1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 254 if (Subtarget.is64Bit()) { 255 setOperationAction(ISD::ROTL, MVT::i32, Custom); 256 setOperationAction(ISD::ROTR, MVT::i32, Custom); 257 } 258 } else { 259 setOperationAction(ISD::ROTL, XLenVT, Expand); 260 setOperationAction(ISD::ROTR, XLenVT, Expand); 261 } 262 263 if (Subtarget.hasStdExtZbp()) { 264 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 265 // more combining. 266 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 267 setOperationAction(ISD::BSWAP, XLenVT, Custom); 268 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 269 // BSWAP i8 doesn't exist. 270 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 271 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 272 273 if (Subtarget.is64Bit()) { 274 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 275 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 276 } 277 } else { 278 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 279 // pattern match it directly in isel. 280 setOperationAction(ISD::BSWAP, XLenVT, 281 Subtarget.hasStdExtZbb() ? Legal : Expand); 282 } 283 284 if (Subtarget.hasStdExtZbb()) { 285 setOperationAction(ISD::SMIN, XLenVT, Legal); 286 setOperationAction(ISD::SMAX, XLenVT, Legal); 287 setOperationAction(ISD::UMIN, XLenVT, Legal); 288 setOperationAction(ISD::UMAX, XLenVT, Legal); 289 290 if (Subtarget.is64Bit()) { 291 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 292 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 294 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 295 } 296 } else { 297 setOperationAction(ISD::CTTZ, XLenVT, Expand); 298 setOperationAction(ISD::CTLZ, XLenVT, Expand); 299 setOperationAction(ISD::CTPOP, XLenVT, Expand); 300 } 301 302 if (Subtarget.hasStdExtZbt()) { 303 setOperationAction(ISD::FSHL, XLenVT, Custom); 304 setOperationAction(ISD::FSHR, XLenVT, Custom); 305 setOperationAction(ISD::SELECT, XLenVT, Legal); 306 307 if (Subtarget.is64Bit()) { 308 setOperationAction(ISD::FSHL, MVT::i32, Custom); 309 setOperationAction(ISD::FSHR, MVT::i32, Custom); 310 } 311 } else { 312 setOperationAction(ISD::SELECT, XLenVT, Custom); 313 } 314 315 static const ISD::CondCode FPCCToExpand[] = { 316 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 317 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 318 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 319 320 static const ISD::NodeType FPOpToExpand[] = { 321 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 322 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 323 324 if (Subtarget.hasStdExtZfh()) 325 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 326 327 if (Subtarget.hasStdExtZfh()) { 328 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 329 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 330 setOperationAction(ISD::LRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 332 setOperationAction(ISD::LROUND, MVT::f16, Legal); 333 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 334 setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal); 335 setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal); 336 setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal); 337 setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal); 338 setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); 339 setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); 340 setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); 341 setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); 342 setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); 343 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 344 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 345 setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); 346 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal); 348 for (auto CC : FPCCToExpand) 349 setCondCodeAction(CC, MVT::f16, Expand); 350 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 351 setOperationAction(ISD::SELECT, MVT::f16, Custom); 352 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 353 354 setOperationAction(ISD::FREM, MVT::f16, Promote); 355 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 356 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 357 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 358 setOperationAction(ISD::FRINT, MVT::f16, Promote); 359 setOperationAction(ISD::FROUND, MVT::f16, Promote); 360 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 361 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 362 setOperationAction(ISD::FPOW, MVT::f16, Promote); 363 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 364 setOperationAction(ISD::FCOS, MVT::f16, Promote); 365 setOperationAction(ISD::FSIN, MVT::f16, Promote); 366 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 367 setOperationAction(ISD::FEXP, MVT::f16, Promote); 368 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 369 setOperationAction(ISD::FLOG, MVT::f16, Promote); 370 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 371 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 372 373 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 374 // complete support for all operations in LegalizeDAG. 375 376 // We need to custom promote this. 377 if (Subtarget.is64Bit()) 378 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 379 } 380 381 if (Subtarget.hasStdExtF()) { 382 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 383 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 384 setOperationAction(ISD::LRINT, MVT::f32, Legal); 385 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 386 setOperationAction(ISD::LROUND, MVT::f32, Legal); 387 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 388 setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal); 389 setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal); 390 setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal); 391 setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal); 392 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 393 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 394 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 395 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 396 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 397 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 398 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 399 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 400 for (auto CC : FPCCToExpand) 401 setCondCodeAction(CC, MVT::f32, Expand); 402 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 403 setOperationAction(ISD::SELECT, MVT::f32, Custom); 404 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 405 for (auto Op : FPOpToExpand) 406 setOperationAction(Op, MVT::f32, Expand); 407 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 408 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 409 } 410 411 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 412 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 413 414 if (Subtarget.hasStdExtD()) { 415 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 416 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 417 setOperationAction(ISD::LRINT, MVT::f64, Legal); 418 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 419 setOperationAction(ISD::LROUND, MVT::f64, Legal); 420 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 421 setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal); 422 setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal); 423 setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal); 424 setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal); 425 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 426 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 427 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 428 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 429 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 430 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 431 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 432 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 433 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 434 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 435 for (auto CC : FPCCToExpand) 436 setCondCodeAction(CC, MVT::f64, Expand); 437 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 438 setOperationAction(ISD::SELECT, MVT::f64, Custom); 439 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 440 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 441 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 442 for (auto Op : FPOpToExpand) 443 setOperationAction(Op, MVT::f64, Expand); 444 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 445 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 446 } 447 448 if (Subtarget.is64Bit()) { 449 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 450 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 451 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 452 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 453 } 454 455 if (Subtarget.hasStdExtF()) { 456 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 457 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 458 459 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 460 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 461 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 462 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 463 464 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 465 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 466 } 467 468 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 469 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 470 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 471 setOperationAction(ISD::JumpTable, XLenVT, Custom); 472 473 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 474 475 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 476 // Unfortunately this can't be determined just from the ISA naming string. 477 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 478 Subtarget.is64Bit() ? Legal : Custom); 479 480 setOperationAction(ISD::TRAP, MVT::Other, Legal); 481 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 482 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 483 if (Subtarget.is64Bit()) 484 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 485 486 if (Subtarget.hasStdExtA()) { 487 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 488 setMinCmpXchgSizeInBits(32); 489 } else { 490 setMaxAtomicSizeInBitsSupported(0); 491 } 492 493 setBooleanContents(ZeroOrOneBooleanContent); 494 495 if (Subtarget.hasVInstructions()) { 496 setBooleanVectorContents(ZeroOrOneBooleanContent); 497 498 setOperationAction(ISD::VSCALE, XLenVT, Custom); 499 500 // RVV intrinsics may have illegal operands. 501 // We also need to custom legalize vmv.x.s. 502 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 503 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 504 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 505 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 506 if (Subtarget.is64Bit()) { 507 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 508 } else { 509 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 510 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 511 } 512 513 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 514 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 515 516 static const unsigned IntegerVPOps[] = { 517 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 518 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 519 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 520 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 521 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 522 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 523 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 524 ISD::VP_SELECT}; 525 526 static const unsigned FloatingPointVPOps[] = { 527 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 528 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 529 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SELECT}; 530 531 if (!Subtarget.is64Bit()) { 532 // We must custom-lower certain vXi64 operations on RV32 due to the vector 533 // element type being illegal. 534 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 535 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 536 537 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 538 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 539 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 540 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 541 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 542 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 543 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 544 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 545 546 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 547 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 548 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 549 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 550 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 551 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 552 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 553 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 554 } 555 556 for (MVT VT : BoolVecVTs) { 557 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 558 559 // Mask VTs are custom-expanded into a series of standard nodes 560 setOperationAction(ISD::TRUNCATE, VT, Custom); 561 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 562 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 563 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 564 565 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 566 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 567 568 setOperationAction(ISD::SELECT, VT, Custom); 569 setOperationAction(ISD::SELECT_CC, VT, Expand); 570 setOperationAction(ISD::VSELECT, VT, Expand); 571 setOperationAction(ISD::VP_SELECT, VT, Expand); 572 573 setOperationAction(ISD::VP_AND, VT, Custom); 574 setOperationAction(ISD::VP_OR, VT, Custom); 575 setOperationAction(ISD::VP_XOR, VT, Custom); 576 577 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 578 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 579 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 580 581 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 582 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 583 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 584 585 // RVV has native int->float & float->int conversions where the 586 // element type sizes are within one power-of-two of each other. Any 587 // wider distances between type sizes have to be lowered as sequences 588 // which progressively narrow the gap in stages. 589 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 590 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 591 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 592 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 593 594 // Expand all extending loads to types larger than this, and truncating 595 // stores from types larger than this. 596 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 597 setTruncStoreAction(OtherVT, VT, Expand); 598 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 599 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 600 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 601 } 602 } 603 604 for (MVT VT : IntVecVTs) { 605 if (VT.getVectorElementType() == MVT::i64 && 606 !Subtarget.hasVInstructionsI64()) 607 continue; 608 609 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 610 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 611 612 // Vectors implement MULHS/MULHU. 613 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 614 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 615 616 setOperationAction(ISD::SMIN, VT, Legal); 617 setOperationAction(ISD::SMAX, VT, Legal); 618 setOperationAction(ISD::UMIN, VT, Legal); 619 setOperationAction(ISD::UMAX, VT, Legal); 620 621 setOperationAction(ISD::ROTL, VT, Expand); 622 setOperationAction(ISD::ROTR, VT, Expand); 623 624 setOperationAction(ISD::CTTZ, VT, Expand); 625 setOperationAction(ISD::CTLZ, VT, Expand); 626 setOperationAction(ISD::CTPOP, VT, Expand); 627 628 setOperationAction(ISD::BSWAP, VT, Expand); 629 630 // Custom-lower extensions and truncations from/to mask types. 631 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 632 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 633 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 634 635 // RVV has native int->float & float->int conversions where the 636 // element type sizes are within one power-of-two of each other. Any 637 // wider distances between type sizes have to be lowered as sequences 638 // which progressively narrow the gap in stages. 639 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 640 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 641 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 642 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 643 644 setOperationAction(ISD::SADDSAT, VT, Legal); 645 setOperationAction(ISD::UADDSAT, VT, Legal); 646 setOperationAction(ISD::SSUBSAT, VT, Legal); 647 setOperationAction(ISD::USUBSAT, VT, Legal); 648 649 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 650 // nodes which truncate by one power of two at a time. 651 setOperationAction(ISD::TRUNCATE, VT, Custom); 652 653 // Custom-lower insert/extract operations to simplify patterns. 654 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 655 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 656 657 // Custom-lower reduction operations to set up the corresponding custom 658 // nodes' operands. 659 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 660 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 661 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 662 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 663 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 664 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 665 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 666 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 667 668 for (unsigned VPOpc : IntegerVPOps) 669 setOperationAction(VPOpc, VT, Custom); 670 671 setOperationAction(ISD::LOAD, VT, Custom); 672 setOperationAction(ISD::STORE, VT, Custom); 673 674 setOperationAction(ISD::MLOAD, VT, Custom); 675 setOperationAction(ISD::MSTORE, VT, Custom); 676 setOperationAction(ISD::MGATHER, VT, Custom); 677 setOperationAction(ISD::MSCATTER, VT, Custom); 678 679 setOperationAction(ISD::VP_LOAD, VT, Custom); 680 setOperationAction(ISD::VP_STORE, VT, Custom); 681 setOperationAction(ISD::VP_GATHER, VT, Custom); 682 setOperationAction(ISD::VP_SCATTER, VT, Custom); 683 684 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 685 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 686 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 687 688 setOperationAction(ISD::SELECT, VT, Custom); 689 setOperationAction(ISD::SELECT_CC, VT, Expand); 690 691 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 692 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 693 694 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 695 setTruncStoreAction(VT, OtherVT, Expand); 696 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 697 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 698 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 699 } 700 701 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 702 // type that can represent the value exactly. 703 if (VT.getVectorElementType() != MVT::i64) { 704 MVT FloatEltVT = 705 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 706 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 707 if (isTypeLegal(FloatVT)) { 708 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 709 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 710 } 711 } 712 } 713 714 // Expand various CCs to best match the RVV ISA, which natively supports UNE 715 // but no other unordered comparisons, and supports all ordered comparisons 716 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 717 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 718 // and we pattern-match those back to the "original", swapping operands once 719 // more. This way we catch both operations and both "vf" and "fv" forms with 720 // fewer patterns. 721 static const ISD::CondCode VFPCCToExpand[] = { 722 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 723 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 724 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 725 }; 726 727 // Sets common operation actions on RVV floating-point vector types. 728 const auto SetCommonVFPActions = [&](MVT VT) { 729 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 730 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 731 // sizes are within one power-of-two of each other. Therefore conversions 732 // between vXf16 and vXf64 must be lowered as sequences which convert via 733 // vXf32. 734 setOperationAction(ISD::FP_ROUND, VT, Custom); 735 setOperationAction(ISD::FP_EXTEND, VT, Custom); 736 // Custom-lower insert/extract operations to simplify patterns. 737 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 738 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 739 // Expand various condition codes (explained above). 740 for (auto CC : VFPCCToExpand) 741 setCondCodeAction(CC, VT, Expand); 742 743 setOperationAction(ISD::FMINNUM, VT, Legal); 744 setOperationAction(ISD::FMAXNUM, VT, Legal); 745 746 setOperationAction(ISD::FTRUNC, VT, Custom); 747 setOperationAction(ISD::FCEIL, VT, Custom); 748 setOperationAction(ISD::FFLOOR, VT, Custom); 749 750 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 751 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 752 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 753 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 754 755 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 756 757 setOperationAction(ISD::LOAD, VT, Custom); 758 setOperationAction(ISD::STORE, VT, Custom); 759 760 setOperationAction(ISD::MLOAD, VT, Custom); 761 setOperationAction(ISD::MSTORE, VT, Custom); 762 setOperationAction(ISD::MGATHER, VT, Custom); 763 setOperationAction(ISD::MSCATTER, VT, Custom); 764 765 setOperationAction(ISD::VP_LOAD, VT, Custom); 766 setOperationAction(ISD::VP_STORE, VT, Custom); 767 setOperationAction(ISD::VP_GATHER, VT, Custom); 768 setOperationAction(ISD::VP_SCATTER, VT, Custom); 769 770 setOperationAction(ISD::SELECT, VT, Custom); 771 setOperationAction(ISD::SELECT_CC, VT, Expand); 772 773 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 774 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 775 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 776 777 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 778 779 for (unsigned VPOpc : FloatingPointVPOps) 780 setOperationAction(VPOpc, VT, Custom); 781 }; 782 783 // Sets common extload/truncstore actions on RVV floating-point vector 784 // types. 785 const auto SetCommonVFPExtLoadTruncStoreActions = 786 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 787 for (auto SmallVT : SmallerVTs) { 788 setTruncStoreAction(VT, SmallVT, Expand); 789 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 790 } 791 }; 792 793 if (Subtarget.hasVInstructionsF16()) 794 for (MVT VT : F16VecVTs) 795 SetCommonVFPActions(VT); 796 797 for (MVT VT : F32VecVTs) { 798 if (Subtarget.hasVInstructionsF32()) 799 SetCommonVFPActions(VT); 800 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 801 } 802 803 for (MVT VT : F64VecVTs) { 804 if (Subtarget.hasVInstructionsF64()) 805 SetCommonVFPActions(VT); 806 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 807 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 808 } 809 810 if (Subtarget.useRVVForFixedLengthVectors()) { 811 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 812 if (!useRVVForFixedLengthVectorVT(VT)) 813 continue; 814 815 // By default everything must be expanded. 816 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 817 setOperationAction(Op, VT, Expand); 818 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 819 setTruncStoreAction(VT, OtherVT, Expand); 820 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 821 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 822 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 823 } 824 825 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 826 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 827 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 828 829 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 830 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 831 832 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 833 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 834 835 setOperationAction(ISD::LOAD, VT, Custom); 836 setOperationAction(ISD::STORE, VT, Custom); 837 838 setOperationAction(ISD::SETCC, VT, Custom); 839 840 setOperationAction(ISD::SELECT, VT, Custom); 841 842 setOperationAction(ISD::TRUNCATE, VT, Custom); 843 844 setOperationAction(ISD::BITCAST, VT, Custom); 845 846 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 847 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 848 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 849 850 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 851 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 852 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 853 854 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 855 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 856 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 857 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 858 859 // Operations below are different for between masks and other vectors. 860 if (VT.getVectorElementType() == MVT::i1) { 861 setOperationAction(ISD::VP_AND, VT, Custom); 862 setOperationAction(ISD::VP_OR, VT, Custom); 863 setOperationAction(ISD::VP_XOR, VT, Custom); 864 setOperationAction(ISD::AND, VT, Custom); 865 setOperationAction(ISD::OR, VT, Custom); 866 setOperationAction(ISD::XOR, VT, Custom); 867 continue; 868 } 869 870 // Use SPLAT_VECTOR to prevent type legalization from destroying the 871 // splats when type legalizing i64 scalar on RV32. 872 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 873 // improvements first. 874 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 875 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 876 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 877 } 878 879 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 880 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 881 882 setOperationAction(ISD::MLOAD, VT, Custom); 883 setOperationAction(ISD::MSTORE, VT, Custom); 884 setOperationAction(ISD::MGATHER, VT, Custom); 885 setOperationAction(ISD::MSCATTER, VT, Custom); 886 887 setOperationAction(ISD::VP_LOAD, VT, Custom); 888 setOperationAction(ISD::VP_STORE, VT, Custom); 889 setOperationAction(ISD::VP_GATHER, VT, Custom); 890 setOperationAction(ISD::VP_SCATTER, VT, Custom); 891 892 setOperationAction(ISD::ADD, VT, Custom); 893 setOperationAction(ISD::MUL, VT, Custom); 894 setOperationAction(ISD::SUB, VT, Custom); 895 setOperationAction(ISD::AND, VT, Custom); 896 setOperationAction(ISD::OR, VT, Custom); 897 setOperationAction(ISD::XOR, VT, Custom); 898 setOperationAction(ISD::SDIV, VT, Custom); 899 setOperationAction(ISD::SREM, VT, Custom); 900 setOperationAction(ISD::UDIV, VT, Custom); 901 setOperationAction(ISD::UREM, VT, Custom); 902 setOperationAction(ISD::SHL, VT, Custom); 903 setOperationAction(ISD::SRA, VT, Custom); 904 setOperationAction(ISD::SRL, VT, Custom); 905 906 setOperationAction(ISD::SMIN, VT, Custom); 907 setOperationAction(ISD::SMAX, VT, Custom); 908 setOperationAction(ISD::UMIN, VT, Custom); 909 setOperationAction(ISD::UMAX, VT, Custom); 910 setOperationAction(ISD::ABS, VT, Custom); 911 912 setOperationAction(ISD::MULHS, VT, Custom); 913 setOperationAction(ISD::MULHU, VT, Custom); 914 915 setOperationAction(ISD::SADDSAT, VT, Custom); 916 setOperationAction(ISD::UADDSAT, VT, Custom); 917 setOperationAction(ISD::SSUBSAT, VT, Custom); 918 setOperationAction(ISD::USUBSAT, VT, Custom); 919 920 setOperationAction(ISD::VSELECT, VT, Custom); 921 setOperationAction(ISD::SELECT_CC, VT, Expand); 922 923 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 924 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 925 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 926 927 // Custom-lower reduction operations to set up the corresponding custom 928 // nodes' operands. 929 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 930 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 931 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 932 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 933 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 934 935 for (unsigned VPOpc : IntegerVPOps) 936 setOperationAction(VPOpc, VT, Custom); 937 938 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 939 // type that can represent the value exactly. 940 if (VT.getVectorElementType() != MVT::i64) { 941 MVT FloatEltVT = 942 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 943 EVT FloatVT = 944 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 945 if (isTypeLegal(FloatVT)) { 946 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 947 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 948 } 949 } 950 } 951 952 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 953 if (!useRVVForFixedLengthVectorVT(VT)) 954 continue; 955 956 // By default everything must be expanded. 957 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 958 setOperationAction(Op, VT, Expand); 959 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 960 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 961 setTruncStoreAction(VT, OtherVT, Expand); 962 } 963 964 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 965 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 966 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 967 968 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 969 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 970 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 971 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 972 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 973 974 setOperationAction(ISD::LOAD, VT, Custom); 975 setOperationAction(ISD::STORE, VT, Custom); 976 setOperationAction(ISD::MLOAD, VT, Custom); 977 setOperationAction(ISD::MSTORE, VT, Custom); 978 setOperationAction(ISD::MGATHER, VT, Custom); 979 setOperationAction(ISD::MSCATTER, VT, Custom); 980 981 setOperationAction(ISD::VP_LOAD, VT, Custom); 982 setOperationAction(ISD::VP_STORE, VT, Custom); 983 setOperationAction(ISD::VP_GATHER, VT, Custom); 984 setOperationAction(ISD::VP_SCATTER, VT, Custom); 985 986 setOperationAction(ISD::FADD, VT, Custom); 987 setOperationAction(ISD::FSUB, VT, Custom); 988 setOperationAction(ISD::FMUL, VT, Custom); 989 setOperationAction(ISD::FDIV, VT, Custom); 990 setOperationAction(ISD::FNEG, VT, Custom); 991 setOperationAction(ISD::FABS, VT, Custom); 992 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 993 setOperationAction(ISD::FSQRT, VT, Custom); 994 setOperationAction(ISD::FMA, VT, Custom); 995 setOperationAction(ISD::FMINNUM, VT, Custom); 996 setOperationAction(ISD::FMAXNUM, VT, Custom); 997 998 setOperationAction(ISD::FP_ROUND, VT, Custom); 999 setOperationAction(ISD::FP_EXTEND, VT, Custom); 1000 1001 setOperationAction(ISD::FTRUNC, VT, Custom); 1002 setOperationAction(ISD::FCEIL, VT, Custom); 1003 setOperationAction(ISD::FFLOOR, VT, Custom); 1004 1005 for (auto CC : VFPCCToExpand) 1006 setCondCodeAction(CC, VT, Expand); 1007 1008 setOperationAction(ISD::VSELECT, VT, Custom); 1009 setOperationAction(ISD::SELECT, VT, Custom); 1010 setOperationAction(ISD::SELECT_CC, VT, Expand); 1011 1012 setOperationAction(ISD::BITCAST, VT, Custom); 1013 1014 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1015 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1016 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1017 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1018 1019 for (unsigned VPOpc : FloatingPointVPOps) 1020 setOperationAction(VPOpc, VT, Custom); 1021 } 1022 1023 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1024 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1025 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1026 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1027 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1028 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1029 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1030 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1031 } 1032 } 1033 1034 // Function alignments. 1035 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1036 setMinFunctionAlignment(FunctionAlignment); 1037 setPrefFunctionAlignment(FunctionAlignment); 1038 1039 setMinimumJumpTableEntries(5); 1040 1041 // Jumps are expensive, compared to logic 1042 setJumpIsExpensive(); 1043 1044 setTargetDAGCombine(ISD::ADD); 1045 setTargetDAGCombine(ISD::SUB); 1046 setTargetDAGCombine(ISD::AND); 1047 setTargetDAGCombine(ISD::OR); 1048 setTargetDAGCombine(ISD::XOR); 1049 setTargetDAGCombine(ISD::ANY_EXTEND); 1050 if (Subtarget.hasStdExtF()) { 1051 setTargetDAGCombine(ISD::ZERO_EXTEND); 1052 setTargetDAGCombine(ISD::FP_TO_SINT); 1053 setTargetDAGCombine(ISD::FP_TO_UINT); 1054 } 1055 if (Subtarget.hasVInstructions()) { 1056 setTargetDAGCombine(ISD::FCOPYSIGN); 1057 setTargetDAGCombine(ISD::MGATHER); 1058 setTargetDAGCombine(ISD::MSCATTER); 1059 setTargetDAGCombine(ISD::VP_GATHER); 1060 setTargetDAGCombine(ISD::VP_SCATTER); 1061 setTargetDAGCombine(ISD::SRA); 1062 setTargetDAGCombine(ISD::SRL); 1063 setTargetDAGCombine(ISD::SHL); 1064 setTargetDAGCombine(ISD::STORE); 1065 } 1066 } 1067 1068 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1069 LLVMContext &Context, 1070 EVT VT) const { 1071 if (!VT.isVector()) 1072 return getPointerTy(DL); 1073 if (Subtarget.hasVInstructions() && 1074 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1075 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1076 return VT.changeVectorElementTypeToInteger(); 1077 } 1078 1079 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1080 return Subtarget.getXLenVT(); 1081 } 1082 1083 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1084 const CallInst &I, 1085 MachineFunction &MF, 1086 unsigned Intrinsic) const { 1087 auto &DL = I.getModule()->getDataLayout(); 1088 switch (Intrinsic) { 1089 default: 1090 return false; 1091 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1092 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1093 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1094 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1095 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1096 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1097 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1098 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1099 case Intrinsic::riscv_masked_cmpxchg_i32: { 1100 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 1101 Info.opc = ISD::INTRINSIC_W_CHAIN; 1102 Info.memVT = MVT::getVT(PtrTy->getElementType()); 1103 Info.ptrVal = I.getArgOperand(0); 1104 Info.offset = 0; 1105 Info.align = Align(4); 1106 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1107 MachineMemOperand::MOVolatile; 1108 return true; 1109 } 1110 case Intrinsic::riscv_masked_strided_load: 1111 Info.opc = ISD::INTRINSIC_W_CHAIN; 1112 Info.ptrVal = I.getArgOperand(1); 1113 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1114 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1115 Info.size = MemoryLocation::UnknownSize; 1116 Info.flags |= MachineMemOperand::MOLoad; 1117 return true; 1118 case Intrinsic::riscv_masked_strided_store: 1119 Info.opc = ISD::INTRINSIC_VOID; 1120 Info.ptrVal = I.getArgOperand(1); 1121 Info.memVT = 1122 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1123 Info.align = Align( 1124 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1125 8); 1126 Info.size = MemoryLocation::UnknownSize; 1127 Info.flags |= MachineMemOperand::MOStore; 1128 return true; 1129 } 1130 } 1131 1132 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1133 const AddrMode &AM, Type *Ty, 1134 unsigned AS, 1135 Instruction *I) const { 1136 // No global is ever allowed as a base. 1137 if (AM.BaseGV) 1138 return false; 1139 1140 // Require a 12-bit signed offset. 1141 if (!isInt<12>(AM.BaseOffs)) 1142 return false; 1143 1144 switch (AM.Scale) { 1145 case 0: // "r+i" or just "i", depending on HasBaseReg. 1146 break; 1147 case 1: 1148 if (!AM.HasBaseReg) // allow "r+i". 1149 break; 1150 return false; // disallow "r+r" or "r+r+i". 1151 default: 1152 return false; 1153 } 1154 1155 return true; 1156 } 1157 1158 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1159 return isInt<12>(Imm); 1160 } 1161 1162 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1163 return isInt<12>(Imm); 1164 } 1165 1166 // On RV32, 64-bit integers are split into their high and low parts and held 1167 // in two different registers, so the trunc is free since the low register can 1168 // just be used. 1169 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1170 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1171 return false; 1172 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1173 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1174 return (SrcBits == 64 && DestBits == 32); 1175 } 1176 1177 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1178 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1179 !SrcVT.isInteger() || !DstVT.isInteger()) 1180 return false; 1181 unsigned SrcBits = SrcVT.getSizeInBits(); 1182 unsigned DestBits = DstVT.getSizeInBits(); 1183 return (SrcBits == 64 && DestBits == 32); 1184 } 1185 1186 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1187 // Zexts are free if they can be combined with a load. 1188 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1189 // poorly with type legalization of compares preferring sext. 1190 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1191 EVT MemVT = LD->getMemoryVT(); 1192 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1193 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1194 LD->getExtensionType() == ISD::ZEXTLOAD)) 1195 return true; 1196 } 1197 1198 return TargetLowering::isZExtFree(Val, VT2); 1199 } 1200 1201 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1202 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1203 } 1204 1205 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1206 return Subtarget.hasStdExtZbb(); 1207 } 1208 1209 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1210 return Subtarget.hasStdExtZbb(); 1211 } 1212 1213 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1214 EVT VT = Y.getValueType(); 1215 1216 // FIXME: Support vectors once we have tests. 1217 if (VT.isVector()) 1218 return false; 1219 1220 return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y); 1221 } 1222 1223 /// Check if sinking \p I's operands to I's basic block is profitable, because 1224 /// the operands can be folded into a target instruction, e.g. 1225 /// splats of scalars can fold into vector instructions. 1226 bool RISCVTargetLowering::shouldSinkOperands( 1227 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1228 using namespace llvm::PatternMatch; 1229 1230 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1231 return false; 1232 1233 auto IsSinker = [&](Instruction *I, int Operand) { 1234 switch (I->getOpcode()) { 1235 case Instruction::Add: 1236 case Instruction::Sub: 1237 case Instruction::Mul: 1238 case Instruction::And: 1239 case Instruction::Or: 1240 case Instruction::Xor: 1241 case Instruction::FAdd: 1242 case Instruction::FSub: 1243 case Instruction::FMul: 1244 case Instruction::FDiv: 1245 case Instruction::ICmp: 1246 case Instruction::FCmp: 1247 return true; 1248 case Instruction::Shl: 1249 case Instruction::LShr: 1250 case Instruction::AShr: 1251 case Instruction::UDiv: 1252 case Instruction::SDiv: 1253 case Instruction::URem: 1254 case Instruction::SRem: 1255 return Operand == 1; 1256 case Instruction::Call: 1257 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1258 switch (II->getIntrinsicID()) { 1259 case Intrinsic::fma: 1260 return Operand == 0 || Operand == 1; 1261 default: 1262 return false; 1263 } 1264 } 1265 return false; 1266 default: 1267 return false; 1268 } 1269 }; 1270 1271 for (auto OpIdx : enumerate(I->operands())) { 1272 if (!IsSinker(I, OpIdx.index())) 1273 continue; 1274 1275 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1276 // Make sure we are not already sinking this operand 1277 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1278 continue; 1279 1280 // We are looking for a splat that can be sunk. 1281 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1282 m_Undef(), m_ZeroMask()))) 1283 continue; 1284 1285 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1286 // and vector registers 1287 for (Use &U : Op->uses()) { 1288 Instruction *Insn = cast<Instruction>(U.getUser()); 1289 if (!IsSinker(Insn, U.getOperandNo())) 1290 return false; 1291 } 1292 1293 Ops.push_back(&Op->getOperandUse(0)); 1294 Ops.push_back(&OpIdx.value()); 1295 } 1296 return true; 1297 } 1298 1299 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1300 bool ForCodeSize) const { 1301 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1302 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1303 return false; 1304 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1305 return false; 1306 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1307 return false; 1308 if (Imm.isNegZero()) 1309 return false; 1310 return Imm.isZero(); 1311 } 1312 1313 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1314 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1315 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1316 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1317 } 1318 1319 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1320 CallingConv::ID CC, 1321 EVT VT) const { 1322 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1323 // We might still end up using a GPR but that will be decided based on ABI. 1324 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1325 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1326 return MVT::f32; 1327 1328 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1329 } 1330 1331 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1332 CallingConv::ID CC, 1333 EVT VT) const { 1334 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1335 // We might still end up using a GPR but that will be decided based on ABI. 1336 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1337 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1338 return 1; 1339 1340 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1341 } 1342 1343 // Changes the condition code and swaps operands if necessary, so the SetCC 1344 // operation matches one of the comparisons supported directly by branches 1345 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1346 // with 1/-1. 1347 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1348 ISD::CondCode &CC, SelectionDAG &DAG) { 1349 // Convert X > -1 to X >= 0. 1350 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1351 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1352 CC = ISD::SETGE; 1353 return; 1354 } 1355 // Convert X < 1 to 0 >= X. 1356 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1357 RHS = LHS; 1358 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1359 CC = ISD::SETGE; 1360 return; 1361 } 1362 1363 switch (CC) { 1364 default: 1365 break; 1366 case ISD::SETGT: 1367 case ISD::SETLE: 1368 case ISD::SETUGT: 1369 case ISD::SETULE: 1370 CC = ISD::getSetCCSwappedOperands(CC); 1371 std::swap(LHS, RHS); 1372 break; 1373 } 1374 } 1375 1376 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1377 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1378 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1379 if (VT.getVectorElementType() == MVT::i1) 1380 KnownSize *= 8; 1381 1382 switch (KnownSize) { 1383 default: 1384 llvm_unreachable("Invalid LMUL."); 1385 case 8: 1386 return RISCVII::VLMUL::LMUL_F8; 1387 case 16: 1388 return RISCVII::VLMUL::LMUL_F4; 1389 case 32: 1390 return RISCVII::VLMUL::LMUL_F2; 1391 case 64: 1392 return RISCVII::VLMUL::LMUL_1; 1393 case 128: 1394 return RISCVII::VLMUL::LMUL_2; 1395 case 256: 1396 return RISCVII::VLMUL::LMUL_4; 1397 case 512: 1398 return RISCVII::VLMUL::LMUL_8; 1399 } 1400 } 1401 1402 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1403 switch (LMul) { 1404 default: 1405 llvm_unreachable("Invalid LMUL."); 1406 case RISCVII::VLMUL::LMUL_F8: 1407 case RISCVII::VLMUL::LMUL_F4: 1408 case RISCVII::VLMUL::LMUL_F2: 1409 case RISCVII::VLMUL::LMUL_1: 1410 return RISCV::VRRegClassID; 1411 case RISCVII::VLMUL::LMUL_2: 1412 return RISCV::VRM2RegClassID; 1413 case RISCVII::VLMUL::LMUL_4: 1414 return RISCV::VRM4RegClassID; 1415 case RISCVII::VLMUL::LMUL_8: 1416 return RISCV::VRM8RegClassID; 1417 } 1418 } 1419 1420 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1421 RISCVII::VLMUL LMUL = getLMUL(VT); 1422 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1423 LMUL == RISCVII::VLMUL::LMUL_F4 || 1424 LMUL == RISCVII::VLMUL::LMUL_F2 || 1425 LMUL == RISCVII::VLMUL::LMUL_1) { 1426 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1427 "Unexpected subreg numbering"); 1428 return RISCV::sub_vrm1_0 + Index; 1429 } 1430 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1431 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1432 "Unexpected subreg numbering"); 1433 return RISCV::sub_vrm2_0 + Index; 1434 } 1435 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1436 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1437 "Unexpected subreg numbering"); 1438 return RISCV::sub_vrm4_0 + Index; 1439 } 1440 llvm_unreachable("Invalid vector type."); 1441 } 1442 1443 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1444 if (VT.getVectorElementType() == MVT::i1) 1445 return RISCV::VRRegClassID; 1446 return getRegClassIDForLMUL(getLMUL(VT)); 1447 } 1448 1449 // Attempt to decompose a subvector insert/extract between VecVT and 1450 // SubVecVT via subregister indices. Returns the subregister index that 1451 // can perform the subvector insert/extract with the given element index, as 1452 // well as the index corresponding to any leftover subvectors that must be 1453 // further inserted/extracted within the register class for SubVecVT. 1454 std::pair<unsigned, unsigned> 1455 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1456 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1457 const RISCVRegisterInfo *TRI) { 1458 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1459 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1460 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1461 "Register classes not ordered"); 1462 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1463 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1464 // Try to compose a subregister index that takes us from the incoming 1465 // LMUL>1 register class down to the outgoing one. At each step we half 1466 // the LMUL: 1467 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1468 // Note that this is not guaranteed to find a subregister index, such as 1469 // when we are extracting from one VR type to another. 1470 unsigned SubRegIdx = RISCV::NoSubRegister; 1471 for (const unsigned RCID : 1472 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1473 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1474 VecVT = VecVT.getHalfNumVectorElementsVT(); 1475 bool IsHi = 1476 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1477 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1478 getSubregIndexByMVT(VecVT, IsHi)); 1479 if (IsHi) 1480 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1481 } 1482 return {SubRegIdx, InsertExtractIdx}; 1483 } 1484 1485 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1486 // stores for those types. 1487 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1488 return !Subtarget.useRVVForFixedLengthVectors() || 1489 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1490 } 1491 1492 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1493 if (ScalarTy->isPointerTy()) 1494 return true; 1495 1496 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1497 ScalarTy->isIntegerTy(32)) 1498 return true; 1499 1500 if (ScalarTy->isIntegerTy(64)) 1501 return Subtarget.hasVInstructionsI64(); 1502 1503 if (ScalarTy->isHalfTy()) 1504 return Subtarget.hasVInstructionsF16(); 1505 if (ScalarTy->isFloatTy()) 1506 return Subtarget.hasVInstructionsF32(); 1507 if (ScalarTy->isDoubleTy()) 1508 return Subtarget.hasVInstructionsF64(); 1509 1510 return false; 1511 } 1512 1513 static bool useRVVForFixedLengthVectorVT(MVT VT, 1514 const RISCVSubtarget &Subtarget) { 1515 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1516 if (!Subtarget.useRVVForFixedLengthVectors()) 1517 return false; 1518 1519 // We only support a set of vector types with a consistent maximum fixed size 1520 // across all supported vector element types to avoid legalization issues. 1521 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1522 // fixed-length vector type we support is 1024 bytes. 1523 if (VT.getFixedSizeInBits() > 1024 * 8) 1524 return false; 1525 1526 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1527 1528 MVT EltVT = VT.getVectorElementType(); 1529 1530 // Don't use RVV for vectors we cannot scalarize if required. 1531 switch (EltVT.SimpleTy) { 1532 // i1 is supported but has different rules. 1533 default: 1534 return false; 1535 case MVT::i1: 1536 // Masks can only use a single register. 1537 if (VT.getVectorNumElements() > MinVLen) 1538 return false; 1539 MinVLen /= 8; 1540 break; 1541 case MVT::i8: 1542 case MVT::i16: 1543 case MVT::i32: 1544 break; 1545 case MVT::i64: 1546 if (!Subtarget.hasVInstructionsI64()) 1547 return false; 1548 break; 1549 case MVT::f16: 1550 if (!Subtarget.hasVInstructionsF16()) 1551 return false; 1552 break; 1553 case MVT::f32: 1554 if (!Subtarget.hasVInstructionsF32()) 1555 return false; 1556 break; 1557 case MVT::f64: 1558 if (!Subtarget.hasVInstructionsF64()) 1559 return false; 1560 break; 1561 } 1562 1563 // Reject elements larger than ELEN. 1564 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1565 return false; 1566 1567 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1568 // Don't use RVV for types that don't fit. 1569 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1570 return false; 1571 1572 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1573 // the base fixed length RVV support in place. 1574 if (!VT.isPow2VectorType()) 1575 return false; 1576 1577 return true; 1578 } 1579 1580 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1581 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1582 } 1583 1584 // Return the largest legal scalable vector type that matches VT's element type. 1585 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1586 const RISCVSubtarget &Subtarget) { 1587 // This may be called before legal types are setup. 1588 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1589 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1590 "Expected legal fixed length vector!"); 1591 1592 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1593 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1594 1595 MVT EltVT = VT.getVectorElementType(); 1596 switch (EltVT.SimpleTy) { 1597 default: 1598 llvm_unreachable("unexpected element type for RVV container"); 1599 case MVT::i1: 1600 case MVT::i8: 1601 case MVT::i16: 1602 case MVT::i32: 1603 case MVT::i64: 1604 case MVT::f16: 1605 case MVT::f32: 1606 case MVT::f64: { 1607 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1608 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1609 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1610 unsigned NumElts = 1611 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1612 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1613 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1614 return MVT::getScalableVectorVT(EltVT, NumElts); 1615 } 1616 } 1617 } 1618 1619 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1620 const RISCVSubtarget &Subtarget) { 1621 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1622 Subtarget); 1623 } 1624 1625 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1626 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1627 } 1628 1629 // Grow V to consume an entire RVV register. 1630 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1631 const RISCVSubtarget &Subtarget) { 1632 assert(VT.isScalableVector() && 1633 "Expected to convert into a scalable vector!"); 1634 assert(V.getValueType().isFixedLengthVector() && 1635 "Expected a fixed length vector operand!"); 1636 SDLoc DL(V); 1637 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1638 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1639 } 1640 1641 // Shrink V so it's just big enough to maintain a VT's worth of data. 1642 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1643 const RISCVSubtarget &Subtarget) { 1644 assert(VT.isFixedLengthVector() && 1645 "Expected to convert into a fixed length vector!"); 1646 assert(V.getValueType().isScalableVector() && 1647 "Expected a scalable vector operand!"); 1648 SDLoc DL(V); 1649 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1650 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1651 } 1652 1653 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1654 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1655 // the vector type that it is contained in. 1656 static std::pair<SDValue, SDValue> 1657 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1658 const RISCVSubtarget &Subtarget) { 1659 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1660 MVT XLenVT = Subtarget.getXLenVT(); 1661 SDValue VL = VecVT.isFixedLengthVector() 1662 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1663 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1664 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1665 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1666 return {Mask, VL}; 1667 } 1668 1669 // As above but assuming the given type is a scalable vector type. 1670 static std::pair<SDValue, SDValue> 1671 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1672 const RISCVSubtarget &Subtarget) { 1673 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1674 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1675 } 1676 1677 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1678 // of either is (currently) supported. This can get us into an infinite loop 1679 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1680 // as a ..., etc. 1681 // Until either (or both) of these can reliably lower any node, reporting that 1682 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1683 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1684 // which is not desirable. 1685 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1686 EVT VT, unsigned DefinedValues) const { 1687 return false; 1688 } 1689 1690 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1691 // Only splats are currently supported. 1692 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1693 return true; 1694 1695 return false; 1696 } 1697 1698 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1699 const RISCVSubtarget &Subtarget) { 1700 // RISCV FP-to-int conversions saturate to the destination register size, but 1701 // don't produce 0 for nan. We can use a conversion instruction and fix the 1702 // nan case with a compare and a select. 1703 SDValue Src = Op.getOperand(0); 1704 1705 EVT DstVT = Op.getValueType(); 1706 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1707 1708 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1709 unsigned Opc; 1710 if (SatVT == DstVT) 1711 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1712 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1713 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1714 else 1715 return SDValue(); 1716 // FIXME: Support other SatVTs by clamping before or after the conversion. 1717 1718 SDLoc DL(Op); 1719 SDValue FpToInt = DAG.getNode( 1720 Opc, DL, DstVT, Src, 1721 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1722 1723 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1724 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1725 } 1726 1727 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1728 // and back. Taking care to avoid converting values that are nan or already 1729 // correct. 1730 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1731 // have FRM dependencies modeled yet. 1732 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1733 MVT VT = Op.getSimpleValueType(); 1734 assert(VT.isVector() && "Unexpected type"); 1735 1736 SDLoc DL(Op); 1737 1738 // Freeze the source since we are increasing the number of uses. 1739 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1740 1741 // Truncate to integer and convert back to FP. 1742 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1743 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1744 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1745 1746 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1747 1748 if (Op.getOpcode() == ISD::FCEIL) { 1749 // If the truncated value is the greater than or equal to the original 1750 // value, we've computed the ceil. Otherwise, we went the wrong way and 1751 // need to increase by 1. 1752 // FIXME: This should use a masked operation. Handle here or in isel? 1753 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1754 DAG.getConstantFP(1.0, DL, VT)); 1755 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1756 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1757 } else if (Op.getOpcode() == ISD::FFLOOR) { 1758 // If the truncated value is the less than or equal to the original value, 1759 // we've computed the floor. Otherwise, we went the wrong way and need to 1760 // decrease by 1. 1761 // FIXME: This should use a masked operation. Handle here or in isel? 1762 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1763 DAG.getConstantFP(1.0, DL, VT)); 1764 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1765 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1766 } 1767 1768 // Restore the original sign so that -0.0 is preserved. 1769 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1770 1771 // Determine the largest integer that can be represented exactly. This and 1772 // values larger than it don't have any fractional bits so don't need to 1773 // be converted. 1774 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1775 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1776 APFloat MaxVal = APFloat(FltSem); 1777 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1778 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1779 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1780 1781 // If abs(Src) was larger than MaxVal or nan, keep it. 1782 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1783 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1784 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1785 } 1786 1787 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1788 const RISCVSubtarget &Subtarget) { 1789 MVT VT = Op.getSimpleValueType(); 1790 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1791 1792 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1793 1794 SDLoc DL(Op); 1795 SDValue Mask, VL; 1796 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1797 1798 unsigned Opc = 1799 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1800 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1801 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1802 } 1803 1804 struct VIDSequence { 1805 int64_t StepNumerator; 1806 unsigned StepDenominator; 1807 int64_t Addend; 1808 }; 1809 1810 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1811 // to the (non-zero) step S and start value X. This can be then lowered as the 1812 // RVV sequence (VID * S) + X, for example. 1813 // The step S is represented as an integer numerator divided by a positive 1814 // denominator. Note that the implementation currently only identifies 1815 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1816 // cannot detect 2/3, for example. 1817 // Note that this method will also match potentially unappealing index 1818 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1819 // determine whether this is worth generating code for. 1820 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1821 unsigned NumElts = Op.getNumOperands(); 1822 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1823 if (!Op.getValueType().isInteger()) 1824 return None; 1825 1826 Optional<unsigned> SeqStepDenom; 1827 Optional<int64_t> SeqStepNum, SeqAddend; 1828 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1829 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1830 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1831 // Assume undef elements match the sequence; we just have to be careful 1832 // when interpolating across them. 1833 if (Op.getOperand(Idx).isUndef()) 1834 continue; 1835 // The BUILD_VECTOR must be all constants. 1836 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1837 return None; 1838 1839 uint64_t Val = Op.getConstantOperandVal(Idx) & 1840 maskTrailingOnes<uint64_t>(EltSizeInBits); 1841 1842 if (PrevElt) { 1843 // Calculate the step since the last non-undef element, and ensure 1844 // it's consistent across the entire sequence. 1845 unsigned IdxDiff = Idx - PrevElt->second; 1846 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1847 1848 // A zero-value value difference means that we're somewhere in the middle 1849 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1850 // step change before evaluating the sequence. 1851 if (ValDiff != 0) { 1852 int64_t Remainder = ValDiff % IdxDiff; 1853 // Normalize the step if it's greater than 1. 1854 if (Remainder != ValDiff) { 1855 // The difference must cleanly divide the element span. 1856 if (Remainder != 0) 1857 return None; 1858 ValDiff /= IdxDiff; 1859 IdxDiff = 1; 1860 } 1861 1862 if (!SeqStepNum) 1863 SeqStepNum = ValDiff; 1864 else if (ValDiff != SeqStepNum) 1865 return None; 1866 1867 if (!SeqStepDenom) 1868 SeqStepDenom = IdxDiff; 1869 else if (IdxDiff != *SeqStepDenom) 1870 return None; 1871 } 1872 } 1873 1874 // Record and/or check any addend. 1875 if (SeqStepNum && SeqStepDenom) { 1876 uint64_t ExpectedVal = 1877 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1878 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1879 if (!SeqAddend) 1880 SeqAddend = Addend; 1881 else if (SeqAddend != Addend) 1882 return None; 1883 } 1884 1885 // Record this non-undef element for later. 1886 if (!PrevElt || PrevElt->first != Val) 1887 PrevElt = std::make_pair(Val, Idx); 1888 } 1889 // We need to have logged both a step and an addend for this to count as 1890 // a legal index sequence. 1891 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1892 return None; 1893 1894 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1895 } 1896 1897 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1898 const RISCVSubtarget &Subtarget) { 1899 MVT VT = Op.getSimpleValueType(); 1900 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1901 1902 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1903 1904 SDLoc DL(Op); 1905 SDValue Mask, VL; 1906 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1907 1908 MVT XLenVT = Subtarget.getXLenVT(); 1909 unsigned NumElts = Op.getNumOperands(); 1910 1911 if (VT.getVectorElementType() == MVT::i1) { 1912 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1913 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1914 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1915 } 1916 1917 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1918 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1919 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1920 } 1921 1922 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1923 // scalar integer chunks whose bit-width depends on the number of mask 1924 // bits and XLEN. 1925 // First, determine the most appropriate scalar integer type to use. This 1926 // is at most XLenVT, but may be shrunk to a smaller vector element type 1927 // according to the size of the final vector - use i8 chunks rather than 1928 // XLenVT if we're producing a v8i1. This results in more consistent 1929 // codegen across RV32 and RV64. 1930 unsigned NumViaIntegerBits = 1931 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1932 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1933 // If we have to use more than one INSERT_VECTOR_ELT then this 1934 // optimization is likely to increase code size; avoid peforming it in 1935 // such a case. We can use a load from a constant pool in this case. 1936 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1937 return SDValue(); 1938 // Now we can create our integer vector type. Note that it may be larger 1939 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1940 MVT IntegerViaVecVT = 1941 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1942 divideCeil(NumElts, NumViaIntegerBits)); 1943 1944 uint64_t Bits = 0; 1945 unsigned BitPos = 0, IntegerEltIdx = 0; 1946 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1947 1948 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1949 // Once we accumulate enough bits to fill our scalar type, insert into 1950 // our vector and clear our accumulated data. 1951 if (I != 0 && I % NumViaIntegerBits == 0) { 1952 if (NumViaIntegerBits <= 32) 1953 Bits = SignExtend64(Bits, 32); 1954 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1955 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1956 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1957 Bits = 0; 1958 BitPos = 0; 1959 IntegerEltIdx++; 1960 } 1961 SDValue V = Op.getOperand(I); 1962 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1963 Bits |= ((uint64_t)BitValue << BitPos); 1964 } 1965 1966 // Insert the (remaining) scalar value into position in our integer 1967 // vector type. 1968 if (NumViaIntegerBits <= 32) 1969 Bits = SignExtend64(Bits, 32); 1970 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1971 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1972 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1973 1974 if (NumElts < NumViaIntegerBits) { 1975 // If we're producing a smaller vector than our minimum legal integer 1976 // type, bitcast to the equivalent (known-legal) mask type, and extract 1977 // our final mask. 1978 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1979 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1980 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1981 DAG.getConstant(0, DL, XLenVT)); 1982 } else { 1983 // Else we must have produced an integer type with the same size as the 1984 // mask type; bitcast for the final result. 1985 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1986 Vec = DAG.getBitcast(VT, Vec); 1987 } 1988 1989 return Vec; 1990 } 1991 1992 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1993 // vector type, we have a legal equivalently-sized i8 type, so we can use 1994 // that. 1995 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1996 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1997 1998 SDValue WideVec; 1999 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2000 // For a splat, perform a scalar truncate before creating the wider 2001 // vector. 2002 assert(Splat.getValueType() == XLenVT && 2003 "Unexpected type for i1 splat value"); 2004 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2005 DAG.getConstant(1, DL, XLenVT)); 2006 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2007 } else { 2008 SmallVector<SDValue, 8> Ops(Op->op_values()); 2009 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2010 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2011 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2012 } 2013 2014 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2015 } 2016 2017 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2018 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2019 : RISCVISD::VMV_V_X_VL; 2020 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 2021 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2022 } 2023 2024 // Try and match index sequences, which we can lower to the vid instruction 2025 // with optional modifications. An all-undef vector is matched by 2026 // getSplatValue, above. 2027 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2028 int64_t StepNumerator = SimpleVID->StepNumerator; 2029 unsigned StepDenominator = SimpleVID->StepDenominator; 2030 int64_t Addend = SimpleVID->Addend; 2031 2032 assert(StepNumerator != 0 && "Invalid step"); 2033 bool Negate = false; 2034 int64_t SplatStepVal = StepNumerator; 2035 unsigned StepOpcode = ISD::MUL; 2036 if (StepNumerator != 1) { 2037 if (isPowerOf2_64(std::abs(StepNumerator))) { 2038 Negate = StepNumerator < 0; 2039 StepOpcode = ISD::SHL; 2040 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2041 } 2042 } 2043 2044 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2045 // threshold since it's the immediate value many RVV instructions accept. 2046 // There is no vmul.vi instruction so ensure multiply constant can fit in 2047 // a single addi instruction. 2048 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2049 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2050 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2051 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2052 // Convert right out of the scalable type so we can use standard ISD 2053 // nodes for the rest of the computation. If we used scalable types with 2054 // these, we'd lose the fixed-length vector info and generate worse 2055 // vsetvli code. 2056 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2057 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2058 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2059 SDValue SplatStep = DAG.getSplatVector( 2060 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2061 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2062 } 2063 if (StepDenominator != 1) { 2064 SDValue SplatStep = DAG.getSplatVector( 2065 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2066 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2067 } 2068 if (Addend != 0 || Negate) { 2069 SDValue SplatAddend = 2070 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2071 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2072 } 2073 return VID; 2074 } 2075 } 2076 2077 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2078 // when re-interpreted as a vector with a larger element type. For example, 2079 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2080 // could be instead splat as 2081 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2082 // TODO: This optimization could also work on non-constant splats, but it 2083 // would require bit-manipulation instructions to construct the splat value. 2084 SmallVector<SDValue> Sequence; 2085 unsigned EltBitSize = VT.getScalarSizeInBits(); 2086 const auto *BV = cast<BuildVectorSDNode>(Op); 2087 if (VT.isInteger() && EltBitSize < 64 && 2088 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2089 BV->getRepeatedSequence(Sequence) && 2090 (Sequence.size() * EltBitSize) <= 64) { 2091 unsigned SeqLen = Sequence.size(); 2092 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2093 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2094 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2095 ViaIntVT == MVT::i64) && 2096 "Unexpected sequence type"); 2097 2098 unsigned EltIdx = 0; 2099 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2100 uint64_t SplatValue = 0; 2101 // Construct the amalgamated value which can be splatted as this larger 2102 // vector type. 2103 for (const auto &SeqV : Sequence) { 2104 if (!SeqV.isUndef()) 2105 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2106 << (EltIdx * EltBitSize)); 2107 EltIdx++; 2108 } 2109 2110 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2111 // achieve better constant materializion. 2112 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2113 SplatValue = SignExtend64(SplatValue, 32); 2114 2115 // Since we can't introduce illegal i64 types at this stage, we can only 2116 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2117 // way we can use RVV instructions to splat. 2118 assert((ViaIntVT.bitsLE(XLenVT) || 2119 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2120 "Unexpected bitcast sequence"); 2121 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2122 SDValue ViaVL = 2123 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2124 MVT ViaContainerVT = 2125 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2126 SDValue Splat = 2127 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2128 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2129 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2130 return DAG.getBitcast(VT, Splat); 2131 } 2132 } 2133 2134 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2135 // which constitute a large proportion of the elements. In such cases we can 2136 // splat a vector with the dominant element and make up the shortfall with 2137 // INSERT_VECTOR_ELTs. 2138 // Note that this includes vectors of 2 elements by association. The 2139 // upper-most element is the "dominant" one, allowing us to use a splat to 2140 // "insert" the upper element, and an insert of the lower element at position 2141 // 0, which improves codegen. 2142 SDValue DominantValue; 2143 unsigned MostCommonCount = 0; 2144 DenseMap<SDValue, unsigned> ValueCounts; 2145 unsigned NumUndefElts = 2146 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2147 2148 // Track the number of scalar loads we know we'd be inserting, estimated as 2149 // any non-zero floating-point constant. Other kinds of element are either 2150 // already in registers or are materialized on demand. The threshold at which 2151 // a vector load is more desirable than several scalar materializion and 2152 // vector-insertion instructions is not known. 2153 unsigned NumScalarLoads = 0; 2154 2155 for (SDValue V : Op->op_values()) { 2156 if (V.isUndef()) 2157 continue; 2158 2159 ValueCounts.insert(std::make_pair(V, 0)); 2160 unsigned &Count = ValueCounts[V]; 2161 2162 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2163 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2164 2165 // Is this value dominant? In case of a tie, prefer the highest element as 2166 // it's cheaper to insert near the beginning of a vector than it is at the 2167 // end. 2168 if (++Count >= MostCommonCount) { 2169 DominantValue = V; 2170 MostCommonCount = Count; 2171 } 2172 } 2173 2174 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2175 unsigned NumDefElts = NumElts - NumUndefElts; 2176 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2177 2178 // Don't perform this optimization when optimizing for size, since 2179 // materializing elements and inserting them tends to cause code bloat. 2180 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2181 ((MostCommonCount > DominantValueCountThreshold) || 2182 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2183 // Start by splatting the most common element. 2184 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2185 2186 DenseSet<SDValue> Processed{DominantValue}; 2187 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2188 for (const auto &OpIdx : enumerate(Op->ops())) { 2189 const SDValue &V = OpIdx.value(); 2190 if (V.isUndef() || !Processed.insert(V).second) 2191 continue; 2192 if (ValueCounts[V] == 1) { 2193 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2194 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2195 } else { 2196 // Blend in all instances of this value using a VSELECT, using a 2197 // mask where each bit signals whether that element is the one 2198 // we're after. 2199 SmallVector<SDValue> Ops; 2200 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2201 return DAG.getConstant(V == V1, DL, XLenVT); 2202 }); 2203 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2204 DAG.getBuildVector(SelMaskTy, DL, Ops), 2205 DAG.getSplatBuildVector(VT, DL, V), Vec); 2206 } 2207 } 2208 2209 return Vec; 2210 } 2211 2212 return SDValue(); 2213 } 2214 2215 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2216 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2217 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2218 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2219 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2220 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2221 // node in order to try and match RVV vector/scalar instructions. 2222 if ((LoC >> 31) == HiC) 2223 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2224 } 2225 2226 // Fall back to a stack store and stride x0 vector load. 2227 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2228 } 2229 2230 // Called by type legalization to handle splat of i64 on RV32. 2231 // FIXME: We can optimize this when the type has sign or zero bits in one 2232 // of the halves. 2233 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2234 SDValue VL, SelectionDAG &DAG) { 2235 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2236 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2237 DAG.getConstant(0, DL, MVT::i32)); 2238 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2239 DAG.getConstant(1, DL, MVT::i32)); 2240 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2241 } 2242 2243 // This function lowers a splat of a scalar operand Splat with the vector 2244 // length VL. It ensures the final sequence is type legal, which is useful when 2245 // lowering a splat after type legalization. 2246 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2247 SelectionDAG &DAG, 2248 const RISCVSubtarget &Subtarget) { 2249 if (VT.isFloatingPoint()) { 2250 // If VL is 1, we could use vfmv.s.f. 2251 if (isOneConstant(VL)) 2252 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT), 2253 Scalar, VL); 2254 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2255 } 2256 2257 MVT XLenVT = Subtarget.getXLenVT(); 2258 2259 // Simplest case is that the operand needs to be promoted to XLenVT. 2260 if (Scalar.getValueType().bitsLE(XLenVT)) { 2261 // If the operand is a constant, sign extend to increase our chances 2262 // of being able to use a .vi instruction. ANY_EXTEND would become a 2263 // a zero extend and the simm5 check in isel would fail. 2264 // FIXME: Should we ignore the upper bits in isel instead? 2265 unsigned ExtOpc = 2266 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2267 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2268 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2269 // If VL is 1 and the scalar value won't benefit from immediate, we could 2270 // use vmv.s.x. 2271 if (isOneConstant(VL) && 2272 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2273 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar, 2274 VL); 2275 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2276 } 2277 2278 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2279 "Unexpected scalar for splat lowering!"); 2280 2281 if (isOneConstant(VL) && isNullConstant(Scalar)) 2282 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), 2283 DAG.getConstant(0, DL, XLenVT), VL); 2284 2285 // Otherwise use the more complicated splatting algorithm. 2286 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2287 } 2288 2289 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2290 const RISCVSubtarget &Subtarget) { 2291 SDValue V1 = Op.getOperand(0); 2292 SDValue V2 = Op.getOperand(1); 2293 SDLoc DL(Op); 2294 MVT XLenVT = Subtarget.getXLenVT(); 2295 MVT VT = Op.getSimpleValueType(); 2296 unsigned NumElts = VT.getVectorNumElements(); 2297 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2298 2299 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2300 2301 SDValue TrueMask, VL; 2302 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2303 2304 if (SVN->isSplat()) { 2305 const int Lane = SVN->getSplatIndex(); 2306 if (Lane >= 0) { 2307 MVT SVT = VT.getVectorElementType(); 2308 2309 // Turn splatted vector load into a strided load with an X0 stride. 2310 SDValue V = V1; 2311 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2312 // with undef. 2313 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2314 int Offset = Lane; 2315 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2316 int OpElements = 2317 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2318 V = V.getOperand(Offset / OpElements); 2319 Offset %= OpElements; 2320 } 2321 2322 // We need to ensure the load isn't atomic or volatile. 2323 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2324 auto *Ld = cast<LoadSDNode>(V); 2325 Offset *= SVT.getStoreSize(); 2326 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2327 TypeSize::Fixed(Offset), DL); 2328 2329 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2330 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2331 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2332 SDValue IntID = 2333 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2334 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2335 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2336 SDValue NewLoad = DAG.getMemIntrinsicNode( 2337 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2338 DAG.getMachineFunction().getMachineMemOperand( 2339 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2340 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2341 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2342 } 2343 2344 // Otherwise use a scalar load and splat. This will give the best 2345 // opportunity to fold a splat into the operation. ISel can turn it into 2346 // the x0 strided load if we aren't able to fold away the select. 2347 if (SVT.isFloatingPoint()) 2348 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2349 Ld->getPointerInfo().getWithOffset(Offset), 2350 Ld->getOriginalAlign(), 2351 Ld->getMemOperand()->getFlags()); 2352 else 2353 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2354 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2355 Ld->getOriginalAlign(), 2356 Ld->getMemOperand()->getFlags()); 2357 DAG.makeEquivalentMemoryOrdering(Ld, V); 2358 2359 unsigned Opc = 2360 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2361 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2362 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2363 } 2364 2365 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2366 assert(Lane < (int)NumElts && "Unexpected lane!"); 2367 SDValue Gather = 2368 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2369 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2370 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2371 } 2372 } 2373 2374 // Detect shuffles which can be re-expressed as vector selects; these are 2375 // shuffles in which each element in the destination is taken from an element 2376 // at the corresponding index in either source vectors. 2377 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2378 int MaskIndex = MaskIdx.value(); 2379 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2380 }); 2381 2382 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2383 2384 SmallVector<SDValue> MaskVals; 2385 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2386 // merged with a second vrgather. 2387 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2388 2389 // By default we preserve the original operand order, and use a mask to 2390 // select LHS as true and RHS as false. However, since RVV vector selects may 2391 // feature splats but only on the LHS, we may choose to invert our mask and 2392 // instead select between RHS and LHS. 2393 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2394 bool InvertMask = IsSelect == SwapOps; 2395 2396 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2397 // half. 2398 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2399 2400 // Now construct the mask that will be used by the vselect or blended 2401 // vrgather operation. For vrgathers, construct the appropriate indices into 2402 // each vector. 2403 for (int MaskIndex : SVN->getMask()) { 2404 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2405 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2406 if (!IsSelect) { 2407 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2408 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2409 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2410 : DAG.getUNDEF(XLenVT)); 2411 GatherIndicesRHS.push_back( 2412 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2413 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2414 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2415 ++LHSIndexCounts[MaskIndex]; 2416 if (!IsLHSOrUndefIndex) 2417 ++RHSIndexCounts[MaskIndex - NumElts]; 2418 } 2419 } 2420 2421 if (SwapOps) { 2422 std::swap(V1, V2); 2423 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2424 } 2425 2426 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2427 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2428 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2429 2430 if (IsSelect) 2431 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2432 2433 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2434 // On such a large vector we're unable to use i8 as the index type. 2435 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2436 // may involve vector splitting if we're already at LMUL=8, or our 2437 // user-supplied maximum fixed-length LMUL. 2438 return SDValue(); 2439 } 2440 2441 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2442 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2443 MVT IndexVT = VT.changeTypeToInteger(); 2444 // Since we can't introduce illegal index types at this stage, use i16 and 2445 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2446 // than XLenVT. 2447 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2448 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2449 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2450 } 2451 2452 MVT IndexContainerVT = 2453 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2454 2455 SDValue Gather; 2456 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2457 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2458 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2459 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2460 } else { 2461 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2462 // If only one index is used, we can use a "splat" vrgather. 2463 // TODO: We can splat the most-common index and fix-up any stragglers, if 2464 // that's beneficial. 2465 if (LHSIndexCounts.size() == 1) { 2466 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2467 Gather = 2468 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2469 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2470 } else { 2471 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2472 LHSIndices = 2473 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2474 2475 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2476 TrueMask, VL); 2477 } 2478 } 2479 2480 // If a second vector operand is used by this shuffle, blend it in with an 2481 // additional vrgather. 2482 if (!V2.isUndef()) { 2483 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2484 // If only one index is used, we can use a "splat" vrgather. 2485 // TODO: We can splat the most-common index and fix-up any stragglers, if 2486 // that's beneficial. 2487 if (RHSIndexCounts.size() == 1) { 2488 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2489 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2490 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2491 } else { 2492 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2493 RHSIndices = 2494 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2495 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2496 VL); 2497 } 2498 2499 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2500 SelectMask = 2501 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2502 2503 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2504 Gather, VL); 2505 } 2506 2507 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2508 } 2509 2510 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2511 SDLoc DL, SelectionDAG &DAG, 2512 const RISCVSubtarget &Subtarget) { 2513 if (VT.isScalableVector()) 2514 return DAG.getFPExtendOrRound(Op, DL, VT); 2515 assert(VT.isFixedLengthVector() && 2516 "Unexpected value type for RVV FP extend/round lowering"); 2517 SDValue Mask, VL; 2518 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2519 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2520 ? RISCVISD::FP_EXTEND_VL 2521 : RISCVISD::FP_ROUND_VL; 2522 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2523 } 2524 2525 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2526 // the exponent. 2527 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2528 MVT VT = Op.getSimpleValueType(); 2529 unsigned EltSize = VT.getScalarSizeInBits(); 2530 SDValue Src = Op.getOperand(0); 2531 SDLoc DL(Op); 2532 2533 // We need a FP type that can represent the value. 2534 // TODO: Use f16 for i8 when possible? 2535 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2536 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2537 2538 // Legal types should have been checked in the RISCVTargetLowering 2539 // constructor. 2540 // TODO: Splitting may make sense in some cases. 2541 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2542 "Expected legal float type!"); 2543 2544 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2545 // The trailing zero count is equal to log2 of this single bit value. 2546 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2547 SDValue Neg = 2548 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2549 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2550 } 2551 2552 // We have a legal FP type, convert to it. 2553 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2554 // Bitcast to integer and shift the exponent to the LSB. 2555 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2556 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2557 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2558 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2559 DAG.getConstant(ShiftAmt, DL, IntVT)); 2560 // Truncate back to original type to allow vnsrl. 2561 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2562 // The exponent contains log2 of the value in biased form. 2563 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2564 2565 // For trailing zeros, we just need to subtract the bias. 2566 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2567 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2568 DAG.getConstant(ExponentBias, DL, VT)); 2569 2570 // For leading zeros, we need to remove the bias and convert from log2 to 2571 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2572 unsigned Adjust = ExponentBias + (EltSize - 1); 2573 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2574 } 2575 2576 // While RVV has alignment restrictions, we should always be able to load as a 2577 // legal equivalently-sized byte-typed vector instead. This method is 2578 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2579 // the load is already correctly-aligned, it returns SDValue(). 2580 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2581 SelectionDAG &DAG) const { 2582 auto *Load = cast<LoadSDNode>(Op); 2583 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2584 2585 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2586 Load->getMemoryVT(), 2587 *Load->getMemOperand())) 2588 return SDValue(); 2589 2590 SDLoc DL(Op); 2591 MVT VT = Op.getSimpleValueType(); 2592 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2593 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2594 "Unexpected unaligned RVV load type"); 2595 MVT NewVT = 2596 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2597 assert(NewVT.isValid() && 2598 "Expecting equally-sized RVV vector types to be legal"); 2599 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2600 Load->getPointerInfo(), Load->getOriginalAlign(), 2601 Load->getMemOperand()->getFlags()); 2602 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2603 } 2604 2605 // While RVV has alignment restrictions, we should always be able to store as a 2606 // legal equivalently-sized byte-typed vector instead. This method is 2607 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2608 // returns SDValue() if the store is already correctly aligned. 2609 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2610 SelectionDAG &DAG) const { 2611 auto *Store = cast<StoreSDNode>(Op); 2612 assert(Store && Store->getValue().getValueType().isVector() && 2613 "Expected vector store"); 2614 2615 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2616 Store->getMemoryVT(), 2617 *Store->getMemOperand())) 2618 return SDValue(); 2619 2620 SDLoc DL(Op); 2621 SDValue StoredVal = Store->getValue(); 2622 MVT VT = StoredVal.getSimpleValueType(); 2623 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2624 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2625 "Unexpected unaligned RVV store type"); 2626 MVT NewVT = 2627 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2628 assert(NewVT.isValid() && 2629 "Expecting equally-sized RVV vector types to be legal"); 2630 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2631 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2632 Store->getPointerInfo(), Store->getOriginalAlign(), 2633 Store->getMemOperand()->getFlags()); 2634 } 2635 2636 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2637 SelectionDAG &DAG) const { 2638 switch (Op.getOpcode()) { 2639 default: 2640 report_fatal_error("unimplemented operand"); 2641 case ISD::GlobalAddress: 2642 return lowerGlobalAddress(Op, DAG); 2643 case ISD::BlockAddress: 2644 return lowerBlockAddress(Op, DAG); 2645 case ISD::ConstantPool: 2646 return lowerConstantPool(Op, DAG); 2647 case ISD::JumpTable: 2648 return lowerJumpTable(Op, DAG); 2649 case ISD::GlobalTLSAddress: 2650 return lowerGlobalTLSAddress(Op, DAG); 2651 case ISD::SELECT: 2652 return lowerSELECT(Op, DAG); 2653 case ISD::BRCOND: 2654 return lowerBRCOND(Op, DAG); 2655 case ISD::VASTART: 2656 return lowerVASTART(Op, DAG); 2657 case ISD::FRAMEADDR: 2658 return lowerFRAMEADDR(Op, DAG); 2659 case ISD::RETURNADDR: 2660 return lowerRETURNADDR(Op, DAG); 2661 case ISD::SHL_PARTS: 2662 return lowerShiftLeftParts(Op, DAG); 2663 case ISD::SRA_PARTS: 2664 return lowerShiftRightParts(Op, DAG, true); 2665 case ISD::SRL_PARTS: 2666 return lowerShiftRightParts(Op, DAG, false); 2667 case ISD::BITCAST: { 2668 SDLoc DL(Op); 2669 EVT VT = Op.getValueType(); 2670 SDValue Op0 = Op.getOperand(0); 2671 EVT Op0VT = Op0.getValueType(); 2672 MVT XLenVT = Subtarget.getXLenVT(); 2673 if (VT.isFixedLengthVector()) { 2674 // We can handle fixed length vector bitcasts with a simple replacement 2675 // in isel. 2676 if (Op0VT.isFixedLengthVector()) 2677 return Op; 2678 // When bitcasting from scalar to fixed-length vector, insert the scalar 2679 // into a one-element vector of the result type, and perform a vector 2680 // bitcast. 2681 if (!Op0VT.isVector()) { 2682 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2683 if (!isTypeLegal(BVT)) 2684 return SDValue(); 2685 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2686 DAG.getUNDEF(BVT), Op0, 2687 DAG.getConstant(0, DL, XLenVT))); 2688 } 2689 return SDValue(); 2690 } 2691 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2692 // thus: bitcast the vector to a one-element vector type whose element type 2693 // is the same as the result type, and extract the first element. 2694 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2695 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2696 if (!isTypeLegal(BVT)) 2697 return SDValue(); 2698 SDValue BVec = DAG.getBitcast(BVT, Op0); 2699 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2700 DAG.getConstant(0, DL, XLenVT)); 2701 } 2702 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2703 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2704 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2705 return FPConv; 2706 } 2707 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2708 Subtarget.hasStdExtF()) { 2709 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2710 SDValue FPConv = 2711 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2712 return FPConv; 2713 } 2714 return SDValue(); 2715 } 2716 case ISD::INTRINSIC_WO_CHAIN: 2717 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2718 case ISD::INTRINSIC_W_CHAIN: 2719 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2720 case ISD::INTRINSIC_VOID: 2721 return LowerINTRINSIC_VOID(Op, DAG); 2722 case ISD::BSWAP: 2723 case ISD::BITREVERSE: { 2724 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2725 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2726 MVT VT = Op.getSimpleValueType(); 2727 SDLoc DL(Op); 2728 // Start with the maximum immediate value which is the bitwidth - 1. 2729 unsigned Imm = VT.getSizeInBits() - 1; 2730 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2731 if (Op.getOpcode() == ISD::BSWAP) 2732 Imm &= ~0x7U; 2733 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2734 DAG.getConstant(Imm, DL, VT)); 2735 } 2736 case ISD::FSHL: 2737 case ISD::FSHR: { 2738 MVT VT = Op.getSimpleValueType(); 2739 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2740 SDLoc DL(Op); 2741 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2742 return Op; 2743 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2744 // use log(XLen) bits. Mask the shift amount accordingly. 2745 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2746 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2747 DAG.getConstant(ShAmtWidth, DL, VT)); 2748 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2749 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2750 } 2751 case ISD::TRUNCATE: { 2752 SDLoc DL(Op); 2753 MVT VT = Op.getSimpleValueType(); 2754 // Only custom-lower vector truncates 2755 if (!VT.isVector()) 2756 return Op; 2757 2758 // Truncates to mask types are handled differently 2759 if (VT.getVectorElementType() == MVT::i1) 2760 return lowerVectorMaskTrunc(Op, DAG); 2761 2762 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2763 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2764 // truncate by one power of two at a time. 2765 MVT DstEltVT = VT.getVectorElementType(); 2766 2767 SDValue Src = Op.getOperand(0); 2768 MVT SrcVT = Src.getSimpleValueType(); 2769 MVT SrcEltVT = SrcVT.getVectorElementType(); 2770 2771 assert(DstEltVT.bitsLT(SrcEltVT) && 2772 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2773 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2774 "Unexpected vector truncate lowering"); 2775 2776 MVT ContainerVT = SrcVT; 2777 if (SrcVT.isFixedLengthVector()) { 2778 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2779 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2780 } 2781 2782 SDValue Result = Src; 2783 SDValue Mask, VL; 2784 std::tie(Mask, VL) = 2785 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2786 LLVMContext &Context = *DAG.getContext(); 2787 const ElementCount Count = ContainerVT.getVectorElementCount(); 2788 do { 2789 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2790 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2791 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2792 Mask, VL); 2793 } while (SrcEltVT != DstEltVT); 2794 2795 if (SrcVT.isFixedLengthVector()) 2796 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2797 2798 return Result; 2799 } 2800 case ISD::ANY_EXTEND: 2801 case ISD::ZERO_EXTEND: 2802 if (Op.getOperand(0).getValueType().isVector() && 2803 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2804 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2805 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2806 case ISD::SIGN_EXTEND: 2807 if (Op.getOperand(0).getValueType().isVector() && 2808 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2809 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2810 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2811 case ISD::SPLAT_VECTOR_PARTS: 2812 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2813 case ISD::INSERT_VECTOR_ELT: 2814 return lowerINSERT_VECTOR_ELT(Op, DAG); 2815 case ISD::EXTRACT_VECTOR_ELT: 2816 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2817 case ISD::VSCALE: { 2818 MVT VT = Op.getSimpleValueType(); 2819 SDLoc DL(Op); 2820 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2821 // We define our scalable vector types for lmul=1 to use a 64 bit known 2822 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2823 // vscale as VLENB / 8. 2824 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 2825 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2826 // We assume VLENB is a multiple of 8. We manually choose the best shift 2827 // here because SimplifyDemandedBits isn't always able to simplify it. 2828 uint64_t Val = Op.getConstantOperandVal(0); 2829 if (isPowerOf2_64(Val)) { 2830 uint64_t Log2 = Log2_64(Val); 2831 if (Log2 < 3) 2832 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2833 DAG.getConstant(3 - Log2, DL, VT)); 2834 if (Log2 > 3) 2835 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2836 DAG.getConstant(Log2 - 3, DL, VT)); 2837 return VLENB; 2838 } 2839 // If the multiplier is a multiple of 8, scale it down to avoid needing 2840 // to shift the VLENB value. 2841 if ((Val % 8) == 0) 2842 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2843 DAG.getConstant(Val / 8, DL, VT)); 2844 } 2845 2846 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2847 DAG.getConstant(3, DL, VT)); 2848 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2849 } 2850 case ISD::FPOWI: { 2851 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 2852 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 2853 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 2854 Op.getOperand(1).getValueType() == MVT::i32) { 2855 SDLoc DL(Op); 2856 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 2857 SDValue Powi = 2858 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 2859 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 2860 DAG.getIntPtrConstant(0, DL)); 2861 } 2862 return SDValue(); 2863 } 2864 case ISD::FP_EXTEND: { 2865 // RVV can only do fp_extend to types double the size as the source. We 2866 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2867 // via f32. 2868 SDLoc DL(Op); 2869 MVT VT = Op.getSimpleValueType(); 2870 SDValue Src = Op.getOperand(0); 2871 MVT SrcVT = Src.getSimpleValueType(); 2872 2873 // Prepare any fixed-length vector operands. 2874 MVT ContainerVT = VT; 2875 if (SrcVT.isFixedLengthVector()) { 2876 ContainerVT = getContainerForFixedLengthVector(VT); 2877 MVT SrcContainerVT = 2878 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2879 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2880 } 2881 2882 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2883 SrcVT.getVectorElementType() != MVT::f16) { 2884 // For scalable vectors, we only need to close the gap between 2885 // vXf16->vXf64. 2886 if (!VT.isFixedLengthVector()) 2887 return Op; 2888 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2889 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2890 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2891 } 2892 2893 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2894 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2895 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2896 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2897 2898 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2899 DL, DAG, Subtarget); 2900 if (VT.isFixedLengthVector()) 2901 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2902 return Extend; 2903 } 2904 case ISD::FP_ROUND: { 2905 // RVV can only do fp_round to types half the size as the source. We 2906 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2907 // conversion instruction. 2908 SDLoc DL(Op); 2909 MVT VT = Op.getSimpleValueType(); 2910 SDValue Src = Op.getOperand(0); 2911 MVT SrcVT = Src.getSimpleValueType(); 2912 2913 // Prepare any fixed-length vector operands. 2914 MVT ContainerVT = VT; 2915 if (VT.isFixedLengthVector()) { 2916 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2917 ContainerVT = 2918 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2919 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2920 } 2921 2922 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2923 SrcVT.getVectorElementType() != MVT::f64) { 2924 // For scalable vectors, we only need to close the gap between 2925 // vXf64<->vXf16. 2926 if (!VT.isFixedLengthVector()) 2927 return Op; 2928 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2929 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2930 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2931 } 2932 2933 SDValue Mask, VL; 2934 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2935 2936 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2937 SDValue IntermediateRound = 2938 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2939 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2940 DL, DAG, Subtarget); 2941 2942 if (VT.isFixedLengthVector()) 2943 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2944 return Round; 2945 } 2946 case ISD::FP_TO_SINT: 2947 case ISD::FP_TO_UINT: 2948 case ISD::SINT_TO_FP: 2949 case ISD::UINT_TO_FP: { 2950 // RVV can only do fp<->int conversions to types half/double the size as 2951 // the source. We custom-lower any conversions that do two hops into 2952 // sequences. 2953 MVT VT = Op.getSimpleValueType(); 2954 if (!VT.isVector()) 2955 return Op; 2956 SDLoc DL(Op); 2957 SDValue Src = Op.getOperand(0); 2958 MVT EltVT = VT.getVectorElementType(); 2959 MVT SrcVT = Src.getSimpleValueType(); 2960 MVT SrcEltVT = SrcVT.getVectorElementType(); 2961 unsigned EltSize = EltVT.getSizeInBits(); 2962 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2963 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2964 "Unexpected vector element types"); 2965 2966 bool IsInt2FP = SrcEltVT.isInteger(); 2967 // Widening conversions 2968 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2969 if (IsInt2FP) { 2970 // Do a regular integer sign/zero extension then convert to float. 2971 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2972 VT.getVectorElementCount()); 2973 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2974 ? ISD::ZERO_EXTEND 2975 : ISD::SIGN_EXTEND; 2976 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2977 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2978 } 2979 // FP2Int 2980 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2981 // Do one doubling fp_extend then complete the operation by converting 2982 // to int. 2983 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2984 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2985 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2986 } 2987 2988 // Narrowing conversions 2989 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2990 if (IsInt2FP) { 2991 // One narrowing int_to_fp, then an fp_round. 2992 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2993 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2994 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2995 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2996 } 2997 // FP2Int 2998 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2999 // representable by the integer, the result is poison. 3000 MVT IVecVT = 3001 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 3002 VT.getVectorElementCount()); 3003 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3004 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3005 } 3006 3007 // Scalable vectors can exit here. Patterns will handle equally-sized 3008 // conversions halving/doubling ones. 3009 if (!VT.isFixedLengthVector()) 3010 return Op; 3011 3012 // For fixed-length vectors we lower to a custom "VL" node. 3013 unsigned RVVOpc = 0; 3014 switch (Op.getOpcode()) { 3015 default: 3016 llvm_unreachable("Impossible opcode"); 3017 case ISD::FP_TO_SINT: 3018 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3019 break; 3020 case ISD::FP_TO_UINT: 3021 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3022 break; 3023 case ISD::SINT_TO_FP: 3024 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3025 break; 3026 case ISD::UINT_TO_FP: 3027 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3028 break; 3029 } 3030 3031 MVT ContainerVT, SrcContainerVT; 3032 // Derive the reference container type from the larger vector type. 3033 if (SrcEltSize > EltSize) { 3034 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3035 ContainerVT = 3036 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3037 } else { 3038 ContainerVT = getContainerForFixedLengthVector(VT); 3039 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3040 } 3041 3042 SDValue Mask, VL; 3043 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3044 3045 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3046 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3047 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3048 } 3049 case ISD::FP_TO_SINT_SAT: 3050 case ISD::FP_TO_UINT_SAT: 3051 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3052 case ISD::FTRUNC: 3053 case ISD::FCEIL: 3054 case ISD::FFLOOR: 3055 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3056 case ISD::VECREDUCE_ADD: 3057 case ISD::VECREDUCE_UMAX: 3058 case ISD::VECREDUCE_SMAX: 3059 case ISD::VECREDUCE_UMIN: 3060 case ISD::VECREDUCE_SMIN: 3061 return lowerVECREDUCE(Op, DAG); 3062 case ISD::VECREDUCE_AND: 3063 case ISD::VECREDUCE_OR: 3064 case ISD::VECREDUCE_XOR: 3065 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3066 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3067 return lowerVECREDUCE(Op, DAG); 3068 case ISD::VECREDUCE_FADD: 3069 case ISD::VECREDUCE_SEQ_FADD: 3070 case ISD::VECREDUCE_FMIN: 3071 case ISD::VECREDUCE_FMAX: 3072 return lowerFPVECREDUCE(Op, DAG); 3073 case ISD::VP_REDUCE_ADD: 3074 case ISD::VP_REDUCE_UMAX: 3075 case ISD::VP_REDUCE_SMAX: 3076 case ISD::VP_REDUCE_UMIN: 3077 case ISD::VP_REDUCE_SMIN: 3078 case ISD::VP_REDUCE_FADD: 3079 case ISD::VP_REDUCE_SEQ_FADD: 3080 case ISD::VP_REDUCE_FMIN: 3081 case ISD::VP_REDUCE_FMAX: 3082 return lowerVPREDUCE(Op, DAG); 3083 case ISD::VP_REDUCE_AND: 3084 case ISD::VP_REDUCE_OR: 3085 case ISD::VP_REDUCE_XOR: 3086 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3087 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3088 return lowerVPREDUCE(Op, DAG); 3089 case ISD::INSERT_SUBVECTOR: 3090 return lowerINSERT_SUBVECTOR(Op, DAG); 3091 case ISD::EXTRACT_SUBVECTOR: 3092 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3093 case ISD::STEP_VECTOR: 3094 return lowerSTEP_VECTOR(Op, DAG); 3095 case ISD::VECTOR_REVERSE: 3096 return lowerVECTOR_REVERSE(Op, DAG); 3097 case ISD::BUILD_VECTOR: 3098 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3099 case ISD::SPLAT_VECTOR: 3100 if (Op.getValueType().getVectorElementType() == MVT::i1) 3101 return lowerVectorMaskSplat(Op, DAG); 3102 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3103 case ISD::VECTOR_SHUFFLE: 3104 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3105 case ISD::CONCAT_VECTORS: { 3106 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3107 // better than going through the stack, as the default expansion does. 3108 SDLoc DL(Op); 3109 MVT VT = Op.getSimpleValueType(); 3110 unsigned NumOpElts = 3111 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3112 SDValue Vec = DAG.getUNDEF(VT); 3113 for (const auto &OpIdx : enumerate(Op->ops())) 3114 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 3115 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3116 return Vec; 3117 } 3118 case ISD::LOAD: 3119 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3120 return V; 3121 if (Op.getValueType().isFixedLengthVector()) 3122 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3123 return Op; 3124 case ISD::STORE: 3125 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3126 return V; 3127 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3128 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3129 return Op; 3130 case ISD::MLOAD: 3131 case ISD::VP_LOAD: 3132 return lowerMaskedLoad(Op, DAG); 3133 case ISD::MSTORE: 3134 case ISD::VP_STORE: 3135 return lowerMaskedStore(Op, DAG); 3136 case ISD::SETCC: 3137 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3138 case ISD::ADD: 3139 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3140 case ISD::SUB: 3141 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3142 case ISD::MUL: 3143 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3144 case ISD::MULHS: 3145 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3146 case ISD::MULHU: 3147 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3148 case ISD::AND: 3149 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3150 RISCVISD::AND_VL); 3151 case ISD::OR: 3152 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3153 RISCVISD::OR_VL); 3154 case ISD::XOR: 3155 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3156 RISCVISD::XOR_VL); 3157 case ISD::SDIV: 3158 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3159 case ISD::SREM: 3160 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3161 case ISD::UDIV: 3162 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3163 case ISD::UREM: 3164 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3165 case ISD::SHL: 3166 case ISD::SRA: 3167 case ISD::SRL: 3168 if (Op.getSimpleValueType().isFixedLengthVector()) 3169 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3170 // This can be called for an i32 shift amount that needs to be promoted. 3171 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3172 "Unexpected custom legalisation"); 3173 return SDValue(); 3174 case ISD::SADDSAT: 3175 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3176 case ISD::UADDSAT: 3177 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3178 case ISD::SSUBSAT: 3179 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3180 case ISD::USUBSAT: 3181 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3182 case ISD::FADD: 3183 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3184 case ISD::FSUB: 3185 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3186 case ISD::FMUL: 3187 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3188 case ISD::FDIV: 3189 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3190 case ISD::FNEG: 3191 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3192 case ISD::FABS: 3193 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3194 case ISD::FSQRT: 3195 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3196 case ISD::FMA: 3197 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3198 case ISD::SMIN: 3199 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3200 case ISD::SMAX: 3201 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3202 case ISD::UMIN: 3203 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3204 case ISD::UMAX: 3205 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3206 case ISD::FMINNUM: 3207 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3208 case ISD::FMAXNUM: 3209 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3210 case ISD::ABS: 3211 return lowerABS(Op, DAG); 3212 case ISD::CTLZ_ZERO_UNDEF: 3213 case ISD::CTTZ_ZERO_UNDEF: 3214 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3215 case ISD::VSELECT: 3216 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3217 case ISD::FCOPYSIGN: 3218 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3219 case ISD::MGATHER: 3220 case ISD::VP_GATHER: 3221 return lowerMaskedGather(Op, DAG); 3222 case ISD::MSCATTER: 3223 case ISD::VP_SCATTER: 3224 return lowerMaskedScatter(Op, DAG); 3225 case ISD::FLT_ROUNDS_: 3226 return lowerGET_ROUNDING(Op, DAG); 3227 case ISD::SET_ROUNDING: 3228 return lowerSET_ROUNDING(Op, DAG); 3229 case ISD::VP_SELECT: 3230 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3231 case ISD::VP_ADD: 3232 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3233 case ISD::VP_SUB: 3234 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3235 case ISD::VP_MUL: 3236 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3237 case ISD::VP_SDIV: 3238 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3239 case ISD::VP_UDIV: 3240 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3241 case ISD::VP_SREM: 3242 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3243 case ISD::VP_UREM: 3244 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3245 case ISD::VP_AND: 3246 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3247 case ISD::VP_OR: 3248 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3249 case ISD::VP_XOR: 3250 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3251 case ISD::VP_ASHR: 3252 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3253 case ISD::VP_LSHR: 3254 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3255 case ISD::VP_SHL: 3256 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3257 case ISD::VP_FADD: 3258 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3259 case ISD::VP_FSUB: 3260 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3261 case ISD::VP_FMUL: 3262 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3263 case ISD::VP_FDIV: 3264 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3265 } 3266 } 3267 3268 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3269 SelectionDAG &DAG, unsigned Flags) { 3270 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3271 } 3272 3273 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3274 SelectionDAG &DAG, unsigned Flags) { 3275 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3276 Flags); 3277 } 3278 3279 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3280 SelectionDAG &DAG, unsigned Flags) { 3281 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3282 N->getOffset(), Flags); 3283 } 3284 3285 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3286 SelectionDAG &DAG, unsigned Flags) { 3287 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3288 } 3289 3290 template <class NodeTy> 3291 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3292 bool IsLocal) const { 3293 SDLoc DL(N); 3294 EVT Ty = getPointerTy(DAG.getDataLayout()); 3295 3296 if (isPositionIndependent()) { 3297 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3298 if (IsLocal) 3299 // Use PC-relative addressing to access the symbol. This generates the 3300 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3301 // %pcrel_lo(auipc)). 3302 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3303 3304 // Use PC-relative addressing to access the GOT for this symbol, then load 3305 // the address from the GOT. This generates the pattern (PseudoLA sym), 3306 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3307 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3308 } 3309 3310 switch (getTargetMachine().getCodeModel()) { 3311 default: 3312 report_fatal_error("Unsupported code model for lowering"); 3313 case CodeModel::Small: { 3314 // Generate a sequence for accessing addresses within the first 2 GiB of 3315 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3316 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3317 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3318 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3319 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3320 } 3321 case CodeModel::Medium: { 3322 // Generate a sequence for accessing addresses within any 2GiB range within 3323 // the address space. This generates the pattern (PseudoLLA sym), which 3324 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3325 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3326 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3327 } 3328 } 3329 } 3330 3331 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3332 SelectionDAG &DAG) const { 3333 SDLoc DL(Op); 3334 EVT Ty = Op.getValueType(); 3335 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3336 int64_t Offset = N->getOffset(); 3337 MVT XLenVT = Subtarget.getXLenVT(); 3338 3339 const GlobalValue *GV = N->getGlobal(); 3340 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3341 SDValue Addr = getAddr(N, DAG, IsLocal); 3342 3343 // In order to maximise the opportunity for common subexpression elimination, 3344 // emit a separate ADD node for the global address offset instead of folding 3345 // it in the global address node. Later peephole optimisations may choose to 3346 // fold it back in when profitable. 3347 if (Offset != 0) 3348 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3349 DAG.getConstant(Offset, DL, XLenVT)); 3350 return Addr; 3351 } 3352 3353 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3354 SelectionDAG &DAG) const { 3355 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3356 3357 return getAddr(N, DAG); 3358 } 3359 3360 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3361 SelectionDAG &DAG) const { 3362 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3363 3364 return getAddr(N, DAG); 3365 } 3366 3367 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3368 SelectionDAG &DAG) const { 3369 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3370 3371 return getAddr(N, DAG); 3372 } 3373 3374 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3375 SelectionDAG &DAG, 3376 bool UseGOT) const { 3377 SDLoc DL(N); 3378 EVT Ty = getPointerTy(DAG.getDataLayout()); 3379 const GlobalValue *GV = N->getGlobal(); 3380 MVT XLenVT = Subtarget.getXLenVT(); 3381 3382 if (UseGOT) { 3383 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3384 // load the address from the GOT and add the thread pointer. This generates 3385 // the pattern (PseudoLA_TLS_IE sym), which expands to 3386 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3387 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3388 SDValue Load = 3389 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3390 3391 // Add the thread pointer. 3392 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3393 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3394 } 3395 3396 // Generate a sequence for accessing the address relative to the thread 3397 // pointer, with the appropriate adjustment for the thread pointer offset. 3398 // This generates the pattern 3399 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3400 SDValue AddrHi = 3401 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3402 SDValue AddrAdd = 3403 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3404 SDValue AddrLo = 3405 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3406 3407 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3408 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3409 SDValue MNAdd = SDValue( 3410 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3411 0); 3412 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3413 } 3414 3415 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3416 SelectionDAG &DAG) const { 3417 SDLoc DL(N); 3418 EVT Ty = getPointerTy(DAG.getDataLayout()); 3419 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3420 const GlobalValue *GV = N->getGlobal(); 3421 3422 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3423 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3424 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3425 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3426 SDValue Load = 3427 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3428 3429 // Prepare argument list to generate call. 3430 ArgListTy Args; 3431 ArgListEntry Entry; 3432 Entry.Node = Load; 3433 Entry.Ty = CallTy; 3434 Args.push_back(Entry); 3435 3436 // Setup call to __tls_get_addr. 3437 TargetLowering::CallLoweringInfo CLI(DAG); 3438 CLI.setDebugLoc(DL) 3439 .setChain(DAG.getEntryNode()) 3440 .setLibCallee(CallingConv::C, CallTy, 3441 DAG.getExternalSymbol("__tls_get_addr", Ty), 3442 std::move(Args)); 3443 3444 return LowerCallTo(CLI).first; 3445 } 3446 3447 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3448 SelectionDAG &DAG) const { 3449 SDLoc DL(Op); 3450 EVT Ty = Op.getValueType(); 3451 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3452 int64_t Offset = N->getOffset(); 3453 MVT XLenVT = Subtarget.getXLenVT(); 3454 3455 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3456 3457 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3458 CallingConv::GHC) 3459 report_fatal_error("In GHC calling convention TLS is not supported"); 3460 3461 SDValue Addr; 3462 switch (Model) { 3463 case TLSModel::LocalExec: 3464 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3465 break; 3466 case TLSModel::InitialExec: 3467 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3468 break; 3469 case TLSModel::LocalDynamic: 3470 case TLSModel::GeneralDynamic: 3471 Addr = getDynamicTLSAddr(N, DAG); 3472 break; 3473 } 3474 3475 // In order to maximise the opportunity for common subexpression elimination, 3476 // emit a separate ADD node for the global address offset instead of folding 3477 // it in the global address node. Later peephole optimisations may choose to 3478 // fold it back in when profitable. 3479 if (Offset != 0) 3480 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3481 DAG.getConstant(Offset, DL, XLenVT)); 3482 return Addr; 3483 } 3484 3485 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3486 SDValue CondV = Op.getOperand(0); 3487 SDValue TrueV = Op.getOperand(1); 3488 SDValue FalseV = Op.getOperand(2); 3489 SDLoc DL(Op); 3490 MVT VT = Op.getSimpleValueType(); 3491 MVT XLenVT = Subtarget.getXLenVT(); 3492 3493 // Lower vector SELECTs to VSELECTs by splatting the condition. 3494 if (VT.isVector()) { 3495 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3496 SDValue CondSplat = VT.isScalableVector() 3497 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3498 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3499 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3500 } 3501 3502 // If the result type is XLenVT and CondV is the output of a SETCC node 3503 // which also operated on XLenVT inputs, then merge the SETCC node into the 3504 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3505 // compare+branch instructions. i.e.: 3506 // (select (setcc lhs, rhs, cc), truev, falsev) 3507 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3508 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3509 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3510 SDValue LHS = CondV.getOperand(0); 3511 SDValue RHS = CondV.getOperand(1); 3512 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3513 ISD::CondCode CCVal = CC->get(); 3514 3515 // Special case for a select of 2 constants that have a diffence of 1. 3516 // Normally this is done by DAGCombine, but if the select is introduced by 3517 // type legalization or op legalization, we miss it. Restricting to SETLT 3518 // case for now because that is what signed saturating add/sub need. 3519 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3520 // but we would probably want to swap the true/false values if the condition 3521 // is SETGE/SETLE to avoid an XORI. 3522 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3523 CCVal == ISD::SETLT) { 3524 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3525 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3526 if (TrueVal - 1 == FalseVal) 3527 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3528 if (TrueVal + 1 == FalseVal) 3529 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3530 } 3531 3532 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3533 3534 SDValue TargetCC = DAG.getCondCode(CCVal); 3535 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3536 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3537 } 3538 3539 // Otherwise: 3540 // (select condv, truev, falsev) 3541 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3542 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3543 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3544 3545 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3546 3547 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3548 } 3549 3550 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3551 SDValue CondV = Op.getOperand(1); 3552 SDLoc DL(Op); 3553 MVT XLenVT = Subtarget.getXLenVT(); 3554 3555 if (CondV.getOpcode() == ISD::SETCC && 3556 CondV.getOperand(0).getValueType() == XLenVT) { 3557 SDValue LHS = CondV.getOperand(0); 3558 SDValue RHS = CondV.getOperand(1); 3559 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3560 3561 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3562 3563 SDValue TargetCC = DAG.getCondCode(CCVal); 3564 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3565 LHS, RHS, TargetCC, Op.getOperand(2)); 3566 } 3567 3568 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3569 CondV, DAG.getConstant(0, DL, XLenVT), 3570 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3571 } 3572 3573 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3574 MachineFunction &MF = DAG.getMachineFunction(); 3575 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3576 3577 SDLoc DL(Op); 3578 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3579 getPointerTy(MF.getDataLayout())); 3580 3581 // vastart just stores the address of the VarArgsFrameIndex slot into the 3582 // memory location argument. 3583 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3584 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3585 MachinePointerInfo(SV)); 3586 } 3587 3588 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3589 SelectionDAG &DAG) const { 3590 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3591 MachineFunction &MF = DAG.getMachineFunction(); 3592 MachineFrameInfo &MFI = MF.getFrameInfo(); 3593 MFI.setFrameAddressIsTaken(true); 3594 Register FrameReg = RI.getFrameRegister(MF); 3595 int XLenInBytes = Subtarget.getXLen() / 8; 3596 3597 EVT VT = Op.getValueType(); 3598 SDLoc DL(Op); 3599 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3600 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3601 while (Depth--) { 3602 int Offset = -(XLenInBytes * 2); 3603 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3604 DAG.getIntPtrConstant(Offset, DL)); 3605 FrameAddr = 3606 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3607 } 3608 return FrameAddr; 3609 } 3610 3611 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3612 SelectionDAG &DAG) const { 3613 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3614 MachineFunction &MF = DAG.getMachineFunction(); 3615 MachineFrameInfo &MFI = MF.getFrameInfo(); 3616 MFI.setReturnAddressIsTaken(true); 3617 MVT XLenVT = Subtarget.getXLenVT(); 3618 int XLenInBytes = Subtarget.getXLen() / 8; 3619 3620 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3621 return SDValue(); 3622 3623 EVT VT = Op.getValueType(); 3624 SDLoc DL(Op); 3625 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3626 if (Depth) { 3627 int Off = -XLenInBytes; 3628 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3629 SDValue Offset = DAG.getConstant(Off, DL, VT); 3630 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3631 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3632 MachinePointerInfo()); 3633 } 3634 3635 // Return the value of the return address register, marking it an implicit 3636 // live-in. 3637 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3638 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3639 } 3640 3641 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3642 SelectionDAG &DAG) const { 3643 SDLoc DL(Op); 3644 SDValue Lo = Op.getOperand(0); 3645 SDValue Hi = Op.getOperand(1); 3646 SDValue Shamt = Op.getOperand(2); 3647 EVT VT = Lo.getValueType(); 3648 3649 // if Shamt-XLEN < 0: // Shamt < XLEN 3650 // Lo = Lo << Shamt 3651 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3652 // else: 3653 // Lo = 0 3654 // Hi = Lo << (Shamt-XLEN) 3655 3656 SDValue Zero = DAG.getConstant(0, DL, VT); 3657 SDValue One = DAG.getConstant(1, DL, VT); 3658 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3659 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3660 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3661 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3662 3663 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3664 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3665 SDValue ShiftRightLo = 3666 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3667 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3668 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3669 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3670 3671 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3672 3673 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3674 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3675 3676 SDValue Parts[2] = {Lo, Hi}; 3677 return DAG.getMergeValues(Parts, DL); 3678 } 3679 3680 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3681 bool IsSRA) const { 3682 SDLoc DL(Op); 3683 SDValue Lo = Op.getOperand(0); 3684 SDValue Hi = Op.getOperand(1); 3685 SDValue Shamt = Op.getOperand(2); 3686 EVT VT = Lo.getValueType(); 3687 3688 // SRA expansion: 3689 // if Shamt-XLEN < 0: // Shamt < XLEN 3690 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3691 // Hi = Hi >>s Shamt 3692 // else: 3693 // Lo = Hi >>s (Shamt-XLEN); 3694 // Hi = Hi >>s (XLEN-1) 3695 // 3696 // SRL expansion: 3697 // if Shamt-XLEN < 0: // Shamt < XLEN 3698 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3699 // Hi = Hi >>u Shamt 3700 // else: 3701 // Lo = Hi >>u (Shamt-XLEN); 3702 // Hi = 0; 3703 3704 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3705 3706 SDValue Zero = DAG.getConstant(0, DL, VT); 3707 SDValue One = DAG.getConstant(1, DL, VT); 3708 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3709 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3710 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3711 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3712 3713 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3714 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3715 SDValue ShiftLeftHi = 3716 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3717 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3718 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3719 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3720 SDValue HiFalse = 3721 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3722 3723 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3724 3725 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3726 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3727 3728 SDValue Parts[2] = {Lo, Hi}; 3729 return DAG.getMergeValues(Parts, DL); 3730 } 3731 3732 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3733 // legal equivalently-sized i8 type, so we can use that as a go-between. 3734 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3735 SelectionDAG &DAG) const { 3736 SDLoc DL(Op); 3737 MVT VT = Op.getSimpleValueType(); 3738 SDValue SplatVal = Op.getOperand(0); 3739 // All-zeros or all-ones splats are handled specially. 3740 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3741 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3742 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3743 } 3744 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3745 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3746 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3747 } 3748 MVT XLenVT = Subtarget.getXLenVT(); 3749 assert(SplatVal.getValueType() == XLenVT && 3750 "Unexpected type for i1 splat value"); 3751 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3752 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3753 DAG.getConstant(1, DL, XLenVT)); 3754 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3755 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3756 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3757 } 3758 3759 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3760 // illegal (currently only vXi64 RV32). 3761 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3762 // them to SPLAT_VECTOR_I64 3763 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3764 SelectionDAG &DAG) const { 3765 SDLoc DL(Op); 3766 MVT VecVT = Op.getSimpleValueType(); 3767 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3768 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3769 3770 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3771 SDValue Lo = Op.getOperand(0); 3772 SDValue Hi = Op.getOperand(1); 3773 3774 if (VecVT.isFixedLengthVector()) { 3775 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3776 SDLoc DL(Op); 3777 SDValue Mask, VL; 3778 std::tie(Mask, VL) = 3779 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3780 3781 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3782 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3783 } 3784 3785 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3786 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3787 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3788 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3789 // node in order to try and match RVV vector/scalar instructions. 3790 if ((LoC >> 31) == HiC) 3791 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3792 } 3793 3794 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3795 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3796 isa<ConstantSDNode>(Hi.getOperand(1)) && 3797 Hi.getConstantOperandVal(1) == 31) 3798 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3799 3800 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3801 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3802 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3803 } 3804 3805 // Custom-lower extensions from mask vectors by using a vselect either with 1 3806 // for zero/any-extension or -1 for sign-extension: 3807 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3808 // Note that any-extension is lowered identically to zero-extension. 3809 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3810 int64_t ExtTrueVal) const { 3811 SDLoc DL(Op); 3812 MVT VecVT = Op.getSimpleValueType(); 3813 SDValue Src = Op.getOperand(0); 3814 // Only custom-lower extensions from mask types 3815 assert(Src.getValueType().isVector() && 3816 Src.getValueType().getVectorElementType() == MVT::i1); 3817 3818 MVT XLenVT = Subtarget.getXLenVT(); 3819 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3820 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3821 3822 if (VecVT.isScalableVector()) { 3823 // Be careful not to introduce illegal scalar types at this stage, and be 3824 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3825 // illegal and must be expanded. Since we know that the constants are 3826 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3827 bool IsRV32E64 = 3828 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3829 3830 if (!IsRV32E64) { 3831 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3832 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3833 } else { 3834 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3835 SplatTrueVal = 3836 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3837 } 3838 3839 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3840 } 3841 3842 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3843 MVT I1ContainerVT = 3844 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3845 3846 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3847 3848 SDValue Mask, VL; 3849 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3850 3851 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3852 SplatTrueVal = 3853 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3854 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3855 SplatTrueVal, SplatZero, VL); 3856 3857 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3858 } 3859 3860 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3861 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3862 MVT ExtVT = Op.getSimpleValueType(); 3863 // Only custom-lower extensions from fixed-length vector types. 3864 if (!ExtVT.isFixedLengthVector()) 3865 return Op; 3866 MVT VT = Op.getOperand(0).getSimpleValueType(); 3867 // Grab the canonical container type for the extended type. Infer the smaller 3868 // type from that to ensure the same number of vector elements, as we know 3869 // the LMUL will be sufficient to hold the smaller type. 3870 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3871 // Get the extended container type manually to ensure the same number of 3872 // vector elements between source and dest. 3873 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3874 ContainerExtVT.getVectorElementCount()); 3875 3876 SDValue Op1 = 3877 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3878 3879 SDLoc DL(Op); 3880 SDValue Mask, VL; 3881 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3882 3883 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3884 3885 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3886 } 3887 3888 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3889 // setcc operation: 3890 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3891 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3892 SelectionDAG &DAG) const { 3893 SDLoc DL(Op); 3894 EVT MaskVT = Op.getValueType(); 3895 // Only expect to custom-lower truncations to mask types 3896 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3897 "Unexpected type for vector mask lowering"); 3898 SDValue Src = Op.getOperand(0); 3899 MVT VecVT = Src.getSimpleValueType(); 3900 3901 // If this is a fixed vector, we need to convert it to a scalable vector. 3902 MVT ContainerVT = VecVT; 3903 if (VecVT.isFixedLengthVector()) { 3904 ContainerVT = getContainerForFixedLengthVector(VecVT); 3905 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3906 } 3907 3908 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3909 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3910 3911 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3912 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3913 3914 if (VecVT.isScalableVector()) { 3915 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3916 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3917 } 3918 3919 SDValue Mask, VL; 3920 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3921 3922 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3923 SDValue Trunc = 3924 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3925 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3926 DAG.getCondCode(ISD::SETNE), Mask, VL); 3927 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3928 } 3929 3930 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3931 // first position of a vector, and that vector is slid up to the insert index. 3932 // By limiting the active vector length to index+1 and merging with the 3933 // original vector (with an undisturbed tail policy for elements >= VL), we 3934 // achieve the desired result of leaving all elements untouched except the one 3935 // at VL-1, which is replaced with the desired value. 3936 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3937 SelectionDAG &DAG) const { 3938 SDLoc DL(Op); 3939 MVT VecVT = Op.getSimpleValueType(); 3940 SDValue Vec = Op.getOperand(0); 3941 SDValue Val = Op.getOperand(1); 3942 SDValue Idx = Op.getOperand(2); 3943 3944 if (VecVT.getVectorElementType() == MVT::i1) { 3945 // FIXME: For now we just promote to an i8 vector and insert into that, 3946 // but this is probably not optimal. 3947 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3948 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3949 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3950 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3951 } 3952 3953 MVT ContainerVT = VecVT; 3954 // If the operand is a fixed-length vector, convert to a scalable one. 3955 if (VecVT.isFixedLengthVector()) { 3956 ContainerVT = getContainerForFixedLengthVector(VecVT); 3957 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3958 } 3959 3960 MVT XLenVT = Subtarget.getXLenVT(); 3961 3962 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3963 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3964 // Even i64-element vectors on RV32 can be lowered without scalar 3965 // legalization if the most-significant 32 bits of the value are not affected 3966 // by the sign-extension of the lower 32 bits. 3967 // TODO: We could also catch sign extensions of a 32-bit value. 3968 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3969 const auto *CVal = cast<ConstantSDNode>(Val); 3970 if (isInt<32>(CVal->getSExtValue())) { 3971 IsLegalInsert = true; 3972 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3973 } 3974 } 3975 3976 SDValue Mask, VL; 3977 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3978 3979 SDValue ValInVec; 3980 3981 if (IsLegalInsert) { 3982 unsigned Opc = 3983 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3984 if (isNullConstant(Idx)) { 3985 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3986 if (!VecVT.isFixedLengthVector()) 3987 return Vec; 3988 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3989 } 3990 ValInVec = 3991 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3992 } else { 3993 // On RV32, i64-element vectors must be specially handled to place the 3994 // value at element 0, by using two vslide1up instructions in sequence on 3995 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3996 // this. 3997 SDValue One = DAG.getConstant(1, DL, XLenVT); 3998 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3999 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4000 MVT I32ContainerVT = 4001 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4002 SDValue I32Mask = 4003 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4004 // Limit the active VL to two. 4005 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4006 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4007 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4008 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 4009 InsertI64VL); 4010 // First slide in the hi value, then the lo in underneath it. 4011 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4012 ValHi, I32Mask, InsertI64VL); 4013 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4014 ValLo, I32Mask, InsertI64VL); 4015 // Bitcast back to the right container type. 4016 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4017 } 4018 4019 // Now that the value is in a vector, slide it into position. 4020 SDValue InsertVL = 4021 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4022 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4023 ValInVec, Idx, Mask, InsertVL); 4024 if (!VecVT.isFixedLengthVector()) 4025 return Slideup; 4026 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4027 } 4028 4029 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4030 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4031 // types this is done using VMV_X_S to allow us to glean information about the 4032 // sign bits of the result. 4033 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4034 SelectionDAG &DAG) const { 4035 SDLoc DL(Op); 4036 SDValue Idx = Op.getOperand(1); 4037 SDValue Vec = Op.getOperand(0); 4038 EVT EltVT = Op.getValueType(); 4039 MVT VecVT = Vec.getSimpleValueType(); 4040 MVT XLenVT = Subtarget.getXLenVT(); 4041 4042 if (VecVT.getVectorElementType() == MVT::i1) { 4043 // FIXME: For now we just promote to an i8 vector and extract from that, 4044 // but this is probably not optimal. 4045 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4046 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4047 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4048 } 4049 4050 // If this is a fixed vector, we need to convert it to a scalable vector. 4051 MVT ContainerVT = VecVT; 4052 if (VecVT.isFixedLengthVector()) { 4053 ContainerVT = getContainerForFixedLengthVector(VecVT); 4054 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4055 } 4056 4057 // If the index is 0, the vector is already in the right position. 4058 if (!isNullConstant(Idx)) { 4059 // Use a VL of 1 to avoid processing more elements than we need. 4060 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4061 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4062 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4063 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4064 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4065 } 4066 4067 if (!EltVT.isInteger()) { 4068 // Floating-point extracts are handled in TableGen. 4069 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4070 DAG.getConstant(0, DL, XLenVT)); 4071 } 4072 4073 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4074 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4075 } 4076 4077 // Some RVV intrinsics may claim that they want an integer operand to be 4078 // promoted or expanded. 4079 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 4080 const RISCVSubtarget &Subtarget) { 4081 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4082 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4083 "Unexpected opcode"); 4084 4085 if (!Subtarget.hasVInstructions()) 4086 return SDValue(); 4087 4088 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4089 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4090 SDLoc DL(Op); 4091 4092 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4093 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4094 if (!II || !II->SplatOperand) 4095 return SDValue(); 4096 4097 unsigned SplatOp = II->SplatOperand + HasChain; 4098 assert(SplatOp < Op.getNumOperands()); 4099 4100 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4101 SDValue &ScalarOp = Operands[SplatOp]; 4102 MVT OpVT = ScalarOp.getSimpleValueType(); 4103 MVT XLenVT = Subtarget.getXLenVT(); 4104 4105 // If this isn't a scalar, or its type is XLenVT we're done. 4106 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4107 return SDValue(); 4108 4109 // Simplest case is that the operand needs to be promoted to XLenVT. 4110 if (OpVT.bitsLT(XLenVT)) { 4111 // If the operand is a constant, sign extend to increase our chances 4112 // of being able to use a .vi instruction. ANY_EXTEND would become a 4113 // a zero extend and the simm5 check in isel would fail. 4114 // FIXME: Should we ignore the upper bits in isel instead? 4115 unsigned ExtOpc = 4116 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4117 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4118 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4119 } 4120 4121 // Use the previous operand to get the vXi64 VT. The result might be a mask 4122 // VT for compares. Using the previous operand assumes that the previous 4123 // operand will never have a smaller element size than a scalar operand and 4124 // that a widening operation never uses SEW=64. 4125 // NOTE: If this fails the below assert, we can probably just find the 4126 // element count from any operand or result and use it to construct the VT. 4127 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 4128 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4129 4130 // The more complex case is when the scalar is larger than XLenVT. 4131 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4132 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4133 4134 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4135 // on the instruction to sign-extend since SEW>XLEN. 4136 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4137 if (isInt<32>(CVal->getSExtValue())) { 4138 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4139 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4140 } 4141 } 4142 4143 // We need to convert the scalar to a splat vector. 4144 // FIXME: Can we implicitly truncate the scalar if it is known to 4145 // be sign extended? 4146 // VL should be the last operand. 4147 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 4148 assert(VL.getValueType() == XLenVT); 4149 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4150 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4151 } 4152 4153 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4154 SelectionDAG &DAG) const { 4155 unsigned IntNo = Op.getConstantOperandVal(0); 4156 SDLoc DL(Op); 4157 MVT XLenVT = Subtarget.getXLenVT(); 4158 4159 switch (IntNo) { 4160 default: 4161 break; // Don't custom lower most intrinsics. 4162 case Intrinsic::thread_pointer: { 4163 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4164 return DAG.getRegister(RISCV::X4, PtrVT); 4165 } 4166 case Intrinsic::riscv_orc_b: 4167 // Lower to the GORCI encoding for orc.b. 4168 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 4169 DAG.getConstant(7, DL, XLenVT)); 4170 case Intrinsic::riscv_grev: 4171 case Intrinsic::riscv_gorc: { 4172 unsigned Opc = 4173 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4174 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4175 } 4176 case Intrinsic::riscv_shfl: 4177 case Intrinsic::riscv_unshfl: { 4178 unsigned Opc = 4179 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4180 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4181 } 4182 case Intrinsic::riscv_bcompress: 4183 case Intrinsic::riscv_bdecompress: { 4184 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4185 : RISCVISD::BDECOMPRESS; 4186 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4187 } 4188 case Intrinsic::riscv_bfp: 4189 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4190 Op.getOperand(2)); 4191 case Intrinsic::riscv_vmv_x_s: 4192 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4193 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4194 Op.getOperand(1)); 4195 case Intrinsic::riscv_vmv_v_x: 4196 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4197 Op.getSimpleValueType(), DL, DAG, Subtarget); 4198 case Intrinsic::riscv_vfmv_v_f: 4199 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4200 Op.getOperand(1), Op.getOperand(2)); 4201 case Intrinsic::riscv_vmv_s_x: { 4202 SDValue Scalar = Op.getOperand(2); 4203 4204 if (Scalar.getValueType().bitsLE(XLenVT)) { 4205 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4206 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4207 Op.getOperand(1), Scalar, Op.getOperand(3)); 4208 } 4209 4210 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4211 4212 // This is an i64 value that lives in two scalar registers. We have to 4213 // insert this in a convoluted way. First we build vXi64 splat containing 4214 // the/ two values that we assemble using some bit math. Next we'll use 4215 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4216 // to merge element 0 from our splat into the source vector. 4217 // FIXME: This is probably not the best way to do this, but it is 4218 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4219 // point. 4220 // sw lo, (a0) 4221 // sw hi, 4(a0) 4222 // vlse vX, (a0) 4223 // 4224 // vid.v vVid 4225 // vmseq.vx mMask, vVid, 0 4226 // vmerge.vvm vDest, vSrc, vVal, mMask 4227 MVT VT = Op.getSimpleValueType(); 4228 SDValue Vec = Op.getOperand(1); 4229 SDValue VL = Op.getOperand(3); 4230 4231 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4232 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4233 DAG.getConstant(0, DL, MVT::i32), VL); 4234 4235 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4236 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4237 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4238 SDValue SelectCond = 4239 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4240 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4241 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4242 Vec, VL); 4243 } 4244 case Intrinsic::riscv_vslide1up: 4245 case Intrinsic::riscv_vslide1down: 4246 case Intrinsic::riscv_vslide1up_mask: 4247 case Intrinsic::riscv_vslide1down_mask: { 4248 // We need to special case these when the scalar is larger than XLen. 4249 unsigned NumOps = Op.getNumOperands(); 4250 bool IsMasked = NumOps == 7; 4251 unsigned OpOffset = IsMasked ? 1 : 0; 4252 SDValue Scalar = Op.getOperand(2 + OpOffset); 4253 if (Scalar.getValueType().bitsLE(XLenVT)) 4254 break; 4255 4256 // Splatting a sign extended constant is fine. 4257 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4258 if (isInt<32>(CVal->getSExtValue())) 4259 break; 4260 4261 MVT VT = Op.getSimpleValueType(); 4262 assert(VT.getVectorElementType() == MVT::i64 && 4263 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4264 4265 // Convert the vector source to the equivalent nxvXi32 vector. 4266 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4267 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4268 4269 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4270 DAG.getConstant(0, DL, XLenVT)); 4271 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4272 DAG.getConstant(1, DL, XLenVT)); 4273 4274 // Double the VL since we halved SEW. 4275 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 4276 SDValue I32VL = 4277 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4278 4279 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4280 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4281 4282 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4283 // instructions. 4284 if (IntNo == Intrinsic::riscv_vslide1up || 4285 IntNo == Intrinsic::riscv_vslide1up_mask) { 4286 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4287 I32Mask, I32VL); 4288 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4289 I32Mask, I32VL); 4290 } else { 4291 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4292 I32Mask, I32VL); 4293 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4294 I32Mask, I32VL); 4295 } 4296 4297 // Convert back to nxvXi64. 4298 Vec = DAG.getBitcast(VT, Vec); 4299 4300 if (!IsMasked) 4301 return Vec; 4302 4303 // Apply mask after the operation. 4304 SDValue Mask = Op.getOperand(NumOps - 3); 4305 SDValue MaskedOff = Op.getOperand(1); 4306 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4307 } 4308 } 4309 4310 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4311 } 4312 4313 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4314 SelectionDAG &DAG) const { 4315 unsigned IntNo = Op.getConstantOperandVal(1); 4316 switch (IntNo) { 4317 default: 4318 break; 4319 case Intrinsic::riscv_masked_strided_load: { 4320 SDLoc DL(Op); 4321 MVT XLenVT = Subtarget.getXLenVT(); 4322 4323 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4324 // the selection of the masked intrinsics doesn't do this for us. 4325 SDValue Mask = Op.getOperand(5); 4326 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4327 4328 MVT VT = Op->getSimpleValueType(0); 4329 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4330 4331 SDValue PassThru = Op.getOperand(2); 4332 if (!IsUnmasked) { 4333 MVT MaskVT = 4334 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4335 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4336 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4337 } 4338 4339 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4340 4341 SDValue IntID = DAG.getTargetConstant( 4342 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4343 XLenVT); 4344 4345 auto *Load = cast<MemIntrinsicSDNode>(Op); 4346 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4347 if (!IsUnmasked) 4348 Ops.push_back(PassThru); 4349 Ops.push_back(Op.getOperand(3)); // Ptr 4350 Ops.push_back(Op.getOperand(4)); // Stride 4351 if (!IsUnmasked) 4352 Ops.push_back(Mask); 4353 Ops.push_back(VL); 4354 if (!IsUnmasked) { 4355 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4356 Ops.push_back(Policy); 4357 } 4358 4359 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4360 SDValue Result = 4361 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4362 Load->getMemoryVT(), Load->getMemOperand()); 4363 SDValue Chain = Result.getValue(1); 4364 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4365 return DAG.getMergeValues({Result, Chain}, DL); 4366 } 4367 } 4368 4369 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4370 } 4371 4372 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4373 SelectionDAG &DAG) const { 4374 unsigned IntNo = Op.getConstantOperandVal(1); 4375 switch (IntNo) { 4376 default: 4377 break; 4378 case Intrinsic::riscv_masked_strided_store: { 4379 SDLoc DL(Op); 4380 MVT XLenVT = Subtarget.getXLenVT(); 4381 4382 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4383 // the selection of the masked intrinsics doesn't do this for us. 4384 SDValue Mask = Op.getOperand(5); 4385 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4386 4387 SDValue Val = Op.getOperand(2); 4388 MVT VT = Val.getSimpleValueType(); 4389 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4390 4391 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4392 if (!IsUnmasked) { 4393 MVT MaskVT = 4394 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4395 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4396 } 4397 4398 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4399 4400 SDValue IntID = DAG.getTargetConstant( 4401 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4402 XLenVT); 4403 4404 auto *Store = cast<MemIntrinsicSDNode>(Op); 4405 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4406 Ops.push_back(Val); 4407 Ops.push_back(Op.getOperand(3)); // Ptr 4408 Ops.push_back(Op.getOperand(4)); // Stride 4409 if (!IsUnmasked) 4410 Ops.push_back(Mask); 4411 Ops.push_back(VL); 4412 4413 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4414 Ops, Store->getMemoryVT(), 4415 Store->getMemOperand()); 4416 } 4417 } 4418 4419 return SDValue(); 4420 } 4421 4422 static MVT getLMUL1VT(MVT VT) { 4423 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4424 "Unexpected vector MVT"); 4425 return MVT::getScalableVectorVT( 4426 VT.getVectorElementType(), 4427 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4428 } 4429 4430 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4431 switch (ISDOpcode) { 4432 default: 4433 llvm_unreachable("Unhandled reduction"); 4434 case ISD::VECREDUCE_ADD: 4435 return RISCVISD::VECREDUCE_ADD_VL; 4436 case ISD::VECREDUCE_UMAX: 4437 return RISCVISD::VECREDUCE_UMAX_VL; 4438 case ISD::VECREDUCE_SMAX: 4439 return RISCVISD::VECREDUCE_SMAX_VL; 4440 case ISD::VECREDUCE_UMIN: 4441 return RISCVISD::VECREDUCE_UMIN_VL; 4442 case ISD::VECREDUCE_SMIN: 4443 return RISCVISD::VECREDUCE_SMIN_VL; 4444 case ISD::VECREDUCE_AND: 4445 return RISCVISD::VECREDUCE_AND_VL; 4446 case ISD::VECREDUCE_OR: 4447 return RISCVISD::VECREDUCE_OR_VL; 4448 case ISD::VECREDUCE_XOR: 4449 return RISCVISD::VECREDUCE_XOR_VL; 4450 } 4451 } 4452 4453 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4454 SelectionDAG &DAG, 4455 bool IsVP) const { 4456 SDLoc DL(Op); 4457 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4458 MVT VecVT = Vec.getSimpleValueType(); 4459 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4460 Op.getOpcode() == ISD::VECREDUCE_OR || 4461 Op.getOpcode() == ISD::VECREDUCE_XOR || 4462 Op.getOpcode() == ISD::VP_REDUCE_AND || 4463 Op.getOpcode() == ISD::VP_REDUCE_OR || 4464 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4465 "Unexpected reduction lowering"); 4466 4467 MVT XLenVT = Subtarget.getXLenVT(); 4468 assert(Op.getValueType() == XLenVT && 4469 "Expected reduction output to be legalized to XLenVT"); 4470 4471 MVT ContainerVT = VecVT; 4472 if (VecVT.isFixedLengthVector()) { 4473 ContainerVT = getContainerForFixedLengthVector(VecVT); 4474 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4475 } 4476 4477 SDValue Mask, VL; 4478 if (IsVP) { 4479 Mask = Op.getOperand(2); 4480 VL = Op.getOperand(3); 4481 } else { 4482 std::tie(Mask, VL) = 4483 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4484 } 4485 4486 unsigned BaseOpc; 4487 ISD::CondCode CC; 4488 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4489 4490 switch (Op.getOpcode()) { 4491 default: 4492 llvm_unreachable("Unhandled reduction"); 4493 case ISD::VECREDUCE_AND: 4494 case ISD::VP_REDUCE_AND: { 4495 // vcpop ~x == 0 4496 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4497 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4498 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4499 CC = ISD::SETEQ; 4500 BaseOpc = ISD::AND; 4501 break; 4502 } 4503 case ISD::VECREDUCE_OR: 4504 case ISD::VP_REDUCE_OR: 4505 // vcpop x != 0 4506 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4507 CC = ISD::SETNE; 4508 BaseOpc = ISD::OR; 4509 break; 4510 case ISD::VECREDUCE_XOR: 4511 case ISD::VP_REDUCE_XOR: { 4512 // ((vcpop x) & 1) != 0 4513 SDValue One = DAG.getConstant(1, DL, XLenVT); 4514 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4515 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4516 CC = ISD::SETNE; 4517 BaseOpc = ISD::XOR; 4518 break; 4519 } 4520 } 4521 4522 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4523 4524 if (!IsVP) 4525 return SetCC; 4526 4527 // Now include the start value in the operation. 4528 // Note that we must return the start value when no elements are operated 4529 // upon. The vcpop instructions we've emitted in each case above will return 4530 // 0 for an inactive vector, and so we've already received the neutral value: 4531 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4532 // can simply include the start value. 4533 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4534 } 4535 4536 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4537 SelectionDAG &DAG) const { 4538 SDLoc DL(Op); 4539 SDValue Vec = Op.getOperand(0); 4540 EVT VecEVT = Vec.getValueType(); 4541 4542 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4543 4544 // Due to ordering in legalize types we may have a vector type that needs to 4545 // be split. Do that manually so we can get down to a legal type. 4546 while (getTypeAction(*DAG.getContext(), VecEVT) == 4547 TargetLowering::TypeSplitVector) { 4548 SDValue Lo, Hi; 4549 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4550 VecEVT = Lo.getValueType(); 4551 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4552 } 4553 4554 // TODO: The type may need to be widened rather than split. Or widened before 4555 // it can be split. 4556 if (!isTypeLegal(VecEVT)) 4557 return SDValue(); 4558 4559 MVT VecVT = VecEVT.getSimpleVT(); 4560 MVT VecEltVT = VecVT.getVectorElementType(); 4561 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4562 4563 MVT ContainerVT = VecVT; 4564 if (VecVT.isFixedLengthVector()) { 4565 ContainerVT = getContainerForFixedLengthVector(VecVT); 4566 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4567 } 4568 4569 MVT M1VT = getLMUL1VT(ContainerVT); 4570 MVT XLenVT = Subtarget.getXLenVT(); 4571 4572 SDValue Mask, VL; 4573 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4574 4575 SDValue NeutralElem = 4576 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4577 SDValue IdentitySplat = lowerScalarSplat( 4578 NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4579 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4580 IdentitySplat, Mask, VL); 4581 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4582 DAG.getConstant(0, DL, XLenVT)); 4583 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4584 } 4585 4586 // Given a reduction op, this function returns the matching reduction opcode, 4587 // the vector SDValue and the scalar SDValue required to lower this to a 4588 // RISCVISD node. 4589 static std::tuple<unsigned, SDValue, SDValue> 4590 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4591 SDLoc DL(Op); 4592 auto Flags = Op->getFlags(); 4593 unsigned Opcode = Op.getOpcode(); 4594 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4595 switch (Opcode) { 4596 default: 4597 llvm_unreachable("Unhandled reduction"); 4598 case ISD::VECREDUCE_FADD: { 4599 // Use positive zero if we can. It is cheaper to materialize. 4600 SDValue Zero = 4601 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 4602 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 4603 } 4604 case ISD::VECREDUCE_SEQ_FADD: 4605 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4606 Op.getOperand(0)); 4607 case ISD::VECREDUCE_FMIN: 4608 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4609 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4610 case ISD::VECREDUCE_FMAX: 4611 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4612 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4613 } 4614 } 4615 4616 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4617 SelectionDAG &DAG) const { 4618 SDLoc DL(Op); 4619 MVT VecEltVT = Op.getSimpleValueType(); 4620 4621 unsigned RVVOpcode; 4622 SDValue VectorVal, ScalarVal; 4623 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4624 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4625 MVT VecVT = VectorVal.getSimpleValueType(); 4626 4627 MVT ContainerVT = VecVT; 4628 if (VecVT.isFixedLengthVector()) { 4629 ContainerVT = getContainerForFixedLengthVector(VecVT); 4630 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4631 } 4632 4633 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4634 MVT XLenVT = Subtarget.getXLenVT(); 4635 4636 SDValue Mask, VL; 4637 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4638 4639 SDValue ScalarSplat = lowerScalarSplat( 4640 ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4641 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4642 VectorVal, ScalarSplat, Mask, VL); 4643 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4644 DAG.getConstant(0, DL, XLenVT)); 4645 } 4646 4647 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4648 switch (ISDOpcode) { 4649 default: 4650 llvm_unreachable("Unhandled reduction"); 4651 case ISD::VP_REDUCE_ADD: 4652 return RISCVISD::VECREDUCE_ADD_VL; 4653 case ISD::VP_REDUCE_UMAX: 4654 return RISCVISD::VECREDUCE_UMAX_VL; 4655 case ISD::VP_REDUCE_SMAX: 4656 return RISCVISD::VECREDUCE_SMAX_VL; 4657 case ISD::VP_REDUCE_UMIN: 4658 return RISCVISD::VECREDUCE_UMIN_VL; 4659 case ISD::VP_REDUCE_SMIN: 4660 return RISCVISD::VECREDUCE_SMIN_VL; 4661 case ISD::VP_REDUCE_AND: 4662 return RISCVISD::VECREDUCE_AND_VL; 4663 case ISD::VP_REDUCE_OR: 4664 return RISCVISD::VECREDUCE_OR_VL; 4665 case ISD::VP_REDUCE_XOR: 4666 return RISCVISD::VECREDUCE_XOR_VL; 4667 case ISD::VP_REDUCE_FADD: 4668 return RISCVISD::VECREDUCE_FADD_VL; 4669 case ISD::VP_REDUCE_SEQ_FADD: 4670 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4671 case ISD::VP_REDUCE_FMAX: 4672 return RISCVISD::VECREDUCE_FMAX_VL; 4673 case ISD::VP_REDUCE_FMIN: 4674 return RISCVISD::VECREDUCE_FMIN_VL; 4675 } 4676 } 4677 4678 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4679 SelectionDAG &DAG) const { 4680 SDLoc DL(Op); 4681 SDValue Vec = Op.getOperand(1); 4682 EVT VecEVT = Vec.getValueType(); 4683 4684 // TODO: The type may need to be widened rather than split. Or widened before 4685 // it can be split. 4686 if (!isTypeLegal(VecEVT)) 4687 return SDValue(); 4688 4689 MVT VecVT = VecEVT.getSimpleVT(); 4690 MVT VecEltVT = VecVT.getVectorElementType(); 4691 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4692 4693 MVT ContainerVT = VecVT; 4694 if (VecVT.isFixedLengthVector()) { 4695 ContainerVT = getContainerForFixedLengthVector(VecVT); 4696 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4697 } 4698 4699 SDValue VL = Op.getOperand(3); 4700 SDValue Mask = Op.getOperand(2); 4701 4702 MVT M1VT = getLMUL1VT(ContainerVT); 4703 MVT XLenVT = Subtarget.getXLenVT(); 4704 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4705 4706 SDValue StartSplat = 4707 lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, 4708 DL, DAG, Subtarget); 4709 SDValue Reduction = 4710 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4711 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4712 DAG.getConstant(0, DL, XLenVT)); 4713 if (!VecVT.isInteger()) 4714 return Elt0; 4715 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4716 } 4717 4718 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4719 SelectionDAG &DAG) const { 4720 SDValue Vec = Op.getOperand(0); 4721 SDValue SubVec = Op.getOperand(1); 4722 MVT VecVT = Vec.getSimpleValueType(); 4723 MVT SubVecVT = SubVec.getSimpleValueType(); 4724 4725 SDLoc DL(Op); 4726 MVT XLenVT = Subtarget.getXLenVT(); 4727 unsigned OrigIdx = Op.getConstantOperandVal(2); 4728 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4729 4730 // We don't have the ability to slide mask vectors up indexed by their i1 4731 // elements; the smallest we can do is i8. Often we are able to bitcast to 4732 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4733 // into a scalable one, we might not necessarily have enough scalable 4734 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4735 if (SubVecVT.getVectorElementType() == MVT::i1 && 4736 (OrigIdx != 0 || !Vec.isUndef())) { 4737 if (VecVT.getVectorMinNumElements() >= 8 && 4738 SubVecVT.getVectorMinNumElements() >= 8) { 4739 assert(OrigIdx % 8 == 0 && "Invalid index"); 4740 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4741 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4742 "Unexpected mask vector lowering"); 4743 OrigIdx /= 8; 4744 SubVecVT = 4745 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4746 SubVecVT.isScalableVector()); 4747 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4748 VecVT.isScalableVector()); 4749 Vec = DAG.getBitcast(VecVT, Vec); 4750 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4751 } else { 4752 // We can't slide this mask vector up indexed by its i1 elements. 4753 // This poses a problem when we wish to insert a scalable vector which 4754 // can't be re-expressed as a larger type. Just choose the slow path and 4755 // extend to a larger type, then truncate back down. 4756 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4757 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4758 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4759 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4760 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4761 Op.getOperand(2)); 4762 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4763 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4764 } 4765 } 4766 4767 // If the subvector vector is a fixed-length type, we cannot use subregister 4768 // manipulation to simplify the codegen; we don't know which register of a 4769 // LMUL group contains the specific subvector as we only know the minimum 4770 // register size. Therefore we must slide the vector group up the full 4771 // amount. 4772 if (SubVecVT.isFixedLengthVector()) { 4773 if (OrigIdx == 0 && Vec.isUndef()) 4774 return Op; 4775 MVT ContainerVT = VecVT; 4776 if (VecVT.isFixedLengthVector()) { 4777 ContainerVT = getContainerForFixedLengthVector(VecVT); 4778 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4779 } 4780 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4781 DAG.getUNDEF(ContainerVT), SubVec, 4782 DAG.getConstant(0, DL, XLenVT)); 4783 SDValue Mask = 4784 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4785 // Set the vector length to only the number of elements we care about. Note 4786 // that for slideup this includes the offset. 4787 SDValue VL = 4788 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4789 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4790 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4791 SubVec, SlideupAmt, Mask, VL); 4792 if (VecVT.isFixedLengthVector()) 4793 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4794 return DAG.getBitcast(Op.getValueType(), Slideup); 4795 } 4796 4797 unsigned SubRegIdx, RemIdx; 4798 std::tie(SubRegIdx, RemIdx) = 4799 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4800 VecVT, SubVecVT, OrigIdx, TRI); 4801 4802 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4803 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4804 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4805 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4806 4807 // 1. If the Idx has been completely eliminated and this subvector's size is 4808 // a vector register or a multiple thereof, or the surrounding elements are 4809 // undef, then this is a subvector insert which naturally aligns to a vector 4810 // register. These can easily be handled using subregister manipulation. 4811 // 2. If the subvector is smaller than a vector register, then the insertion 4812 // must preserve the undisturbed elements of the register. We do this by 4813 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4814 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4815 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4816 // LMUL=1 type back into the larger vector (resolving to another subregister 4817 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4818 // to avoid allocating a large register group to hold our subvector. 4819 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4820 return Op; 4821 4822 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4823 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4824 // (in our case undisturbed). This means we can set up a subvector insertion 4825 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4826 // size of the subvector. 4827 MVT InterSubVT = VecVT; 4828 SDValue AlignedExtract = Vec; 4829 unsigned AlignedIdx = OrigIdx - RemIdx; 4830 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4831 InterSubVT = getLMUL1VT(VecVT); 4832 // Extract a subvector equal to the nearest full vector register type. This 4833 // should resolve to a EXTRACT_SUBREG instruction. 4834 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4835 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4836 } 4837 4838 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4839 // For scalable vectors this must be further multiplied by vscale. 4840 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4841 4842 SDValue Mask, VL; 4843 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4844 4845 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4846 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4847 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4848 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4849 4850 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4851 DAG.getUNDEF(InterSubVT), SubVec, 4852 DAG.getConstant(0, DL, XLenVT)); 4853 4854 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4855 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4856 4857 // If required, insert this subvector back into the correct vector register. 4858 // This should resolve to an INSERT_SUBREG instruction. 4859 if (VecVT.bitsGT(InterSubVT)) 4860 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4861 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4862 4863 // We might have bitcast from a mask type: cast back to the original type if 4864 // required. 4865 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4866 } 4867 4868 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4869 SelectionDAG &DAG) const { 4870 SDValue Vec = Op.getOperand(0); 4871 MVT SubVecVT = Op.getSimpleValueType(); 4872 MVT VecVT = Vec.getSimpleValueType(); 4873 4874 SDLoc DL(Op); 4875 MVT XLenVT = Subtarget.getXLenVT(); 4876 unsigned OrigIdx = Op.getConstantOperandVal(1); 4877 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4878 4879 // We don't have the ability to slide mask vectors down indexed by their i1 4880 // elements; the smallest we can do is i8. Often we are able to bitcast to 4881 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4882 // from a scalable one, we might not necessarily have enough scalable 4883 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4884 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4885 if (VecVT.getVectorMinNumElements() >= 8 && 4886 SubVecVT.getVectorMinNumElements() >= 8) { 4887 assert(OrigIdx % 8 == 0 && "Invalid index"); 4888 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4889 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4890 "Unexpected mask vector lowering"); 4891 OrigIdx /= 8; 4892 SubVecVT = 4893 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4894 SubVecVT.isScalableVector()); 4895 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4896 VecVT.isScalableVector()); 4897 Vec = DAG.getBitcast(VecVT, Vec); 4898 } else { 4899 // We can't slide this mask vector down, indexed by its i1 elements. 4900 // This poses a problem when we wish to extract a scalable vector which 4901 // can't be re-expressed as a larger type. Just choose the slow path and 4902 // extend to a larger type, then truncate back down. 4903 // TODO: We could probably improve this when extracting certain fixed 4904 // from fixed, where we can extract as i8 and shift the correct element 4905 // right to reach the desired subvector? 4906 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4907 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4908 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4909 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4910 Op.getOperand(1)); 4911 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4912 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4913 } 4914 } 4915 4916 // If the subvector vector is a fixed-length type, we cannot use subregister 4917 // manipulation to simplify the codegen; we don't know which register of a 4918 // LMUL group contains the specific subvector as we only know the minimum 4919 // register size. Therefore we must slide the vector group down the full 4920 // amount. 4921 if (SubVecVT.isFixedLengthVector()) { 4922 // With an index of 0 this is a cast-like subvector, which can be performed 4923 // with subregister operations. 4924 if (OrigIdx == 0) 4925 return Op; 4926 MVT ContainerVT = VecVT; 4927 if (VecVT.isFixedLengthVector()) { 4928 ContainerVT = getContainerForFixedLengthVector(VecVT); 4929 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4930 } 4931 SDValue Mask = 4932 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4933 // Set the vector length to only the number of elements we care about. This 4934 // avoids sliding down elements we're going to discard straight away. 4935 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4936 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4937 SDValue Slidedown = 4938 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4939 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4940 // Now we can use a cast-like subvector extract to get the result. 4941 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4942 DAG.getConstant(0, DL, XLenVT)); 4943 return DAG.getBitcast(Op.getValueType(), Slidedown); 4944 } 4945 4946 unsigned SubRegIdx, RemIdx; 4947 std::tie(SubRegIdx, RemIdx) = 4948 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4949 VecVT, SubVecVT, OrigIdx, TRI); 4950 4951 // If the Idx has been completely eliminated then this is a subvector extract 4952 // which naturally aligns to a vector register. These can easily be handled 4953 // using subregister manipulation. 4954 if (RemIdx == 0) 4955 return Op; 4956 4957 // Else we must shift our vector register directly to extract the subvector. 4958 // Do this using VSLIDEDOWN. 4959 4960 // If the vector type is an LMUL-group type, extract a subvector equal to the 4961 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4962 // instruction. 4963 MVT InterSubVT = VecVT; 4964 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4965 InterSubVT = getLMUL1VT(VecVT); 4966 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4967 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4968 } 4969 4970 // Slide this vector register down by the desired number of elements in order 4971 // to place the desired subvector starting at element 0. 4972 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4973 // For scalable vectors this must be further multiplied by vscale. 4974 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4975 4976 SDValue Mask, VL; 4977 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4978 SDValue Slidedown = 4979 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4980 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4981 4982 // Now the vector is in the right position, extract our final subvector. This 4983 // should resolve to a COPY. 4984 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4985 DAG.getConstant(0, DL, XLenVT)); 4986 4987 // We might have bitcast from a mask type: cast back to the original type if 4988 // required. 4989 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4990 } 4991 4992 // Lower step_vector to the vid instruction. Any non-identity step value must 4993 // be accounted for my manual expansion. 4994 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4995 SelectionDAG &DAG) const { 4996 SDLoc DL(Op); 4997 MVT VT = Op.getSimpleValueType(); 4998 MVT XLenVT = Subtarget.getXLenVT(); 4999 SDValue Mask, VL; 5000 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5001 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5002 uint64_t StepValImm = Op.getConstantOperandVal(0); 5003 if (StepValImm != 1) { 5004 if (isPowerOf2_64(StepValImm)) { 5005 SDValue StepVal = 5006 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 5007 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5008 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5009 } else { 5010 SDValue StepVal = lowerScalarSplat( 5011 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 5012 DL, DAG, Subtarget); 5013 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5014 } 5015 } 5016 return StepVec; 5017 } 5018 5019 // Implement vector_reverse using vrgather.vv with indices determined by 5020 // subtracting the id of each element from (VLMAX-1). This will convert 5021 // the indices like so: 5022 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5023 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5024 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5025 SelectionDAG &DAG) const { 5026 SDLoc DL(Op); 5027 MVT VecVT = Op.getSimpleValueType(); 5028 unsigned EltSize = VecVT.getScalarSizeInBits(); 5029 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5030 5031 unsigned MaxVLMAX = 0; 5032 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5033 if (VectorBitsMax != 0) 5034 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 5035 5036 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5037 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5038 5039 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5040 // to use vrgatherei16.vv. 5041 // TODO: It's also possible to use vrgatherei16.vv for other types to 5042 // decrease register width for the index calculation. 5043 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5044 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5045 // Reverse each half, then reassemble them in reverse order. 5046 // NOTE: It's also possible that after splitting that VLMAX no longer 5047 // requires vrgatherei16.vv. 5048 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5049 SDValue Lo, Hi; 5050 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5051 EVT LoVT, HiVT; 5052 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5053 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5054 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5055 // Reassemble the low and high pieces reversed. 5056 // FIXME: This is a CONCAT_VECTORS. 5057 SDValue Res = 5058 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5059 DAG.getIntPtrConstant(0, DL)); 5060 return DAG.getNode( 5061 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5062 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5063 } 5064 5065 // Just promote the int type to i16 which will double the LMUL. 5066 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5067 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5068 } 5069 5070 MVT XLenVT = Subtarget.getXLenVT(); 5071 SDValue Mask, VL; 5072 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5073 5074 // Calculate VLMAX-1 for the desired SEW. 5075 unsigned MinElts = VecVT.getVectorMinNumElements(); 5076 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5077 DAG.getConstant(MinElts, DL, XLenVT)); 5078 SDValue VLMinus1 = 5079 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5080 5081 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5082 bool IsRV32E64 = 5083 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5084 SDValue SplatVL; 5085 if (!IsRV32E64) 5086 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5087 else 5088 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 5089 5090 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5091 SDValue Indices = 5092 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5093 5094 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5095 } 5096 5097 SDValue 5098 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5099 SelectionDAG &DAG) const { 5100 SDLoc DL(Op); 5101 auto *Load = cast<LoadSDNode>(Op); 5102 5103 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5104 Load->getMemoryVT(), 5105 *Load->getMemOperand()) && 5106 "Expecting a correctly-aligned load"); 5107 5108 MVT VT = Op.getSimpleValueType(); 5109 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5110 5111 SDValue VL = 5112 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5113 5114 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5115 SDValue NewLoad = DAG.getMemIntrinsicNode( 5116 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5117 Load->getMemoryVT(), Load->getMemOperand()); 5118 5119 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5120 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5121 } 5122 5123 SDValue 5124 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5125 SelectionDAG &DAG) const { 5126 SDLoc DL(Op); 5127 auto *Store = cast<StoreSDNode>(Op); 5128 5129 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5130 Store->getMemoryVT(), 5131 *Store->getMemOperand()) && 5132 "Expecting a correctly-aligned store"); 5133 5134 SDValue StoreVal = Store->getValue(); 5135 MVT VT = StoreVal.getSimpleValueType(); 5136 5137 // If the size less than a byte, we need to pad with zeros to make a byte. 5138 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5139 VT = MVT::v8i1; 5140 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5141 DAG.getConstant(0, DL, VT), StoreVal, 5142 DAG.getIntPtrConstant(0, DL)); 5143 } 5144 5145 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5146 5147 SDValue VL = 5148 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5149 5150 SDValue NewValue = 5151 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5152 return DAG.getMemIntrinsicNode( 5153 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5154 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5155 Store->getMemoryVT(), Store->getMemOperand()); 5156 } 5157 5158 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5159 SelectionDAG &DAG) const { 5160 SDLoc DL(Op); 5161 MVT VT = Op.getSimpleValueType(); 5162 5163 const auto *MemSD = cast<MemSDNode>(Op); 5164 EVT MemVT = MemSD->getMemoryVT(); 5165 MachineMemOperand *MMO = MemSD->getMemOperand(); 5166 SDValue Chain = MemSD->getChain(); 5167 SDValue BasePtr = MemSD->getBasePtr(); 5168 5169 SDValue Mask, PassThru, VL; 5170 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5171 Mask = VPLoad->getMask(); 5172 PassThru = DAG.getUNDEF(VT); 5173 VL = VPLoad->getVectorLength(); 5174 } else { 5175 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5176 Mask = MLoad->getMask(); 5177 PassThru = MLoad->getPassThru(); 5178 } 5179 5180 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5181 5182 MVT XLenVT = Subtarget.getXLenVT(); 5183 5184 MVT ContainerVT = VT; 5185 if (VT.isFixedLengthVector()) { 5186 ContainerVT = getContainerForFixedLengthVector(VT); 5187 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5188 if (!IsUnmasked) { 5189 MVT MaskVT = 5190 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5191 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5192 } 5193 } 5194 5195 if (!VL) 5196 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5197 5198 unsigned IntID = 5199 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5200 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5201 if (!IsUnmasked) 5202 Ops.push_back(PassThru); 5203 Ops.push_back(BasePtr); 5204 if (!IsUnmasked) 5205 Ops.push_back(Mask); 5206 Ops.push_back(VL); 5207 if (!IsUnmasked) 5208 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5209 5210 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5211 5212 SDValue Result = 5213 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5214 Chain = Result.getValue(1); 5215 5216 if (VT.isFixedLengthVector()) 5217 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5218 5219 return DAG.getMergeValues({Result, Chain}, DL); 5220 } 5221 5222 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5223 SelectionDAG &DAG) const { 5224 SDLoc DL(Op); 5225 5226 const auto *MemSD = cast<MemSDNode>(Op); 5227 EVT MemVT = MemSD->getMemoryVT(); 5228 MachineMemOperand *MMO = MemSD->getMemOperand(); 5229 SDValue Chain = MemSD->getChain(); 5230 SDValue BasePtr = MemSD->getBasePtr(); 5231 SDValue Val, Mask, VL; 5232 5233 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5234 Val = VPStore->getValue(); 5235 Mask = VPStore->getMask(); 5236 VL = VPStore->getVectorLength(); 5237 } else { 5238 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5239 Val = MStore->getValue(); 5240 Mask = MStore->getMask(); 5241 } 5242 5243 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5244 5245 MVT VT = Val.getSimpleValueType(); 5246 MVT XLenVT = Subtarget.getXLenVT(); 5247 5248 MVT ContainerVT = VT; 5249 if (VT.isFixedLengthVector()) { 5250 ContainerVT = getContainerForFixedLengthVector(VT); 5251 5252 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5253 if (!IsUnmasked) { 5254 MVT MaskVT = 5255 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5256 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5257 } 5258 } 5259 5260 if (!VL) 5261 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5262 5263 unsigned IntID = 5264 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5265 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5266 Ops.push_back(Val); 5267 Ops.push_back(BasePtr); 5268 if (!IsUnmasked) 5269 Ops.push_back(Mask); 5270 Ops.push_back(VL); 5271 5272 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5273 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5274 } 5275 5276 SDValue 5277 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5278 SelectionDAG &DAG) const { 5279 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5280 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5281 5282 MVT VT = Op.getSimpleValueType(); 5283 5284 SDValue Op1 = 5285 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5286 SDValue Op2 = 5287 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5288 5289 SDLoc DL(Op); 5290 SDValue VL = 5291 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5292 5293 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5294 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5295 5296 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5297 Op.getOperand(2), Mask, VL); 5298 5299 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5300 } 5301 5302 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5303 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5304 MVT VT = Op.getSimpleValueType(); 5305 5306 if (VT.getVectorElementType() == MVT::i1) 5307 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5308 5309 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5310 } 5311 5312 SDValue 5313 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5314 SelectionDAG &DAG) const { 5315 unsigned Opc; 5316 switch (Op.getOpcode()) { 5317 default: llvm_unreachable("Unexpected opcode!"); 5318 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5319 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5320 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5321 } 5322 5323 return lowerToScalableOp(Op, DAG, Opc); 5324 } 5325 5326 // Lower vector ABS to smax(X, sub(0, X)). 5327 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5328 SDLoc DL(Op); 5329 MVT VT = Op.getSimpleValueType(); 5330 SDValue X = Op.getOperand(0); 5331 5332 assert(VT.isFixedLengthVector() && "Unexpected type"); 5333 5334 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5335 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5336 5337 SDValue Mask, VL; 5338 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5339 5340 SDValue SplatZero = 5341 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5342 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5343 SDValue NegX = 5344 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5345 SDValue Max = 5346 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5347 5348 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5349 } 5350 5351 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5352 SDValue Op, SelectionDAG &DAG) const { 5353 SDLoc DL(Op); 5354 MVT VT = Op.getSimpleValueType(); 5355 SDValue Mag = Op.getOperand(0); 5356 SDValue Sign = Op.getOperand(1); 5357 assert(Mag.getValueType() == Sign.getValueType() && 5358 "Can only handle COPYSIGN with matching types."); 5359 5360 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5361 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5362 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5363 5364 SDValue Mask, VL; 5365 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5366 5367 SDValue CopySign = 5368 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5369 5370 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5371 } 5372 5373 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5374 SDValue Op, SelectionDAG &DAG) const { 5375 MVT VT = Op.getSimpleValueType(); 5376 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5377 5378 MVT I1ContainerVT = 5379 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5380 5381 SDValue CC = 5382 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5383 SDValue Op1 = 5384 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5385 SDValue Op2 = 5386 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5387 5388 SDLoc DL(Op); 5389 SDValue Mask, VL; 5390 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5391 5392 SDValue Select = 5393 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5394 5395 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5396 } 5397 5398 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5399 unsigned NewOpc, 5400 bool HasMask) const { 5401 MVT VT = Op.getSimpleValueType(); 5402 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5403 5404 // Create list of operands by converting existing ones to scalable types. 5405 SmallVector<SDValue, 6> Ops; 5406 for (const SDValue &V : Op->op_values()) { 5407 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5408 5409 // Pass through non-vector operands. 5410 if (!V.getValueType().isVector()) { 5411 Ops.push_back(V); 5412 continue; 5413 } 5414 5415 // "cast" fixed length vector to a scalable vector. 5416 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5417 "Only fixed length vectors are supported!"); 5418 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5419 } 5420 5421 SDLoc DL(Op); 5422 SDValue Mask, VL; 5423 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5424 if (HasMask) 5425 Ops.push_back(Mask); 5426 Ops.push_back(VL); 5427 5428 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5429 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5430 } 5431 5432 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5433 // * Operands of each node are assumed to be in the same order. 5434 // * The EVL operand is promoted from i32 to i64 on RV64. 5435 // * Fixed-length vectors are converted to their scalable-vector container 5436 // types. 5437 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5438 unsigned RISCVISDOpc) const { 5439 SDLoc DL(Op); 5440 MVT VT = Op.getSimpleValueType(); 5441 SmallVector<SDValue, 4> Ops; 5442 5443 for (const auto &OpIdx : enumerate(Op->ops())) { 5444 SDValue V = OpIdx.value(); 5445 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5446 // Pass through operands which aren't fixed-length vectors. 5447 if (!V.getValueType().isFixedLengthVector()) { 5448 Ops.push_back(V); 5449 continue; 5450 } 5451 // "cast" fixed length vector to a scalable vector. 5452 MVT OpVT = V.getSimpleValueType(); 5453 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5454 assert(useRVVForFixedLengthVectorVT(OpVT) && 5455 "Only fixed length vectors are supported!"); 5456 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5457 } 5458 5459 if (!VT.isFixedLengthVector()) 5460 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5461 5462 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5463 5464 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5465 5466 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5467 } 5468 5469 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 5470 unsigned MaskOpc, 5471 unsigned VecOpc) const { 5472 MVT VT = Op.getSimpleValueType(); 5473 if (VT.getVectorElementType() != MVT::i1) 5474 return lowerVPOp(Op, DAG, VecOpc); 5475 5476 // It is safe to drop mask parameter as masked-off elements are undef. 5477 SDValue Op1 = Op->getOperand(0); 5478 SDValue Op2 = Op->getOperand(1); 5479 SDValue VL = Op->getOperand(3); 5480 5481 MVT ContainerVT = VT; 5482 const bool IsFixed = VT.isFixedLengthVector(); 5483 if (IsFixed) { 5484 ContainerVT = getContainerForFixedLengthVector(VT); 5485 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 5486 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 5487 } 5488 5489 SDLoc DL(Op); 5490 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 5491 if (!IsFixed) 5492 return Val; 5493 return convertFromScalableVector(VT, Val, DAG, Subtarget); 5494 } 5495 5496 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5497 // matched to a RVV indexed load. The RVV indexed load instructions only 5498 // support the "unsigned unscaled" addressing mode; indices are implicitly 5499 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5500 // signed or scaled indexing is extended to the XLEN value type and scaled 5501 // accordingly. 5502 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5503 SelectionDAG &DAG) const { 5504 SDLoc DL(Op); 5505 MVT VT = Op.getSimpleValueType(); 5506 5507 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5508 EVT MemVT = MemSD->getMemoryVT(); 5509 MachineMemOperand *MMO = MemSD->getMemOperand(); 5510 SDValue Chain = MemSD->getChain(); 5511 SDValue BasePtr = MemSD->getBasePtr(); 5512 5513 ISD::LoadExtType LoadExtType; 5514 SDValue Index, Mask, PassThru, VL; 5515 5516 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5517 Index = VPGN->getIndex(); 5518 Mask = VPGN->getMask(); 5519 PassThru = DAG.getUNDEF(VT); 5520 VL = VPGN->getVectorLength(); 5521 // VP doesn't support extending loads. 5522 LoadExtType = ISD::NON_EXTLOAD; 5523 } else { 5524 // Else it must be a MGATHER. 5525 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5526 Index = MGN->getIndex(); 5527 Mask = MGN->getMask(); 5528 PassThru = MGN->getPassThru(); 5529 LoadExtType = MGN->getExtensionType(); 5530 } 5531 5532 MVT IndexVT = Index.getSimpleValueType(); 5533 MVT XLenVT = Subtarget.getXLenVT(); 5534 5535 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5536 "Unexpected VTs!"); 5537 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5538 // Targets have to explicitly opt-in for extending vector loads. 5539 assert(LoadExtType == ISD::NON_EXTLOAD && 5540 "Unexpected extending MGATHER/VP_GATHER"); 5541 (void)LoadExtType; 5542 5543 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5544 // the selection of the masked intrinsics doesn't do this for us. 5545 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5546 5547 MVT ContainerVT = VT; 5548 if (VT.isFixedLengthVector()) { 5549 // We need to use the larger of the result and index type to determine the 5550 // scalable type to use so we don't increase LMUL for any operand/result. 5551 if (VT.bitsGE(IndexVT)) { 5552 ContainerVT = getContainerForFixedLengthVector(VT); 5553 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5554 ContainerVT.getVectorElementCount()); 5555 } else { 5556 IndexVT = getContainerForFixedLengthVector(IndexVT); 5557 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5558 IndexVT.getVectorElementCount()); 5559 } 5560 5561 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5562 5563 if (!IsUnmasked) { 5564 MVT MaskVT = 5565 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5566 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5567 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5568 } 5569 } 5570 5571 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5572 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5573 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 5574 } 5575 5576 if (!VL) 5577 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5578 5579 unsigned IntID = 5580 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5581 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5582 if (!IsUnmasked) 5583 Ops.push_back(PassThru); 5584 Ops.push_back(BasePtr); 5585 Ops.push_back(Index); 5586 if (!IsUnmasked) 5587 Ops.push_back(Mask); 5588 Ops.push_back(VL); 5589 if (!IsUnmasked) 5590 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5591 5592 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5593 SDValue Result = 5594 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5595 Chain = Result.getValue(1); 5596 5597 if (VT.isFixedLengthVector()) 5598 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5599 5600 return DAG.getMergeValues({Result, Chain}, DL); 5601 } 5602 5603 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5604 // matched to a RVV indexed store. The RVV indexed store instructions only 5605 // support the "unsigned unscaled" addressing mode; indices are implicitly 5606 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5607 // signed or scaled indexing is extended to the XLEN value type and scaled 5608 // accordingly. 5609 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5610 SelectionDAG &DAG) const { 5611 SDLoc DL(Op); 5612 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5613 EVT MemVT = MemSD->getMemoryVT(); 5614 MachineMemOperand *MMO = MemSD->getMemOperand(); 5615 SDValue Chain = MemSD->getChain(); 5616 SDValue BasePtr = MemSD->getBasePtr(); 5617 5618 bool IsTruncatingStore = false; 5619 SDValue Index, Mask, Val, VL; 5620 5621 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5622 Index = VPSN->getIndex(); 5623 Mask = VPSN->getMask(); 5624 Val = VPSN->getValue(); 5625 VL = VPSN->getVectorLength(); 5626 // VP doesn't support truncating stores. 5627 IsTruncatingStore = false; 5628 } else { 5629 // Else it must be a MSCATTER. 5630 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5631 Index = MSN->getIndex(); 5632 Mask = MSN->getMask(); 5633 Val = MSN->getValue(); 5634 IsTruncatingStore = MSN->isTruncatingStore(); 5635 } 5636 5637 MVT VT = Val.getSimpleValueType(); 5638 MVT IndexVT = Index.getSimpleValueType(); 5639 MVT XLenVT = Subtarget.getXLenVT(); 5640 5641 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5642 "Unexpected VTs!"); 5643 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5644 // Targets have to explicitly opt-in for extending vector loads and 5645 // truncating vector stores. 5646 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5647 (void)IsTruncatingStore; 5648 5649 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5650 // the selection of the masked intrinsics doesn't do this for us. 5651 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5652 5653 MVT ContainerVT = VT; 5654 if (VT.isFixedLengthVector()) { 5655 // We need to use the larger of the value and index type to determine the 5656 // scalable type to use so we don't increase LMUL for any operand/result. 5657 if (VT.bitsGE(IndexVT)) { 5658 ContainerVT = getContainerForFixedLengthVector(VT); 5659 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5660 ContainerVT.getVectorElementCount()); 5661 } else { 5662 IndexVT = getContainerForFixedLengthVector(IndexVT); 5663 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5664 IndexVT.getVectorElementCount()); 5665 } 5666 5667 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5668 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5669 5670 if (!IsUnmasked) { 5671 MVT MaskVT = 5672 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5673 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5674 } 5675 } 5676 5677 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5678 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5679 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 5680 } 5681 5682 if (!VL) 5683 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5684 5685 unsigned IntID = 5686 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5687 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5688 Ops.push_back(Val); 5689 Ops.push_back(BasePtr); 5690 Ops.push_back(Index); 5691 if (!IsUnmasked) 5692 Ops.push_back(Mask); 5693 Ops.push_back(VL); 5694 5695 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5696 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5697 } 5698 5699 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5700 SelectionDAG &DAG) const { 5701 const MVT XLenVT = Subtarget.getXLenVT(); 5702 SDLoc DL(Op); 5703 SDValue Chain = Op->getOperand(0); 5704 SDValue SysRegNo = DAG.getTargetConstant( 5705 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5706 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5707 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5708 5709 // Encoding used for rounding mode in RISCV differs from that used in 5710 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5711 // table, which consists of a sequence of 4-bit fields, each representing 5712 // corresponding FLT_ROUNDS mode. 5713 static const int Table = 5714 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5715 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5716 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5717 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5718 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5719 5720 SDValue Shift = 5721 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5722 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5723 DAG.getConstant(Table, DL, XLenVT), Shift); 5724 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5725 DAG.getConstant(7, DL, XLenVT)); 5726 5727 return DAG.getMergeValues({Masked, Chain}, DL); 5728 } 5729 5730 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5731 SelectionDAG &DAG) const { 5732 const MVT XLenVT = Subtarget.getXLenVT(); 5733 SDLoc DL(Op); 5734 SDValue Chain = Op->getOperand(0); 5735 SDValue RMValue = Op->getOperand(1); 5736 SDValue SysRegNo = DAG.getTargetConstant( 5737 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5738 5739 // Encoding used for rounding mode in RISCV differs from that used in 5740 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5741 // a table, which consists of a sequence of 4-bit fields, each representing 5742 // corresponding RISCV mode. 5743 static const unsigned Table = 5744 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5745 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5746 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5747 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5748 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5749 5750 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5751 DAG.getConstant(2, DL, XLenVT)); 5752 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5753 DAG.getConstant(Table, DL, XLenVT), Shift); 5754 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5755 DAG.getConstant(0x7, DL, XLenVT)); 5756 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5757 RMValue); 5758 } 5759 5760 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5761 // form of the given Opcode. 5762 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5763 switch (Opcode) { 5764 default: 5765 llvm_unreachable("Unexpected opcode"); 5766 case ISD::SHL: 5767 return RISCVISD::SLLW; 5768 case ISD::SRA: 5769 return RISCVISD::SRAW; 5770 case ISD::SRL: 5771 return RISCVISD::SRLW; 5772 case ISD::SDIV: 5773 return RISCVISD::DIVW; 5774 case ISD::UDIV: 5775 return RISCVISD::DIVUW; 5776 case ISD::UREM: 5777 return RISCVISD::REMUW; 5778 case ISD::ROTL: 5779 return RISCVISD::ROLW; 5780 case ISD::ROTR: 5781 return RISCVISD::RORW; 5782 case RISCVISD::GREV: 5783 return RISCVISD::GREVW; 5784 case RISCVISD::GORC: 5785 return RISCVISD::GORCW; 5786 } 5787 } 5788 5789 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5790 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5791 // otherwise be promoted to i64, making it difficult to select the 5792 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5793 // type i8/i16/i32 is lost. 5794 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5795 unsigned ExtOpc = ISD::ANY_EXTEND) { 5796 SDLoc DL(N); 5797 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5798 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5799 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5800 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5801 // ReplaceNodeResults requires we maintain the same type for the return value. 5802 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5803 } 5804 5805 // Converts the given 32-bit operation to a i64 operation with signed extension 5806 // semantic to reduce the signed extension instructions. 5807 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5808 SDLoc DL(N); 5809 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5810 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5811 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5812 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5813 DAG.getValueType(MVT::i32)); 5814 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5815 } 5816 5817 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5818 SmallVectorImpl<SDValue> &Results, 5819 SelectionDAG &DAG) const { 5820 SDLoc DL(N); 5821 switch (N->getOpcode()) { 5822 default: 5823 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5824 case ISD::STRICT_FP_TO_SINT: 5825 case ISD::STRICT_FP_TO_UINT: 5826 case ISD::FP_TO_SINT: 5827 case ISD::FP_TO_UINT: { 5828 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5829 "Unexpected custom legalisation"); 5830 bool IsStrict = N->isStrictFPOpcode(); 5831 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5832 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5833 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5834 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5835 TargetLowering::TypeSoftenFloat) { 5836 if (!isTypeLegal(Op0.getValueType())) 5837 return; 5838 if (IsStrict) { 5839 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 5840 : RISCVISD::STRICT_FCVT_WU_RV64; 5841 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 5842 SDValue Res = DAG.getNode( 5843 Opc, DL, VTs, N->getOperand(0), Op0, 5844 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 5845 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5846 Results.push_back(Res.getValue(1)); 5847 return; 5848 } 5849 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 5850 SDValue Res = 5851 DAG.getNode(Opc, DL, MVT::i64, Op0, 5852 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 5853 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5854 return; 5855 } 5856 // If the FP type needs to be softened, emit a library call using the 'si' 5857 // version. If we left it to default legalization we'd end up with 'di'. If 5858 // the FP type doesn't need to be softened just let generic type 5859 // legalization promote the result type. 5860 RTLIB::Libcall LC; 5861 if (IsSigned) 5862 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5863 else 5864 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5865 MakeLibCallOptions CallOptions; 5866 EVT OpVT = Op0.getValueType(); 5867 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5868 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5869 SDValue Result; 5870 std::tie(Result, Chain) = 5871 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5872 Results.push_back(Result); 5873 if (IsStrict) 5874 Results.push_back(Chain); 5875 break; 5876 } 5877 case ISD::READCYCLECOUNTER: { 5878 assert(!Subtarget.is64Bit() && 5879 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5880 5881 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5882 SDValue RCW = 5883 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5884 5885 Results.push_back( 5886 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5887 Results.push_back(RCW.getValue(2)); 5888 break; 5889 } 5890 case ISD::MUL: { 5891 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5892 unsigned XLen = Subtarget.getXLen(); 5893 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5894 if (Size > XLen) { 5895 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5896 SDValue LHS = N->getOperand(0); 5897 SDValue RHS = N->getOperand(1); 5898 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5899 5900 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5901 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5902 // We need exactly one side to be unsigned. 5903 if (LHSIsU == RHSIsU) 5904 return; 5905 5906 auto MakeMULPair = [&](SDValue S, SDValue U) { 5907 MVT XLenVT = Subtarget.getXLenVT(); 5908 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5909 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5910 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5911 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5912 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5913 }; 5914 5915 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5916 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5917 5918 // The other operand should be signed, but still prefer MULH when 5919 // possible. 5920 if (RHSIsU && LHSIsS && !RHSIsS) 5921 Results.push_back(MakeMULPair(LHS, RHS)); 5922 else if (LHSIsU && RHSIsS && !LHSIsS) 5923 Results.push_back(MakeMULPair(RHS, LHS)); 5924 5925 return; 5926 } 5927 LLVM_FALLTHROUGH; 5928 } 5929 case ISD::ADD: 5930 case ISD::SUB: 5931 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5932 "Unexpected custom legalisation"); 5933 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5934 break; 5935 case ISD::SHL: 5936 case ISD::SRA: 5937 case ISD::SRL: 5938 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5939 "Unexpected custom legalisation"); 5940 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5941 Results.push_back(customLegalizeToWOp(N, DAG)); 5942 break; 5943 } 5944 5945 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5946 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5947 // shift amount. 5948 if (N->getOpcode() == ISD::SHL) { 5949 SDLoc DL(N); 5950 SDValue NewOp0 = 5951 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5952 SDValue NewOp1 = 5953 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5954 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5955 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5956 DAG.getValueType(MVT::i32)); 5957 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5958 } 5959 5960 break; 5961 case ISD::ROTL: 5962 case ISD::ROTR: 5963 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5964 "Unexpected custom legalisation"); 5965 Results.push_back(customLegalizeToWOp(N, DAG)); 5966 break; 5967 case ISD::CTTZ: 5968 case ISD::CTTZ_ZERO_UNDEF: 5969 case ISD::CTLZ: 5970 case ISD::CTLZ_ZERO_UNDEF: { 5971 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5972 "Unexpected custom legalisation"); 5973 5974 SDValue NewOp0 = 5975 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5976 bool IsCTZ = 5977 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5978 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5979 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5980 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5981 return; 5982 } 5983 case ISD::SDIV: 5984 case ISD::UDIV: 5985 case ISD::UREM: { 5986 MVT VT = N->getSimpleValueType(0); 5987 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5988 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5989 "Unexpected custom legalisation"); 5990 // Don't promote division/remainder by constant since we should expand those 5991 // to multiply by magic constant. 5992 // FIXME: What if the expansion is disabled for minsize. 5993 if (N->getOperand(1).getOpcode() == ISD::Constant) 5994 return; 5995 5996 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5997 // the upper 32 bits. For other types we need to sign or zero extend 5998 // based on the opcode. 5999 unsigned ExtOpc = ISD::ANY_EXTEND; 6000 if (VT != MVT::i32) 6001 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6002 : ISD::ZERO_EXTEND; 6003 6004 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6005 break; 6006 } 6007 case ISD::UADDO: 6008 case ISD::USUBO: { 6009 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6010 "Unexpected custom legalisation"); 6011 bool IsAdd = N->getOpcode() == ISD::UADDO; 6012 // Create an ADDW or SUBW. 6013 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6014 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6015 SDValue Res = 6016 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6017 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6018 DAG.getValueType(MVT::i32)); 6019 6020 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6021 // Since the inputs are sign extended from i32, this is equivalent to 6022 // comparing the lower 32 bits. 6023 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6024 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6025 IsAdd ? ISD::SETULT : ISD::SETUGT); 6026 6027 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6028 Results.push_back(Overflow); 6029 return; 6030 } 6031 case ISD::UADDSAT: 6032 case ISD::USUBSAT: { 6033 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6034 "Unexpected custom legalisation"); 6035 if (Subtarget.hasStdExtZbb()) { 6036 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6037 // sign extend allows overflow of the lower 32 bits to be detected on 6038 // the promoted size. 6039 SDValue LHS = 6040 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6041 SDValue RHS = 6042 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6043 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6044 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6045 return; 6046 } 6047 6048 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6049 // promotion for UADDO/USUBO. 6050 Results.push_back(expandAddSubSat(N, DAG)); 6051 return; 6052 } 6053 case ISD::BITCAST: { 6054 EVT VT = N->getValueType(0); 6055 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6056 SDValue Op0 = N->getOperand(0); 6057 EVT Op0VT = Op0.getValueType(); 6058 MVT XLenVT = Subtarget.getXLenVT(); 6059 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6060 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6061 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6062 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6063 Subtarget.hasStdExtF()) { 6064 SDValue FPConv = 6065 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6066 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6067 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6068 isTypeLegal(Op0VT)) { 6069 // Custom-legalize bitcasts from fixed-length vector types to illegal 6070 // scalar types in order to improve codegen. Bitcast the vector to a 6071 // one-element vector type whose element type is the same as the result 6072 // type, and extract the first element. 6073 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6074 if (isTypeLegal(BVT)) { 6075 SDValue BVec = DAG.getBitcast(BVT, Op0); 6076 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6077 DAG.getConstant(0, DL, XLenVT))); 6078 } 6079 } 6080 break; 6081 } 6082 case RISCVISD::GREV: 6083 case RISCVISD::GORC: { 6084 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6085 "Unexpected custom legalisation"); 6086 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6087 // This is similar to customLegalizeToWOp, except that we pass the second 6088 // operand (a TargetConstant) straight through: it is already of type 6089 // XLenVT. 6090 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6091 SDValue NewOp0 = 6092 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6093 SDValue NewOp1 = 6094 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6095 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6096 // ReplaceNodeResults requires we maintain the same type for the return 6097 // value. 6098 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6099 break; 6100 } 6101 case RISCVISD::SHFL: { 6102 // There is no SHFLIW instruction, but we can just promote the operation. 6103 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6104 "Unexpected custom legalisation"); 6105 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6106 SDValue NewOp0 = 6107 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6108 SDValue NewOp1 = 6109 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6110 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 6111 // ReplaceNodeResults requires we maintain the same type for the return 6112 // value. 6113 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6114 break; 6115 } 6116 case ISD::BSWAP: 6117 case ISD::BITREVERSE: { 6118 MVT VT = N->getSimpleValueType(0); 6119 MVT XLenVT = Subtarget.getXLenVT(); 6120 assert((VT == MVT::i8 || VT == MVT::i16 || 6121 (VT == MVT::i32 && Subtarget.is64Bit())) && 6122 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6123 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6124 unsigned Imm = VT.getSizeInBits() - 1; 6125 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6126 if (N->getOpcode() == ISD::BSWAP) 6127 Imm &= ~0x7U; 6128 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 6129 SDValue GREVI = 6130 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 6131 // ReplaceNodeResults requires we maintain the same type for the return 6132 // value. 6133 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6134 break; 6135 } 6136 case ISD::FSHL: 6137 case ISD::FSHR: { 6138 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6139 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6140 SDValue NewOp0 = 6141 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6142 SDValue NewOp1 = 6143 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6144 SDValue NewOp2 = 6145 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6146 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6147 // Mask the shift amount to 5 bits. 6148 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6149 DAG.getConstant(0x1f, DL, MVT::i64)); 6150 unsigned Opc = 6151 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 6152 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 6153 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6154 break; 6155 } 6156 case ISD::EXTRACT_VECTOR_ELT: { 6157 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6158 // type is illegal (currently only vXi64 RV32). 6159 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6160 // transferred to the destination register. We issue two of these from the 6161 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6162 // first element. 6163 SDValue Vec = N->getOperand(0); 6164 SDValue Idx = N->getOperand(1); 6165 6166 // The vector type hasn't been legalized yet so we can't issue target 6167 // specific nodes if it needs legalization. 6168 // FIXME: We would manually legalize if it's important. 6169 if (!isTypeLegal(Vec.getValueType())) 6170 return; 6171 6172 MVT VecVT = Vec.getSimpleValueType(); 6173 6174 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6175 VecVT.getVectorElementType() == MVT::i64 && 6176 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6177 6178 // If this is a fixed vector, we need to convert it to a scalable vector. 6179 MVT ContainerVT = VecVT; 6180 if (VecVT.isFixedLengthVector()) { 6181 ContainerVT = getContainerForFixedLengthVector(VecVT); 6182 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6183 } 6184 6185 MVT XLenVT = Subtarget.getXLenVT(); 6186 6187 // Use a VL of 1 to avoid processing more elements than we need. 6188 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6189 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6190 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6191 6192 // Unless the index is known to be 0, we must slide the vector down to get 6193 // the desired element into index 0. 6194 if (!isNullConstant(Idx)) { 6195 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6196 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6197 } 6198 6199 // Extract the lower XLEN bits of the correct vector element. 6200 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6201 6202 // To extract the upper XLEN bits of the vector element, shift the first 6203 // element right by 32 bits and re-extract the lower XLEN bits. 6204 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6205 DAG.getConstant(32, DL, XLenVT), VL); 6206 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6207 ThirtyTwoV, Mask, VL); 6208 6209 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6210 6211 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6212 break; 6213 } 6214 case ISD::INTRINSIC_WO_CHAIN: { 6215 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6216 switch (IntNo) { 6217 default: 6218 llvm_unreachable( 6219 "Don't know how to custom type legalize this intrinsic!"); 6220 case Intrinsic::riscv_orc_b: { 6221 // Lower to the GORCI encoding for orc.b with the operand extended. 6222 SDValue NewOp = 6223 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6224 // If Zbp is enabled, use GORCIW which will sign extend the result. 6225 unsigned Opc = 6226 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6227 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6228 DAG.getConstant(7, DL, MVT::i64)); 6229 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6230 return; 6231 } 6232 case Intrinsic::riscv_grev: 6233 case Intrinsic::riscv_gorc: { 6234 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6235 "Unexpected custom legalisation"); 6236 SDValue NewOp1 = 6237 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6238 SDValue NewOp2 = 6239 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6240 unsigned Opc = 6241 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 6242 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6243 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6244 break; 6245 } 6246 case Intrinsic::riscv_shfl: 6247 case Intrinsic::riscv_unshfl: { 6248 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6249 "Unexpected custom legalisation"); 6250 SDValue NewOp1 = 6251 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6252 SDValue NewOp2 = 6253 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6254 unsigned Opc = 6255 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6256 if (isa<ConstantSDNode>(N->getOperand(2))) { 6257 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6258 DAG.getConstant(0xf, DL, MVT::i64)); 6259 Opc = 6260 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6261 } 6262 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6263 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6264 break; 6265 } 6266 case Intrinsic::riscv_bcompress: 6267 case Intrinsic::riscv_bdecompress: { 6268 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6269 "Unexpected custom legalisation"); 6270 SDValue NewOp1 = 6271 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6272 SDValue NewOp2 = 6273 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6274 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 6275 ? RISCVISD::BCOMPRESSW 6276 : RISCVISD::BDECOMPRESSW; 6277 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6278 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6279 break; 6280 } 6281 case Intrinsic::riscv_bfp: { 6282 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6283 "Unexpected custom legalisation"); 6284 SDValue NewOp1 = 6285 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6286 SDValue NewOp2 = 6287 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6288 SDValue Res = DAG.getNode(RISCVISD::BFPW, DL, MVT::i64, NewOp1, NewOp2); 6289 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6290 break; 6291 } 6292 case Intrinsic::riscv_vmv_x_s: { 6293 EVT VT = N->getValueType(0); 6294 MVT XLenVT = Subtarget.getXLenVT(); 6295 if (VT.bitsLT(XLenVT)) { 6296 // Simple case just extract using vmv.x.s and truncate. 6297 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6298 Subtarget.getXLenVT(), N->getOperand(1)); 6299 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6300 return; 6301 } 6302 6303 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6304 "Unexpected custom legalization"); 6305 6306 // We need to do the move in two steps. 6307 SDValue Vec = N->getOperand(1); 6308 MVT VecVT = Vec.getSimpleValueType(); 6309 6310 // First extract the lower XLEN bits of the element. 6311 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6312 6313 // To extract the upper XLEN bits of the vector element, shift the first 6314 // element right by 32 bits and re-extract the lower XLEN bits. 6315 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6316 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6317 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6318 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6319 DAG.getConstant(32, DL, XLenVT), VL); 6320 SDValue LShr32 = 6321 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6322 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6323 6324 Results.push_back( 6325 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6326 break; 6327 } 6328 } 6329 break; 6330 } 6331 case ISD::VECREDUCE_ADD: 6332 case ISD::VECREDUCE_AND: 6333 case ISD::VECREDUCE_OR: 6334 case ISD::VECREDUCE_XOR: 6335 case ISD::VECREDUCE_SMAX: 6336 case ISD::VECREDUCE_UMAX: 6337 case ISD::VECREDUCE_SMIN: 6338 case ISD::VECREDUCE_UMIN: 6339 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6340 Results.push_back(V); 6341 break; 6342 case ISD::VP_REDUCE_ADD: 6343 case ISD::VP_REDUCE_AND: 6344 case ISD::VP_REDUCE_OR: 6345 case ISD::VP_REDUCE_XOR: 6346 case ISD::VP_REDUCE_SMAX: 6347 case ISD::VP_REDUCE_UMAX: 6348 case ISD::VP_REDUCE_SMIN: 6349 case ISD::VP_REDUCE_UMIN: 6350 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6351 Results.push_back(V); 6352 break; 6353 case ISD::FLT_ROUNDS_: { 6354 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6355 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6356 Results.push_back(Res.getValue(0)); 6357 Results.push_back(Res.getValue(1)); 6358 break; 6359 } 6360 } 6361 } 6362 6363 // A structure to hold one of the bit-manipulation patterns below. Together, a 6364 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6365 // (or (and (shl x, 1), 0xAAAAAAAA), 6366 // (and (srl x, 1), 0x55555555)) 6367 struct RISCVBitmanipPat { 6368 SDValue Op; 6369 unsigned ShAmt; 6370 bool IsSHL; 6371 6372 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6373 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6374 } 6375 }; 6376 6377 // Matches patterns of the form 6378 // (and (shl x, C2), (C1 << C2)) 6379 // (and (srl x, C2), C1) 6380 // (shl (and x, C1), C2) 6381 // (srl (and x, (C1 << C2)), C2) 6382 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6383 // The expected masks for each shift amount are specified in BitmanipMasks where 6384 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6385 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6386 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6387 // XLen is 64. 6388 static Optional<RISCVBitmanipPat> 6389 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6390 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6391 "Unexpected number of masks"); 6392 Optional<uint64_t> Mask; 6393 // Optionally consume a mask around the shift operation. 6394 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6395 Mask = Op.getConstantOperandVal(1); 6396 Op = Op.getOperand(0); 6397 } 6398 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6399 return None; 6400 bool IsSHL = Op.getOpcode() == ISD::SHL; 6401 6402 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6403 return None; 6404 uint64_t ShAmt = Op.getConstantOperandVal(1); 6405 6406 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6407 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6408 return None; 6409 // If we don't have enough masks for 64 bit, then we must be trying to 6410 // match SHFL so we're only allowed to shift 1/4 of the width. 6411 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6412 return None; 6413 6414 SDValue Src = Op.getOperand(0); 6415 6416 // The expected mask is shifted left when the AND is found around SHL 6417 // patterns. 6418 // ((x >> 1) & 0x55555555) 6419 // ((x << 1) & 0xAAAAAAAA) 6420 bool SHLExpMask = IsSHL; 6421 6422 if (!Mask) { 6423 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6424 // the mask is all ones: consume that now. 6425 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6426 Mask = Src.getConstantOperandVal(1); 6427 Src = Src.getOperand(0); 6428 // The expected mask is now in fact shifted left for SRL, so reverse the 6429 // decision. 6430 // ((x & 0xAAAAAAAA) >> 1) 6431 // ((x & 0x55555555) << 1) 6432 SHLExpMask = !SHLExpMask; 6433 } else { 6434 // Use a default shifted mask of all-ones if there's no AND, truncated 6435 // down to the expected width. This simplifies the logic later on. 6436 Mask = maskTrailingOnes<uint64_t>(Width); 6437 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6438 } 6439 } 6440 6441 unsigned MaskIdx = Log2_32(ShAmt); 6442 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6443 6444 if (SHLExpMask) 6445 ExpMask <<= ShAmt; 6446 6447 if (Mask != ExpMask) 6448 return None; 6449 6450 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6451 } 6452 6453 // Matches any of the following bit-manipulation patterns: 6454 // (and (shl x, 1), (0x55555555 << 1)) 6455 // (and (srl x, 1), 0x55555555) 6456 // (shl (and x, 0x55555555), 1) 6457 // (srl (and x, (0x55555555 << 1)), 1) 6458 // where the shift amount and mask may vary thus: 6459 // [1] = 0x55555555 / 0xAAAAAAAA 6460 // [2] = 0x33333333 / 0xCCCCCCCC 6461 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6462 // [8] = 0x00FF00FF / 0xFF00FF00 6463 // [16] = 0x0000FFFF / 0xFFFFFFFF 6464 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6465 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6466 // These are the unshifted masks which we use to match bit-manipulation 6467 // patterns. They may be shifted left in certain circumstances. 6468 static const uint64_t BitmanipMasks[] = { 6469 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6470 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6471 6472 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6473 } 6474 6475 // Match the following pattern as a GREVI(W) operation 6476 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6477 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6478 const RISCVSubtarget &Subtarget) { 6479 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6480 EVT VT = Op.getValueType(); 6481 6482 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6483 auto LHS = matchGREVIPat(Op.getOperand(0)); 6484 auto RHS = matchGREVIPat(Op.getOperand(1)); 6485 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6486 SDLoc DL(Op); 6487 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6488 DAG.getConstant(LHS->ShAmt, DL, VT)); 6489 } 6490 } 6491 return SDValue(); 6492 } 6493 6494 // Matches any the following pattern as a GORCI(W) operation 6495 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6496 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6497 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6498 // Note that with the variant of 3., 6499 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6500 // the inner pattern will first be matched as GREVI and then the outer 6501 // pattern will be matched to GORC via the first rule above. 6502 // 4. (or (rotl/rotr x, bitwidth/2), x) 6503 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6504 const RISCVSubtarget &Subtarget) { 6505 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6506 EVT VT = Op.getValueType(); 6507 6508 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6509 SDLoc DL(Op); 6510 SDValue Op0 = Op.getOperand(0); 6511 SDValue Op1 = Op.getOperand(1); 6512 6513 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6514 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6515 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6516 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6517 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6518 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6519 if ((Reverse.getOpcode() == ISD::ROTL || 6520 Reverse.getOpcode() == ISD::ROTR) && 6521 Reverse.getOperand(0) == X && 6522 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6523 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6524 if (RotAmt == (VT.getSizeInBits() / 2)) 6525 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6526 DAG.getConstant(RotAmt, DL, VT)); 6527 } 6528 return SDValue(); 6529 }; 6530 6531 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6532 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6533 return V; 6534 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6535 return V; 6536 6537 // OR is commutable so canonicalize its OR operand to the left 6538 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6539 std::swap(Op0, Op1); 6540 if (Op0.getOpcode() != ISD::OR) 6541 return SDValue(); 6542 SDValue OrOp0 = Op0.getOperand(0); 6543 SDValue OrOp1 = Op0.getOperand(1); 6544 auto LHS = matchGREVIPat(OrOp0); 6545 // OR is commutable so swap the operands and try again: x might have been 6546 // on the left 6547 if (!LHS) { 6548 std::swap(OrOp0, OrOp1); 6549 LHS = matchGREVIPat(OrOp0); 6550 } 6551 auto RHS = matchGREVIPat(Op1); 6552 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6553 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6554 DAG.getConstant(LHS->ShAmt, DL, VT)); 6555 } 6556 } 6557 return SDValue(); 6558 } 6559 6560 // Matches any of the following bit-manipulation patterns: 6561 // (and (shl x, 1), (0x22222222 << 1)) 6562 // (and (srl x, 1), 0x22222222) 6563 // (shl (and x, 0x22222222), 1) 6564 // (srl (and x, (0x22222222 << 1)), 1) 6565 // where the shift amount and mask may vary thus: 6566 // [1] = 0x22222222 / 0x44444444 6567 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6568 // [4] = 0x00F000F0 / 0x0F000F00 6569 // [8] = 0x0000FF00 / 0x00FF0000 6570 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6571 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6572 // These are the unshifted masks which we use to match bit-manipulation 6573 // patterns. They may be shifted left in certain circumstances. 6574 static const uint64_t BitmanipMasks[] = { 6575 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6576 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6577 6578 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6579 } 6580 6581 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6582 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6583 const RISCVSubtarget &Subtarget) { 6584 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6585 EVT VT = Op.getValueType(); 6586 6587 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6588 return SDValue(); 6589 6590 SDValue Op0 = Op.getOperand(0); 6591 SDValue Op1 = Op.getOperand(1); 6592 6593 // Or is commutable so canonicalize the second OR to the LHS. 6594 if (Op0.getOpcode() != ISD::OR) 6595 std::swap(Op0, Op1); 6596 if (Op0.getOpcode() != ISD::OR) 6597 return SDValue(); 6598 6599 // We found an inner OR, so our operands are the operands of the inner OR 6600 // and the other operand of the outer OR. 6601 SDValue A = Op0.getOperand(0); 6602 SDValue B = Op0.getOperand(1); 6603 SDValue C = Op1; 6604 6605 auto Match1 = matchSHFLPat(A); 6606 auto Match2 = matchSHFLPat(B); 6607 6608 // If neither matched, we failed. 6609 if (!Match1 && !Match2) 6610 return SDValue(); 6611 6612 // We had at least one match. if one failed, try the remaining C operand. 6613 if (!Match1) { 6614 std::swap(A, C); 6615 Match1 = matchSHFLPat(A); 6616 if (!Match1) 6617 return SDValue(); 6618 } else if (!Match2) { 6619 std::swap(B, C); 6620 Match2 = matchSHFLPat(B); 6621 if (!Match2) 6622 return SDValue(); 6623 } 6624 assert(Match1 && Match2); 6625 6626 // Make sure our matches pair up. 6627 if (!Match1->formsPairWith(*Match2)) 6628 return SDValue(); 6629 6630 // All the remains is to make sure C is an AND with the same input, that masks 6631 // out the bits that are being shuffled. 6632 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6633 C.getOperand(0) != Match1->Op) 6634 return SDValue(); 6635 6636 uint64_t Mask = C.getConstantOperandVal(1); 6637 6638 static const uint64_t BitmanipMasks[] = { 6639 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6640 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6641 }; 6642 6643 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6644 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6645 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6646 6647 if (Mask != ExpMask) 6648 return SDValue(); 6649 6650 SDLoc DL(Op); 6651 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6652 DAG.getConstant(Match1->ShAmt, DL, VT)); 6653 } 6654 6655 // Optimize (add (shl x, c0), (shl y, c1)) -> 6656 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6657 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6658 const RISCVSubtarget &Subtarget) { 6659 // Perform this optimization only in the zba extension. 6660 if (!Subtarget.hasStdExtZba()) 6661 return SDValue(); 6662 6663 // Skip for vector types and larger types. 6664 EVT VT = N->getValueType(0); 6665 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6666 return SDValue(); 6667 6668 // The two operand nodes must be SHL and have no other use. 6669 SDValue N0 = N->getOperand(0); 6670 SDValue N1 = N->getOperand(1); 6671 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6672 !N0->hasOneUse() || !N1->hasOneUse()) 6673 return SDValue(); 6674 6675 // Check c0 and c1. 6676 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6677 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6678 if (!N0C || !N1C) 6679 return SDValue(); 6680 int64_t C0 = N0C->getSExtValue(); 6681 int64_t C1 = N1C->getSExtValue(); 6682 if (C0 <= 0 || C1 <= 0) 6683 return SDValue(); 6684 6685 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6686 int64_t Bits = std::min(C0, C1); 6687 int64_t Diff = std::abs(C0 - C1); 6688 if (Diff != 1 && Diff != 2 && Diff != 3) 6689 return SDValue(); 6690 6691 // Build nodes. 6692 SDLoc DL(N); 6693 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6694 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6695 SDValue NA0 = 6696 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6697 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6698 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6699 } 6700 6701 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6702 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6703 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6704 // not undo itself, but they are redundant. 6705 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6706 SDValue Src = N->getOperand(0); 6707 6708 if (Src.getOpcode() != N->getOpcode()) 6709 return SDValue(); 6710 6711 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6712 !isa<ConstantSDNode>(Src.getOperand(1))) 6713 return SDValue(); 6714 6715 unsigned ShAmt1 = N->getConstantOperandVal(1); 6716 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6717 Src = Src.getOperand(0); 6718 6719 unsigned CombinedShAmt; 6720 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6721 CombinedShAmt = ShAmt1 | ShAmt2; 6722 else 6723 CombinedShAmt = ShAmt1 ^ ShAmt2; 6724 6725 if (CombinedShAmt == 0) 6726 return Src; 6727 6728 SDLoc DL(N); 6729 return DAG.getNode( 6730 N->getOpcode(), DL, N->getValueType(0), Src, 6731 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6732 } 6733 6734 // Combine a constant select operand into its use: 6735 // 6736 // (and (select cond, -1, c), x) 6737 // -> (select cond, x, (and x, c)) [AllOnes=1] 6738 // (or (select cond, 0, c), x) 6739 // -> (select cond, x, (or x, c)) [AllOnes=0] 6740 // (xor (select cond, 0, c), x) 6741 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6742 // (add (select cond, 0, c), x) 6743 // -> (select cond, x, (add x, c)) [AllOnes=0] 6744 // (sub x, (select cond, 0, c)) 6745 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6746 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6747 SelectionDAG &DAG, bool AllOnes) { 6748 EVT VT = N->getValueType(0); 6749 6750 // Skip vectors. 6751 if (VT.isVector()) 6752 return SDValue(); 6753 6754 if ((Slct.getOpcode() != ISD::SELECT && 6755 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6756 !Slct.hasOneUse()) 6757 return SDValue(); 6758 6759 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6760 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6761 }; 6762 6763 bool SwapSelectOps; 6764 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6765 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6766 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6767 SDValue NonConstantVal; 6768 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6769 SwapSelectOps = false; 6770 NonConstantVal = FalseVal; 6771 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6772 SwapSelectOps = true; 6773 NonConstantVal = TrueVal; 6774 } else 6775 return SDValue(); 6776 6777 // Slct is now know to be the desired identity constant when CC is true. 6778 TrueVal = OtherOp; 6779 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6780 // Unless SwapSelectOps says the condition should be false. 6781 if (SwapSelectOps) 6782 std::swap(TrueVal, FalseVal); 6783 6784 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6785 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6786 {Slct.getOperand(0), Slct.getOperand(1), 6787 Slct.getOperand(2), TrueVal, FalseVal}); 6788 6789 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6790 {Slct.getOperand(0), TrueVal, FalseVal}); 6791 } 6792 6793 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6794 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6795 bool AllOnes) { 6796 SDValue N0 = N->getOperand(0); 6797 SDValue N1 = N->getOperand(1); 6798 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6799 return Result; 6800 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6801 return Result; 6802 return SDValue(); 6803 } 6804 6805 // Transform (add (mul x, c0), c1) -> 6806 // (add (mul (add x, c1/c0), c0), c1%c0). 6807 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 6808 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 6809 // to an infinite loop in DAGCombine if transformed. 6810 // Or transform (add (mul x, c0), c1) -> 6811 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 6812 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 6813 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 6814 // lead to an infinite loop in DAGCombine if transformed. 6815 // Or transform (add (mul x, c0), c1) -> 6816 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 6817 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 6818 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 6819 // lead to an infinite loop in DAGCombine if transformed. 6820 // Or transform (add (mul x, c0), c1) -> 6821 // (mul (add x, c1/c0), c0). 6822 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6823 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6824 const RISCVSubtarget &Subtarget) { 6825 // Skip for vector types and larger types. 6826 EVT VT = N->getValueType(0); 6827 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6828 return SDValue(); 6829 // The first operand node must be a MUL and has no other use. 6830 SDValue N0 = N->getOperand(0); 6831 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6832 return SDValue(); 6833 // Check if c0 and c1 match above conditions. 6834 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6835 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6836 if (!N0C || !N1C) 6837 return SDValue(); 6838 int64_t C0 = N0C->getSExtValue(); 6839 int64_t C1 = N1C->getSExtValue(); 6840 int64_t CA, CB; 6841 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 6842 return SDValue(); 6843 // Search for proper CA (non-zero) and CB that both are simm12. 6844 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 6845 !isInt<12>(C0 * (C1 / C0))) { 6846 CA = C1 / C0; 6847 CB = C1 % C0; 6848 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 6849 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 6850 CA = C1 / C0 + 1; 6851 CB = C1 % C0 - C0; 6852 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 6853 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 6854 CA = C1 / C0 - 1; 6855 CB = C1 % C0 + C0; 6856 } else 6857 return SDValue(); 6858 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6859 SDLoc DL(N); 6860 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6861 DAG.getConstant(CA, DL, VT)); 6862 SDValue New1 = 6863 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6864 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 6865 } 6866 6867 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6868 const RISCVSubtarget &Subtarget) { 6869 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6870 return V; 6871 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6872 return V; 6873 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6874 // (select lhs, rhs, cc, x, (add x, y)) 6875 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6876 } 6877 6878 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6879 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6880 // (select lhs, rhs, cc, x, (sub x, y)) 6881 SDValue N0 = N->getOperand(0); 6882 SDValue N1 = N->getOperand(1); 6883 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6884 } 6885 6886 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6887 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6888 // (select lhs, rhs, cc, x, (and x, y)) 6889 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6890 } 6891 6892 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6893 const RISCVSubtarget &Subtarget) { 6894 if (Subtarget.hasStdExtZbp()) { 6895 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6896 return GREV; 6897 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6898 return GORC; 6899 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6900 return SHFL; 6901 } 6902 6903 // fold (or (select cond, 0, y), x) -> 6904 // (select cond, x, (or x, y)) 6905 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6906 } 6907 6908 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6909 // fold (xor (select cond, 0, y), x) -> 6910 // (select cond, x, (xor x, y)) 6911 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6912 } 6913 6914 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6915 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6916 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6917 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6918 // ADDW/SUBW/MULW. 6919 static SDValue performANY_EXTENDCombine(SDNode *N, 6920 TargetLowering::DAGCombinerInfo &DCI, 6921 const RISCVSubtarget &Subtarget) { 6922 if (!Subtarget.is64Bit()) 6923 return SDValue(); 6924 6925 SelectionDAG &DAG = DCI.DAG; 6926 6927 SDValue Src = N->getOperand(0); 6928 EVT VT = N->getValueType(0); 6929 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6930 return SDValue(); 6931 6932 // The opcode must be one that can implicitly sign_extend. 6933 // FIXME: Additional opcodes. 6934 switch (Src.getOpcode()) { 6935 default: 6936 return SDValue(); 6937 case ISD::MUL: 6938 if (!Subtarget.hasStdExtM()) 6939 return SDValue(); 6940 LLVM_FALLTHROUGH; 6941 case ISD::ADD: 6942 case ISD::SUB: 6943 break; 6944 } 6945 6946 // Only handle cases where the result is used by a CopyToReg. That likely 6947 // means the value is a liveout of the basic block. This helps prevent 6948 // infinite combine loops like PR51206. 6949 if (none_of(N->uses(), 6950 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6951 return SDValue(); 6952 6953 SmallVector<SDNode *, 4> SetCCs; 6954 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6955 UE = Src.getNode()->use_end(); 6956 UI != UE; ++UI) { 6957 SDNode *User = *UI; 6958 if (User == N) 6959 continue; 6960 if (UI.getUse().getResNo() != Src.getResNo()) 6961 continue; 6962 // All i32 setccs are legalized by sign extending operands. 6963 if (User->getOpcode() == ISD::SETCC) { 6964 SetCCs.push_back(User); 6965 continue; 6966 } 6967 // We don't know if we can extend this user. 6968 break; 6969 } 6970 6971 // If we don't have any SetCCs, this isn't worthwhile. 6972 if (SetCCs.empty()) 6973 return SDValue(); 6974 6975 SDLoc DL(N); 6976 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6977 DCI.CombineTo(N, SExt); 6978 6979 // Promote all the setccs. 6980 for (SDNode *SetCC : SetCCs) { 6981 SmallVector<SDValue, 4> Ops; 6982 6983 for (unsigned j = 0; j != 2; ++j) { 6984 SDValue SOp = SetCC->getOperand(j); 6985 if (SOp == Src) 6986 Ops.push_back(SExt); 6987 else 6988 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6989 } 6990 6991 Ops.push_back(SetCC->getOperand(2)); 6992 DCI.CombineTo(SetCC, 6993 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6994 } 6995 return SDValue(N, 0); 6996 } 6997 6998 // Try to form VWMUL or VWMULU. 6999 // FIXME: Support VWMULSU. 7000 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1, 7001 SelectionDAG &DAG) { 7002 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7003 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7004 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7005 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7006 return SDValue(); 7007 7008 SDValue Mask = N->getOperand(2); 7009 SDValue VL = N->getOperand(3); 7010 7011 // Make sure the mask and VL match. 7012 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 7013 return SDValue(); 7014 7015 MVT VT = N->getSimpleValueType(0); 7016 7017 // Determine the narrow size for a widening multiply. 7018 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7019 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7020 VT.getVectorElementCount()); 7021 7022 SDLoc DL(N); 7023 7024 // See if the other operand is the same opcode. 7025 if (Op0.getOpcode() == Op1.getOpcode()) { 7026 if (!Op1.hasOneUse()) 7027 return SDValue(); 7028 7029 // Make sure the mask and VL match. 7030 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 7031 return SDValue(); 7032 7033 Op1 = Op1.getOperand(0); 7034 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 7035 // The operand is a splat of a scalar. 7036 7037 // The VL must be the same. 7038 if (Op1.getOperand(1) != VL) 7039 return SDValue(); 7040 7041 // Get the scalar value. 7042 Op1 = Op1.getOperand(0); 7043 7044 // See if have enough sign bits or zero bits in the scalar to use a 7045 // widening multiply by splatting to smaller element size. 7046 unsigned EltBits = VT.getScalarSizeInBits(); 7047 unsigned ScalarBits = Op1.getValueSizeInBits(); 7048 // Make sure we're getting all element bits from the scalar register. 7049 // FIXME: Support implicit sign extension of vmv.v.x? 7050 if (ScalarBits < EltBits) 7051 return SDValue(); 7052 7053 if (IsSignExt) { 7054 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 7055 return SDValue(); 7056 } else { 7057 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7058 if (!DAG.MaskedValueIsZero(Op1, Mask)) 7059 return SDValue(); 7060 } 7061 7062 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 7063 } else 7064 return SDValue(); 7065 7066 Op0 = Op0.getOperand(0); 7067 7068 // Re-introduce narrower extends if needed. 7069 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7070 if (Op0.getValueType() != NarrowVT) 7071 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7072 if (Op1.getValueType() != NarrowVT) 7073 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7074 7075 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7076 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7077 } 7078 7079 // Fold 7080 // (fp_to_int (froundeven X)) -> fcvt X, rne 7081 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 7082 // (fp_to_int (ffloor X)) -> fcvt X, rdn 7083 // (fp_to_int (fceil X)) -> fcvt X, rup 7084 // (fp_to_int (fround X)) -> fcvt X, rmm 7085 // FIXME: We should also do this for fp_to_int_sat. 7086 static SDValue performFP_TO_INTCombine(SDNode *N, 7087 TargetLowering::DAGCombinerInfo &DCI, 7088 const RISCVSubtarget &Subtarget) { 7089 SelectionDAG &DAG = DCI.DAG; 7090 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7091 MVT XLenVT = Subtarget.getXLenVT(); 7092 7093 // Only handle XLen or i32 types. Other types narrower than XLen will 7094 // eventually be legalized to XLenVT. 7095 EVT VT = N->getValueType(0); 7096 if (VT != MVT::i32 && VT != XLenVT) 7097 return SDValue(); 7098 7099 SDValue Src = N->getOperand(0); 7100 7101 // Ensure the FP type is also legal. 7102 if (!TLI.isTypeLegal(Src.getValueType())) 7103 return SDValue(); 7104 7105 // Don't do this for f16 with Zfhmin and not Zfh. 7106 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7107 return SDValue(); 7108 7109 RISCVFPRndMode::RoundingMode FRM; 7110 switch (Src->getOpcode()) { 7111 default: 7112 return SDValue(); 7113 case ISD::FROUNDEVEN: FRM = RISCVFPRndMode::RNE; break; 7114 case ISD::FTRUNC: FRM = RISCVFPRndMode::RTZ; break; 7115 case ISD::FFLOOR: FRM = RISCVFPRndMode::RDN; break; 7116 case ISD::FCEIL: FRM = RISCVFPRndMode::RUP; break; 7117 case ISD::FROUND: FRM = RISCVFPRndMode::RMM; break; 7118 } 7119 7120 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 7121 7122 unsigned Opc; 7123 if (VT == XLenVT) 7124 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7125 else 7126 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7127 7128 SDLoc DL(N); 7129 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 7130 DAG.getTargetConstant(FRM, DL, XLenVT)); 7131 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 7132 } 7133 7134 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 7135 DAGCombinerInfo &DCI) const { 7136 SelectionDAG &DAG = DCI.DAG; 7137 7138 // Helper to call SimplifyDemandedBits on an operand of N where only some low 7139 // bits are demanded. N will be added to the Worklist if it was not deleted. 7140 // Caller should return SDValue(N, 0) if this returns true. 7141 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 7142 SDValue Op = N->getOperand(OpNo); 7143 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 7144 if (!SimplifyDemandedBits(Op, Mask, DCI)) 7145 return false; 7146 7147 if (N->getOpcode() != ISD::DELETED_NODE) 7148 DCI.AddToWorklist(N); 7149 return true; 7150 }; 7151 7152 switch (N->getOpcode()) { 7153 default: 7154 break; 7155 case RISCVISD::SplitF64: { 7156 SDValue Op0 = N->getOperand(0); 7157 // If the input to SplitF64 is just BuildPairF64 then the operation is 7158 // redundant. Instead, use BuildPairF64's operands directly. 7159 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 7160 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 7161 7162 SDLoc DL(N); 7163 7164 // It's cheaper to materialise two 32-bit integers than to load a double 7165 // from the constant pool and transfer it to integer registers through the 7166 // stack. 7167 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 7168 APInt V = C->getValueAPF().bitcastToAPInt(); 7169 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 7170 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 7171 return DCI.CombineTo(N, Lo, Hi); 7172 } 7173 7174 // This is a target-specific version of a DAGCombine performed in 7175 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7176 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7177 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7178 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7179 !Op0.getNode()->hasOneUse()) 7180 break; 7181 SDValue NewSplitF64 = 7182 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 7183 Op0.getOperand(0)); 7184 SDValue Lo = NewSplitF64.getValue(0); 7185 SDValue Hi = NewSplitF64.getValue(1); 7186 APInt SignBit = APInt::getSignMask(32); 7187 if (Op0.getOpcode() == ISD::FNEG) { 7188 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 7189 DAG.getConstant(SignBit, DL, MVT::i32)); 7190 return DCI.CombineTo(N, Lo, NewHi); 7191 } 7192 assert(Op0.getOpcode() == ISD::FABS); 7193 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 7194 DAG.getConstant(~SignBit, DL, MVT::i32)); 7195 return DCI.CombineTo(N, Lo, NewHi); 7196 } 7197 case RISCVISD::SLLW: 7198 case RISCVISD::SRAW: 7199 case RISCVISD::SRLW: 7200 case RISCVISD::ROLW: 7201 case RISCVISD::RORW: { 7202 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7203 if (SimplifyDemandedLowBitsHelper(0, 32) || 7204 SimplifyDemandedLowBitsHelper(1, 5)) 7205 return SDValue(N, 0); 7206 break; 7207 } 7208 case RISCVISD::CLZW: 7209 case RISCVISD::CTZW: { 7210 // Only the lower 32 bits of the first operand are read 7211 if (SimplifyDemandedLowBitsHelper(0, 32)) 7212 return SDValue(N, 0); 7213 break; 7214 } 7215 case RISCVISD::FSL: 7216 case RISCVISD::FSR: { 7217 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 7218 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 7219 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7220 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 7221 return SDValue(N, 0); 7222 break; 7223 } 7224 case RISCVISD::FSLW: 7225 case RISCVISD::FSRW: { 7226 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 7227 // read. 7228 if (SimplifyDemandedLowBitsHelper(0, 32) || 7229 SimplifyDemandedLowBitsHelper(1, 32) || 7230 SimplifyDemandedLowBitsHelper(2, 6)) 7231 return SDValue(N, 0); 7232 break; 7233 } 7234 case RISCVISD::GREV: 7235 case RISCVISD::GORC: { 7236 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 7237 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7238 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7239 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 7240 return SDValue(N, 0); 7241 7242 return combineGREVI_GORCI(N, DAG); 7243 } 7244 case RISCVISD::GREVW: 7245 case RISCVISD::GORCW: { 7246 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7247 if (SimplifyDemandedLowBitsHelper(0, 32) || 7248 SimplifyDemandedLowBitsHelper(1, 5)) 7249 return SDValue(N, 0); 7250 7251 return combineGREVI_GORCI(N, DAG); 7252 } 7253 case RISCVISD::SHFL: 7254 case RISCVISD::UNSHFL: { 7255 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 7256 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7257 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7258 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 7259 return SDValue(N, 0); 7260 7261 break; 7262 } 7263 case RISCVISD::SHFLW: 7264 case RISCVISD::UNSHFLW: { 7265 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 7266 SDValue LHS = N->getOperand(0); 7267 SDValue RHS = N->getOperand(1); 7268 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 7269 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 7270 if (SimplifyDemandedLowBitsHelper(0, 32) || 7271 SimplifyDemandedLowBitsHelper(1, 4)) 7272 return SDValue(N, 0); 7273 7274 break; 7275 } 7276 case RISCVISD::BCOMPRESSW: 7277 case RISCVISD::BDECOMPRESSW: { 7278 // Only the lower 32 bits of LHS and RHS are read. 7279 if (SimplifyDemandedLowBitsHelper(0, 32) || 7280 SimplifyDemandedLowBitsHelper(1, 32)) 7281 return SDValue(N, 0); 7282 7283 break; 7284 } 7285 case RISCVISD::FMV_X_ANYEXTH: 7286 case RISCVISD::FMV_X_ANYEXTW_RV64: { 7287 SDLoc DL(N); 7288 SDValue Op0 = N->getOperand(0); 7289 MVT VT = N->getSimpleValueType(0); 7290 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 7291 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 7292 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 7293 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 7294 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 7295 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7296 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 7297 assert(Op0.getOperand(0).getValueType() == VT && 7298 "Unexpected value type!"); 7299 return Op0.getOperand(0); 7300 } 7301 7302 // This is a target-specific version of a DAGCombine performed in 7303 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7304 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7305 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7306 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7307 !Op0.getNode()->hasOneUse()) 7308 break; 7309 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 7310 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 7311 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 7312 if (Op0.getOpcode() == ISD::FNEG) 7313 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 7314 DAG.getConstant(SignBit, DL, VT)); 7315 7316 assert(Op0.getOpcode() == ISD::FABS); 7317 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 7318 DAG.getConstant(~SignBit, DL, VT)); 7319 } 7320 case ISD::ADD: 7321 return performADDCombine(N, DAG, Subtarget); 7322 case ISD::SUB: 7323 return performSUBCombine(N, DAG); 7324 case ISD::AND: 7325 return performANDCombine(N, DAG); 7326 case ISD::OR: 7327 return performORCombine(N, DAG, Subtarget); 7328 case ISD::XOR: 7329 return performXORCombine(N, DAG); 7330 case ISD::ANY_EXTEND: 7331 return performANY_EXTENDCombine(N, DCI, Subtarget); 7332 case ISD::ZERO_EXTEND: 7333 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 7334 // type legalization. This is safe because fp_to_uint produces poison if 7335 // it overflows. 7336 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 7337 SDValue Src = N->getOperand(0); 7338 if (Src.getOpcode() == ISD::FP_TO_UINT && 7339 isTypeLegal(Src.getOperand(0).getValueType())) 7340 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 7341 Src.getOperand(0)); 7342 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 7343 isTypeLegal(Src.getOperand(1).getValueType())) { 7344 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 7345 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 7346 Src.getOperand(0), Src.getOperand(1)); 7347 DCI.CombineTo(N, Res); 7348 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 7349 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 7350 return SDValue(N, 0); // Return N so it doesn't get rechecked. 7351 } 7352 } 7353 return SDValue(); 7354 case RISCVISD::SELECT_CC: { 7355 // Transform 7356 SDValue LHS = N->getOperand(0); 7357 SDValue RHS = N->getOperand(1); 7358 SDValue TrueV = N->getOperand(3); 7359 SDValue FalseV = N->getOperand(4); 7360 7361 // If the True and False values are the same, we don't need a select_cc. 7362 if (TrueV == FalseV) 7363 return TrueV; 7364 7365 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 7366 if (!ISD::isIntEqualitySetCC(CCVal)) 7367 break; 7368 7369 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 7370 // (select_cc X, Y, lt, trueV, falseV) 7371 // Sometimes the setcc is introduced after select_cc has been formed. 7372 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7373 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7374 // If we're looking for eq 0 instead of ne 0, we need to invert the 7375 // condition. 7376 bool Invert = CCVal == ISD::SETEQ; 7377 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7378 if (Invert) 7379 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7380 7381 SDLoc DL(N); 7382 RHS = LHS.getOperand(1); 7383 LHS = LHS.getOperand(0); 7384 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7385 7386 SDValue TargetCC = DAG.getCondCode(CCVal); 7387 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7388 {LHS, RHS, TargetCC, TrueV, FalseV}); 7389 } 7390 7391 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 7392 // (select_cc X, Y, eq/ne, trueV, falseV) 7393 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7394 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 7395 {LHS.getOperand(0), LHS.getOperand(1), 7396 N->getOperand(2), TrueV, FalseV}); 7397 // (select_cc X, 1, setne, trueV, falseV) -> 7398 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 7399 // This can occur when legalizing some floating point comparisons. 7400 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7401 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7402 SDLoc DL(N); 7403 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7404 SDValue TargetCC = DAG.getCondCode(CCVal); 7405 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7406 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7407 {LHS, RHS, TargetCC, TrueV, FalseV}); 7408 } 7409 7410 break; 7411 } 7412 case RISCVISD::BR_CC: { 7413 SDValue LHS = N->getOperand(1); 7414 SDValue RHS = N->getOperand(2); 7415 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 7416 if (!ISD::isIntEqualitySetCC(CCVal)) 7417 break; 7418 7419 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 7420 // (br_cc X, Y, lt, dest) 7421 // Sometimes the setcc is introduced after br_cc has been formed. 7422 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7423 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7424 // If we're looking for eq 0 instead of ne 0, we need to invert the 7425 // condition. 7426 bool Invert = CCVal == ISD::SETEQ; 7427 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7428 if (Invert) 7429 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7430 7431 SDLoc DL(N); 7432 RHS = LHS.getOperand(1); 7433 LHS = LHS.getOperand(0); 7434 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7435 7436 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7437 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7438 N->getOperand(4)); 7439 } 7440 7441 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7442 // (br_cc X, Y, eq/ne, trueV, falseV) 7443 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7444 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7445 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7446 N->getOperand(3), N->getOperand(4)); 7447 7448 // (br_cc X, 1, setne, br_cc) -> 7449 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7450 // This can occur when legalizing some floating point comparisons. 7451 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7452 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7453 SDLoc DL(N); 7454 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7455 SDValue TargetCC = DAG.getCondCode(CCVal); 7456 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7457 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7458 N->getOperand(0), LHS, RHS, TargetCC, 7459 N->getOperand(4)); 7460 } 7461 break; 7462 } 7463 case ISD::FP_TO_SINT: 7464 case ISD::FP_TO_UINT: 7465 return performFP_TO_INTCombine(N, DCI, Subtarget); 7466 case ISD::FCOPYSIGN: { 7467 EVT VT = N->getValueType(0); 7468 if (!VT.isVector()) 7469 break; 7470 // There is a form of VFSGNJ which injects the negated sign of its second 7471 // operand. Try and bubble any FNEG up after the extend/round to produce 7472 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7473 // TRUNC=1. 7474 SDValue In2 = N->getOperand(1); 7475 // Avoid cases where the extend/round has multiple uses, as duplicating 7476 // those is typically more expensive than removing a fneg. 7477 if (!In2.hasOneUse()) 7478 break; 7479 if (In2.getOpcode() != ISD::FP_EXTEND && 7480 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7481 break; 7482 In2 = In2.getOperand(0); 7483 if (In2.getOpcode() != ISD::FNEG) 7484 break; 7485 SDLoc DL(N); 7486 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7487 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7488 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7489 } 7490 case ISD::MGATHER: 7491 case ISD::MSCATTER: 7492 case ISD::VP_GATHER: 7493 case ISD::VP_SCATTER: { 7494 if (!DCI.isBeforeLegalize()) 7495 break; 7496 SDValue Index, ScaleOp; 7497 bool IsIndexScaled = false; 7498 bool IsIndexSigned = false; 7499 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7500 Index = VPGSN->getIndex(); 7501 ScaleOp = VPGSN->getScale(); 7502 IsIndexScaled = VPGSN->isIndexScaled(); 7503 IsIndexSigned = VPGSN->isIndexSigned(); 7504 } else { 7505 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7506 Index = MGSN->getIndex(); 7507 ScaleOp = MGSN->getScale(); 7508 IsIndexScaled = MGSN->isIndexScaled(); 7509 IsIndexSigned = MGSN->isIndexSigned(); 7510 } 7511 EVT IndexVT = Index.getValueType(); 7512 MVT XLenVT = Subtarget.getXLenVT(); 7513 // RISCV indexed loads only support the "unsigned unscaled" addressing 7514 // mode, so anything else must be manually legalized. 7515 bool NeedsIdxLegalization = 7516 IsIndexScaled || 7517 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7518 if (!NeedsIdxLegalization) 7519 break; 7520 7521 SDLoc DL(N); 7522 7523 // Any index legalization should first promote to XLenVT, so we don't lose 7524 // bits when scaling. This may create an illegal index type so we let 7525 // LLVM's legalization take care of the splitting. 7526 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7527 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7528 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7529 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7530 DL, IndexVT, Index); 7531 } 7532 7533 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7534 if (IsIndexScaled && Scale != 1) { 7535 // Manually scale the indices by the element size. 7536 // TODO: Sanitize the scale operand here? 7537 // TODO: For VP nodes, should we use VP_SHL here? 7538 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7539 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7540 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7541 } 7542 7543 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7544 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7545 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7546 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7547 VPGN->getScale(), VPGN->getMask(), 7548 VPGN->getVectorLength()}, 7549 VPGN->getMemOperand(), NewIndexTy); 7550 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7551 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7552 {VPSN->getChain(), VPSN->getValue(), 7553 VPSN->getBasePtr(), Index, VPSN->getScale(), 7554 VPSN->getMask(), VPSN->getVectorLength()}, 7555 VPSN->getMemOperand(), NewIndexTy); 7556 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7557 return DAG.getMaskedGather( 7558 N->getVTList(), MGN->getMemoryVT(), DL, 7559 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7560 MGN->getBasePtr(), Index, MGN->getScale()}, 7561 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7562 const auto *MSN = cast<MaskedScatterSDNode>(N); 7563 return DAG.getMaskedScatter( 7564 N->getVTList(), MSN->getMemoryVT(), DL, 7565 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7566 Index, MSN->getScale()}, 7567 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7568 } 7569 case RISCVISD::SRA_VL: 7570 case RISCVISD::SRL_VL: 7571 case RISCVISD::SHL_VL: { 7572 SDValue ShAmt = N->getOperand(1); 7573 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7574 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7575 SDLoc DL(N); 7576 SDValue VL = N->getOperand(3); 7577 EVT VT = N->getValueType(0); 7578 ShAmt = 7579 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7580 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7581 N->getOperand(2), N->getOperand(3)); 7582 } 7583 break; 7584 } 7585 case ISD::SRA: 7586 case ISD::SRL: 7587 case ISD::SHL: { 7588 SDValue ShAmt = N->getOperand(1); 7589 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7590 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7591 SDLoc DL(N); 7592 EVT VT = N->getValueType(0); 7593 ShAmt = 7594 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7595 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7596 } 7597 break; 7598 } 7599 case RISCVISD::MUL_VL: { 7600 SDValue Op0 = N->getOperand(0); 7601 SDValue Op1 = N->getOperand(1); 7602 if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG)) 7603 return V; 7604 if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG)) 7605 return V; 7606 return SDValue(); 7607 } 7608 case ISD::STORE: { 7609 auto *Store = cast<StoreSDNode>(N); 7610 SDValue Val = Store->getValue(); 7611 // Combine store of vmv.x.s to vse with VL of 1. 7612 // FIXME: Support FP. 7613 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7614 SDValue Src = Val.getOperand(0); 7615 EVT VecVT = Src.getValueType(); 7616 EVT MemVT = Store->getMemoryVT(); 7617 // The memory VT and the element type must match. 7618 if (VecVT.getVectorElementType() == MemVT) { 7619 SDLoc DL(N); 7620 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7621 return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(), 7622 DAG.getConstant(1, DL, MaskVT), 7623 DAG.getConstant(1, DL, Subtarget.getXLenVT()), 7624 Store->getPointerInfo(), 7625 Store->getOriginalAlign(), 7626 Store->getMemOperand()->getFlags()); 7627 } 7628 } 7629 7630 break; 7631 } 7632 } 7633 7634 return SDValue(); 7635 } 7636 7637 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7638 const SDNode *N, CombineLevel Level) const { 7639 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7640 // materialised in fewer instructions than `(OP _, c1)`: 7641 // 7642 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7643 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7644 SDValue N0 = N->getOperand(0); 7645 EVT Ty = N0.getValueType(); 7646 if (Ty.isScalarInteger() && 7647 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7648 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7649 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7650 if (C1 && C2) { 7651 const APInt &C1Int = C1->getAPIntValue(); 7652 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7653 7654 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7655 // and the combine should happen, to potentially allow further combines 7656 // later. 7657 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7658 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7659 return true; 7660 7661 // We can materialise `c1` in an add immediate, so it's "free", and the 7662 // combine should be prevented. 7663 if (C1Int.getMinSignedBits() <= 64 && 7664 isLegalAddImmediate(C1Int.getSExtValue())) 7665 return false; 7666 7667 // Neither constant will fit into an immediate, so find materialisation 7668 // costs. 7669 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7670 Subtarget.getFeatureBits(), 7671 /*CompressionCost*/true); 7672 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7673 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7674 /*CompressionCost*/true); 7675 7676 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7677 // combine should be prevented. 7678 if (C1Cost < ShiftedC1Cost) 7679 return false; 7680 } 7681 } 7682 return true; 7683 } 7684 7685 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7686 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7687 TargetLoweringOpt &TLO) const { 7688 // Delay this optimization as late as possible. 7689 if (!TLO.LegalOps) 7690 return false; 7691 7692 EVT VT = Op.getValueType(); 7693 if (VT.isVector()) 7694 return false; 7695 7696 // Only handle AND for now. 7697 if (Op.getOpcode() != ISD::AND) 7698 return false; 7699 7700 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7701 if (!C) 7702 return false; 7703 7704 const APInt &Mask = C->getAPIntValue(); 7705 7706 // Clear all non-demanded bits initially. 7707 APInt ShrunkMask = Mask & DemandedBits; 7708 7709 // Try to make a smaller immediate by setting undemanded bits. 7710 7711 APInt ExpandedMask = Mask | ~DemandedBits; 7712 7713 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7714 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7715 }; 7716 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7717 if (NewMask == Mask) 7718 return true; 7719 SDLoc DL(Op); 7720 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7721 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7722 return TLO.CombineTo(Op, NewOp); 7723 }; 7724 7725 // If the shrunk mask fits in sign extended 12 bits, let the target 7726 // independent code apply it. 7727 if (ShrunkMask.isSignedIntN(12)) 7728 return false; 7729 7730 // Preserve (and X, 0xffff) when zext.h is supported. 7731 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7732 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7733 if (IsLegalMask(NewMask)) 7734 return UseMask(NewMask); 7735 } 7736 7737 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7738 if (VT == MVT::i64) { 7739 APInt NewMask = APInt(64, 0xffffffff); 7740 if (IsLegalMask(NewMask)) 7741 return UseMask(NewMask); 7742 } 7743 7744 // For the remaining optimizations, we need to be able to make a negative 7745 // number through a combination of mask and undemanded bits. 7746 if (!ExpandedMask.isNegative()) 7747 return false; 7748 7749 // What is the fewest number of bits we need to represent the negative number. 7750 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7751 7752 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7753 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7754 APInt NewMask = ShrunkMask; 7755 if (MinSignedBits <= 12) 7756 NewMask.setBitsFrom(11); 7757 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7758 NewMask.setBitsFrom(31); 7759 else 7760 return false; 7761 7762 // Check that our new mask is a subset of the demanded mask. 7763 assert(IsLegalMask(NewMask)); 7764 return UseMask(NewMask); 7765 } 7766 7767 static void computeGREV(APInt &Src, unsigned ShAmt) { 7768 ShAmt &= Src.getBitWidth() - 1; 7769 uint64_t x = Src.getZExtValue(); 7770 if (ShAmt & 1) 7771 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7772 if (ShAmt & 2) 7773 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7774 if (ShAmt & 4) 7775 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7776 if (ShAmt & 8) 7777 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7778 if (ShAmt & 16) 7779 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7780 if (ShAmt & 32) 7781 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7782 Src = x; 7783 } 7784 7785 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7786 KnownBits &Known, 7787 const APInt &DemandedElts, 7788 const SelectionDAG &DAG, 7789 unsigned Depth) const { 7790 unsigned BitWidth = Known.getBitWidth(); 7791 unsigned Opc = Op.getOpcode(); 7792 assert((Opc >= ISD::BUILTIN_OP_END || 7793 Opc == ISD::INTRINSIC_WO_CHAIN || 7794 Opc == ISD::INTRINSIC_W_CHAIN || 7795 Opc == ISD::INTRINSIC_VOID) && 7796 "Should use MaskedValueIsZero if you don't know whether Op" 7797 " is a target node!"); 7798 7799 Known.resetAll(); 7800 switch (Opc) { 7801 default: break; 7802 case RISCVISD::SELECT_CC: { 7803 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7804 // If we don't know any bits, early out. 7805 if (Known.isUnknown()) 7806 break; 7807 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7808 7809 // Only known if known in both the LHS and RHS. 7810 Known = KnownBits::commonBits(Known, Known2); 7811 break; 7812 } 7813 case RISCVISD::REMUW: { 7814 KnownBits Known2; 7815 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7816 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7817 // We only care about the lower 32 bits. 7818 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7819 // Restore the original width by sign extending. 7820 Known = Known.sext(BitWidth); 7821 break; 7822 } 7823 case RISCVISD::DIVUW: { 7824 KnownBits Known2; 7825 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7826 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7827 // We only care about the lower 32 bits. 7828 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7829 // Restore the original width by sign extending. 7830 Known = Known.sext(BitWidth); 7831 break; 7832 } 7833 case RISCVISD::CTZW: { 7834 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7835 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7836 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7837 Known.Zero.setBitsFrom(LowBits); 7838 break; 7839 } 7840 case RISCVISD::CLZW: { 7841 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7842 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7843 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7844 Known.Zero.setBitsFrom(LowBits); 7845 break; 7846 } 7847 case RISCVISD::GREV: 7848 case RISCVISD::GREVW: { 7849 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7850 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7851 if (Opc == RISCVISD::GREVW) 7852 Known = Known.trunc(32); 7853 unsigned ShAmt = C->getZExtValue(); 7854 computeGREV(Known.Zero, ShAmt); 7855 computeGREV(Known.One, ShAmt); 7856 if (Opc == RISCVISD::GREVW) 7857 Known = Known.sext(BitWidth); 7858 } 7859 break; 7860 } 7861 case RISCVISD::READ_VLENB: 7862 // We assume VLENB is at least 16 bytes. 7863 Known.Zero.setLowBits(4); 7864 // We assume VLENB is no more than 65536 / 8 bytes. 7865 Known.Zero.setBitsFrom(14); 7866 break; 7867 case ISD::INTRINSIC_W_CHAIN: { 7868 unsigned IntNo = Op.getConstantOperandVal(1); 7869 switch (IntNo) { 7870 default: 7871 // We can't do anything for most intrinsics. 7872 break; 7873 case Intrinsic::riscv_vsetvli: 7874 case Intrinsic::riscv_vsetvlimax: 7875 // Assume that VL output is positive and would fit in an int32_t. 7876 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7877 if (BitWidth >= 32) 7878 Known.Zero.setBitsFrom(31); 7879 break; 7880 } 7881 break; 7882 } 7883 } 7884 } 7885 7886 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7887 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7888 unsigned Depth) const { 7889 switch (Op.getOpcode()) { 7890 default: 7891 break; 7892 case RISCVISD::SELECT_CC: { 7893 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7894 if (Tmp == 1) return 1; // Early out. 7895 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7896 return std::min(Tmp, Tmp2); 7897 } 7898 case RISCVISD::SLLW: 7899 case RISCVISD::SRAW: 7900 case RISCVISD::SRLW: 7901 case RISCVISD::DIVW: 7902 case RISCVISD::DIVUW: 7903 case RISCVISD::REMUW: 7904 case RISCVISD::ROLW: 7905 case RISCVISD::RORW: 7906 case RISCVISD::GREVW: 7907 case RISCVISD::GORCW: 7908 case RISCVISD::FSLW: 7909 case RISCVISD::FSRW: 7910 case RISCVISD::SHFLW: 7911 case RISCVISD::UNSHFLW: 7912 case RISCVISD::BCOMPRESSW: 7913 case RISCVISD::BDECOMPRESSW: 7914 case RISCVISD::FCVT_W_RV64: 7915 case RISCVISD::FCVT_WU_RV64: 7916 case RISCVISD::STRICT_FCVT_W_RV64: 7917 case RISCVISD::STRICT_FCVT_WU_RV64: 7918 // TODO: As the result is sign-extended, this is conservatively correct. A 7919 // more precise answer could be calculated for SRAW depending on known 7920 // bits in the shift amount. 7921 return 33; 7922 case RISCVISD::SHFL: 7923 case RISCVISD::UNSHFL: { 7924 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7925 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7926 // will stay within the upper 32 bits. If there were more than 32 sign bits 7927 // before there will be at least 33 sign bits after. 7928 if (Op.getValueType() == MVT::i64 && 7929 isa<ConstantSDNode>(Op.getOperand(1)) && 7930 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7931 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7932 if (Tmp > 32) 7933 return 33; 7934 } 7935 break; 7936 } 7937 case RISCVISD::VMV_X_S: 7938 // The number of sign bits of the scalar result is computed by obtaining the 7939 // element type of the input vector operand, subtracting its width from the 7940 // XLEN, and then adding one (sign bit within the element type). If the 7941 // element type is wider than XLen, the least-significant XLEN bits are 7942 // taken. 7943 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7944 return 1; 7945 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 7946 } 7947 7948 return 1; 7949 } 7950 7951 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 7952 MachineBasicBlock *BB) { 7953 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 7954 7955 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 7956 // Should the count have wrapped while it was being read, we need to try 7957 // again. 7958 // ... 7959 // read: 7960 // rdcycleh x3 # load high word of cycle 7961 // rdcycle x2 # load low word of cycle 7962 // rdcycleh x4 # load high word of cycle 7963 // bne x3, x4, read # check if high word reads match, otherwise try again 7964 // ... 7965 7966 MachineFunction &MF = *BB->getParent(); 7967 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7968 MachineFunction::iterator It = ++BB->getIterator(); 7969 7970 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7971 MF.insert(It, LoopMBB); 7972 7973 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7974 MF.insert(It, DoneMBB); 7975 7976 // Transfer the remainder of BB and its successor edges to DoneMBB. 7977 DoneMBB->splice(DoneMBB->begin(), BB, 7978 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7979 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 7980 7981 BB->addSuccessor(LoopMBB); 7982 7983 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7984 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7985 Register LoReg = MI.getOperand(0).getReg(); 7986 Register HiReg = MI.getOperand(1).getReg(); 7987 DebugLoc DL = MI.getDebugLoc(); 7988 7989 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 7990 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 7991 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7992 .addReg(RISCV::X0); 7993 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 7994 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 7995 .addReg(RISCV::X0); 7996 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7997 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7998 .addReg(RISCV::X0); 7999 8000 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 8001 .addReg(HiReg) 8002 .addReg(ReadAgainReg) 8003 .addMBB(LoopMBB); 8004 8005 LoopMBB->addSuccessor(LoopMBB); 8006 LoopMBB->addSuccessor(DoneMBB); 8007 8008 MI.eraseFromParent(); 8009 8010 return DoneMBB; 8011 } 8012 8013 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 8014 MachineBasicBlock *BB) { 8015 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 8016 8017 MachineFunction &MF = *BB->getParent(); 8018 DebugLoc DL = MI.getDebugLoc(); 8019 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8020 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8021 Register LoReg = MI.getOperand(0).getReg(); 8022 Register HiReg = MI.getOperand(1).getReg(); 8023 Register SrcReg = MI.getOperand(2).getReg(); 8024 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 8025 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8026 8027 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 8028 RI); 8029 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8030 MachineMemOperand *MMOLo = 8031 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 8032 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8033 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 8034 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 8035 .addFrameIndex(FI) 8036 .addImm(0) 8037 .addMemOperand(MMOLo); 8038 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 8039 .addFrameIndex(FI) 8040 .addImm(4) 8041 .addMemOperand(MMOHi); 8042 MI.eraseFromParent(); // The pseudo instruction is gone now. 8043 return BB; 8044 } 8045 8046 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 8047 MachineBasicBlock *BB) { 8048 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 8049 "Unexpected instruction"); 8050 8051 MachineFunction &MF = *BB->getParent(); 8052 DebugLoc DL = MI.getDebugLoc(); 8053 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8054 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8055 Register DstReg = MI.getOperand(0).getReg(); 8056 Register LoReg = MI.getOperand(1).getReg(); 8057 Register HiReg = MI.getOperand(2).getReg(); 8058 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 8059 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8060 8061 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8062 MachineMemOperand *MMOLo = 8063 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 8064 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8065 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 8066 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8067 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 8068 .addFrameIndex(FI) 8069 .addImm(0) 8070 .addMemOperand(MMOLo); 8071 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8072 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 8073 .addFrameIndex(FI) 8074 .addImm(4) 8075 .addMemOperand(MMOHi); 8076 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 8077 MI.eraseFromParent(); // The pseudo instruction is gone now. 8078 return BB; 8079 } 8080 8081 static bool isSelectPseudo(MachineInstr &MI) { 8082 switch (MI.getOpcode()) { 8083 default: 8084 return false; 8085 case RISCV::Select_GPR_Using_CC_GPR: 8086 case RISCV::Select_FPR16_Using_CC_GPR: 8087 case RISCV::Select_FPR32_Using_CC_GPR: 8088 case RISCV::Select_FPR64_Using_CC_GPR: 8089 return true; 8090 } 8091 } 8092 8093 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 8094 unsigned RelOpcode, unsigned EqOpcode, 8095 const RISCVSubtarget &Subtarget) { 8096 DebugLoc DL = MI.getDebugLoc(); 8097 Register DstReg = MI.getOperand(0).getReg(); 8098 Register Src1Reg = MI.getOperand(1).getReg(); 8099 Register Src2Reg = MI.getOperand(2).getReg(); 8100 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 8101 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 8102 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 8103 8104 // Save the current FFLAGS. 8105 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 8106 8107 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 8108 .addReg(Src1Reg) 8109 .addReg(Src2Reg); 8110 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8111 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 8112 8113 // Restore the FFLAGS. 8114 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 8115 .addReg(SavedFFlags, RegState::Kill); 8116 8117 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 8118 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 8119 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 8120 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 8121 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8122 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 8123 8124 // Erase the pseudoinstruction. 8125 MI.eraseFromParent(); 8126 return BB; 8127 } 8128 8129 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 8130 MachineBasicBlock *BB, 8131 const RISCVSubtarget &Subtarget) { 8132 // To "insert" Select_* instructions, we actually have to insert the triangle 8133 // control-flow pattern. The incoming instructions know the destination vreg 8134 // to set, the condition code register to branch on, the true/false values to 8135 // select between, and the condcode to use to select the appropriate branch. 8136 // 8137 // We produce the following control flow: 8138 // HeadMBB 8139 // | \ 8140 // | IfFalseMBB 8141 // | / 8142 // TailMBB 8143 // 8144 // When we find a sequence of selects we attempt to optimize their emission 8145 // by sharing the control flow. Currently we only handle cases where we have 8146 // multiple selects with the exact same condition (same LHS, RHS and CC). 8147 // The selects may be interleaved with other instructions if the other 8148 // instructions meet some requirements we deem safe: 8149 // - They are debug instructions. Otherwise, 8150 // - They do not have side-effects, do not access memory and their inputs do 8151 // not depend on the results of the select pseudo-instructions. 8152 // The TrueV/FalseV operands of the selects cannot depend on the result of 8153 // previous selects in the sequence. 8154 // These conditions could be further relaxed. See the X86 target for a 8155 // related approach and more information. 8156 Register LHS = MI.getOperand(1).getReg(); 8157 Register RHS = MI.getOperand(2).getReg(); 8158 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 8159 8160 SmallVector<MachineInstr *, 4> SelectDebugValues; 8161 SmallSet<Register, 4> SelectDests; 8162 SelectDests.insert(MI.getOperand(0).getReg()); 8163 8164 MachineInstr *LastSelectPseudo = &MI; 8165 8166 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 8167 SequenceMBBI != E; ++SequenceMBBI) { 8168 if (SequenceMBBI->isDebugInstr()) 8169 continue; 8170 else if (isSelectPseudo(*SequenceMBBI)) { 8171 if (SequenceMBBI->getOperand(1).getReg() != LHS || 8172 SequenceMBBI->getOperand(2).getReg() != RHS || 8173 SequenceMBBI->getOperand(3).getImm() != CC || 8174 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 8175 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 8176 break; 8177 LastSelectPseudo = &*SequenceMBBI; 8178 SequenceMBBI->collectDebugValues(SelectDebugValues); 8179 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 8180 } else { 8181 if (SequenceMBBI->hasUnmodeledSideEffects() || 8182 SequenceMBBI->mayLoadOrStore()) 8183 break; 8184 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 8185 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 8186 })) 8187 break; 8188 } 8189 } 8190 8191 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 8192 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8193 DebugLoc DL = MI.getDebugLoc(); 8194 MachineFunction::iterator I = ++BB->getIterator(); 8195 8196 MachineBasicBlock *HeadMBB = BB; 8197 MachineFunction *F = BB->getParent(); 8198 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 8199 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 8200 8201 F->insert(I, IfFalseMBB); 8202 F->insert(I, TailMBB); 8203 8204 // Transfer debug instructions associated with the selects to TailMBB. 8205 for (MachineInstr *DebugInstr : SelectDebugValues) { 8206 TailMBB->push_back(DebugInstr->removeFromParent()); 8207 } 8208 8209 // Move all instructions after the sequence to TailMBB. 8210 TailMBB->splice(TailMBB->end(), HeadMBB, 8211 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 8212 // Update machine-CFG edges by transferring all successors of the current 8213 // block to the new block which will contain the Phi nodes for the selects. 8214 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 8215 // Set the successors for HeadMBB. 8216 HeadMBB->addSuccessor(IfFalseMBB); 8217 HeadMBB->addSuccessor(TailMBB); 8218 8219 // Insert appropriate branch. 8220 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 8221 .addReg(LHS) 8222 .addReg(RHS) 8223 .addMBB(TailMBB); 8224 8225 // IfFalseMBB just falls through to TailMBB. 8226 IfFalseMBB->addSuccessor(TailMBB); 8227 8228 // Create PHIs for all of the select pseudo-instructions. 8229 auto SelectMBBI = MI.getIterator(); 8230 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 8231 auto InsertionPoint = TailMBB->begin(); 8232 while (SelectMBBI != SelectEnd) { 8233 auto Next = std::next(SelectMBBI); 8234 if (isSelectPseudo(*SelectMBBI)) { 8235 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 8236 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 8237 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 8238 .addReg(SelectMBBI->getOperand(4).getReg()) 8239 .addMBB(HeadMBB) 8240 .addReg(SelectMBBI->getOperand(5).getReg()) 8241 .addMBB(IfFalseMBB); 8242 SelectMBBI->eraseFromParent(); 8243 } 8244 SelectMBBI = Next; 8245 } 8246 8247 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8248 return TailMBB; 8249 } 8250 8251 MachineBasicBlock * 8252 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 8253 MachineBasicBlock *BB) const { 8254 switch (MI.getOpcode()) { 8255 default: 8256 llvm_unreachable("Unexpected instr type to insert"); 8257 case RISCV::ReadCycleWide: 8258 assert(!Subtarget.is64Bit() && 8259 "ReadCycleWrite is only to be used on riscv32"); 8260 return emitReadCycleWidePseudo(MI, BB); 8261 case RISCV::Select_GPR_Using_CC_GPR: 8262 case RISCV::Select_FPR16_Using_CC_GPR: 8263 case RISCV::Select_FPR32_Using_CC_GPR: 8264 case RISCV::Select_FPR64_Using_CC_GPR: 8265 return emitSelectPseudo(MI, BB, Subtarget); 8266 case RISCV::BuildPairF64Pseudo: 8267 return emitBuildPairF64Pseudo(MI, BB); 8268 case RISCV::SplitF64Pseudo: 8269 return emitSplitF64Pseudo(MI, BB); 8270 case RISCV::PseudoQuietFLE_H: 8271 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 8272 case RISCV::PseudoQuietFLT_H: 8273 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 8274 case RISCV::PseudoQuietFLE_S: 8275 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 8276 case RISCV::PseudoQuietFLT_S: 8277 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 8278 case RISCV::PseudoQuietFLE_D: 8279 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 8280 case RISCV::PseudoQuietFLT_D: 8281 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 8282 } 8283 } 8284 8285 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 8286 SDNode *Node) const { 8287 // Add FRM dependency to any instructions with dynamic rounding mode. 8288 unsigned Opc = MI.getOpcode(); 8289 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 8290 if (Idx < 0) 8291 return; 8292 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 8293 return; 8294 // If the instruction already reads FRM, don't add another read. 8295 if (MI.readsRegister(RISCV::FRM)) 8296 return; 8297 MI.addOperand( 8298 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 8299 } 8300 8301 // Calling Convention Implementation. 8302 // The expectations for frontend ABI lowering vary from target to target. 8303 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 8304 // details, but this is a longer term goal. For now, we simply try to keep the 8305 // role of the frontend as simple and well-defined as possible. The rules can 8306 // be summarised as: 8307 // * Never split up large scalar arguments. We handle them here. 8308 // * If a hardfloat calling convention is being used, and the struct may be 8309 // passed in a pair of registers (fp+fp, int+fp), and both registers are 8310 // available, then pass as two separate arguments. If either the GPRs or FPRs 8311 // are exhausted, then pass according to the rule below. 8312 // * If a struct could never be passed in registers or directly in a stack 8313 // slot (as it is larger than 2*XLEN and the floating point rules don't 8314 // apply), then pass it using a pointer with the byval attribute. 8315 // * If a struct is less than 2*XLEN, then coerce to either a two-element 8316 // word-sized array or a 2*XLEN scalar (depending on alignment). 8317 // * The frontend can determine whether a struct is returned by reference or 8318 // not based on its size and fields. If it will be returned by reference, the 8319 // frontend must modify the prototype so a pointer with the sret annotation is 8320 // passed as the first argument. This is not necessary for large scalar 8321 // returns. 8322 // * Struct return values and varargs should be coerced to structs containing 8323 // register-size fields in the same situations they would be for fixed 8324 // arguments. 8325 8326 static const MCPhysReg ArgGPRs[] = { 8327 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 8328 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 8329 }; 8330 static const MCPhysReg ArgFPR16s[] = { 8331 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 8332 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 8333 }; 8334 static const MCPhysReg ArgFPR32s[] = { 8335 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 8336 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 8337 }; 8338 static const MCPhysReg ArgFPR64s[] = { 8339 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 8340 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 8341 }; 8342 // This is an interim calling convention and it may be changed in the future. 8343 static const MCPhysReg ArgVRs[] = { 8344 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 8345 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 8346 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 8347 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 8348 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 8349 RISCV::V20M2, RISCV::V22M2}; 8350 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 8351 RISCV::V20M4}; 8352 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 8353 8354 // Pass a 2*XLEN argument that has been split into two XLEN values through 8355 // registers or the stack as necessary. 8356 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 8357 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 8358 MVT ValVT2, MVT LocVT2, 8359 ISD::ArgFlagsTy ArgFlags2) { 8360 unsigned XLenInBytes = XLen / 8; 8361 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8362 // At least one half can be passed via register. 8363 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 8364 VA1.getLocVT(), CCValAssign::Full)); 8365 } else { 8366 // Both halves must be passed on the stack, with proper alignment. 8367 Align StackAlign = 8368 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 8369 State.addLoc( 8370 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 8371 State.AllocateStack(XLenInBytes, StackAlign), 8372 VA1.getLocVT(), CCValAssign::Full)); 8373 State.addLoc(CCValAssign::getMem( 8374 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8375 LocVT2, CCValAssign::Full)); 8376 return false; 8377 } 8378 8379 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8380 // The second half can also be passed via register. 8381 State.addLoc( 8382 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 8383 } else { 8384 // The second half is passed via the stack, without additional alignment. 8385 State.addLoc(CCValAssign::getMem( 8386 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8387 LocVT2, CCValAssign::Full)); 8388 } 8389 8390 return false; 8391 } 8392 8393 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 8394 Optional<unsigned> FirstMaskArgument, 8395 CCState &State, const RISCVTargetLowering &TLI) { 8396 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 8397 if (RC == &RISCV::VRRegClass) { 8398 // Assign the first mask argument to V0. 8399 // This is an interim calling convention and it may be changed in the 8400 // future. 8401 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 8402 return State.AllocateReg(RISCV::V0); 8403 return State.AllocateReg(ArgVRs); 8404 } 8405 if (RC == &RISCV::VRM2RegClass) 8406 return State.AllocateReg(ArgVRM2s); 8407 if (RC == &RISCV::VRM4RegClass) 8408 return State.AllocateReg(ArgVRM4s); 8409 if (RC == &RISCV::VRM8RegClass) 8410 return State.AllocateReg(ArgVRM8s); 8411 llvm_unreachable("Unhandled register class for ValueType"); 8412 } 8413 8414 // Implements the RISC-V calling convention. Returns true upon failure. 8415 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 8416 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 8417 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 8418 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 8419 Optional<unsigned> FirstMaskArgument) { 8420 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 8421 assert(XLen == 32 || XLen == 64); 8422 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 8423 8424 // Any return value split in to more than two values can't be returned 8425 // directly. Vectors are returned via the available vector registers. 8426 if (!LocVT.isVector() && IsRet && ValNo > 1) 8427 return true; 8428 8429 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 8430 // variadic argument, or if no F16/F32 argument registers are available. 8431 bool UseGPRForF16_F32 = true; 8432 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 8433 // variadic argument, or if no F64 argument registers are available. 8434 bool UseGPRForF64 = true; 8435 8436 switch (ABI) { 8437 default: 8438 llvm_unreachable("Unexpected ABI"); 8439 case RISCVABI::ABI_ILP32: 8440 case RISCVABI::ABI_LP64: 8441 break; 8442 case RISCVABI::ABI_ILP32F: 8443 case RISCVABI::ABI_LP64F: 8444 UseGPRForF16_F32 = !IsFixed; 8445 break; 8446 case RISCVABI::ABI_ILP32D: 8447 case RISCVABI::ABI_LP64D: 8448 UseGPRForF16_F32 = !IsFixed; 8449 UseGPRForF64 = !IsFixed; 8450 break; 8451 } 8452 8453 // FPR16, FPR32, and FPR64 alias each other. 8454 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 8455 UseGPRForF16_F32 = true; 8456 UseGPRForF64 = true; 8457 } 8458 8459 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 8460 // similar local variables rather than directly checking against the target 8461 // ABI. 8462 8463 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 8464 LocVT = XLenVT; 8465 LocInfo = CCValAssign::BCvt; 8466 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 8467 LocVT = MVT::i64; 8468 LocInfo = CCValAssign::BCvt; 8469 } 8470 8471 // If this is a variadic argument, the RISC-V calling convention requires 8472 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 8473 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 8474 // be used regardless of whether the original argument was split during 8475 // legalisation or not. The argument will not be passed by registers if the 8476 // original type is larger than 2*XLEN, so the register alignment rule does 8477 // not apply. 8478 unsigned TwoXLenInBytes = (2 * XLen) / 8; 8479 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 8480 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 8481 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 8482 // Skip 'odd' register if necessary. 8483 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 8484 State.AllocateReg(ArgGPRs); 8485 } 8486 8487 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 8488 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 8489 State.getPendingArgFlags(); 8490 8491 assert(PendingLocs.size() == PendingArgFlags.size() && 8492 "PendingLocs and PendingArgFlags out of sync"); 8493 8494 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8495 // registers are exhausted. 8496 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8497 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8498 "Can't lower f64 if it is split"); 8499 // Depending on available argument GPRS, f64 may be passed in a pair of 8500 // GPRs, split between a GPR and the stack, or passed completely on the 8501 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8502 // cases. 8503 Register Reg = State.AllocateReg(ArgGPRs); 8504 LocVT = MVT::i32; 8505 if (!Reg) { 8506 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8507 State.addLoc( 8508 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8509 return false; 8510 } 8511 if (!State.AllocateReg(ArgGPRs)) 8512 State.AllocateStack(4, Align(4)); 8513 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8514 return false; 8515 } 8516 8517 // Fixed-length vectors are located in the corresponding scalable-vector 8518 // container types. 8519 if (ValVT.isFixedLengthVector()) 8520 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8521 8522 // Split arguments might be passed indirectly, so keep track of the pending 8523 // values. Split vectors are passed via a mix of registers and indirectly, so 8524 // treat them as we would any other argument. 8525 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8526 LocVT = XLenVT; 8527 LocInfo = CCValAssign::Indirect; 8528 PendingLocs.push_back( 8529 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8530 PendingArgFlags.push_back(ArgFlags); 8531 if (!ArgFlags.isSplitEnd()) { 8532 return false; 8533 } 8534 } 8535 8536 // If the split argument only had two elements, it should be passed directly 8537 // in registers or on the stack. 8538 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8539 PendingLocs.size() <= 2) { 8540 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8541 // Apply the normal calling convention rules to the first half of the 8542 // split argument. 8543 CCValAssign VA = PendingLocs[0]; 8544 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8545 PendingLocs.clear(); 8546 PendingArgFlags.clear(); 8547 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8548 ArgFlags); 8549 } 8550 8551 // Allocate to a register if possible, or else a stack slot. 8552 Register Reg; 8553 unsigned StoreSizeBytes = XLen / 8; 8554 Align StackAlign = Align(XLen / 8); 8555 8556 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8557 Reg = State.AllocateReg(ArgFPR16s); 8558 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8559 Reg = State.AllocateReg(ArgFPR32s); 8560 else if (ValVT == MVT::f64 && !UseGPRForF64) 8561 Reg = State.AllocateReg(ArgFPR64s); 8562 else if (ValVT.isVector()) { 8563 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8564 if (!Reg) { 8565 // For return values, the vector must be passed fully via registers or 8566 // via the stack. 8567 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8568 // but we're using all of them. 8569 if (IsRet) 8570 return true; 8571 // Try using a GPR to pass the address 8572 if ((Reg = State.AllocateReg(ArgGPRs))) { 8573 LocVT = XLenVT; 8574 LocInfo = CCValAssign::Indirect; 8575 } else if (ValVT.isScalableVector()) { 8576 LocVT = XLenVT; 8577 LocInfo = CCValAssign::Indirect; 8578 } else { 8579 // Pass fixed-length vectors on the stack. 8580 LocVT = ValVT; 8581 StoreSizeBytes = ValVT.getStoreSize(); 8582 // Align vectors to their element sizes, being careful for vXi1 8583 // vectors. 8584 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8585 } 8586 } 8587 } else { 8588 Reg = State.AllocateReg(ArgGPRs); 8589 } 8590 8591 unsigned StackOffset = 8592 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8593 8594 // If we reach this point and PendingLocs is non-empty, we must be at the 8595 // end of a split argument that must be passed indirectly. 8596 if (!PendingLocs.empty()) { 8597 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8598 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8599 8600 for (auto &It : PendingLocs) { 8601 if (Reg) 8602 It.convertToReg(Reg); 8603 else 8604 It.convertToMem(StackOffset); 8605 State.addLoc(It); 8606 } 8607 PendingLocs.clear(); 8608 PendingArgFlags.clear(); 8609 return false; 8610 } 8611 8612 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8613 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8614 "Expected an XLenVT or vector types at this stage"); 8615 8616 if (Reg) { 8617 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8618 return false; 8619 } 8620 8621 // When a floating-point value is passed on the stack, no bit-conversion is 8622 // needed. 8623 if (ValVT.isFloatingPoint()) { 8624 LocVT = ValVT; 8625 LocInfo = CCValAssign::Full; 8626 } 8627 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8628 return false; 8629 } 8630 8631 template <typename ArgTy> 8632 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8633 for (const auto &ArgIdx : enumerate(Args)) { 8634 MVT ArgVT = ArgIdx.value().VT; 8635 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8636 return ArgIdx.index(); 8637 } 8638 return None; 8639 } 8640 8641 void RISCVTargetLowering::analyzeInputArgs( 8642 MachineFunction &MF, CCState &CCInfo, 8643 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8644 RISCVCCAssignFn Fn) const { 8645 unsigned NumArgs = Ins.size(); 8646 FunctionType *FType = MF.getFunction().getFunctionType(); 8647 8648 Optional<unsigned> FirstMaskArgument; 8649 if (Subtarget.hasVInstructions()) 8650 FirstMaskArgument = preAssignMask(Ins); 8651 8652 for (unsigned i = 0; i != NumArgs; ++i) { 8653 MVT ArgVT = Ins[i].VT; 8654 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8655 8656 Type *ArgTy = nullptr; 8657 if (IsRet) 8658 ArgTy = FType->getReturnType(); 8659 else if (Ins[i].isOrigArg()) 8660 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8661 8662 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8663 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8664 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8665 FirstMaskArgument)) { 8666 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8667 << EVT(ArgVT).getEVTString() << '\n'); 8668 llvm_unreachable(nullptr); 8669 } 8670 } 8671 } 8672 8673 void RISCVTargetLowering::analyzeOutputArgs( 8674 MachineFunction &MF, CCState &CCInfo, 8675 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8676 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8677 unsigned NumArgs = Outs.size(); 8678 8679 Optional<unsigned> FirstMaskArgument; 8680 if (Subtarget.hasVInstructions()) 8681 FirstMaskArgument = preAssignMask(Outs); 8682 8683 for (unsigned i = 0; i != NumArgs; i++) { 8684 MVT ArgVT = Outs[i].VT; 8685 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8686 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8687 8688 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8689 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8690 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8691 FirstMaskArgument)) { 8692 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8693 << EVT(ArgVT).getEVTString() << "\n"); 8694 llvm_unreachable(nullptr); 8695 } 8696 } 8697 } 8698 8699 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8700 // values. 8701 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8702 const CCValAssign &VA, const SDLoc &DL, 8703 const RISCVSubtarget &Subtarget) { 8704 switch (VA.getLocInfo()) { 8705 default: 8706 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8707 case CCValAssign::Full: 8708 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8709 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8710 break; 8711 case CCValAssign::BCvt: 8712 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8713 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8714 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8715 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8716 else 8717 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8718 break; 8719 } 8720 return Val; 8721 } 8722 8723 // The caller is responsible for loading the full value if the argument is 8724 // passed with CCValAssign::Indirect. 8725 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8726 const CCValAssign &VA, const SDLoc &DL, 8727 const RISCVTargetLowering &TLI) { 8728 MachineFunction &MF = DAG.getMachineFunction(); 8729 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8730 EVT LocVT = VA.getLocVT(); 8731 SDValue Val; 8732 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8733 Register VReg = RegInfo.createVirtualRegister(RC); 8734 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8735 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8736 8737 if (VA.getLocInfo() == CCValAssign::Indirect) 8738 return Val; 8739 8740 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8741 } 8742 8743 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8744 const CCValAssign &VA, const SDLoc &DL, 8745 const RISCVSubtarget &Subtarget) { 8746 EVT LocVT = VA.getLocVT(); 8747 8748 switch (VA.getLocInfo()) { 8749 default: 8750 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8751 case CCValAssign::Full: 8752 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8753 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8754 break; 8755 case CCValAssign::BCvt: 8756 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8757 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8758 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8759 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8760 else 8761 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8762 break; 8763 } 8764 return Val; 8765 } 8766 8767 // The caller is responsible for loading the full value if the argument is 8768 // passed with CCValAssign::Indirect. 8769 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8770 const CCValAssign &VA, const SDLoc &DL) { 8771 MachineFunction &MF = DAG.getMachineFunction(); 8772 MachineFrameInfo &MFI = MF.getFrameInfo(); 8773 EVT LocVT = VA.getLocVT(); 8774 EVT ValVT = VA.getValVT(); 8775 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8776 if (ValVT.isScalableVector()) { 8777 // When the value is a scalable vector, we save the pointer which points to 8778 // the scalable vector value in the stack. The ValVT will be the pointer 8779 // type, instead of the scalable vector type. 8780 ValVT = LocVT; 8781 } 8782 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8783 /*IsImmutable=*/true); 8784 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8785 SDValue Val; 8786 8787 ISD::LoadExtType ExtType; 8788 switch (VA.getLocInfo()) { 8789 default: 8790 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8791 case CCValAssign::Full: 8792 case CCValAssign::Indirect: 8793 case CCValAssign::BCvt: 8794 ExtType = ISD::NON_EXTLOAD; 8795 break; 8796 } 8797 Val = DAG.getExtLoad( 8798 ExtType, DL, LocVT, Chain, FIN, 8799 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8800 return Val; 8801 } 8802 8803 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8804 const CCValAssign &VA, const SDLoc &DL) { 8805 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8806 "Unexpected VA"); 8807 MachineFunction &MF = DAG.getMachineFunction(); 8808 MachineFrameInfo &MFI = MF.getFrameInfo(); 8809 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8810 8811 if (VA.isMemLoc()) { 8812 // f64 is passed on the stack. 8813 int FI = 8814 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 8815 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8816 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8817 MachinePointerInfo::getFixedStack(MF, FI)); 8818 } 8819 8820 assert(VA.isRegLoc() && "Expected register VA assignment"); 8821 8822 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8823 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8824 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8825 SDValue Hi; 8826 if (VA.getLocReg() == RISCV::X17) { 8827 // Second half of f64 is passed on the stack. 8828 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 8829 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8830 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8831 MachinePointerInfo::getFixedStack(MF, FI)); 8832 } else { 8833 // Second half of f64 is passed in another GPR. 8834 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8835 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8836 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8837 } 8838 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8839 } 8840 8841 // FastCC has less than 1% performance improvement for some particular 8842 // benchmark. But theoretically, it may has benenfit for some cases. 8843 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8844 unsigned ValNo, MVT ValVT, MVT LocVT, 8845 CCValAssign::LocInfo LocInfo, 8846 ISD::ArgFlagsTy ArgFlags, CCState &State, 8847 bool IsFixed, bool IsRet, Type *OrigTy, 8848 const RISCVTargetLowering &TLI, 8849 Optional<unsigned> FirstMaskArgument) { 8850 8851 // X5 and X6 might be used for save-restore libcall. 8852 static const MCPhysReg GPRList[] = { 8853 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8854 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8855 RISCV::X29, RISCV::X30, RISCV::X31}; 8856 8857 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8858 if (unsigned Reg = State.AllocateReg(GPRList)) { 8859 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8860 return false; 8861 } 8862 } 8863 8864 if (LocVT == MVT::f16) { 8865 static const MCPhysReg FPR16List[] = { 8866 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8867 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8868 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8869 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8870 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8871 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8872 return false; 8873 } 8874 } 8875 8876 if (LocVT == MVT::f32) { 8877 static const MCPhysReg FPR32List[] = { 8878 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8879 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8880 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8881 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8882 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8883 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8884 return false; 8885 } 8886 } 8887 8888 if (LocVT == MVT::f64) { 8889 static const MCPhysReg FPR64List[] = { 8890 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8891 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8892 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8893 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8894 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8895 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8896 return false; 8897 } 8898 } 8899 8900 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8901 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8902 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8903 return false; 8904 } 8905 8906 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8907 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8908 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8909 return false; 8910 } 8911 8912 if (LocVT.isVector()) { 8913 if (unsigned Reg = 8914 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8915 // Fixed-length vectors are located in the corresponding scalable-vector 8916 // container types. 8917 if (ValVT.isFixedLengthVector()) 8918 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8919 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8920 } else { 8921 // Try and pass the address via a "fast" GPR. 8922 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8923 LocInfo = CCValAssign::Indirect; 8924 LocVT = TLI.getSubtarget().getXLenVT(); 8925 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8926 } else if (ValVT.isFixedLengthVector()) { 8927 auto StackAlign = 8928 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8929 unsigned StackOffset = 8930 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8931 State.addLoc( 8932 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8933 } else { 8934 // Can't pass scalable vectors on the stack. 8935 return true; 8936 } 8937 } 8938 8939 return false; 8940 } 8941 8942 return true; // CC didn't match. 8943 } 8944 8945 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 8946 CCValAssign::LocInfo LocInfo, 8947 ISD::ArgFlagsTy ArgFlags, CCState &State) { 8948 8949 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8950 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 8951 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 8952 static const MCPhysReg GPRList[] = { 8953 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 8954 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 8955 if (unsigned Reg = State.AllocateReg(GPRList)) { 8956 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8957 return false; 8958 } 8959 } 8960 8961 if (LocVT == MVT::f32) { 8962 // Pass in STG registers: F1, ..., F6 8963 // fs0 ... fs5 8964 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 8965 RISCV::F18_F, RISCV::F19_F, 8966 RISCV::F20_F, RISCV::F21_F}; 8967 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8968 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8969 return false; 8970 } 8971 } 8972 8973 if (LocVT == MVT::f64) { 8974 // Pass in STG registers: D1, ..., D6 8975 // fs6 ... fs11 8976 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 8977 RISCV::F24_D, RISCV::F25_D, 8978 RISCV::F26_D, RISCV::F27_D}; 8979 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8980 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8981 return false; 8982 } 8983 } 8984 8985 report_fatal_error("No registers left in GHC calling convention"); 8986 return true; 8987 } 8988 8989 // Transform physical registers into virtual registers. 8990 SDValue RISCVTargetLowering::LowerFormalArguments( 8991 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 8992 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 8993 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 8994 8995 MachineFunction &MF = DAG.getMachineFunction(); 8996 8997 switch (CallConv) { 8998 default: 8999 report_fatal_error("Unsupported calling convention"); 9000 case CallingConv::C: 9001 case CallingConv::Fast: 9002 break; 9003 case CallingConv::GHC: 9004 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 9005 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 9006 report_fatal_error( 9007 "GHC calling convention requires the F and D instruction set extensions"); 9008 } 9009 9010 const Function &Func = MF.getFunction(); 9011 if (Func.hasFnAttribute("interrupt")) { 9012 if (!Func.arg_empty()) 9013 report_fatal_error( 9014 "Functions with the interrupt attribute cannot have arguments!"); 9015 9016 StringRef Kind = 9017 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9018 9019 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 9020 report_fatal_error( 9021 "Function interrupt attribute argument not supported!"); 9022 } 9023 9024 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9025 MVT XLenVT = Subtarget.getXLenVT(); 9026 unsigned XLenInBytes = Subtarget.getXLen() / 8; 9027 // Used with vargs to acumulate store chains. 9028 std::vector<SDValue> OutChains; 9029 9030 // Assign locations to all of the incoming arguments. 9031 SmallVector<CCValAssign, 16> ArgLocs; 9032 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9033 9034 if (CallConv == CallingConv::GHC) 9035 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 9036 else 9037 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 9038 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9039 : CC_RISCV); 9040 9041 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 9042 CCValAssign &VA = ArgLocs[i]; 9043 SDValue ArgValue; 9044 // Passing f64 on RV32D with a soft float ABI must be handled as a special 9045 // case. 9046 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 9047 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 9048 else if (VA.isRegLoc()) 9049 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 9050 else 9051 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 9052 9053 if (VA.getLocInfo() == CCValAssign::Indirect) { 9054 // If the original argument was split and passed by reference (e.g. i128 9055 // on RV32), we need to load all parts of it here (using the same 9056 // address). Vectors may be partly split to registers and partly to the 9057 // stack, in which case the base address is partly offset and subsequent 9058 // stores are relative to that. 9059 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 9060 MachinePointerInfo())); 9061 unsigned ArgIndex = Ins[i].OrigArgIndex; 9062 unsigned ArgPartOffset = Ins[i].PartOffset; 9063 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9064 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 9065 CCValAssign &PartVA = ArgLocs[i + 1]; 9066 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 9067 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9068 if (PartVA.getValVT().isScalableVector()) 9069 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9070 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 9071 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 9072 MachinePointerInfo())); 9073 ++i; 9074 } 9075 continue; 9076 } 9077 InVals.push_back(ArgValue); 9078 } 9079 9080 if (IsVarArg) { 9081 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 9082 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 9083 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 9084 MachineFrameInfo &MFI = MF.getFrameInfo(); 9085 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9086 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 9087 9088 // Offset of the first variable argument from stack pointer, and size of 9089 // the vararg save area. For now, the varargs save area is either zero or 9090 // large enough to hold a0-a7. 9091 int VaArgOffset, VarArgsSaveSize; 9092 9093 // If all registers are allocated, then all varargs must be passed on the 9094 // stack and we don't need to save any argregs. 9095 if (ArgRegs.size() == Idx) { 9096 VaArgOffset = CCInfo.getNextStackOffset(); 9097 VarArgsSaveSize = 0; 9098 } else { 9099 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 9100 VaArgOffset = -VarArgsSaveSize; 9101 } 9102 9103 // Record the frame index of the first variable argument 9104 // which is a value necessary to VASTART. 9105 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9106 RVFI->setVarArgsFrameIndex(FI); 9107 9108 // If saving an odd number of registers then create an extra stack slot to 9109 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 9110 // offsets to even-numbered registered remain 2*XLEN-aligned. 9111 if (Idx % 2) { 9112 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 9113 VarArgsSaveSize += XLenInBytes; 9114 } 9115 9116 // Copy the integer registers that may have been used for passing varargs 9117 // to the vararg save area. 9118 for (unsigned I = Idx; I < ArgRegs.size(); 9119 ++I, VaArgOffset += XLenInBytes) { 9120 const Register Reg = RegInfo.createVirtualRegister(RC); 9121 RegInfo.addLiveIn(ArgRegs[I], Reg); 9122 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 9123 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9124 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9125 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 9126 MachinePointerInfo::getFixedStack(MF, FI)); 9127 cast<StoreSDNode>(Store.getNode()) 9128 ->getMemOperand() 9129 ->setValue((Value *)nullptr); 9130 OutChains.push_back(Store); 9131 } 9132 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 9133 } 9134 9135 // All stores are grouped in one node to allow the matching between 9136 // the size of Ins and InVals. This only happens for vararg functions. 9137 if (!OutChains.empty()) { 9138 OutChains.push_back(Chain); 9139 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 9140 } 9141 9142 return Chain; 9143 } 9144 9145 /// isEligibleForTailCallOptimization - Check whether the call is eligible 9146 /// for tail call optimization. 9147 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 9148 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 9149 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 9150 const SmallVector<CCValAssign, 16> &ArgLocs) const { 9151 9152 auto &Callee = CLI.Callee; 9153 auto CalleeCC = CLI.CallConv; 9154 auto &Outs = CLI.Outs; 9155 auto &Caller = MF.getFunction(); 9156 auto CallerCC = Caller.getCallingConv(); 9157 9158 // Exception-handling functions need a special set of instructions to 9159 // indicate a return to the hardware. Tail-calling another function would 9160 // probably break this. 9161 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 9162 // should be expanded as new function attributes are introduced. 9163 if (Caller.hasFnAttribute("interrupt")) 9164 return false; 9165 9166 // Do not tail call opt if the stack is used to pass parameters. 9167 if (CCInfo.getNextStackOffset() != 0) 9168 return false; 9169 9170 // Do not tail call opt if any parameters need to be passed indirectly. 9171 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 9172 // passed indirectly. So the address of the value will be passed in a 9173 // register, or if not available, then the address is put on the stack. In 9174 // order to pass indirectly, space on the stack often needs to be allocated 9175 // in order to store the value. In this case the CCInfo.getNextStackOffset() 9176 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 9177 // are passed CCValAssign::Indirect. 9178 for (auto &VA : ArgLocs) 9179 if (VA.getLocInfo() == CCValAssign::Indirect) 9180 return false; 9181 9182 // Do not tail call opt if either caller or callee uses struct return 9183 // semantics. 9184 auto IsCallerStructRet = Caller.hasStructRetAttr(); 9185 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 9186 if (IsCallerStructRet || IsCalleeStructRet) 9187 return false; 9188 9189 // Externally-defined functions with weak linkage should not be 9190 // tail-called. The behaviour of branch instructions in this situation (as 9191 // used for tail calls) is implementation-defined, so we cannot rely on the 9192 // linker replacing the tail call with a return. 9193 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 9194 const GlobalValue *GV = G->getGlobal(); 9195 if (GV->hasExternalWeakLinkage()) 9196 return false; 9197 } 9198 9199 // The callee has to preserve all registers the caller needs to preserve. 9200 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9201 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 9202 if (CalleeCC != CallerCC) { 9203 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 9204 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 9205 return false; 9206 } 9207 9208 // Byval parameters hand the function a pointer directly into the stack area 9209 // we want to reuse during a tail call. Working around this *is* possible 9210 // but less efficient and uglier in LowerCall. 9211 for (auto &Arg : Outs) 9212 if (Arg.Flags.isByVal()) 9213 return false; 9214 9215 return true; 9216 } 9217 9218 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 9219 return DAG.getDataLayout().getPrefTypeAlign( 9220 VT.getTypeForEVT(*DAG.getContext())); 9221 } 9222 9223 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 9224 // and output parameter nodes. 9225 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 9226 SmallVectorImpl<SDValue> &InVals) const { 9227 SelectionDAG &DAG = CLI.DAG; 9228 SDLoc &DL = CLI.DL; 9229 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 9230 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 9231 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 9232 SDValue Chain = CLI.Chain; 9233 SDValue Callee = CLI.Callee; 9234 bool &IsTailCall = CLI.IsTailCall; 9235 CallingConv::ID CallConv = CLI.CallConv; 9236 bool IsVarArg = CLI.IsVarArg; 9237 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9238 MVT XLenVT = Subtarget.getXLenVT(); 9239 9240 MachineFunction &MF = DAG.getMachineFunction(); 9241 9242 // Analyze the operands of the call, assigning locations to each operand. 9243 SmallVector<CCValAssign, 16> ArgLocs; 9244 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9245 9246 if (CallConv == CallingConv::GHC) 9247 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 9248 else 9249 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 9250 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9251 : CC_RISCV); 9252 9253 // Check if it's really possible to do a tail call. 9254 if (IsTailCall) 9255 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 9256 9257 if (IsTailCall) 9258 ++NumTailCalls; 9259 else if (CLI.CB && CLI.CB->isMustTailCall()) 9260 report_fatal_error("failed to perform tail call elimination on a call " 9261 "site marked musttail"); 9262 9263 // Get a count of how many bytes are to be pushed on the stack. 9264 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 9265 9266 // Create local copies for byval args 9267 SmallVector<SDValue, 8> ByValArgs; 9268 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9269 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9270 if (!Flags.isByVal()) 9271 continue; 9272 9273 SDValue Arg = OutVals[i]; 9274 unsigned Size = Flags.getByValSize(); 9275 Align Alignment = Flags.getNonZeroByValAlign(); 9276 9277 int FI = 9278 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 9279 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9280 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 9281 9282 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 9283 /*IsVolatile=*/false, 9284 /*AlwaysInline=*/false, IsTailCall, 9285 MachinePointerInfo(), MachinePointerInfo()); 9286 ByValArgs.push_back(FIPtr); 9287 } 9288 9289 if (!IsTailCall) 9290 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 9291 9292 // Copy argument values to their designated locations. 9293 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 9294 SmallVector<SDValue, 8> MemOpChains; 9295 SDValue StackPtr; 9296 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 9297 CCValAssign &VA = ArgLocs[i]; 9298 SDValue ArgValue = OutVals[i]; 9299 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9300 9301 // Handle passing f64 on RV32D with a soft float ABI as a special case. 9302 bool IsF64OnRV32DSoftABI = 9303 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 9304 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 9305 SDValue SplitF64 = DAG.getNode( 9306 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 9307 SDValue Lo = SplitF64.getValue(0); 9308 SDValue Hi = SplitF64.getValue(1); 9309 9310 Register RegLo = VA.getLocReg(); 9311 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 9312 9313 if (RegLo == RISCV::X17) { 9314 // Second half of f64 is passed on the stack. 9315 // Work out the address of the stack slot. 9316 if (!StackPtr.getNode()) 9317 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9318 // Emit the store. 9319 MemOpChains.push_back( 9320 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 9321 } else { 9322 // Second half of f64 is passed in another GPR. 9323 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9324 Register RegHigh = RegLo + 1; 9325 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 9326 } 9327 continue; 9328 } 9329 9330 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 9331 // as any other MemLoc. 9332 9333 // Promote the value if needed. 9334 // For now, only handle fully promoted and indirect arguments. 9335 if (VA.getLocInfo() == CCValAssign::Indirect) { 9336 // Store the argument in a stack slot and pass its address. 9337 Align StackAlign = 9338 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 9339 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 9340 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 9341 // If the original argument was split (e.g. i128), we need 9342 // to store the required parts of it here (and pass just one address). 9343 // Vectors may be partly split to registers and partly to the stack, in 9344 // which case the base address is partly offset and subsequent stores are 9345 // relative to that. 9346 unsigned ArgIndex = Outs[i].OrigArgIndex; 9347 unsigned ArgPartOffset = Outs[i].PartOffset; 9348 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9349 // Calculate the total size to store. We don't have access to what we're 9350 // actually storing other than performing the loop and collecting the 9351 // info. 9352 SmallVector<std::pair<SDValue, SDValue>> Parts; 9353 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 9354 SDValue PartValue = OutVals[i + 1]; 9355 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 9356 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9357 EVT PartVT = PartValue.getValueType(); 9358 if (PartVT.isScalableVector()) 9359 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9360 StoredSize += PartVT.getStoreSize(); 9361 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 9362 Parts.push_back(std::make_pair(PartValue, Offset)); 9363 ++i; 9364 } 9365 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 9366 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 9367 MemOpChains.push_back( 9368 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 9369 MachinePointerInfo::getFixedStack(MF, FI))); 9370 for (const auto &Part : Parts) { 9371 SDValue PartValue = Part.first; 9372 SDValue PartOffset = Part.second; 9373 SDValue Address = 9374 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 9375 MemOpChains.push_back( 9376 DAG.getStore(Chain, DL, PartValue, Address, 9377 MachinePointerInfo::getFixedStack(MF, FI))); 9378 } 9379 ArgValue = SpillSlot; 9380 } else { 9381 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 9382 } 9383 9384 // Use local copy if it is a byval arg. 9385 if (Flags.isByVal()) 9386 ArgValue = ByValArgs[j++]; 9387 9388 if (VA.isRegLoc()) { 9389 // Queue up the argument copies and emit them at the end. 9390 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 9391 } else { 9392 assert(VA.isMemLoc() && "Argument not register or memory"); 9393 assert(!IsTailCall && "Tail call not allowed if stack is used " 9394 "for passing parameters"); 9395 9396 // Work out the address of the stack slot. 9397 if (!StackPtr.getNode()) 9398 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9399 SDValue Address = 9400 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 9401 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 9402 9403 // Emit the store. 9404 MemOpChains.push_back( 9405 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 9406 } 9407 } 9408 9409 // Join the stores, which are independent of one another. 9410 if (!MemOpChains.empty()) 9411 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 9412 9413 SDValue Glue; 9414 9415 // Build a sequence of copy-to-reg nodes, chained and glued together. 9416 for (auto &Reg : RegsToPass) { 9417 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 9418 Glue = Chain.getValue(1); 9419 } 9420 9421 // Validate that none of the argument registers have been marked as 9422 // reserved, if so report an error. Do the same for the return address if this 9423 // is not a tailcall. 9424 validateCCReservedRegs(RegsToPass, MF); 9425 if (!IsTailCall && 9426 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 9427 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9428 MF.getFunction(), 9429 "Return address register required, but has been reserved."}); 9430 9431 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 9432 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 9433 // split it and then direct call can be matched by PseudoCALL. 9434 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 9435 const GlobalValue *GV = S->getGlobal(); 9436 9437 unsigned OpFlags = RISCVII::MO_CALL; 9438 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 9439 OpFlags = RISCVII::MO_PLT; 9440 9441 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 9442 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 9443 unsigned OpFlags = RISCVII::MO_CALL; 9444 9445 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 9446 nullptr)) 9447 OpFlags = RISCVII::MO_PLT; 9448 9449 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 9450 } 9451 9452 // The first call operand is the chain and the second is the target address. 9453 SmallVector<SDValue, 8> Ops; 9454 Ops.push_back(Chain); 9455 Ops.push_back(Callee); 9456 9457 // Add argument registers to the end of the list so that they are 9458 // known live into the call. 9459 for (auto &Reg : RegsToPass) 9460 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 9461 9462 if (!IsTailCall) { 9463 // Add a register mask operand representing the call-preserved registers. 9464 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9465 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 9466 assert(Mask && "Missing call preserved mask for calling convention"); 9467 Ops.push_back(DAG.getRegisterMask(Mask)); 9468 } 9469 9470 // Glue the call to the argument copies, if any. 9471 if (Glue.getNode()) 9472 Ops.push_back(Glue); 9473 9474 // Emit the call. 9475 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9476 9477 if (IsTailCall) { 9478 MF.getFrameInfo().setHasTailCall(); 9479 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 9480 } 9481 9482 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 9483 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 9484 Glue = Chain.getValue(1); 9485 9486 // Mark the end of the call, which is glued to the call itself. 9487 Chain = DAG.getCALLSEQ_END(Chain, 9488 DAG.getConstant(NumBytes, DL, PtrVT, true), 9489 DAG.getConstant(0, DL, PtrVT, true), 9490 Glue, DL); 9491 Glue = Chain.getValue(1); 9492 9493 // Assign locations to each value returned by this call. 9494 SmallVector<CCValAssign, 16> RVLocs; 9495 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 9496 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 9497 9498 // Copy all of the result registers out of their specified physreg. 9499 for (auto &VA : RVLocs) { 9500 // Copy the value out 9501 SDValue RetValue = 9502 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9503 // Glue the RetValue to the end of the call sequence 9504 Chain = RetValue.getValue(1); 9505 Glue = RetValue.getValue(2); 9506 9507 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9508 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9509 SDValue RetValue2 = 9510 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9511 Chain = RetValue2.getValue(1); 9512 Glue = RetValue2.getValue(2); 9513 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9514 RetValue2); 9515 } 9516 9517 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9518 9519 InVals.push_back(RetValue); 9520 } 9521 9522 return Chain; 9523 } 9524 9525 bool RISCVTargetLowering::CanLowerReturn( 9526 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9527 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9528 SmallVector<CCValAssign, 16> RVLocs; 9529 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9530 9531 Optional<unsigned> FirstMaskArgument; 9532 if (Subtarget.hasVInstructions()) 9533 FirstMaskArgument = preAssignMask(Outs); 9534 9535 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9536 MVT VT = Outs[i].VT; 9537 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9538 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9539 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9540 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9541 *this, FirstMaskArgument)) 9542 return false; 9543 } 9544 return true; 9545 } 9546 9547 SDValue 9548 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9549 bool IsVarArg, 9550 const SmallVectorImpl<ISD::OutputArg> &Outs, 9551 const SmallVectorImpl<SDValue> &OutVals, 9552 const SDLoc &DL, SelectionDAG &DAG) const { 9553 const MachineFunction &MF = DAG.getMachineFunction(); 9554 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9555 9556 // Stores the assignment of the return value to a location. 9557 SmallVector<CCValAssign, 16> RVLocs; 9558 9559 // Info about the registers and stack slot. 9560 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9561 *DAG.getContext()); 9562 9563 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9564 nullptr, CC_RISCV); 9565 9566 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9567 report_fatal_error("GHC functions return void only"); 9568 9569 SDValue Glue; 9570 SmallVector<SDValue, 4> RetOps(1, Chain); 9571 9572 // Copy the result values into the output registers. 9573 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9574 SDValue Val = OutVals[i]; 9575 CCValAssign &VA = RVLocs[i]; 9576 assert(VA.isRegLoc() && "Can only return in registers!"); 9577 9578 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9579 // Handle returning f64 on RV32D with a soft float ABI. 9580 assert(VA.isRegLoc() && "Expected return via registers"); 9581 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9582 DAG.getVTList(MVT::i32, MVT::i32), Val); 9583 SDValue Lo = SplitF64.getValue(0); 9584 SDValue Hi = SplitF64.getValue(1); 9585 Register RegLo = VA.getLocReg(); 9586 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9587 Register RegHi = RegLo + 1; 9588 9589 if (STI.isRegisterReservedByUser(RegLo) || 9590 STI.isRegisterReservedByUser(RegHi)) 9591 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9592 MF.getFunction(), 9593 "Return value register required, but has been reserved."}); 9594 9595 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9596 Glue = Chain.getValue(1); 9597 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9598 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9599 Glue = Chain.getValue(1); 9600 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9601 } else { 9602 // Handle a 'normal' return. 9603 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9604 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9605 9606 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9607 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9608 MF.getFunction(), 9609 "Return value register required, but has been reserved."}); 9610 9611 // Guarantee that all emitted copies are stuck together. 9612 Glue = Chain.getValue(1); 9613 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9614 } 9615 } 9616 9617 RetOps[0] = Chain; // Update chain. 9618 9619 // Add the glue node if we have it. 9620 if (Glue.getNode()) { 9621 RetOps.push_back(Glue); 9622 } 9623 9624 unsigned RetOpc = RISCVISD::RET_FLAG; 9625 // Interrupt service routines use different return instructions. 9626 const Function &Func = DAG.getMachineFunction().getFunction(); 9627 if (Func.hasFnAttribute("interrupt")) { 9628 if (!Func.getReturnType()->isVoidTy()) 9629 report_fatal_error( 9630 "Functions with the interrupt attribute must have void return type!"); 9631 9632 MachineFunction &MF = DAG.getMachineFunction(); 9633 StringRef Kind = 9634 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9635 9636 if (Kind == "user") 9637 RetOpc = RISCVISD::URET_FLAG; 9638 else if (Kind == "supervisor") 9639 RetOpc = RISCVISD::SRET_FLAG; 9640 else 9641 RetOpc = RISCVISD::MRET_FLAG; 9642 } 9643 9644 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9645 } 9646 9647 void RISCVTargetLowering::validateCCReservedRegs( 9648 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9649 MachineFunction &MF) const { 9650 const Function &F = MF.getFunction(); 9651 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9652 9653 if (llvm::any_of(Regs, [&STI](auto Reg) { 9654 return STI.isRegisterReservedByUser(Reg.first); 9655 })) 9656 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9657 F, "Argument register required, but has been reserved."}); 9658 } 9659 9660 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9661 return CI->isTailCall(); 9662 } 9663 9664 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9665 #define NODE_NAME_CASE(NODE) \ 9666 case RISCVISD::NODE: \ 9667 return "RISCVISD::" #NODE; 9668 // clang-format off 9669 switch ((RISCVISD::NodeType)Opcode) { 9670 case RISCVISD::FIRST_NUMBER: 9671 break; 9672 NODE_NAME_CASE(RET_FLAG) 9673 NODE_NAME_CASE(URET_FLAG) 9674 NODE_NAME_CASE(SRET_FLAG) 9675 NODE_NAME_CASE(MRET_FLAG) 9676 NODE_NAME_CASE(CALL) 9677 NODE_NAME_CASE(SELECT_CC) 9678 NODE_NAME_CASE(BR_CC) 9679 NODE_NAME_CASE(BuildPairF64) 9680 NODE_NAME_CASE(SplitF64) 9681 NODE_NAME_CASE(TAIL) 9682 NODE_NAME_CASE(MULHSU) 9683 NODE_NAME_CASE(SLLW) 9684 NODE_NAME_CASE(SRAW) 9685 NODE_NAME_CASE(SRLW) 9686 NODE_NAME_CASE(DIVW) 9687 NODE_NAME_CASE(DIVUW) 9688 NODE_NAME_CASE(REMUW) 9689 NODE_NAME_CASE(ROLW) 9690 NODE_NAME_CASE(RORW) 9691 NODE_NAME_CASE(CLZW) 9692 NODE_NAME_CASE(CTZW) 9693 NODE_NAME_CASE(FSLW) 9694 NODE_NAME_CASE(FSRW) 9695 NODE_NAME_CASE(FSL) 9696 NODE_NAME_CASE(FSR) 9697 NODE_NAME_CASE(FMV_H_X) 9698 NODE_NAME_CASE(FMV_X_ANYEXTH) 9699 NODE_NAME_CASE(FMV_W_X_RV64) 9700 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9701 NODE_NAME_CASE(FCVT_X) 9702 NODE_NAME_CASE(FCVT_XU) 9703 NODE_NAME_CASE(FCVT_W_RV64) 9704 NODE_NAME_CASE(FCVT_WU_RV64) 9705 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 9706 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 9707 NODE_NAME_CASE(READ_CYCLE_WIDE) 9708 NODE_NAME_CASE(GREV) 9709 NODE_NAME_CASE(GREVW) 9710 NODE_NAME_CASE(GORC) 9711 NODE_NAME_CASE(GORCW) 9712 NODE_NAME_CASE(SHFL) 9713 NODE_NAME_CASE(SHFLW) 9714 NODE_NAME_CASE(UNSHFL) 9715 NODE_NAME_CASE(UNSHFLW) 9716 NODE_NAME_CASE(BFP) 9717 NODE_NAME_CASE(BFPW) 9718 NODE_NAME_CASE(BCOMPRESS) 9719 NODE_NAME_CASE(BCOMPRESSW) 9720 NODE_NAME_CASE(BDECOMPRESS) 9721 NODE_NAME_CASE(BDECOMPRESSW) 9722 NODE_NAME_CASE(VMV_V_X_VL) 9723 NODE_NAME_CASE(VFMV_V_F_VL) 9724 NODE_NAME_CASE(VMV_X_S) 9725 NODE_NAME_CASE(VMV_S_X_VL) 9726 NODE_NAME_CASE(VFMV_S_F_VL) 9727 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9728 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9729 NODE_NAME_CASE(READ_VLENB) 9730 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9731 NODE_NAME_CASE(VSLIDEUP_VL) 9732 NODE_NAME_CASE(VSLIDE1UP_VL) 9733 NODE_NAME_CASE(VSLIDEDOWN_VL) 9734 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9735 NODE_NAME_CASE(VID_VL) 9736 NODE_NAME_CASE(VFNCVT_ROD_VL) 9737 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9738 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9739 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9740 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9741 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9742 NODE_NAME_CASE(VECREDUCE_AND_VL) 9743 NODE_NAME_CASE(VECREDUCE_OR_VL) 9744 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9745 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9746 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9747 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9748 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9749 NODE_NAME_CASE(ADD_VL) 9750 NODE_NAME_CASE(AND_VL) 9751 NODE_NAME_CASE(MUL_VL) 9752 NODE_NAME_CASE(OR_VL) 9753 NODE_NAME_CASE(SDIV_VL) 9754 NODE_NAME_CASE(SHL_VL) 9755 NODE_NAME_CASE(SREM_VL) 9756 NODE_NAME_CASE(SRA_VL) 9757 NODE_NAME_CASE(SRL_VL) 9758 NODE_NAME_CASE(SUB_VL) 9759 NODE_NAME_CASE(UDIV_VL) 9760 NODE_NAME_CASE(UREM_VL) 9761 NODE_NAME_CASE(XOR_VL) 9762 NODE_NAME_CASE(SADDSAT_VL) 9763 NODE_NAME_CASE(UADDSAT_VL) 9764 NODE_NAME_CASE(SSUBSAT_VL) 9765 NODE_NAME_CASE(USUBSAT_VL) 9766 NODE_NAME_CASE(FADD_VL) 9767 NODE_NAME_CASE(FSUB_VL) 9768 NODE_NAME_CASE(FMUL_VL) 9769 NODE_NAME_CASE(FDIV_VL) 9770 NODE_NAME_CASE(FNEG_VL) 9771 NODE_NAME_CASE(FABS_VL) 9772 NODE_NAME_CASE(FSQRT_VL) 9773 NODE_NAME_CASE(FMA_VL) 9774 NODE_NAME_CASE(FCOPYSIGN_VL) 9775 NODE_NAME_CASE(SMIN_VL) 9776 NODE_NAME_CASE(SMAX_VL) 9777 NODE_NAME_CASE(UMIN_VL) 9778 NODE_NAME_CASE(UMAX_VL) 9779 NODE_NAME_CASE(FMINNUM_VL) 9780 NODE_NAME_CASE(FMAXNUM_VL) 9781 NODE_NAME_CASE(MULHS_VL) 9782 NODE_NAME_CASE(MULHU_VL) 9783 NODE_NAME_CASE(FP_TO_SINT_VL) 9784 NODE_NAME_CASE(FP_TO_UINT_VL) 9785 NODE_NAME_CASE(SINT_TO_FP_VL) 9786 NODE_NAME_CASE(UINT_TO_FP_VL) 9787 NODE_NAME_CASE(FP_EXTEND_VL) 9788 NODE_NAME_CASE(FP_ROUND_VL) 9789 NODE_NAME_CASE(VWMUL_VL) 9790 NODE_NAME_CASE(VWMULU_VL) 9791 NODE_NAME_CASE(SETCC_VL) 9792 NODE_NAME_CASE(VSELECT_VL) 9793 NODE_NAME_CASE(VMAND_VL) 9794 NODE_NAME_CASE(VMOR_VL) 9795 NODE_NAME_CASE(VMXOR_VL) 9796 NODE_NAME_CASE(VMCLR_VL) 9797 NODE_NAME_CASE(VMSET_VL) 9798 NODE_NAME_CASE(VRGATHER_VX_VL) 9799 NODE_NAME_CASE(VRGATHER_VV_VL) 9800 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9801 NODE_NAME_CASE(VSEXT_VL) 9802 NODE_NAME_CASE(VZEXT_VL) 9803 NODE_NAME_CASE(VCPOP_VL) 9804 NODE_NAME_CASE(VLE_VL) 9805 NODE_NAME_CASE(VSE_VL) 9806 NODE_NAME_CASE(READ_CSR) 9807 NODE_NAME_CASE(WRITE_CSR) 9808 NODE_NAME_CASE(SWAP_CSR) 9809 } 9810 // clang-format on 9811 return nullptr; 9812 #undef NODE_NAME_CASE 9813 } 9814 9815 /// getConstraintType - Given a constraint letter, return the type of 9816 /// constraint it is for this target. 9817 RISCVTargetLowering::ConstraintType 9818 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9819 if (Constraint.size() == 1) { 9820 switch (Constraint[0]) { 9821 default: 9822 break; 9823 case 'f': 9824 return C_RegisterClass; 9825 case 'I': 9826 case 'J': 9827 case 'K': 9828 return C_Immediate; 9829 case 'A': 9830 return C_Memory; 9831 case 'S': // A symbolic address 9832 return C_Other; 9833 } 9834 } else { 9835 if (Constraint == "vr" || Constraint == "vm") 9836 return C_RegisterClass; 9837 } 9838 return TargetLowering::getConstraintType(Constraint); 9839 } 9840 9841 std::pair<unsigned, const TargetRegisterClass *> 9842 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9843 StringRef Constraint, 9844 MVT VT) const { 9845 // First, see if this is a constraint that directly corresponds to a 9846 // RISCV register class. 9847 if (Constraint.size() == 1) { 9848 switch (Constraint[0]) { 9849 case 'r': 9850 // TODO: Support fixed vectors up to XLen for P extension? 9851 if (VT.isVector()) 9852 break; 9853 return std::make_pair(0U, &RISCV::GPRRegClass); 9854 case 'f': 9855 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9856 return std::make_pair(0U, &RISCV::FPR16RegClass); 9857 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9858 return std::make_pair(0U, &RISCV::FPR32RegClass); 9859 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9860 return std::make_pair(0U, &RISCV::FPR64RegClass); 9861 break; 9862 default: 9863 break; 9864 } 9865 } else if (Constraint == "vr") { 9866 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9867 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9868 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9869 return std::make_pair(0U, RC); 9870 } 9871 } else if (Constraint == "vm") { 9872 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 9873 return std::make_pair(0U, &RISCV::VMV0RegClass); 9874 } 9875 9876 // Clang will correctly decode the usage of register name aliases into their 9877 // official names. However, other frontends like `rustc` do not. This allows 9878 // users of these frontends to use the ABI names for registers in LLVM-style 9879 // register constraints. 9880 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9881 .Case("{zero}", RISCV::X0) 9882 .Case("{ra}", RISCV::X1) 9883 .Case("{sp}", RISCV::X2) 9884 .Case("{gp}", RISCV::X3) 9885 .Case("{tp}", RISCV::X4) 9886 .Case("{t0}", RISCV::X5) 9887 .Case("{t1}", RISCV::X6) 9888 .Case("{t2}", RISCV::X7) 9889 .Cases("{s0}", "{fp}", RISCV::X8) 9890 .Case("{s1}", RISCV::X9) 9891 .Case("{a0}", RISCV::X10) 9892 .Case("{a1}", RISCV::X11) 9893 .Case("{a2}", RISCV::X12) 9894 .Case("{a3}", RISCV::X13) 9895 .Case("{a4}", RISCV::X14) 9896 .Case("{a5}", RISCV::X15) 9897 .Case("{a6}", RISCV::X16) 9898 .Case("{a7}", RISCV::X17) 9899 .Case("{s2}", RISCV::X18) 9900 .Case("{s3}", RISCV::X19) 9901 .Case("{s4}", RISCV::X20) 9902 .Case("{s5}", RISCV::X21) 9903 .Case("{s6}", RISCV::X22) 9904 .Case("{s7}", RISCV::X23) 9905 .Case("{s8}", RISCV::X24) 9906 .Case("{s9}", RISCV::X25) 9907 .Case("{s10}", RISCV::X26) 9908 .Case("{s11}", RISCV::X27) 9909 .Case("{t3}", RISCV::X28) 9910 .Case("{t4}", RISCV::X29) 9911 .Case("{t5}", RISCV::X30) 9912 .Case("{t6}", RISCV::X31) 9913 .Default(RISCV::NoRegister); 9914 if (XRegFromAlias != RISCV::NoRegister) 9915 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9916 9917 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9918 // TableGen record rather than the AsmName to choose registers for InlineAsm 9919 // constraints, plus we want to match those names to the widest floating point 9920 // register type available, manually select floating point registers here. 9921 // 9922 // The second case is the ABI name of the register, so that frontends can also 9923 // use the ABI names in register constraint lists. 9924 if (Subtarget.hasStdExtF()) { 9925 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9926 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9927 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9928 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9929 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9930 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9931 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9932 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9933 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9934 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9935 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9936 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9937 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9938 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9939 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9940 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9941 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9942 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9943 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9944 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9945 .Cases("{f19}", "{fs3}", RISCV::F19_F) 9946 .Cases("{f20}", "{fs4}", RISCV::F20_F) 9947 .Cases("{f21}", "{fs5}", RISCV::F21_F) 9948 .Cases("{f22}", "{fs6}", RISCV::F22_F) 9949 .Cases("{f23}", "{fs7}", RISCV::F23_F) 9950 .Cases("{f24}", "{fs8}", RISCV::F24_F) 9951 .Cases("{f25}", "{fs9}", RISCV::F25_F) 9952 .Cases("{f26}", "{fs10}", RISCV::F26_F) 9953 .Cases("{f27}", "{fs11}", RISCV::F27_F) 9954 .Cases("{f28}", "{ft8}", RISCV::F28_F) 9955 .Cases("{f29}", "{ft9}", RISCV::F29_F) 9956 .Cases("{f30}", "{ft10}", RISCV::F30_F) 9957 .Cases("{f31}", "{ft11}", RISCV::F31_F) 9958 .Default(RISCV::NoRegister); 9959 if (FReg != RISCV::NoRegister) { 9960 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 9961 if (Subtarget.hasStdExtD()) { 9962 unsigned RegNo = FReg - RISCV::F0_F; 9963 unsigned DReg = RISCV::F0_D + RegNo; 9964 return std::make_pair(DReg, &RISCV::FPR64RegClass); 9965 } 9966 return std::make_pair(FReg, &RISCV::FPR32RegClass); 9967 } 9968 } 9969 9970 if (Subtarget.hasVInstructions()) { 9971 Register VReg = StringSwitch<Register>(Constraint.lower()) 9972 .Case("{v0}", RISCV::V0) 9973 .Case("{v1}", RISCV::V1) 9974 .Case("{v2}", RISCV::V2) 9975 .Case("{v3}", RISCV::V3) 9976 .Case("{v4}", RISCV::V4) 9977 .Case("{v5}", RISCV::V5) 9978 .Case("{v6}", RISCV::V6) 9979 .Case("{v7}", RISCV::V7) 9980 .Case("{v8}", RISCV::V8) 9981 .Case("{v9}", RISCV::V9) 9982 .Case("{v10}", RISCV::V10) 9983 .Case("{v11}", RISCV::V11) 9984 .Case("{v12}", RISCV::V12) 9985 .Case("{v13}", RISCV::V13) 9986 .Case("{v14}", RISCV::V14) 9987 .Case("{v15}", RISCV::V15) 9988 .Case("{v16}", RISCV::V16) 9989 .Case("{v17}", RISCV::V17) 9990 .Case("{v18}", RISCV::V18) 9991 .Case("{v19}", RISCV::V19) 9992 .Case("{v20}", RISCV::V20) 9993 .Case("{v21}", RISCV::V21) 9994 .Case("{v22}", RISCV::V22) 9995 .Case("{v23}", RISCV::V23) 9996 .Case("{v24}", RISCV::V24) 9997 .Case("{v25}", RISCV::V25) 9998 .Case("{v26}", RISCV::V26) 9999 .Case("{v27}", RISCV::V27) 10000 .Case("{v28}", RISCV::V28) 10001 .Case("{v29}", RISCV::V29) 10002 .Case("{v30}", RISCV::V30) 10003 .Case("{v31}", RISCV::V31) 10004 .Default(RISCV::NoRegister); 10005 if (VReg != RISCV::NoRegister) { 10006 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 10007 return std::make_pair(VReg, &RISCV::VMRegClass); 10008 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 10009 return std::make_pair(VReg, &RISCV::VRRegClass); 10010 for (const auto *RC : 10011 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10012 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 10013 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 10014 return std::make_pair(VReg, RC); 10015 } 10016 } 10017 } 10018 } 10019 10020 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10021 } 10022 10023 unsigned 10024 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 10025 // Currently only support length 1 constraints. 10026 if (ConstraintCode.size() == 1) { 10027 switch (ConstraintCode[0]) { 10028 case 'A': 10029 return InlineAsm::Constraint_A; 10030 default: 10031 break; 10032 } 10033 } 10034 10035 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 10036 } 10037 10038 void RISCVTargetLowering::LowerAsmOperandForConstraint( 10039 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 10040 SelectionDAG &DAG) const { 10041 // Currently only support length 1 constraints. 10042 if (Constraint.length() == 1) { 10043 switch (Constraint[0]) { 10044 case 'I': 10045 // Validate & create a 12-bit signed immediate operand. 10046 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10047 uint64_t CVal = C->getSExtValue(); 10048 if (isInt<12>(CVal)) 10049 Ops.push_back( 10050 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10051 } 10052 return; 10053 case 'J': 10054 // Validate & create an integer zero operand. 10055 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 10056 if (C->getZExtValue() == 0) 10057 Ops.push_back( 10058 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 10059 return; 10060 case 'K': 10061 // Validate & create a 5-bit unsigned immediate operand. 10062 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10063 uint64_t CVal = C->getZExtValue(); 10064 if (isUInt<5>(CVal)) 10065 Ops.push_back( 10066 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10067 } 10068 return; 10069 case 'S': 10070 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 10071 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 10072 GA->getValueType(0))); 10073 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 10074 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 10075 BA->getValueType(0))); 10076 } 10077 return; 10078 default: 10079 break; 10080 } 10081 } 10082 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10083 } 10084 10085 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 10086 Instruction *Inst, 10087 AtomicOrdering Ord) const { 10088 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 10089 return Builder.CreateFence(Ord); 10090 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 10091 return Builder.CreateFence(AtomicOrdering::Release); 10092 return nullptr; 10093 } 10094 10095 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 10096 Instruction *Inst, 10097 AtomicOrdering Ord) const { 10098 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 10099 return Builder.CreateFence(AtomicOrdering::Acquire); 10100 return nullptr; 10101 } 10102 10103 TargetLowering::AtomicExpansionKind 10104 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 10105 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 10106 // point operations can't be used in an lr/sc sequence without breaking the 10107 // forward-progress guarantee. 10108 if (AI->isFloatingPointOperation()) 10109 return AtomicExpansionKind::CmpXChg; 10110 10111 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 10112 if (Size == 8 || Size == 16) 10113 return AtomicExpansionKind::MaskedIntrinsic; 10114 return AtomicExpansionKind::None; 10115 } 10116 10117 static Intrinsic::ID 10118 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 10119 if (XLen == 32) { 10120 switch (BinOp) { 10121 default: 10122 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10123 case AtomicRMWInst::Xchg: 10124 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 10125 case AtomicRMWInst::Add: 10126 return Intrinsic::riscv_masked_atomicrmw_add_i32; 10127 case AtomicRMWInst::Sub: 10128 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 10129 case AtomicRMWInst::Nand: 10130 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 10131 case AtomicRMWInst::Max: 10132 return Intrinsic::riscv_masked_atomicrmw_max_i32; 10133 case AtomicRMWInst::Min: 10134 return Intrinsic::riscv_masked_atomicrmw_min_i32; 10135 case AtomicRMWInst::UMax: 10136 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 10137 case AtomicRMWInst::UMin: 10138 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 10139 } 10140 } 10141 10142 if (XLen == 64) { 10143 switch (BinOp) { 10144 default: 10145 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10146 case AtomicRMWInst::Xchg: 10147 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 10148 case AtomicRMWInst::Add: 10149 return Intrinsic::riscv_masked_atomicrmw_add_i64; 10150 case AtomicRMWInst::Sub: 10151 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 10152 case AtomicRMWInst::Nand: 10153 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 10154 case AtomicRMWInst::Max: 10155 return Intrinsic::riscv_masked_atomicrmw_max_i64; 10156 case AtomicRMWInst::Min: 10157 return Intrinsic::riscv_masked_atomicrmw_min_i64; 10158 case AtomicRMWInst::UMax: 10159 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 10160 case AtomicRMWInst::UMin: 10161 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 10162 } 10163 } 10164 10165 llvm_unreachable("Unexpected XLen\n"); 10166 } 10167 10168 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 10169 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 10170 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 10171 unsigned XLen = Subtarget.getXLen(); 10172 Value *Ordering = 10173 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 10174 Type *Tys[] = {AlignedAddr->getType()}; 10175 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 10176 AI->getModule(), 10177 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 10178 10179 if (XLen == 64) { 10180 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 10181 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10182 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 10183 } 10184 10185 Value *Result; 10186 10187 // Must pass the shift amount needed to sign extend the loaded value prior 10188 // to performing a signed comparison for min/max. ShiftAmt is the number of 10189 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 10190 // is the number of bits to left+right shift the value in order to 10191 // sign-extend. 10192 if (AI->getOperation() == AtomicRMWInst::Min || 10193 AI->getOperation() == AtomicRMWInst::Max) { 10194 const DataLayout &DL = AI->getModule()->getDataLayout(); 10195 unsigned ValWidth = 10196 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 10197 Value *SextShamt = 10198 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 10199 Result = Builder.CreateCall(LrwOpScwLoop, 10200 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 10201 } else { 10202 Result = 10203 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 10204 } 10205 10206 if (XLen == 64) 10207 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10208 return Result; 10209 } 10210 10211 TargetLowering::AtomicExpansionKind 10212 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 10213 AtomicCmpXchgInst *CI) const { 10214 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 10215 if (Size == 8 || Size == 16) 10216 return AtomicExpansionKind::MaskedIntrinsic; 10217 return AtomicExpansionKind::None; 10218 } 10219 10220 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 10221 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 10222 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 10223 unsigned XLen = Subtarget.getXLen(); 10224 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 10225 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 10226 if (XLen == 64) { 10227 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 10228 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 10229 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10230 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 10231 } 10232 Type *Tys[] = {AlignedAddr->getType()}; 10233 Function *MaskedCmpXchg = 10234 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 10235 Value *Result = Builder.CreateCall( 10236 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 10237 if (XLen == 64) 10238 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10239 return Result; 10240 } 10241 10242 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 10243 return false; 10244 } 10245 10246 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 10247 EVT VT) const { 10248 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 10249 return false; 10250 10251 switch (FPVT.getSimpleVT().SimpleTy) { 10252 case MVT::f16: 10253 return Subtarget.hasStdExtZfh(); 10254 case MVT::f32: 10255 return Subtarget.hasStdExtF(); 10256 case MVT::f64: 10257 return Subtarget.hasStdExtD(); 10258 default: 10259 return false; 10260 } 10261 } 10262 10263 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 10264 // If we are using the small code model, we can reduce size of jump table 10265 // entry to 4 bytes. 10266 if (Subtarget.is64Bit() && !isPositionIndependent() && 10267 getTargetMachine().getCodeModel() == CodeModel::Small) { 10268 return MachineJumpTableInfo::EK_Custom32; 10269 } 10270 return TargetLowering::getJumpTableEncoding(); 10271 } 10272 10273 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 10274 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 10275 unsigned uid, MCContext &Ctx) const { 10276 assert(Subtarget.is64Bit() && !isPositionIndependent() && 10277 getTargetMachine().getCodeModel() == CodeModel::Small); 10278 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 10279 } 10280 10281 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 10282 EVT VT) const { 10283 VT = VT.getScalarType(); 10284 10285 if (!VT.isSimple()) 10286 return false; 10287 10288 switch (VT.getSimpleVT().SimpleTy) { 10289 case MVT::f16: 10290 return Subtarget.hasStdExtZfh(); 10291 case MVT::f32: 10292 return Subtarget.hasStdExtF(); 10293 case MVT::f64: 10294 return Subtarget.hasStdExtD(); 10295 default: 10296 break; 10297 } 10298 10299 return false; 10300 } 10301 10302 Register RISCVTargetLowering::getExceptionPointerRegister( 10303 const Constant *PersonalityFn) const { 10304 return RISCV::X10; 10305 } 10306 10307 Register RISCVTargetLowering::getExceptionSelectorRegister( 10308 const Constant *PersonalityFn) const { 10309 return RISCV::X11; 10310 } 10311 10312 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 10313 // Return false to suppress the unnecessary extensions if the LibCall 10314 // arguments or return value is f32 type for LP64 ABI. 10315 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 10316 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 10317 return false; 10318 10319 return true; 10320 } 10321 10322 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 10323 if (Subtarget.is64Bit() && Type == MVT::i32) 10324 return true; 10325 10326 return IsSigned; 10327 } 10328 10329 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 10330 SDValue C) const { 10331 // Check integral scalar types. 10332 if (VT.isScalarInteger()) { 10333 // Omit the optimization if the sub target has the M extension and the data 10334 // size exceeds XLen. 10335 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 10336 return false; 10337 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 10338 // Break the MUL to a SLLI and an ADD/SUB. 10339 const APInt &Imm = ConstNode->getAPIntValue(); 10340 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 10341 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 10342 return true; 10343 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 10344 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 10345 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 10346 (Imm - 8).isPowerOf2())) 10347 return true; 10348 // Omit the following optimization if the sub target has the M extension 10349 // and the data size >= XLen. 10350 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 10351 return false; 10352 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 10353 // a pair of LUI/ADDI. 10354 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 10355 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 10356 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 10357 (1 - ImmS).isPowerOf2()) 10358 return true; 10359 } 10360 } 10361 } 10362 10363 return false; 10364 } 10365 10366 bool RISCVTargetLowering::isMulAddWithConstProfitable( 10367 const SDValue &AddNode, const SDValue &ConstNode) const { 10368 // Let the DAGCombiner decide for vectors. 10369 EVT VT = AddNode.getValueType(); 10370 if (VT.isVector()) 10371 return true; 10372 10373 // Let the DAGCombiner decide for larger types. 10374 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 10375 return true; 10376 10377 // It is worse if c1 is simm12 while c1*c2 is not. 10378 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 10379 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 10380 const APInt &C1 = C1Node->getAPIntValue(); 10381 const APInt &C2 = C2Node->getAPIntValue(); 10382 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 10383 return false; 10384 10385 // Default to true and let the DAGCombiner decide. 10386 return true; 10387 } 10388 10389 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 10390 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 10391 bool *Fast) const { 10392 if (!VT.isVector()) 10393 return false; 10394 10395 EVT ElemVT = VT.getVectorElementType(); 10396 if (Alignment >= ElemVT.getStoreSize()) { 10397 if (Fast) 10398 *Fast = true; 10399 return true; 10400 } 10401 10402 return false; 10403 } 10404 10405 bool RISCVTargetLowering::splitValueIntoRegisterParts( 10406 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 10407 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 10408 bool IsABIRegCopy = CC.hasValue(); 10409 EVT ValueVT = Val.getValueType(); 10410 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10411 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 10412 // and cast to f32. 10413 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 10414 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 10415 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 10416 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 10417 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 10418 Parts[0] = Val; 10419 return true; 10420 } 10421 10422 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10423 LLVMContext &Context = *DAG.getContext(); 10424 EVT ValueEltVT = ValueVT.getVectorElementType(); 10425 EVT PartEltVT = PartVT.getVectorElementType(); 10426 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10427 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10428 if (PartVTBitSize % ValueVTBitSize == 0) { 10429 assert(PartVTBitSize >= ValueVTBitSize); 10430 // If the element types are different, bitcast to the same element type of 10431 // PartVT first. 10432 // Give an example here, we want copy a <vscale x 1 x i8> value to 10433 // <vscale x 4 x i16>. 10434 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 10435 // subvector, then we can bitcast to <vscale x 4 x i16>. 10436 if (ValueEltVT != PartEltVT) { 10437 if (PartVTBitSize > ValueVTBitSize) { 10438 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10439 assert(Count != 0 && "The number of element should not be zero."); 10440 EVT SameEltTypeVT = 10441 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10442 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 10443 DAG.getUNDEF(SameEltTypeVT), Val, 10444 DAG.getVectorIdxConstant(0, DL)); 10445 } 10446 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 10447 } else { 10448 Val = 10449 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 10450 Val, DAG.getVectorIdxConstant(0, DL)); 10451 } 10452 Parts[0] = Val; 10453 return true; 10454 } 10455 } 10456 return false; 10457 } 10458 10459 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 10460 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 10461 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 10462 bool IsABIRegCopy = CC.hasValue(); 10463 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10464 SDValue Val = Parts[0]; 10465 10466 // Cast the f32 to i32, truncate to i16, and cast back to f16. 10467 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 10468 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 10469 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 10470 return Val; 10471 } 10472 10473 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10474 LLVMContext &Context = *DAG.getContext(); 10475 SDValue Val = Parts[0]; 10476 EVT ValueEltVT = ValueVT.getVectorElementType(); 10477 EVT PartEltVT = PartVT.getVectorElementType(); 10478 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10479 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10480 if (PartVTBitSize % ValueVTBitSize == 0) { 10481 assert(PartVTBitSize >= ValueVTBitSize); 10482 EVT SameEltTypeVT = ValueVT; 10483 // If the element types are different, convert it to the same element type 10484 // of PartVT. 10485 // Give an example here, we want copy a <vscale x 1 x i8> value from 10486 // <vscale x 4 x i16>. 10487 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 10488 // then we can extract <vscale x 1 x i8>. 10489 if (ValueEltVT != PartEltVT) { 10490 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10491 assert(Count != 0 && "The number of element should not be zero."); 10492 SameEltTypeVT = 10493 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10494 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 10495 } 10496 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 10497 DAG.getVectorIdxConstant(0, DL)); 10498 return Val; 10499 } 10500 } 10501 return SDValue(); 10502 } 10503 10504 SDValue 10505 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10506 SelectionDAG &DAG, 10507 SmallVectorImpl<SDNode *> &Created) const { 10508 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 10509 if (isIntDivCheap(N->getValueType(0), Attr)) 10510 return SDValue(N, 0); // Lower SDIV as SDIV 10511 10512 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 10513 "Unexpected divisor!"); 10514 10515 // Conditional move is needed, so do the transformation iff Zbt is enabled. 10516 if (!Subtarget.hasStdExtZbt()) 10517 return SDValue(); 10518 10519 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 10520 // Besides, more critical path instructions will be generated when dividing 10521 // by 2. So we keep using the original DAGs for these cases. 10522 unsigned Lg2 = Divisor.countTrailingZeros(); 10523 if (Lg2 == 1 || Lg2 >= 12) 10524 return SDValue(); 10525 10526 // fold (sdiv X, pow2) 10527 EVT VT = N->getValueType(0); 10528 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 10529 return SDValue(); 10530 10531 SDLoc DL(N); 10532 SDValue N0 = N->getOperand(0); 10533 SDValue Zero = DAG.getConstant(0, DL, VT); 10534 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 10535 10536 // Add (N0 < 0) ? Pow2 - 1 : 0; 10537 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 10538 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 10539 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 10540 10541 Created.push_back(Cmp.getNode()); 10542 Created.push_back(Add.getNode()); 10543 Created.push_back(Sel.getNode()); 10544 10545 // Divide by pow2. 10546 SDValue SRA = 10547 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 10548 10549 // If we're dividing by a positive value, we're done. Otherwise, we must 10550 // negate the result. 10551 if (Divisor.isNonNegative()) 10552 return SRA; 10553 10554 Created.push_back(SRA.getNode()); 10555 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 10556 } 10557 10558 #define GET_REGISTER_MATCHER 10559 #include "RISCVGenAsmMatcher.inc" 10560 10561 Register 10562 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 10563 const MachineFunction &MF) const { 10564 Register Reg = MatchRegisterAltName(RegName); 10565 if (Reg == RISCV::NoRegister) 10566 Reg = MatchRegisterName(RegName); 10567 if (Reg == RISCV::NoRegister) 10568 report_fatal_error( 10569 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 10570 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 10571 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 10572 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 10573 StringRef(RegName) + "\".")); 10574 return Reg; 10575 } 10576 10577 namespace llvm { 10578 namespace RISCVVIntrinsicsTable { 10579 10580 #define GET_RISCVVIntrinsicsTable_IMPL 10581 #include "RISCVGenSearchableTables.inc" 10582 10583 } // namespace RISCVVIntrinsicsTable 10584 10585 } // namespace llvm 10586