Store->getValue().getValueType().isVector() && 3043 "Expected vector store"); 3044 3045 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 3046 Store->getMemoryVT(), 3047 *Store->getMemOperand())) 3048 return SDValue(); 3049 3050 SDLoc DL(Op); 3051 SDValue StoredVal = Store->getValue(); 3052 MVT VT = StoredVal.getSimpleValueType(); 3053 unsigned EltSizeBits = VT.getScalarSizeInBits(); 3054 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 3055 "Unexpected unaligned RVV store type"); 3056 MVT NewVT = 3057 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 3058 assert(NewVT.isValid() && 3059 "Expecting equally-sized RVV vector types to be legal"); 3060 StoredVal = DAG.getBitcast(NewVT, StoredVal); 3061 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 3062 Store->getPointerInfo(), Store->getOriginalAlign(), 3063 Store->getMemOperand()->getFlags()); 3064 } 3065 3066 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 3067 SelectionDAG &DAG) const { 3068 switch (Op.getOpcode()) { 3069 default: 3070 report_fatal_error("unimplemented operand"); 3071 case ISD::GlobalAddress: 3072 return lowerGlobalAddress(Op, DAG); 3073 case ISD::BlockAddress: 3074 return lowerBlockAddress(Op, DAG); 3075 case ISD::ConstantPool: 3076 return lowerConstantPool(Op, DAG); 3077 case ISD::JumpTable: 3078 return lowerJumpTable(Op, DAG); 3079 case ISD::GlobalTLSAddress: 3080 return lowerGlobalTLSAddress(Op, DAG); 3081 case ISD::SELECT: 3082 return lowerSELECT(Op, DAG); 3083 case ISD::BRCOND: 3084 return lowerBRCOND(Op, DAG); 3085 case ISD::VASTART: 3086 return lowerVASTART(Op, DAG); 3087 case ISD::FRAMEADDR: 3088 return lowerFRAMEADDR(Op, DAG); 3089 case ISD::RETURNADDR: 3090 return lowerRETURNADDR(Op, DAG); 3091 case ISD::SHL_PARTS: 3092 return lowerShiftLeftParts(Op, DAG); 3093 case ISD::SRA_PARTS: 3094 return lowerShiftRightParts(Op, DAG, true); 3095 case ISD::SRL_PARTS: 3096 return lowerShiftRightParts(Op, DAG, false); 3097 case ISD::BITCAST: { 3098 SDLoc DL(Op); 3099 EVT VT = Op.getValueType(); 3100 SDValue Op0 = Op.getOperand(0); 3101 EVT Op0VT = Op0.getValueType(); 3102 MVT XLenVT = Subtarget.getXLenVT(); 3103 if (VT.isFixedLengthVector()) { 3104 // We can handle fixed length vector bitcasts with a simple replacement 3105 // in isel. 3106 if (Op0VT.isFixedLengthVector()) 3107 return Op; 3108 // When bitcasting from scalar to fixed-length vector, insert the scalar 3109 // into a one-element vector of the result type, and perform a vector 3110 // bitcast. 3111 if (!Op0VT.isVector()) { 3112 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 3113 if (!isTypeLegal(BVT)) 3114 return SDValue(); 3115 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 3116 DAG.getUNDEF(BVT), Op0, 3117 DAG.getConstant(0, DL, XLenVT))); 3118 } 3119 return SDValue(); 3120 } 3121 // Custom-legalize bitcasts from fixed-length vector types to scalar types 3122 // thus: bitcast the vector to a one-element vector type whose element type 3123 // is the same as the result type, and extract the first element. 3124 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 3125 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 3126 if (!isTypeLegal(BVT)) 3127 return SDValue(); 3128 SDValue BVec = DAG.getBitcast(BVT, Op0); 3129 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 3130 DAG.getConstant(0, DL, XLenVT)); 3131 } 3132 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 3133 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 3134 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 3135 return FPConv; 3136 } 3137 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 3138 Subtarget.hasStdExtF()) { 3139 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3140 SDValue FPConv = 3141 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 3142 return FPConv; 3143 } 3144 return SDValue(); 3145 } 3146 case ISD::INTRINSIC_WO_CHAIN: 3147 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3148 case ISD::INTRINSIC_W_CHAIN: 3149 return LowerINTRINSIC_W_CHAIN(Op, DAG); 3150 case ISD::INTRINSIC_VOID: 3151 return LowerINTRINSIC_VOID(Op, DAG); 3152 case ISD::BSWAP: 3153 case ISD::BITREVERSE: { 3154 MVT VT = Op.getSimpleValueType(); 3155 SDLoc DL(Op); 3156 if (Subtarget.hasStdExtZbp()) { 3157 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 3158 // Start with the maximum immediate value which is the bitwidth - 1. 3159 unsigned Imm = VT.getSizeInBits() - 1; 3160 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 3161 if (Op.getOpcode() == ISD::BSWAP) 3162 Imm &= ~0x7U; 3163 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 3164 DAG.getConstant(Imm, DL, VT)); 3165 } 3166 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 3167 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 3168 // Expand bitreverse to a bswap(rev8) followed by brev8. 3169 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 3170 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 3171 // as brev8 by an isel pattern. 3172 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 3173 DAG.getConstant(7, DL, VT)); 3174 } 3175 case ISD::FSHL: 3176 case ISD::FSHR: { 3177 MVT VT = Op.getSimpleValueType(); 3178 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 3179 SDLoc DL(Op); 3180 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 3181 // use log(XLen) bits. Mask the shift amount accordingly to prevent 3182 // accidentally setting the extra bit. 3183 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 3184 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 3185 DAG.getConstant(ShAmtWidth, DL, VT)); 3186 // fshl and fshr concatenate their operands in the same order. fsr and fsl 3187 // instruction use different orders. fshl will return its first operand for 3188 // shift of zero, fshr will return its second operand. fsl and fsr both 3189 // return rs1 so the ISD nodes need to have different operand orders. 3190 // Shift amount is in rs2. 3191 SDValue Op0 = Op.getOperand(0); 3192 SDValue Op1 = Op.getOperand(1); 3193 unsigned Opc = RISCVISD::FSL; 3194 if (Op.getOpcode() == ISD::FSHR) { 3195 std::swap(Op0, Op1); 3196 Opc = RISCVISD::FSR; 3197 } 3198 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3199 } 3200 case ISD::TRUNCATE: { 3201 SDLoc DL(Op); 3202 MVT VT = Op.getSimpleValueType(); 3203 // Only custom-lower vector truncates 3204 if (!VT.isVector()) 3205 return Op; 3206 3207 // Truncates to mask types are handled differently 3208 if (VT.getVectorElementType() == MVT::i1) 3209 return lowerVectorMaskTrunc(Op, DAG); 3210 3211 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 3212 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 3213 // truncate by one power of two at a time. 3214 MVT DstEltVT = VT.getVectorElementType(); 3215 3216 SDValue Src = Op.getOperand(0); 3217 MVT SrcVT = Src.getSimpleValueType(); 3218 MVT SrcEltVT = SrcVT.getVectorElementType(); 3219 3220 assert(DstEltVT.bitsLT(SrcEltVT) && 3221 isPowerOf2_64(DstEltVT.getSizeInBits()) && 3222 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 3223 "Unexpected vector truncate lowering"); 3224 3225 MVT ContainerVT = SrcVT; 3226 if (SrcVT.isFixedLengthVector()) { 3227 ContainerVT = getContainerForFixedLengthVector(SrcVT); 3228 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3229 } 3230 3231 SDValue Result = Src; 3232 SDValue Mask, VL; 3233 std::tie(Mask, VL) = 3234 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 3235 LLVMContext &Context = *DAG.getContext(); 3236 const ElementCount Count = ContainerVT.getVectorElementCount(); 3237 do { 3238 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 3239 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 3240 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 3241 Mask, VL); 3242 } while (SrcEltVT != DstEltVT); 3243 3244 if (SrcVT.isFixedLengthVector()) 3245 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3246 3247 return Result; 3248 } 3249 case ISD::ANY_EXTEND: 3250 case ISD::ZERO_EXTEND: 3251 if (Op.getOperand(0).getValueType().isVector() && 3252 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3253 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3254 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3255 case ISD::SIGN_EXTEND: 3256 if (Op.getOperand(0).getValueType().isVector() && 3257 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3258 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3259 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3260 case ISD::SPLAT_VECTOR_PARTS: 3261 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3262 case ISD::INSERT_VECTOR_ELT: 3263 return lowerINSERT_VECTOR_ELT(Op, DAG); 3264 case ISD::EXTRACT_VECTOR_ELT: 3265 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3266 case ISD::VSCALE: { 3267 MVT VT = Op.getSimpleValueType(); 3268 SDLoc DL(Op); 3269 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3270 // We define our scalable vector types for lmul=1 to use a 64 bit known 3271 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3272 // vscale as VLENB / 8. 3273 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3274 if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock) 3275 report_fatal_error("Support for VLEN==32 is incomplete."); 3276 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3277 // We assume VLENB is a multiple of 8. We manually choose the best shift 3278 // here because SimplifyDemandedBits isn't always able to simplify it. 3279 uint64_t Val = Op.getConstantOperandVal(0); 3280 if (isPowerOf2_64(Val)) { 3281 uint64_t Log2 = Log2_64(Val); 3282 if (Log2 < 3) 3283 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3284 DAG.getConstant(3 - Log2, DL, VT)); 3285 if (Log2 > 3) 3286 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3287 DAG.getConstant(Log2 - 3, DL, VT)); 3288 return VLENB; 3289 } 3290 // If the multiplier is a multiple of 8, scale it down to avoid needing 3291 // to shift the VLENB value. 3292 if ((Val % 8) == 0) 3293 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3294 DAG.getConstant(Val / 8, DL, VT)); 3295 } 3296 3297 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3298 DAG.getConstant(3, DL, VT)); 3299 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3300 } 3301 case ISD::FPOWI: { 3302 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3303 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3304 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3305 Op.getOperand(1).getValueType() == MVT::i32) { 3306 SDLoc DL(Op); 3307 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3308 SDValue Powi = 3309 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3310 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3311 DAG.getIntPtrConstant(0, DL)); 3312 } 3313 return SDValue(); 3314 } 3315 case ISD::FP_EXTEND: { 3316 // RVV can only do fp_extend to types double the size as the source. We 3317 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3318 // via f32. 3319 SDLoc DL(Op); 3320 MVT VT = Op.getSimpleValueType(); 3321 SDValue Src = Op.getOperand(0); 3322 MVT SrcVT = Src.getSimpleValueType(); 3323 3324 // Prepare any fixed-length vector operands. 3325 MVT ContainerVT = VT; 3326 if (SrcVT.isFixedLengthVector()) { 3327 ContainerVT = getContainerForFixedLengthVector(VT); 3328 MVT SrcContainerVT = 3329 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3330 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3331 } 3332 3333 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3334 SrcVT.getVectorElementType() != MVT::f16) { 3335 // For scalable vectors, we only need to close the gap between 3336 // vXf16->vXf64. 3337 if (!VT.isFixedLengthVector()) 3338 return Op; 3339 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3340 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3341 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3342 } 3343 3344 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3345 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3346 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3347 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3348 3349 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3350 DL, DAG, Subtarget); 3351 if (VT.isFixedLengthVector()) 3352 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3353 return Extend; 3354 } 3355 case ISD::FP_ROUND: { 3356 // RVV can only do fp_round to types half the size as the source. We 3357 // custom-lower f64->f16 rounds via RVV's round-to-odd float 3358 // conversion instruction. 3359 SDLoc DL(Op); 3360 MVT VT = Op.getSimpleValueType(); 3361 SDValue Src = Op.getOperand(0); 3362 MVT SrcVT = Src.getSimpleValueType(); 3363 3364 // Prepare any fixed-length vector operands. 3365 MVT ContainerVT = VT; 3366 if (VT.isFixedLengthVector()) { 3367 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3368 ContainerVT = 3369 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3370 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3371 } 3372 3373 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 3374 SrcVT.getVectorElementType() != MVT::f64) { 3375 // For scalable vectors, we only need to close the gap between 3376 // vXf64<->vXf16. 3377 if (!VT.isFixedLengthVector()) 3378 return Op; 3379 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 3380 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3381 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3382 } 3383 3384 SDValue Mask, VL; 3385 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3386 3387 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3388 SDValue IntermediateRound = 3389 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3390 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3391 DL, DAG, Subtarget); 3392 3393 if (VT.isFixedLengthVector()) 3394 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3395 return Round; 3396 } 3397 case ISD::FP_TO_SINT: 3398 case ISD::FP_TO_UINT: 3399 case ISD::SINT_TO_FP: 3400 case ISD::UINT_TO_FP: { 3401 // RVV can only do fp<->int conversions to types half/double the size as 3402 // the source. We custom-lower any conversions that do two hops into 3403 // sequences. 3404 MVT VT = Op.getSimpleValueType(); 3405 if (!VT.isVector()) 3406 return Op; 3407 SDLoc DL(Op); 3408 SDValue Src = Op.getOperand(0); 3409 MVT EltVT = VT.getVectorElementType(); 3410 MVT SrcVT = Src.getSimpleValueType(); 3411 MVT SrcEltVT = SrcVT.getVectorElementType(); 3412 unsigned EltSize = EltVT.getSizeInBits(); 3413 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3414 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3415 "Unexpected vector element types"); 3416 3417 bool IsInt2FP = SrcEltVT.isInteger(); 3418 // Widening conversions 3419 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 3420 if (IsInt2FP) { 3421 // Do a regular integer sign/zero extension then convert to float. 3422 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 3423 VT.getVectorElementCount()); 3424 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3425 ? ISD::ZERO_EXTEND 3426 : ISD::SIGN_EXTEND; 3427 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3428 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3429 } 3430 // FP2Int 3431 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3432 // Do one doubling fp_extend then complete the operation by converting 3433 // to int. 3434 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3435 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3436 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3437 } 3438 3439 // Narrowing conversions 3440 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 3441 if (IsInt2FP) { 3442 // One narrowing int_to_fp, then an fp_round. 3443 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3444 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3445 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3446 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3447 } 3448 // FP2Int 3449 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3450 // representable by the integer, the result is poison. 3451 MVT IVecVT = 3452 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 3453 VT.getVectorElementCount()); 3454 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3455 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3456 } 3457 3458 // Scalable vectors can exit here. Patterns will handle equally-sized 3459 // conversions halving/doubling ones. 3460 if (!VT.isFixedLengthVector()) 3461 return Op; 3462 3463 // For fixed-length vectors we lower to a custom "VL" node. 3464 unsigned RVVOpc = 0; 3465 switch (Op.getOpcode()) { 3466 default: 3467 llvm_unreachable("Impossible opcode"); 3468 case ISD::FP_TO_SINT: 3469 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3470 break; 3471 case ISD::FP_TO_UINT: 3472 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3473 break; 3474 case ISD::SINT_TO_FP: 3475 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3476 break; 3477 case ISD::UINT_TO_FP: 3478 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3479 break; 3480 } 3481 3482 MVT ContainerVT, SrcContainerVT; 3483 // Derive the reference container type from the larger vector type. 3484 if (SrcEltSize > EltSize) { 3485 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3486 ContainerVT = 3487 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3488 } else { 3489 ContainerVT = getContainerForFixedLengthVector(VT); 3490 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3491 } 3492 3493 SDValue Mask, VL; 3494 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3495 3496 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3497 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3498 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3499 } 3500 case ISD::FP_TO_SINT_SAT: 3501 case ISD::FP_TO_UINT_SAT: 3502 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3503 case ISD::FTRUNC: 3504 case ISD::FCEIL: 3505 case ISD::FFLOOR: 3506 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3507 case ISD::FROUND: 3508 return lowerFROUND(Op, DAG); 3509 case ISD::VECREDUCE_ADD: 3510 case ISD::VECREDUCE_UMAX: 3511 case ISD::VECREDUCE_SMAX: 3512 case ISD::VECREDUCE_UMIN: 3513 case ISD::VECREDUCE_SMIN: 3514 return lowerVECREDUCE(Op, DAG); 3515 case ISD::VECREDUCE_AND: 3516 case ISD::VECREDUCE_OR: 3517 case ISD::VECREDUCE_XOR: 3518 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3519 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3520 return lowerVECREDUCE(Op, DAG); 3521 case ISD::VECREDUCE_FADD: 3522 case ISD::VECREDUCE_SEQ_FADD: 3523 case ISD::VECREDUCE_FMIN: 3524 case ISD::VECREDUCE_FMAX: 3525 return lowerFPVECREDUCE(Op, DAG); 3526 case ISD::VP_REDUCE_ADD: 3527 case ISD::VP_REDUCE_UMAX: 3528 case ISD::VP_REDUCE_SMAX: 3529 case ISD::VP_REDUCE_UMIN: 3530 case ISD::VP_REDUCE_SMIN: 3531 case ISD::VP_REDUCE_FADD: 3532 case ISD::VP_REDUCE_SEQ_FADD: 3533 case ISD::VP_REDUCE_FMIN: 3534 case ISD::VP_REDUCE_FMAX: 3535 return lowerVPREDUCE(Op, DAG); 3536 case ISD::VP_REDUCE_AND: 3537 case ISD::VP_REDUCE_OR: 3538 case ISD::VP_REDUCE_XOR: 3539 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3540 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3541 return lowerVPREDUCE(Op, DAG); 3542 case ISD::INSERT_SUBVECTOR: 3543 return lowerINSERT_SUBVECTOR(Op, DAG); 3544 case ISD::EXTRACT_SUBVECTOR: 3545 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3546 case ISD::STEP_VECTOR: 3547 return lowerSTEP_VECTOR(Op, DAG); 3548 case ISD::VECTOR_REVERSE: 3549 return lowerVECTOR_REVERSE(Op, DAG); 3550 case ISD::BUILD_VECTOR: 3551 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3552 case ISD::SPLAT_VECTOR: 3553 if (Op.getValueType().getVectorElementType() == MVT::i1) 3554 return lowerVectorMaskSplat(Op, DAG); 3555 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3556 case ISD::VECTOR_SHUFFLE: 3557 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3558 case ISD::CONCAT_VECTORS: { 3559 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3560 // better than going through the stack, as the default expansion does. 3561 SDLoc DL(Op); 3562 MVT VT = Op.getSimpleValueType(); 3563 unsigned NumOpElts = 3564 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3565 SDValue Vec = DAG.getUNDEF(VT); 3566 for (const auto &OpIdx : enumerate(Op->ops())) { 3567 SDValue SubVec = OpIdx.value(); 3568 // Don't insert undef subvectors. 3569 if (SubVec.isUndef()) 3570 continue; 3571 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3572 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3573 } 3574 return Vec; 3575 } 3576 case ISD::LOAD: 3577 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3578 return V; 3579 if (Op.getValueType().isFixedLengthVector()) 3580 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3581 return Op; 3582 case ISD::STORE: 3583 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3584 return V; 3585 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3586 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3587 return Op; 3588 case ISD::MLOAD: 3589 case ISD::VP_LOAD: 3590 return lowerMaskedLoad(Op, DAG); 3591 case ISD::MSTORE: 3592 case ISD::VP_STORE: 3593 return lowerMaskedStore(Op, DAG); 3594 case ISD::SETCC: 3595 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3596 case ISD::ADD: 3597 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3598 case ISD::SUB: 3599 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3600 case ISD::MUL: 3601 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3602 case ISD::MULHS: 3603 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3604 case ISD::MULHU: 3605 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3606 case ISD::AND: 3607 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3608 RISCVISD::AND_VL); 3609 case ISD::OR: 3610 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3611 RISCVISD::OR_VL); 3612 case ISD::XOR: 3613 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3614 RISCVISD::XOR_VL); 3615 case ISD::SDIV: 3616 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3617 case ISD::SREM: 3618 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3619 case ISD::UDIV: 3620 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3621 case ISD::UREM: 3622 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3623 case ISD::SHL: 3624 case ISD::SRA: 3625 case ISD::SRL: 3626 if (Op.getSimpleValueType().isFixedLengthVector()) 3627 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3628 // This can be called for an i32 shift amount that needs to be promoted. 3629 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3630 "Unexpected custom legalisation"); 3631 return SDValue(); 3632 case ISD::SADDSAT: 3633 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3634 case ISD::UADDSAT: 3635 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3636 case ISD::SSUBSAT: 3637 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3638 case ISD::USUBSAT: 3639 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3640 case ISD::FADD: 3641 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3642 case ISD::FSUB: 3643 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3644 case ISD::FMUL: 3645 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3646 case ISD::FDIV: 3647 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3648 case ISD::FNEG: 3649 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3650 case ISD::FABS: 3651 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3652 case ISD::FSQRT: 3653 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3654 case ISD::FMA: 3655 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3656 case ISD::SMIN: 3657 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3658 case ISD::SMAX: 3659 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3660 case ISD::UMIN: 3661 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3662 case ISD::UMAX: 3663 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3664 case ISD::FMINNUM: 3665 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3666 case ISD::FMAXNUM: 3667 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3668 case ISD::ABS: 3669 return lowerABS(Op, DAG); 3670 case ISD::CTLZ_ZERO_UNDEF: 3671 case ISD::CTTZ_ZERO_UNDEF: 3672 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3673 case ISD::VSELECT: 3674 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3675 case ISD::FCOPYSIGN: 3676 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3677 case ISD::MGATHER: 3678 case ISD::VP_GATHER: 3679 return lowerMaskedGather(Op, DAG); 3680 case ISD::MSCATTER: 3681 case ISD::VP_SCATTER: 3682 return lowerMaskedScatter(Op, DAG); 3683 case ISD::FLT_ROUNDS_: 3684 return lowerGET_ROUNDING(Op, DAG); 3685 case ISD::SET_ROUNDING: 3686 return lowerSET_ROUNDING(Op, DAG); 3687 case ISD::VP_SELECT: 3688 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3689 case ISD::VP_MERGE: 3690 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3691 case ISD::VP_ADD: 3692 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3693 case ISD::VP_SUB: 3694 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3695 case ISD::VP_MUL: 3696 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3697 case ISD::VP_SDIV: 3698 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3699 case ISD::VP_UDIV: 3700 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3701 case ISD::VP_SREM: 3702 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3703 case ISD::VP_UREM: 3704 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3705 case ISD::VP_AND: 3706 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3707 case ISD::VP_OR: 3708 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3709 case ISD::VP_XOR: 3710 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3711 case ISD::VP_ASHR: 3712 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3713 case ISD::VP_LSHR: 3714 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3715 case ISD::VP_SHL: 3716 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3717 case ISD::VP_FADD: 3718 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3719 case ISD::VP_FSUB: 3720 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3721 case ISD::VP_FMUL: 3722 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3723 case ISD::VP_FDIV: 3724 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3725 case ISD::VP_FNEG: 3726 return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL); 3727 case ISD::VP_FMA: 3728 return lowerVPOp(Op, DAG, RISCVISD::FMA_VL); 3729 } 3730 } 3731 3732 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3733 SelectionDAG &DAG, unsigned Flags) { 3734 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3735 } 3736 3737 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3738 SelectionDAG &DAG, unsigned Flags) { 3739 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3740 Flags); 3741 } 3742 3743 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3744 SelectionDAG &DAG, unsigned Flags) { 3745 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3746 N->getOffset(), Flags); 3747 } 3748 3749 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3750 SelectionDAG &DAG, unsigned Flags) { 3751 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3752 } 3753 3754 template <class NodeTy> 3755 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3756 bool IsLocal) const { 3757 SDLoc DL(N); 3758 EVT Ty = getPointerTy(DAG.getDataLayout()); 3759 3760 if (isPositionIndependent()) { 3761 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3762 if (IsLocal) 3763 // Use PC-relative addressing to access the symbol. This generates the 3764 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3765 // %pcrel_lo(auipc)). 3766 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3767 3768 // Use PC-relative addressing to access the GOT for this symbol, then load 3769 // the address from the GOT. This generates the pattern (PseudoLA sym), 3770 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3771 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3772 } 3773 3774 switch (getTargetMachine().getCodeModel()) { 3775 default: 3776 report_fatal_error("Unsupported code model for lowering"); 3777 case CodeModel::Small: { 3778 // Generate a sequence for accessing addresses within the first 2 GiB of 3779 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3780 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3781 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3782 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3783 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3784 } 3785 case CodeModel::Medium: { 3786 // Generate a sequence for accessing addresses within any 2GiB range within 3787 // the address space. This generates the pattern (PseudoLLA sym), which 3788 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3789 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3790 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3791 } 3792 } 3793 } 3794 3795 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3796 SelectionDAG &DAG) const { 3797 SDLoc DL(Op); 3798 EVT Ty = Op.getValueType(); 3799 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3800 int64_t Offset = N->getOffset(); 3801 MVT XLenVT = Subtarget.getXLenVT(); 3802 3803 const GlobalValue *GV = N->getGlobal(); 3804 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3805 SDValue Addr = getAddr(N, DAG, IsLocal); 3806 3807 // In order to maximise the opportunity for common subexpression elimination, 3808 // emit a separate ADD node for the global address offset instead of folding 3809 // it in the global address node. Later peephole optimisations may choose to 3810 // fold it back in when profitable. 3811 if (Offset != 0) 3812 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3813 DAG.getConstant(Offset, DL, XLenVT)); 3814 return Addr; 3815 } 3816 3817 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3818 SelectionDAG &DAG) const { 3819 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3820 3821 return getAddr(N, DAG); 3822 } 3823 3824 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3825 SelectionDAG &DAG) const { 3826 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3827 3828 return getAddr(N, DAG); 3829 } 3830 3831 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3832 SelectionDAG &DAG) const { 3833 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3834 3835 return getAddr(N, DAG); 3836 } 3837 3838 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3839 SelectionDAG &DAG, 3840 bool UseGOT) const { 3841 SDLoc DL(N); 3842 EVT Ty = getPointerTy(DAG.getDataLayout()); 3843 const GlobalValue *GV = N->getGlobal(); 3844 MVT XLenVT = Subtarget.getXLenVT(); 3845 3846 if (UseGOT) { 3847 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3848 // load the address from the GOT and add the thread pointer. This generates 3849 // the pattern (PseudoLA_TLS_IE sym), which expands to 3850 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3851 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3852 SDValue Load = 3853 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3854 3855 // Add the thread pointer. 3856 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3857 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3858 } 3859 3860 // Generate a sequence for accessing the address relative to the thread 3861 // pointer, with the appropriate adjustment for the thread pointer offset. 3862 // This generates the pattern 3863 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3864 SDValue AddrHi = 3865 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3866 SDValue AddrAdd = 3867 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3868 SDValue AddrLo = 3869 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3870 3871 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3872 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3873 SDValue MNAdd = SDValue( 3874 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3875 0); 3876 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3877 } 3878 3879 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3880 SelectionDAG &DAG) const { 3881 SDLoc DL(N); 3882 EVT Ty = getPointerTy(DAG.getDataLayout()); 3883 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3884 const GlobalValue *GV = N->getGlobal(); 3885 3886 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3887 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3888 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3889 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3890 SDValue Load = 3891 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3892 3893 // Prepare argument list to generate call. 3894 ArgListTy Args; 3895 ArgListEntry Entry; 3896 Entry.Node = Load; 3897 Entry.Ty = CallTy; 3898 Args.push_back(Entry); 3899 3900 // Setup call to __tls_get_addr. 3901 TargetLowering::CallLoweringInfo CLI(DAG); 3902 CLI.setDebugLoc(DL) 3903 .setChain(DAG.getEntryNode()) 3904 .setLibCallee(CallingConv::C, CallTy, 3905 DAG.getExternalSymbol("__tls_get_addr", Ty), 3906 std::move(Args)); 3907 3908 return LowerCallTo(CLI).first; 3909 } 3910 3911 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3912 SelectionDAG &DAG) const { 3913 SDLoc DL(Op); 3914 EVT Ty = Op.getValueType(); 3915 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3916 int64_t Offset = N->getOffset(); 3917 MVT XLenVT = Subtarget.getXLenVT(); 3918 3919 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3920 3921 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3922 CallingConv::GHC) 3923 report_fatal_error("In GHC calling convention TLS is not supported"); 3924 3925 SDValue Addr; 3926 switch (Model) { 3927 case TLSModel::LocalExec: 3928 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3929 break; 3930 case TLSModel::InitialExec: 3931 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3932 break; 3933 case TLSModel::LocalDynamic: 3934 case TLSModel::GeneralDynamic: 3935 Addr = getDynamicTLSAddr(N, DAG); 3936 break; 3937 } 3938 3939 // In order to maximise the opportunity for common subexpression elimination, 3940 // emit a separate ADD node for the global address offset instead of folding 3941 // it in the global address node. Later peephole optimisations may choose to 3942 // fold it back in when profitable. 3943 if (Offset != 0) 3944 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3945 DAG.getConstant(Offset, DL, XLenVT)); 3946 return Addr; 3947 } 3948 3949 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3950 SDValue CondV = Op.getOperand(0); 3951 SDValue TrueV = Op.getOperand(1); 3952 SDValue FalseV = Op.getOperand(2); 3953 SDLoc DL(Op); 3954 MVT VT = Op.getSimpleValueType(); 3955 MVT XLenVT = Subtarget.getXLenVT(); 3956 3957 // Lower vector SELECTs to VSELECTs by splatting the condition. 3958 if (VT.isVector()) { 3959 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3960 SDValue CondSplat = VT.isScalableVector() 3961 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3962 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3963 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3964 } 3965 3966 // If the result type is XLenVT and CondV is the output of a SETCC node 3967 // which also operated on XLenVT inputs, then merge the SETCC node into the 3968 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3969 // compare+branch instructions. i.e.: 3970 // (select (setcc lhs, rhs, cc), truev, falsev) 3971 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3972 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3973 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3974 SDValue LHS = CondV.getOperand(0); 3975 SDValue RHS = CondV.getOperand(1); 3976 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3977 ISD::CondCode CCVal = CC->get(); 3978 3979 // Special case for a select of 2 constants that have a diffence of 1. 3980 // Normally this is done by DAGCombine, but if the select is introduced by 3981 // type legalization or op legalization, we miss it. Restricting to SETLT 3982 // case for now because that is what signed saturating add/sub need. 3983 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3984 // but we would probably want to swap the true/false values if the condition 3985 // is SETGE/SETLE to avoid an XORI. 3986 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3987 CCVal == ISD::SETLT) { 3988 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3989 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3990 if (TrueVal - 1 == FalseVal) 3991 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3992 if (TrueVal + 1 == FalseVal) 3993 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3994 } 3995 3996 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3997 3998 SDValue TargetCC = DAG.getCondCode(CCVal); 3999 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 4000 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 4001 } 4002 4003 // Otherwise: 4004 // (select condv, truev, falsev) 4005 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 4006 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4007 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 4008 4009 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 4010 4011 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 4012 } 4013 4014 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 4015 SDValue CondV = Op.getOperand(1); 4016 SDLoc DL(Op); 4017 MVT XLenVT = Subtarget.getXLenVT(); 4018 4019 if (CondV.getOpcode() == ISD::SETCC && 4020 CondV.getOperand(0).getValueType() == XLenVT) { 4021 SDValue LHS = CondV.getOperand(0); 4022 SDValue RHS = CondV.getOperand(1); 4023 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 4024 4025 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 4026 4027 SDValue TargetCC = DAG.getCondCode(CCVal); 4028 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 4029 LHS, RHS, TargetCC, Op.getOperand(2)); 4030 } 4031 4032 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 4033 CondV, DAG.getConstant(0, DL, XLenVT), 4034 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 4035 } 4036 4037 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 4038 MachineFunction &MF = DAG.getMachineFunction(); 4039 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 4040 4041 SDLoc DL(Op); 4042 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 4043 getPointerTy(MF.getDataLayout())); 4044 4045 // vastart just stores the address of the VarArgsFrameIndex slot into the 4046 // memory location argument. 4047 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 4048 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 4049 MachinePointerInfo(SV)); 4050 } 4051 4052 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 4053 SelectionDAG &DAG) const { 4054 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4055 MachineFunction &MF = DAG.getMachineFunction(); 4056 MachineFrameInfo &MFI = MF.getFrameInfo(); 4057 MFI.setFrameAddressIsTaken(true); 4058 Register FrameReg = RI.getFrameRegister(MF); 4059 int XLenInBytes = Subtarget.getXLen() / 8; 4060 4061 EVT VT = Op.getValueType(); 4062 SDLoc DL(Op); 4063 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 4064 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4065 while (Depth--) { 4066 int Offset = -(XLenInBytes * 2); 4067 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 4068 DAG.getIntPtrConstant(Offset, DL)); 4069 FrameAddr = 4070 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 4071 } 4072 return FrameAddr; 4073 } 4074 4075 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 4076 SelectionDAG &DAG) const { 4077 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4078 MachineFunction &MF = DAG.getMachineFunction(); 4079 MachineFrameInfo &MFI = MF.getFrameInfo(); 4080 MFI.setReturnAddressIsTaken(true); 4081 MVT XLenVT = Subtarget.getXLenVT(); 4082 int XLenInBytes = Subtarget.getXLen() / 8; 4083 4084 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 4085 return SDValue(); 4086 4087 EVT VT = Op.getValueType(); 4088 SDLoc DL(Op); 4089 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4090 if (Depth) { 4091 int Off = -XLenInBytes; 4092 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 4093 SDValue Offset = DAG.getConstant(Off, DL, VT); 4094 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 4095 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 4096 MachinePointerInfo()); 4097 } 4098 4099 // Return the value of the return address register, marking it an implicit 4100 // live-in. 4101 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 4102 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 4103 } 4104 4105 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 4106 SelectionDAG &DAG) const { 4107 SDLoc DL(Op); 4108 SDValue Lo = Op.getOperand(0); 4109 SDValue Hi = Op.getOperand(1); 4110 SDValue Shamt = Op.getOperand(2); 4111 EVT VT = Lo.getValueType(); 4112 4113 // if Shamt-XLEN < 0: // Shamt < XLEN 4114 // Lo = Lo << Shamt 4115 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 4116 // else: 4117 // Lo = 0 4118 // Hi = Lo << (Shamt-XLEN) 4119 4120 SDValue Zero = DAG.getConstant(0, DL, VT); 4121 SDValue One = DAG.getConstant(1, DL, VT); 4122 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4123 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4124 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4125 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 4126 4127 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 4128 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 4129 SDValue ShiftRightLo = 4130 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 4131 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 4132 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 4133 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 4134 4135 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4136 4137 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 4138 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4139 4140 SDValue Parts[2] = {Lo, Hi}; 4141 return DAG.getMergeValues(Parts, DL); 4142 } 4143 4144 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 4145 bool IsSRA) const { 4146 SDLoc DL(Op); 4147 SDValue Lo = Op.getOperand(0); 4148 SDValue Hi = Op.getOperand(1); 4149 SDValue Shamt = Op.getOperand(2); 4150 EVT VT = Lo.getValueType(); 4151 4152 // SRA expansion: 4153 // if Shamt-XLEN < 0: // Shamt < XLEN 4154 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 4155 // Hi = Hi >>s Shamt 4156 // else: 4157 // Lo = Hi >>s (Shamt-XLEN); 4158 // Hi = Hi >>s (XLEN-1) 4159 // 4160 // SRL expansion: 4161 // if Shamt-XLEN < 0: // Shamt < XLEN 4162 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 4163 // Hi = Hi >>u Shamt 4164 // else: 4165 // Lo = Hi >>u (Shamt-XLEN); 4166 // Hi = 0; 4167 4168 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 4169 4170 SDValue Zero = DAG.getConstant(0, DL, VT); 4171 SDValue One = DAG.getConstant(1, DL, VT); 4172 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4173 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4174 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4175 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 4176 4177 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 4178 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 4179 SDValue ShiftLeftHi = 4180 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 4181 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 4182 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 4183 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 4184 SDValue HiFalse = 4185 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 4186 4187 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4188 4189 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 4190 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4191 4192 SDValue Parts[2] = {Lo, Hi}; 4193 return DAG.getMergeValues(Parts, DL); 4194 } 4195 4196 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 4197 // legal equivalently-sized i8 type, so we can use that as a go-between. 4198 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 4199 SelectionDAG &DAG) const { 4200 SDLoc DL(Op); 4201 MVT VT = Op.getSimpleValueType(); 4202 SDValue SplatVal = Op.getOperand(0); 4203 // All-zeros or all-ones splats are handled specially. 4204 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4205 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4206 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4207 } 4208 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4209 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4210 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4211 } 4212 MVT XLenVT = Subtarget.getXLenVT(); 4213 assert(SplatVal.getValueType() == XLenVT && 4214 "Unexpected type for i1 splat value"); 4215 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4216 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4217 DAG.getConstant(1, DL, XLenVT)); 4218 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4219 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4220 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4221 } 4222 4223 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4224 // illegal (currently only vXi64 RV32). 4225 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4226 // them to VMV_V_X_VL. 4227 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4228 SelectionDAG &DAG) const { 4229 SDLoc DL(Op); 4230 MVT VecVT = Op.getSimpleValueType(); 4231 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4232 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4233 4234 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4235 SDValue Lo = Op.getOperand(0); 4236 SDValue Hi = Op.getOperand(1); 4237 4238 if (VecVT.isFixedLengthVector()) { 4239 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4240 SDLoc DL(Op); 4241 SDValue Mask, VL; 4242 std::tie(Mask, VL) = 4243 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4244 4245 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 4246 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4247 } 4248 4249 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4250 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4251 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4252 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4253 // node in order to try and match RVV vector/scalar instructions. 4254 if ((LoC >> 31) == HiC) 4255 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, Lo, 4256 DAG.getRegister(RISCV::X0, MVT::i32)); 4257 } 4258 4259 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4260 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4261 isa<ConstantSDNode>(Hi.getOperand(1)) && 4262 Hi.getConstantOperandVal(1) == 31) 4263 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, Lo, 4264 DAG.getRegister(RISCV::X0, MVT::i32)); 4265 4266 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4267 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 4268 DAG.getRegister(RISCV::X0, MVT::i32)); 4269 } 4270 4271 // Custom-lower extensions from mask vectors by using a vselect either with 1 4272 // for zero/any-extension or -1 for sign-extension: 4273 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4274 // Note that any-extension is lowered identically to zero-extension. 4275 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4276 int64_t ExtTrueVal) const { 4277 SDLoc DL(Op); 4278 MVT VecVT = Op.getSimpleValueType(); 4279 SDValue Src = Op.getOperand(0); 4280 // Only custom-lower extensions from mask types 4281 assert(Src.getValueType().isVector() && 4282 Src.getValueType().getVectorElementType() == MVT::i1); 4283 4284 MVT XLenVT = Subtarget.getXLenVT(); 4285 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4286 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4287 4288 if (VecVT.isScalableVector()) { 4289 // Be careful not to introduce illegal scalar types at this stage, and be 4290 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 4291 // illegal and must be expanded. Since we know that the constants are 4292 // sign-extended 32-bit values, we use VMV_V_X_VL directly. 4293 bool IsRV32E64 = 4294 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 4295 4296 if (!IsRV32E64) { 4297 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 4298 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 4299 } else { 4300 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, SplatZero, 4301 DAG.getRegister(RISCV::X0, XLenVT)); 4302 SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, SplatTrueVal, 4303 DAG.getRegister(RISCV::X0, XLenVT)); 4304 } 4305 4306 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4307 } 4308 4309 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4310 MVT I1ContainerVT = 4311 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4312 4313 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4314 4315 SDValue Mask, VL; 4316 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4317 4318 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 4319 SplatTrueVal = 4320 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 4321 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4322 SplatTrueVal, SplatZero, VL); 4323 4324 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4325 } 4326 4327 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4328 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4329 MVT ExtVT = Op.getSimpleValueType(); 4330 // Only custom-lower extensions from fixed-length vector types. 4331 if (!ExtVT.isFixedLengthVector()) 4332 return Op; 4333 MVT VT = Op.getOperand(0).getSimpleValueType(); 4334 // Grab the canonical container type for the extended type. Infer the smaller 4335 // type from that to ensure the same number of vector elements, as we know 4336 // the LMUL will be sufficient to hold the smaller type. 4337 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4338 // Get the extended container type manually to ensure the same number of 4339 // vector elements between source and dest. 4340 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4341 ContainerExtVT.getVectorElementCount()); 4342 4343 SDValue Op1 = 4344 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4345 4346 SDLoc DL(Op); 4347 SDValue Mask, VL; 4348 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4349 4350 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4351 4352 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4353 } 4354 4355 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4356 // setcc operation: 4357 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4358 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 4359 SelectionDAG &DAG) const { 4360 SDLoc DL(Op); 4361 EVT MaskVT = Op.getValueType(); 4362 // Only expect to custom-lower truncations to mask types 4363 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4364 "Unexpected type for vector mask lowering"); 4365 SDValue Src = Op.getOperand(0); 4366 MVT VecVT = Src.getSimpleValueType(); 4367 4368 // If this is a fixed vector, we need to convert it to a scalable vector. 4369 MVT ContainerVT = VecVT; 4370 if (VecVT.isFixedLengthVector()) { 4371 ContainerVT = getContainerForFixedLengthVector(VecVT); 4372 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4373 } 4374 4375 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4376 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4377 4378 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 4379 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 4380 4381 if (VecVT.isScalableVector()) { 4382 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 4383 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 4384 } 4385 4386 SDValue Mask, VL; 4387 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4388 4389 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4390 SDValue Trunc = 4391 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4392 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4393 DAG.getCondCode(ISD::SETNE), Mask, VL); 4394 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4395 } 4396 4397 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4398 // first position of a vector, and that vector is slid up to the insert index. 4399 // By limiting the active vector length to index+1 and merging with the 4400 // original vector (with an undisturbed tail policy for elements >= VL), we 4401 // achieve the desired result of leaving all elements untouched except the one 4402 // at VL-1, which is replaced with the desired value. 4403 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4404 SelectionDAG &DAG) const { 4405 SDLoc DL(Op); 4406 MVT VecVT = Op.getSimpleValueType(); 4407 SDValue Vec = Op.getOperand(0); 4408 SDValue Val = Op.getOperand(1); 4409 SDValue Idx = Op.getOperand(2); 4410 4411 if (VecVT.getVectorElementType() == MVT::i1) { 4412 // FIXME: For now we just promote to an i8 vector and insert into that, 4413 // but this is probably not optimal. 4414 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4415 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4416 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4417 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4418 } 4419 4420 MVT ContainerVT = VecVT; 4421 // If the operand is a fixed-length vector, convert to a scalable one. 4422 if (VecVT.isFixedLengthVector()) { 4423 ContainerVT = getContainerForFixedLengthVector(VecVT); 4424 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4425 } 4426 4427 MVT XLenVT = Subtarget.getXLenVT(); 4428 4429 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4430 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4431 // Even i64-element vectors on RV32 can be lowered without scalar 4432 // legalization if the most-significant 32 bits of the value are not affected 4433 // by the sign-extension of the lower 32 bits. 4434 // TODO: We could also catch sign extensions of a 32-bit value. 4435 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4436 const auto *CVal = cast<ConstantSDNode>(Val); 4437 if (isInt<32>(CVal->getSExtValue())) { 4438 IsLegalInsert = true; 4439 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4440 } 4441 } 4442 4443 SDValue Mask, VL; 4444 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4445 4446 SDValue ValInVec; 4447 4448 if (IsLegalInsert) { 4449 unsigned Opc = 4450 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4451 if (isNullConstant(Idx)) { 4452 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4453 if (!VecVT.isFixedLengthVector()) 4454 return Vec; 4455 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4456 } 4457 ValInVec = 4458 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4459 } else { 4460 // On RV32, i64-element vectors must be specially handled to place the 4461 // value at element 0, by using two vslide1up instructions in sequence on 4462 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4463 // this. 4464 SDValue One = DAG.getConstant(1, DL, XLenVT); 4465 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4466 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4467 MVT I32ContainerVT = 4468 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4469 SDValue I32Mask = 4470 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4471 // Limit the active VL to two. 4472 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4473 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4474 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4475 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 4476 InsertI64VL); 4477 // First slide in the hi value, then the lo in underneath it. 4478 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4479 ValHi, I32Mask, InsertI64VL); 4480 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4481 ValLo, I32Mask, InsertI64VL); 4482 // Bitcast back to the right container type. 4483 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4484 } 4485 4486 // Now that the value is in a vector, slide it into position. 4487 SDValue InsertVL = 4488 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4489 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4490 ValInVec, Idx, Mask, InsertVL); 4491 if (!VecVT.isFixedLengthVector()) 4492 return Slideup; 4493 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4494 } 4495 4496 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4497 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4498 // types this is done using VMV_X_S to allow us to glean information about the 4499 // sign bits of the result. 4500 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4501 SelectionDAG &DAG) const { 4502 SDLoc DL(Op); 4503 SDValue Idx = Op.getOperand(1); 4504 SDValue Vec = Op.getOperand(0); 4505 EVT EltVT = Op.getValueType(); 4506 MVT VecVT = Vec.getSimpleValueType(); 4507 MVT XLenVT = Subtarget.getXLenVT(); 4508 4509 if (VecVT.getVectorElementType() == MVT::i1) { 4510 if (VecVT.isFixedLengthVector()) { 4511 unsigned NumElts = VecVT.getVectorNumElements(); 4512 if (NumElts >= 8) { 4513 MVT WideEltVT; 4514 unsigned WidenVecLen; 4515 SDValue ExtractElementIdx; 4516 SDValue ExtractBitIdx; 4517 unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors(); 4518 MVT LargestEltVT = MVT::getIntegerVT( 4519 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4520 if (NumElts <= LargestEltVT.getSizeInBits()) { 4521 assert(isPowerOf2_32(NumElts) && 4522 "the number of elements should be power of 2"); 4523 WideEltVT = MVT::getIntegerVT(NumElts); 4524 WidenVecLen = 1; 4525 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4526 ExtractBitIdx = Idx; 4527 } else { 4528 WideEltVT = LargestEltVT; 4529 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4530 // extract element index = index / element width 4531 ExtractElementIdx = DAG.getNode( 4532 ISD::SRL, DL, XLenVT, Idx, 4533 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4534 // mask bit index = index % element width 4535 ExtractBitIdx = DAG.getNode( 4536 ISD::AND, DL, XLenVT, Idx, 4537 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4538 } 4539 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4540 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4541 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4542 Vec, ExtractElementIdx); 4543 // Extract the bit from GPR. 4544 SDValue ShiftRight = 4545 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4546 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4547 DAG.getConstant(1, DL, XLenVT)); 4548 } 4549 } 4550 // Otherwise, promote to an i8 vector and extract from that. 4551 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4552 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4553 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4554 } 4555 4556 // If this is a fixed vector, we need to convert it to a scalable vector. 4557 MVT ContainerVT = VecVT; 4558 if (VecVT.isFixedLengthVector()) { 4559 ContainerVT = getContainerForFixedLengthVector(VecVT); 4560 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4561 } 4562 4563 // If the index is 0, the vector is already in the right position. 4564 if (!isNullConstant(Idx)) { 4565 // Use a VL of 1 to avoid processing more elements than we need. 4566 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4567 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4568 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4569 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4570 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4571 } 4572 4573 if (!EltVT.isInteger()) { 4574 // Floating-point extracts are handled in TableGen. 4575 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4576 DAG.getConstant(0, DL, XLenVT)); 4577 } 4578 4579 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4580 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4581 } 4582 4583 // Some RVV intrinsics may claim that they want an integer operand to be 4584 // promoted or expanded. 4585 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 4586 const RISCVSubtarget &Subtarget) { 4587 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4588 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4589 "Unexpected opcode"); 4590 4591 if (!Subtarget.hasVInstructions()) 4592 return SDValue(); 4593 4594 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4595 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4596 SDLoc DL(Op); 4597 4598 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4599 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4600 if (!II || !II->hasSplatOperand()) 4601 return SDValue(); 4602 4603 unsigned SplatOp = II->SplatOperand + 1 + HasChain; 4604 assert(SplatOp < Op.getNumOperands()); 4605 4606 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4607 SDValue &ScalarOp = Operands[SplatOp]; 4608 MVT OpVT = ScalarOp.getSimpleValueType(); 4609 MVT XLenVT = Subtarget.getXLenVT(); 4610 4611 // If this isn't a scalar, or its type is XLenVT we're done. 4612 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4613 return SDValue(); 4614 4615 // Simplest case is that the operand needs to be promoted to XLenVT. 4616 if (OpVT.bitsLT(XLenVT)) { 4617 // If the operand is a constant, sign extend to increase our chances 4618 // of being able to use a .vi instruction. ANY_EXTEND would become a 4619 // a zero extend and the simm5 check in isel would fail. 4620 // FIXME: Should we ignore the upper bits in isel instead? 4621 unsigned ExtOpc = 4622 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4623 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4624 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4625 } 4626 4627 // Use the previous operand to get the vXi64 VT. The result might be a mask 4628 // VT for compares. Using the previous operand assumes that the previous 4629 // operand will never have a smaller element size than a scalar operand and 4630 // that a widening operation never uses SEW=64. 4631 // NOTE: If this fails the below assert, we can probably just find the 4632 // element count from any operand or result and use it to construct the VT. 4633 assert(II->SplatOperand > 0 && "Unexpected splat operand!"); 4634 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4635 4636 // The more complex case is when the scalar is larger than XLenVT. 4637 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4638 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4639 4640 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4641 // on the instruction to sign-extend since SEW>XLEN. 4642 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4643 if (isInt<32>(CVal->getSExtValue())) { 4644 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4645 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4646 } 4647 } 4648 4649 // We need to convert the scalar to a splat vector. 4650 // FIXME: Can we implicitly truncate the scalar if it is known to 4651 // be sign extended? 4652 SDValue VL = getVLOperand(Op); 4653 assert(VL.getValueType() == XLenVT); 4654 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4655 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4656 } 4657 4658 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4659 SelectionDAG &DAG) const { 4660 unsigned IntNo = Op.getConstantOperandVal(0); 4661 SDLoc DL(Op); 4662 MVT XLenVT = Subtarget.getXLenVT(); 4663 4664 switch (IntNo) { 4665 default: 4666 break; // Don't custom lower most intrinsics. 4667 case Intrinsic::thread_pointer: { 4668 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4669 return DAG.getRegister(RISCV::X4, PtrVT); 4670 } 4671 case Intrinsic::riscv_orc_b: 4672 case Intrinsic::riscv_brev8: { 4673 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4674 unsigned Opc = 4675 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4676 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4677 DAG.getConstant(7, DL, XLenVT)); 4678 } 4679 case Intrinsic::riscv_grev: 4680 case Intrinsic::riscv_gorc: { 4681 unsigned Opc = 4682 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4683 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4684 } 4685 case Intrinsic::riscv_zip: 4686 case Intrinsic::riscv_unzip: { 4687 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4688 // For i32 the immdiate is 15. For i64 the immediate is 31. 4689 unsigned Opc = 4690 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4691 unsigned BitWidth = Op.getValueSizeInBits(); 4692 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4693 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4694 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4695 } 4696 case Intrinsic::riscv_shfl: 4697 case Intrinsic::riscv_unshfl: { 4698 unsigned Opc = 4699 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4700 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4701 } 4702 case Intrinsic::riscv_bcompress: 4703 case Intrinsic::riscv_bdecompress: { 4704 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4705 : RISCVISD::BDECOMPRESS; 4706 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4707 } 4708 case Intrinsic::riscv_bfp: 4709 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4710 Op.getOperand(2)); 4711 case Intrinsic::riscv_fsl: 4712 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4713 Op.getOperand(2), Op.getOperand(3)); 4714 case Intrinsic::riscv_fsr: 4715 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4716 Op.getOperand(2), Op.getOperand(3)); 4717 case Intrinsic::riscv_vmv_x_s: 4718 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4719 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4720 Op.getOperand(1)); 4721 case Intrinsic::riscv_vmv_v_x: 4722 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4723 Op.getSimpleValueType(), DL, DAG, Subtarget); 4724 case Intrinsic::riscv_vfmv_v_f: 4725 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4726 Op.getOperand(1), Op.getOperand(2)); 4727 case Intrinsic::riscv_vmv_s_x: { 4728 SDValue Scalar = Op.getOperand(2); 4729 4730 if (Scalar.getValueType().bitsLE(XLenVT)) { 4731 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4732 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4733 Op.getOperand(1), Scalar, Op.getOperand(3)); 4734 } 4735 4736 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4737 4738 // This is an i64 value that lives in two scalar registers. We have to 4739 // insert this in a convoluted way. First we build vXi64 splat containing 4740 // the/ two values that we assemble using some bit math. Next we'll use 4741 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4742 // to merge element 0 from our splat into the source vector. 4743 // FIXME: This is probably not the best way to do this, but it is 4744 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4745 // point. 4746 // sw lo, (a0) 4747 // sw hi, 4(a0) 4748 // vlse vX, (a0) 4749 // 4750 // vid.v vVid 4751 // vmseq.vx mMask, vVid, 0 4752 // vmerge.vvm vDest, vSrc, vVal, mMask 4753 MVT VT = Op.getSimpleValueType(); 4754 SDValue Vec = Op.getOperand(1); 4755 SDValue VL = getVLOperand(Op); 4756 4757 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4758 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4759 DAG.getConstant(0, DL, MVT::i32), VL); 4760 4761 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4762 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4763 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4764 SDValue SelectCond = 4765 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4766 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4767 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4768 Vec, VL); 4769 } 4770 case Intrinsic::riscv_vslide1up: 4771 case Intrinsic::riscv_vslide1down: 4772 case Intrinsic::riscv_vslide1up_mask: 4773 case Intrinsic::riscv_vslide1down_mask: { 4774 // We need to special case these when the scalar is larger than XLen. 4775 unsigned NumOps = Op.getNumOperands(); 4776 bool IsMasked = NumOps == 7; 4777 unsigned OpOffset = IsMasked ? 1 : 0; 4778 SDValue Scalar = Op.getOperand(2 + OpOffset); 4779 if (Scalar.getValueType().bitsLE(XLenVT)) 4780 break; 4781 4782 // Splatting a sign extended constant is fine. 4783 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4784 if (isInt<32>(CVal->getSExtValue())) 4785 break; 4786 4787 MVT VT = Op.getSimpleValueType(); 4788 assert(VT.getVectorElementType() == MVT::i64 && 4789 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4790 4791 // Convert the vector source to the equivalent nxvXi32 vector. 4792 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4793 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4794 4795 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4796 DAG.getConstant(0, DL, XLenVT)); 4797 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4798 DAG.getConstant(1, DL, XLenVT)); 4799 4800 // Double the VL since we halved SEW. 4801 SDValue VL = getVLOperand(Op); 4802 SDValue I32VL = 4803 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4804 4805 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4806 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4807 4808 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4809 // instructions. 4810 if (IntNo == Intrinsic::riscv_vslide1up || 4811 IntNo == Intrinsic::riscv_vslide1up_mask) { 4812 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4813 I32Mask, I32VL); 4814 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4815 I32Mask, I32VL); 4816 } else { 4817 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4818 I32Mask, I32VL); 4819 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4820 I32Mask, I32VL); 4821 } 4822 4823 // Convert back to nxvXi64. 4824 Vec = DAG.getBitcast(VT, Vec); 4825 4826 if (!IsMasked) 4827 return Vec; 4828 4829 // Apply mask after the operation. 4830 SDValue Mask = Op.getOperand(NumOps - 3); 4831 SDValue MaskedOff = Op.getOperand(1); 4832 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4833 } 4834 } 4835 4836 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4837 } 4838 4839 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4840 SelectionDAG &DAG) const { 4841 unsigned IntNo = Op.getConstantOperandVal(1); 4842 switch (IntNo) { 4843 default: 4844 break; 4845 case Intrinsic::riscv_masked_strided_load: { 4846 SDLoc DL(Op); 4847 MVT XLenVT = Subtarget.getXLenVT(); 4848 4849 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4850 // the selection of the masked intrinsics doesn't do this for us. 4851 SDValue Mask = Op.getOperand(5); 4852 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4853 4854 MVT VT = Op->getSimpleValueType(0); 4855 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4856 4857 SDValue PassThru = Op.getOperand(2); 4858 if (!IsUnmasked) { 4859 MVT MaskVT = 4860 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4861 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4862 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4863 } 4864 4865 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4866 4867 SDValue IntID = DAG.getTargetConstant( 4868 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4869 XLenVT); 4870 4871 auto *Load = cast<MemIntrinsicSDNode>(Op); 4872 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4873 if (IsUnmasked) 4874 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4875 else 4876 Ops.push_back(PassThru); 4877 Ops.push_back(Op.getOperand(3)); // Ptr 4878 Ops.push_back(Op.getOperand(4)); // Stride 4879 if (!IsUnmasked) 4880 Ops.push_back(Mask); 4881 Ops.push_back(VL); 4882 if (!IsUnmasked) { 4883 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4884 Ops.push_back(Policy); 4885 } 4886 4887 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4888 SDValue Result = 4889 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4890 Load->getMemoryVT(), Load->getMemOperand()); 4891 SDValue Chain = Result.getValue(1); 4892 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4893 return DAG.getMergeValues({Result, Chain}, DL); 4894 } 4895 } 4896 4897 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4898 } 4899 4900 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4901 SelectionDAG &DAG) const { 4902 unsigned IntNo = Op.getConstantOperandVal(1); 4903 switch (IntNo) { 4904 default: 4905 break; 4906 case Intrinsic::riscv_masked_strided_store: { 4907 SDLoc DL(Op); 4908 MVT XLenVT = Subtarget.getXLenVT(); 4909 4910 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4911 // the selection of the masked intrinsics doesn't do this for us. 4912 SDValue Mask = Op.getOperand(5); 4913 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4914 4915 SDValue Val = Op.getOperand(2); 4916 MVT VT = Val.getSimpleValueType(); 4917 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4918 4919 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4920 if (!IsUnmasked) { 4921 MVT MaskVT = 4922 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4923 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4924 } 4925 4926 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4927 4928 SDValue IntID = DAG.getTargetConstant( 4929 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4930 XLenVT); 4931 4932 auto *Store = cast<MemIntrinsicSDNode>(Op); 4933 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4934 Ops.push_back(Val); 4935 Ops.push_back(Op.getOperand(3)); // Ptr 4936 Ops.push_back(Op.getOperand(4)); // Stride 4937 if (!IsUnmasked) 4938 Ops.push_back(Mask); 4939 Ops.push_back(VL); 4940 4941 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4942 Ops, Store->getMemoryVT(), 4943 Store->getMemOperand()); 4944 } 4945 } 4946 4947 return SDValue(); 4948 } 4949 4950 static MVT getLMUL1VT(MVT VT) { 4951 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4952 "Unexpected vector MVT"); 4953 return MVT::getScalableVectorVT( 4954 VT.getVectorElementType(), 4955 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4956 } 4957 4958 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4959 switch (ISDOpcode) { 4960 default: 4961 llvm_unreachable("Unhandled reduction"); 4962 case ISD::VECREDUCE_ADD: 4963 return RISCVISD::VECREDUCE_ADD_VL; 4964 case ISD::VECREDUCE_UMAX: 4965 return RISCVISD::VECREDUCE_UMAX_VL; 4966 case ISD::VECREDUCE_SMAX: 4967 return RISCVISD::VECREDUCE_SMAX_VL; 4968 case ISD::VECREDUCE_UMIN: 4969 return RISCVISD::VECREDUCE_UMIN_VL; 4970 case ISD::VECREDUCE_SMIN: 4971 return RISCVISD::VECREDUCE_SMIN_VL; 4972 case ISD::VECREDUCE_AND: 4973 return RISCVISD::VECREDUCE_AND_VL; 4974 case ISD::VECREDUCE_OR: 4975 return RISCVISD::VECREDUCE_OR_VL; 4976 case ISD::VECREDUCE_XOR: 4977 return RISCVISD::VECREDUCE_XOR_VL; 4978 } 4979 } 4980 4981 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4982 SelectionDAG &DAG, 4983 bool IsVP) const { 4984 SDLoc DL(Op); 4985 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4986 MVT VecVT = Vec.getSimpleValueType(); 4987 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4988 Op.getOpcode() == ISD::VECREDUCE_OR || 4989 Op.getOpcode() == ISD::VECREDUCE_XOR || 4990 Op.getOpcode() == ISD::VP_REDUCE_AND || 4991 Op.getOpcode() == ISD::VP_REDUCE_OR || 4992 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4993 "Unexpected reduction lowering"); 4994 4995 MVT XLenVT = Subtarget.getXLenVT(); 4996 assert(Op.getValueType() == XLenVT && 4997 "Expected reduction output to be legalized to XLenVT"); 4998 4999 MVT ContainerVT = VecVT; 5000 if (VecVT.isFixedLengthVector()) { 5001 ContainerVT = getContainerForFixedLengthVector(VecVT); 5002 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5003 } 5004 5005 SDValue Mask, VL; 5006 if (IsVP) { 5007 Mask = Op.getOperand(2); 5008 VL = Op.getOperand(3); 5009 } else { 5010 std::tie(Mask, VL) = 5011 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5012 } 5013 5014 unsigned BaseOpc; 5015 ISD::CondCode CC; 5016 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 5017 5018 switch (Op.getOpcode()) { 5019 default: 5020 llvm_unreachable("Unhandled reduction"); 5021 case ISD::VECREDUCE_AND: 5022 case ISD::VP_REDUCE_AND: { 5023 // vcpop ~x == 0 5024 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 5025 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 5026 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5027 CC = ISD::SETEQ; 5028 BaseOpc = ISD::AND; 5029 break; 5030 } 5031 case ISD::VECREDUCE_OR: 5032 case ISD::VP_REDUCE_OR: 5033 // vcpop x != 0 5034 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5035 CC = ISD::SETNE; 5036 BaseOpc = ISD::OR; 5037 break; 5038 case ISD::VECREDUCE_XOR: 5039 case ISD::VP_REDUCE_XOR: { 5040 // ((vcpop x) & 1) != 0 5041 SDValue One = DAG.getConstant(1, DL, XLenVT); 5042 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5043 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 5044 CC = ISD::SETNE; 5045 BaseOpc = ISD::XOR; 5046 break; 5047 } 5048 } 5049 5050 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 5051 5052 if (!IsVP) 5053 return SetCC; 5054 5055 // Now include the start value in the operation. 5056 // Note that we must return the start value when no elements are operated 5057 // upon. The vcpop instructions we've emitted in each case above will return 5058 // 0 for an inactive vector, and so we've already received the neutral value: 5059 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 5060 // can simply include the start value. 5061 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 5062 } 5063 5064 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 5065 SelectionDAG &DAG) const { 5066 SDLoc DL(Op); 5067 SDValue Vec = Op.getOperand(0); 5068 EVT VecEVT = Vec.getValueType(); 5069 5070 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 5071 5072 // Due to ordering in legalize types we may have a vector type that needs to 5073 // be split. Do that manually so we can get down to a legal type. 5074 while (getTypeAction(*DAG.getContext(), VecEVT) == 5075 TargetLowering::TypeSplitVector) { 5076 SDValue Lo, Hi; 5077 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 5078 VecEVT = Lo.getValueType(); 5079 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 5080 } 5081 5082 // TODO: The type may need to be widened rather than split. Or widened before 5083 // it can be split. 5084 if (!isTypeLegal(VecEVT)) 5085 return SDValue(); 5086 5087 MVT VecVT = VecEVT.getSimpleVT(); 5088 MVT VecEltVT = VecVT.getVectorElementType(); 5089 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 5090 5091 MVT ContainerVT = VecVT; 5092 if (VecVT.isFixedLengthVector()) { 5093 ContainerVT = getContainerForFixedLengthVector(VecVT); 5094 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5095 } 5096 5097 MVT M1VT = getLMUL1VT(ContainerVT); 5098 MVT XLenVT = Subtarget.getXLenVT(); 5099 5100 SDValue Mask, VL; 5101 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5102 5103 SDValue NeutralElem = 5104 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 5105 SDValue IdentitySplat = lowerScalarSplat( 5106 NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 5107 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 5108 IdentitySplat, Mask, VL); 5109 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5110 DAG.getConstant(0, DL, XLenVT)); 5111 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5112 } 5113 5114 // Given a reduction op, this function returns the matching reduction opcode, 5115 // the vector SDValue and the scalar SDValue required to lower this to a 5116 // RISCVISD node. 5117 static std::tuple<unsigned, SDValue, SDValue> 5118 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 5119 SDLoc DL(Op); 5120 auto Flags = Op->getFlags(); 5121 unsigned Opcode = Op.getOpcode(); 5122 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 5123 switch (Opcode) { 5124 default: 5125 llvm_unreachable("Unhandled reduction"); 5126 case ISD::VECREDUCE_FADD: { 5127 // Use positive zero if we can. It is cheaper to materialize. 5128 SDValue Zero = 5129 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 5130 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 5131 } 5132 case ISD::VECREDUCE_SEQ_FADD: 5133 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 5134 Op.getOperand(0)); 5135 case ISD::VECREDUCE_FMIN: 5136 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 5137 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5138 case ISD::VECREDUCE_FMAX: 5139 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 5140 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5141 } 5142 } 5143 5144 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 5145 SelectionDAG &DAG) const { 5146 SDLoc DL(Op); 5147 MVT VecEltVT = Op.getSimpleValueType(); 5148 5149 unsigned RVVOpcode; 5150 SDValue VectorVal, ScalarVal; 5151 std::tie(RVVOpcode, VectorVal, ScalarVal) = 5152 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 5153 MVT VecVT = VectorVal.getSimpleValueType(); 5154 5155 MVT ContainerVT = VecVT; 5156 if (VecVT.isFixedLengthVector()) { 5157 ContainerVT = getContainerForFixedLengthVector(VecVT); 5158 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 5159 } 5160 5161 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 5162 MVT XLenVT = Subtarget.getXLenVT(); 5163 5164 SDValue Mask, VL; 5165 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5166 5167 SDValue ScalarSplat = lowerScalarSplat( 5168 ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 5169 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 5170 VectorVal, ScalarSplat, Mask, VL); 5171 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5172 DAG.getConstant(0, DL, XLenVT)); 5173 } 5174 5175 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 5176 switch (ISDOpcode) { 5177 default: 5178 llvm_unreachable("Unhandled reduction"); 5179 case ISD::VP_REDUCE_ADD: 5180 return RISCVISD::VECREDUCE_ADD_VL; 5181 case ISD::VP_REDUCE_UMAX: 5182 return RISCVISD::VECREDUCE_UMAX_VL; 5183 case ISD::VP_REDUCE_SMAX: 5184 return RISCVISD::VECREDUCE_SMAX_VL; 5185 case ISD::VP_REDUCE_UMIN: 5186 return RISCVISD::VECREDUCE_UMIN_VL; 5187 case ISD::VP_REDUCE_SMIN: 5188 return RISCVISD::VECREDUCE_SMIN_VL; 5189 case ISD::VP_REDUCE_AND: 5190 return RISCVISD::VECREDUCE_AND_VL; 5191 case ISD::VP_REDUCE_OR: 5192 return RISCVISD::VECREDUCE_OR_VL; 5193 case ISD::VP_REDUCE_XOR: 5194 return RISCVISD::VECREDUCE_XOR_VL; 5195 case ISD::VP_REDUCE_FADD: 5196 return RISCVISD::VECREDUCE_FADD_VL; 5197 case ISD::VP_REDUCE_SEQ_FADD: 5198 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 5199 case ISD::VP_REDUCE_FMAX: 5200 return RISCVISD::VECREDUCE_FMAX_VL; 5201 case ISD::VP_REDUCE_FMIN: 5202 return RISCVISD::VECREDUCE_FMIN_VL; 5203 } 5204 } 5205 5206 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5207 SelectionDAG &DAG) const { 5208 SDLoc DL(Op); 5209 SDValue Vec = Op.getOperand(1); 5210 EVT VecEVT = Vec.getValueType(); 5211 5212 // TODO: The type may need to be widened rather than split. Or widened before 5213 // it can be split. 5214 if (!isTypeLegal(VecEVT)) 5215 return SDValue(); 5216 5217 MVT VecVT = VecEVT.getSimpleVT(); 5218 MVT VecEltVT = VecVT.getVectorElementType(); 5219 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5220 5221 MVT ContainerVT = VecVT; 5222 if (VecVT.isFixedLengthVector()) { 5223 ContainerVT = getContainerForFixedLengthVector(VecVT); 5224 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5225 } 5226 5227 SDValue VL = Op.getOperand(3); 5228 SDValue Mask = Op.getOperand(2); 5229 5230 MVT M1VT = getLMUL1VT(ContainerVT); 5231 MVT XLenVT = Subtarget.getXLenVT(); 5232 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5233 5234 SDValue StartSplat = 5235 lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, 5236 DL, DAG, Subtarget); 5237 SDValue Reduction = 5238 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5239 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5240 DAG.getConstant(0, DL, XLenVT)); 5241 if (!VecVT.isInteger()) 5242 return Elt0; 5243 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5244 } 5245 5246 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5247 SelectionDAG &DAG) const { 5248 SDValue Vec = Op.getOperand(0); 5249 SDValue SubVec = Op.getOperand(1); 5250 MVT VecVT = Vec.getSimpleValueType(); 5251 MVT SubVecVT = SubVec.getSimpleValueType(); 5252 5253 SDLoc DL(Op); 5254 MVT XLenVT = Subtarget.getXLenVT(); 5255 unsigned OrigIdx = Op.getConstantOperandVal(2); 5256 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5257 5258 // We don't have the ability to slide mask vectors up indexed by their i1 5259 // elements; the smallest we can do is i8. Often we are able to bitcast to 5260 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5261 // into a scalable one, we might not necessarily have enough scalable 5262 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5263 if (SubVecVT.getVectorElementType() == MVT::i1 && 5264 (OrigIdx != 0 || !Vec.isUndef())) { 5265 if (VecVT.getVectorMinNumElements() >= 8 && 5266 SubVecVT.getVectorMinNumElements() >= 8) { 5267 assert(OrigIdx % 8 == 0 && "Invalid index"); 5268 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5269 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5270 "Unexpected mask vector lowering"); 5271 OrigIdx /= 8; 5272 SubVecVT = 5273 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5274 SubVecVT.isScalableVector()); 5275 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5276 VecVT.isScalableVector()); 5277 Vec = DAG.getBitcast(VecVT, Vec); 5278 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5279 } else { 5280 // We can't slide this mask vector up indexed by its i1 elements. 5281 // This poses a problem when we wish to insert a scalable vector which 5282 // can't be re-expressed as a larger type. Just choose the slow path and 5283 // extend to a larger type, then truncate back down. 5284 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5285 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5286 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5287 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5288 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5289 Op.getOperand(2)); 5290 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5291 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5292 } 5293 } 5294 5295 // If the subvector vector is a fixed-length type, we cannot use subregister 5296 // manipulation to simplify the codegen; we don't know which register of a 5297 // LMUL group contains the specific subvector as we only know the minimum 5298 // register size. Therefore we must slide the vector group up the full 5299 // amount. 5300 if (SubVecVT.isFixedLengthVector()) { 5301 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5302 return Op; 5303 MVT ContainerVT = VecVT; 5304 if (VecVT.isFixedLengthVector()) { 5305 ContainerVT = getContainerForFixedLengthVector(VecVT); 5306 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5307 } 5308 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5309 DAG.getUNDEF(ContainerVT), SubVec, 5310 DAG.getConstant(0, DL, XLenVT)); 5311 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5312 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5313 return DAG.getBitcast(Op.getValueType(), SubVec); 5314 } 5315 SDValue Mask = 5316 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5317 // Set the vector length to only the number of elements we care about. Note 5318 // that for slideup this includes the offset. 5319 SDValue VL = 5320 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5321 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5322 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5323 SubVec, SlideupAmt, Mask, VL); 5324 if (VecVT.isFixedLengthVector()) 5325 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5326 return DAG.getBitcast(Op.getValueType(), Slideup); 5327 } 5328 5329 unsigned SubRegIdx, RemIdx; 5330 std::tie(SubRegIdx, RemIdx) = 5331 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5332 VecVT, SubVecVT, OrigIdx, TRI); 5333 5334 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5335 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5336 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5337 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5338 5339 // 1. If the Idx has been completely eliminated and this subvector's size is 5340 // a vector register or a multiple thereof, or the surrounding elements are 5341 // undef, then this is a subvector insert which naturally aligns to a vector 5342 // register. These can easily be handled using subregister manipulation. 5343 // 2. If the subvector is smaller than a vector register, then the insertion 5344 // must preserve the undisturbed elements of the register. We do this by 5345 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5346 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5347 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5348 // LMUL=1 type back into the larger vector (resolving to another subregister 5349 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5350 // to avoid allocating a large register group to hold our subvector. 5351 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5352 return Op; 5353 5354 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5355 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5356 // (in our case undisturbed). This means we can set up a subvector insertion 5357 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5358 // size of the subvector. 5359 MVT InterSubVT = VecVT; 5360 SDValue AlignedExtract = Vec; 5361 unsigned AlignedIdx = OrigIdx - RemIdx; 5362 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5363 InterSubVT = getLMUL1VT(VecVT); 5364 // Extract a subvector equal to the nearest full vector register type. This 5365 // should resolve to a EXTRACT_SUBREG instruction. 5366 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5367 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5368 } 5369 5370 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5371 // For scalable vectors this must be further multiplied by vscale. 5372 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5373 5374 SDValue Mask, VL; 5375 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5376 5377 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5378 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5379 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5380 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5381 5382 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5383 DAG.getUNDEF(InterSubVT), SubVec, 5384 DAG.getConstant(0, DL, XLenVT)); 5385 5386 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5387 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5388 5389 // If required, insert this subvector back into the correct vector register. 5390 // This should resolve to an INSERT_SUBREG instruction. 5391 if (VecVT.bitsGT(InterSubVT)) 5392 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5393 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5394 5395 // We might have bitcast from a mask type: cast back to the original type if 5396 // required. 5397 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5398 } 5399 5400 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5401 SelectionDAG &DAG) const { 5402 SDValue Vec = Op.getOperand(0); 5403 MVT SubVecVT = Op.getSimpleValueType(); 5404 MVT VecVT = Vec.getSimpleValueType(); 5405 5406 SDLoc DL(Op); 5407 MVT XLenVT = Subtarget.getXLenVT(); 5408 unsigned OrigIdx = Op.getConstantOperandVal(1); 5409 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5410 5411 // We don't have the ability to slide mask vectors down indexed by their i1 5412 // elements; the smallest we can do is i8. Often we are able to bitcast to 5413 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5414 // from a scalable one, we might not necessarily have enough scalable 5415 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5416 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5417 if (VecVT.getVectorMinNumElements() >= 8 && 5418 SubVecVT.getVectorMinNumElements() >= 8) { 5419 assert(OrigIdx % 8 == 0 && "Invalid index"); 5420 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5421 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5422 "Unexpected mask vector lowering"); 5423 OrigIdx /= 8; 5424 SubVecVT = 5425 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5426 SubVecVT.isScalableVector()); 5427 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5428 VecVT.isScalableVector()); 5429 Vec = DAG.getBitcast(VecVT, Vec); 5430 } else { 5431 // We can't slide this mask vector down, indexed by its i1 elements. 5432 // This poses a problem when we wish to extract a scalable vector which 5433 // can't be re-expressed as a larger type. Just choose the slow path and 5434 // extend to a larger type, then truncate back down. 5435 // TODO: We could probably improve this when extracting certain fixed 5436 // from fixed, where we can extract as i8 and shift the correct element 5437 // right to reach the desired subvector? 5438 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5439 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5440 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5441 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5442 Op.getOperand(1)); 5443 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5444 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5445 } 5446 } 5447 5448 // If the subvector vector is a fixed-length type, we cannot use subregister 5449 // manipulation to simplify the codegen; we don't know which register of a 5450 // LMUL group contains the specific subvector as we only know the minimum 5451 // register size. Therefore we must slide the vector group down the full 5452 // amount. 5453 if (SubVecVT.isFixedLengthVector()) { 5454 // With an index of 0 this is a cast-like subvector, which can be performed 5455 // with subregister operations. 5456 if (OrigIdx == 0) 5457 return Op; 5458 MVT ContainerVT = VecVT; 5459 if (VecVT.isFixedLengthVector()) { 5460 ContainerVT = getContainerForFixedLengthVector(VecVT); 5461 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5462 } 5463 SDValue Mask = 5464 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5465 // Set the vector length to only the number of elements we care about. This 5466 // avoids sliding down elements we're going to discard straight away. 5467 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5468 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5469 SDValue Slidedown = 5470 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5471 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5472 // Now we can use a cast-like subvector extract to get the result. 5473 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5474 DAG.getConstant(0, DL, XLenVT)); 5475 return DAG.getBitcast(Op.getValueType(), Slidedown); 5476 } 5477 5478 unsigned SubRegIdx, RemIdx; 5479 std::tie(SubRegIdx, RemIdx) = 5480 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5481 VecVT, SubVecVT, OrigIdx, TRI); 5482 5483 // If the Idx has been completely eliminated then this is a subvector extract 5484 // which naturally aligns to a vector register. These can easily be handled 5485 // using subregister manipulation. 5486 if (RemIdx == 0) 5487 return Op; 5488 5489 // Else we must shift our vector register directly to extract the subvector. 5490 // Do this using VSLIDEDOWN. 5491 5492 // If the vector type is an LMUL-group type, extract a subvector equal to the 5493 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5494 // instruction. 5495 MVT InterSubVT = VecVT; 5496 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5497 InterSubVT = getLMUL1VT(VecVT); 5498 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5499 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5500 } 5501 5502 // Slide this vector register down by the desired number of elements in order 5503 // to place the desired subvector starting at element 0. 5504 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5505 // For scalable vectors this must be further multiplied by vscale. 5506 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5507 5508 SDValue Mask, VL; 5509 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5510 SDValue Slidedown = 5511 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5512 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5513 5514 // Now the vector is in the right position, extract our final subvector. This 5515 // should resolve to a COPY. 5516 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5517 DAG.getConstant(0, DL, XLenVT)); 5518 5519 // We might have bitcast from a mask type: cast back to the original type if 5520 // required. 5521 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5522 } 5523 5524 // Lower step_vector to the vid instruction. Any non-identity step value must 5525 // be accounted for my manual expansion. 5526 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5527 SelectionDAG &DAG) const { 5528 SDLoc DL(Op); 5529 MVT VT = Op.getSimpleValueType(); 5530 MVT XLenVT = Subtarget.getXLenVT(); 5531 SDValue Mask, VL; 5532 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5533 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5534 uint64_t StepValImm = Op.getConstantOperandVal(0); 5535 if (StepValImm != 1) { 5536 if (isPowerOf2_64(StepValImm)) { 5537 SDValue StepVal = 5538 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 5539 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5540 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5541 } else { 5542 SDValue StepVal = lowerScalarSplat( 5543 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 5544 DL, DAG, Subtarget); 5545 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5546 } 5547 } 5548 return StepVec; 5549 } 5550 5551 // Implement vector_reverse using vrgather.vv with indices determined by 5552 // subtracting the id of each element from (VLMAX-1). This will convert 5553 // the indices like so: 5554 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5555 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5556 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5557 SelectionDAG &DAG) const { 5558 SDLoc DL(Op); 5559 MVT VecVT = Op.getSimpleValueType(); 5560 unsigned EltSize = VecVT.getScalarSizeInBits(); 5561 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5562 5563 unsigned MaxVLMAX = 0; 5564 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5565 if (VectorBitsMax != 0) 5566 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 5567 5568 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5569 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5570 5571 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5572 // to use vrgatherei16.vv. 5573 // TODO: It's also possible to use vrgatherei16.vv for other types to 5574 // decrease register width for the index calculation. 5575 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5576 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5577 // Reverse each half, then reassemble them in reverse order. 5578 // NOTE: It's also possible that after splitting that VLMAX no longer 5579 // requires vrgatherei16.vv. 5580 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5581 SDValue Lo, Hi; 5582 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5583 EVT LoVT, HiVT; 5584 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5585 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5586 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5587 // Reassemble the low and high pieces reversed. 5588 // FIXME: This is a CONCAT_VECTORS. 5589 SDValue Res = 5590 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5591 DAG.getIntPtrConstant(0, DL)); 5592 return DAG.getNode( 5593 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5594 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5595 } 5596 5597 // Just promote the int type to i16 which will double the LMUL. 5598 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5599 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5600 } 5601 5602 MVT XLenVT = Subtarget.getXLenVT(); 5603 SDValue Mask, VL; 5604 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5605 5606 // Calculate VLMAX-1 for the desired SEW. 5607 unsigned MinElts = VecVT.getVectorMinNumElements(); 5608 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5609 DAG.getConstant(MinElts, DL, XLenVT)); 5610 SDValue VLMinus1 = 5611 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5612 5613 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5614 bool IsRV32E64 = 5615 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5616 SDValue SplatVL; 5617 if (!IsRV32E64) 5618 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5619 else 5620 SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, VLMinus1, 5621 DAG.getRegister(RISCV::X0, XLenVT)); 5622 5623 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5624 SDValue Indices = 5625 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5626 5627 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5628 } 5629 5630 SDValue 5631 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5632 SelectionDAG &DAG) const { 5633 SDLoc DL(Op); 5634 auto *Load = cast<LoadSDNode>(Op); 5635 5636 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5637 Load->getMemoryVT(), 5638 *Load->getMemOperand()) && 5639 "Expecting a correctly-aligned load"); 5640 5641 MVT VT = Op.getSimpleValueType(); 5642 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5643 5644 SDValue VL = 5645 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5646 5647 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5648 SDValue NewLoad = DAG.getMemIntrinsicNode( 5649 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5650 Load->getMemoryVT(), Load->getMemOperand()); 5651 5652 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5653 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5654 } 5655 5656 SDValue 5657 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5658 SelectionDAG &DAG) const { 5659 SDLoc DL(Op); 5660 auto *Store = cast<StoreSDNode>(Op); 5661 5662 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5663 Store->getMemoryVT(), 5664 *Store->getMemOperand()) && 5665 "Expecting a correctly-aligned store"); 5666 5667 SDValue StoreVal = Store->getValue(); 5668 MVT VT = StoreVal.getSimpleValueType(); 5669 5670 // If the size less than a byte, we need to pad with zeros to make a byte. 5671 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5672 VT = MVT::v8i1; 5673 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5674 DAG.getConstant(0, DL, VT), StoreVal, 5675 DAG.getIntPtrConstant(0, DL)); 5676 } 5677 5678 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5679 5680 SDValue VL = 5681 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5682 5683 SDValue NewValue = 5684 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5685 return DAG.getMemIntrinsicNode( 5686 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5687 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5688 Store->getMemoryVT(), Store->getMemOperand()); 5689 } 5690 5691 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5692 SelectionDAG &DAG) const { 5693 SDLoc DL(Op); 5694 MVT VT = Op.getSimpleValueType(); 5695 5696 const auto *MemSD = cast<MemSDNode>(Op); 5697 EVT MemVT = MemSD->getMemoryVT(); 5698 MachineMemOperand *MMO = MemSD->getMemOperand(); 5699 SDValue Chain = MemSD->getChain(); 5700 SDValue BasePtr = MemSD->getBasePtr(); 5701 5702 SDValue Mask, PassThru, VL; 5703 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5704 Mask = VPLoad->getMask(); 5705 PassThru = DAG.getUNDEF(VT); 5706 VL = VPLoad->getVectorLength(); 5707 } else { 5708 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5709 Mask = MLoad->getMask(); 5710 PassThru = MLoad->getPassThru(); 5711 } 5712 5713 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5714 5715 MVT XLenVT = Subtarget.getXLenVT(); 5716 5717 MVT ContainerVT = VT; 5718 if (VT.isFixedLengthVector()) { 5719 ContainerVT = getContainerForFixedLengthVector(VT); 5720 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5721 if (!IsUnmasked) { 5722 MVT MaskVT = 5723 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5724 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5725 } 5726 } 5727 5728 if (!VL) 5729 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5730 5731 unsigned IntID = 5732 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5733 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5734 if (IsUnmasked) 5735 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5736 else 5737 Ops.push_back(PassThru); 5738 Ops.push_back(BasePtr); 5739 if (!IsUnmasked) 5740 Ops.push_back(Mask); 5741 Ops.push_back(VL); 5742 if (!IsUnmasked) 5743 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5744 5745 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5746 5747 SDValue Result = 5748 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5749 Chain = Result.getValue(1); 5750 5751 if (VT.isFixedLengthVector()) 5752 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5753 5754 return DAG.getMergeValues({Result, Chain}, DL); 5755 } 5756 5757 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5758 SelectionDAG &DAG) const { 5759 SDLoc DL(Op); 5760 5761 const auto *MemSD = cast<MemSDNode>(Op); 5762 EVT MemVT = MemSD->getMemoryVT(); 5763 MachineMemOperand *MMO = MemSD->getMemOperand(); 5764 SDValue Chain = MemSD->getChain(); 5765 SDValue BasePtr = MemSD->getBasePtr(); 5766 SDValue Val, Mask, VL; 5767 5768 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5769 Val = VPStore->getValue(); 5770 Mask = VPStore->getMask(); 5771 VL = VPStore->getVectorLength(); 5772 } else { 5773 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5774 Val = MStore->getValue(); 5775 Mask = MStore->getMask(); 5776 } 5777 5778 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5779 5780 MVT VT = Val.getSimpleValueType(); 5781 MVT XLenVT = Subtarget.getXLenVT(); 5782 5783 MVT ContainerVT = VT; 5784 if (VT.isFixedLengthVector()) { 5785 ContainerVT = getContainerForFixedLengthVector(VT); 5786 5787 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5788 if (!IsUnmasked) { 5789 MVT MaskVT = 5790 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5791 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5792 } 5793 } 5794 5795 if (!VL) 5796 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5797 5798 unsigned IntID = 5799 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5800 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5801 Ops.push_back(Val); 5802 Ops.push_back(BasePtr); 5803 if (!IsUnmasked) 5804 Ops.push_back(Mask); 5805 Ops.push_back(VL); 5806 5807 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5808 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5809 } 5810 5811 SDValue 5812 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5813 SelectionDAG &DAG) const { 5814 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5815 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5816 5817 MVT VT = Op.getSimpleValueType(); 5818 5819 SDValue Op1 = 5820 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5821 SDValue Op2 = 5822 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5823 5824 SDLoc DL(Op); 5825 SDValue VL = 5826 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5827 5828 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5829 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5830 5831 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5832 Op.getOperand(2), Mask, VL); 5833 5834 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5835 } 5836 5837 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5838 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5839 MVT VT = Op.getSimpleValueType(); 5840 5841 if (VT.getVectorElementType() == MVT::i1) 5842 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5843 5844 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5845 } 5846 5847 SDValue 5848 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5849 SelectionDAG &DAG) const { 5850 unsigned Opc; 5851 switch (Op.getOpcode()) { 5852 default: llvm_unreachable("Unexpected opcode!"); 5853 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5854 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5855 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5856 } 5857 5858 return lowerToScalableOp(Op, DAG, Opc); 5859 } 5860 5861 // Lower vector ABS to smax(X, sub(0, X)). 5862 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5863 SDLoc DL(Op); 5864 MVT VT = Op.getSimpleValueType(); 5865 SDValue X = Op.getOperand(0); 5866 5867 assert(VT.isFixedLengthVector() && "Unexpected type"); 5868 5869 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5870 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5871 5872 SDValue Mask, VL; 5873 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5874 5875 SDValue SplatZero = 5876 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5877 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5878 SDValue NegX = 5879 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5880 SDValue Max = 5881 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5882 5883 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5884 } 5885 5886 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5887 SDValue Op, SelectionDAG &DAG) const { 5888 SDLoc DL(Op); 5889 MVT VT = Op.getSimpleValueType(); 5890 SDValue Mag = Op.getOperand(0); 5891 SDValue Sign = Op.getOperand(1); 5892 assert(Mag.getValueType() == Sign.getValueType() && 5893 "Can only handle COPYSIGN with matching types."); 5894 5895 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5896 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5897 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5898 5899 SDValue Mask, VL; 5900 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5901 5902 SDValue CopySign = 5903 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5904 5905 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5906 } 5907 5908 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5909 SDValue Op, SelectionDAG &DAG) const { 5910 MVT VT = Op.getSimpleValueType(); 5911 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5912 5913 MVT I1ContainerVT = 5914 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5915 5916 SDValue CC = 5917 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5918 SDValue Op1 = 5919 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5920 SDValue Op2 = 5921 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5922 5923 SDLoc DL(Op); 5924 SDValue Mask, VL; 5925 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5926 5927 SDValue Select = 5928 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5929 5930 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5931 } 5932 5933 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5934 unsigned NewOpc, 5935 bool HasMask) const { 5936 MVT VT = Op.getSimpleValueType(); 5937 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5938 5939 // Create list of operands by converting existing ones to scalable types. 5940 SmallVector<SDValue, 6> Ops; 5941 for (const SDValue &V : Op->op_values()) { 5942 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5943 5944 // Pass through non-vector operands. 5945 if (!V.getValueType().isVector()) { 5946 Ops.push_back(V); 5947 continue; 5948 } 5949 5950 // "cast" fixed length vector to a scalable vector. 5951 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5952 "Only fixed length vectors are supported!"); 5953 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5954 } 5955 5956 SDLoc DL(Op); 5957 SDValue Mask, VL; 5958 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5959 if (HasMask) 5960 Ops.push_back(Mask); 5961 Ops.push_back(VL); 5962 5963 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5964 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5965 } 5966 5967 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5968 // * Operands of each node are assumed to be in the same order. 5969 // * The EVL operand is promoted from i32 to i64 on RV64. 5970 // * Fixed-length vectors are converted to their scalable-vector container 5971 // types. 5972 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5973 unsigned RISCVISDOpc) const { 5974 SDLoc DL(Op); 5975 MVT VT = Op.getSimpleValueType(); 5976 SmallVector<SDValue, 4> Ops; 5977 5978 for (const auto &OpIdx : enumerate(Op->ops())) { 5979 SDValue V = OpIdx.value(); 5980 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5981 // Pass through operands which aren't fixed-length vectors. 5982 if (!V.getValueType().isFixedLengthVector()) { 5983 Ops.push_back(V); 5984 continue; 5985 } 5986 // "cast" fixed length vector to a scalable vector. 5987 MVT OpVT = V.getSimpleValueType(); 5988 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5989 assert(useRVVForFixedLengthVectorVT(OpVT) && 5990 "Only fixed length vectors are supported!"); 5991 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5992 } 5993 5994 if (!VT.isFixedLengthVector()) 5995 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5996 5997 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5998 5999 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 6000 6001 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 6002 } 6003 6004 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 6005 unsigned MaskOpc, 6006 unsigned VecOpc) const { 6007 MVT VT = Op.getSimpleValueType(); 6008 if (VT.getVectorElementType() != MVT::i1) 6009 return lowerVPOp(Op, DAG, VecOpc); 6010 6011 // It is safe to drop mask parameter as masked-off elements are undef. 6012 SDValue Op1 = Op->getOperand(0); 6013 SDValue Op2 = Op->getOperand(1); 6014 SDValue VL = Op->getOperand(3); 6015 6016 MVT ContainerVT = VT; 6017 const bool IsFixed = VT.isFixedLengthVector(); 6018 if (IsFixed) { 6019 ContainerVT = getContainerForFixedLengthVector(VT); 6020 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6021 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6022 } 6023 6024 SDLoc DL(Op); 6025 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 6026 if (!IsFixed) 6027 return Val; 6028 return convertFromScalableVector(VT, Val, DAG, Subtarget); 6029 } 6030 6031 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 6032 // matched to a RVV indexed load. The RVV indexed load instructions only 6033 // support the "unsigned unscaled" addressing mode; indices are implicitly 6034 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6035 // signed or scaled indexing is extended to the XLEN value type and scaled 6036 // accordingly. 6037 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 6038 SelectionDAG &DAG) const { 6039 SDLoc DL(Op); 6040 MVT VT = Op.getSimpleValueType(); 6041 6042 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6043 EVT MemVT = MemSD->getMemoryVT(); 6044 MachineMemOperand *MMO = MemSD->getMemOperand(); 6045 SDValue Chain = MemSD->getChain(); 6046 SDValue BasePtr = MemSD->getBasePtr(); 6047 6048 ISD::LoadExtType LoadExtType; 6049 SDValue Index, Mask, PassThru, VL; 6050 6051 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 6052 Index = VPGN->getIndex(); 6053 Mask = VPGN->getMask(); 6054 PassThru = DAG.getUNDEF(VT); 6055 VL = VPGN->getVectorLength(); 6056 // VP doesn't support extending loads. 6057 LoadExtType = ISD::NON_EXTLOAD; 6058 } else { 6059 // Else it must be a MGATHER. 6060 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 6061 Index = MGN->getIndex(); 6062 Mask = MGN->getMask(); 6063 PassThru = MGN->getPassThru(); 6064 LoadExtType = MGN->getExtensionType(); 6065 } 6066 6067 MVT IndexVT = Index.getSimpleValueType(); 6068 MVT XLenVT = Subtarget.getXLenVT(); 6069 6070 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6071 "Unexpected VTs!"); 6072 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6073 // Targets have to explicitly opt-in for extending vector loads. 6074 assert(LoadExtType == ISD::NON_EXTLOAD && 6075 "Unexpected extending MGATHER/VP_GATHER"); 6076 (void)LoadExtType; 6077 6078 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6079 // the selection of the masked intrinsics doesn't do this for us. 6080 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6081 6082 MVT ContainerVT = VT; 6083 if (VT.isFixedLengthVector()) { 6084 // We need to use the larger of the result and index type to determine the 6085 // scalable type to use so we don't increase LMUL for any operand/result. 6086 if (VT.bitsGE(IndexVT)) { 6087 ContainerVT = getContainerForFixedLengthVector(VT); 6088 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6089 ContainerVT.getVectorElementCount()); 6090 } else { 6091 IndexVT = getContainerForFixedLengthVector(IndexVT); 6092 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 6093 IndexVT.getVectorElementCount()); 6094 } 6095 6096 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6097 6098 if (!IsUnmasked) { 6099 MVT MaskVT = 6100 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6101 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6102 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 6103 } 6104 } 6105 6106 if (!VL) 6107 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6108 6109 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6110 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6111 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6112 VL); 6113 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6114 TrueMask, VL); 6115 } 6116 6117 unsigned IntID = 6118 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 6119 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6120 if (IsUnmasked) 6121 Ops.push_back(DAG.getUNDEF(ContainerVT)); 6122 else 6123 Ops.push_back(PassThru); 6124 Ops.push_back(BasePtr); 6125 Ops.push_back(Index); 6126 if (!IsUnmasked) 6127 Ops.push_back(Mask); 6128 Ops.push_back(VL); 6129 if (!IsUnmasked) 6130 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 6131 6132 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 6133 SDValue Result = 6134 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 6135 Chain = Result.getValue(1); 6136 6137 if (VT.isFixedLengthVector()) 6138 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 6139 6140 return DAG.getMergeValues({Result, Chain}, DL); 6141 } 6142 6143 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 6144 // matched to a RVV indexed store. The RVV indexed store instructions only 6145 // support the "unsigned unscaled" addressing mode; indices are implicitly 6146 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6147 // signed or scaled indexing is extended to the XLEN value type and scaled 6148 // accordingly. 6149 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 6150 SelectionDAG &DAG) const { 6151 SDLoc DL(Op); 6152 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6153 EVT MemVT = MemSD->getMemoryVT(); 6154 MachineMemOperand *MMO = MemSD->getMemOperand(); 6155 SDValue Chain = MemSD->getChain(); 6156 SDValue BasePtr = MemSD->getBasePtr(); 6157 6158 bool IsTruncatingStore = false; 6159 SDValue Index, Mask, Val, VL; 6160 6161 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 6162 Index = VPSN->getIndex(); 6163 Mask = VPSN->getMask(); 6164 Val = VPSN->getValue(); 6165 VL = VPSN->getVectorLength(); 6166 // VP doesn't support truncating stores. 6167 IsTruncatingStore = false; 6168 } else { 6169 // Else it must be a MSCATTER. 6170 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 6171 Index = MSN->getIndex(); 6172 Mask = MSN->getMask(); 6173 Val = MSN->getValue(); 6174 IsTruncatingStore = MSN->isTruncatingStore(); 6175 } 6176 6177 MVT VT = Val.getSimpleValueType(); 6178 MVT IndexVT = Index.getSimpleValueType(); 6179 MVT XLenVT = Subtarget.getXLenVT(); 6180 6181 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6182 "Unexpected VTs!"); 6183 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6184 // Targets have to explicitly opt-in for extending vector loads and 6185 // truncating vector stores. 6186 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 6187 (void)IsTruncatingStore; 6188 6189 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6190 // the selection of the masked intrinsics doesn't do this for us. 6191 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6192 6193 MVT ContainerVT = VT; 6194 if (VT.isFixedLengthVector()) { 6195 // We need to use the larger of the value and index type to determine the 6196 // scalable type to use so we don't increase LMUL for any operand/result. 6197 if (VT.bitsGE(IndexVT)) { 6198 ContainerVT = getContainerForFixedLengthVector(VT); 6199 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6200 ContainerVT.getVectorElementCount()); 6201 } else { 6202 IndexVT = getContainerForFixedLengthVector(IndexVT); 6203 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 6204 IndexVT.getVectorElementCount()); 6205 } 6206 6207 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6208 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6209 6210 if (!IsUnmasked) { 6211 MVT MaskVT = 6212 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6213 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6214 } 6215 } 6216 6217 if (!VL) 6218 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6219 6220 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6221 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6222 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6223 VL); 6224 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6225 TrueMask, VL); 6226 } 6227 6228 unsigned IntID = 6229 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6230 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6231 Ops.push_back(Val); 6232 Ops.push_back(BasePtr); 6233 Ops.push_back(Index); 6234 if (!IsUnmasked) 6235 Ops.push_back(Mask); 6236 Ops.push_back(VL); 6237 6238 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6239 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6240 } 6241 6242 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6243 SelectionDAG &DAG) const { 6244 const MVT XLenVT = Subtarget.getXLenVT(); 6245 SDLoc DL(Op); 6246 SDValue Chain = Op->getOperand(0); 6247 SDValue SysRegNo = DAG.getTargetConstant( 6248 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6249 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6250 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6251 6252 // Encoding used for rounding mode in RISCV differs from that used in 6253 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6254 // table, which consists of a sequence of 4-bit fields, each representing 6255 // corresponding FLT_ROUNDS mode. 6256 static const int Table = 6257 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6258 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6259 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6260 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6261 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6262 6263 SDValue Shift = 6264 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6265 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6266 DAG.getConstant(Table, DL, XLenVT), Shift); 6267 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6268 DAG.getConstant(7, DL, XLenVT)); 6269 6270 return DAG.getMergeValues({Masked, Chain}, DL); 6271 } 6272 6273 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6274 SelectionDAG &DAG) const { 6275 const MVT XLenVT = Subtarget.getXLenVT(); 6276 SDLoc DL(Op); 6277 SDValue Chain = Op->getOperand(0); 6278 SDValue RMValue = Op->getOperand(1); 6279 SDValue SysRegNo = DAG.getTargetConstant( 6280 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6281 6282 // Encoding used for rounding mode in RISCV differs from that used in 6283 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6284 // a table, which consists of a sequence of 4-bit fields, each representing 6285 // corresponding RISCV mode. 6286 static const unsigned Table = 6287 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6288 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6289 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6290 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6291 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6292 6293 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6294 DAG.getConstant(2, DL, XLenVT)); 6295 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6296 DAG.getConstant(Table, DL, XLenVT), Shift); 6297 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6298 DAG.getConstant(0x7, DL, XLenVT)); 6299 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6300 RMValue); 6301 } 6302 6303 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6304 switch (IntNo) { 6305 default: 6306 llvm_unreachable("Unexpected Intrinsic"); 6307 case Intrinsic::riscv_grev: 6308 return RISCVISD::GREVW; 6309 case Intrinsic::riscv_gorc: 6310 return RISCVISD::GORCW; 6311 case Intrinsic::riscv_bcompress: 6312 return RISCVISD::BCOMPRESSW; 6313 case Intrinsic::riscv_bdecompress: 6314 return RISCVISD::BDECOMPRESSW; 6315 case Intrinsic::riscv_bfp: 6316 return RISCVISD::BFPW; 6317 case Intrinsic::riscv_fsl: 6318 return RISCVISD::FSLW; 6319 case Intrinsic::riscv_fsr: 6320 return RISCVISD::FSRW; 6321 } 6322 } 6323 6324 // Converts the given intrinsic to a i64 operation with any extension. 6325 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6326 unsigned IntNo) { 6327 SDLoc DL(N); 6328 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6329 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6330 SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6331 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); 6332 // ReplaceNodeResults requires we maintain the same type for the return value. 6333 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6334 } 6335 6336 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6337 // form of the given Opcode. 6338 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6339 switch (Opcode) { 6340 default: 6341 llvm_unreachable("Unexpected opcode"); 6342 case ISD::SHL: 6343 return RISCVISD::SLLW; 6344 case ISD::SRA: 6345 return RISCVISD::SRAW; 6346 case ISD::SRL: 6347 return RISCVISD::SRLW; 6348 case ISD::SDIV: 6349 return RISCVISD::DIVW; 6350 case ISD::UDIV: 6351 return RISCVISD::DIVUW; 6352 case ISD::UREM: 6353 return RISCVISD::REMUW; 6354 case ISD::ROTL: 6355 return RISCVISD::ROLW; 6356 case ISD::ROTR: 6357 return RISCVISD::RORW; 6358 case RISCVISD::GREV: 6359 return RISCVISD::GREVW; 6360 case RISCVISD::GORC: 6361 return RISCVISD::GORCW; 6362 } 6363 } 6364 6365 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6366 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6367 // otherwise be promoted to i64, making it difficult to select the 6368 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6369 // type i8/i16/i32 is lost. 6370 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6371 unsigned ExtOpc = ISD::ANY_EXTEND) { 6372 SDLoc DL(N); 6373 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6374 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6375 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6376 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6377 // ReplaceNodeResults requires we maintain the same type for the return value. 6378 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6379 } 6380 6381 // Converts the given 32-bit operation to a i64 operation with signed extension 6382 // semantic to reduce the signed extension instructions. 6383 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6384 SDLoc DL(N); 6385 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6386 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6387 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6388 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6389 DAG.getValueType(MVT::i32)); 6390 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6391 } 6392 6393 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6394 SmallVectorImpl<SDValue> &Results, 6395 SelectionDAG &DAG) const { 6396 SDLoc DL(N); 6397 switch (N->getOpcode()) { 6398 default: 6399 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6400 case ISD::STRICT_FP_TO_SINT: 6401 case ISD::STRICT_FP_TO_UINT: 6402 case ISD::FP_TO_SINT: 6403 case ISD::FP_TO_UINT: { 6404 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6405 "Unexpected custom legalisation"); 6406 bool IsStrict = N->isStrictFPOpcode(); 6407 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6408 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6409 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6410 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6411 TargetLowering::TypeSoftenFloat) { 6412 if (!isTypeLegal(Op0.getValueType())) 6413 return; 6414 if (IsStrict) { 6415 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6416 : RISCVISD::STRICT_FCVT_WU_RV64; 6417 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6418 SDValue Res = DAG.getNode( 6419 Opc, DL, VTs, N->getOperand(0), Op0, 6420 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6421 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6422 Results.push_back(Res.getValue(1)); 6423 return; 6424 } 6425 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6426 SDValue Res = 6427 DAG.getNode(Opc, DL, MVT::i64, Op0, 6428 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6429 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6430 return; 6431 } 6432 // If the FP type needs to be softened, emit a library call using the 'si' 6433 // version. If we left it to default legalization we'd end up with 'di'. If 6434 // the FP type doesn't need to be softened just let generic type 6435 // legalization promote the result type. 6436 RTLIB::Libcall LC; 6437 if (IsSigned) 6438 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6439 else 6440 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6441 MakeLibCallOptions CallOptions; 6442 EVT OpVT = Op0.getValueType(); 6443 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6444 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6445 SDValue Result; 6446 std::tie(Result, Chain) = 6447 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6448 Results.push_back(Result); 6449 if (IsStrict) 6450 Results.push_back(Chain); 6451 break; 6452 } 6453 case ISD::READCYCLECOUNTER: { 6454 assert(!Subtarget.is64Bit() && 6455 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6456 6457 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6458 SDValue RCW = 6459 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6460 6461 Results.push_back( 6462 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6463 Results.push_back(RCW.getValue(2)); 6464 break; 6465 } 6466 case ISD::MUL: { 6467 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6468 unsigned XLen = Subtarget.getXLen(); 6469 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6470 if (Size > XLen) { 6471 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6472 SDValue LHS = N->getOperand(0); 6473 SDValue RHS = N->getOperand(1); 6474 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6475 6476 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6477 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6478 // We need exactly one side to be unsigned. 6479 if (LHSIsU == RHSIsU) 6480 return; 6481 6482 auto MakeMULPair = [&](SDValue S, SDValue U) { 6483 MVT XLenVT = Subtarget.getXLenVT(); 6484 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6485 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6486 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6487 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6488 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6489 }; 6490 6491 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6492 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6493 6494 // The other operand should be signed, but still prefer MULH when 6495 // possible. 6496 if (RHSIsU && LHSIsS && !RHSIsS) 6497 Results.push_back(MakeMULPair(LHS, RHS)); 6498 else if (LHSIsU && RHSIsS && !LHSIsS) 6499 Results.push_back(MakeMULPair(RHS, LHS)); 6500 6501 return; 6502 } 6503 LLVM_FALLTHROUGH; 6504 } 6505 case ISD::ADD: 6506 case ISD::SUB: 6507 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6508 "Unexpected custom legalisation"); 6509 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6510 break; 6511 case ISD::SHL: 6512 case ISD::SRA: 6513 case ISD::SRL: 6514 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6515 "Unexpected custom legalisation"); 6516 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6517 Results.push_back(customLegalizeToWOp(N, DAG)); 6518 break; 6519 } 6520 6521 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6522 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6523 // shift amount. 6524 if (N->getOpcode() == ISD::SHL) { 6525 SDLoc DL(N); 6526 SDValue NewOp0 = 6527 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6528 SDValue NewOp1 = 6529 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6530 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6531 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6532 DAG.getValueType(MVT::i32)); 6533 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6534 } 6535 6536 break; 6537 case ISD::ROTL: 6538 case ISD::ROTR: 6539 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6540 "Unexpected custom legalisation"); 6541 Results.push_back(customLegalizeToWOp(N, DAG)); 6542 break; 6543 case ISD::CTTZ: 6544 case ISD::CTTZ_ZERO_UNDEF: 6545 case ISD::CTLZ: 6546 case ISD::CTLZ_ZERO_UNDEF: { 6547 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6548 "Unexpected custom legalisation"); 6549 6550 SDValue NewOp0 = 6551 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6552 bool IsCTZ = 6553 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6554 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6555 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6556 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6557 return; 6558 } 6559 case ISD::SDIV: 6560 case ISD::UDIV: 6561 case ISD::UREM: { 6562 MVT VT = N->getSimpleValueType(0); 6563 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6564 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6565 "Unexpected custom legalisation"); 6566 // Don't promote division/remainder by constant since we should expand those 6567 // to multiply by magic constant. 6568 // FIXME: What if the expansion is disabled for minsize. 6569 if (N->getOperand(1).getOpcode() == ISD::Constant) 6570 return; 6571 6572 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6573 // the upper 32 bits. For other types we need to sign or zero extend 6574 // based on the opcode. 6575 unsigned ExtOpc = ISD::ANY_EXTEND; 6576 if (VT != MVT::i32) 6577 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6578 : ISD::ZERO_EXTEND; 6579 6580 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6581 break; 6582 } 6583 case ISD::UADDO: 6584 case ISD::USUBO: { 6585 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6586 "Unexpected custom legalisation"); 6587 bool IsAdd = N->getOpcode() == ISD::UADDO; 6588 // Create an ADDW or SUBW. 6589 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6590 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6591 SDValue Res = 6592 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6593 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6594 DAG.getValueType(MVT::i32)); 6595 6596 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6597 // Since the inputs are sign extended from i32, this is equivalent to 6598 // comparing the lower 32 bits. 6599 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6600 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6601 IsAdd ? ISD::SETULT : ISD::SETUGT); 6602 6603 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6604 Results.push_back(Overflow); 6605 return; 6606 } 6607 case ISD::UADDSAT: 6608 case ISD::USUBSAT: { 6609 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6610 "Unexpected custom legalisation"); 6611 if (Subtarget.hasStdExtZbb()) { 6612 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6613 // sign extend allows overflow of the lower 32 bits to be detected on 6614 // the promoted size. 6615 SDValue LHS = 6616 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6617 SDValue RHS = 6618 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6619 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6620 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6621 return; 6622 } 6623 6624 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6625 // promotion for UADDO/USUBO. 6626 Results.push_back(expandAddSubSat(N, DAG)); 6627 return; 6628 } 6629 case ISD::BITCAST: { 6630 EVT VT = N->getValueType(0); 6631 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6632 SDValue Op0 = N->getOperand(0); 6633 EVT Op0VT = Op0.getValueType(); 6634 MVT XLenVT = Subtarget.getXLenVT(); 6635 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6636 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6637 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6638 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6639 Subtarget.hasStdExtF()) { 6640 SDValue FPConv = 6641 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6642 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6643 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6644 isTypeLegal(Op0VT)) { 6645 // Custom-legalize bitcasts from fixed-length vector types to illegal 6646 // scalar types in order to improve codegen. Bitcast the vector to a 6647 // one-element vector type whose element type is the same as the result 6648 // type, and extract the first element. 6649 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6650 if (isTypeLegal(BVT)) { 6651 SDValue BVec = DAG.getBitcast(BVT, Op0); 6652 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6653 DAG.getConstant(0, DL, XLenVT))); 6654 } 6655 } 6656 break; 6657 } 6658 case RISCVISD::GREV: 6659 case RISCVISD::GORC: { 6660 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6661 "Unexpected custom legalisation"); 6662 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6663 // This is similar to customLegalizeToWOp, except that we pass the second 6664 // operand (a TargetConstant) straight through: it is already of type 6665 // XLenVT. 6666 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6667 SDValue NewOp0 = 6668 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6669 SDValue NewOp1 = 6670 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6671 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6672 // ReplaceNodeResults requires we maintain the same type for the return 6673 // value. 6674 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6675 break; 6676 } 6677 case RISCVISD::SHFL: { 6678 // There is no SHFLIW instruction, but we can just promote the operation. 6679 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6680 "Unexpected custom legalisation"); 6681 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6682 SDValue NewOp0 = 6683 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6684 SDValue NewOp1 = 6685 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6686 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 6687 // ReplaceNodeResults requires we maintain the same type for the return 6688 // value. 6689 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6690 break; 6691 } 6692 case ISD::BSWAP: 6693 case ISD::BITREVERSE: { 6694 MVT VT = N->getSimpleValueType(0); 6695 MVT XLenVT = Subtarget.getXLenVT(); 6696 assert((VT == MVT::i8 || VT == MVT::i16 || 6697 (VT == MVT::i32 && Subtarget.is64Bit())) && 6698 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6699 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6700 unsigned Imm = VT.getSizeInBits() - 1; 6701 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6702 if (N->getOpcode() == ISD::BSWAP) 6703 Imm &= ~0x7U; 6704 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 6705 SDValue GREVI = 6706 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 6707 // ReplaceNodeResults requires we maintain the same type for the return 6708 // value. 6709 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6710 break; 6711 } 6712 case ISD::FSHL: 6713 case ISD::FSHR: { 6714 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6715 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6716 SDValue NewOp0 = 6717 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6718 SDValue NewOp1 = 6719 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6720 SDValue NewShAmt = 6721 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6722 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6723 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 6724 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 6725 DAG.getConstant(0x1f, DL, MVT::i64)); 6726 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 6727 // instruction use different orders. fshl will return its first operand for 6728 // shift of zero, fshr will return its second operand. fsl and fsr both 6729 // return rs1 so the ISD nodes need to have different operand orders. 6730 // Shift amount is in rs2. 6731 unsigned Opc = RISCVISD::FSLW; 6732 if (N->getOpcode() == ISD::FSHR) { 6733 std::swap(NewOp0, NewOp1); 6734 Opc = RISCVISD::FSRW; 6735 } 6736 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 6737 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6738 break; 6739 } 6740 case ISD::EXTRACT_VECTOR_ELT: { 6741 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6742 // type is illegal (currently only vXi64 RV32). 6743 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6744 // transferred to the destination register. We issue two of these from the 6745 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6746 // first element. 6747 SDValue Vec = N->getOperand(0); 6748 SDValue Idx = N->getOperand(1); 6749 6750 // The vector type hasn't been legalized yet so we can't issue target 6751 // specific nodes if it needs legalization. 6752 // FIXME: We would manually legalize if it's important. 6753 if (!isTypeLegal(Vec.getValueType())) 6754 return; 6755 6756 MVT VecVT = Vec.getSimpleValueType(); 6757 6758 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6759 VecVT.getVectorElementType() == MVT::i64 && 6760 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6761 6762 // If this is a fixed vector, we need to convert it to a scalable vector. 6763 MVT ContainerVT = VecVT; 6764 if (VecVT.isFixedLengthVector()) { 6765 ContainerVT = getContainerForFixedLengthVector(VecVT); 6766 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6767 } 6768 6769 MVT XLenVT = Subtarget.getXLenVT(); 6770 6771 // Use a VL of 1 to avoid processing more elements than we need. 6772 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6773 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6774 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6775 6776 // Unless the index is known to be 0, we must slide the vector down to get 6777 // the desired element into index 0. 6778 if (!isNullConstant(Idx)) { 6779 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6780 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6781 } 6782 6783 // Extract the lower XLEN bits of the correct vector element. 6784 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6785 6786 // To extract the upper XLEN bits of the vector element, shift the first 6787 // element right by 32 bits and re-extract the lower XLEN bits. 6788 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6789 DAG.getConstant(32, DL, XLenVT), VL); 6790 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6791 ThirtyTwoV, Mask, VL); 6792 6793 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6794 6795 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6796 break; 6797 } 6798 case ISD::INTRINSIC_WO_CHAIN: { 6799 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6800 switch (IntNo) { 6801 default: 6802 llvm_unreachable( 6803 "Don't know how to custom type legalize this intrinsic!"); 6804 case Intrinsic::riscv_grev: 6805 case Intrinsic::riscv_gorc: 6806 case Intrinsic::riscv_bcompress: 6807 case Intrinsic::riscv_bdecompress: 6808 case Intrinsic::riscv_bfp: { 6809 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6810 "Unexpected custom legalisation"); 6811 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 6812 break; 6813 } 6814 case Intrinsic::riscv_fsl: 6815 case Intrinsic::riscv_fsr: { 6816 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6817 "Unexpected custom legalisation"); 6818 SDValue NewOp1 = 6819 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6820 SDValue NewOp2 = 6821 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6822 SDValue NewOp3 = 6823 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)); 6824 unsigned Opc = getRISCVWOpcodeByIntr(IntNo); 6825 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3); 6826 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6827 break; 6828 } 6829 case Intrinsic::riscv_orc_b: { 6830 // Lower to the GORCI encoding for orc.b with the operand extended. 6831 SDValue NewOp = 6832 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6833 // If Zbp is enabled, use GORCIW which will sign extend the result. 6834 unsigned Opc = 6835 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6836 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6837 DAG.getConstant(7, DL, MVT::i64)); 6838 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6839 return; 6840 } 6841 case Intrinsic::riscv_shfl: 6842 case Intrinsic::riscv_unshfl: { 6843 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6844 "Unexpected custom legalisation"); 6845 SDValue NewOp1 = 6846 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6847 SDValue NewOp2 = 6848 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6849 unsigned Opc = 6850 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6851 // There is no (UN)SHFLIW. If the control word is a constant, we can use 6852 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 6853 // will be shuffled the same way as the lower 32 bit half, but the two 6854 // halves won't cross. 6855 if (isa<ConstantSDNode>(NewOp2)) { 6856 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6857 DAG.getConstant(0xf, DL, MVT::i64)); 6858 Opc = 6859 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6860 } 6861 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6862 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6863 break; 6864 } 6865 case Intrinsic::riscv_vmv_x_s: { 6866 EVT VT = N->getValueType(0); 6867 MVT XLenVT = Subtarget.getXLenVT(); 6868 if (VT.bitsLT(XLenVT)) { 6869 // Simple case just extract using vmv.x.s and truncate. 6870 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6871 Subtarget.getXLenVT(), N->getOperand(1)); 6872 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6873 return; 6874 } 6875 6876 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6877 "Unexpected custom legalization"); 6878 6879 // We need to do the move in two steps. 6880 SDValue Vec = N->getOperand(1); 6881 MVT VecVT = Vec.getSimpleValueType(); 6882 6883 // First extract the lower XLEN bits of the element. 6884 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6885 6886 // To extract the upper XLEN bits of the vector element, shift the first 6887 // element right by 32 bits and re-extract the lower XLEN bits. 6888 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6889 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6890 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6891 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6892 DAG.getConstant(32, DL, XLenVT), VL); 6893 SDValue LShr32 = 6894 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6895 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6896 6897 Results.push_back( 6898 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6899 break; 6900 } 6901 } 6902 break; 6903 } 6904 case ISD::VECREDUCE_ADD: 6905 case ISD::VECREDUCE_AND: 6906 case ISD::VECREDUCE_OR: 6907 case ISD::VECREDUCE_XOR: 6908 case ISD::VECREDUCE_SMAX: 6909 case ISD::VECREDUCE_UMAX: 6910 case ISD::VECREDUCE_SMIN: 6911 case ISD::VECREDUCE_UMIN: 6912 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6913 Results.push_back(V); 6914 break; 6915 case ISD::VP_REDUCE_ADD: 6916 case ISD::VP_REDUCE_AND: 6917 case ISD::VP_REDUCE_OR: 6918 case ISD::VP_REDUCE_XOR: 6919 case ISD::VP_REDUCE_SMAX: 6920 case ISD::VP_REDUCE_UMAX: 6921 case ISD::VP_REDUCE_SMIN: 6922 case ISD::VP_REDUCE_UMIN: 6923 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6924 Results.push_back(V); 6925 break; 6926 case ISD::FLT_ROUNDS_: { 6927 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6928 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6929 Results.push_back(Res.getValue(0)); 6930 Results.push_back(Res.getValue(1)); 6931 break; 6932 } 6933 } 6934 } 6935 6936 // A structure to hold one of the bit-manipulation patterns below. Together, a 6937 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6938 // (or (and (shl x, 1), 0xAAAAAAAA), 6939 // (and (srl x, 1), 0x55555555)) 6940 struct RISCVBitmanipPat { 6941 SDValue Op; 6942 unsigned ShAmt; 6943 bool IsSHL; 6944 6945 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6946 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6947 } 6948 }; 6949 6950 // Matches patterns of the form 6951 // (and (shl x, C2), (C1 << C2)) 6952 // (and (srl x, C2), C1) 6953 // (shl (and x, C1), C2) 6954 // (srl (and x, (C1 << C2)), C2) 6955 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6956 // The expected masks for each shift amount are specified in BitmanipMasks where 6957 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6958 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6959 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6960 // XLen is 64. 6961 static Optional<RISCVBitmanipPat> 6962 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6963 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6964 "Unexpected number of masks"); 6965 Optional<uint64_t> Mask; 6966 // Optionally consume a mask around the shift operation. 6967 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6968 Mask = Op.getConstantOperandVal(1); 6969 Op = Op.getOperand(0); 6970 } 6971 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6972 return None; 6973 bool IsSHL = Op.getOpcode() == ISD::SHL; 6974 6975 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6976 return None; 6977 uint64_t ShAmt = Op.getConstantOperandVal(1); 6978 6979 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6980 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6981 return None; 6982 // If we don't have enough masks for 64 bit, then we must be trying to 6983 // match SHFL so we're only allowed to shift 1/4 of the width. 6984 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6985 return None; 6986 6987 SDValue Src = Op.getOperand(0); 6988 6989 // The expected mask is shifted left when the AND is found around SHL 6990 // patterns. 6991 // ((x >> 1) & 0x55555555) 6992 // ((x << 1) & 0xAAAAAAAA) 6993 bool SHLExpMask = IsSHL; 6994 6995 if (!Mask) { 6996 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6997 // the mask is all ones: consume that now. 6998 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6999 Mask = Src.getConstantOperandVal(1); 7000 Src = Src.getOperand(0); 7001 // The expected mask is now in fact shifted left for SRL, so reverse the 7002 // decision. 7003 // ((x & 0xAAAAAAAA) >> 1) 7004 // ((x & 0x55555555) << 1) 7005 SHLExpMask = !SHLExpMask; 7006 } else { 7007 // Use a default shifted mask of all-ones if there's no AND, truncated 7008 // down to the expected width. This simplifies the logic later on. 7009 Mask = maskTrailingOnes<uint64_t>(Width); 7010 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 7011 } 7012 } 7013 7014 unsigned MaskIdx = Log2_32(ShAmt); 7015 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7016 7017 if (SHLExpMask) 7018 ExpMask <<= ShAmt; 7019 7020 if (Mask != ExpMask) 7021 return None; 7022 7023 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 7024 } 7025 7026 // Matches any of the following bit-manipulation patterns: 7027 // (and (shl x, 1), (0x55555555 << 1)) 7028 // (and (srl x, 1), 0x55555555) 7029 // (shl (and x, 0x55555555), 1) 7030 // (srl (and x, (0x55555555 << 1)), 1) 7031 // where the shift amount and mask may vary thus: 7032 // [1] = 0x55555555 / 0xAAAAAAAA 7033 // [2] = 0x33333333 / 0xCCCCCCCC 7034 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 7035 // [8] = 0x00FF00FF / 0xFF00FF00 7036 // [16] = 0x0000FFFF / 0xFFFFFFFF 7037 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 7038 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 7039 // These are the unshifted masks which we use to match bit-manipulation 7040 // patterns. They may be shifted left in certain circumstances. 7041 static const uint64_t BitmanipMasks[] = { 7042 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 7043 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 7044 7045 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7046 } 7047 7048 // Match the following pattern as a GREVI(W) operation 7049 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 7050 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 7051 const RISCVSubtarget &Subtarget) { 7052 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7053 EVT VT = Op.getValueType(); 7054 7055 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7056 auto LHS = matchGREVIPat(Op.getOperand(0)); 7057 auto RHS = matchGREVIPat(Op.getOperand(1)); 7058 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 7059 SDLoc DL(Op); 7060 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 7061 DAG.getConstant(LHS->ShAmt, DL, VT)); 7062 } 7063 } 7064 return SDValue(); 7065 } 7066 7067 // Matches any the following pattern as a GORCI(W) operation 7068 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 7069 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 7070 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 7071 // Note that with the variant of 3., 7072 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 7073 // the inner pattern will first be matched as GREVI and then the outer 7074 // pattern will be matched to GORC via the first rule above. 7075 // 4. (or (rotl/rotr x, bitwidth/2), x) 7076 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 7077 const RISCVSubtarget &Subtarget) { 7078 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7079 EVT VT = Op.getValueType(); 7080 7081 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7082 SDLoc DL(Op); 7083 SDValue Op0 = Op.getOperand(0); 7084 SDValue Op1 = Op.getOperand(1); 7085 7086 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 7087 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 7088 isa<ConstantSDNode>(Reverse.getOperand(1)) && 7089 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 7090 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 7091 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 7092 if ((Reverse.getOpcode() == ISD::ROTL || 7093 Reverse.getOpcode() == ISD::ROTR) && 7094 Reverse.getOperand(0) == X && 7095 isa<ConstantSDNode>(Reverse.getOperand(1))) { 7096 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 7097 if (RotAmt == (VT.getSizeInBits() / 2)) 7098 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 7099 DAG.getConstant(RotAmt, DL, VT)); 7100 } 7101 return SDValue(); 7102 }; 7103 7104 // Check for either commutable permutation of (or (GREVI x, shamt), x) 7105 if (SDValue V = MatchOROfReverse(Op0, Op1)) 7106 return V; 7107 if (SDValue V = MatchOROfReverse(Op1, Op0)) 7108 return V; 7109 7110 // OR is commutable so canonicalize its OR operand to the left 7111 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 7112 std::swap(Op0, Op1); 7113 if (Op0.getOpcode() != ISD::OR) 7114 return SDValue(); 7115 SDValue OrOp0 = Op0.getOperand(0); 7116 SDValue OrOp1 = Op0.getOperand(1); 7117 auto LHS = matchGREVIPat(OrOp0); 7118 // OR is commutable so swap the operands and try again: x might have been 7119 // on the left 7120 if (!LHS) { 7121 std::swap(OrOp0, OrOp1); 7122 LHS = matchGREVIPat(OrOp0); 7123 } 7124 auto RHS = matchGREVIPat(Op1); 7125 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 7126 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 7127 DAG.getConstant(LHS->ShAmt, DL, VT)); 7128 } 7129 } 7130 return SDValue(); 7131 } 7132 7133 // Matches any of the following bit-manipulation patterns: 7134 // (and (shl x, 1), (0x22222222 << 1)) 7135 // (and (srl x, 1), 0x22222222) 7136 // (shl (and x, 0x22222222), 1) 7137 // (srl (and x, (0x22222222 << 1)), 1) 7138 // where the shift amount and mask may vary thus: 7139 // [1] = 0x22222222 / 0x44444444 7140 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 7141 // [4] = 0x00F000F0 / 0x0F000F00 7142 // [8] = 0x0000FF00 / 0x00FF0000 7143 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 7144 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 7145 // These are the unshifted masks which we use to match bit-manipulation 7146 // patterns. They may be shifted left in certain circumstances. 7147 static const uint64_t BitmanipMasks[] = { 7148 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 7149 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 7150 7151 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7152 } 7153 7154 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 7155 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 7156 const RISCVSubtarget &Subtarget) { 7157 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7158 EVT VT = Op.getValueType(); 7159 7160 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 7161 return SDValue(); 7162 7163 SDValue Op0 = Op.getOperand(0); 7164 SDValue Op1 = Op.getOperand(1); 7165 7166 // Or is commutable so canonicalize the second OR to the LHS. 7167 if (Op0.getOpcode() != ISD::OR) 7168 std::swap(Op0, Op1); 7169 if (Op0.getOpcode() != ISD::OR) 7170 return SDValue(); 7171 7172 // We found an inner OR, so our operands are the operands of the inner OR 7173 // and the other operand of the outer OR. 7174 SDValue A = Op0.getOperand(0); 7175 SDValue B = Op0.getOperand(1); 7176 SDValue C = Op1; 7177 7178 auto Match1 = matchSHFLPat(A); 7179 auto Match2 = matchSHFLPat(B); 7180 7181 // If neither matched, we failed. 7182 if (!Match1 && !Match2) 7183 return SDValue(); 7184 7185 // We had at least one match. if one failed, try the remaining C operand. 7186 if (!Match1) { 7187 std::swap(A, C); 7188 Match1 = matchSHFLPat(A); 7189 if (!Match1) 7190 return SDValue(); 7191 } else if (!Match2) { 7192 std::swap(B, C); 7193 Match2 = matchSHFLPat(B); 7194 if (!Match2) 7195 return SDValue(); 7196 } 7197 assert(Match1 && Match2); 7198 7199 // Make sure our matches pair up. 7200 if (!Match1->formsPairWith(*Match2)) 7201 return SDValue(); 7202 7203 // All the remains is to make sure C is an AND with the same input, that masks 7204 // out the bits that are being shuffled. 7205 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7206 C.getOperand(0) != Match1->Op) 7207 return SDValue(); 7208 7209 uint64_t Mask = C.getConstantOperandVal(1); 7210 7211 static const uint64_t BitmanipMasks[] = { 7212 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7213 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7214 }; 7215 7216 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7217 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7218 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7219 7220 if (Mask != ExpMask) 7221 return SDValue(); 7222 7223 SDLoc DL(Op); 7224 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7225 DAG.getConstant(Match1->ShAmt, DL, VT)); 7226 } 7227 7228 // Optimize (add (shl x, c0), (shl y, c1)) -> 7229 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7230 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7231 const RISCVSubtarget &Subtarget) { 7232 // Perform this optimization only in the zba extension. 7233 if (!Subtarget.hasStdExtZba()) 7234 return SDValue(); 7235 7236 // Skip for vector types and larger types. 7237 EVT VT = N->getValueType(0); 7238 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7239 return SDValue(); 7240 7241 // The two operand nodes must be SHL and have no other use. 7242 SDValue N0 = N->getOperand(0); 7243 SDValue N1 = N->getOperand(1); 7244 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7245 !N0->hasOneUse() || !N1->hasOneUse()) 7246 return SDValue(); 7247 7248 // Check c0 and c1. 7249 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7250 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7251 if (!N0C || !N1C) 7252 return SDValue(); 7253 int64_t C0 = N0C->getSExtValue(); 7254 int64_t C1 = N1C->getSExtValue(); 7255 if (C0 <= 0 || C1 <= 0) 7256 return SDValue(); 7257 7258 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7259 int64_t Bits = std::min(C0, C1); 7260 int64_t Diff = std::abs(C0 - C1); 7261 if (Diff != 1 && Diff != 2 && Diff != 3) 7262 return SDValue(); 7263 7264 // Build nodes. 7265 SDLoc DL(N); 7266 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7267 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7268 SDValue NA0 = 7269 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7270 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7271 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7272 } 7273 7274 // Combine 7275 // ROTR ((GREV x, 24), 16) -> (GREVI x, 8) 7276 // ROTL ((GREV x, 24), 16) -> (GREVI x, 8) 7277 // RORW ((GREVW x, 24), 16) -> (GREVIW x, 8) 7278 // ROLW ((GREVW x, 24), 16) -> (GREVIW x, 8) 7279 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG) { 7280 SDValue Src = N->getOperand(0); 7281 SDLoc DL(N); 7282 unsigned Opc; 7283 7284 if ((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL) && 7285 Src.getOpcode() == RISCVISD::GREV) 7286 Opc = RISCVISD::GREV; 7287 else if ((N->getOpcode() == RISCVISD::RORW || 7288 N->getOpcode() == RISCVISD::ROLW) && 7289 Src.getOpcode() == RISCVISD::GREVW) 7290 Opc = RISCVISD::GREVW; 7291 else 7292 return SDValue(); 7293 7294 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7295 !isa<ConstantSDNode>(Src.getOperand(1))) 7296 return SDValue(); 7297 7298 unsigned ShAmt1 = N->getConstantOperandVal(1); 7299 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7300 if (ShAmt1 != 16 && ShAmt2 != 24) 7301 return SDValue(); 7302 7303 Src = Src.getOperand(0); 7304 return DAG.getNode(Opc, DL, N->getValueType(0), Src, 7305 DAG.getConstant(8, DL, N->getOperand(1).getValueType())); 7306 } 7307 7308 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7309 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7310 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7311 // not undo itself, but they are redundant. 7312 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7313 SDValue Src = N->getOperand(0); 7314 7315 if (Src.getOpcode() != N->getOpcode()) 7316 return SDValue(); 7317 7318 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7319 !isa<ConstantSDNode>(Src.getOperand(1))) 7320 return SDValue(); 7321 7322 unsigned ShAmt1 = N->getConstantOperandVal(1); 7323 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7324 Src = Src.getOperand(0); 7325 7326 unsigned CombinedShAmt; 7327 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 7328 CombinedShAmt = ShAmt1 | ShAmt2; 7329 else 7330 CombinedShAmt = ShAmt1 ^ ShAmt2; 7331 7332 if (CombinedShAmt == 0) 7333 return Src; 7334 7335 SDLoc DL(N); 7336 return DAG.getNode( 7337 N->getOpcode(), DL, N->getValueType(0), Src, 7338 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7339 } 7340 7341 // Combine a constant select operand into its use: 7342 // 7343 // (and (select cond, -1, c), x) 7344 // -> (select cond, x, (and x, c)) [AllOnes=1] 7345 // (or (select cond, 0, c), x) 7346 // -> (select cond, x, (or x, c)) [AllOnes=0] 7347 // (xor (select cond, 0, c), x) 7348 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7349 // (add (select cond, 0, c), x) 7350 // -> (select cond, x, (add x, c)) [AllOnes=0] 7351 // (sub x, (select cond, 0, c)) 7352 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7353 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7354 SelectionDAG &DAG, bool AllOnes) { 7355 EVT VT = N->getValueType(0); 7356 7357 // Skip vectors. 7358 if (VT.isVector()) 7359 return SDValue(); 7360 7361 if ((Slct.getOpcode() != ISD::SELECT && 7362 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7363 !Slct.hasOneUse()) 7364 return SDValue(); 7365 7366 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7367 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7368 }; 7369 7370 bool SwapSelectOps; 7371 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7372 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7373 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7374 SDValue NonConstantVal; 7375 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7376 SwapSelectOps = false; 7377 NonConstantVal = FalseVal; 7378 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7379 SwapSelectOps = true; 7380 NonConstantVal = TrueVal; 7381 } else 7382 return SDValue(); 7383 7384 // Slct is now know to be the desired identity constant when CC is true. 7385 TrueVal = OtherOp; 7386 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7387 // Unless SwapSelectOps says the condition should be false. 7388 if (SwapSelectOps) 7389 std::swap(TrueVal, FalseVal); 7390 7391 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7392 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7393 {Slct.getOperand(0), Slct.getOperand(1), 7394 Slct.getOperand(2), TrueVal, FalseVal}); 7395 7396 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7397 {Slct.getOperand(0), TrueVal, FalseVal}); 7398 } 7399 7400 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7401 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7402 bool AllOnes) { 7403 SDValue N0 = N->getOperand(0); 7404 SDValue N1 = N->getOperand(1); 7405 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7406 return Result; 7407 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7408 return Result; 7409 return SDValue(); 7410 } 7411 7412 // Transform (add (mul x, c0), c1) -> 7413 // (add (mul (add x, c1/c0), c0), c1%c0). 7414 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7415 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7416 // to an infinite loop in DAGCombine if transformed. 7417 // Or transform (add (mul x, c0), c1) -> 7418 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7419 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7420 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7421 // lead to an infinite loop in DAGCombine if transformed. 7422 // Or transform (add (mul x, c0), c1) -> 7423 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7424 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7425 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7426 // lead to an infinite loop in DAGCombine if transformed. 7427 // Or transform (add (mul x, c0), c1) -> 7428 // (mul (add x, c1/c0), c0). 7429 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7430 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7431 const RISCVSubtarget &Subtarget) { 7432 // Skip for vector types and larger types. 7433 EVT VT = N->getValueType(0); 7434 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7435 return SDValue(); 7436 // The first operand node must be a MUL and has no other use. 7437 SDValue N0 = N->getOperand(0); 7438 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7439 return SDValue(); 7440 // Check if c0 and c1 match above conditions. 7441 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7442 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7443 if (!N0C || !N1C) 7444 return SDValue(); 7445 int64_t C0 = N0C->getSExtValue(); 7446 int64_t C1 = N1C->getSExtValue(); 7447 int64_t CA, CB; 7448 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7449 return SDValue(); 7450 // Search for proper CA (non-zero) and CB that both are simm12. 7451 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7452 !isInt<12>(C0 * (C1 / C0))) { 7453 CA = C1 / C0; 7454 CB = C1 % C0; 7455 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7456 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7457 CA = C1 / C0 + 1; 7458 CB = C1 % C0 - C0; 7459 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7460 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7461 CA = C1 / C0 - 1; 7462 CB = C1 % C0 + C0; 7463 } else 7464 return SDValue(); 7465 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7466 SDLoc DL(N); 7467 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7468 DAG.getConstant(CA, DL, VT)); 7469 SDValue New1 = 7470 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7471 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7472 } 7473 7474 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7475 const RISCVSubtarget &Subtarget) { 7476 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7477 return V; 7478 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7479 return V; 7480 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7481 // (select lhs, rhs, cc, x, (add x, y)) 7482 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7483 } 7484 7485 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7486 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7487 // (select lhs, rhs, cc, x, (sub x, y)) 7488 SDValue N0 = N->getOperand(0); 7489 SDValue N1 = N->getOperand(1); 7490 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7491 } 7492 7493 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7494 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7495 // (select lhs, rhs, cc, x, (and x, y)) 7496 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7497 } 7498 7499 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7500 const RISCVSubtarget &Subtarget) { 7501 if (Subtarget.hasStdExtZbp()) { 7502 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7503 return GREV; 7504 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7505 return GORC; 7506 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7507 return SHFL; 7508 } 7509 7510 // fold (or (select cond, 0, y), x) -> 7511 // (select cond, x, (or x, y)) 7512 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7513 } 7514 7515 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7516 // fold (xor (select cond, 0, y), x) -> 7517 // (select cond, x, (xor x, y)) 7518 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7519 } 7520 7521 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 7522 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 7523 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 7524 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 7525 // ADDW/SUBW/MULW. 7526 static SDValue performANY_EXTENDCombine(SDNode *N, 7527 TargetLowering::DAGCombinerInfo &DCI, 7528 const RISCVSubtarget &Subtarget) { 7529 if (!Subtarget.is64Bit()) 7530 return SDValue(); 7531 7532 SelectionDAG &DAG = DCI.DAG; 7533 7534 SDValue Src = N->getOperand(0); 7535 EVT VT = N->getValueType(0); 7536 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 7537 return SDValue(); 7538 7539 // The opcode must be one that can implicitly sign_extend. 7540 // FIXME: Additional opcodes. 7541 switch (Src.getOpcode()) { 7542 default: 7543 return SDValue(); 7544 case ISD::MUL: 7545 if (!Subtarget.hasStdExtM()) 7546 return SDValue(); 7547 LLVM_FALLTHROUGH; 7548 case ISD::ADD: 7549 case ISD::SUB: 7550 break; 7551 } 7552 7553 // Only handle cases where the result is used by a CopyToReg. That likely 7554 // means the value is a liveout of the basic block. This helps prevent 7555 // infinite combine loops like PR51206. 7556 if (none_of(N->uses(), 7557 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 7558 return SDValue(); 7559 7560 SmallVector<SDNode *, 4> SetCCs; 7561 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 7562 UE = Src.getNode()->use_end(); 7563 UI != UE; ++UI) { 7564 SDNode *User = *UI; 7565 if (User == N) 7566 continue; 7567 if (UI.getUse().getResNo() != Src.getResNo()) 7568 continue; 7569 // All i32 setccs are legalized by sign extending operands. 7570 if (User->getOpcode() == ISD::SETCC) { 7571 SetCCs.push_back(User); 7572 continue; 7573 } 7574 // We don't know if we can extend this user. 7575 break; 7576 } 7577 7578 // If we don't have any SetCCs, this isn't worthwhile. 7579 if (SetCCs.empty()) 7580 return SDValue(); 7581 7582 SDLoc DL(N); 7583 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 7584 DCI.CombineTo(N, SExt); 7585 7586 // Promote all the setccs. 7587 for (SDNode *SetCC : SetCCs) { 7588 SmallVector<SDValue, 4> Ops; 7589 7590 for (unsigned j = 0; j != 2; ++j) { 7591 SDValue SOp = SetCC->getOperand(j); 7592 if (SOp == Src) 7593 Ops.push_back(SExt); 7594 else 7595 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 7596 } 7597 7598 Ops.push_back(SetCC->getOperand(2)); 7599 DCI.CombineTo(SetCC, 7600 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 7601 } 7602 return SDValue(N, 0); 7603 } 7604 7605 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to 7606 // vwadd(u).vv/vx or vwsub(u).vv/vx. 7607 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG, 7608 bool Commute = false) { 7609 assert((N->getOpcode() == RISCVISD::ADD_VL || 7610 N->getOpcode() == RISCVISD::SUB_VL) && 7611 "Unexpected opcode"); 7612 bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL; 7613 SDValue Op0 = N->getOperand(0); 7614 SDValue Op1 = N->getOperand(1); 7615 if (Commute) 7616 std::swap(Op0, Op1); 7617 7618 MVT VT = N->getSimpleValueType(0); 7619 7620 // Determine the narrow size for a widening add/sub. 7621 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7622 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7623 VT.getVectorElementCount()); 7624 7625 SDValue Mask = N->getOperand(2); 7626 SDValue VL = N->getOperand(3); 7627 7628 SDLoc DL(N); 7629 7630 // If the RHS is a sext or zext, we can form a widening op. 7631 if ((Op1.getOpcode() == RISCVISD::VZEXT_VL || 7632 Op1.getOpcode() == RISCVISD::VSEXT_VL) && 7633 Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) { 7634 unsigned ExtOpc = Op1.getOpcode(); 7635 Op1 = Op1.getOperand(0); 7636 // Re-introduce narrower extends if needed. 7637 if (Op1.getValueType() != NarrowVT) 7638 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7639 7640 unsigned WOpc; 7641 if (ExtOpc == RISCVISD::VSEXT_VL) 7642 WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL; 7643 else 7644 WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL; 7645 7646 return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL); 7647 } 7648 7649 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar 7650 // sext/zext? 7651 7652 return SDValue(); 7653 } 7654 7655 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or 7656 // vwsub(u).vv/vx. 7657 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) { 7658 SDValue Op0 = N->getOperand(0); 7659 SDValue Op1 = N->getOperand(1); 7660 SDValue Mask = N->getOperand(2); 7661 SDValue VL = N->getOperand(3); 7662 7663 MVT VT = N->getSimpleValueType(0); 7664 MVT NarrowVT = Op1.getSimpleValueType(); 7665 unsigned NarrowSize = NarrowVT.getScalarSizeInBits(); 7666 7667 unsigned VOpc; 7668 switch (N->getOpcode()) { 7669 default: llvm_unreachable("Unexpected opcode"); 7670 case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break; 7671 case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break; 7672 case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break; 7673 case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break; 7674 } 7675 7676 bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL || 7677 N->getOpcode() == RISCVISD::VWSUB_W_VL; 7678 7679 SDLoc DL(N); 7680 7681 // If the LHS is a sext or zext, we can narrow this op to the same size as 7682 // the RHS. 7683 if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) || 7684 (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) && 7685 Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) { 7686 unsigned ExtOpc = Op0.getOpcode(); 7687 Op0 = Op0.getOperand(0); 7688 // Re-introduce narrower extends if needed. 7689 if (Op0.getValueType() != NarrowVT) 7690 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7691 return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL); 7692 } 7693 7694 bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL || 7695 N->getOpcode() == RISCVISD::VWADDU_W_VL; 7696 7697 // Look for splats on the left hand side of a vwadd(u).wv. We might be able 7698 // to commute and use a vwadd(u).vx instead. 7699 if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL && 7700 Op0.getOperand(1) == VL) { 7701 Op0 = Op0.getOperand(0); 7702 7703 // See if have enough sign bits or zero bits in the scalar to use a 7704 // widening add/sub by splatting to smaller element size. 7705 unsigned EltBits = VT.getScalarSizeInBits(); 7706 unsigned ScalarBits = Op0.getValueSizeInBits(); 7707 // Make sure we're getting all element bits from the scalar register. 7708 // FIXME: Support implicit sign extension of vmv.v.x? 7709 if (ScalarBits < EltBits) 7710 return SDValue(); 7711 7712 if (IsSigned) { 7713 if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize)) 7714 return SDValue(); 7715 } else { 7716 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7717 if (!DAG.MaskedValueIsZero(Op0, Mask)) 7718 return SDValue(); 7719 } 7720 7721 Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op0, VL); 7722 return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL); 7723 } 7724 7725 return SDValue(); 7726 } 7727 7728 // Try to form VWMUL, VWMULU or VWMULSU. 7729 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 7730 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 7731 bool Commute) { 7732 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7733 SDValue Op0 = N->getOperand(0); 7734 SDValue Op1 = N->getOperand(1); 7735 if (Commute) 7736 std::swap(Op0, Op1); 7737 7738 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7739 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7740 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 7741 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7742 return SDValue(); 7743 7744 SDValue Mask = N->getOperand(2); 7745 SDValue VL = N->getOperand(3); 7746 7747 // Make sure the mask and VL match. 7748 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 7749 return SDValue(); 7750 7751 MVT VT = N->getSimpleValueType(0); 7752 7753 // Determine the narrow size for a widening multiply. 7754 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7755 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7756 VT.getVectorElementCount()); 7757 7758 SDLoc DL(N); 7759 7760 // See if the other operand is the same opcode. 7761 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 7762 if (!Op1.hasOneUse()) 7763 return SDValue(); 7764 7765 // Make sure the mask and VL match. 7766 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 7767 return SDValue(); 7768 7769 Op1 = Op1.getOperand(0); 7770 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 7771 // The operand is a splat of a scalar. 7772 7773 // The VL must be the same. 7774 if (Op1.getOperand(1) != VL) 7775 return SDValue(); 7776 7777 // Get the scalar value. 7778 Op1 = Op1.getOperand(0); 7779 7780 // See if have enough sign bits or zero bits in the scalar to use a 7781 // widening multiply by splatting to smaller element size. 7782 unsigned EltBits = VT.getScalarSizeInBits(); 7783 unsigned ScalarBits = Op1.getValueSizeInBits(); 7784 // Make sure we're getting all element bits from the scalar register. 7785 // FIXME: Support implicit sign extension of vmv.v.x? 7786 if (ScalarBits < EltBits) 7787 return SDValue(); 7788 7789 if (IsSignExt) { 7790 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 7791 return SDValue(); 7792 } else { 7793 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7794 if (!DAG.MaskedValueIsZero(Op1, Mask)) 7795 return SDValue(); 7796 } 7797 7798 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 7799 } else 7800 return SDValue(); 7801 7802 Op0 = Op0.getOperand(0); 7803 7804 // Re-introduce narrower extends if needed. 7805 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7806 if (Op0.getValueType() != NarrowVT) 7807 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7808 // vwmulsu requires second operand to be zero extended. 7809 ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc; 7810 if (Op1.getValueType() != NarrowVT) 7811 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7812 7813 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 7814 if (!IsVWMULSU) 7815 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7816 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7817 } 7818 7819 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 7820 switch (Op.getOpcode()) { 7821 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 7822 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 7823 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 7824 case ISD::FCEIL: return RISCVFPRndMode::RUP; 7825 case ISD::FROUND: return RISCVFPRndMode::RMM; 7826 } 7827 7828 return RISCVFPRndMode::Invalid; 7829 } 7830 7831 // Fold 7832 // (fp_to_int (froundeven X)) -> fcvt X, rne 7833 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 7834 // (fp_to_int (ffloor X)) -> fcvt X, rdn 7835 // (fp_to_int (fceil X)) -> fcvt X, rup 7836 // (fp_to_int (fround X)) -> fcvt X, rmm 7837 static SDValue performFP_TO_INTCombine(SDNode *N, 7838 TargetLowering::DAGCombinerInfo &DCI, 7839 const RISCVSubtarget &Subtarget) { 7840 SelectionDAG &DAG = DCI.DAG; 7841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7842 MVT XLenVT = Subtarget.getXLenVT(); 7843 7844 // Only handle XLen or i32 types. Other types narrower than XLen will 7845 // eventually be legalized to XLenVT. 7846 EVT VT = N->getValueType(0); 7847 if (VT != MVT::i32 && VT != XLenVT) 7848 return SDValue(); 7849 7850 SDValue Src = N->getOperand(0); 7851 7852 // Ensure the FP type is also legal. 7853 if (!TLI.isTypeLegal(Src.getValueType())) 7854 return SDValue(); 7855 7856 // Don't do this for f16 with Zfhmin and not Zfh. 7857 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7858 return SDValue(); 7859 7860 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7861 if (FRM == RISCVFPRndMode::Invalid) 7862 return SDValue(); 7863 7864 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 7865 7866 unsigned Opc; 7867 if (VT == XLenVT) 7868 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7869 else 7870 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7871 7872 SDLoc DL(N); 7873 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 7874 DAG.getTargetConstant(FRM, DL, XLenVT)); 7875 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 7876 } 7877 7878 // Fold 7879 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 7880 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 7881 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 7882 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 7883 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 7884 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 7885 TargetLowering::DAGCombinerInfo &DCI, 7886 const RISCVSubtarget &Subtarget) { 7887 SelectionDAG &DAG = DCI.DAG; 7888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7889 MVT XLenVT = Subtarget.getXLenVT(); 7890 7891 // Only handle XLen types. Other types narrower than XLen will eventually be 7892 // legalized to XLenVT. 7893 EVT DstVT = N->getValueType(0); 7894 if (DstVT != XLenVT) 7895 return SDValue(); 7896 7897 SDValue Src = N->getOperand(0); 7898 7899 // Ensure the FP type is also legal. 7900 if (!TLI.isTypeLegal(Src.getValueType())) 7901 return SDValue(); 7902 7903 // Don't do this for f16 with Zfhmin and not Zfh. 7904 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7905 return SDValue(); 7906 7907 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 7908 7909 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7910 if (FRM == RISCVFPRndMode::Invalid) 7911 return SDValue(); 7912 7913 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 7914 7915 unsigned Opc; 7916 if (SatVT == DstVT) 7917 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7918 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 7919 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7920 else 7921 return SDValue(); 7922 // FIXME: Support other SatVTs by clamping before or after the conversion. 7923 7924 Src = Src.getOperand(0); 7925 7926 SDLoc DL(N); 7927 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 7928 DAG.getTargetConstant(FRM, DL, XLenVT)); 7929 7930 // RISCV FP-to-int conversions saturate to the destination register size, but 7931 // don't produce 0 for nan. 7932 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 7933 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 7934 } 7935 7936 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 7937 DAGCombinerInfo &DCI) const { 7938 SelectionDAG &DAG = DCI.DAG; 7939 7940 // Helper to call SimplifyDemandedBits on an operand of N where only some low 7941 // bits are demanded. N will be added to the Worklist if it was not deleted. 7942 // Caller should return SDValue(N, 0) if this returns true. 7943 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 7944 SDValue Op = N->getOperand(OpNo); 7945 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 7946 if (!SimplifyDemandedBits(Op, Mask, DCI)) 7947 return false; 7948 7949 if (N->getOpcode() != ISD::DELETED_NODE) 7950 DCI.AddToWorklist(N); 7951 return true; 7952 }; 7953 7954 switch (N->getOpcode()) { 7955 default: 7956 break; 7957 case RISCVISD::SplitF64: { 7958 SDValue Op0 = N->getOperand(0); 7959 // If the input to SplitF64 is just BuildPairF64 then the operation is 7960 // redundant. Instead, use BuildPairF64's operands directly. 7961 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 7962 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 7963 7964 if (Op0->isUndef()) { 7965 SDValue Lo = DAG.getUNDEF(MVT::i32); 7966 SDValue Hi = DAG.getUNDEF(MVT::i32); 7967 return DCI.CombineTo(N, Lo, Hi); 7968 } 7969 7970 SDLoc DL(N); 7971 7972 // It's cheaper to materialise two 32-bit integers than to load a double 7973 // from the constant pool and transfer it to integer registers through the 7974 // stack. 7975 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 7976 APInt V = C->getValueAPF().bitcastToAPInt(); 7977 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 7978 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 7979 return DCI.CombineTo(N, Lo, Hi); 7980 } 7981 7982 // This is a target-specific version of a DAGCombine performed in 7983 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7984 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7985 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7986 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7987 !Op0.getNode()->hasOneUse()) 7988 break; 7989 SDValue NewSplitF64 = 7990 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 7991 Op0.getOperand(0)); 7992 SDValue Lo = NewSplitF64.getValue(0); 7993 SDValue Hi = NewSplitF64.getValue(1); 7994 APInt SignBit = APInt::getSignMask(32); 7995 if (Op0.getOpcode() == ISD::FNEG) { 7996 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 7997 DAG.getConstant(SignBit, DL, MVT::i32)); 7998 return DCI.CombineTo(N, Lo, NewHi); 7999 } 8000 assert(Op0.getOpcode() == ISD::FABS); 8001 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 8002 DAG.getConstant(~SignBit, DL, MVT::i32)); 8003 return DCI.CombineTo(N, Lo, NewHi); 8004 } 8005 case RISCVISD::SLLW: 8006 case RISCVISD::SRAW: 8007 case RISCVISD::SRLW: 8008 case RISCVISD::ROLW: 8009 case RISCVISD::RORW: { 8010 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8011 if (SimplifyDemandedLowBitsHelper(0, 32) || 8012 SimplifyDemandedLowBitsHelper(1, 5)) 8013 return SDValue(N, 0); 8014 8015 return combineROTR_ROTL_RORW_ROLW(N, DAG); 8016 } 8017 case ISD::ROTR: 8018 case ISD::ROTL: 8019 return combineROTR_ROTL_RORW_ROLW(N, DAG); 8020 case RISCVISD::CLZW: 8021 case RISCVISD::CTZW: { 8022 // Only the lower 32 bits of the first operand are read 8023 if (SimplifyDemandedLowBitsHelper(0, 32)) 8024 return SDValue(N, 0); 8025 break; 8026 } 8027 case RISCVISD::GREV: 8028 case RISCVISD::GORC: { 8029 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 8030 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8031 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8032 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 8033 return SDValue(N, 0); 8034 8035 return combineGREVI_GORCI(N, DAG); 8036 } 8037 case RISCVISD::GREVW: 8038 case RISCVISD::GORCW: { 8039 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8040 if (SimplifyDemandedLowBitsHelper(0, 32) || 8041 SimplifyDemandedLowBitsHelper(1, 5)) 8042 return SDValue(N, 0); 8043 8044 return combineGREVI_GORCI(N, DAG); 8045 } 8046 case RISCVISD::SHFL: 8047 case RISCVISD::UNSHFL: { 8048 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 8049 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8050 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8051 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 8052 return SDValue(N, 0); 8053 8054 break; 8055 } 8056 case RISCVISD::SHFLW: 8057 case RISCVISD::UNSHFLW: { 8058 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 8059 if (SimplifyDemandedLowBitsHelper(0, 32) || 8060 SimplifyDemandedLowBitsHelper(1, 4)) 8061 return SDValue(N, 0); 8062 8063 break; 8064 } 8065 case RISCVISD::BCOMPRESSW: 8066 case RISCVISD::BDECOMPRESSW: { 8067 // Only the lower 32 bits of LHS and RHS are read. 8068 if (SimplifyDemandedLowBitsHelper(0, 32) || 8069 SimplifyDemandedLowBitsHelper(1, 32)) 8070 return SDValue(N, 0); 8071 8072 break; 8073 } 8074 case RISCVISD::FMV_X_ANYEXTH: 8075 case RISCVISD::FMV_X_ANYEXTW_RV64: { 8076 SDLoc DL(N); 8077 SDValue Op0 = N->getOperand(0); 8078 MVT VT = N->getSimpleValueType(0); 8079 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 8080 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 8081 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 8082 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 8083 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 8084 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8085 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 8086 assert(Op0.getOperand(0).getValueType() == VT && 8087 "Unexpected value type!"); 8088 return Op0.getOperand(0); 8089 } 8090 8091 // This is a target-specific version of a DAGCombine performed in 8092 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8093 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8094 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8095 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8096 !Op0.getNode()->hasOneUse()) 8097 break; 8098 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 8099 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 8100 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 8101 if (Op0.getOpcode() == ISD::FNEG) 8102 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 8103 DAG.getConstant(SignBit, DL, VT)); 8104 8105 assert(Op0.getOpcode() == ISD::FABS); 8106 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 8107 DAG.getConstant(~SignBit, DL, VT)); 8108 } 8109 case ISD::ADD: 8110 return performADDCombine(N, DAG, Subtarget); 8111 case ISD::SUB: 8112 return performSUBCombine(N, DAG); 8113 case ISD::AND: 8114 return performANDCombine(N, DAG); 8115 case ISD::OR: 8116 return performORCombine(N, DAG, Subtarget); 8117 case ISD::XOR: 8118 return performXORCombine(N, DAG); 8119 case ISD::ANY_EXTEND: 8120 return performANY_EXTENDCombine(N, DCI, Subtarget); 8121 case ISD::ZERO_EXTEND: 8122 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 8123 // type legalization. This is safe because fp_to_uint produces poison if 8124 // it overflows. 8125 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 8126 SDValue Src = N->getOperand(0); 8127 if (Src.getOpcode() == ISD::FP_TO_UINT && 8128 isTypeLegal(Src.getOperand(0).getValueType())) 8129 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 8130 Src.getOperand(0)); 8131 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 8132 isTypeLegal(Src.getOperand(1).getValueType())) { 8133 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 8134 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 8135 Src.getOperand(0), Src.getOperand(1)); 8136 DCI.CombineTo(N, Res); 8137 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 8138 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 8139 return SDValue(N, 0); // Return N so it doesn't get rechecked. 8140 } 8141 } 8142 return SDValue(); 8143 case RISCVISD::SELECT_CC: { 8144 // Transform 8145 SDValue LHS = N->getOperand(0); 8146 SDValue RHS = N->getOperand(1); 8147 SDValue TrueV = N->getOperand(3); 8148 SDValue FalseV = N->getOperand(4); 8149 8150 // If the True and False values are the same, we don't need a select_cc. 8151 if (TrueV == FalseV) 8152 return TrueV; 8153 8154 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 8155 if (!ISD::isIntEqualitySetCC(CCVal)) 8156 break; 8157 8158 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 8159 // (select_cc X, Y, lt, trueV, falseV) 8160 // Sometimes the setcc is introduced after select_cc has been formed. 8161 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8162 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8163 // If we're looking for eq 0 instead of ne 0, we need to invert the 8164 // condition. 8165 bool Invert = CCVal == ISD::SETEQ; 8166 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8167 if (Invert) 8168 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8169 8170 SDLoc DL(N); 8171 RHS = LHS.getOperand(1); 8172 LHS = LHS.getOperand(0); 8173 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8174 8175 SDValue TargetCC = DAG.getCondCode(CCVal); 8176 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8177 {LHS, RHS, TargetCC, TrueV, FalseV}); 8178 } 8179 8180 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 8181 // (select_cc X, Y, eq/ne, trueV, falseV) 8182 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8183 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 8184 {LHS.getOperand(0), LHS.getOperand(1), 8185 N->getOperand(2), TrueV, FalseV}); 8186 // (select_cc X, 1, setne, trueV, falseV) -> 8187 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 8188 // This can occur when legalizing some floating point comparisons. 8189 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8190 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8191 SDLoc DL(N); 8192 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8193 SDValue TargetCC = DAG.getCondCode(CCVal); 8194 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8195 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8196 {LHS, RHS, TargetCC, TrueV, FalseV}); 8197 } 8198 8199 break; 8200 } 8201 case RISCVISD::BR_CC: { 8202 SDValue LHS = N->getOperand(1); 8203 SDValue RHS = N->getOperand(2); 8204 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 8205 if (!ISD::isIntEqualitySetCC(CCVal)) 8206 break; 8207 8208 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 8209 // (br_cc X, Y, lt, dest) 8210 // Sometimes the setcc is introduced after br_cc has been formed. 8211 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8212 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8213 // If we're looking for eq 0 instead of ne 0, we need to invert the 8214 // condition. 8215 bool Invert = CCVal == ISD::SETEQ; 8216 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8217 if (Invert) 8218 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8219 8220 SDLoc DL(N); 8221 RHS = LHS.getOperand(1); 8222 LHS = LHS.getOperand(0); 8223 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8224 8225 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8226 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 8227 N->getOperand(4)); 8228 } 8229 8230 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 8231 // (br_cc X, Y, eq/ne, trueV, falseV) 8232 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8233 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 8234 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 8235 N->getOperand(3), N->getOperand(4)); 8236 8237 // (br_cc X, 1, setne, br_cc) -> 8238 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 8239 // This can occur when legalizing some floating point comparisons. 8240 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8241 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8242 SDLoc DL(N); 8243 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8244 SDValue TargetCC = DAG.getCondCode(CCVal); 8245 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8246 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8247 N->getOperand(0), LHS, RHS, TargetCC, 8248 N->getOperand(4)); 8249 } 8250 break; 8251 } 8252 case ISD::FP_TO_SINT: 8253 case ISD::FP_TO_UINT: 8254 return performFP_TO_INTCombine(N, DCI, Subtarget); 8255 case ISD::FP_TO_SINT_SAT: 8256 case ISD::FP_TO_UINT_SAT: 8257 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 8258 case ISD::FCOPYSIGN: { 8259 EVT VT = N->getValueType(0); 8260 if (!VT.isVector()) 8261 break; 8262 // There is a form of VFSGNJ which injects the negated sign of its second 8263 // operand. Try and bubble any FNEG up after the extend/round to produce 8264 // this optimized pattern. Avoid modifying cases where FP_ROUND and 8265 // TRUNC=1. 8266 SDValue In2 = N->getOperand(1); 8267 // Avoid cases where the extend/round has multiple uses, as duplicating 8268 // those is typically more expensive than removing a fneg. 8269 if (!In2.hasOneUse()) 8270 break; 8271 if (In2.getOpcode() != ISD::FP_EXTEND && 8272 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 8273 break; 8274 In2 = In2.getOperand(0); 8275 if (In2.getOpcode() != ISD::FNEG) 8276 break; 8277 SDLoc DL(N); 8278 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 8279 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 8280 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 8281 } 8282 case ISD::MGATHER: 8283 case ISD::MSCATTER: 8284 case ISD::VP_GATHER: 8285 case ISD::VP_SCATTER: { 8286 if (!DCI.isBeforeLegalize()) 8287 break; 8288 SDValue Index, ScaleOp; 8289 bool IsIndexScaled = false; 8290 bool IsIndexSigned = false; 8291 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 8292 Index = VPGSN->getIndex(); 8293 ScaleOp = VPGSN->getScale(); 8294 IsIndexScaled = VPGSN->isIndexScaled(); 8295 IsIndexSigned = VPGSN->isIndexSigned(); 8296 } else { 8297 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 8298 Index = MGSN->getIndex(); 8299 ScaleOp = MGSN->getScale(); 8300 IsIndexScaled = MGSN->isIndexScaled(); 8301 IsIndexSigned = MGSN->isIndexSigned(); 8302 } 8303 EVT IndexVT = Index.getValueType(); 8304 MVT XLenVT = Subtarget.getXLenVT(); 8305 // RISCV indexed loads only support the "unsigned unscaled" addressing 8306 // mode, so anything else must be manually legalized. 8307 bool NeedsIdxLegalization = 8308 IsIndexScaled || 8309 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 8310 if (!NeedsIdxLegalization) 8311 break; 8312 8313 SDLoc DL(N); 8314 8315 // Any index legalization should first promote to XLenVT, so we don't lose 8316 // bits when scaling. This may create an illegal index type so we let 8317 // LLVM's legalization take care of the splitting. 8318 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 8319 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 8320 IndexVT = IndexVT.changeVectorElementType(XLenVT); 8321 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 8322 DL, IndexVT, Index); 8323 } 8324 8325 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 8326 if (IsIndexScaled && Scale != 1) { 8327 // Manually scale the indices by the element size. 8328 // TODO: Sanitize the scale operand here? 8329 // TODO: For VP nodes, should we use VP_SHL here? 8330 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 8331 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 8332 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 8333 } 8334 8335 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 8336 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 8337 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 8338 {VPGN->getChain(), VPGN->getBasePtr(), Index, 8339 VPGN->getScale(), VPGN->getMask(), 8340 VPGN->getVectorLength()}, 8341 VPGN->getMemOperand(), NewIndexTy); 8342 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 8343 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 8344 {VPSN->getChain(), VPSN->getValue(), 8345 VPSN->getBasePtr(), Index, VPSN->getScale(), 8346 VPSN->getMask(), VPSN->getVectorLength()}, 8347 VPSN->getMemOperand(), NewIndexTy); 8348 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 8349 return DAG.getMaskedGather( 8350 N->getVTList(), MGN->getMemoryVT(), DL, 8351 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 8352 MGN->getBasePtr(), Index, MGN->getScale()}, 8353 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 8354 const auto *MSN = cast<MaskedScatterSDNode>(N); 8355 return DAG.getMaskedScatter( 8356 N->getVTList(), MSN->getMemoryVT(), DL, 8357 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 8358 Index, MSN->getScale()}, 8359 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 8360 } 8361 case RISCVISD::SRA_VL: 8362 case RISCVISD::SRL_VL: 8363 case RISCVISD::SHL_VL: { 8364 SDValue ShAmt = N->getOperand(1); 8365 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8366 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8367 SDLoc DL(N); 8368 SDValue VL = N->getOperand(3); 8369 EVT VT = N->getValueType(0); 8370 ShAmt = 8371 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 8372 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 8373 N->getOperand(2), N->getOperand(3)); 8374 } 8375 break; 8376 } 8377 case ISD::SRA: 8378 case ISD::SRL: 8379 case ISD::SHL: { 8380 SDValue ShAmt = N->getOperand(1); 8381 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8382 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8383 SDLoc DL(N); 8384 EVT VT = N->getValueType(0); 8385 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), 8386 DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); 8387 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 8388 } 8389 break; 8390 } 8391 case RISCVISD::ADD_VL: 8392 if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false)) 8393 return V; 8394 return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true); 8395 case RISCVISD::SUB_VL: 8396 return combineADDSUB_VLToVWADDSUB_VL(N, DAG); 8397 case RISCVISD::VWADD_W_VL: 8398 case RISCVISD::VWADDU_W_VL: 8399 case RISCVISD::VWSUB_W_VL: 8400 case RISCVISD::VWSUBU_W_VL: 8401 return combineVWADD_W_VL_VWSUB_W_VL(N, DAG); 8402 case RISCVISD::MUL_VL: 8403 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 8404 return V; 8405 // Mul is commutative. 8406 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 8407 case ISD::STORE: { 8408 auto *Store = cast<StoreSDNode>(N); 8409 SDValue Val = Store->getValue(); 8410 // Combine store of vmv.x.s to vse with VL of 1. 8411 // FIXME: Support FP. 8412 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 8413 SDValue Src = Val.getOperand(0); 8414 EVT VecVT = Src.getValueType(); 8415 EVT MemVT = Store->getMemoryVT(); 8416 // The memory VT and the element type must match. 8417 if (VecVT.getVectorElementType() == MemVT) { 8418 SDLoc DL(N); 8419 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 8420 return DAG.getStoreVP( 8421 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 8422 DAG.getConstant(1, DL, MaskVT), 8423 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 8424 Store->getMemOperand(), Store->getAddressingMode(), 8425 Store->isTruncatingStore(), /*IsCompress*/ false); 8426 } 8427 } 8428 8429 break; 8430 } 8431 case ISD::SPLAT_VECTOR: { 8432 EVT VT = N->getValueType(0); 8433 // Only perform this combine on legal MVT types. 8434 if (!isTypeLegal(VT)) 8435 break; 8436 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, 8437 DAG, Subtarget)) 8438 return Gather; 8439 break; 8440 } 8441 } 8442 8443 return SDValue(); 8444 } 8445 8446 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 8447 const SDNode *N, CombineLevel Level) const { 8448 // The following folds are only desirable if `(OP _, c1 << c2)` can be 8449 // materialised in fewer instructions than `(OP _, c1)`: 8450 // 8451 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8452 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8453 SDValue N0 = N->getOperand(0); 8454 EVT Ty = N0.getValueType(); 8455 if (Ty.isScalarInteger() && 8456 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 8457 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 8458 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8459 if (C1 && C2) { 8460 const APInt &C1Int = C1->getAPIntValue(); 8461 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 8462 8463 // We can materialise `c1 << c2` into an add immediate, so it's "free", 8464 // and the combine should happen, to potentially allow further combines 8465 // later. 8466 if (ShiftedC1Int.getMinSignedBits() <= 64 && 8467 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 8468 return true; 8469 8470 // We can materialise `c1` in an add immediate, so it's "free", and the 8471 // combine should be prevented. 8472 if (C1Int.getMinSignedBits() <= 64 && 8473 isLegalAddImmediate(C1Int.getSExtValue())) 8474 return false; 8475 8476 // Neither constant will fit into an immediate, so find materialisation 8477 // costs. 8478 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 8479 Subtarget.getFeatureBits(), 8480 /*CompressionCost*/true); 8481 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 8482 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 8483 /*CompressionCost*/true); 8484 8485 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 8486 // combine should be prevented. 8487 if (C1Cost < ShiftedC1Cost) 8488 return false; 8489 } 8490 } 8491 return true; 8492 } 8493 8494 bool RISCVTargetLowering::targetShrinkDemandedConstant( 8495 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 8496 TargetLoweringOpt &TLO) const { 8497 // Delay this optimization as late as possible. 8498 if (!TLO.LegalOps) 8499 return false; 8500 8501 EVT VT = Op.getValueType(); 8502 if (VT.isVector()) 8503 return false; 8504 8505 // Only handle AND for now. 8506 if (Op.getOpcode() != ISD::AND) 8507 return false; 8508 8509 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8510 if (!C) 8511 return false; 8512 8513 const APInt &Mask = C->getAPIntValue(); 8514 8515 // Clear all non-demanded bits initially. 8516 APInt ShrunkMask = Mask & DemandedBits; 8517 8518 // Try to make a smaller immediate by setting undemanded bits. 8519 8520 APInt ExpandedMask = Mask | ~DemandedBits; 8521 8522 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 8523 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 8524 }; 8525 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 8526 if (NewMask == Mask) 8527 return true; 8528 SDLoc DL(Op); 8529 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 8530 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 8531 return TLO.CombineTo(Op, NewOp); 8532 }; 8533 8534 // If the shrunk mask fits in sign extended 12 bits, let the target 8535 // independent code apply it. 8536 if (ShrunkMask.isSignedIntN(12)) 8537 return false; 8538 8539 // Preserve (and X, 0xffff) when zext.h is supported. 8540 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 8541 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 8542 if (IsLegalMask(NewMask)) 8543 return UseMask(NewMask); 8544 } 8545 8546 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 8547 if (VT == MVT::i64) { 8548 APInt NewMask = APInt(64, 0xffffffff); 8549 if (IsLegalMask(NewMask)) 8550 return UseMask(NewMask); 8551 } 8552 8553 // For the remaining optimizations, we need to be able to make a negative 8554 // number through a combination of mask and undemanded bits. 8555 if (!ExpandedMask.isNegative()) 8556 return false; 8557 8558 // What is the fewest number of bits we need to represent the negative number. 8559 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 8560 8561 // Try to make a 12 bit negative immediate. If that fails try to make a 32 8562 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 8563 APInt NewMask = ShrunkMask; 8564 if (MinSignedBits <= 12) 8565 NewMask.setBitsFrom(11); 8566 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 8567 NewMask.setBitsFrom(31); 8568 else 8569 return false; 8570 8571 // Check that our new mask is a subset of the demanded mask. 8572 assert(IsLegalMask(NewMask)); 8573 return UseMask(NewMask); 8574 } 8575 8576 static void computeGREV(APInt &Src, unsigned ShAmt) { 8577 ShAmt &= Src.getBitWidth() - 1; 8578 uint64_t x = Src.getZExtValue(); 8579 if (ShAmt & 1) 8580 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 8581 if (ShAmt & 2) 8582 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 8583 if (ShAmt & 4) 8584 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 8585 if (ShAmt & 8) 8586 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 8587 if (ShAmt & 16) 8588 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 8589 if (ShAmt & 32) 8590 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 8591 Src = x; 8592 } 8593 8594 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 8595 KnownBits &Known, 8596 const APInt &DemandedElts, 8597 const SelectionDAG &DAG, 8598 unsigned Depth) const { 8599 unsigned BitWidth = Known.getBitWidth(); 8600 unsigned Opc = Op.getOpcode(); 8601 assert((Opc >= ISD::BUILTIN_OP_END || 8602 Opc == ISD::INTRINSIC_WO_CHAIN || 8603 Opc == ISD::INTRINSIC_W_CHAIN || 8604 Opc == ISD::INTRINSIC_VOID) && 8605 "Should use MaskedValueIsZero if you don't know whether Op" 8606 " is a target node!"); 8607 8608 Known.resetAll(); 8609 switch (Opc) { 8610 default: break; 8611 case RISCVISD::SELECT_CC: { 8612 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 8613 // If we don't know any bits, early out. 8614 if (Known.isUnknown()) 8615 break; 8616 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 8617 8618 // Only known if known in both the LHS and RHS. 8619 Known = KnownBits::commonBits(Known, Known2); 8620 break; 8621 } 8622 case RISCVISD::REMUW: { 8623 KnownBits Known2; 8624 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8625 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8626 // We only care about the lower 32 bits. 8627 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 8628 // Restore the original width by sign extending. 8629 Known = Known.sext(BitWidth); 8630 break; 8631 } 8632 case RISCVISD::DIVUW: { 8633 KnownBits Known2; 8634 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8635 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8636 // We only care about the lower 32 bits. 8637 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 8638 // Restore the original width by sign extending. 8639 Known = Known.sext(BitWidth); 8640 break; 8641 } 8642 case RISCVISD::CTZW: { 8643 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8644 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 8645 unsigned LowBits = Log2_32(PossibleTZ) + 1; 8646 Known.Zero.setBitsFrom(LowBits); 8647 break; 8648 } 8649 case RISCVISD::CLZW: { 8650 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8651 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 8652 unsigned LowBits = Log2_32(PossibleLZ) + 1; 8653 Known.Zero.setBitsFrom(LowBits); 8654 break; 8655 } 8656 case RISCVISD::GREV: 8657 case RISCVISD::GREVW: { 8658 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8659 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8660 if (Opc == RISCVISD::GREVW) 8661 Known = Known.trunc(32); 8662 unsigned ShAmt = C->getZExtValue(); 8663 computeGREV(Known.Zero, ShAmt); 8664 computeGREV(Known.One, ShAmt); 8665 if (Opc == RISCVISD::GREVW) 8666 Known = Known.sext(BitWidth); 8667 } 8668 break; 8669 } 8670 case RISCVISD::READ_VLENB: { 8671 // If we know the minimum VLen from Zvl extensions, we can use that to 8672 // determine the trailing zeros of VLENB. 8673 // FIXME: Limit to 128 bit vectors until we have more testing. 8674 unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8; 8675 if (MinVLenB > 0) 8676 Known.Zero.setLowBits(Log2_32(MinVLenB)); 8677 // We assume VLENB is no more than 65536 / 8 bytes. 8678 Known.Zero.setBitsFrom(14); 8679 break; 8680 } 8681 case ISD::INTRINSIC_W_CHAIN: 8682 case ISD::INTRINSIC_WO_CHAIN: { 8683 unsigned IntNo = 8684 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 8685 switch (IntNo) { 8686 default: 8687 // We can't do anything for most intrinsics. 8688 break; 8689 case Intrinsic::riscv_vsetvli: 8690 case Intrinsic::riscv_vsetvlimax: 8691 case Intrinsic::riscv_vsetvli_opt: 8692 case Intrinsic::riscv_vsetvlimax_opt: 8693 // Assume that VL output is positive and would fit in an int32_t. 8694 // TODO: VLEN might be capped at 16 bits in a future V spec update. 8695 if (BitWidth >= 32) 8696 Known.Zero.setBitsFrom(31); 8697 break; 8698 } 8699 break; 8700 } 8701 } 8702 } 8703 8704 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 8705 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 8706 unsigned Depth) const { 8707 switch (Op.getOpcode()) { 8708 default: 8709 break; 8710 case RISCVISD::SELECT_CC: { 8711 unsigned Tmp = 8712 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 8713 if (Tmp == 1) return 1; // Early out. 8714 unsigned Tmp2 = 8715 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 8716 return std::min(Tmp, Tmp2); 8717 } 8718 case RISCVISD::SLLW: 8719 case RISCVISD::SRAW: 8720 case RISCVISD::SRLW: 8721 case RISCVISD::DIVW: 8722 case RISCVISD::DIVUW: 8723 case RISCVISD::REMUW: 8724 case RISCVISD::ROLW: 8725 case RISCVISD::RORW: 8726 case RISCVISD::GREVW: 8727 case RISCVISD::GORCW: 8728 case RISCVISD::FSLW: 8729 case RISCVISD::FSRW: 8730 case RISCVISD::SHFLW: 8731 case RISCVISD::UNSHFLW: 8732 case RISCVISD::BCOMPRESSW: 8733 case RISCVISD::BDECOMPRESSW: 8734 case RISCVISD::BFPW: 8735 case RISCVISD::FCVT_W_RV64: 8736 case RISCVISD::FCVT_WU_RV64: 8737 case RISCVISD::STRICT_FCVT_W_RV64: 8738 case RISCVISD::STRICT_FCVT_WU_RV64: 8739 // TODO: As the result is sign-extended, this is conservatively correct. A 8740 // more precise answer could be calculated for SRAW depending on known 8741 // bits in the shift amount. 8742 return 33; 8743 case RISCVISD::SHFL: 8744 case RISCVISD::UNSHFL: { 8745 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 8746 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 8747 // will stay within the upper 32 bits. If there were more than 32 sign bits 8748 // before there will be at least 33 sign bits after. 8749 if (Op.getValueType() == MVT::i64 && 8750 isa<ConstantSDNode>(Op.getOperand(1)) && 8751 (Op.getConstantOperandVal(1) & 0x10) == 0) { 8752 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 8753 if (Tmp > 32) 8754 return 33; 8755 } 8756 break; 8757 } 8758 case RISCVISD::VMV_X_S: { 8759 // The number of sign bits of the scalar result is computed by obtaining the 8760 // element type of the input vector operand, subtracting its width from the 8761 // XLEN, and then adding one (sign bit within the element type). If the 8762 // element type is wider than XLen, the least-significant XLEN bits are 8763 // taken. 8764 unsigned XLen = Subtarget.getXLen(); 8765 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 8766 if (EltBits <= XLen) 8767 return XLen - EltBits + 1; 8768 break; 8769 } 8770 } 8771 8772 return 1; 8773 } 8774 8775 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 8776 MachineBasicBlock *BB) { 8777 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 8778 8779 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 8780 // Should the count have wrapped while it was being read, we need to try 8781 // again. 8782 // ... 8783 // read: 8784 // rdcycleh x3 # load high word of cycle 8785 // rdcycle x2 # load low word of cycle 8786 // rdcycleh x4 # load high word of cycle 8787 // bne x3, x4, read # check if high word reads match, otherwise try again 8788 // ... 8789 8790 MachineFunction &MF = *BB->getParent(); 8791 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8792 MachineFunction::iterator It = ++BB->getIterator(); 8793 8794 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8795 MF.insert(It, LoopMBB); 8796 8797 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8798 MF.insert(It, DoneMBB); 8799 8800 // Transfer the remainder of BB and its successor edges to DoneMBB. 8801 DoneMBB->splice(DoneMBB->begin(), BB, 8802 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8803 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 8804 8805 BB->addSuccessor(LoopMBB); 8806 8807 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8808 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8809 Register LoReg = MI.getOperand(0).getReg(); 8810 Register HiReg = MI.getOperand(1).getReg(); 8811 DebugLoc DL = MI.getDebugLoc(); 8812 8813 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 8814 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 8815 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8816 .addReg(RISCV::X0); 8817 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 8818 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 8819 .addReg(RISCV::X0); 8820 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 8821 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8822 .addReg(RISCV::X0); 8823 8824 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 8825 .addReg(HiReg) 8826 .addReg(ReadAgainReg) 8827 .addMBB(LoopMBB); 8828 8829 LoopMBB->addSuccessor(LoopMBB); 8830 LoopMBB->addSuccessor(DoneMBB); 8831 8832 MI.eraseFromParent(); 8833 8834 return DoneMBB; 8835 } 8836 8837 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 8838 MachineBasicBlock *BB) { 8839 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 8840 8841 MachineFunction &MF = *BB->getParent(); 8842 DebugLoc DL = MI.getDebugLoc(); 8843 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8844 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8845 Register LoReg = MI.getOperand(0).getReg(); 8846 Register HiReg = MI.getOperand(1).getReg(); 8847 Register SrcReg = MI.getOperand(2).getReg(); 8848 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 8849 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8850 8851 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 8852 RI); 8853 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8854 MachineMemOperand *MMOLo = 8855 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 8856 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8857 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 8858 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 8859 .addFrameIndex(FI) 8860 .addImm(0) 8861 .addMemOperand(MMOLo); 8862 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 8863 .addFrameIndex(FI) 8864 .addImm(4) 8865 .addMemOperand(MMOHi); 8866 MI.eraseFromParent(); // The pseudo instruction is gone now. 8867 return BB; 8868 } 8869 8870 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 8871 MachineBasicBlock *BB) { 8872 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 8873 "Unexpected instruction"); 8874 8875 MachineFunction &MF = *BB->getParent(); 8876 DebugLoc DL = MI.getDebugLoc(); 8877 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8878 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8879 Register DstReg = MI.getOperand(0).getReg(); 8880 Register LoReg = MI.getOperand(1).getReg(); 8881 Register HiReg = MI.getOperand(2).getReg(); 8882 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 8883 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8884 8885 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8886 MachineMemOperand *MMOLo = 8887 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 8888 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8889 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 8890 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8891 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 8892 .addFrameIndex(FI) 8893 .addImm(0) 8894 .addMemOperand(MMOLo); 8895 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8896 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 8897 .addFrameIndex(FI) 8898 .addImm(4) 8899 .addMemOperand(MMOHi); 8900 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 8901 MI.eraseFromParent(); // The pseudo instruction is gone now. 8902 return BB; 8903 } 8904 8905 static bool isSelectPseudo(MachineInstr &MI) { 8906 switch (MI.getOpcode()) { 8907 default: 8908 return false; 8909 case RISCV::Select_GPR_Using_CC_GPR: 8910 case RISCV::Select_FPR16_Using_CC_GPR: 8911 case RISCV::Select_FPR32_Using_CC_GPR: 8912 case RISCV::Select_FPR64_Using_CC_GPR: 8913 return true; 8914 } 8915 } 8916 8917 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 8918 unsigned RelOpcode, unsigned EqOpcode, 8919 const RISCVSubtarget &Subtarget) { 8920 DebugLoc DL = MI.getDebugLoc(); 8921 Register DstReg = MI.getOperand(0).getReg(); 8922 Register Src1Reg = MI.getOperand(1).getReg(); 8923 Register Src2Reg = MI.getOperand(2).getReg(); 8924 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 8925 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 8926 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 8927 8928 // Save the current FFLAGS. 8929 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 8930 8931 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 8932 .addReg(Src1Reg) 8933 .addReg(Src2Reg); 8934 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8935 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 8936 8937 // Restore the FFLAGS. 8938 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 8939 .addReg(SavedFFlags, RegState::Kill); 8940 8941 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 8942 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 8943 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 8944 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 8945 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8946 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 8947 8948 // Erase the pseudoinstruction. 8949 MI.eraseFromParent(); 8950 return BB; 8951 } 8952 8953 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 8954 MachineBasicBlock *BB, 8955 const RISCVSubtarget &Subtarget) { 8956 // To "insert" Select_* instructions, we actually have to insert the triangle 8957 // control-flow pattern. The incoming instructions know the destination vreg 8958 // to set, the condition code register to branch on, the true/false values to 8959 // select between, and the condcode to use to select the appropriate branch. 8960 // 8961 // We produce the following control flow: 8962 // HeadMBB 8963 // | \ 8964 // | IfFalseMBB 8965 // | / 8966 // TailMBB 8967 // 8968 // When we find a sequence of selects we attempt to optimize their emission 8969 // by sharing the control flow. Currently we only handle cases where we have 8970 // multiple selects with the exact same condition (same LHS, RHS and CC). 8971 // The selects may be interleaved with other instructions if the other 8972 // instructions meet some requirements we deem safe: 8973 // - They are debug instructions. Otherwise, 8974 // - They do not have side-effects, do not access memory and their inputs do 8975 // not depend on the results of the select pseudo-instructions. 8976 // The TrueV/FalseV operands of the selects cannot depend on the result of 8977 // previous selects in the sequence. 8978 // These conditions could be further relaxed. See the X86 target for a 8979 // related approach and more information. 8980 Register LHS = MI.getOperand(1).getReg(); 8981 Register RHS = MI.getOperand(2).getReg(); 8982 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 8983 8984 SmallVector<MachineInstr *, 4> SelectDebugValues; 8985 SmallSet<Register, 4> SelectDests; 8986 SelectDests.insert(MI.getOperand(0).getReg()); 8987 8988 MachineInstr *LastSelectPseudo = &MI; 8989 8990 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 8991 SequenceMBBI != E; ++SequenceMBBI) { 8992 if (SequenceMBBI->isDebugInstr()) 8993 continue; 8994 else if (isSelectPseudo(*SequenceMBBI)) { 8995 if (SequenceMBBI->getOperand(1).getReg() != LHS || 8996 SequenceMBBI->getOperand(2).getReg() != RHS || 8997 SequenceMBBI->getOperand(3).getImm() != CC || 8998 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 8999 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 9000 break; 9001 LastSelectPseudo = &*SequenceMBBI; 9002 SequenceMBBI->collectDebugValues(SelectDebugValues); 9003 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 9004 } else { 9005 if (SequenceMBBI->hasUnmodeledSideEffects() || 9006 SequenceMBBI->mayLoadOrStore()) 9007 break; 9008 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 9009 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 9010 })) 9011 break; 9012 } 9013 } 9014 9015 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 9016 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9017 DebugLoc DL = MI.getDebugLoc(); 9018 MachineFunction::iterator I = ++BB->getIterator(); 9019 9020 MachineBasicBlock *HeadMBB = BB; 9021 MachineFunction *F = BB->getParent(); 9022 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 9023 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 9024 9025 F->insert(I, IfFalseMBB); 9026 F->insert(I, TailMBB); 9027 9028 // Transfer debug instructions associated with the selects to TailMBB. 9029 for (MachineInstr *DebugInstr : SelectDebugValues) { 9030 TailMBB->push_back(DebugInstr->removeFromParent()); 9031 } 9032 9033 // Move all instructions after the sequence to TailMBB. 9034 TailMBB->splice(TailMBB->end(), HeadMBB, 9035 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 9036 // Update machine-CFG edges by transferring all successors of the current 9037 // block to the new block which will contain the Phi nodes for the selects. 9038 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 9039 // Set the successors for HeadMBB. 9040 HeadMBB->addSuccessor(IfFalseMBB); 9041 HeadMBB->addSuccessor(TailMBB); 9042 9043 // Insert appropriate branch. 9044 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 9045 .addReg(LHS) 9046 .addReg(RHS) 9047 .addMBB(TailMBB); 9048 9049 // IfFalseMBB just falls through to TailMBB. 9050 IfFalseMBB->addSuccessor(TailMBB); 9051 9052 // Create PHIs for all of the select pseudo-instructions. 9053 auto SelectMBBI = MI.getIterator(); 9054 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 9055 auto InsertionPoint = TailMBB->begin(); 9056 while (SelectMBBI != SelectEnd) { 9057 auto Next = std::next(SelectMBBI); 9058 if (isSelectPseudo(*SelectMBBI)) { 9059 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 9060 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 9061 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 9062 .addReg(SelectMBBI->getOperand(4).getReg()) 9063 .addMBB(HeadMBB) 9064 .addReg(SelectMBBI->getOperand(5).getReg()) 9065 .addMBB(IfFalseMBB); 9066 SelectMBBI->eraseFromParent(); 9067 } 9068 SelectMBBI = Next; 9069 } 9070 9071 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 9072 return TailMBB; 9073 } 9074 9075 MachineBasicBlock * 9076 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9077 MachineBasicBlock *BB) const { 9078 switch (MI.getOpcode()) { 9079 default: 9080 llvm_unreachable("Unexpected instr type to insert"); 9081 case RISCV::ReadCycleWide: 9082 assert(!Subtarget.is64Bit() && 9083 "ReadCycleWrite is only to be used on riscv32"); 9084 return emitReadCycleWidePseudo(MI, BB); 9085 case RISCV::Select_GPR_Using_CC_GPR: 9086 case RISCV::Select_FPR16_Using_CC_GPR: 9087 case RISCV::Select_FPR32_Using_CC_GPR: 9088 case RISCV::Select_FPR64_Using_CC_GPR: 9089 return emitSelectPseudo(MI, BB, Subtarget); 9090 case RISCV::BuildPairF64Pseudo: 9091 return emitBuildPairF64Pseudo(MI, BB); 9092 case RISCV::SplitF64Pseudo: 9093 return emitSplitF64Pseudo(MI, BB); 9094 case RISCV::PseudoQuietFLE_H: 9095 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 9096 case RISCV::PseudoQuietFLT_H: 9097 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 9098 case RISCV::PseudoQuietFLE_S: 9099 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 9100 case RISCV::PseudoQuietFLT_S: 9101 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 9102 case RISCV::PseudoQuietFLE_D: 9103 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 9104 case RISCV::PseudoQuietFLT_D: 9105 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 9106 } 9107 } 9108 9109 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 9110 SDNode *Node) const { 9111 // Add FRM dependency to any instructions with dynamic rounding mode. 9112 unsigned Opc = MI.getOpcode(); 9113 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 9114 if (Idx < 0) 9115 return; 9116 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 9117 return; 9118 // If the instruction already reads FRM, don't add another read. 9119 if (MI.readsRegister(RISCV::FRM)) 9120 return; 9121 MI.addOperand( 9122 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 9123 } 9124 9125 // Calling Convention Implementation. 9126 // The expectations for frontend ABI lowering vary from target to target. 9127 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 9128 // details, but this is a longer term goal. For now, we simply try to keep the 9129 // role of the frontend as simple and well-defined as possible. The rules can 9130 // be summarised as: 9131 // * Never split up large scalar arguments. We handle them here. 9132 // * If a hardfloat calling convention is being used, and the struct may be 9133 // passed in a pair of registers (fp+fp, int+fp), and both registers are 9134 // available, then pass as two separate arguments. If either the GPRs or FPRs 9135 // are exhausted, then pass according to the rule below. 9136 // * If a struct could never be passed in registers or directly in a stack 9137 // slot (as it is larger than 2*XLEN and the floating point rules don't 9138 // apply), then pass it using a pointer with the byval attribute. 9139 // * If a struct is less than 2*XLEN, then coerce to either a two-element 9140 // word-sized array or a 2*XLEN scalar (depending on alignment). 9141 // * The frontend can determine whether a struct is returned by reference or 9142 // not based on its size and fields. If it will be returned by reference, the 9143 // frontend must modify the prototype so a pointer with the sret annotation is 9144 // passed as the first argument. This is not necessary for large scalar 9145 // returns. 9146 // * Struct return values and varargs should be coerced to structs containing 9147 // register-size fields in the same situations they would be for fixed 9148 // arguments. 9149 9150 static const MCPhysReg ArgGPRs[] = { 9151 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 9152 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 9153 }; 9154 static const MCPhysReg ArgFPR16s[] = { 9155 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 9156 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 9157 }; 9158 static const MCPhysReg ArgFPR32s[] = { 9159 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 9160 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 9161 }; 9162 static const MCPhysReg ArgFPR64s[] = { 9163 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 9164 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 9165 }; 9166 // This is an interim calling convention and it may be changed in the future. 9167 static const MCPhysReg ArgVRs[] = { 9168 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 9169 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 9170 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 9171 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 9172 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 9173 RISCV::V20M2, RISCV::V22M2}; 9174 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 9175 RISCV::V20M4}; 9176 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 9177 9178 // Pass a 2*XLEN argument that has been split into two XLEN values through 9179 // registers or the stack as necessary. 9180 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 9181 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 9182 MVT ValVT2, MVT LocVT2, 9183 ISD::ArgFlagsTy ArgFlags2) { 9184 unsigned XLenInBytes = XLen / 8; 9185 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9186 // At least one half can be passed via register. 9187 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 9188 VA1.getLocVT(), CCValAssign::Full)); 9189 } else { 9190 // Both halves must be passed on the stack, with proper alignment. 9191 Align StackAlign = 9192 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 9193 State.addLoc( 9194 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 9195 State.AllocateStack(XLenInBytes, StackAlign), 9196 VA1.getLocVT(), CCValAssign::Full)); 9197 State.addLoc(CCValAssign::getMem( 9198 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9199 LocVT2, CCValAssign::Full)); 9200 return false; 9201 } 9202 9203 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9204 // The second half can also be passed via register. 9205 State.addLoc( 9206 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 9207 } else { 9208 // The second half is passed via the stack, without additional alignment. 9209 State.addLoc(CCValAssign::getMem( 9210 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9211 LocVT2, CCValAssign::Full)); 9212 } 9213 9214 return false; 9215 } 9216 9217 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 9218 Optional<unsigned> FirstMaskArgument, 9219 CCState &State, const RISCVTargetLowering &TLI) { 9220 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 9221 if (RC == &RISCV::VRRegClass) { 9222 // Assign the first mask argument to V0. 9223 // This is an interim calling convention and it may be changed in the 9224 // future. 9225 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 9226 return State.AllocateReg(RISCV::V0); 9227 return State.AllocateReg(ArgVRs); 9228 } 9229 if (RC == &RISCV::VRM2RegClass) 9230 return State.AllocateReg(ArgVRM2s); 9231 if (RC == &RISCV::VRM4RegClass) 9232 return State.AllocateReg(ArgVRM4s); 9233 if (RC == &RISCV::VRM8RegClass) 9234 return State.AllocateReg(ArgVRM8s); 9235 llvm_unreachable("Unhandled register class for ValueType"); 9236 } 9237 9238 // Implements the RISC-V calling convention. Returns true upon failure. 9239 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 9240 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 9241 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 9242 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 9243 Optional<unsigned> FirstMaskArgument) { 9244 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 9245 assert(XLen == 32 || XLen == 64); 9246 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 9247 9248 // Any return value split in to more than two values can't be returned 9249 // directly. Vectors are returned via the available vector registers. 9250 if (!LocVT.isVector() && IsRet && ValNo > 1) 9251 return true; 9252 9253 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 9254 // variadic argument, or if no F16/F32 argument registers are available. 9255 bool UseGPRForF16_F32 = true; 9256 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 9257 // variadic argument, or if no F64 argument registers are available. 9258 bool UseGPRForF64 = true; 9259 9260 switch (ABI) { 9261 default: 9262 llvm_unreachable("Unexpected ABI"); 9263 case RISCVABI::ABI_ILP32: 9264 case RISCVABI::ABI_LP64: 9265 break; 9266 case RISCVABI::ABI_ILP32F: 9267 case RISCVABI::ABI_LP64F: 9268 UseGPRForF16_F32 = !IsFixed; 9269 break; 9270 case RISCVABI::ABI_ILP32D: 9271 case RISCVABI::ABI_LP64D: 9272 UseGPRForF16_F32 = !IsFixed; 9273 UseGPRForF64 = !IsFixed; 9274 break; 9275 } 9276 9277 // FPR16, FPR32, and FPR64 alias each other. 9278 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 9279 UseGPRForF16_F32 = true; 9280 UseGPRForF64 = true; 9281 } 9282 9283 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 9284 // similar local variables rather than directly checking against the target 9285 // ABI. 9286 9287 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 9288 LocVT = XLenVT; 9289 LocInfo = CCValAssign::BCvt; 9290 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 9291 LocVT = MVT::i64; 9292 LocInfo = CCValAssign::BCvt; 9293 } 9294 9295 // If this is a variadic argument, the RISC-V calling convention requires 9296 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 9297 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 9298 // be used regardless of whether the original argument was split during 9299 // legalisation or not. The argument will not be passed by registers if the 9300 // original type is larger than 2*XLEN, so the register alignment rule does 9301 // not apply. 9302 unsigned TwoXLenInBytes = (2 * XLen) / 8; 9303 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 9304 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 9305 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 9306 // Skip 'odd' register if necessary. 9307 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 9308 State.AllocateReg(ArgGPRs); 9309 } 9310 9311 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 9312 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 9313 State.getPendingArgFlags(); 9314 9315 assert(PendingLocs.size() == PendingArgFlags.size() && 9316 "PendingLocs and PendingArgFlags out of sync"); 9317 9318 // Handle passing f64 on RV32D with a soft float ABI or when floating point 9319 // registers are exhausted. 9320 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 9321 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 9322 "Can't lower f64 if it is split"); 9323 // Depending on available argument GPRS, f64 may be passed in a pair of 9324 // GPRs, split between a GPR and the stack, or passed completely on the 9325 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 9326 // cases. 9327 Register Reg = State.AllocateReg(ArgGPRs); 9328 LocVT = MVT::i32; 9329 if (!Reg) { 9330 unsigned StackOffset = State.AllocateStack(8, Align(8)); 9331 State.addLoc( 9332 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9333 return false; 9334 } 9335 if (!State.AllocateReg(ArgGPRs)) 9336 State.AllocateStack(4, Align(4)); 9337 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9338 return false; 9339 } 9340 9341 // Fixed-length vectors are located in the corresponding scalable-vector 9342 // container types. 9343 if (ValVT.isFixedLengthVector()) 9344 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9345 9346 // Split arguments might be passed indirectly, so keep track of the pending 9347 // values. Split vectors are passed via a mix of registers and indirectly, so 9348 // treat them as we would any other argument. 9349 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 9350 LocVT = XLenVT; 9351 LocInfo = CCValAssign::Indirect; 9352 PendingLocs.push_back( 9353 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 9354 PendingArgFlags.push_back(ArgFlags); 9355 if (!ArgFlags.isSplitEnd()) { 9356 return false; 9357 } 9358 } 9359 9360 // If the split argument only had two elements, it should be passed directly 9361 // in registers or on the stack. 9362 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 9363 PendingLocs.size() <= 2) { 9364 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 9365 // Apply the normal calling convention rules to the first half of the 9366 // split argument. 9367 CCValAssign VA = PendingLocs[0]; 9368 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 9369 PendingLocs.clear(); 9370 PendingArgFlags.clear(); 9371 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 9372 ArgFlags); 9373 } 9374 9375 // Allocate to a register if possible, or else a stack slot. 9376 Register Reg; 9377 unsigned StoreSizeBytes = XLen / 8; 9378 Align StackAlign = Align(XLen / 8); 9379 9380 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 9381 Reg = State.AllocateReg(ArgFPR16s); 9382 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 9383 Reg = State.AllocateReg(ArgFPR32s); 9384 else if (ValVT == MVT::f64 && !UseGPRForF64) 9385 Reg = State.AllocateReg(ArgFPR64s); 9386 else if (ValVT.isVector()) { 9387 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 9388 if (!Reg) { 9389 // For return values, the vector must be passed fully via registers or 9390 // via the stack. 9391 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 9392 // but we're using all of them. 9393 if (IsRet) 9394 return true; 9395 // Try using a GPR to pass the address 9396 if ((Reg = State.AllocateReg(ArgGPRs))) { 9397 LocVT = XLenVT; 9398 LocInfo = CCValAssign::Indirect; 9399 } else if (ValVT.isScalableVector()) { 9400 LocVT = XLenVT; 9401 LocInfo = CCValAssign::Indirect; 9402 } else { 9403 // Pass fixed-length vectors on the stack. 9404 LocVT = ValVT; 9405 StoreSizeBytes = ValVT.getStoreSize(); 9406 // Align vectors to their element sizes, being careful for vXi1 9407 // vectors. 9408 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9409 } 9410 } 9411 } else { 9412 Reg = State.AllocateReg(ArgGPRs); 9413 } 9414 9415 unsigned StackOffset = 9416 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 9417 9418 // If we reach this point and PendingLocs is non-empty, we must be at the 9419 // end of a split argument that must be passed indirectly. 9420 if (!PendingLocs.empty()) { 9421 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 9422 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 9423 9424 for (auto &It : PendingLocs) { 9425 if (Reg) 9426 It.convertToReg(Reg); 9427 else 9428 It.convertToMem(StackOffset); 9429 State.addLoc(It); 9430 } 9431 PendingLocs.clear(); 9432 PendingArgFlags.clear(); 9433 return false; 9434 } 9435 9436 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 9437 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 9438 "Expected an XLenVT or vector types at this stage"); 9439 9440 if (Reg) { 9441 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9442 return false; 9443 } 9444 9445 // When a floating-point value is passed on the stack, no bit-conversion is 9446 // needed. 9447 if (ValVT.isFloatingPoint()) { 9448 LocVT = ValVT; 9449 LocInfo = CCValAssign::Full; 9450 } 9451 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9452 return false; 9453 } 9454 9455 template <typename ArgTy> 9456 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 9457 for (const auto &ArgIdx : enumerate(Args)) { 9458 MVT ArgVT = ArgIdx.value().VT; 9459 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 9460 return ArgIdx.index(); 9461 } 9462 return None; 9463 } 9464 9465 void RISCVTargetLowering::analyzeInputArgs( 9466 MachineFunction &MF, CCState &CCInfo, 9467 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 9468 RISCVCCAssignFn Fn) const { 9469 unsigned NumArgs = Ins.size(); 9470 FunctionType *FType = MF.getFunction().getFunctionType(); 9471 9472 Optional<unsigned> FirstMaskArgument; 9473 if (Subtarget.hasVInstructions()) 9474 FirstMaskArgument = preAssignMask(Ins); 9475 9476 for (unsigned i = 0; i != NumArgs; ++i) { 9477 MVT ArgVT = Ins[i].VT; 9478 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 9479 9480 Type *ArgTy = nullptr; 9481 if (IsRet) 9482 ArgTy = FType->getReturnType(); 9483 else if (Ins[i].isOrigArg()) 9484 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 9485 9486 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9487 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9488 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 9489 FirstMaskArgument)) { 9490 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 9491 << EVT(ArgVT).getEVTString() << '\n'); 9492 llvm_unreachable(nullptr); 9493 } 9494 } 9495 } 9496 9497 void RISCVTargetLowering::analyzeOutputArgs( 9498 MachineFunction &MF, CCState &CCInfo, 9499 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 9500 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 9501 unsigned NumArgs = Outs.size(); 9502 9503 Optional<unsigned> FirstMaskArgument; 9504 if (Subtarget.hasVInstructions()) 9505 FirstMaskArgument = preAssignMask(Outs); 9506 9507 for (unsigned i = 0; i != NumArgs; i++) { 9508 MVT ArgVT = Outs[i].VT; 9509 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9510 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 9511 9512 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9513 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9514 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 9515 FirstMaskArgument)) { 9516 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 9517 << EVT(ArgVT).getEVTString() << "\n"); 9518 llvm_unreachable(nullptr); 9519 } 9520 } 9521 } 9522 9523 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 9524 // values. 9525 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 9526 const CCValAssign &VA, const SDLoc &DL, 9527 const RISCVSubtarget &Subtarget) { 9528 switch (VA.getLocInfo()) { 9529 default: 9530 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9531 case CCValAssign::Full: 9532 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 9533 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 9534 break; 9535 case CCValAssign::BCvt: 9536 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9537 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 9538 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9539 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 9540 else 9541 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 9542 break; 9543 } 9544 return Val; 9545 } 9546 9547 // The caller is responsible for loading the full value if the argument is 9548 // passed with CCValAssign::Indirect. 9549 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 9550 const CCValAssign &VA, const SDLoc &DL, 9551 const RISCVTargetLowering &TLI) { 9552 MachineFunction &MF = DAG.getMachineFunction(); 9553 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9554 EVT LocVT = VA.getLocVT(); 9555 SDValue Val; 9556 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 9557 Register VReg = RegInfo.createVirtualRegister(RC); 9558 RegInfo.addLiveIn(VA.getLocReg(), VReg); 9559 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 9560 9561 if (VA.getLocInfo() == CCValAssign::Indirect) 9562 return Val; 9563 9564 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 9565 } 9566 9567 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 9568 const CCValAssign &VA, const SDLoc &DL, 9569 const RISCVSubtarget &Subtarget) { 9570 EVT LocVT = VA.getLocVT(); 9571 9572 switch (VA.getLocInfo()) { 9573 default: 9574 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9575 case CCValAssign::Full: 9576 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 9577 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 9578 break; 9579 case CCValAssign::BCvt: 9580 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9581 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 9582 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9583 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 9584 else 9585 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 9586 break; 9587 } 9588 return Val; 9589 } 9590 9591 // The caller is responsible for loading the full value if the argument is 9592 // passed with CCValAssign::Indirect. 9593 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 9594 const CCValAssign &VA, const SDLoc &DL) { 9595 MachineFunction &MF = DAG.getMachineFunction(); 9596 MachineFrameInfo &MFI = MF.getFrameInfo(); 9597 EVT LocVT = VA.getLocVT(); 9598 EVT ValVT = VA.getValVT(); 9599 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 9600 if (ValVT.isScalableVector()) { 9601 // When the value is a scalable vector, we save the pointer which points to 9602 // the scalable vector value in the stack. The ValVT will be the pointer 9603 // type, instead of the scalable vector type. 9604 ValVT = LocVT; 9605 } 9606 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 9607 /*IsImmutable=*/true); 9608 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 9609 SDValue Val; 9610 9611 ISD::LoadExtType ExtType; 9612 switch (VA.getLocInfo()) { 9613 default: 9614 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9615 case CCValAssign::Full: 9616 case CCValAssign::Indirect: 9617 case CCValAssign::BCvt: 9618 ExtType = ISD::NON_EXTLOAD; 9619 break; 9620 } 9621 Val = DAG.getExtLoad( 9622 ExtType, DL, LocVT, Chain, FIN, 9623 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 9624 return Val; 9625 } 9626 9627 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 9628 const CCValAssign &VA, const SDLoc &DL) { 9629 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 9630 "Unexpected VA"); 9631 MachineFunction &MF = DAG.getMachineFunction(); 9632 MachineFrameInfo &MFI = MF.getFrameInfo(); 9633 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9634 9635 if (VA.isMemLoc()) { 9636 // f64 is passed on the stack. 9637 int FI = 9638 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 9639 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9640 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 9641 MachinePointerInfo::getFixedStack(MF, FI)); 9642 } 9643 9644 assert(VA.isRegLoc() && "Expected register VA assignment"); 9645 9646 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9647 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 9648 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 9649 SDValue Hi; 9650 if (VA.getLocReg() == RISCV::X17) { 9651 // Second half of f64 is passed on the stack. 9652 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 9653 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9654 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 9655 MachinePointerInfo::getFixedStack(MF, FI)); 9656 } else { 9657 // Second half of f64 is passed in another GPR. 9658 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9659 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 9660 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 9661 } 9662 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 9663 } 9664 9665 // FastCC has less than 1% performance improvement for some particular 9666 // benchmark. But theoretically, it may has benenfit for some cases. 9667 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 9668 unsigned ValNo, MVT ValVT, MVT LocVT, 9669 CCValAssign::LocInfo LocInfo, 9670 ISD::ArgFlagsTy ArgFlags, CCState &State, 9671 bool IsFixed, bool IsRet, Type *OrigTy, 9672 const RISCVTargetLowering &TLI, 9673 Optional<unsigned> FirstMaskArgument) { 9674 9675 // X5 and X6 might be used for save-restore libcall. 9676 static const MCPhysReg GPRList[] = { 9677 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 9678 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 9679 RISCV::X29, RISCV::X30, RISCV::X31}; 9680 9681 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9682 if (unsigned Reg = State.AllocateReg(GPRList)) { 9683 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9684 return false; 9685 } 9686 } 9687 9688 if (LocVT == MVT::f16) { 9689 static const MCPhysReg FPR16List[] = { 9690 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 9691 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 9692 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 9693 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 9694 if (unsigned Reg = State.AllocateReg(FPR16List)) { 9695 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9696 return false; 9697 } 9698 } 9699 9700 if (LocVT == MVT::f32) { 9701 static const MCPhysReg FPR32List[] = { 9702 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 9703 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 9704 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 9705 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 9706 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9707 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9708 return false; 9709 } 9710 } 9711 9712 if (LocVT == MVT::f64) { 9713 static const MCPhysReg FPR64List[] = { 9714 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 9715 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 9716 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 9717 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 9718 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9719 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9720 return false; 9721 } 9722 } 9723 9724 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 9725 unsigned Offset4 = State.AllocateStack(4, Align(4)); 9726 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 9727 return false; 9728 } 9729 9730 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 9731 unsigned Offset5 = State.AllocateStack(8, Align(8)); 9732 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 9733 return false; 9734 } 9735 9736 if (LocVT.isVector()) { 9737 if (unsigned Reg = 9738 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 9739 // Fixed-length vectors are located in the corresponding scalable-vector 9740 // container types. 9741 if (ValVT.isFixedLengthVector()) 9742 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9743 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9744 } else { 9745 // Try and pass the address via a "fast" GPR. 9746 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 9747 LocInfo = CCValAssign::Indirect; 9748 LocVT = TLI.getSubtarget().getXLenVT(); 9749 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 9750 } else if (ValVT.isFixedLengthVector()) { 9751 auto StackAlign = 9752 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9753 unsigned StackOffset = 9754 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 9755 State.addLoc( 9756 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9757 } else { 9758 // Can't pass scalable vectors on the stack. 9759 return true; 9760 } 9761 } 9762 9763 return false; 9764 } 9765 9766 return true; // CC didn't match. 9767 } 9768 9769 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 9770 CCValAssign::LocInfo LocInfo, 9771 ISD::ArgFlagsTy ArgFlags, CCState &State) { 9772 9773 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9774 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 9775 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 9776 static const MCPhysReg GPRList[] = { 9777 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 9778 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 9779 if (unsigned Reg = State.AllocateReg(GPRList)) { 9780 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9781 return false; 9782 } 9783 } 9784 9785 if (LocVT == MVT::f32) { 9786 // Pass in STG registers: F1, ..., F6 9787 // fs0 ... fs5 9788 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 9789 RISCV::F18_F, RISCV::F19_F, 9790 RISCV::F20_F, RISCV::F21_F}; 9791 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9792 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9793 return false; 9794 } 9795 } 9796 9797 if (LocVT == MVT::f64) { 9798 // Pass in STG registers: D1, ..., D6 9799 // fs6 ... fs11 9800 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 9801 RISCV::F24_D, RISCV::F25_D, 9802 RISCV::F26_D, RISCV::F27_D}; 9803 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9804 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9805 return false; 9806 } 9807 } 9808 9809 report_fatal_error("No registers left in GHC calling convention"); 9810 return true; 9811 } 9812 9813 // Transform physical registers into virtual registers. 9814 SDValue RISCVTargetLowering::LowerFormalArguments( 9815 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 9816 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 9817 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 9818 9819 MachineFunction &MF = DAG.getMachineFunction(); 9820 9821 switch (CallConv) { 9822 default: 9823 report_fatal_error("Unsupported calling convention"); 9824 case CallingConv::C: 9825 case CallingConv::Fast: 9826 break; 9827 case CallingConv::GHC: 9828 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 9829 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 9830 report_fatal_error( 9831 "GHC calling convention requires the F and D instruction set extensions"); 9832 } 9833 9834 const Function &Func = MF.getFunction(); 9835 if (Func.hasFnAttribute("interrupt")) { 9836 if (!Func.arg_empty()) 9837 report_fatal_error( 9838 "Functions with the interrupt attribute cannot have arguments!"); 9839 9840 StringRef Kind = 9841 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9842 9843 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 9844 report_fatal_error( 9845 "Function interrupt attribute argument not supported!"); 9846 } 9847 9848 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9849 MVT XLenVT = Subtarget.getXLenVT(); 9850 unsigned XLenInBytes = Subtarget.getXLen() / 8; 9851 // Used with vargs to acumulate store chains. 9852 std::vector<SDValue> OutChains; 9853 9854 // Assign locations to all of the incoming arguments. 9855 SmallVector<CCValAssign, 16> ArgLocs; 9856 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9857 9858 if (CallConv == CallingConv::GHC) 9859 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 9860 else 9861 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 9862 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9863 : CC_RISCV); 9864 9865 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 9866 CCValAssign &VA = ArgLocs[i]; 9867 SDValue ArgValue; 9868 // Passing f64 on RV32D with a soft float ABI must be handled as a special 9869 // case. 9870 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 9871 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 9872 else if (VA.isRegLoc()) 9873 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 9874 else 9875 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 9876 9877 if (VA.getLocInfo() == CCValAssign::Indirect) { 9878 // If the original argument was split and passed by reference (e.g. i128 9879 // on RV32), we need to load all parts of it here (using the same 9880 // address). Vectors may be partly split to registers and partly to the 9881 // stack, in which case the base address is partly offset and subsequent 9882 // stores are relative to that. 9883 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 9884 MachinePointerInfo())); 9885 unsigned ArgIndex = Ins[i].OrigArgIndex; 9886 unsigned ArgPartOffset = Ins[i].PartOffset; 9887 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9888 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 9889 CCValAssign &PartVA = ArgLocs[i + 1]; 9890 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 9891 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9892 if (PartVA.getValVT().isScalableVector()) 9893 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9894 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 9895 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 9896 MachinePointerInfo())); 9897 ++i; 9898 } 9899 continue; 9900 } 9901 InVals.push_back(ArgValue); 9902 } 9903 9904 if (IsVarArg) { 9905 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 9906 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 9907 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 9908 MachineFrameInfo &MFI = MF.getFrameInfo(); 9909 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9910 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 9911 9912 // Offset of the first variable argument from stack pointer, and size of 9913 // the vararg save area. For now, the varargs save area is either zero or 9914 // large enough to hold a0-a7. 9915 int VaArgOffset, VarArgsSaveSize; 9916 9917 // If all registers are allocated, then all varargs must be passed on the 9918 // stack and we don't need to save any argregs. 9919 if (ArgRegs.size() == Idx) { 9920 VaArgOffset = CCInfo.getNextStackOffset(); 9921 VarArgsSaveSize = 0; 9922 } else { 9923 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 9924 VaArgOffset = -VarArgsSaveSize; 9925 } 9926 9927 // Record the frame index of the first variable argument 9928 // which is a value necessary to VASTART. 9929 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9930 RVFI->setVarArgsFrameIndex(FI); 9931 9932 // If saving an odd number of registers then create an extra stack slot to 9933 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 9934 // offsets to even-numbered registered remain 2*XLEN-aligned. 9935 if (Idx % 2) { 9936 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 9937 VarArgsSaveSize += XLenInBytes; 9938 } 9939 9940 // Copy the integer registers that may have been used for passing varargs 9941 // to the vararg save area. 9942 for (unsigned I = Idx; I < ArgRegs.size(); 9943 ++I, VaArgOffset += XLenInBytes) { 9944 const Register Reg = RegInfo.createVirtualRegister(RC); 9945 RegInfo.addLiveIn(ArgRegs[I], Reg); 9946 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 9947 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9948 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9949 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 9950 MachinePointerInfo::getFixedStack(MF, FI)); 9951 cast<StoreSDNode>(Store.getNode()) 9952 ->getMemOperand() 9953 ->setValue((Value *)nullptr); 9954 OutChains.push_back(Store); 9955 } 9956 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 9957 } 9958 9959 // All stores are grouped in one node to allow the matching between 9960 // the size of Ins and InVals. This only happens for vararg functions. 9961 if (!OutChains.empty()) { 9962 OutChains.push_back(Chain); 9963 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 9964 } 9965 9966 return Chain; 9967 } 9968 9969 /// isEligibleForTailCallOptimization - Check whether the call is eligible 9970 /// for tail call optimization. 9971 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 9972 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 9973 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 9974 const SmallVector<CCValAssign, 16> &ArgLocs) const { 9975 9976 auto &Callee = CLI.Callee; 9977 auto CalleeCC = CLI.CallConv; 9978 auto &Outs = CLI.Outs; 9979 auto &Caller = MF.getFunction(); 9980 auto CallerCC = Caller.getCallingConv(); 9981 9982 // Exception-handling functions need a special set of instructions to 9983 // indicate a return to the hardware. Tail-calling another function would 9984 // probably break this. 9985 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 9986 // should be expanded as new function attributes are introduced. 9987 if (Caller.hasFnAttribute("interrupt")) 9988 return false; 9989 9990 // Do not tail call opt if the stack is used to pass parameters. 9991 if (CCInfo.getNextStackOffset() != 0) 9992 return false; 9993 9994 // Do not tail call opt if any parameters need to be passed indirectly. 9995 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 9996 // passed indirectly. So the address of the value will be passed in a 9997 // register, or if not available, then the address is put on the stack. In 9998 // order to pass indirectly, space on the stack often needs to be allocated 9999 // in order to store the value. In this case the CCInfo.getNextStackOffset() 10000 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 10001 // are passed CCValAssign::Indirect. 10002 for (auto &VA : ArgLocs) 10003 if (VA.getLocInfo() == CCValAssign::Indirect) 10004 return false; 10005 10006 // Do not tail call opt if either caller or callee uses struct return 10007 // semantics. 10008 auto IsCallerStructRet = Caller.hasStructRetAttr(); 10009 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 10010 if (IsCallerStructRet || IsCalleeStructRet) 10011 return false; 10012 10013 // Externally-defined functions with weak linkage should not be 10014 // tail-called. The behaviour of branch instructions in this situation (as 10015 // used for tail calls) is implementation-defined, so we cannot rely on the 10016 // linker replacing the tail call with a return. 10017 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 10018 const GlobalValue *GV = G->getGlobal(); 10019 if (GV->hasExternalWeakLinkage()) 10020 return false; 10021 } 10022 10023 // The callee has to preserve all registers the caller needs to preserve. 10024 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10025 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 10026 if (CalleeCC != CallerCC) { 10027 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 10028 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 10029 return false; 10030 } 10031 10032 // Byval parameters hand the function a pointer directly into the stack area 10033 // we want to reuse during a tail call. Working around this *is* possible 10034 // but less efficient and uglier in LowerCall. 10035 for (auto &Arg : Outs) 10036 if (Arg.Flags.isByVal()) 10037 return false; 10038 10039 return true; 10040 } 10041 10042 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 10043 return DAG.getDataLayout().getPrefTypeAlign( 10044 VT.getTypeForEVT(*DAG.getContext())); 10045 } 10046 10047 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 10048 // and output parameter nodes. 10049 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 10050 SmallVectorImpl<SDValue> &InVals) const { 10051 SelectionDAG &DAG = CLI.DAG; 10052 SDLoc &DL = CLI.DL; 10053 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 10054 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 10055 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 10056 SDValue Chain = CLI.Chain; 10057 SDValue Callee = CLI.Callee; 10058 bool &IsTailCall = CLI.IsTailCall; 10059 CallingConv::ID CallConv = CLI.CallConv; 10060 bool IsVarArg = CLI.IsVarArg; 10061 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10062 MVT XLenVT = Subtarget.getXLenVT(); 10063 10064 MachineFunction &MF = DAG.getMachineFunction(); 10065 10066 // Analyze the operands of the call, assigning locations to each operand. 10067 SmallVector<CCValAssign, 16> ArgLocs; 10068 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10069 10070 if (CallConv == CallingConv::GHC) 10071 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 10072 else 10073 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 10074 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10075 : CC_RISCV); 10076 10077 // Check if it's really possible to do a tail call. 10078 if (IsTailCall) 10079 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 10080 10081 if (IsTailCall) 10082 ++NumTailCalls; 10083 else if (CLI.CB && CLI.CB->isMustTailCall()) 10084 report_fatal_error("failed to perform tail call elimination on a call " 10085 "site marked musttail"); 10086 10087 // Get a count of how many bytes are to be pushed on the stack. 10088 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 10089 10090 // Create local copies for byval args 10091 SmallVector<SDValue, 8> ByValArgs; 10092 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10093 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10094 if (!Flags.isByVal()) 10095 continue; 10096 10097 SDValue Arg = OutVals[i]; 10098 unsigned Size = Flags.getByValSize(); 10099 Align Alignment = Flags.getNonZeroByValAlign(); 10100 10101 int FI = 10102 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 10103 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10104 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 10105 10106 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 10107 /*IsVolatile=*/false, 10108 /*AlwaysInline=*/false, IsTailCall, 10109 MachinePointerInfo(), MachinePointerInfo()); 10110 ByValArgs.push_back(FIPtr); 10111 } 10112 10113 if (!IsTailCall) 10114 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 10115 10116 // Copy argument values to their designated locations. 10117 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 10118 SmallVector<SDValue, 8> MemOpChains; 10119 SDValue StackPtr; 10120 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 10121 CCValAssign &VA = ArgLocs[i]; 10122 SDValue ArgValue = OutVals[i]; 10123 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10124 10125 // Handle passing f64 on RV32D with a soft float ABI as a special case. 10126 bool IsF64OnRV32DSoftABI = 10127 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 10128 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 10129 SDValue SplitF64 = DAG.getNode( 10130 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 10131 SDValue Lo = SplitF64.getValue(0); 10132 SDValue Hi = SplitF64.getValue(1); 10133 10134 Register RegLo = VA.getLocReg(); 10135 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 10136 10137 if (RegLo == RISCV::X17) { 10138 // Second half of f64 is passed on the stack. 10139 // Work out the address of the stack slot. 10140 if (!StackPtr.getNode()) 10141 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10142 // Emit the store. 10143 MemOpChains.push_back( 10144 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 10145 } else { 10146 // Second half of f64 is passed in another GPR. 10147 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10148 Register RegHigh = RegLo + 1; 10149 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 10150 } 10151 continue; 10152 } 10153 10154 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 10155 // as any other MemLoc. 10156 10157 // Promote the value if needed. 10158 // For now, only handle fully promoted and indirect arguments. 10159 if (VA.getLocInfo() == CCValAssign::Indirect) { 10160 // Store the argument in a stack slot and pass its address. 10161 Align StackAlign = 10162 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 10163 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 10164 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 10165 // If the original argument was split (e.g. i128), we need 10166 // to store the required parts of it here (and pass just one address). 10167 // Vectors may be partly split to registers and partly to the stack, in 10168 // which case the base address is partly offset and subsequent stores are 10169 // relative to that. 10170 unsigned ArgIndex = Outs[i].OrigArgIndex; 10171 unsigned ArgPartOffset = Outs[i].PartOffset; 10172 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10173 // Calculate the total size to store. We don't have access to what we're 10174 // actually storing other than performing the loop and collecting the 10175 // info. 10176 SmallVector<std::pair<SDValue, SDValue>> Parts; 10177 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 10178 SDValue PartValue = OutVals[i + 1]; 10179 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 10180 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10181 EVT PartVT = PartValue.getValueType(); 10182 if (PartVT.isScalableVector()) 10183 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10184 StoredSize += PartVT.getStoreSize(); 10185 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 10186 Parts.push_back(std::make_pair(PartValue, Offset)); 10187 ++i; 10188 } 10189 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 10190 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 10191 MemOpChains.push_back( 10192 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 10193 MachinePointerInfo::getFixedStack(MF, FI))); 10194 for (const auto &Part : Parts) { 10195 SDValue PartValue = Part.first; 10196 SDValue PartOffset = Part.second; 10197 SDValue Address = 10198 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 10199 MemOpChains.push_back( 10200 DAG.getStore(Chain, DL, PartValue, Address, 10201 MachinePointerInfo::getFixedStack(MF, FI))); 10202 } 10203 ArgValue = SpillSlot; 10204 } else { 10205 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 10206 } 10207 10208 // Use local copy if it is a byval arg. 10209 if (Flags.isByVal()) 10210 ArgValue = ByValArgs[j++]; 10211 10212 if (VA.isRegLoc()) { 10213 // Queue up the argument copies and emit them at the end. 10214 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 10215 } else { 10216 assert(VA.isMemLoc() && "Argument not register or memory"); 10217 assert(!IsTailCall && "Tail call not allowed if stack is used " 10218 "for passing parameters"); 10219 10220 // Work out the address of the stack slot. 10221 if (!StackPtr.getNode()) 10222 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10223 SDValue Address = 10224 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 10225 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 10226 10227 // Emit the store. 10228 MemOpChains.push_back( 10229 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 10230 } 10231 } 10232 10233 // Join the stores, which are independent of one another. 10234 if (!MemOpChains.empty()) 10235 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 10236 10237 SDValue Glue; 10238 10239 // Build a sequence of copy-to-reg nodes, chained and glued together. 10240 for (auto &Reg : RegsToPass) { 10241 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 10242 Glue = Chain.getValue(1); 10243 } 10244 10245 // Validate that none of the argument registers have been marked as 10246 // reserved, if so report an error. Do the same for the return address if this 10247 // is not a tailcall. 10248 validateCCReservedRegs(RegsToPass, MF); 10249 if (!IsTailCall && 10250 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 10251 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10252 MF.getFunction(), 10253 "Return address register required, but has been reserved."}); 10254 10255 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 10256 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 10257 // split it and then direct call can be matched by PseudoCALL. 10258 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 10259 const GlobalValue *GV = S->getGlobal(); 10260 10261 unsigned OpFlags = RISCVII::MO_CALL; 10262 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 10263 OpFlags = RISCVII::MO_PLT; 10264 10265 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 10266 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 10267 unsigned OpFlags = RISCVII::MO_CALL; 10268 10269 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 10270 nullptr)) 10271 OpFlags = RISCVII::MO_PLT; 10272 10273 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 10274 } 10275 10276 // The first call operand is the chain and the second is the target address. 10277 SmallVector<SDValue, 8> Ops; 10278 Ops.push_back(Chain); 10279 Ops.push_back(Callee); 10280 10281 // Add argument registers to the end of the list so that they are 10282 // known live into the call. 10283 for (auto &Reg : RegsToPass) 10284 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 10285 10286 if (!IsTailCall) { 10287 // Add a register mask operand representing the call-preserved registers. 10288 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10289 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 10290 assert(Mask && "Missing call preserved mask for calling convention"); 10291 Ops.push_back(DAG.getRegisterMask(Mask)); 10292 } 10293 10294 // Glue the call to the argument copies, if any. 10295 if (Glue.getNode()) 10296 Ops.push_back(Glue); 10297 10298 // Emit the call. 10299 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10300 10301 if (IsTailCall) { 10302 MF.getFrameInfo().setHasTailCall(); 10303 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 10304 } 10305 10306 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 10307 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 10308 Glue = Chain.getValue(1); 10309 10310 // Mark the end of the call, which is glued to the call itself. 10311 Chain = DAG.getCALLSEQ_END(Chain, 10312 DAG.getConstant(NumBytes, DL, PtrVT, true), 10313 DAG.getConstant(0, DL, PtrVT, true), 10314 Glue, DL); 10315 Glue = Chain.getValue(1); 10316 10317 // Assign locations to each value returned by this call. 10318 SmallVector<CCValAssign, 16> RVLocs; 10319 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 10320 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 10321 10322 // Copy all of the result registers out of their specified physreg. 10323 for (auto &VA : RVLocs) { 10324 // Copy the value out 10325 SDValue RetValue = 10326 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 10327 // Glue the RetValue to the end of the call sequence 10328 Chain = RetValue.getValue(1); 10329 Glue = RetValue.getValue(2); 10330 10331 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10332 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 10333 SDValue RetValue2 = 10334 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 10335 Chain = RetValue2.getValue(1); 10336 Glue = RetValue2.getValue(2); 10337 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 10338 RetValue2); 10339 } 10340 10341 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 10342 10343 InVals.push_back(RetValue); 10344 } 10345 10346 return Chain; 10347 } 10348 10349 bool RISCVTargetLowering::CanLowerReturn( 10350 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 10351 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 10352 SmallVector<CCValAssign, 16> RVLocs; 10353 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 10354 10355 Optional<unsigned> FirstMaskArgument; 10356 if (Subtarget.hasVInstructions()) 10357 FirstMaskArgument = preAssignMask(Outs); 10358 10359 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10360 MVT VT = Outs[i].VT; 10361 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10362 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10363 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 10364 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 10365 *this, FirstMaskArgument)) 10366 return false; 10367 } 10368 return true; 10369 } 10370 10371 SDValue 10372 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 10373 bool IsVarArg, 10374 const SmallVectorImpl<ISD::OutputArg> &Outs, 10375 const SmallVectorImpl<SDValue> &OutVals, 10376 const SDLoc &DL, SelectionDAG &DAG) const { 10377 const MachineFunction &MF = DAG.getMachineFunction(); 10378 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10379 10380 // Stores the assignment of the return value to a location. 10381 SmallVector<CCValAssign, 16> RVLocs; 10382 10383 // Info about the registers and stack slot. 10384 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 10385 *DAG.getContext()); 10386 10387 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 10388 nullptr, CC_RISCV); 10389 10390 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 10391 report_fatal_error("GHC functions return void only"); 10392 10393 SDValue Glue; 10394 SmallVector<SDValue, 4> RetOps(1, Chain); 10395 10396 // Copy the result values into the output registers. 10397 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 10398 SDValue Val = OutVals[i]; 10399 CCValAssign &VA = RVLocs[i]; 10400 assert(VA.isRegLoc() && "Can only return in registers!"); 10401 10402 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10403 // Handle returning f64 on RV32D with a soft float ABI. 10404 assert(VA.isRegLoc() && "Expected return via registers"); 10405 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 10406 DAG.getVTList(MVT::i32, MVT::i32), Val); 10407 SDValue Lo = SplitF64.getValue(0); 10408 SDValue Hi = SplitF64.getValue(1); 10409 Register RegLo = VA.getLocReg(); 10410 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10411 Register RegHi = RegLo + 1; 10412 10413 if (STI.isRegisterReservedByUser(RegLo) || 10414 STI.isRegisterReservedByUser(RegHi)) 10415 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10416 MF.getFunction(), 10417 "Return value register required, but has been reserved."}); 10418 10419 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 10420 Glue = Chain.getValue(1); 10421 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 10422 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 10423 Glue = Chain.getValue(1); 10424 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 10425 } else { 10426 // Handle a 'normal' return. 10427 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 10428 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 10429 10430 if (STI.isRegisterReservedByUser(VA.getLocReg())) 10431 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10432 MF.getFunction(), 10433 "Return value register required, but has been reserved."}); 10434 10435 // Guarantee that all emitted copies are stuck together. 10436 Glue = Chain.getValue(1); 10437 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 10438 } 10439 } 10440 10441 RetOps[0] = Chain; // Update chain. 10442 10443 // Add the glue node if we have it. 10444 if (Glue.getNode()) { 10445 RetOps.push_back(Glue); 10446 } 10447 10448 unsigned RetOpc = RISCVISD::RET_FLAG; 10449 // Interrupt service routines use different return instructions. 10450 const Function &Func = DAG.getMachineFunction().getFunction(); 10451 if (Func.hasFnAttribute("interrupt")) { 10452 if (!Func.getReturnType()->isVoidTy()) 10453 report_fatal_error( 10454 "Functions with the interrupt attribute must have void return type!"); 10455 10456 MachineFunction &MF = DAG.getMachineFunction(); 10457 StringRef Kind = 10458 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10459 10460 if (Kind == "user") 10461 RetOpc = RISCVISD::URET_FLAG; 10462 else if (Kind == "supervisor") 10463 RetOpc = RISCVISD::SRET_FLAG; 10464 else 10465 RetOpc = RISCVISD::MRET_FLAG; 10466 } 10467 10468 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 10469 } 10470 10471 void RISCVTargetLowering::validateCCReservedRegs( 10472 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 10473 MachineFunction &MF) const { 10474 const Function &F = MF.getFunction(); 10475 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10476 10477 if (llvm::any_of(Regs, [&STI](auto Reg) { 10478 return STI.isRegisterReservedByUser(Reg.first); 10479 })) 10480 F.getContext().diagnose(DiagnosticInfoUnsupported{ 10481 F, "Argument register required, but has been reserved."}); 10482 } 10483 10484 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 10485 return CI->isTailCall(); 10486 } 10487 10488 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 10489 #define NODE_NAME_CASE(NODE) \ 10490 case RISCVISD::NODE: \ 10491 return "RISCVISD::" #NODE; 10492 // clang-format off 10493 switch ((RISCVISD::NodeType)Opcode) { 10494 case RISCVISD::FIRST_NUMBER: 10495 break; 10496 NODE_NAME_CASE(RET_FLAG) 10497 NODE_NAME_CASE(URET_FLAG) 10498 NODE_NAME_CASE(SRET_FLAG) 10499 NODE_NAME_CASE(MRET_FLAG) 10500 NODE_NAME_CASE(CALL) 10501 NODE_NAME_CASE(SELECT_CC) 10502 NODE_NAME_CASE(BR_CC) 10503 NODE_NAME_CASE(BuildPairF64) 10504 NODE_NAME_CASE(SplitF64) 10505 NODE_NAME_CASE(TAIL) 10506 NODE_NAME_CASE(MULHSU) 10507 NODE_NAME_CASE(SLLW) 10508 NODE_NAME_CASE(SRAW) 10509 NODE_NAME_CASE(SRLW) 10510 NODE_NAME_CASE(DIVW) 10511 NODE_NAME_CASE(DIVUW) 10512 NODE_NAME_CASE(REMUW) 10513 NODE_NAME_CASE(ROLW) 10514 NODE_NAME_CASE(RORW) 10515 NODE_NAME_CASE(CLZW) 10516 NODE_NAME_CASE(CTZW) 10517 NODE_NAME_CASE(FSLW) 10518 NODE_NAME_CASE(FSRW) 10519 NODE_NAME_CASE(FSL) 10520 NODE_NAME_CASE(FSR) 10521 NODE_NAME_CASE(FMV_H_X) 10522 NODE_NAME_CASE(FMV_X_ANYEXTH) 10523 NODE_NAME_CASE(FMV_W_X_RV64) 10524 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 10525 NODE_NAME_CASE(FCVT_X) 10526 NODE_NAME_CASE(FCVT_XU) 10527 NODE_NAME_CASE(FCVT_W_RV64) 10528 NODE_NAME_CASE(FCVT_WU_RV64) 10529 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 10530 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 10531 NODE_NAME_CASE(READ_CYCLE_WIDE) 10532 NODE_NAME_CASE(GREV) 10533 NODE_NAME_CASE(GREVW) 10534 NODE_NAME_CASE(GORC) 10535 NODE_NAME_CASE(GORCW) 10536 NODE_NAME_CASE(SHFL) 10537 NODE_NAME_CASE(SHFLW) 10538 NODE_NAME_CASE(UNSHFL) 10539 NODE_NAME_CASE(UNSHFLW) 10540 NODE_NAME_CASE(BFP) 10541 NODE_NAME_CASE(BFPW) 10542 NODE_NAME_CASE(BCOMPRESS) 10543 NODE_NAME_CASE(BCOMPRESSW) 10544 NODE_NAME_CASE(BDECOMPRESS) 10545 NODE_NAME_CASE(BDECOMPRESSW) 10546 NODE_NAME_CASE(VMV_V_X_VL) 10547 NODE_NAME_CASE(VFMV_V_F_VL) 10548 NODE_NAME_CASE(VMV_X_S) 10549 NODE_NAME_CASE(VMV_S_X_VL) 10550 NODE_NAME_CASE(VFMV_S_F_VL) 10551 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 10552 NODE_NAME_CASE(READ_VLENB) 10553 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 10554 NODE_NAME_CASE(VSLIDEUP_VL) 10555 NODE_NAME_CASE(VSLIDE1UP_VL) 10556 NODE_NAME_CASE(VSLIDEDOWN_VL) 10557 NODE_NAME_CASE(VSLIDE1DOWN_VL) 10558 NODE_NAME_CASE(VID_VL) 10559 NODE_NAME_CASE(VFNCVT_ROD_VL) 10560 NODE_NAME_CASE(VECREDUCE_ADD_VL) 10561 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 10562 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 10563 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 10564 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 10565 NODE_NAME_CASE(VECREDUCE_AND_VL) 10566 NODE_NAME_CASE(VECREDUCE_OR_VL) 10567 NODE_NAME_CASE(VECREDUCE_XOR_VL) 10568 NODE_NAME_CASE(VECREDUCE_FADD_VL) 10569 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 10570 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 10571 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 10572 NODE_NAME_CASE(ADD_VL) 10573 NODE_NAME_CASE(AND_VL) 10574 NODE_NAME_CASE(MUL_VL) 10575 NODE_NAME_CASE(OR_VL) 10576 NODE_NAME_CASE(SDIV_VL) 10577 NODE_NAME_CASE(SHL_VL) 10578 NODE_NAME_CASE(SREM_VL) 10579 NODE_NAME_CASE(SRA_VL) 10580 NODE_NAME_CASE(SRL_VL) 10581 NODE_NAME_CASE(SUB_VL) 10582 NODE_NAME_CASE(UDIV_VL) 10583 NODE_NAME_CASE(UREM_VL) 10584 NODE_NAME_CASE(XOR_VL) 10585 NODE_NAME_CASE(SADDSAT_VL) 10586 NODE_NAME_CASE(UADDSAT_VL) 10587 NODE_NAME_CASE(SSUBSAT_VL) 10588 NODE_NAME_CASE(USUBSAT_VL) 10589 NODE_NAME_CASE(FADD_VL) 10590 NODE_NAME_CASE(FSUB_VL) 10591 NODE_NAME_CASE(FMUL_VL) 10592 NODE_NAME_CASE(FDIV_VL) 10593 NODE_NAME_CASE(FNEG_VL) 10594 NODE_NAME_CASE(FABS_VL) 10595 NODE_NAME_CASE(FSQRT_VL) 10596 NODE_NAME_CASE(FMA_VL) 10597 NODE_NAME_CASE(FCOPYSIGN_VL) 10598 NODE_NAME_CASE(SMIN_VL) 10599 NODE_NAME_CASE(SMAX_VL) 10600 NODE_NAME_CASE(UMIN_VL) 10601 NODE_NAME_CASE(UMAX_VL) 10602 NODE_NAME_CASE(FMINNUM_VL) 10603 NODE_NAME_CASE(FMAXNUM_VL) 10604 NODE_NAME_CASE(MULHS_VL) 10605 NODE_NAME_CASE(MULHU_VL) 10606 NODE_NAME_CASE(FP_TO_SINT_VL) 10607 NODE_NAME_CASE(FP_TO_UINT_VL) 10608 NODE_NAME_CASE(SINT_TO_FP_VL) 10609 NODE_NAME_CASE(UINT_TO_FP_VL) 10610 NODE_NAME_CASE(FP_EXTEND_VL) 10611 NODE_NAME_CASE(FP_ROUND_VL) 10612 NODE_NAME_CASE(VWMUL_VL) 10613 NODE_NAME_CASE(VWMULU_VL) 10614 NODE_NAME_CASE(VWMULSU_VL) 10615 NODE_NAME_CASE(VWADD_VL) 10616 NODE_NAME_CASE(VWADDU_VL) 10617 NODE_NAME_CASE(VWSUB_VL) 10618 NODE_NAME_CASE(VWSUBU_VL) 10619 NODE_NAME_CASE(VWADD_W_VL) 10620 NODE_NAME_CASE(VWADDU_W_VL) 10621 NODE_NAME_CASE(VWSUB_W_VL) 10622 NODE_NAME_CASE(VWSUBU_W_VL) 10623 NODE_NAME_CASE(SETCC_VL) 10624 NODE_NAME_CASE(VSELECT_VL) 10625 NODE_NAME_CASE(VP_MERGE_VL) 10626 NODE_NAME_CASE(VMAND_VL) 10627 NODE_NAME_CASE(VMOR_VL) 10628 NODE_NAME_CASE(VMXOR_VL) 10629 NODE_NAME_CASE(VMCLR_VL) 10630 NODE_NAME_CASE(VMSET_VL) 10631 NODE_NAME_CASE(VRGATHER_VX_VL) 10632 NODE_NAME_CASE(VRGATHER_VV_VL) 10633 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 10634 NODE_NAME_CASE(VSEXT_VL) 10635 NODE_NAME_CASE(VZEXT_VL) 10636 NODE_NAME_CASE(VCPOP_VL) 10637 NODE_NAME_CASE(VLE_VL) 10638 NODE_NAME_CASE(VSE_VL) 10639 NODE_NAME_CASE(READ_CSR) 10640 NODE_NAME_CASE(WRITE_CSR) 10641 NODE_NAME_CASE(SWAP_CSR) 10642 } 10643 // clang-format on 10644 return nullptr; 10645 #undef NODE_NAME_CASE 10646 } 10647 10648 /// getConstraintType - Given a constraint letter, return the type of 10649 /// constraint it is for this target. 10650 RISCVTargetLowering::ConstraintType 10651 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 10652 if (Constraint.size() == 1) { 10653 switch (Constraint[0]) { 10654 default: 10655 break; 10656 case 'f': 10657 return C_RegisterClass; 10658 case 'I': 10659 case 'J': 10660 case 'K': 10661 return C_Immediate; 10662 case 'A': 10663 return C_Memory; 10664 case 'S': // A symbolic address 10665 return C_Other; 10666 } 10667 } else { 10668 if (Constraint == "vr" || Constraint == "vm") 10669 return C_RegisterClass; 10670 } 10671 return TargetLowering::getConstraintType(Constraint); 10672 } 10673 10674 std::pair<unsigned, const TargetRegisterClass *> 10675 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10676 StringRef Constraint, 10677 MVT VT) const { 10678 // First, see if this is a constraint that directly corresponds to a 10679 // RISCV register class. 10680 if (Constraint.size() == 1) { 10681 switch (Constraint[0]) { 10682 case 'r': 10683 // TODO: Support fixed vectors up to XLen for P extension? 10684 if (VT.isVector()) 10685 break; 10686 return std::make_pair(0U, &RISCV::GPRRegClass); 10687 case 'f': 10688 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 10689 return std::make_pair(0U, &RISCV::FPR16RegClass); 10690 if (Subtarget.hasStdExtF() && VT == MVT::f32) 10691 return std::make_pair(0U, &RISCV::FPR32RegClass); 10692 if (Subtarget.hasStdExtD() && VT == MVT::f64) 10693 return std::make_pair(0U, &RISCV::FPR64RegClass); 10694 break; 10695 default: 10696 break; 10697 } 10698 } else if (Constraint == "vr") { 10699 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 10700 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10701 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 10702 return std::make_pair(0U, RC); 10703 } 10704 } else if (Constraint == "vm") { 10705 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 10706 return std::make_pair(0U, &RISCV::VMV0RegClass); 10707 } 10708 10709 // Clang will correctly decode the usage of register name aliases into their 10710 // official names. However, other frontends like `rustc` do not. This allows 10711 // users of these frontends to use the ABI names for registers in LLVM-style 10712 // register constraints. 10713 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 10714 .Case("{zero}", RISCV::X0) 10715 .Case("{ra}", RISCV::X1) 10716 .Case("{sp}", RISCV::X2) 10717 .Case("{gp}", RISCV::X3) 10718 .Case("{tp}", RISCV::X4) 10719 .Case("{t0}", RISCV::X5) 10720 .Case("{t1}", RISCV::X6) 10721 .Case("{t2}", RISCV::X7) 10722 .Cases("{s0}", "{fp}", RISCV::X8) 10723 .Case("{s1}", RISCV::X9) 10724 .Case("{a0}", RISCV::X10) 10725 .Case("{a1}", RISCV::X11) 10726 .Case("{a2}", RISCV::X12) 10727 .Case("{a3}", RISCV::X13) 10728 .Case("{a4}", RISCV::X14) 10729 .Case("{a5}", RISCV::X15) 10730 .Case("{a6}", RISCV::X16) 10731 .Case("{a7}", RISCV::X17) 10732 .Case("{s2}", RISCV::X18) 10733 .Case("{s3}", RISCV::X19) 10734 .Case("{s4}", RISCV::X20) 10735 .Case("{s5}", RISCV::X21) 10736 .Case("{s6}", RISCV::X22) 10737 .Case("{s7}", RISCV::X23) 10738 .Case("{s8}", RISCV::X24) 10739 .Case("{s9}", RISCV::X25) 10740 .Case("{s10}", RISCV::X26) 10741 .Case("{s11}", RISCV::X27) 10742 .Case("{t3}", RISCV::X28) 10743 .Case("{t4}", RISCV::X29) 10744 .Case("{t5}", RISCV::X30) 10745 .Case("{t6}", RISCV::X31) 10746 .Default(RISCV::NoRegister); 10747 if (XRegFromAlias != RISCV::NoRegister) 10748 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 10749 10750 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 10751 // TableGen record rather than the AsmName to choose registers for InlineAsm 10752 // constraints, plus we want to match those names to the widest floating point 10753 // register type available, manually select floating point registers here. 10754 // 10755 // The second case is the ABI name of the register, so that frontends can also 10756 // use the ABI names in register constraint lists. 10757 if (Subtarget.hasStdExtF()) { 10758 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 10759 .Cases("{f0}", "{ft0}", RISCV::F0_F) 10760 .Cases("{f1}", "{ft1}", RISCV::F1_F) 10761 .Cases("{f2}", "{ft2}", RISCV::F2_F) 10762 .Cases("{f3}", "{ft3}", RISCV::F3_F) 10763 .Cases("{f4}", "{ft4}", RISCV::F4_F) 10764 .Cases("{f5}", "{ft5}", RISCV::F5_F) 10765 .Cases("{f6}", "{ft6}", RISCV::F6_F) 10766 .Cases("{f7}", "{ft7}", RISCV::F7_F) 10767 .Cases("{f8}", "{fs0}", RISCV::F8_F) 10768 .Cases("{f9}", "{fs1}", RISCV::F9_F) 10769 .Cases("{f10}", "{fa0}", RISCV::F10_F) 10770 .Cases("{f11}", "{fa1}", RISCV::F11_F) 10771 .Cases("{f12}", "{fa2}", RISCV::F12_F) 10772 .Cases("{f13}", "{fa3}", RISCV::F13_F) 10773 .Cases("{f14}", "{fa4}", RISCV::F14_F) 10774 .Cases("{f15}", "{fa5}", RISCV::F15_F) 10775 .Cases("{f16}", "{fa6}", RISCV::F16_F) 10776 .Cases("{f17}", "{fa7}", RISCV::F17_F) 10777 .Cases("{f18}", "{fs2}", RISCV::F18_F) 10778 .Cases("{f19}", "{fs3}", RISCV::F19_F) 10779 .Cases("{f20}", "{fs4}", RISCV::F20_F) 10780 .Cases("{f21}", "{fs5}", RISCV::F21_F) 10781 .Cases("{f22}", "{fs6}", RISCV::F22_F) 10782 .Cases("{f23}", "{fs7}", RISCV::F23_F) 10783 .Cases("{f24}", "{fs8}", RISCV::F24_F) 10784 .Cases("{f25}", "{fs9}", RISCV::F25_F) 10785 .Cases("{f26}", "{fs10}", RISCV::F26_F) 10786 .Cases("{f27}", "{fs11}", RISCV::F27_F) 10787 .Cases("{f28}", "{ft8}", RISCV::F28_F) 10788 .Cases("{f29}", "{ft9}", RISCV::F29_F) 10789 .Cases("{f30}", "{ft10}", RISCV::F30_F) 10790 .Cases("{f31}", "{ft11}", RISCV::F31_F) 10791 .Default(RISCV::NoRegister); 10792 if (FReg != RISCV::NoRegister) { 10793 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 10794 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 10795 unsigned RegNo = FReg - RISCV::F0_F; 10796 unsigned DReg = RISCV::F0_D + RegNo; 10797 return std::make_pair(DReg, &RISCV::FPR64RegClass); 10798 } 10799 if (VT == MVT::f32 || VT == MVT::Other) 10800 return std::make_pair(FReg, &RISCV::FPR32RegClass); 10801 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 10802 unsigned RegNo = FReg - RISCV::F0_F; 10803 unsigned HReg = RISCV::F0_H + RegNo; 10804 return std::make_pair(HReg, &RISCV::FPR16RegClass); 10805 } 10806 } 10807 } 10808 10809 if (Subtarget.hasVInstructions()) { 10810 Register VReg = StringSwitch<Register>(Constraint.lower()) 10811 .Case("{v0}", RISCV::V0) 10812 .Case("{v1}", RISCV::V1) 10813 .Case("{v2}", RISCV::V2) 10814 .Case("{v3}", RISCV::V3) 10815 .Case("{v4}", RISCV::V4) 10816 .Case("{v5}", RISCV::V5) 10817 .Case("{v6}", RISCV::V6) 10818 .Case("{v7}", RISCV::V7) 10819 .Case("{v8}", RISCV::V8) 10820 .Case("{v9}", RISCV::V9) 10821 .Case("{v10}", RISCV::V10) 10822 .Case("{v11}", RISCV::V11) 10823 .Case("{v12}", RISCV::V12) 10824 .Case("{v13}", RISCV::V13) 10825 .Case("{v14}", RISCV::V14) 10826 .Case("{v15}", RISCV::V15) 10827 .Case("{v16}", RISCV::V16) 10828 .Case("{v17}", RISCV::V17) 10829 .Case("{v18}", RISCV::V18) 10830 .Case("{v19}", RISCV::V19) 10831 .Case("{v20}", RISCV::V20) 10832 .Case("{v21}", RISCV::V21) 10833 .Case("{v22}", RISCV::V22) 10834 .Case("{v23}", RISCV::V23) 10835 .Case("{v24}", RISCV::V24) 10836 .Case("{v25}", RISCV::V25) 10837 .Case("{v26}", RISCV::V26) 10838 .Case("{v27}", RISCV::V27) 10839 .Case("{v28}", RISCV::V28) 10840 .Case("{v29}", RISCV::V29) 10841 .Case("{v30}", RISCV::V30) 10842 .Case("{v31}", RISCV::V31) 10843 .Default(RISCV::NoRegister); 10844 if (VReg != RISCV::NoRegister) { 10845 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 10846 return std::make_pair(VReg, &RISCV::VMRegClass); 10847 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 10848 return std::make_pair(VReg, &RISCV::VRRegClass); 10849 for (const auto *RC : 10850 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10851 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 10852 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 10853 return std::make_pair(VReg, RC); 10854 } 10855 } 10856 } 10857 } 10858 10859 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10860 } 10861 10862 unsigned 10863 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 10864 // Currently only support length 1 constraints. 10865 if (ConstraintCode.size() == 1) { 10866 switch (ConstraintCode[0]) { 10867 case 'A': 10868 return InlineAsm::Constraint_A; 10869 default: 10870 break; 10871 } 10872 } 10873 10874 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 10875 } 10876 10877 void RISCVTargetLowering::LowerAsmOperandForConstraint( 10878 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 10879 SelectionDAG &DAG) const { 10880 // Currently only support length 1 constraints. 10881 if (Constraint.length() == 1) { 10882 switch (Constraint[0]) { 10883 case 'I': 10884 // Validate & create a 12-bit signed immediate operand. 10885 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10886 uint64_t CVal = C->getSExtValue(); 10887 if (isInt<12>(CVal)) 10888 Ops.push_back( 10889 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10890 } 10891 return; 10892 case 'J': 10893 // Validate & create an integer zero operand. 10894 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 10895 if (C->getZExtValue() == 0) 10896 Ops.push_back( 10897 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 10898 return; 10899 case 'K': 10900 // Validate & create a 5-bit unsigned immediate operand. 10901 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10902 uint64_t CVal = C->getZExtValue(); 10903 if (isUInt<5>(CVal)) 10904 Ops.push_back( 10905 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10906 } 10907 return; 10908 case 'S': 10909 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 10910 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 10911 GA->getValueType(0))); 10912 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 10913 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 10914 BA->getValueType(0))); 10915 } 10916 return; 10917 default: 10918 break; 10919 } 10920 } 10921 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10922 } 10923 10924 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 10925 Instruction *Inst, 10926 AtomicOrdering Ord) const { 10927 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 10928 return Builder.CreateFence(Ord); 10929 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 10930 return Builder.CreateFence(AtomicOrdering::Release); 10931 return nullptr; 10932 } 10933 10934 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 10935 Instruction *Inst, 10936 AtomicOrdering Ord) const { 10937 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 10938 return Builder.CreateFence(AtomicOrdering::Acquire); 10939 return nullptr; 10940 } 10941 10942 TargetLowering::AtomicExpansionKind 10943 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 10944 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 10945 // point operations can't be used in an lr/sc sequence without breaking the 10946 // forward-progress guarantee. 10947 if (AI->isFloatingPointOperation()) 10948 return AtomicExpansionKind::CmpXChg; 10949 10950 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 10951 if (Size == 8 || Size == 16) 10952 return AtomicExpansionKind::MaskedIntrinsic; 10953 return AtomicExpansionKind::None; 10954 } 10955 10956 static Intrinsic::ID 10957 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 10958 if (XLen == 32) { 10959 switch (BinOp) { 10960 default: 10961 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10962 case AtomicRMWInst::Xchg: 10963 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 10964 case AtomicRMWInst::Add: 10965 return Intrinsic::riscv_masked_atomicrmw_add_i32; 10966 case AtomicRMWInst::Sub: 10967 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 10968 case AtomicRMWInst::Nand: 10969 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 10970 case AtomicRMWInst::Max: 10971 return Intrinsic::riscv_masked_atomicrmw_max_i32; 10972 case AtomicRMWInst::Min: 10973 return Intrinsic::riscv_masked_atomicrmw_min_i32; 10974 case AtomicRMWInst::UMax: 10975 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 10976 case AtomicRMWInst::UMin: 10977 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 10978 } 10979 } 10980 10981 if (XLen == 64) { 10982 switch (BinOp) { 10983 default: 10984 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10985 case AtomicRMWInst::Xchg: 10986 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 10987 case AtomicRMWInst::Add: 10988 return Intrinsic::riscv_masked_atomicrmw_add_i64; 10989 case AtomicRMWInst::Sub: 10990 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 10991 case AtomicRMWInst::Nand: 10992 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 10993 case AtomicRMWInst::Max: 10994 return Intrinsic::riscv_masked_atomicrmw_max_i64; 10995 case AtomicRMWInst::Min: 10996 return Intrinsic::riscv_masked_atomicrmw_min_i64; 10997 case AtomicRMWInst::UMax: 10998 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 10999 case AtomicRMWInst::UMin: 11000 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 11001 } 11002 } 11003 11004 llvm_unreachable("Unexpected XLen\n"); 11005 } 11006 11007 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 11008 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 11009 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 11010 unsigned XLen = Subtarget.getXLen(); 11011 Value *Ordering = 11012 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 11013 Type *Tys[] = {AlignedAddr->getType()}; 11014 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 11015 AI->getModule(), 11016 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 11017 11018 if (XLen == 64) { 11019 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 11020 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11021 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 11022 } 11023 11024 Value *Result; 11025 11026 // Must pass the shift amount needed to sign extend the loaded value prior 11027 // to performing a signed comparison for min/max. ShiftAmt is the number of 11028 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 11029 // is the number of bits to left+right shift the value in order to 11030 // sign-extend. 11031 if (AI->getOperation() == AtomicRMWInst::Min || 11032 AI->getOperation() == AtomicRMWInst::Max) { 11033 const DataLayout &DL = AI->getModule()->getDataLayout(); 11034 unsigned ValWidth = 11035 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 11036 Value *SextShamt = 11037 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 11038 Result = Builder.CreateCall(LrwOpScwLoop, 11039 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 11040 } else { 11041 Result = 11042 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 11043 } 11044 11045 if (XLen == 64) 11046 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11047 return Result; 11048 } 11049 11050 TargetLowering::AtomicExpansionKind 11051 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 11052 AtomicCmpXchgInst *CI) const { 11053 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 11054 if (Size == 8 || Size == 16) 11055 return AtomicExpansionKind::MaskedIntrinsic; 11056 return AtomicExpansionKind::None; 11057 } 11058 11059 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 11060 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 11061 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 11062 unsigned XLen = Subtarget.getXLen(); 11063 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 11064 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 11065 if (XLen == 64) { 11066 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 11067 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 11068 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11069 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 11070 } 11071 Type *Tys[] = {AlignedAddr->getType()}; 11072 Function *MaskedCmpXchg = 11073 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 11074 Value *Result = Builder.CreateCall( 11075 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 11076 if (XLen == 64) 11077 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11078 return Result; 11079 } 11080 11081 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 11082 return false; 11083 } 11084 11085 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 11086 EVT VT) const { 11087 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 11088 return false; 11089 11090 switch (FPVT.getSimpleVT().SimpleTy) { 11091 case MVT::f16: 11092 return Subtarget.hasStdExtZfh(); 11093 case MVT::f32: 11094 return Subtarget.hasStdExtF(); 11095 case MVT::f64: 11096 return Subtarget.hasStdExtD(); 11097 default: 11098 return false; 11099 } 11100 } 11101 11102 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 11103 // If we are using the small code model, we can reduce size of jump table 11104 // entry to 4 bytes. 11105 if (Subtarget.is64Bit() && !isPositionIndependent() && 11106 getTargetMachine().getCodeModel() == CodeModel::Small) { 11107 return MachineJumpTableInfo::EK_Custom32; 11108 } 11109 return TargetLowering::getJumpTableEncoding(); 11110 } 11111 11112 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 11113 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 11114 unsigned uid, MCContext &Ctx) const { 11115 assert(Subtarget.is64Bit() && !isPositionIndependent() && 11116 getTargetMachine().getCodeModel() == CodeModel::Small); 11117 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 11118 } 11119 11120 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 11121 EVT VT) const { 11122 VT = VT.getScalarType(); 11123 11124 if (!VT.isSimple()) 11125 return false; 11126 11127 switch (VT.getSimpleVT().SimpleTy) { 11128 case MVT::f16: 11129 return Subtarget.hasStdExtZfh(); 11130 case MVT::f32: 11131 return Subtarget.hasStdExtF(); 11132 case MVT::f64: 11133 return Subtarget.hasStdExtD(); 11134 default: 11135 break; 11136 } 11137 11138 return false; 11139 } 11140 11141 Register RISCVTargetLowering::getExceptionPointerRegister( 11142 const Constant *PersonalityFn) const { 11143 return RISCV::X10; 11144 } 11145 11146 Register RISCVTargetLowering::getExceptionSelectorRegister( 11147 const Constant *PersonalityFn) const { 11148 return RISCV::X11; 11149 } 11150 11151 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 11152 // Return false to suppress the unnecessary extensions if the LibCall 11153 // arguments or return value is f32 type for LP64 ABI. 11154 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 11155 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 11156 return false; 11157 11158 return true; 11159 } 11160 11161 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 11162 if (Subtarget.is64Bit() && Type == MVT::i32) 11163 return true; 11164 11165 return IsSigned; 11166 } 11167 11168 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 11169 SDValue C) const { 11170 // Check integral scalar types. 11171 if (VT.isScalarInteger()) { 11172 // Omit the optimization if the sub target has the M extension and the data 11173 // size exceeds XLen. 11174 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 11175 return false; 11176 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 11177 // Break the MUL to a SLLI and an ADD/SUB. 11178 const APInt &Imm = ConstNode->getAPIntValue(); 11179 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 11180 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 11181 return true; 11182 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 11183 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 11184 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 11185 (Imm - 8).isPowerOf2())) 11186 return true; 11187 // Omit the following optimization if the sub target has the M extension 11188 // and the data size >= XLen. 11189 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 11190 return false; 11191 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 11192 // a pair of LUI/ADDI. 11193 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 11194 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 11195 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 11196 (1 - ImmS).isPowerOf2()) 11197 return true; 11198 } 11199 } 11200 } 11201 11202 return false; 11203 } 11204 11205 bool RISCVTargetLowering::isMulAddWithConstProfitable( 11206 const SDValue &AddNode, const SDValue &ConstNode) const { 11207 // Let the DAGCombiner decide for vectors. 11208 EVT VT = AddNode.getValueType(); 11209 if (VT.isVector()) 11210 return true; 11211 11212 // Let the DAGCombiner decide for larger types. 11213 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 11214 return true; 11215 11216 // It is worse if c1 is simm12 while c1*c2 is not. 11217 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 11218 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 11219 const APInt &C1 = C1Node->getAPIntValue(); 11220 const APInt &C2 = C2Node->getAPIntValue(); 11221 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 11222 return false; 11223 11224 // Default to true and let the DAGCombiner decide. 11225 return true; 11226 } 11227 11228 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 11229 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 11230 bool *Fast) const { 11231 if (!VT.isVector()) 11232 return false; 11233 11234 EVT ElemVT = VT.getVectorElementType(); 11235 if (Alignment >= ElemVT.getStoreSize()) { 11236 if (Fast) 11237 *Fast = true; 11238 return true; 11239 } 11240 11241 return false; 11242 } 11243 11244 bool RISCVTargetLowering::splitValueIntoRegisterParts( 11245 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 11246 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 11247 bool IsABIRegCopy = CC.hasValue(); 11248 EVT ValueVT = Val.getValueType(); 11249 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11250 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 11251 // and cast to f32. 11252 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 11253 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 11254 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 11255 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 11256 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 11257 Parts[0] = Val; 11258 return true; 11259 } 11260 11261 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11262 LLVMContext &Context = *DAG.getContext(); 11263 EVT ValueEltVT = ValueVT.getVectorElementType(); 11264 EVT PartEltVT = PartVT.getVectorElementType(); 11265 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11266 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11267 if (PartVTBitSize % ValueVTBitSize == 0) { 11268 assert(PartVTBitSize >= ValueVTBitSize); 11269 // If the element types are different, bitcast to the same element type of 11270 // PartVT first. 11271 // Give an example here, we want copy a <vscale x 1 x i8> value to 11272 // <vscale x 4 x i16>. 11273 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 11274 // subvector, then we can bitcast to <vscale x 4 x i16>. 11275 if (ValueEltVT != PartEltVT) { 11276 if (PartVTBitSize > ValueVTBitSize) { 11277 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11278 assert(Count != 0 && "The number of element should not be zero."); 11279 EVT SameEltTypeVT = 11280 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11281 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 11282 DAG.getUNDEF(SameEltTypeVT), Val, 11283 DAG.getVectorIdxConstant(0, DL)); 11284 } 11285 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 11286 } else { 11287 Val = 11288 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 11289 Val, DAG.getVectorIdxConstant(0, DL)); 11290 } 11291 Parts[0] = Val; 11292 return true; 11293 } 11294 } 11295 return false; 11296 } 11297 11298 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 11299 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 11300 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 11301 bool IsABIRegCopy = CC.hasValue(); 11302 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11303 SDValue Val = Parts[0]; 11304 11305 // Cast the f32 to i32, truncate to i16, and cast back to f16. 11306 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 11307 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 11308 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 11309 return Val; 11310 } 11311 11312 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11313 LLVMContext &Context = *DAG.getContext(); 11314 SDValue Val = Parts[0]; 11315 EVT ValueEltVT = ValueVT.getVectorElementType(); 11316 EVT PartEltVT = PartVT.getVectorElementType(); 11317 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11318 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11319 if (PartVTBitSize % ValueVTBitSize == 0) { 11320 assert(PartVTBitSize >= ValueVTBitSize); 11321 EVT SameEltTypeVT = ValueVT; 11322 // If the element types are different, convert it to the same element type 11323 // of PartVT. 11324 // Give an example here, we want copy a <vscale x 1 x i8> value from 11325 // <vscale x 4 x i16>. 11326 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 11327 // then we can extract <vscale x 1 x i8>. 11328 if (ValueEltVT != PartEltVT) { 11329 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11330 assert(Count != 0 && "The number of element should not be zero."); 11331 SameEltTypeVT = 11332 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11333 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 11334 } 11335 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 11336 DAG.getVectorIdxConstant(0, DL)); 11337 return Val; 11338 } 11339 } 11340 return SDValue(); 11341 } 11342 11343 SDValue 11344 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11345 SelectionDAG &DAG, 11346 SmallVectorImpl<SDNode *> &Created) const { 11347 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 11348 if (isIntDivCheap(N->getValueType(0), Attr)) 11349 return SDValue(N, 0); // Lower SDIV as SDIV 11350 11351 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 11352 "Unexpected divisor!"); 11353 11354 // Conditional move is needed, so do the transformation iff Zbt is enabled. 11355 if (!Subtarget.hasStdExtZbt()) 11356 return SDValue(); 11357 11358 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 11359 // Besides, more critical path instructions will be generated when dividing 11360 // by 2. So we keep using the original DAGs for these cases. 11361 unsigned Lg2 = Divisor.countTrailingZeros(); 11362 if (Lg2 == 1 || Lg2 >= 12) 11363 return SDValue(); 11364 11365 // fold (sdiv X, pow2) 11366 EVT VT = N->getValueType(0); 11367 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 11368 return SDValue(); 11369 11370 SDLoc DL(N); 11371 SDValue N0 = N->getOperand(0); 11372 SDValue Zero = DAG.getConstant(0, DL, VT); 11373 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 11374 11375 // Add (N0 < 0) ? Pow2 - 1 : 0; 11376 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 11377 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 11378 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 11379 11380 Created.push_back(Cmp.getNode()); 11381 Created.push_back(Add.getNode()); 11382 Created.push_back(Sel.getNode()); 11383 11384 // Divide by pow2. 11385 SDValue SRA = 11386 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 11387 11388 // If we're dividing by a positive value, we're done. Otherwise, we must 11389 // negate the result. 11390 if (Divisor.isNonNegative()) 11391 return SRA; 11392 11393 Created.push_back(SRA.getNode()); 11394 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 11395 } 11396 11397 #define GET_REGISTER_MATCHER 11398 #include "RISCVGenAsmMatcher.inc" 11399 11400 Register 11401 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 11402 const MachineFunction &MF) const { 11403 Register Reg = MatchRegisterAltName(RegName); 11404 if (Reg == RISCV::NoRegister) 11405 Reg = MatchRegisterName(RegName); 11406 if (Reg == RISCV::NoRegister) 11407 report_fatal_error( 11408 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 11409 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 11410 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 11411 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 11412 StringRef(RegName) + "\".")); 11413 return Reg; 11414 } 11415 11416 namespace llvm { 11417 namespace RISCVVIntrinsicsTable { 11418 11419 #define GET_RISCVVIntrinsicsTable_IMPL 11420 #include "RISCVGenSearchableTables.inc" 11421 11422 } // namespace RISCVVIntrinsicsTable 11423 11424 } // namespace llvm 11425