1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
254     if (Subtarget.is64Bit()) {
255       setOperationAction(ISD::ROTL, MVT::i32, Custom);
256       setOperationAction(ISD::ROTR, MVT::i32, Custom);
257     }
258   } else {
259     setOperationAction(ISD::ROTL, XLenVT, Expand);
260     setOperationAction(ISD::ROTR, XLenVT, Expand);
261   }
262 
263   if (Subtarget.hasStdExtZbp()) {
264     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
265     // more combining.
266     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
267     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
268     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
269     // BSWAP i8 doesn't exist.
270     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
271     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
272 
273     if (Subtarget.is64Bit()) {
274       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
275       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
276     }
277   } else {
278     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
279     // pattern match it directly in isel.
280     setOperationAction(ISD::BSWAP, XLenVT,
281                        Subtarget.hasStdExtZbb() ? Legal : Expand);
282   }
283 
284   if (Subtarget.hasStdExtZbb()) {
285     setOperationAction(ISD::SMIN, XLenVT, Legal);
286     setOperationAction(ISD::SMAX, XLenVT, Legal);
287     setOperationAction(ISD::UMIN, XLenVT, Legal);
288     setOperationAction(ISD::UMAX, XLenVT, Legal);
289 
290     if (Subtarget.is64Bit()) {
291       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
292       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
293       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
294       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
295     }
296   } else {
297     setOperationAction(ISD::CTTZ, XLenVT, Expand);
298     setOperationAction(ISD::CTLZ, XLenVT, Expand);
299     setOperationAction(ISD::CTPOP, XLenVT, Expand);
300   }
301 
302   if (Subtarget.hasStdExtZbt()) {
303     setOperationAction(ISD::FSHL, XLenVT, Custom);
304     setOperationAction(ISD::FSHR, XLenVT, Custom);
305     setOperationAction(ISD::SELECT, XLenVT, Legal);
306 
307     if (Subtarget.is64Bit()) {
308       setOperationAction(ISD::FSHL, MVT::i32, Custom);
309       setOperationAction(ISD::FSHR, MVT::i32, Custom);
310     }
311   } else {
312     setOperationAction(ISD::SELECT, XLenVT, Custom);
313   }
314 
315   static const ISD::CondCode FPCCToExpand[] = {
316       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
317       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
318       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
319 
320   static const ISD::NodeType FPOpToExpand[] = {
321       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
322       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
323 
324   if (Subtarget.hasStdExtZfh())
325     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
326 
327   if (Subtarget.hasStdExtZfh()) {
328     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
329     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
330     setOperationAction(ISD::LRINT, MVT::f16, Legal);
331     setOperationAction(ISD::LLRINT, MVT::f16, Legal);
332     setOperationAction(ISD::LROUND, MVT::f16, Legal);
333     setOperationAction(ISD::LLROUND, MVT::f16, Legal);
334     setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal);
335     setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal);
336     setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal);
337     setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal);
338     setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal);
339     setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal);
340     setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal);
341     setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal);
342     setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal);
343     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
344     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
345     setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal);
346     setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal);
347     setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal);
348     for (auto CC : FPCCToExpand)
349       setCondCodeAction(CC, MVT::f16, Expand);
350     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
351     setOperationAction(ISD::SELECT, MVT::f16, Custom);
352     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
353 
354     setOperationAction(ISD::FREM,       MVT::f16, Promote);
355     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
356     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
357     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
358     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
359     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
360     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
361     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
362     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
363     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
364     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
365     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
366     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
367     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
368     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
369     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
370     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
371     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
372 
373     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
374     // complete support for all operations in LegalizeDAG.
375 
376     // We need to custom promote this.
377     if (Subtarget.is64Bit())
378       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
379   }
380 
381   if (Subtarget.hasStdExtF()) {
382     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
383     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
384     setOperationAction(ISD::LRINT, MVT::f32, Legal);
385     setOperationAction(ISD::LLRINT, MVT::f32, Legal);
386     setOperationAction(ISD::LROUND, MVT::f32, Legal);
387     setOperationAction(ISD::LLROUND, MVT::f32, Legal);
388     setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal);
389     setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal);
390     setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal);
391     setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal);
392     setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
393     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
394     setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
395     setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
396     setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
397     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
398     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
399     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
400     for (auto CC : FPCCToExpand)
401       setCondCodeAction(CC, MVT::f32, Expand);
402     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
403     setOperationAction(ISD::SELECT, MVT::f32, Custom);
404     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
405     for (auto Op : FPOpToExpand)
406       setOperationAction(Op, MVT::f32, Expand);
407     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
408     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
409   }
410 
411   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
412     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
413 
414   if (Subtarget.hasStdExtD()) {
415     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
416     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
417     setOperationAction(ISD::LRINT, MVT::f64, Legal);
418     setOperationAction(ISD::LLRINT, MVT::f64, Legal);
419     setOperationAction(ISD::LROUND, MVT::f64, Legal);
420     setOperationAction(ISD::LLROUND, MVT::f64, Legal);
421     setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal);
422     setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal);
423     setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal);
424     setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal);
425     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
426     setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
427     setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
428     setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
429     setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
430     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
431     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
432     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
433     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
434     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
435     for (auto CC : FPCCToExpand)
436       setCondCodeAction(CC, MVT::f64, Expand);
437     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
438     setOperationAction(ISD::SELECT, MVT::f64, Custom);
439     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
440     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
441     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
442     for (auto Op : FPOpToExpand)
443       setOperationAction(Op, MVT::f64, Expand);
444     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
445     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
446   }
447 
448   if (Subtarget.is64Bit()) {
449     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
450     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
451     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
452     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
453   }
454 
455   if (Subtarget.hasStdExtF()) {
456     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
457     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
458 
459     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
460     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
461     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
462     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
463 
464     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
465     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
466   }
467 
468   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
469   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
470   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
471   setOperationAction(ISD::JumpTable, XLenVT, Custom);
472 
473   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
474 
475   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
476   // Unfortunately this can't be determined just from the ISA naming string.
477   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
478                      Subtarget.is64Bit() ? Legal : Custom);
479 
480   setOperationAction(ISD::TRAP, MVT::Other, Legal);
481   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
482   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
483   if (Subtarget.is64Bit())
484     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
485 
486   if (Subtarget.hasStdExtA()) {
487     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
488     setMinCmpXchgSizeInBits(32);
489   } else {
490     setMaxAtomicSizeInBitsSupported(0);
491   }
492 
493   setBooleanContents(ZeroOrOneBooleanContent);
494 
495   if (Subtarget.hasVInstructions()) {
496     setBooleanVectorContents(ZeroOrOneBooleanContent);
497 
498     setOperationAction(ISD::VSCALE, XLenVT, Custom);
499 
500     // RVV intrinsics may have illegal operands.
501     // We also need to custom legalize vmv.x.s.
502     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
503     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
504     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
505     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
506     if (Subtarget.is64Bit()) {
507       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
508     } else {
509       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
510       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
511     }
512 
513     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
514     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
515 
516     static const unsigned IntegerVPOps[] = {
517         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
518         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
519         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
520         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
521         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
522         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
523         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
524         ISD::VP_SELECT};
525 
526     static const unsigned FloatingPointVPOps[] = {
527         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
528         ISD::VP_FDIV,        ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
529         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SELECT};
530 
531     if (!Subtarget.is64Bit()) {
532       // We must custom-lower certain vXi64 operations on RV32 due to the vector
533       // element type being illegal.
534       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
535       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
536 
537       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
538       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
539       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
540       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
541       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
542       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
543       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
544       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
545 
546       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
547       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
548       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
549       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
550       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
551       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
552       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
553       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
554     }
555 
556     for (MVT VT : BoolVecVTs) {
557       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
558 
559       // Mask VTs are custom-expanded into a series of standard nodes
560       setOperationAction(ISD::TRUNCATE, VT, Custom);
561       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
562       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
563       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
564 
565       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
566       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
567 
568       setOperationAction(ISD::SELECT, VT, Custom);
569       setOperationAction(ISD::SELECT_CC, VT, Expand);
570       setOperationAction(ISD::VSELECT, VT, Expand);
571       setOperationAction(ISD::VP_SELECT, VT, Expand);
572 
573       setOperationAction(ISD::VP_AND, VT, Custom);
574       setOperationAction(ISD::VP_OR, VT, Custom);
575       setOperationAction(ISD::VP_XOR, VT, Custom);
576 
577       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
578       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
579       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
580 
581       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
582       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
583       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
584 
585       // RVV has native int->float & float->int conversions where the
586       // element type sizes are within one power-of-two of each other. Any
587       // wider distances between type sizes have to be lowered as sequences
588       // which progressively narrow the gap in stages.
589       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
590       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
591       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
592       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
593 
594       // Expand all extending loads to types larger than this, and truncating
595       // stores from types larger than this.
596       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
597         setTruncStoreAction(OtherVT, VT, Expand);
598         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
599         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
600         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
601       }
602     }
603 
604     for (MVT VT : IntVecVTs) {
605       if (VT.getVectorElementType() == MVT::i64 &&
606           !Subtarget.hasVInstructionsI64())
607         continue;
608 
609       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
610       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
611 
612       // Vectors implement MULHS/MULHU.
613       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
614       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
615 
616       setOperationAction(ISD::SMIN, VT, Legal);
617       setOperationAction(ISD::SMAX, VT, Legal);
618       setOperationAction(ISD::UMIN, VT, Legal);
619       setOperationAction(ISD::UMAX, VT, Legal);
620 
621       setOperationAction(ISD::ROTL, VT, Expand);
622       setOperationAction(ISD::ROTR, VT, Expand);
623 
624       setOperationAction(ISD::CTTZ, VT, Expand);
625       setOperationAction(ISD::CTLZ, VT, Expand);
626       setOperationAction(ISD::CTPOP, VT, Expand);
627 
628       setOperationAction(ISD::BSWAP, VT, Expand);
629 
630       // Custom-lower extensions and truncations from/to mask types.
631       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
632       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
633       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
634 
635       // RVV has native int->float & float->int conversions where the
636       // element type sizes are within one power-of-two of each other. Any
637       // wider distances between type sizes have to be lowered as sequences
638       // which progressively narrow the gap in stages.
639       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
640       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
641       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
642       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
643 
644       setOperationAction(ISD::SADDSAT, VT, Legal);
645       setOperationAction(ISD::UADDSAT, VT, Legal);
646       setOperationAction(ISD::SSUBSAT, VT, Legal);
647       setOperationAction(ISD::USUBSAT, VT, Legal);
648 
649       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
650       // nodes which truncate by one power of two at a time.
651       setOperationAction(ISD::TRUNCATE, VT, Custom);
652 
653       // Custom-lower insert/extract operations to simplify patterns.
654       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
655       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
656 
657       // Custom-lower reduction operations to set up the corresponding custom
658       // nodes' operands.
659       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
660       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
661       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
662       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
663       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
664       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
665       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
666       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
667 
668       for (unsigned VPOpc : IntegerVPOps)
669         setOperationAction(VPOpc, VT, Custom);
670 
671       setOperationAction(ISD::LOAD, VT, Custom);
672       setOperationAction(ISD::STORE, VT, Custom);
673 
674       setOperationAction(ISD::MLOAD, VT, Custom);
675       setOperationAction(ISD::MSTORE, VT, Custom);
676       setOperationAction(ISD::MGATHER, VT, Custom);
677       setOperationAction(ISD::MSCATTER, VT, Custom);
678 
679       setOperationAction(ISD::VP_LOAD, VT, Custom);
680       setOperationAction(ISD::VP_STORE, VT, Custom);
681       setOperationAction(ISD::VP_GATHER, VT, Custom);
682       setOperationAction(ISD::VP_SCATTER, VT, Custom);
683 
684       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
685       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
686       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
687 
688       setOperationAction(ISD::SELECT, VT, Custom);
689       setOperationAction(ISD::SELECT_CC, VT, Expand);
690 
691       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
692       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
693 
694       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
695         setTruncStoreAction(VT, OtherVT, Expand);
696         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
697         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
698         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
699       }
700 
701       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
702       // type that can represent the value exactly.
703       if (VT.getVectorElementType() != MVT::i64) {
704         MVT FloatEltVT =
705             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
706         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
707         if (isTypeLegal(FloatVT)) {
708           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
709           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
710         }
711       }
712     }
713 
714     // Expand various CCs to best match the RVV ISA, which natively supports UNE
715     // but no other unordered comparisons, and supports all ordered comparisons
716     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
717     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
718     // and we pattern-match those back to the "original", swapping operands once
719     // more. This way we catch both operations and both "vf" and "fv" forms with
720     // fewer patterns.
721     static const ISD::CondCode VFPCCToExpand[] = {
722         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
723         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
724         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
725     };
726 
727     // Sets common operation actions on RVV floating-point vector types.
728     const auto SetCommonVFPActions = [&](MVT VT) {
729       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
730       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
731       // sizes are within one power-of-two of each other. Therefore conversions
732       // between vXf16 and vXf64 must be lowered as sequences which convert via
733       // vXf32.
734       setOperationAction(ISD::FP_ROUND, VT, Custom);
735       setOperationAction(ISD::FP_EXTEND, VT, Custom);
736       // Custom-lower insert/extract operations to simplify patterns.
737       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
738       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
739       // Expand various condition codes (explained above).
740       for (auto CC : VFPCCToExpand)
741         setCondCodeAction(CC, VT, Expand);
742 
743       setOperationAction(ISD::FMINNUM, VT, Legal);
744       setOperationAction(ISD::FMAXNUM, VT, Legal);
745 
746       setOperationAction(ISD::FTRUNC, VT, Custom);
747       setOperationAction(ISD::FCEIL, VT, Custom);
748       setOperationAction(ISD::FFLOOR, VT, Custom);
749 
750       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
751       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
752       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
753       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
754 
755       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
756 
757       setOperationAction(ISD::LOAD, VT, Custom);
758       setOperationAction(ISD::STORE, VT, Custom);
759 
760       setOperationAction(ISD::MLOAD, VT, Custom);
761       setOperationAction(ISD::MSTORE, VT, Custom);
762       setOperationAction(ISD::MGATHER, VT, Custom);
763       setOperationAction(ISD::MSCATTER, VT, Custom);
764 
765       setOperationAction(ISD::VP_LOAD, VT, Custom);
766       setOperationAction(ISD::VP_STORE, VT, Custom);
767       setOperationAction(ISD::VP_GATHER, VT, Custom);
768       setOperationAction(ISD::VP_SCATTER, VT, Custom);
769 
770       setOperationAction(ISD::SELECT, VT, Custom);
771       setOperationAction(ISD::SELECT_CC, VT, Expand);
772 
773       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
774       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
775       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
776 
777       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
778 
779       for (unsigned VPOpc : FloatingPointVPOps)
780         setOperationAction(VPOpc, VT, Custom);
781     };
782 
783     // Sets common extload/truncstore actions on RVV floating-point vector
784     // types.
785     const auto SetCommonVFPExtLoadTruncStoreActions =
786         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
787           for (auto SmallVT : SmallerVTs) {
788             setTruncStoreAction(VT, SmallVT, Expand);
789             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
790           }
791         };
792 
793     if (Subtarget.hasVInstructionsF16())
794       for (MVT VT : F16VecVTs)
795         SetCommonVFPActions(VT);
796 
797     for (MVT VT : F32VecVTs) {
798       if (Subtarget.hasVInstructionsF32())
799         SetCommonVFPActions(VT);
800       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
801     }
802 
803     for (MVT VT : F64VecVTs) {
804       if (Subtarget.hasVInstructionsF64())
805         SetCommonVFPActions(VT);
806       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
807       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
808     }
809 
810     if (Subtarget.useRVVForFixedLengthVectors()) {
811       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
812         if (!useRVVForFixedLengthVectorVT(VT))
813           continue;
814 
815         // By default everything must be expanded.
816         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
817           setOperationAction(Op, VT, Expand);
818         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
819           setTruncStoreAction(VT, OtherVT, Expand);
820           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
821           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
822           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
823         }
824 
825         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
826         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
827         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
828 
829         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
830         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
831 
832         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
833         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
834 
835         setOperationAction(ISD::LOAD, VT, Custom);
836         setOperationAction(ISD::STORE, VT, Custom);
837 
838         setOperationAction(ISD::SETCC, VT, Custom);
839 
840         setOperationAction(ISD::SELECT, VT, Custom);
841 
842         setOperationAction(ISD::TRUNCATE, VT, Custom);
843 
844         setOperationAction(ISD::BITCAST, VT, Custom);
845 
846         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
847         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
848         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
849 
850         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
851         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
852         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
853 
854         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
855         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
856         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
857         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
858 
859         // Operations below are different for between masks and other vectors.
860         if (VT.getVectorElementType() == MVT::i1) {
861           setOperationAction(ISD::VP_AND, VT, Custom);
862           setOperationAction(ISD::VP_OR, VT, Custom);
863           setOperationAction(ISD::VP_XOR, VT, Custom);
864           setOperationAction(ISD::AND, VT, Custom);
865           setOperationAction(ISD::OR, VT, Custom);
866           setOperationAction(ISD::XOR, VT, Custom);
867           continue;
868         }
869 
870         // Use SPLAT_VECTOR to prevent type legalization from destroying the
871         // splats when type legalizing i64 scalar on RV32.
872         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
873         // improvements first.
874         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
875           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
876           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
877         }
878 
879         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
880         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
881 
882         setOperationAction(ISD::MLOAD, VT, Custom);
883         setOperationAction(ISD::MSTORE, VT, Custom);
884         setOperationAction(ISD::MGATHER, VT, Custom);
885         setOperationAction(ISD::MSCATTER, VT, Custom);
886 
887         setOperationAction(ISD::VP_LOAD, VT, Custom);
888         setOperationAction(ISD::VP_STORE, VT, Custom);
889         setOperationAction(ISD::VP_GATHER, VT, Custom);
890         setOperationAction(ISD::VP_SCATTER, VT, Custom);
891 
892         setOperationAction(ISD::ADD, VT, Custom);
893         setOperationAction(ISD::MUL, VT, Custom);
894         setOperationAction(ISD::SUB, VT, Custom);
895         setOperationAction(ISD::AND, VT, Custom);
896         setOperationAction(ISD::OR, VT, Custom);
897         setOperationAction(ISD::XOR, VT, Custom);
898         setOperationAction(ISD::SDIV, VT, Custom);
899         setOperationAction(ISD::SREM, VT, Custom);
900         setOperationAction(ISD::UDIV, VT, Custom);
901         setOperationAction(ISD::UREM, VT, Custom);
902         setOperationAction(ISD::SHL, VT, Custom);
903         setOperationAction(ISD::SRA, VT, Custom);
904         setOperationAction(ISD::SRL, VT, Custom);
905 
906         setOperationAction(ISD::SMIN, VT, Custom);
907         setOperationAction(ISD::SMAX, VT, Custom);
908         setOperationAction(ISD::UMIN, VT, Custom);
909         setOperationAction(ISD::UMAX, VT, Custom);
910         setOperationAction(ISD::ABS,  VT, Custom);
911 
912         setOperationAction(ISD::MULHS, VT, Custom);
913         setOperationAction(ISD::MULHU, VT, Custom);
914 
915         setOperationAction(ISD::SADDSAT, VT, Custom);
916         setOperationAction(ISD::UADDSAT, VT, Custom);
917         setOperationAction(ISD::SSUBSAT, VT, Custom);
918         setOperationAction(ISD::USUBSAT, VT, Custom);
919 
920         setOperationAction(ISD::VSELECT, VT, Custom);
921         setOperationAction(ISD::SELECT_CC, VT, Expand);
922 
923         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
924         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
925         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
926 
927         // Custom-lower reduction operations to set up the corresponding custom
928         // nodes' operands.
929         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
930         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
931         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
932         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
933         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
934 
935         for (unsigned VPOpc : IntegerVPOps)
936           setOperationAction(VPOpc, VT, Custom);
937 
938         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
939         // type that can represent the value exactly.
940         if (VT.getVectorElementType() != MVT::i64) {
941           MVT FloatEltVT =
942               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
943           EVT FloatVT =
944               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
945           if (isTypeLegal(FloatVT)) {
946             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
947             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
948           }
949         }
950       }
951 
952       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
953         if (!useRVVForFixedLengthVectorVT(VT))
954           continue;
955 
956         // By default everything must be expanded.
957         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
958           setOperationAction(Op, VT, Expand);
959         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
960           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
961           setTruncStoreAction(VT, OtherVT, Expand);
962         }
963 
964         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
965         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
966         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
967 
968         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
969         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
970         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
971         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
972         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
973 
974         setOperationAction(ISD::LOAD, VT, Custom);
975         setOperationAction(ISD::STORE, VT, Custom);
976         setOperationAction(ISD::MLOAD, VT, Custom);
977         setOperationAction(ISD::MSTORE, VT, Custom);
978         setOperationAction(ISD::MGATHER, VT, Custom);
979         setOperationAction(ISD::MSCATTER, VT, Custom);
980 
981         setOperationAction(ISD::VP_LOAD, VT, Custom);
982         setOperationAction(ISD::VP_STORE, VT, Custom);
983         setOperationAction(ISD::VP_GATHER, VT, Custom);
984         setOperationAction(ISD::VP_SCATTER, VT, Custom);
985 
986         setOperationAction(ISD::FADD, VT, Custom);
987         setOperationAction(ISD::FSUB, VT, Custom);
988         setOperationAction(ISD::FMUL, VT, Custom);
989         setOperationAction(ISD::FDIV, VT, Custom);
990         setOperationAction(ISD::FNEG, VT, Custom);
991         setOperationAction(ISD::FABS, VT, Custom);
992         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
993         setOperationAction(ISD::FSQRT, VT, Custom);
994         setOperationAction(ISD::FMA, VT, Custom);
995         setOperationAction(ISD::FMINNUM, VT, Custom);
996         setOperationAction(ISD::FMAXNUM, VT, Custom);
997 
998         setOperationAction(ISD::FP_ROUND, VT, Custom);
999         setOperationAction(ISD::FP_EXTEND, VT, Custom);
1000 
1001         setOperationAction(ISD::FTRUNC, VT, Custom);
1002         setOperationAction(ISD::FCEIL, VT, Custom);
1003         setOperationAction(ISD::FFLOOR, VT, Custom);
1004 
1005         for (auto CC : VFPCCToExpand)
1006           setCondCodeAction(CC, VT, Expand);
1007 
1008         setOperationAction(ISD::VSELECT, VT, Custom);
1009         setOperationAction(ISD::SELECT, VT, Custom);
1010         setOperationAction(ISD::SELECT_CC, VT, Expand);
1011 
1012         setOperationAction(ISD::BITCAST, VT, Custom);
1013 
1014         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1015         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1016         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1017         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1018 
1019         for (unsigned VPOpc : FloatingPointVPOps)
1020           setOperationAction(VPOpc, VT, Custom);
1021       }
1022 
1023       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1024       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1025       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1026       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1027       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1028       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1029       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1030       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1031     }
1032   }
1033 
1034   // Function alignments.
1035   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1036   setMinFunctionAlignment(FunctionAlignment);
1037   setPrefFunctionAlignment(FunctionAlignment);
1038 
1039   setMinimumJumpTableEntries(5);
1040 
1041   // Jumps are expensive, compared to logic
1042   setJumpIsExpensive();
1043 
1044   setTargetDAGCombine(ISD::ADD);
1045   setTargetDAGCombine(ISD::SUB);
1046   setTargetDAGCombine(ISD::AND);
1047   setTargetDAGCombine(ISD::OR);
1048   setTargetDAGCombine(ISD::XOR);
1049   setTargetDAGCombine(ISD::ANY_EXTEND);
1050   if (Subtarget.hasStdExtF()) {
1051     setTargetDAGCombine(ISD::ZERO_EXTEND);
1052     setTargetDAGCombine(ISD::FP_TO_SINT);
1053     setTargetDAGCombine(ISD::FP_TO_UINT);
1054   }
1055   if (Subtarget.hasVInstructions()) {
1056     setTargetDAGCombine(ISD::FCOPYSIGN);
1057     setTargetDAGCombine(ISD::MGATHER);
1058     setTargetDAGCombine(ISD::MSCATTER);
1059     setTargetDAGCombine(ISD::VP_GATHER);
1060     setTargetDAGCombine(ISD::VP_SCATTER);
1061     setTargetDAGCombine(ISD::SRA);
1062     setTargetDAGCombine(ISD::SRL);
1063     setTargetDAGCombine(ISD::SHL);
1064     setTargetDAGCombine(ISD::STORE);
1065   }
1066 }
1067 
1068 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1069                                             LLVMContext &Context,
1070                                             EVT VT) const {
1071   if (!VT.isVector())
1072     return getPointerTy(DL);
1073   if (Subtarget.hasVInstructions() &&
1074       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1075     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1076   return VT.changeVectorElementTypeToInteger();
1077 }
1078 
1079 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1080   return Subtarget.getXLenVT();
1081 }
1082 
1083 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1084                                              const CallInst &I,
1085                                              MachineFunction &MF,
1086                                              unsigned Intrinsic) const {
1087   auto &DL = I.getModule()->getDataLayout();
1088   switch (Intrinsic) {
1089   default:
1090     return false;
1091   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1092   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1093   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1094   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1095   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1096   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1097   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1098   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1099   case Intrinsic::riscv_masked_cmpxchg_i32: {
1100     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
1101     Info.opc = ISD::INTRINSIC_W_CHAIN;
1102     Info.memVT = MVT::getVT(PtrTy->getElementType());
1103     Info.ptrVal = I.getArgOperand(0);
1104     Info.offset = 0;
1105     Info.align = Align(4);
1106     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1107                  MachineMemOperand::MOVolatile;
1108     return true;
1109   }
1110   case Intrinsic::riscv_masked_strided_load:
1111     Info.opc = ISD::INTRINSIC_W_CHAIN;
1112     Info.ptrVal = I.getArgOperand(1);
1113     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1114     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1115     Info.size = MemoryLocation::UnknownSize;
1116     Info.flags |= MachineMemOperand::MOLoad;
1117     return true;
1118   case Intrinsic::riscv_masked_strided_store:
1119     Info.opc = ISD::INTRINSIC_VOID;
1120     Info.ptrVal = I.getArgOperand(1);
1121     Info.memVT =
1122         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1123     Info.align = Align(
1124         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1125         8);
1126     Info.size = MemoryLocation::UnknownSize;
1127     Info.flags |= MachineMemOperand::MOStore;
1128     return true;
1129   }
1130 }
1131 
1132 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1133                                                 const AddrMode &AM, Type *Ty,
1134                                                 unsigned AS,
1135                                                 Instruction *I) const {
1136   // No global is ever allowed as a base.
1137   if (AM.BaseGV)
1138     return false;
1139 
1140   // Require a 12-bit signed offset.
1141   if (!isInt<12>(AM.BaseOffs))
1142     return false;
1143 
1144   switch (AM.Scale) {
1145   case 0: // "r+i" or just "i", depending on HasBaseReg.
1146     break;
1147   case 1:
1148     if (!AM.HasBaseReg) // allow "r+i".
1149       break;
1150     return false; // disallow "r+r" or "r+r+i".
1151   default:
1152     return false;
1153   }
1154 
1155   return true;
1156 }
1157 
1158 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1159   return isInt<12>(Imm);
1160 }
1161 
1162 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1163   return isInt<12>(Imm);
1164 }
1165 
1166 // On RV32, 64-bit integers are split into their high and low parts and held
1167 // in two different registers, so the trunc is free since the low register can
1168 // just be used.
1169 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1170   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1171     return false;
1172   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1173   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1174   return (SrcBits == 64 && DestBits == 32);
1175 }
1176 
1177 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1178   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1179       !SrcVT.isInteger() || !DstVT.isInteger())
1180     return false;
1181   unsigned SrcBits = SrcVT.getSizeInBits();
1182   unsigned DestBits = DstVT.getSizeInBits();
1183   return (SrcBits == 64 && DestBits == 32);
1184 }
1185 
1186 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1187   // Zexts are free if they can be combined with a load.
1188   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1189   // poorly with type legalization of compares preferring sext.
1190   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1191     EVT MemVT = LD->getMemoryVT();
1192     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1193         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1194          LD->getExtensionType() == ISD::ZEXTLOAD))
1195       return true;
1196   }
1197 
1198   return TargetLowering::isZExtFree(Val, VT2);
1199 }
1200 
1201 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1202   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1203 }
1204 
1205 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1206   return Subtarget.hasStdExtZbb();
1207 }
1208 
1209 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1210   return Subtarget.hasStdExtZbb();
1211 }
1212 
1213 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1214   EVT VT = Y.getValueType();
1215 
1216   // FIXME: Support vectors once we have tests.
1217   if (VT.isVector())
1218     return false;
1219 
1220   return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y);
1221 }
1222 
1223 /// Check if sinking \p I's operands to I's basic block is profitable, because
1224 /// the operands can be folded into a target instruction, e.g.
1225 /// splats of scalars can fold into vector instructions.
1226 bool RISCVTargetLowering::shouldSinkOperands(
1227     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1228   using namespace llvm::PatternMatch;
1229 
1230   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1231     return false;
1232 
1233   auto IsSinker = [&](Instruction *I, int Operand) {
1234     switch (I->getOpcode()) {
1235     case Instruction::Add:
1236     case Instruction::Sub:
1237     case Instruction::Mul:
1238     case Instruction::And:
1239     case Instruction::Or:
1240     case Instruction::Xor:
1241     case Instruction::FAdd:
1242     case Instruction::FSub:
1243     case Instruction::FMul:
1244     case Instruction::FDiv:
1245     case Instruction::ICmp:
1246     case Instruction::FCmp:
1247       return true;
1248     case Instruction::Shl:
1249     case Instruction::LShr:
1250     case Instruction::AShr:
1251     case Instruction::UDiv:
1252     case Instruction::SDiv:
1253     case Instruction::URem:
1254     case Instruction::SRem:
1255       return Operand == 1;
1256     case Instruction::Call:
1257       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1258         switch (II->getIntrinsicID()) {
1259         case Intrinsic::fma:
1260           return Operand == 0 || Operand == 1;
1261         default:
1262           return false;
1263         }
1264       }
1265       return false;
1266     default:
1267       return false;
1268     }
1269   };
1270 
1271   for (auto OpIdx : enumerate(I->operands())) {
1272     if (!IsSinker(I, OpIdx.index()))
1273       continue;
1274 
1275     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1276     // Make sure we are not already sinking this operand
1277     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1278       continue;
1279 
1280     // We are looking for a splat that can be sunk.
1281     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1282                              m_Undef(), m_ZeroMask())))
1283       continue;
1284 
1285     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1286     // and vector registers
1287     for (Use &U : Op->uses()) {
1288       Instruction *Insn = cast<Instruction>(U.getUser());
1289       if (!IsSinker(Insn, U.getOperandNo()))
1290         return false;
1291     }
1292 
1293     Ops.push_back(&Op->getOperandUse(0));
1294     Ops.push_back(&OpIdx.value());
1295   }
1296   return true;
1297 }
1298 
1299 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1300                                        bool ForCodeSize) const {
1301   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1302   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1303     return false;
1304   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1305     return false;
1306   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1307     return false;
1308   if (Imm.isNegZero())
1309     return false;
1310   return Imm.isZero();
1311 }
1312 
1313 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1314   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1315          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1316          (VT == MVT::f64 && Subtarget.hasStdExtD());
1317 }
1318 
1319 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1320                                                       CallingConv::ID CC,
1321                                                       EVT VT) const {
1322   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1323   // We might still end up using a GPR but that will be decided based on ABI.
1324   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1325   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1326     return MVT::f32;
1327 
1328   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1329 }
1330 
1331 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1332                                                            CallingConv::ID CC,
1333                                                            EVT VT) const {
1334   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1335   // We might still end up using a GPR but that will be decided based on ABI.
1336   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1337   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1338     return 1;
1339 
1340   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1341 }
1342 
1343 // Changes the condition code and swaps operands if necessary, so the SetCC
1344 // operation matches one of the comparisons supported directly by branches
1345 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1346 // with 1/-1.
1347 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1348                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1349   // Convert X > -1 to X >= 0.
1350   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1351     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1352     CC = ISD::SETGE;
1353     return;
1354   }
1355   // Convert X < 1 to 0 >= X.
1356   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1357     RHS = LHS;
1358     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1359     CC = ISD::SETGE;
1360     return;
1361   }
1362 
1363   switch (CC) {
1364   default:
1365     break;
1366   case ISD::SETGT:
1367   case ISD::SETLE:
1368   case ISD::SETUGT:
1369   case ISD::SETULE:
1370     CC = ISD::getSetCCSwappedOperands(CC);
1371     std::swap(LHS, RHS);
1372     break;
1373   }
1374 }
1375 
1376 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1377   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1378   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1379   if (VT.getVectorElementType() == MVT::i1)
1380     KnownSize *= 8;
1381 
1382   switch (KnownSize) {
1383   default:
1384     llvm_unreachable("Invalid LMUL.");
1385   case 8:
1386     return RISCVII::VLMUL::LMUL_F8;
1387   case 16:
1388     return RISCVII::VLMUL::LMUL_F4;
1389   case 32:
1390     return RISCVII::VLMUL::LMUL_F2;
1391   case 64:
1392     return RISCVII::VLMUL::LMUL_1;
1393   case 128:
1394     return RISCVII::VLMUL::LMUL_2;
1395   case 256:
1396     return RISCVII::VLMUL::LMUL_4;
1397   case 512:
1398     return RISCVII::VLMUL::LMUL_8;
1399   }
1400 }
1401 
1402 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1403   switch (LMul) {
1404   default:
1405     llvm_unreachable("Invalid LMUL.");
1406   case RISCVII::VLMUL::LMUL_F8:
1407   case RISCVII::VLMUL::LMUL_F4:
1408   case RISCVII::VLMUL::LMUL_F2:
1409   case RISCVII::VLMUL::LMUL_1:
1410     return RISCV::VRRegClassID;
1411   case RISCVII::VLMUL::LMUL_2:
1412     return RISCV::VRM2RegClassID;
1413   case RISCVII::VLMUL::LMUL_4:
1414     return RISCV::VRM4RegClassID;
1415   case RISCVII::VLMUL::LMUL_8:
1416     return RISCV::VRM8RegClassID;
1417   }
1418 }
1419 
1420 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1421   RISCVII::VLMUL LMUL = getLMUL(VT);
1422   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1423       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1424       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1425       LMUL == RISCVII::VLMUL::LMUL_1) {
1426     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1427                   "Unexpected subreg numbering");
1428     return RISCV::sub_vrm1_0 + Index;
1429   }
1430   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1431     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1432                   "Unexpected subreg numbering");
1433     return RISCV::sub_vrm2_0 + Index;
1434   }
1435   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1436     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1437                   "Unexpected subreg numbering");
1438     return RISCV::sub_vrm4_0 + Index;
1439   }
1440   llvm_unreachable("Invalid vector type.");
1441 }
1442 
1443 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1444   if (VT.getVectorElementType() == MVT::i1)
1445     return RISCV::VRRegClassID;
1446   return getRegClassIDForLMUL(getLMUL(VT));
1447 }
1448 
1449 // Attempt to decompose a subvector insert/extract between VecVT and
1450 // SubVecVT via subregister indices. Returns the subregister index that
1451 // can perform the subvector insert/extract with the given element index, as
1452 // well as the index corresponding to any leftover subvectors that must be
1453 // further inserted/extracted within the register class for SubVecVT.
1454 std::pair<unsigned, unsigned>
1455 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1456     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1457     const RISCVRegisterInfo *TRI) {
1458   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1459                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1460                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1461                 "Register classes not ordered");
1462   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1463   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1464   // Try to compose a subregister index that takes us from the incoming
1465   // LMUL>1 register class down to the outgoing one. At each step we half
1466   // the LMUL:
1467   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1468   // Note that this is not guaranteed to find a subregister index, such as
1469   // when we are extracting from one VR type to another.
1470   unsigned SubRegIdx = RISCV::NoSubRegister;
1471   for (const unsigned RCID :
1472        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1473     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1474       VecVT = VecVT.getHalfNumVectorElementsVT();
1475       bool IsHi =
1476           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1477       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1478                                             getSubregIndexByMVT(VecVT, IsHi));
1479       if (IsHi)
1480         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1481     }
1482   return {SubRegIdx, InsertExtractIdx};
1483 }
1484 
1485 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1486 // stores for those types.
1487 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1488   return !Subtarget.useRVVForFixedLengthVectors() ||
1489          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1490 }
1491 
1492 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1493   if (ScalarTy->isPointerTy())
1494     return true;
1495 
1496   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1497       ScalarTy->isIntegerTy(32))
1498     return true;
1499 
1500   if (ScalarTy->isIntegerTy(64))
1501     return Subtarget.hasVInstructionsI64();
1502 
1503   if (ScalarTy->isHalfTy())
1504     return Subtarget.hasVInstructionsF16();
1505   if (ScalarTy->isFloatTy())
1506     return Subtarget.hasVInstructionsF32();
1507   if (ScalarTy->isDoubleTy())
1508     return Subtarget.hasVInstructionsF64();
1509 
1510   return false;
1511 }
1512 
1513 static bool useRVVForFixedLengthVectorVT(MVT VT,
1514                                          const RISCVSubtarget &Subtarget) {
1515   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1516   if (!Subtarget.useRVVForFixedLengthVectors())
1517     return false;
1518 
1519   // We only support a set of vector types with a consistent maximum fixed size
1520   // across all supported vector element types to avoid legalization issues.
1521   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1522   // fixed-length vector type we support is 1024 bytes.
1523   if (VT.getFixedSizeInBits() > 1024 * 8)
1524     return false;
1525 
1526   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1527 
1528   MVT EltVT = VT.getVectorElementType();
1529 
1530   // Don't use RVV for vectors we cannot scalarize if required.
1531   switch (EltVT.SimpleTy) {
1532   // i1 is supported but has different rules.
1533   default:
1534     return false;
1535   case MVT::i1:
1536     // Masks can only use a single register.
1537     if (VT.getVectorNumElements() > MinVLen)
1538       return false;
1539     MinVLen /= 8;
1540     break;
1541   case MVT::i8:
1542   case MVT::i16:
1543   case MVT::i32:
1544     break;
1545   case MVT::i64:
1546     if (!Subtarget.hasVInstructionsI64())
1547       return false;
1548     break;
1549   case MVT::f16:
1550     if (!Subtarget.hasVInstructionsF16())
1551       return false;
1552     break;
1553   case MVT::f32:
1554     if (!Subtarget.hasVInstructionsF32())
1555       return false;
1556     break;
1557   case MVT::f64:
1558     if (!Subtarget.hasVInstructionsF64())
1559       return false;
1560     break;
1561   }
1562 
1563   // Reject elements larger than ELEN.
1564   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1565     return false;
1566 
1567   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1568   // Don't use RVV for types that don't fit.
1569   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1570     return false;
1571 
1572   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1573   // the base fixed length RVV support in place.
1574   if (!VT.isPow2VectorType())
1575     return false;
1576 
1577   return true;
1578 }
1579 
1580 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1581   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1582 }
1583 
1584 // Return the largest legal scalable vector type that matches VT's element type.
1585 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1586                                             const RISCVSubtarget &Subtarget) {
1587   // This may be called before legal types are setup.
1588   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1589           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1590          "Expected legal fixed length vector!");
1591 
1592   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1593   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1594 
1595   MVT EltVT = VT.getVectorElementType();
1596   switch (EltVT.SimpleTy) {
1597   default:
1598     llvm_unreachable("unexpected element type for RVV container");
1599   case MVT::i1:
1600   case MVT::i8:
1601   case MVT::i16:
1602   case MVT::i32:
1603   case MVT::i64:
1604   case MVT::f16:
1605   case MVT::f32:
1606   case MVT::f64: {
1607     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1608     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1609     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1610     unsigned NumElts =
1611         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1612     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1613     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1614     return MVT::getScalableVectorVT(EltVT, NumElts);
1615   }
1616   }
1617 }
1618 
1619 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1620                                             const RISCVSubtarget &Subtarget) {
1621   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1622                                           Subtarget);
1623 }
1624 
1625 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1626   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1627 }
1628 
1629 // Grow V to consume an entire RVV register.
1630 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1631                                        const RISCVSubtarget &Subtarget) {
1632   assert(VT.isScalableVector() &&
1633          "Expected to convert into a scalable vector!");
1634   assert(V.getValueType().isFixedLengthVector() &&
1635          "Expected a fixed length vector operand!");
1636   SDLoc DL(V);
1637   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1638   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1639 }
1640 
1641 // Shrink V so it's just big enough to maintain a VT's worth of data.
1642 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1643                                          const RISCVSubtarget &Subtarget) {
1644   assert(VT.isFixedLengthVector() &&
1645          "Expected to convert into a fixed length vector!");
1646   assert(V.getValueType().isScalableVector() &&
1647          "Expected a scalable vector operand!");
1648   SDLoc DL(V);
1649   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1650   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1651 }
1652 
1653 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1654 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1655 // the vector type that it is contained in.
1656 static std::pair<SDValue, SDValue>
1657 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1658                 const RISCVSubtarget &Subtarget) {
1659   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1660   MVT XLenVT = Subtarget.getXLenVT();
1661   SDValue VL = VecVT.isFixedLengthVector()
1662                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1663                    : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT);
1664   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1665   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1666   return {Mask, VL};
1667 }
1668 
1669 // As above but assuming the given type is a scalable vector type.
1670 static std::pair<SDValue, SDValue>
1671 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1672                         const RISCVSubtarget &Subtarget) {
1673   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1674   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1675 }
1676 
1677 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1678 // of either is (currently) supported. This can get us into an infinite loop
1679 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1680 // as a ..., etc.
1681 // Until either (or both) of these can reliably lower any node, reporting that
1682 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1683 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1684 // which is not desirable.
1685 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1686     EVT VT, unsigned DefinedValues) const {
1687   return false;
1688 }
1689 
1690 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1691   // Only splats are currently supported.
1692   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1693     return true;
1694 
1695   return false;
1696 }
1697 
1698 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1699                                   const RISCVSubtarget &Subtarget) {
1700   // RISCV FP-to-int conversions saturate to the destination register size, but
1701   // don't produce 0 for nan. We can use a conversion instruction and fix the
1702   // nan case with a compare and a select.
1703   SDValue Src = Op.getOperand(0);
1704 
1705   EVT DstVT = Op.getValueType();
1706   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1707 
1708   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1709   unsigned Opc;
1710   if (SatVT == DstVT)
1711     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1712   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1713     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1714   else
1715     return SDValue();
1716   // FIXME: Support other SatVTs by clamping before or after the conversion.
1717 
1718   SDLoc DL(Op);
1719   SDValue FpToInt = DAG.getNode(
1720       Opc, DL, DstVT, Src,
1721       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1722 
1723   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1724   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1725 }
1726 
1727 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1728 // and back. Taking care to avoid converting values that are nan or already
1729 // correct.
1730 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1731 // have FRM dependencies modeled yet.
1732 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1733   MVT VT = Op.getSimpleValueType();
1734   assert(VT.isVector() && "Unexpected type");
1735 
1736   SDLoc DL(Op);
1737 
1738   // Freeze the source since we are increasing the number of uses.
1739   SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0));
1740 
1741   // Truncate to integer and convert back to FP.
1742   MVT IntVT = VT.changeVectorElementTypeToInteger();
1743   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1744   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1745 
1746   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1747 
1748   if (Op.getOpcode() == ISD::FCEIL) {
1749     // If the truncated value is the greater than or equal to the original
1750     // value, we've computed the ceil. Otherwise, we went the wrong way and
1751     // need to increase by 1.
1752     // FIXME: This should use a masked operation. Handle here or in isel?
1753     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1754                                  DAG.getConstantFP(1.0, DL, VT));
1755     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1756     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1757   } else if (Op.getOpcode() == ISD::FFLOOR) {
1758     // If the truncated value is the less than or equal to the original value,
1759     // we've computed the floor. Otherwise, we went the wrong way and need to
1760     // decrease by 1.
1761     // FIXME: This should use a masked operation. Handle here or in isel?
1762     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1763                                  DAG.getConstantFP(1.0, DL, VT));
1764     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1765     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1766   }
1767 
1768   // Restore the original sign so that -0.0 is preserved.
1769   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1770 
1771   // Determine the largest integer that can be represented exactly. This and
1772   // values larger than it don't have any fractional bits so don't need to
1773   // be converted.
1774   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1775   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1776   APFloat MaxVal = APFloat(FltSem);
1777   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1778                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1779   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1780 
1781   // If abs(Src) was larger than MaxVal or nan, keep it.
1782   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1783   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1784   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1785 }
1786 
1787 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1788                                  const RISCVSubtarget &Subtarget) {
1789   MVT VT = Op.getSimpleValueType();
1790   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1791 
1792   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1793 
1794   SDLoc DL(Op);
1795   SDValue Mask, VL;
1796   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1797 
1798   unsigned Opc =
1799       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1800   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1801   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1802 }
1803 
1804 struct VIDSequence {
1805   int64_t StepNumerator;
1806   unsigned StepDenominator;
1807   int64_t Addend;
1808 };
1809 
1810 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1811 // to the (non-zero) step S and start value X. This can be then lowered as the
1812 // RVV sequence (VID * S) + X, for example.
1813 // The step S is represented as an integer numerator divided by a positive
1814 // denominator. Note that the implementation currently only identifies
1815 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1816 // cannot detect 2/3, for example.
1817 // Note that this method will also match potentially unappealing index
1818 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1819 // determine whether this is worth generating code for.
1820 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1821   unsigned NumElts = Op.getNumOperands();
1822   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1823   if (!Op.getValueType().isInteger())
1824     return None;
1825 
1826   Optional<unsigned> SeqStepDenom;
1827   Optional<int64_t> SeqStepNum, SeqAddend;
1828   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1829   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1830   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1831     // Assume undef elements match the sequence; we just have to be careful
1832     // when interpolating across them.
1833     if (Op.getOperand(Idx).isUndef())
1834       continue;
1835     // The BUILD_VECTOR must be all constants.
1836     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1837       return None;
1838 
1839     uint64_t Val = Op.getConstantOperandVal(Idx) &
1840                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1841 
1842     if (PrevElt) {
1843       // Calculate the step since the last non-undef element, and ensure
1844       // it's consistent across the entire sequence.
1845       unsigned IdxDiff = Idx - PrevElt->second;
1846       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1847 
1848       // A zero-value value difference means that we're somewhere in the middle
1849       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1850       // step change before evaluating the sequence.
1851       if (ValDiff != 0) {
1852         int64_t Remainder = ValDiff % IdxDiff;
1853         // Normalize the step if it's greater than 1.
1854         if (Remainder != ValDiff) {
1855           // The difference must cleanly divide the element span.
1856           if (Remainder != 0)
1857             return None;
1858           ValDiff /= IdxDiff;
1859           IdxDiff = 1;
1860         }
1861 
1862         if (!SeqStepNum)
1863           SeqStepNum = ValDiff;
1864         else if (ValDiff != SeqStepNum)
1865           return None;
1866 
1867         if (!SeqStepDenom)
1868           SeqStepDenom = IdxDiff;
1869         else if (IdxDiff != *SeqStepDenom)
1870           return None;
1871       }
1872     }
1873 
1874     // Record and/or check any addend.
1875     if (SeqStepNum && SeqStepDenom) {
1876       uint64_t ExpectedVal =
1877           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1878       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1879       if (!SeqAddend)
1880         SeqAddend = Addend;
1881       else if (SeqAddend != Addend)
1882         return None;
1883     }
1884 
1885     // Record this non-undef element for later.
1886     if (!PrevElt || PrevElt->first != Val)
1887       PrevElt = std::make_pair(Val, Idx);
1888   }
1889   // We need to have logged both a step and an addend for this to count as
1890   // a legal index sequence.
1891   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1892     return None;
1893 
1894   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1895 }
1896 
1897 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1898                                  const RISCVSubtarget &Subtarget) {
1899   MVT VT = Op.getSimpleValueType();
1900   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1901 
1902   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1903 
1904   SDLoc DL(Op);
1905   SDValue Mask, VL;
1906   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1907 
1908   MVT XLenVT = Subtarget.getXLenVT();
1909   unsigned NumElts = Op.getNumOperands();
1910 
1911   if (VT.getVectorElementType() == MVT::i1) {
1912     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1913       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1914       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1915     }
1916 
1917     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1918       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1919       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1920     }
1921 
1922     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1923     // scalar integer chunks whose bit-width depends on the number of mask
1924     // bits and XLEN.
1925     // First, determine the most appropriate scalar integer type to use. This
1926     // is at most XLenVT, but may be shrunk to a smaller vector element type
1927     // according to the size of the final vector - use i8 chunks rather than
1928     // XLenVT if we're producing a v8i1. This results in more consistent
1929     // codegen across RV32 and RV64.
1930     unsigned NumViaIntegerBits =
1931         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1932     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1933       // If we have to use more than one INSERT_VECTOR_ELT then this
1934       // optimization is likely to increase code size; avoid peforming it in
1935       // such a case. We can use a load from a constant pool in this case.
1936       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1937         return SDValue();
1938       // Now we can create our integer vector type. Note that it may be larger
1939       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1940       MVT IntegerViaVecVT =
1941           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1942                            divideCeil(NumElts, NumViaIntegerBits));
1943 
1944       uint64_t Bits = 0;
1945       unsigned BitPos = 0, IntegerEltIdx = 0;
1946       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1947 
1948       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1949         // Once we accumulate enough bits to fill our scalar type, insert into
1950         // our vector and clear our accumulated data.
1951         if (I != 0 && I % NumViaIntegerBits == 0) {
1952           if (NumViaIntegerBits <= 32)
1953             Bits = SignExtend64(Bits, 32);
1954           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1955           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1956                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1957           Bits = 0;
1958           BitPos = 0;
1959           IntegerEltIdx++;
1960         }
1961         SDValue V = Op.getOperand(I);
1962         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1963         Bits |= ((uint64_t)BitValue << BitPos);
1964       }
1965 
1966       // Insert the (remaining) scalar value into position in our integer
1967       // vector type.
1968       if (NumViaIntegerBits <= 32)
1969         Bits = SignExtend64(Bits, 32);
1970       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1971       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1972                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1973 
1974       if (NumElts < NumViaIntegerBits) {
1975         // If we're producing a smaller vector than our minimum legal integer
1976         // type, bitcast to the equivalent (known-legal) mask type, and extract
1977         // our final mask.
1978         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1979         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1980         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1981                           DAG.getConstant(0, DL, XLenVT));
1982       } else {
1983         // Else we must have produced an integer type with the same size as the
1984         // mask type; bitcast for the final result.
1985         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1986         Vec = DAG.getBitcast(VT, Vec);
1987       }
1988 
1989       return Vec;
1990     }
1991 
1992     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1993     // vector type, we have a legal equivalently-sized i8 type, so we can use
1994     // that.
1995     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
1996     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
1997 
1998     SDValue WideVec;
1999     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2000       // For a splat, perform a scalar truncate before creating the wider
2001       // vector.
2002       assert(Splat.getValueType() == XLenVT &&
2003              "Unexpected type for i1 splat value");
2004       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2005                           DAG.getConstant(1, DL, XLenVT));
2006       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2007     } else {
2008       SmallVector<SDValue, 8> Ops(Op->op_values());
2009       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2010       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2011       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2012     }
2013 
2014     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2015   }
2016 
2017   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2018     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2019                                         : RISCVISD::VMV_V_X_VL;
2020     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
2021     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2022   }
2023 
2024   // Try and match index sequences, which we can lower to the vid instruction
2025   // with optional modifications. An all-undef vector is matched by
2026   // getSplatValue, above.
2027   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2028     int64_t StepNumerator = SimpleVID->StepNumerator;
2029     unsigned StepDenominator = SimpleVID->StepDenominator;
2030     int64_t Addend = SimpleVID->Addend;
2031 
2032     assert(StepNumerator != 0 && "Invalid step");
2033     bool Negate = false;
2034     int64_t SplatStepVal = StepNumerator;
2035     unsigned StepOpcode = ISD::MUL;
2036     if (StepNumerator != 1) {
2037       if (isPowerOf2_64(std::abs(StepNumerator))) {
2038         Negate = StepNumerator < 0;
2039         StepOpcode = ISD::SHL;
2040         SplatStepVal = Log2_64(std::abs(StepNumerator));
2041       }
2042     }
2043 
2044     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2045     // threshold since it's the immediate value many RVV instructions accept.
2046     // There is no vmul.vi instruction so ensure multiply constant can fit in
2047     // a single addi instruction.
2048     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2049          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2050         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2051       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2052       // Convert right out of the scalable type so we can use standard ISD
2053       // nodes for the rest of the computation. If we used scalable types with
2054       // these, we'd lose the fixed-length vector info and generate worse
2055       // vsetvli code.
2056       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2057       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2058           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2059         SDValue SplatStep = DAG.getSplatVector(
2060             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2061         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2062       }
2063       if (StepDenominator != 1) {
2064         SDValue SplatStep = DAG.getSplatVector(
2065             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2066         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2067       }
2068       if (Addend != 0 || Negate) {
2069         SDValue SplatAddend =
2070             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2071         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2072       }
2073       return VID;
2074     }
2075   }
2076 
2077   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2078   // when re-interpreted as a vector with a larger element type. For example,
2079   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2080   // could be instead splat as
2081   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2082   // TODO: This optimization could also work on non-constant splats, but it
2083   // would require bit-manipulation instructions to construct the splat value.
2084   SmallVector<SDValue> Sequence;
2085   unsigned EltBitSize = VT.getScalarSizeInBits();
2086   const auto *BV = cast<BuildVectorSDNode>(Op);
2087   if (VT.isInteger() && EltBitSize < 64 &&
2088       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2089       BV->getRepeatedSequence(Sequence) &&
2090       (Sequence.size() * EltBitSize) <= 64) {
2091     unsigned SeqLen = Sequence.size();
2092     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2093     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2094     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2095             ViaIntVT == MVT::i64) &&
2096            "Unexpected sequence type");
2097 
2098     unsigned EltIdx = 0;
2099     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2100     uint64_t SplatValue = 0;
2101     // Construct the amalgamated value which can be splatted as this larger
2102     // vector type.
2103     for (const auto &SeqV : Sequence) {
2104       if (!SeqV.isUndef())
2105         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2106                        << (EltIdx * EltBitSize));
2107       EltIdx++;
2108     }
2109 
2110     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2111     // achieve better constant materializion.
2112     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2113       SplatValue = SignExtend64(SplatValue, 32);
2114 
2115     // Since we can't introduce illegal i64 types at this stage, we can only
2116     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2117     // way we can use RVV instructions to splat.
2118     assert((ViaIntVT.bitsLE(XLenVT) ||
2119             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2120            "Unexpected bitcast sequence");
2121     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2122       SDValue ViaVL =
2123           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2124       MVT ViaContainerVT =
2125           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2126       SDValue Splat =
2127           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2128                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2129       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2130       return DAG.getBitcast(VT, Splat);
2131     }
2132   }
2133 
2134   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2135   // which constitute a large proportion of the elements. In such cases we can
2136   // splat a vector with the dominant element and make up the shortfall with
2137   // INSERT_VECTOR_ELTs.
2138   // Note that this includes vectors of 2 elements by association. The
2139   // upper-most element is the "dominant" one, allowing us to use a splat to
2140   // "insert" the upper element, and an insert of the lower element at position
2141   // 0, which improves codegen.
2142   SDValue DominantValue;
2143   unsigned MostCommonCount = 0;
2144   DenseMap<SDValue, unsigned> ValueCounts;
2145   unsigned NumUndefElts =
2146       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2147 
2148   // Track the number of scalar loads we know we'd be inserting, estimated as
2149   // any non-zero floating-point constant. Other kinds of element are either
2150   // already in registers or are materialized on demand. The threshold at which
2151   // a vector load is more desirable than several scalar materializion and
2152   // vector-insertion instructions is not known.
2153   unsigned NumScalarLoads = 0;
2154 
2155   for (SDValue V : Op->op_values()) {
2156     if (V.isUndef())
2157       continue;
2158 
2159     ValueCounts.insert(std::make_pair(V, 0));
2160     unsigned &Count = ValueCounts[V];
2161 
2162     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2163       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2164 
2165     // Is this value dominant? In case of a tie, prefer the highest element as
2166     // it's cheaper to insert near the beginning of a vector than it is at the
2167     // end.
2168     if (++Count >= MostCommonCount) {
2169       DominantValue = V;
2170       MostCommonCount = Count;
2171     }
2172   }
2173 
2174   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2175   unsigned NumDefElts = NumElts - NumUndefElts;
2176   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2177 
2178   // Don't perform this optimization when optimizing for size, since
2179   // materializing elements and inserting them tends to cause code bloat.
2180   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2181       ((MostCommonCount > DominantValueCountThreshold) ||
2182        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2183     // Start by splatting the most common element.
2184     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2185 
2186     DenseSet<SDValue> Processed{DominantValue};
2187     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2188     for (const auto &OpIdx : enumerate(Op->ops())) {
2189       const SDValue &V = OpIdx.value();
2190       if (V.isUndef() || !Processed.insert(V).second)
2191         continue;
2192       if (ValueCounts[V] == 1) {
2193         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2194                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2195       } else {
2196         // Blend in all instances of this value using a VSELECT, using a
2197         // mask where each bit signals whether that element is the one
2198         // we're after.
2199         SmallVector<SDValue> Ops;
2200         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2201           return DAG.getConstant(V == V1, DL, XLenVT);
2202         });
2203         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2204                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2205                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2206       }
2207     }
2208 
2209     return Vec;
2210   }
2211 
2212   return SDValue();
2213 }
2214 
2215 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
2216                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
2217   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2218     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2219     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2220     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2221     // node in order to try and match RVV vector/scalar instructions.
2222     if ((LoC >> 31) == HiC)
2223       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
2224   }
2225 
2226   // Fall back to a stack store and stride x0 vector load.
2227   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
2228 }
2229 
2230 // Called by type legalization to handle splat of i64 on RV32.
2231 // FIXME: We can optimize this when the type has sign or zero bits in one
2232 // of the halves.
2233 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
2234                                    SDValue VL, SelectionDAG &DAG) {
2235   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2236   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2237                            DAG.getConstant(0, DL, MVT::i32));
2238   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2239                            DAG.getConstant(1, DL, MVT::i32));
2240   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
2241 }
2242 
2243 // This function lowers a splat of a scalar operand Splat with the vector
2244 // length VL. It ensures the final sequence is type legal, which is useful when
2245 // lowering a splat after type legalization.
2246 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
2247                                 SelectionDAG &DAG,
2248                                 const RISCVSubtarget &Subtarget) {
2249   if (VT.isFloatingPoint()) {
2250     // If VL is 1, we could use vfmv.s.f.
2251     if (isOneConstant(VL))
2252       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT),
2253                          Scalar, VL);
2254     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
2255   }
2256 
2257   MVT XLenVT = Subtarget.getXLenVT();
2258 
2259   // Simplest case is that the operand needs to be promoted to XLenVT.
2260   if (Scalar.getValueType().bitsLE(XLenVT)) {
2261     // If the operand is a constant, sign extend to increase our chances
2262     // of being able to use a .vi instruction. ANY_EXTEND would become a
2263     // a zero extend and the simm5 check in isel would fail.
2264     // FIXME: Should we ignore the upper bits in isel instead?
2265     unsigned ExtOpc =
2266         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2267     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2268     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2269     // If VL is 1 and the scalar value won't benefit from immediate, we could
2270     // use vmv.s.x.
2271     if (isOneConstant(VL) &&
2272         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2273       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar,
2274                          VL);
2275     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
2276   }
2277 
2278   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2279          "Unexpected scalar for splat lowering!");
2280 
2281   if (isOneConstant(VL) && isNullConstant(Scalar))
2282     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT),
2283                        DAG.getConstant(0, DL, XLenVT), VL);
2284 
2285   // Otherwise use the more complicated splatting algorithm.
2286   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
2287 }
2288 
2289 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2290                                    const RISCVSubtarget &Subtarget) {
2291   SDValue V1 = Op.getOperand(0);
2292   SDValue V2 = Op.getOperand(1);
2293   SDLoc DL(Op);
2294   MVT XLenVT = Subtarget.getXLenVT();
2295   MVT VT = Op.getSimpleValueType();
2296   unsigned NumElts = VT.getVectorNumElements();
2297   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2298 
2299   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2300 
2301   SDValue TrueMask, VL;
2302   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2303 
2304   if (SVN->isSplat()) {
2305     const int Lane = SVN->getSplatIndex();
2306     if (Lane >= 0) {
2307       MVT SVT = VT.getVectorElementType();
2308 
2309       // Turn splatted vector load into a strided load with an X0 stride.
2310       SDValue V = V1;
2311       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2312       // with undef.
2313       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2314       int Offset = Lane;
2315       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2316         int OpElements =
2317             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2318         V = V.getOperand(Offset / OpElements);
2319         Offset %= OpElements;
2320       }
2321 
2322       // We need to ensure the load isn't atomic or volatile.
2323       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2324         auto *Ld = cast<LoadSDNode>(V);
2325         Offset *= SVT.getStoreSize();
2326         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2327                                                    TypeSize::Fixed(Offset), DL);
2328 
2329         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2330         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2331           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2332           SDValue IntID =
2333               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2334           SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
2335                            DAG.getRegister(RISCV::X0, XLenVT), VL};
2336           SDValue NewLoad = DAG.getMemIntrinsicNode(
2337               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2338               DAG.getMachineFunction().getMachineMemOperand(
2339                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2340           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2341           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2342         }
2343 
2344         // Otherwise use a scalar load and splat. This will give the best
2345         // opportunity to fold a splat into the operation. ISel can turn it into
2346         // the x0 strided load if we aren't able to fold away the select.
2347         if (SVT.isFloatingPoint())
2348           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2349                           Ld->getPointerInfo().getWithOffset(Offset),
2350                           Ld->getOriginalAlign(),
2351                           Ld->getMemOperand()->getFlags());
2352         else
2353           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2354                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2355                              Ld->getOriginalAlign(),
2356                              Ld->getMemOperand()->getFlags());
2357         DAG.makeEquivalentMemoryOrdering(Ld, V);
2358 
2359         unsigned Opc =
2360             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2361         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
2362         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2363       }
2364 
2365       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2366       assert(Lane < (int)NumElts && "Unexpected lane!");
2367       SDValue Gather =
2368           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2369                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2370       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2371     }
2372   }
2373 
2374   // Detect shuffles which can be re-expressed as vector selects; these are
2375   // shuffles in which each element in the destination is taken from an element
2376   // at the corresponding index in either source vectors.
2377   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
2378     int MaskIndex = MaskIdx.value();
2379     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2380   });
2381 
2382   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2383 
2384   SmallVector<SDValue> MaskVals;
2385   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2386   // merged with a second vrgather.
2387   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2388 
2389   // By default we preserve the original operand order, and use a mask to
2390   // select LHS as true and RHS as false. However, since RVV vector selects may
2391   // feature splats but only on the LHS, we may choose to invert our mask and
2392   // instead select between RHS and LHS.
2393   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2394   bool InvertMask = IsSelect == SwapOps;
2395 
2396   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2397   // half.
2398   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2399 
2400   // Now construct the mask that will be used by the vselect or blended
2401   // vrgather operation. For vrgathers, construct the appropriate indices into
2402   // each vector.
2403   for (int MaskIndex : SVN->getMask()) {
2404     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2405     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2406     if (!IsSelect) {
2407       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2408       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2409                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2410                                      : DAG.getUNDEF(XLenVT));
2411       GatherIndicesRHS.push_back(
2412           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2413                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2414       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2415         ++LHSIndexCounts[MaskIndex];
2416       if (!IsLHSOrUndefIndex)
2417         ++RHSIndexCounts[MaskIndex - NumElts];
2418     }
2419   }
2420 
2421   if (SwapOps) {
2422     std::swap(V1, V2);
2423     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2424   }
2425 
2426   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2427   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2428   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2429 
2430   if (IsSelect)
2431     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2432 
2433   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2434     // On such a large vector we're unable to use i8 as the index type.
2435     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2436     // may involve vector splitting if we're already at LMUL=8, or our
2437     // user-supplied maximum fixed-length LMUL.
2438     return SDValue();
2439   }
2440 
2441   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2442   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2443   MVT IndexVT = VT.changeTypeToInteger();
2444   // Since we can't introduce illegal index types at this stage, use i16 and
2445   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2446   // than XLenVT.
2447   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2448     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2449     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2450   }
2451 
2452   MVT IndexContainerVT =
2453       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2454 
2455   SDValue Gather;
2456   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2457   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2458   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2459     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
2460   } else {
2461     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2462     // If only one index is used, we can use a "splat" vrgather.
2463     // TODO: We can splat the most-common index and fix-up any stragglers, if
2464     // that's beneficial.
2465     if (LHSIndexCounts.size() == 1) {
2466       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2467       Gather =
2468           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2469                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2470     } else {
2471       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2472       LHSIndices =
2473           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2474 
2475       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2476                            TrueMask, VL);
2477     }
2478   }
2479 
2480   // If a second vector operand is used by this shuffle, blend it in with an
2481   // additional vrgather.
2482   if (!V2.isUndef()) {
2483     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2484     // If only one index is used, we can use a "splat" vrgather.
2485     // TODO: We can splat the most-common index and fix-up any stragglers, if
2486     // that's beneficial.
2487     if (RHSIndexCounts.size() == 1) {
2488       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2489       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2490                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2491     } else {
2492       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2493       RHSIndices =
2494           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2495       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2496                        VL);
2497     }
2498 
2499     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2500     SelectMask =
2501         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2502 
2503     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2504                          Gather, VL);
2505   }
2506 
2507   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2508 }
2509 
2510 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2511                                      SDLoc DL, SelectionDAG &DAG,
2512                                      const RISCVSubtarget &Subtarget) {
2513   if (VT.isScalableVector())
2514     return DAG.getFPExtendOrRound(Op, DL, VT);
2515   assert(VT.isFixedLengthVector() &&
2516          "Unexpected value type for RVV FP extend/round lowering");
2517   SDValue Mask, VL;
2518   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2519   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2520                         ? RISCVISD::FP_EXTEND_VL
2521                         : RISCVISD::FP_ROUND_VL;
2522   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2523 }
2524 
2525 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2526 // the exponent.
2527 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2528   MVT VT = Op.getSimpleValueType();
2529   unsigned EltSize = VT.getScalarSizeInBits();
2530   SDValue Src = Op.getOperand(0);
2531   SDLoc DL(Op);
2532 
2533   // We need a FP type that can represent the value.
2534   // TODO: Use f16 for i8 when possible?
2535   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2536   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2537 
2538   // Legal types should have been checked in the RISCVTargetLowering
2539   // constructor.
2540   // TODO: Splitting may make sense in some cases.
2541   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2542          "Expected legal float type!");
2543 
2544   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2545   // The trailing zero count is equal to log2 of this single bit value.
2546   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2547     SDValue Neg =
2548         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2549     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2550   }
2551 
2552   // We have a legal FP type, convert to it.
2553   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2554   // Bitcast to integer and shift the exponent to the LSB.
2555   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2556   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2557   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2558   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2559                               DAG.getConstant(ShiftAmt, DL, IntVT));
2560   // Truncate back to original type to allow vnsrl.
2561   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2562   // The exponent contains log2 of the value in biased form.
2563   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2564 
2565   // For trailing zeros, we just need to subtract the bias.
2566   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2567     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2568                        DAG.getConstant(ExponentBias, DL, VT));
2569 
2570   // For leading zeros, we need to remove the bias and convert from log2 to
2571   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2572   unsigned Adjust = ExponentBias + (EltSize - 1);
2573   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2574 }
2575 
2576 // While RVV has alignment restrictions, we should always be able to load as a
2577 // legal equivalently-sized byte-typed vector instead. This method is
2578 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2579 // the load is already correctly-aligned, it returns SDValue().
2580 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2581                                                     SelectionDAG &DAG) const {
2582   auto *Load = cast<LoadSDNode>(Op);
2583   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2584 
2585   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2586                                      Load->getMemoryVT(),
2587                                      *Load->getMemOperand()))
2588     return SDValue();
2589 
2590   SDLoc DL(Op);
2591   MVT VT = Op.getSimpleValueType();
2592   unsigned EltSizeBits = VT.getScalarSizeInBits();
2593   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2594          "Unexpected unaligned RVV load type");
2595   MVT NewVT =
2596       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2597   assert(NewVT.isValid() &&
2598          "Expecting equally-sized RVV vector types to be legal");
2599   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2600                           Load->getPointerInfo(), Load->getOriginalAlign(),
2601                           Load->getMemOperand()->getFlags());
2602   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2603 }
2604 
2605 // While RVV has alignment restrictions, we should always be able to store as a
2606 // legal equivalently-sized byte-typed vector instead. This method is
2607 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2608 // returns SDValue() if the store is already correctly aligned.
2609 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2610                                                      SelectionDAG &DAG) const {
2611   auto *Store = cast<StoreSDNode>(Op);
2612   assert(Store && Store->getValue().getValueType().isVector() &&
2613          "Expected vector store");
2614 
2615   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2616                                      Store->getMemoryVT(),
2617                                      *Store->getMemOperand()))
2618     return SDValue();
2619 
2620   SDLoc DL(Op);
2621   SDValue StoredVal = Store->getValue();
2622   MVT VT = StoredVal.getSimpleValueType();
2623   unsigned EltSizeBits = VT.getScalarSizeInBits();
2624   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2625          "Unexpected unaligned RVV store type");
2626   MVT NewVT =
2627       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2628   assert(NewVT.isValid() &&
2629          "Expecting equally-sized RVV vector types to be legal");
2630   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2631   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2632                       Store->getPointerInfo(), Store->getOriginalAlign(),
2633                       Store->getMemOperand()->getFlags());
2634 }
2635 
2636 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2637                                             SelectionDAG &DAG) const {
2638   switch (Op.getOpcode()) {
2639   default:
2640     report_fatal_error("unimplemented operand");
2641   case ISD::GlobalAddress:
2642     return lowerGlobalAddress(Op, DAG);
2643   case ISD::BlockAddress:
2644     return lowerBlockAddress(Op, DAG);
2645   case ISD::ConstantPool:
2646     return lowerConstantPool(Op, DAG);
2647   case ISD::JumpTable:
2648     return lowerJumpTable(Op, DAG);
2649   case ISD::GlobalTLSAddress:
2650     return lowerGlobalTLSAddress(Op, DAG);
2651   case ISD::SELECT:
2652     return lowerSELECT(Op, DAG);
2653   case ISD::BRCOND:
2654     return lowerBRCOND(Op, DAG);
2655   case ISD::VASTART:
2656     return lowerVASTART(Op, DAG);
2657   case ISD::FRAMEADDR:
2658     return lowerFRAMEADDR(Op, DAG);
2659   case ISD::RETURNADDR:
2660     return lowerRETURNADDR(Op, DAG);
2661   case ISD::SHL_PARTS:
2662     return lowerShiftLeftParts(Op, DAG);
2663   case ISD::SRA_PARTS:
2664     return lowerShiftRightParts(Op, DAG, true);
2665   case ISD::SRL_PARTS:
2666     return lowerShiftRightParts(Op, DAG, false);
2667   case ISD::BITCAST: {
2668     SDLoc DL(Op);
2669     EVT VT = Op.getValueType();
2670     SDValue Op0 = Op.getOperand(0);
2671     EVT Op0VT = Op0.getValueType();
2672     MVT XLenVT = Subtarget.getXLenVT();
2673     if (VT.isFixedLengthVector()) {
2674       // We can handle fixed length vector bitcasts with a simple replacement
2675       // in isel.
2676       if (Op0VT.isFixedLengthVector())
2677         return Op;
2678       // When bitcasting from scalar to fixed-length vector, insert the scalar
2679       // into a one-element vector of the result type, and perform a vector
2680       // bitcast.
2681       if (!Op0VT.isVector()) {
2682         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2683         if (!isTypeLegal(BVT))
2684           return SDValue();
2685         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2686                                               DAG.getUNDEF(BVT), Op0,
2687                                               DAG.getConstant(0, DL, XLenVT)));
2688       }
2689       return SDValue();
2690     }
2691     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2692     // thus: bitcast the vector to a one-element vector type whose element type
2693     // is the same as the result type, and extract the first element.
2694     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2695       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
2696       if (!isTypeLegal(BVT))
2697         return SDValue();
2698       SDValue BVec = DAG.getBitcast(BVT, Op0);
2699       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2700                          DAG.getConstant(0, DL, XLenVT));
2701     }
2702     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2703       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2704       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2705       return FPConv;
2706     }
2707     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2708         Subtarget.hasStdExtF()) {
2709       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2710       SDValue FPConv =
2711           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2712       return FPConv;
2713     }
2714     return SDValue();
2715   }
2716   case ISD::INTRINSIC_WO_CHAIN:
2717     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2718   case ISD::INTRINSIC_W_CHAIN:
2719     return LowerINTRINSIC_W_CHAIN(Op, DAG);
2720   case ISD::INTRINSIC_VOID:
2721     return LowerINTRINSIC_VOID(Op, DAG);
2722   case ISD::BSWAP:
2723   case ISD::BITREVERSE: {
2724     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
2725     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
2726     MVT VT = Op.getSimpleValueType();
2727     SDLoc DL(Op);
2728     // Start with the maximum immediate value which is the bitwidth - 1.
2729     unsigned Imm = VT.getSizeInBits() - 1;
2730     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2731     if (Op.getOpcode() == ISD::BSWAP)
2732       Imm &= ~0x7U;
2733     return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
2734                        DAG.getConstant(Imm, DL, VT));
2735   }
2736   case ISD::FSHL:
2737   case ISD::FSHR: {
2738     MVT VT = Op.getSimpleValueType();
2739     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
2740     SDLoc DL(Op);
2741     if (Op.getOperand(2).getOpcode() == ISD::Constant)
2742       return Op;
2743     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2744     // use log(XLen) bits. Mask the shift amount accordingly.
2745     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
2746     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
2747                                 DAG.getConstant(ShAmtWidth, DL, VT));
2748     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
2749     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
2750   }
2751   case ISD::TRUNCATE: {
2752     SDLoc DL(Op);
2753     MVT VT = Op.getSimpleValueType();
2754     // Only custom-lower vector truncates
2755     if (!VT.isVector())
2756       return Op;
2757 
2758     // Truncates to mask types are handled differently
2759     if (VT.getVectorElementType() == MVT::i1)
2760       return lowerVectorMaskTrunc(Op, DAG);
2761 
2762     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2763     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2764     // truncate by one power of two at a time.
2765     MVT DstEltVT = VT.getVectorElementType();
2766 
2767     SDValue Src = Op.getOperand(0);
2768     MVT SrcVT = Src.getSimpleValueType();
2769     MVT SrcEltVT = SrcVT.getVectorElementType();
2770 
2771     assert(DstEltVT.bitsLT(SrcEltVT) &&
2772            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
2773            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
2774            "Unexpected vector truncate lowering");
2775 
2776     MVT ContainerVT = SrcVT;
2777     if (SrcVT.isFixedLengthVector()) {
2778       ContainerVT = getContainerForFixedLengthVector(SrcVT);
2779       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2780     }
2781 
2782     SDValue Result = Src;
2783     SDValue Mask, VL;
2784     std::tie(Mask, VL) =
2785         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
2786     LLVMContext &Context = *DAG.getContext();
2787     const ElementCount Count = ContainerVT.getVectorElementCount();
2788     do {
2789       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
2790       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
2791       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
2792                            Mask, VL);
2793     } while (SrcEltVT != DstEltVT);
2794 
2795     if (SrcVT.isFixedLengthVector())
2796       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
2797 
2798     return Result;
2799   }
2800   case ISD::ANY_EXTEND:
2801   case ISD::ZERO_EXTEND:
2802     if (Op.getOperand(0).getValueType().isVector() &&
2803         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2804       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2805     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2806   case ISD::SIGN_EXTEND:
2807     if (Op.getOperand(0).getValueType().isVector() &&
2808         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2809       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2810     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2811   case ISD::SPLAT_VECTOR_PARTS:
2812     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2813   case ISD::INSERT_VECTOR_ELT:
2814     return lowerINSERT_VECTOR_ELT(Op, DAG);
2815   case ISD::EXTRACT_VECTOR_ELT:
2816     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2817   case ISD::VSCALE: {
2818     MVT VT = Op.getSimpleValueType();
2819     SDLoc DL(Op);
2820     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2821     // We define our scalable vector types for lmul=1 to use a 64 bit known
2822     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2823     // vscale as VLENB / 8.
2824     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
2825     if (isa<ConstantSDNode>(Op.getOperand(0))) {
2826       // We assume VLENB is a multiple of 8. We manually choose the best shift
2827       // here because SimplifyDemandedBits isn't always able to simplify it.
2828       uint64_t Val = Op.getConstantOperandVal(0);
2829       if (isPowerOf2_64(Val)) {
2830         uint64_t Log2 = Log2_64(Val);
2831         if (Log2 < 3)
2832           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
2833                              DAG.getConstant(3 - Log2, DL, VT));
2834         if (Log2 > 3)
2835           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
2836                              DAG.getConstant(Log2 - 3, DL, VT));
2837         return VLENB;
2838       }
2839       // If the multiplier is a multiple of 8, scale it down to avoid needing
2840       // to shift the VLENB value.
2841       if ((Val % 8) == 0)
2842         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
2843                            DAG.getConstant(Val / 8, DL, VT));
2844     }
2845 
2846     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2847                                  DAG.getConstant(3, DL, VT));
2848     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2849   }
2850   case ISD::FPOWI: {
2851     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
2852     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
2853     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
2854         Op.getOperand(1).getValueType() == MVT::i32) {
2855       SDLoc DL(Op);
2856       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
2857       SDValue Powi =
2858           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
2859       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
2860                          DAG.getIntPtrConstant(0, DL));
2861     }
2862     return SDValue();
2863   }
2864   case ISD::FP_EXTEND: {
2865     // RVV can only do fp_extend to types double the size as the source. We
2866     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2867     // via f32.
2868     SDLoc DL(Op);
2869     MVT VT = Op.getSimpleValueType();
2870     SDValue Src = Op.getOperand(0);
2871     MVT SrcVT = Src.getSimpleValueType();
2872 
2873     // Prepare any fixed-length vector operands.
2874     MVT ContainerVT = VT;
2875     if (SrcVT.isFixedLengthVector()) {
2876       ContainerVT = getContainerForFixedLengthVector(VT);
2877       MVT SrcContainerVT =
2878           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2879       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2880     }
2881 
2882     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2883         SrcVT.getVectorElementType() != MVT::f16) {
2884       // For scalable vectors, we only need to close the gap between
2885       // vXf16->vXf64.
2886       if (!VT.isFixedLengthVector())
2887         return Op;
2888       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2889       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2890       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2891     }
2892 
2893     MVT InterVT = VT.changeVectorElementType(MVT::f32);
2894     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2895     SDValue IntermediateExtend = getRVVFPExtendOrRound(
2896         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2897 
2898     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2899                                            DL, DAG, Subtarget);
2900     if (VT.isFixedLengthVector())
2901       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2902     return Extend;
2903   }
2904   case ISD::FP_ROUND: {
2905     // RVV can only do fp_round to types half the size as the source. We
2906     // custom-lower f64->f16 rounds via RVV's round-to-odd float
2907     // conversion instruction.
2908     SDLoc DL(Op);
2909     MVT VT = Op.getSimpleValueType();
2910     SDValue Src = Op.getOperand(0);
2911     MVT SrcVT = Src.getSimpleValueType();
2912 
2913     // Prepare any fixed-length vector operands.
2914     MVT ContainerVT = VT;
2915     if (VT.isFixedLengthVector()) {
2916       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2917       ContainerVT =
2918           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2919       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2920     }
2921 
2922     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2923         SrcVT.getVectorElementType() != MVT::f64) {
2924       // For scalable vectors, we only need to close the gap between
2925       // vXf64<->vXf16.
2926       if (!VT.isFixedLengthVector())
2927         return Op;
2928       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2929       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2930       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2931     }
2932 
2933     SDValue Mask, VL;
2934     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2935 
2936     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2937     SDValue IntermediateRound =
2938         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2939     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2940                                           DL, DAG, Subtarget);
2941 
2942     if (VT.isFixedLengthVector())
2943       return convertFromScalableVector(VT, Round, DAG, Subtarget);
2944     return Round;
2945   }
2946   case ISD::FP_TO_SINT:
2947   case ISD::FP_TO_UINT:
2948   case ISD::SINT_TO_FP:
2949   case ISD::UINT_TO_FP: {
2950     // RVV can only do fp<->int conversions to types half/double the size as
2951     // the source. We custom-lower any conversions that do two hops into
2952     // sequences.
2953     MVT VT = Op.getSimpleValueType();
2954     if (!VT.isVector())
2955       return Op;
2956     SDLoc DL(Op);
2957     SDValue Src = Op.getOperand(0);
2958     MVT EltVT = VT.getVectorElementType();
2959     MVT SrcVT = Src.getSimpleValueType();
2960     MVT SrcEltVT = SrcVT.getVectorElementType();
2961     unsigned EltSize = EltVT.getSizeInBits();
2962     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2963     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2964            "Unexpected vector element types");
2965 
2966     bool IsInt2FP = SrcEltVT.isInteger();
2967     // Widening conversions
2968     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2969       if (IsInt2FP) {
2970         // Do a regular integer sign/zero extension then convert to float.
2971         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2972                                       VT.getVectorElementCount());
2973         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2974                                  ? ISD::ZERO_EXTEND
2975                                  : ISD::SIGN_EXTEND;
2976         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2977         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2978       }
2979       // FP2Int
2980       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2981       // Do one doubling fp_extend then complete the operation by converting
2982       // to int.
2983       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2984       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2985       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2986     }
2987 
2988     // Narrowing conversions
2989     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2990       if (IsInt2FP) {
2991         // One narrowing int_to_fp, then an fp_round.
2992         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2993         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2994         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2995         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2996       }
2997       // FP2Int
2998       // One narrowing fp_to_int, then truncate the integer. If the float isn't
2999       // representable by the integer, the result is poison.
3000       MVT IVecVT =
3001           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
3002                            VT.getVectorElementCount());
3003       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3004       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3005     }
3006 
3007     // Scalable vectors can exit here. Patterns will handle equally-sized
3008     // conversions halving/doubling ones.
3009     if (!VT.isFixedLengthVector())
3010       return Op;
3011 
3012     // For fixed-length vectors we lower to a custom "VL" node.
3013     unsigned RVVOpc = 0;
3014     switch (Op.getOpcode()) {
3015     default:
3016       llvm_unreachable("Impossible opcode");
3017     case ISD::FP_TO_SINT:
3018       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3019       break;
3020     case ISD::FP_TO_UINT:
3021       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3022       break;
3023     case ISD::SINT_TO_FP:
3024       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3025       break;
3026     case ISD::UINT_TO_FP:
3027       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3028       break;
3029     }
3030 
3031     MVT ContainerVT, SrcContainerVT;
3032     // Derive the reference container type from the larger vector type.
3033     if (SrcEltSize > EltSize) {
3034       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3035       ContainerVT =
3036           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3037     } else {
3038       ContainerVT = getContainerForFixedLengthVector(VT);
3039       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3040     }
3041 
3042     SDValue Mask, VL;
3043     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3044 
3045     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3046     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3047     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3048   }
3049   case ISD::FP_TO_SINT_SAT:
3050   case ISD::FP_TO_UINT_SAT:
3051     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3052   case ISD::FTRUNC:
3053   case ISD::FCEIL:
3054   case ISD::FFLOOR:
3055     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3056   case ISD::VECREDUCE_ADD:
3057   case ISD::VECREDUCE_UMAX:
3058   case ISD::VECREDUCE_SMAX:
3059   case ISD::VECREDUCE_UMIN:
3060   case ISD::VECREDUCE_SMIN:
3061     return lowerVECREDUCE(Op, DAG);
3062   case ISD::VECREDUCE_AND:
3063   case ISD::VECREDUCE_OR:
3064   case ISD::VECREDUCE_XOR:
3065     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3066       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3067     return lowerVECREDUCE(Op, DAG);
3068   case ISD::VECREDUCE_FADD:
3069   case ISD::VECREDUCE_SEQ_FADD:
3070   case ISD::VECREDUCE_FMIN:
3071   case ISD::VECREDUCE_FMAX:
3072     return lowerFPVECREDUCE(Op, DAG);
3073   case ISD::VP_REDUCE_ADD:
3074   case ISD::VP_REDUCE_UMAX:
3075   case ISD::VP_REDUCE_SMAX:
3076   case ISD::VP_REDUCE_UMIN:
3077   case ISD::VP_REDUCE_SMIN:
3078   case ISD::VP_REDUCE_FADD:
3079   case ISD::VP_REDUCE_SEQ_FADD:
3080   case ISD::VP_REDUCE_FMIN:
3081   case ISD::VP_REDUCE_FMAX:
3082     return lowerVPREDUCE(Op, DAG);
3083   case ISD::VP_REDUCE_AND:
3084   case ISD::VP_REDUCE_OR:
3085   case ISD::VP_REDUCE_XOR:
3086     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3087       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3088     return lowerVPREDUCE(Op, DAG);
3089   case ISD::INSERT_SUBVECTOR:
3090     return lowerINSERT_SUBVECTOR(Op, DAG);
3091   case ISD::EXTRACT_SUBVECTOR:
3092     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3093   case ISD::STEP_VECTOR:
3094     return lowerSTEP_VECTOR(Op, DAG);
3095   case ISD::VECTOR_REVERSE:
3096     return lowerVECTOR_REVERSE(Op, DAG);
3097   case ISD::BUILD_VECTOR:
3098     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3099   case ISD::SPLAT_VECTOR:
3100     if (Op.getValueType().getVectorElementType() == MVT::i1)
3101       return lowerVectorMaskSplat(Op, DAG);
3102     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
3103   case ISD::VECTOR_SHUFFLE:
3104     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3105   case ISD::CONCAT_VECTORS: {
3106     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3107     // better than going through the stack, as the default expansion does.
3108     SDLoc DL(Op);
3109     MVT VT = Op.getSimpleValueType();
3110     unsigned NumOpElts =
3111         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3112     SDValue Vec = DAG.getUNDEF(VT);
3113     for (const auto &OpIdx : enumerate(Op->ops()))
3114       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
3115                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3116     return Vec;
3117   }
3118   case ISD::LOAD:
3119     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3120       return V;
3121     if (Op.getValueType().isFixedLengthVector())
3122       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3123     return Op;
3124   case ISD::STORE:
3125     if (auto V = expandUnalignedRVVStore(Op, DAG))
3126       return V;
3127     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3128       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3129     return Op;
3130   case ISD::MLOAD:
3131   case ISD::VP_LOAD:
3132     return lowerMaskedLoad(Op, DAG);
3133   case ISD::MSTORE:
3134   case ISD::VP_STORE:
3135     return lowerMaskedStore(Op, DAG);
3136   case ISD::SETCC:
3137     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3138   case ISD::ADD:
3139     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3140   case ISD::SUB:
3141     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3142   case ISD::MUL:
3143     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3144   case ISD::MULHS:
3145     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3146   case ISD::MULHU:
3147     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3148   case ISD::AND:
3149     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3150                                               RISCVISD::AND_VL);
3151   case ISD::OR:
3152     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3153                                               RISCVISD::OR_VL);
3154   case ISD::XOR:
3155     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3156                                               RISCVISD::XOR_VL);
3157   case ISD::SDIV:
3158     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3159   case ISD::SREM:
3160     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3161   case ISD::UDIV:
3162     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3163   case ISD::UREM:
3164     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3165   case ISD::SHL:
3166   case ISD::SRA:
3167   case ISD::SRL:
3168     if (Op.getSimpleValueType().isFixedLengthVector())
3169       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3170     // This can be called for an i32 shift amount that needs to be promoted.
3171     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3172            "Unexpected custom legalisation");
3173     return SDValue();
3174   case ISD::SADDSAT:
3175     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3176   case ISD::UADDSAT:
3177     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3178   case ISD::SSUBSAT:
3179     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3180   case ISD::USUBSAT:
3181     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3182   case ISD::FADD:
3183     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3184   case ISD::FSUB:
3185     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3186   case ISD::FMUL:
3187     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3188   case ISD::FDIV:
3189     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3190   case ISD::FNEG:
3191     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3192   case ISD::FABS:
3193     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3194   case ISD::FSQRT:
3195     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3196   case ISD::FMA:
3197     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3198   case ISD::SMIN:
3199     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3200   case ISD::SMAX:
3201     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3202   case ISD::UMIN:
3203     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3204   case ISD::UMAX:
3205     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3206   case ISD::FMINNUM:
3207     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3208   case ISD::FMAXNUM:
3209     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3210   case ISD::ABS:
3211     return lowerABS(Op, DAG);
3212   case ISD::CTLZ_ZERO_UNDEF:
3213   case ISD::CTTZ_ZERO_UNDEF:
3214     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3215   case ISD::VSELECT:
3216     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3217   case ISD::FCOPYSIGN:
3218     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3219   case ISD::MGATHER:
3220   case ISD::VP_GATHER:
3221     return lowerMaskedGather(Op, DAG);
3222   case ISD::MSCATTER:
3223   case ISD::VP_SCATTER:
3224     return lowerMaskedScatter(Op, DAG);
3225   case ISD::FLT_ROUNDS_:
3226     return lowerGET_ROUNDING(Op, DAG);
3227   case ISD::SET_ROUNDING:
3228     return lowerSET_ROUNDING(Op, DAG);
3229   case ISD::VP_SELECT:
3230     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3231   case ISD::VP_ADD:
3232     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3233   case ISD::VP_SUB:
3234     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3235   case ISD::VP_MUL:
3236     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3237   case ISD::VP_SDIV:
3238     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3239   case ISD::VP_UDIV:
3240     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3241   case ISD::VP_SREM:
3242     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3243   case ISD::VP_UREM:
3244     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3245   case ISD::VP_AND:
3246     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3247   case ISD::VP_OR:
3248     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3249   case ISD::VP_XOR:
3250     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3251   case ISD::VP_ASHR:
3252     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3253   case ISD::VP_LSHR:
3254     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3255   case ISD::VP_SHL:
3256     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3257   case ISD::VP_FADD:
3258     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3259   case ISD::VP_FSUB:
3260     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3261   case ISD::VP_FMUL:
3262     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3263   case ISD::VP_FDIV:
3264     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3265   }
3266 }
3267 
3268 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3269                              SelectionDAG &DAG, unsigned Flags) {
3270   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3271 }
3272 
3273 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3274                              SelectionDAG &DAG, unsigned Flags) {
3275   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3276                                    Flags);
3277 }
3278 
3279 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3280                              SelectionDAG &DAG, unsigned Flags) {
3281   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3282                                    N->getOffset(), Flags);
3283 }
3284 
3285 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3286                              SelectionDAG &DAG, unsigned Flags) {
3287   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3288 }
3289 
3290 template <class NodeTy>
3291 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3292                                      bool IsLocal) const {
3293   SDLoc DL(N);
3294   EVT Ty = getPointerTy(DAG.getDataLayout());
3295 
3296   if (isPositionIndependent()) {
3297     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3298     if (IsLocal)
3299       // Use PC-relative addressing to access the symbol. This generates the
3300       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3301       // %pcrel_lo(auipc)).
3302       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3303 
3304     // Use PC-relative addressing to access the GOT for this symbol, then load
3305     // the address from the GOT. This generates the pattern (PseudoLA sym),
3306     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3307     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3308   }
3309 
3310   switch (getTargetMachine().getCodeModel()) {
3311   default:
3312     report_fatal_error("Unsupported code model for lowering");
3313   case CodeModel::Small: {
3314     // Generate a sequence for accessing addresses within the first 2 GiB of
3315     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3316     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3317     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3318     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3319     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3320   }
3321   case CodeModel::Medium: {
3322     // Generate a sequence for accessing addresses within any 2GiB range within
3323     // the address space. This generates the pattern (PseudoLLA sym), which
3324     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3325     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3326     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3327   }
3328   }
3329 }
3330 
3331 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3332                                                 SelectionDAG &DAG) const {
3333   SDLoc DL(Op);
3334   EVT Ty = Op.getValueType();
3335   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3336   int64_t Offset = N->getOffset();
3337   MVT XLenVT = Subtarget.getXLenVT();
3338 
3339   const GlobalValue *GV = N->getGlobal();
3340   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3341   SDValue Addr = getAddr(N, DAG, IsLocal);
3342 
3343   // In order to maximise the opportunity for common subexpression elimination,
3344   // emit a separate ADD node for the global address offset instead of folding
3345   // it in the global address node. Later peephole optimisations may choose to
3346   // fold it back in when profitable.
3347   if (Offset != 0)
3348     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3349                        DAG.getConstant(Offset, DL, XLenVT));
3350   return Addr;
3351 }
3352 
3353 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3354                                                SelectionDAG &DAG) const {
3355   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3356 
3357   return getAddr(N, DAG);
3358 }
3359 
3360 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3361                                                SelectionDAG &DAG) const {
3362   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3363 
3364   return getAddr(N, DAG);
3365 }
3366 
3367 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3368                                             SelectionDAG &DAG) const {
3369   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3370 
3371   return getAddr(N, DAG);
3372 }
3373 
3374 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3375                                               SelectionDAG &DAG,
3376                                               bool UseGOT) const {
3377   SDLoc DL(N);
3378   EVT Ty = getPointerTy(DAG.getDataLayout());
3379   const GlobalValue *GV = N->getGlobal();
3380   MVT XLenVT = Subtarget.getXLenVT();
3381 
3382   if (UseGOT) {
3383     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3384     // load the address from the GOT and add the thread pointer. This generates
3385     // the pattern (PseudoLA_TLS_IE sym), which expands to
3386     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3387     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3388     SDValue Load =
3389         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3390 
3391     // Add the thread pointer.
3392     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3393     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3394   }
3395 
3396   // Generate a sequence for accessing the address relative to the thread
3397   // pointer, with the appropriate adjustment for the thread pointer offset.
3398   // This generates the pattern
3399   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3400   SDValue AddrHi =
3401       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3402   SDValue AddrAdd =
3403       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3404   SDValue AddrLo =
3405       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3406 
3407   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3408   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3409   SDValue MNAdd = SDValue(
3410       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3411       0);
3412   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3413 }
3414 
3415 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3416                                                SelectionDAG &DAG) const {
3417   SDLoc DL(N);
3418   EVT Ty = getPointerTy(DAG.getDataLayout());
3419   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3420   const GlobalValue *GV = N->getGlobal();
3421 
3422   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3423   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3424   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3425   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3426   SDValue Load =
3427       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3428 
3429   // Prepare argument list to generate call.
3430   ArgListTy Args;
3431   ArgListEntry Entry;
3432   Entry.Node = Load;
3433   Entry.Ty = CallTy;
3434   Args.push_back(Entry);
3435 
3436   // Setup call to __tls_get_addr.
3437   TargetLowering::CallLoweringInfo CLI(DAG);
3438   CLI.setDebugLoc(DL)
3439       .setChain(DAG.getEntryNode())
3440       .setLibCallee(CallingConv::C, CallTy,
3441                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3442                     std::move(Args));
3443 
3444   return LowerCallTo(CLI).first;
3445 }
3446 
3447 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3448                                                    SelectionDAG &DAG) const {
3449   SDLoc DL(Op);
3450   EVT Ty = Op.getValueType();
3451   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3452   int64_t Offset = N->getOffset();
3453   MVT XLenVT = Subtarget.getXLenVT();
3454 
3455   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3456 
3457   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3458       CallingConv::GHC)
3459     report_fatal_error("In GHC calling convention TLS is not supported");
3460 
3461   SDValue Addr;
3462   switch (Model) {
3463   case TLSModel::LocalExec:
3464     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3465     break;
3466   case TLSModel::InitialExec:
3467     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3468     break;
3469   case TLSModel::LocalDynamic:
3470   case TLSModel::GeneralDynamic:
3471     Addr = getDynamicTLSAddr(N, DAG);
3472     break;
3473   }
3474 
3475   // In order to maximise the opportunity for common subexpression elimination,
3476   // emit a separate ADD node for the global address offset instead of folding
3477   // it in the global address node. Later peephole optimisations may choose to
3478   // fold it back in when profitable.
3479   if (Offset != 0)
3480     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3481                        DAG.getConstant(Offset, DL, XLenVT));
3482   return Addr;
3483 }
3484 
3485 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3486   SDValue CondV = Op.getOperand(0);
3487   SDValue TrueV = Op.getOperand(1);
3488   SDValue FalseV = Op.getOperand(2);
3489   SDLoc DL(Op);
3490   MVT VT = Op.getSimpleValueType();
3491   MVT XLenVT = Subtarget.getXLenVT();
3492 
3493   // Lower vector SELECTs to VSELECTs by splatting the condition.
3494   if (VT.isVector()) {
3495     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3496     SDValue CondSplat = VT.isScalableVector()
3497                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3498                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3499     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3500   }
3501 
3502   // If the result type is XLenVT and CondV is the output of a SETCC node
3503   // which also operated on XLenVT inputs, then merge the SETCC node into the
3504   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3505   // compare+branch instructions. i.e.:
3506   // (select (setcc lhs, rhs, cc), truev, falsev)
3507   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3508   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3509       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3510     SDValue LHS = CondV.getOperand(0);
3511     SDValue RHS = CondV.getOperand(1);
3512     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3513     ISD::CondCode CCVal = CC->get();
3514 
3515     // Special case for a select of 2 constants that have a diffence of 1.
3516     // Normally this is done by DAGCombine, but if the select is introduced by
3517     // type legalization or op legalization, we miss it. Restricting to SETLT
3518     // case for now because that is what signed saturating add/sub need.
3519     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3520     // but we would probably want to swap the true/false values if the condition
3521     // is SETGE/SETLE to avoid an XORI.
3522     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3523         CCVal == ISD::SETLT) {
3524       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3525       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3526       if (TrueVal - 1 == FalseVal)
3527         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3528       if (TrueVal + 1 == FalseVal)
3529         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3530     }
3531 
3532     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3533 
3534     SDValue TargetCC = DAG.getCondCode(CCVal);
3535     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3536     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3537   }
3538 
3539   // Otherwise:
3540   // (select condv, truev, falsev)
3541   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3542   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3543   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3544 
3545   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3546 
3547   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3548 }
3549 
3550 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3551   SDValue CondV = Op.getOperand(1);
3552   SDLoc DL(Op);
3553   MVT XLenVT = Subtarget.getXLenVT();
3554 
3555   if (CondV.getOpcode() == ISD::SETCC &&
3556       CondV.getOperand(0).getValueType() == XLenVT) {
3557     SDValue LHS = CondV.getOperand(0);
3558     SDValue RHS = CondV.getOperand(1);
3559     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3560 
3561     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3562 
3563     SDValue TargetCC = DAG.getCondCode(CCVal);
3564     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3565                        LHS, RHS, TargetCC, Op.getOperand(2));
3566   }
3567 
3568   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3569                      CondV, DAG.getConstant(0, DL, XLenVT),
3570                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3571 }
3572 
3573 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3574   MachineFunction &MF = DAG.getMachineFunction();
3575   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3576 
3577   SDLoc DL(Op);
3578   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3579                                  getPointerTy(MF.getDataLayout()));
3580 
3581   // vastart just stores the address of the VarArgsFrameIndex slot into the
3582   // memory location argument.
3583   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3584   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3585                       MachinePointerInfo(SV));
3586 }
3587 
3588 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3589                                             SelectionDAG &DAG) const {
3590   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3591   MachineFunction &MF = DAG.getMachineFunction();
3592   MachineFrameInfo &MFI = MF.getFrameInfo();
3593   MFI.setFrameAddressIsTaken(true);
3594   Register FrameReg = RI.getFrameRegister(MF);
3595   int XLenInBytes = Subtarget.getXLen() / 8;
3596 
3597   EVT VT = Op.getValueType();
3598   SDLoc DL(Op);
3599   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3600   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3601   while (Depth--) {
3602     int Offset = -(XLenInBytes * 2);
3603     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3604                               DAG.getIntPtrConstant(Offset, DL));
3605     FrameAddr =
3606         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3607   }
3608   return FrameAddr;
3609 }
3610 
3611 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3612                                              SelectionDAG &DAG) const {
3613   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3614   MachineFunction &MF = DAG.getMachineFunction();
3615   MachineFrameInfo &MFI = MF.getFrameInfo();
3616   MFI.setReturnAddressIsTaken(true);
3617   MVT XLenVT = Subtarget.getXLenVT();
3618   int XLenInBytes = Subtarget.getXLen() / 8;
3619 
3620   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3621     return SDValue();
3622 
3623   EVT VT = Op.getValueType();
3624   SDLoc DL(Op);
3625   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3626   if (Depth) {
3627     int Off = -XLenInBytes;
3628     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3629     SDValue Offset = DAG.getConstant(Off, DL, VT);
3630     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3631                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3632                        MachinePointerInfo());
3633   }
3634 
3635   // Return the value of the return address register, marking it an implicit
3636   // live-in.
3637   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3638   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3639 }
3640 
3641 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3642                                                  SelectionDAG &DAG) const {
3643   SDLoc DL(Op);
3644   SDValue Lo = Op.getOperand(0);
3645   SDValue Hi = Op.getOperand(1);
3646   SDValue Shamt = Op.getOperand(2);
3647   EVT VT = Lo.getValueType();
3648 
3649   // if Shamt-XLEN < 0: // Shamt < XLEN
3650   //   Lo = Lo << Shamt
3651   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
3652   // else:
3653   //   Lo = 0
3654   //   Hi = Lo << (Shamt-XLEN)
3655 
3656   SDValue Zero = DAG.getConstant(0, DL, VT);
3657   SDValue One = DAG.getConstant(1, DL, VT);
3658   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3659   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3660   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3661   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3662 
3663   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3664   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3665   SDValue ShiftRightLo =
3666       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3667   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3668   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3669   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3670 
3671   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3672 
3673   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3674   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3675 
3676   SDValue Parts[2] = {Lo, Hi};
3677   return DAG.getMergeValues(Parts, DL);
3678 }
3679 
3680 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3681                                                   bool IsSRA) const {
3682   SDLoc DL(Op);
3683   SDValue Lo = Op.getOperand(0);
3684   SDValue Hi = Op.getOperand(1);
3685   SDValue Shamt = Op.getOperand(2);
3686   EVT VT = Lo.getValueType();
3687 
3688   // SRA expansion:
3689   //   if Shamt-XLEN < 0: // Shamt < XLEN
3690   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3691   //     Hi = Hi >>s Shamt
3692   //   else:
3693   //     Lo = Hi >>s (Shamt-XLEN);
3694   //     Hi = Hi >>s (XLEN-1)
3695   //
3696   // SRL expansion:
3697   //   if Shamt-XLEN < 0: // Shamt < XLEN
3698   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3699   //     Hi = Hi >>u Shamt
3700   //   else:
3701   //     Lo = Hi >>u (Shamt-XLEN);
3702   //     Hi = 0;
3703 
3704   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3705 
3706   SDValue Zero = DAG.getConstant(0, DL, VT);
3707   SDValue One = DAG.getConstant(1, DL, VT);
3708   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3709   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3710   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3711   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3712 
3713   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3714   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3715   SDValue ShiftLeftHi =
3716       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3717   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3718   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3719   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3720   SDValue HiFalse =
3721       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3722 
3723   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3724 
3725   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3726   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3727 
3728   SDValue Parts[2] = {Lo, Hi};
3729   return DAG.getMergeValues(Parts, DL);
3730 }
3731 
3732 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3733 // legal equivalently-sized i8 type, so we can use that as a go-between.
3734 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3735                                                   SelectionDAG &DAG) const {
3736   SDLoc DL(Op);
3737   MVT VT = Op.getSimpleValueType();
3738   SDValue SplatVal = Op.getOperand(0);
3739   // All-zeros or all-ones splats are handled specially.
3740   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
3741     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3742     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
3743   }
3744   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
3745     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3746     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
3747   }
3748   MVT XLenVT = Subtarget.getXLenVT();
3749   assert(SplatVal.getValueType() == XLenVT &&
3750          "Unexpected type for i1 splat value");
3751   MVT InterVT = VT.changeVectorElementType(MVT::i8);
3752   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
3753                          DAG.getConstant(1, DL, XLenVT));
3754   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
3755   SDValue Zero = DAG.getConstant(0, DL, InterVT);
3756   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
3757 }
3758 
3759 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
3760 // illegal (currently only vXi64 RV32).
3761 // FIXME: We could also catch non-constant sign-extended i32 values and lower
3762 // them to SPLAT_VECTOR_I64
3763 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
3764                                                      SelectionDAG &DAG) const {
3765   SDLoc DL(Op);
3766   MVT VecVT = Op.getSimpleValueType();
3767   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
3768          "Unexpected SPLAT_VECTOR_PARTS lowering");
3769 
3770   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
3771   SDValue Lo = Op.getOperand(0);
3772   SDValue Hi = Op.getOperand(1);
3773 
3774   if (VecVT.isFixedLengthVector()) {
3775     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3776     SDLoc DL(Op);
3777     SDValue Mask, VL;
3778     std::tie(Mask, VL) =
3779         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3780 
3781     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
3782     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
3783   }
3784 
3785   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
3786     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
3787     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
3788     // If Hi constant is all the same sign bit as Lo, lower this as a custom
3789     // node in order to try and match RVV vector/scalar instructions.
3790     if ((LoC >> 31) == HiC)
3791       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3792   }
3793 
3794   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
3795   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
3796       isa<ConstantSDNode>(Hi.getOperand(1)) &&
3797       Hi.getConstantOperandVal(1) == 31)
3798     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3799 
3800   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
3801   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
3802                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64));
3803 }
3804 
3805 // Custom-lower extensions from mask vectors by using a vselect either with 1
3806 // for zero/any-extension or -1 for sign-extension:
3807 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
3808 // Note that any-extension is lowered identically to zero-extension.
3809 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
3810                                                 int64_t ExtTrueVal) const {
3811   SDLoc DL(Op);
3812   MVT VecVT = Op.getSimpleValueType();
3813   SDValue Src = Op.getOperand(0);
3814   // Only custom-lower extensions from mask types
3815   assert(Src.getValueType().isVector() &&
3816          Src.getValueType().getVectorElementType() == MVT::i1);
3817 
3818   MVT XLenVT = Subtarget.getXLenVT();
3819   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
3820   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
3821 
3822   if (VecVT.isScalableVector()) {
3823     // Be careful not to introduce illegal scalar types at this stage, and be
3824     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
3825     // illegal and must be expanded. Since we know that the constants are
3826     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
3827     bool IsRV32E64 =
3828         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
3829 
3830     if (!IsRV32E64) {
3831       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
3832       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
3833     } else {
3834       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
3835       SplatTrueVal =
3836           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
3837     }
3838 
3839     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
3840   }
3841 
3842   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3843   MVT I1ContainerVT =
3844       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3845 
3846   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
3847 
3848   SDValue Mask, VL;
3849   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3850 
3851   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
3852   SplatTrueVal =
3853       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
3854   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
3855                                SplatTrueVal, SplatZero, VL);
3856 
3857   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
3858 }
3859 
3860 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3861     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
3862   MVT ExtVT = Op.getSimpleValueType();
3863   // Only custom-lower extensions from fixed-length vector types.
3864   if (!ExtVT.isFixedLengthVector())
3865     return Op;
3866   MVT VT = Op.getOperand(0).getSimpleValueType();
3867   // Grab the canonical container type for the extended type. Infer the smaller
3868   // type from that to ensure the same number of vector elements, as we know
3869   // the LMUL will be sufficient to hold the smaller type.
3870   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
3871   // Get the extended container type manually to ensure the same number of
3872   // vector elements between source and dest.
3873   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
3874                                      ContainerExtVT.getVectorElementCount());
3875 
3876   SDValue Op1 =
3877       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3878 
3879   SDLoc DL(Op);
3880   SDValue Mask, VL;
3881   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3882 
3883   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
3884 
3885   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
3886 }
3887 
3888 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3889 // setcc operation:
3890 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
3891 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
3892                                                   SelectionDAG &DAG) const {
3893   SDLoc DL(Op);
3894   EVT MaskVT = Op.getValueType();
3895   // Only expect to custom-lower truncations to mask types
3896   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
3897          "Unexpected type for vector mask lowering");
3898   SDValue Src = Op.getOperand(0);
3899   MVT VecVT = Src.getSimpleValueType();
3900 
3901   // If this is a fixed vector, we need to convert it to a scalable vector.
3902   MVT ContainerVT = VecVT;
3903   if (VecVT.isFixedLengthVector()) {
3904     ContainerVT = getContainerForFixedLengthVector(VecVT);
3905     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3906   }
3907 
3908   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
3909   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
3910 
3911   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
3912   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
3913 
3914   if (VecVT.isScalableVector()) {
3915     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
3916     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
3917   }
3918 
3919   SDValue Mask, VL;
3920   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3921 
3922   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3923   SDValue Trunc =
3924       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
3925   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
3926                       DAG.getCondCode(ISD::SETNE), Mask, VL);
3927   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
3928 }
3929 
3930 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3931 // first position of a vector, and that vector is slid up to the insert index.
3932 // By limiting the active vector length to index+1 and merging with the
3933 // original vector (with an undisturbed tail policy for elements >= VL), we
3934 // achieve the desired result of leaving all elements untouched except the one
3935 // at VL-1, which is replaced with the desired value.
3936 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3937                                                     SelectionDAG &DAG) const {
3938   SDLoc DL(Op);
3939   MVT VecVT = Op.getSimpleValueType();
3940   SDValue Vec = Op.getOperand(0);
3941   SDValue Val = Op.getOperand(1);
3942   SDValue Idx = Op.getOperand(2);
3943 
3944   if (VecVT.getVectorElementType() == MVT::i1) {
3945     // FIXME: For now we just promote to an i8 vector and insert into that,
3946     // but this is probably not optimal.
3947     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3948     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3949     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
3950     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
3951   }
3952 
3953   MVT ContainerVT = VecVT;
3954   // If the operand is a fixed-length vector, convert to a scalable one.
3955   if (VecVT.isFixedLengthVector()) {
3956     ContainerVT = getContainerForFixedLengthVector(VecVT);
3957     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3958   }
3959 
3960   MVT XLenVT = Subtarget.getXLenVT();
3961 
3962   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3963   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
3964   // Even i64-element vectors on RV32 can be lowered without scalar
3965   // legalization if the most-significant 32 bits of the value are not affected
3966   // by the sign-extension of the lower 32 bits.
3967   // TODO: We could also catch sign extensions of a 32-bit value.
3968   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
3969     const auto *CVal = cast<ConstantSDNode>(Val);
3970     if (isInt<32>(CVal->getSExtValue())) {
3971       IsLegalInsert = true;
3972       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3973     }
3974   }
3975 
3976   SDValue Mask, VL;
3977   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3978 
3979   SDValue ValInVec;
3980 
3981   if (IsLegalInsert) {
3982     unsigned Opc =
3983         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
3984     if (isNullConstant(Idx)) {
3985       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
3986       if (!VecVT.isFixedLengthVector())
3987         return Vec;
3988       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
3989     }
3990     ValInVec =
3991         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
3992   } else {
3993     // On RV32, i64-element vectors must be specially handled to place the
3994     // value at element 0, by using two vslide1up instructions in sequence on
3995     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3996     // this.
3997     SDValue One = DAG.getConstant(1, DL, XLenVT);
3998     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
3999     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4000     MVT I32ContainerVT =
4001         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4002     SDValue I32Mask =
4003         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4004     // Limit the active VL to two.
4005     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4006     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4007     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4008     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
4009                            InsertI64VL);
4010     // First slide in the hi value, then the lo in underneath it.
4011     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
4012                            ValHi, I32Mask, InsertI64VL);
4013     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
4014                            ValLo, I32Mask, InsertI64VL);
4015     // Bitcast back to the right container type.
4016     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4017   }
4018 
4019   // Now that the value is in a vector, slide it into position.
4020   SDValue InsertVL =
4021       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4022   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4023                                 ValInVec, Idx, Mask, InsertVL);
4024   if (!VecVT.isFixedLengthVector())
4025     return Slideup;
4026   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4027 }
4028 
4029 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4030 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4031 // types this is done using VMV_X_S to allow us to glean information about the
4032 // sign bits of the result.
4033 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4034                                                      SelectionDAG &DAG) const {
4035   SDLoc DL(Op);
4036   SDValue Idx = Op.getOperand(1);
4037   SDValue Vec = Op.getOperand(0);
4038   EVT EltVT = Op.getValueType();
4039   MVT VecVT = Vec.getSimpleValueType();
4040   MVT XLenVT = Subtarget.getXLenVT();
4041 
4042   if (VecVT.getVectorElementType() == MVT::i1) {
4043     // FIXME: For now we just promote to an i8 vector and extract from that,
4044     // but this is probably not optimal.
4045     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4046     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4047     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4048   }
4049 
4050   // If this is a fixed vector, we need to convert it to a scalable vector.
4051   MVT ContainerVT = VecVT;
4052   if (VecVT.isFixedLengthVector()) {
4053     ContainerVT = getContainerForFixedLengthVector(VecVT);
4054     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4055   }
4056 
4057   // If the index is 0, the vector is already in the right position.
4058   if (!isNullConstant(Idx)) {
4059     // Use a VL of 1 to avoid processing more elements than we need.
4060     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4061     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4062     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4063     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4064                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4065   }
4066 
4067   if (!EltVT.isInteger()) {
4068     // Floating-point extracts are handled in TableGen.
4069     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4070                        DAG.getConstant(0, DL, XLenVT));
4071   }
4072 
4073   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4074   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4075 }
4076 
4077 // Some RVV intrinsics may claim that they want an integer operand to be
4078 // promoted or expanded.
4079 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
4080                                           const RISCVSubtarget &Subtarget) {
4081   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4082           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4083          "Unexpected opcode");
4084 
4085   if (!Subtarget.hasVInstructions())
4086     return SDValue();
4087 
4088   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4089   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4090   SDLoc DL(Op);
4091 
4092   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4093       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4094   if (!II || !II->SplatOperand)
4095     return SDValue();
4096 
4097   unsigned SplatOp = II->SplatOperand + HasChain;
4098   assert(SplatOp < Op.getNumOperands());
4099 
4100   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4101   SDValue &ScalarOp = Operands[SplatOp];
4102   MVT OpVT = ScalarOp.getSimpleValueType();
4103   MVT XLenVT = Subtarget.getXLenVT();
4104 
4105   // If this isn't a scalar, or its type is XLenVT we're done.
4106   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4107     return SDValue();
4108 
4109   // Simplest case is that the operand needs to be promoted to XLenVT.
4110   if (OpVT.bitsLT(XLenVT)) {
4111     // If the operand is a constant, sign extend to increase our chances
4112     // of being able to use a .vi instruction. ANY_EXTEND would become a
4113     // a zero extend and the simm5 check in isel would fail.
4114     // FIXME: Should we ignore the upper bits in isel instead?
4115     unsigned ExtOpc =
4116         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4117     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4118     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4119   }
4120 
4121   // Use the previous operand to get the vXi64 VT. The result might be a mask
4122   // VT for compares. Using the previous operand assumes that the previous
4123   // operand will never have a smaller element size than a scalar operand and
4124   // that a widening operation never uses SEW=64.
4125   // NOTE: If this fails the below assert, we can probably just find the
4126   // element count from any operand or result and use it to construct the VT.
4127   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
4128   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4129 
4130   // The more complex case is when the scalar is larger than XLenVT.
4131   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4132          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4133 
4134   // If this is a sign-extended 32-bit constant, we can truncate it and rely
4135   // on the instruction to sign-extend since SEW>XLEN.
4136   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
4137     if (isInt<32>(CVal->getSExtValue())) {
4138       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4139       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4140     }
4141   }
4142 
4143   // We need to convert the scalar to a splat vector.
4144   // FIXME: Can we implicitly truncate the scalar if it is known to
4145   // be sign extended?
4146   // VL should be the last operand.
4147   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
4148   assert(VL.getValueType() == XLenVT);
4149   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
4150   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4151 }
4152 
4153 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4154                                                      SelectionDAG &DAG) const {
4155   unsigned IntNo = Op.getConstantOperandVal(0);
4156   SDLoc DL(Op);
4157   MVT XLenVT = Subtarget.getXLenVT();
4158 
4159   switch (IntNo) {
4160   default:
4161     break; // Don't custom lower most intrinsics.
4162   case Intrinsic::thread_pointer: {
4163     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4164     return DAG.getRegister(RISCV::X4, PtrVT);
4165   }
4166   case Intrinsic::riscv_orc_b:
4167     // Lower to the GORCI encoding for orc.b.
4168     return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
4169                        DAG.getConstant(7, DL, XLenVT));
4170   case Intrinsic::riscv_grev:
4171   case Intrinsic::riscv_gorc: {
4172     unsigned Opc =
4173         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4174     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4175   }
4176   case Intrinsic::riscv_shfl:
4177   case Intrinsic::riscv_unshfl: {
4178     unsigned Opc =
4179         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4180     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4181   }
4182   case Intrinsic::riscv_bcompress:
4183   case Intrinsic::riscv_bdecompress: {
4184     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4185                                                        : RISCVISD::BDECOMPRESS;
4186     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4187   }
4188   case Intrinsic::riscv_bfp:
4189     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4190                        Op.getOperand(2));
4191   case Intrinsic::riscv_vmv_x_s:
4192     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4193     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4194                        Op.getOperand(1));
4195   case Intrinsic::riscv_vmv_v_x:
4196     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4197                             Op.getSimpleValueType(), DL, DAG, Subtarget);
4198   case Intrinsic::riscv_vfmv_v_f:
4199     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4200                        Op.getOperand(1), Op.getOperand(2));
4201   case Intrinsic::riscv_vmv_s_x: {
4202     SDValue Scalar = Op.getOperand(2);
4203 
4204     if (Scalar.getValueType().bitsLE(XLenVT)) {
4205       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4206       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4207                          Op.getOperand(1), Scalar, Op.getOperand(3));
4208     }
4209 
4210     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4211 
4212     // This is an i64 value that lives in two scalar registers. We have to
4213     // insert this in a convoluted way. First we build vXi64 splat containing
4214     // the/ two values that we assemble using some bit math. Next we'll use
4215     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4216     // to merge element 0 from our splat into the source vector.
4217     // FIXME: This is probably not the best way to do this, but it is
4218     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4219     // point.
4220     //   sw lo, (a0)
4221     //   sw hi, 4(a0)
4222     //   vlse vX, (a0)
4223     //
4224     //   vid.v      vVid
4225     //   vmseq.vx   mMask, vVid, 0
4226     //   vmerge.vvm vDest, vSrc, vVal, mMask
4227     MVT VT = Op.getSimpleValueType();
4228     SDValue Vec = Op.getOperand(1);
4229     SDValue VL = Op.getOperand(3);
4230 
4231     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
4232     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4233                                       DAG.getConstant(0, DL, MVT::i32), VL);
4234 
4235     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4236     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4237     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4238     SDValue SelectCond =
4239         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4240                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4241     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4242                        Vec, VL);
4243   }
4244   case Intrinsic::riscv_vslide1up:
4245   case Intrinsic::riscv_vslide1down:
4246   case Intrinsic::riscv_vslide1up_mask:
4247   case Intrinsic::riscv_vslide1down_mask: {
4248     // We need to special case these when the scalar is larger than XLen.
4249     unsigned NumOps = Op.getNumOperands();
4250     bool IsMasked = NumOps == 7;
4251     unsigned OpOffset = IsMasked ? 1 : 0;
4252     SDValue Scalar = Op.getOperand(2 + OpOffset);
4253     if (Scalar.getValueType().bitsLE(XLenVT))
4254       break;
4255 
4256     // Splatting a sign extended constant is fine.
4257     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
4258       if (isInt<32>(CVal->getSExtValue()))
4259         break;
4260 
4261     MVT VT = Op.getSimpleValueType();
4262     assert(VT.getVectorElementType() == MVT::i64 &&
4263            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
4264 
4265     // Convert the vector source to the equivalent nxvXi32 vector.
4266     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4267     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
4268 
4269     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4270                                    DAG.getConstant(0, DL, XLenVT));
4271     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4272                                    DAG.getConstant(1, DL, XLenVT));
4273 
4274     // Double the VL since we halved SEW.
4275     SDValue VL = Op.getOperand(NumOps - (1 + OpOffset));
4276     SDValue I32VL =
4277         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4278 
4279     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4280     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
4281 
4282     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4283     // instructions.
4284     if (IntNo == Intrinsic::riscv_vslide1up ||
4285         IntNo == Intrinsic::riscv_vslide1up_mask) {
4286       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
4287                         I32Mask, I32VL);
4288       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
4289                         I32Mask, I32VL);
4290     } else {
4291       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
4292                         I32Mask, I32VL);
4293       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
4294                         I32Mask, I32VL);
4295     }
4296 
4297     // Convert back to nxvXi64.
4298     Vec = DAG.getBitcast(VT, Vec);
4299 
4300     if (!IsMasked)
4301       return Vec;
4302 
4303     // Apply mask after the operation.
4304     SDValue Mask = Op.getOperand(NumOps - 3);
4305     SDValue MaskedOff = Op.getOperand(1);
4306     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
4307   }
4308   }
4309 
4310   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4311 }
4312 
4313 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4314                                                     SelectionDAG &DAG) const {
4315   unsigned IntNo = Op.getConstantOperandVal(1);
4316   switch (IntNo) {
4317   default:
4318     break;
4319   case Intrinsic::riscv_masked_strided_load: {
4320     SDLoc DL(Op);
4321     MVT XLenVT = Subtarget.getXLenVT();
4322 
4323     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4324     // the selection of the masked intrinsics doesn't do this for us.
4325     SDValue Mask = Op.getOperand(5);
4326     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4327 
4328     MVT VT = Op->getSimpleValueType(0);
4329     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4330 
4331     SDValue PassThru = Op.getOperand(2);
4332     if (!IsUnmasked) {
4333       MVT MaskVT =
4334           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4335       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4336       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4337     }
4338 
4339     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4340 
4341     SDValue IntID = DAG.getTargetConstant(
4342         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4343         XLenVT);
4344 
4345     auto *Load = cast<MemIntrinsicSDNode>(Op);
4346     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4347     if (!IsUnmasked)
4348       Ops.push_back(PassThru);
4349     Ops.push_back(Op.getOperand(3)); // Ptr
4350     Ops.push_back(Op.getOperand(4)); // Stride
4351     if (!IsUnmasked)
4352       Ops.push_back(Mask);
4353     Ops.push_back(VL);
4354     if (!IsUnmasked) {
4355       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4356       Ops.push_back(Policy);
4357     }
4358 
4359     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4360     SDValue Result =
4361         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4362                                 Load->getMemoryVT(), Load->getMemOperand());
4363     SDValue Chain = Result.getValue(1);
4364     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4365     return DAG.getMergeValues({Result, Chain}, DL);
4366   }
4367   }
4368 
4369   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4370 }
4371 
4372 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4373                                                  SelectionDAG &DAG) const {
4374   unsigned IntNo = Op.getConstantOperandVal(1);
4375   switch (IntNo) {
4376   default:
4377     break;
4378   case Intrinsic::riscv_masked_strided_store: {
4379     SDLoc DL(Op);
4380     MVT XLenVT = Subtarget.getXLenVT();
4381 
4382     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4383     // the selection of the masked intrinsics doesn't do this for us.
4384     SDValue Mask = Op.getOperand(5);
4385     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4386 
4387     SDValue Val = Op.getOperand(2);
4388     MVT VT = Val.getSimpleValueType();
4389     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4390 
4391     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4392     if (!IsUnmasked) {
4393       MVT MaskVT =
4394           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4395       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4396     }
4397 
4398     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4399 
4400     SDValue IntID = DAG.getTargetConstant(
4401         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4402         XLenVT);
4403 
4404     auto *Store = cast<MemIntrinsicSDNode>(Op);
4405     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4406     Ops.push_back(Val);
4407     Ops.push_back(Op.getOperand(3)); // Ptr
4408     Ops.push_back(Op.getOperand(4)); // Stride
4409     if (!IsUnmasked)
4410       Ops.push_back(Mask);
4411     Ops.push_back(VL);
4412 
4413     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4414                                    Ops, Store->getMemoryVT(),
4415                                    Store->getMemOperand());
4416   }
4417   }
4418 
4419   return SDValue();
4420 }
4421 
4422 static MVT getLMUL1VT(MVT VT) {
4423   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4424          "Unexpected vector MVT");
4425   return MVT::getScalableVectorVT(
4426       VT.getVectorElementType(),
4427       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4428 }
4429 
4430 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4431   switch (ISDOpcode) {
4432   default:
4433     llvm_unreachable("Unhandled reduction");
4434   case ISD::VECREDUCE_ADD:
4435     return RISCVISD::VECREDUCE_ADD_VL;
4436   case ISD::VECREDUCE_UMAX:
4437     return RISCVISD::VECREDUCE_UMAX_VL;
4438   case ISD::VECREDUCE_SMAX:
4439     return RISCVISD::VECREDUCE_SMAX_VL;
4440   case ISD::VECREDUCE_UMIN:
4441     return RISCVISD::VECREDUCE_UMIN_VL;
4442   case ISD::VECREDUCE_SMIN:
4443     return RISCVISD::VECREDUCE_SMIN_VL;
4444   case ISD::VECREDUCE_AND:
4445     return RISCVISD::VECREDUCE_AND_VL;
4446   case ISD::VECREDUCE_OR:
4447     return RISCVISD::VECREDUCE_OR_VL;
4448   case ISD::VECREDUCE_XOR:
4449     return RISCVISD::VECREDUCE_XOR_VL;
4450   }
4451 }
4452 
4453 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
4454                                                          SelectionDAG &DAG,
4455                                                          bool IsVP) const {
4456   SDLoc DL(Op);
4457   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
4458   MVT VecVT = Vec.getSimpleValueType();
4459   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
4460           Op.getOpcode() == ISD::VECREDUCE_OR ||
4461           Op.getOpcode() == ISD::VECREDUCE_XOR ||
4462           Op.getOpcode() == ISD::VP_REDUCE_AND ||
4463           Op.getOpcode() == ISD::VP_REDUCE_OR ||
4464           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
4465          "Unexpected reduction lowering");
4466 
4467   MVT XLenVT = Subtarget.getXLenVT();
4468   assert(Op.getValueType() == XLenVT &&
4469          "Expected reduction output to be legalized to XLenVT");
4470 
4471   MVT ContainerVT = VecVT;
4472   if (VecVT.isFixedLengthVector()) {
4473     ContainerVT = getContainerForFixedLengthVector(VecVT);
4474     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4475   }
4476 
4477   SDValue Mask, VL;
4478   if (IsVP) {
4479     Mask = Op.getOperand(2);
4480     VL = Op.getOperand(3);
4481   } else {
4482     std::tie(Mask, VL) =
4483         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4484   }
4485 
4486   unsigned BaseOpc;
4487   ISD::CondCode CC;
4488   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4489 
4490   switch (Op.getOpcode()) {
4491   default:
4492     llvm_unreachable("Unhandled reduction");
4493   case ISD::VECREDUCE_AND:
4494   case ISD::VP_REDUCE_AND: {
4495     // vcpop ~x == 0
4496     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
4497     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
4498     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4499     CC = ISD::SETEQ;
4500     BaseOpc = ISD::AND;
4501     break;
4502   }
4503   case ISD::VECREDUCE_OR:
4504   case ISD::VP_REDUCE_OR:
4505     // vcpop x != 0
4506     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4507     CC = ISD::SETNE;
4508     BaseOpc = ISD::OR;
4509     break;
4510   case ISD::VECREDUCE_XOR:
4511   case ISD::VP_REDUCE_XOR: {
4512     // ((vcpop x) & 1) != 0
4513     SDValue One = DAG.getConstant(1, DL, XLenVT);
4514     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4515     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
4516     CC = ISD::SETNE;
4517     BaseOpc = ISD::XOR;
4518     break;
4519   }
4520   }
4521 
4522   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
4523 
4524   if (!IsVP)
4525     return SetCC;
4526 
4527   // Now include the start value in the operation.
4528   // Note that we must return the start value when no elements are operated
4529   // upon. The vcpop instructions we've emitted in each case above will return
4530   // 0 for an inactive vector, and so we've already received the neutral value:
4531   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
4532   // can simply include the start value.
4533   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
4534 }
4535 
4536 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
4537                                             SelectionDAG &DAG) const {
4538   SDLoc DL(Op);
4539   SDValue Vec = Op.getOperand(0);
4540   EVT VecEVT = Vec.getValueType();
4541 
4542   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
4543 
4544   // Due to ordering in legalize types we may have a vector type that needs to
4545   // be split. Do that manually so we can get down to a legal type.
4546   while (getTypeAction(*DAG.getContext(), VecEVT) ==
4547          TargetLowering::TypeSplitVector) {
4548     SDValue Lo, Hi;
4549     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
4550     VecEVT = Lo.getValueType();
4551     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
4552   }
4553 
4554   // TODO: The type may need to be widened rather than split. Or widened before
4555   // it can be split.
4556   if (!isTypeLegal(VecEVT))
4557     return SDValue();
4558 
4559   MVT VecVT = VecEVT.getSimpleVT();
4560   MVT VecEltVT = VecVT.getVectorElementType();
4561   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
4562 
4563   MVT ContainerVT = VecVT;
4564   if (VecVT.isFixedLengthVector()) {
4565     ContainerVT = getContainerForFixedLengthVector(VecVT);
4566     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4567   }
4568 
4569   MVT M1VT = getLMUL1VT(ContainerVT);
4570   MVT XLenVT = Subtarget.getXLenVT();
4571 
4572   SDValue Mask, VL;
4573   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4574 
4575   SDValue NeutralElem =
4576       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
4577   SDValue IdentitySplat = lowerScalarSplat(
4578       NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget);
4579   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
4580                                   IdentitySplat, Mask, VL);
4581   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4582                              DAG.getConstant(0, DL, XLenVT));
4583   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4584 }
4585 
4586 // Given a reduction op, this function returns the matching reduction opcode,
4587 // the vector SDValue and the scalar SDValue required to lower this to a
4588 // RISCVISD node.
4589 static std::tuple<unsigned, SDValue, SDValue>
4590 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
4591   SDLoc DL(Op);
4592   auto Flags = Op->getFlags();
4593   unsigned Opcode = Op.getOpcode();
4594   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
4595   switch (Opcode) {
4596   default:
4597     llvm_unreachable("Unhandled reduction");
4598   case ISD::VECREDUCE_FADD: {
4599     // Use positive zero if we can. It is cheaper to materialize.
4600     SDValue Zero =
4601         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
4602     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
4603   }
4604   case ISD::VECREDUCE_SEQ_FADD:
4605     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
4606                            Op.getOperand(0));
4607   case ISD::VECREDUCE_FMIN:
4608     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
4609                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4610   case ISD::VECREDUCE_FMAX:
4611     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
4612                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4613   }
4614 }
4615 
4616 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
4617                                               SelectionDAG &DAG) const {
4618   SDLoc DL(Op);
4619   MVT VecEltVT = Op.getSimpleValueType();
4620 
4621   unsigned RVVOpcode;
4622   SDValue VectorVal, ScalarVal;
4623   std::tie(RVVOpcode, VectorVal, ScalarVal) =
4624       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
4625   MVT VecVT = VectorVal.getSimpleValueType();
4626 
4627   MVT ContainerVT = VecVT;
4628   if (VecVT.isFixedLengthVector()) {
4629     ContainerVT = getContainerForFixedLengthVector(VecVT);
4630     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
4631   }
4632 
4633   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
4634   MVT XLenVT = Subtarget.getXLenVT();
4635 
4636   SDValue Mask, VL;
4637   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4638 
4639   SDValue ScalarSplat = lowerScalarSplat(
4640       ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget);
4641   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
4642                                   VectorVal, ScalarSplat, Mask, VL);
4643   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4644                      DAG.getConstant(0, DL, XLenVT));
4645 }
4646 
4647 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
4648   switch (ISDOpcode) {
4649   default:
4650     llvm_unreachable("Unhandled reduction");
4651   case ISD::VP_REDUCE_ADD:
4652     return RISCVISD::VECREDUCE_ADD_VL;
4653   case ISD::VP_REDUCE_UMAX:
4654     return RISCVISD::VECREDUCE_UMAX_VL;
4655   case ISD::VP_REDUCE_SMAX:
4656     return RISCVISD::VECREDUCE_SMAX_VL;
4657   case ISD::VP_REDUCE_UMIN:
4658     return RISCVISD::VECREDUCE_UMIN_VL;
4659   case ISD::VP_REDUCE_SMIN:
4660     return RISCVISD::VECREDUCE_SMIN_VL;
4661   case ISD::VP_REDUCE_AND:
4662     return RISCVISD::VECREDUCE_AND_VL;
4663   case ISD::VP_REDUCE_OR:
4664     return RISCVISD::VECREDUCE_OR_VL;
4665   case ISD::VP_REDUCE_XOR:
4666     return RISCVISD::VECREDUCE_XOR_VL;
4667   case ISD::VP_REDUCE_FADD:
4668     return RISCVISD::VECREDUCE_FADD_VL;
4669   case ISD::VP_REDUCE_SEQ_FADD:
4670     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
4671   case ISD::VP_REDUCE_FMAX:
4672     return RISCVISD::VECREDUCE_FMAX_VL;
4673   case ISD::VP_REDUCE_FMIN:
4674     return RISCVISD::VECREDUCE_FMIN_VL;
4675   }
4676 }
4677 
4678 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
4679                                            SelectionDAG &DAG) const {
4680   SDLoc DL(Op);
4681   SDValue Vec = Op.getOperand(1);
4682   EVT VecEVT = Vec.getValueType();
4683 
4684   // TODO: The type may need to be widened rather than split. Or widened before
4685   // it can be split.
4686   if (!isTypeLegal(VecEVT))
4687     return SDValue();
4688 
4689   MVT VecVT = VecEVT.getSimpleVT();
4690   MVT VecEltVT = VecVT.getVectorElementType();
4691   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
4692 
4693   MVT ContainerVT = VecVT;
4694   if (VecVT.isFixedLengthVector()) {
4695     ContainerVT = getContainerForFixedLengthVector(VecVT);
4696     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4697   }
4698 
4699   SDValue VL = Op.getOperand(3);
4700   SDValue Mask = Op.getOperand(2);
4701 
4702   MVT M1VT = getLMUL1VT(ContainerVT);
4703   MVT XLenVT = Subtarget.getXLenVT();
4704   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
4705 
4706   SDValue StartSplat =
4707       lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT,
4708                        DL, DAG, Subtarget);
4709   SDValue Reduction =
4710       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
4711   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
4712                              DAG.getConstant(0, DL, XLenVT));
4713   if (!VecVT.isInteger())
4714     return Elt0;
4715   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4716 }
4717 
4718 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
4719                                                    SelectionDAG &DAG) const {
4720   SDValue Vec = Op.getOperand(0);
4721   SDValue SubVec = Op.getOperand(1);
4722   MVT VecVT = Vec.getSimpleValueType();
4723   MVT SubVecVT = SubVec.getSimpleValueType();
4724 
4725   SDLoc DL(Op);
4726   MVT XLenVT = Subtarget.getXLenVT();
4727   unsigned OrigIdx = Op.getConstantOperandVal(2);
4728   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4729 
4730   // We don't have the ability to slide mask vectors up indexed by their i1
4731   // elements; the smallest we can do is i8. Often we are able to bitcast to
4732   // equivalent i8 vectors. Note that when inserting a fixed-length vector
4733   // into a scalable one, we might not necessarily have enough scalable
4734   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
4735   if (SubVecVT.getVectorElementType() == MVT::i1 &&
4736       (OrigIdx != 0 || !Vec.isUndef())) {
4737     if (VecVT.getVectorMinNumElements() >= 8 &&
4738         SubVecVT.getVectorMinNumElements() >= 8) {
4739       assert(OrigIdx % 8 == 0 && "Invalid index");
4740       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4741              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4742              "Unexpected mask vector lowering");
4743       OrigIdx /= 8;
4744       SubVecVT =
4745           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4746                            SubVecVT.isScalableVector());
4747       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4748                                VecVT.isScalableVector());
4749       Vec = DAG.getBitcast(VecVT, Vec);
4750       SubVec = DAG.getBitcast(SubVecVT, SubVec);
4751     } else {
4752       // We can't slide this mask vector up indexed by its i1 elements.
4753       // This poses a problem when we wish to insert a scalable vector which
4754       // can't be re-expressed as a larger type. Just choose the slow path and
4755       // extend to a larger type, then truncate back down.
4756       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4757       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4758       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4759       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
4760       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
4761                         Op.getOperand(2));
4762       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
4763       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
4764     }
4765   }
4766 
4767   // If the subvector vector is a fixed-length type, we cannot use subregister
4768   // manipulation to simplify the codegen; we don't know which register of a
4769   // LMUL group contains the specific subvector as we only know the minimum
4770   // register size. Therefore we must slide the vector group up the full
4771   // amount.
4772   if (SubVecVT.isFixedLengthVector()) {
4773     if (OrigIdx == 0 && Vec.isUndef())
4774       return Op;
4775     MVT ContainerVT = VecVT;
4776     if (VecVT.isFixedLengthVector()) {
4777       ContainerVT = getContainerForFixedLengthVector(VecVT);
4778       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4779     }
4780     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
4781                          DAG.getUNDEF(ContainerVT), SubVec,
4782                          DAG.getConstant(0, DL, XLenVT));
4783     SDValue Mask =
4784         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4785     // Set the vector length to only the number of elements we care about. Note
4786     // that for slideup this includes the offset.
4787     SDValue VL =
4788         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
4789     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4790     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4791                                   SubVec, SlideupAmt, Mask, VL);
4792     if (VecVT.isFixedLengthVector())
4793       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4794     return DAG.getBitcast(Op.getValueType(), Slideup);
4795   }
4796 
4797   unsigned SubRegIdx, RemIdx;
4798   std::tie(SubRegIdx, RemIdx) =
4799       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4800           VecVT, SubVecVT, OrigIdx, TRI);
4801 
4802   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
4803   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
4804                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
4805                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
4806 
4807   // 1. If the Idx has been completely eliminated and this subvector's size is
4808   // a vector register or a multiple thereof, or the surrounding elements are
4809   // undef, then this is a subvector insert which naturally aligns to a vector
4810   // register. These can easily be handled using subregister manipulation.
4811   // 2. If the subvector is smaller than a vector register, then the insertion
4812   // must preserve the undisturbed elements of the register. We do this by
4813   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
4814   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
4815   // subvector within the vector register, and an INSERT_SUBVECTOR of that
4816   // LMUL=1 type back into the larger vector (resolving to another subregister
4817   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
4818   // to avoid allocating a large register group to hold our subvector.
4819   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
4820     return Op;
4821 
4822   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
4823   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
4824   // (in our case undisturbed). This means we can set up a subvector insertion
4825   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
4826   // size of the subvector.
4827   MVT InterSubVT = VecVT;
4828   SDValue AlignedExtract = Vec;
4829   unsigned AlignedIdx = OrigIdx - RemIdx;
4830   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4831     InterSubVT = getLMUL1VT(VecVT);
4832     // Extract a subvector equal to the nearest full vector register type. This
4833     // should resolve to a EXTRACT_SUBREG instruction.
4834     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4835                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
4836   }
4837 
4838   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4839   // For scalable vectors this must be further multiplied by vscale.
4840   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
4841 
4842   SDValue Mask, VL;
4843   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4844 
4845   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
4846   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
4847   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
4848   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
4849 
4850   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
4851                        DAG.getUNDEF(InterSubVT), SubVec,
4852                        DAG.getConstant(0, DL, XLenVT));
4853 
4854   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
4855                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
4856 
4857   // If required, insert this subvector back into the correct vector register.
4858   // This should resolve to an INSERT_SUBREG instruction.
4859   if (VecVT.bitsGT(InterSubVT))
4860     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
4861                           DAG.getConstant(AlignedIdx, DL, XLenVT));
4862 
4863   // We might have bitcast from a mask type: cast back to the original type if
4864   // required.
4865   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
4866 }
4867 
4868 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
4869                                                     SelectionDAG &DAG) const {
4870   SDValue Vec = Op.getOperand(0);
4871   MVT SubVecVT = Op.getSimpleValueType();
4872   MVT VecVT = Vec.getSimpleValueType();
4873 
4874   SDLoc DL(Op);
4875   MVT XLenVT = Subtarget.getXLenVT();
4876   unsigned OrigIdx = Op.getConstantOperandVal(1);
4877   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4878 
4879   // We don't have the ability to slide mask vectors down indexed by their i1
4880   // elements; the smallest we can do is i8. Often we are able to bitcast to
4881   // equivalent i8 vectors. Note that when extracting a fixed-length vector
4882   // from a scalable one, we might not necessarily have enough scalable
4883   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
4884   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
4885     if (VecVT.getVectorMinNumElements() >= 8 &&
4886         SubVecVT.getVectorMinNumElements() >= 8) {
4887       assert(OrigIdx % 8 == 0 && "Invalid index");
4888       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4889              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4890              "Unexpected mask vector lowering");
4891       OrigIdx /= 8;
4892       SubVecVT =
4893           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4894                            SubVecVT.isScalableVector());
4895       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4896                                VecVT.isScalableVector());
4897       Vec = DAG.getBitcast(VecVT, Vec);
4898     } else {
4899       // We can't slide this mask vector down, indexed by its i1 elements.
4900       // This poses a problem when we wish to extract a scalable vector which
4901       // can't be re-expressed as a larger type. Just choose the slow path and
4902       // extend to a larger type, then truncate back down.
4903       // TODO: We could probably improve this when extracting certain fixed
4904       // from fixed, where we can extract as i8 and shift the correct element
4905       // right to reach the desired subvector?
4906       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4907       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4908       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4909       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
4910                         Op.getOperand(1));
4911       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
4912       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
4913     }
4914   }
4915 
4916   // If the subvector vector is a fixed-length type, we cannot use subregister
4917   // manipulation to simplify the codegen; we don't know which register of a
4918   // LMUL group contains the specific subvector as we only know the minimum
4919   // register size. Therefore we must slide the vector group down the full
4920   // amount.
4921   if (SubVecVT.isFixedLengthVector()) {
4922     // With an index of 0 this is a cast-like subvector, which can be performed
4923     // with subregister operations.
4924     if (OrigIdx == 0)
4925       return Op;
4926     MVT ContainerVT = VecVT;
4927     if (VecVT.isFixedLengthVector()) {
4928       ContainerVT = getContainerForFixedLengthVector(VecVT);
4929       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4930     }
4931     SDValue Mask =
4932         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4933     // Set the vector length to only the number of elements we care about. This
4934     // avoids sliding down elements we're going to discard straight away.
4935     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
4936     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4937     SDValue Slidedown =
4938         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4939                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
4940     // Now we can use a cast-like subvector extract to get the result.
4941     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4942                             DAG.getConstant(0, DL, XLenVT));
4943     return DAG.getBitcast(Op.getValueType(), Slidedown);
4944   }
4945 
4946   unsigned SubRegIdx, RemIdx;
4947   std::tie(SubRegIdx, RemIdx) =
4948       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4949           VecVT, SubVecVT, OrigIdx, TRI);
4950 
4951   // If the Idx has been completely eliminated then this is a subvector extract
4952   // which naturally aligns to a vector register. These can easily be handled
4953   // using subregister manipulation.
4954   if (RemIdx == 0)
4955     return Op;
4956 
4957   // Else we must shift our vector register directly to extract the subvector.
4958   // Do this using VSLIDEDOWN.
4959 
4960   // If the vector type is an LMUL-group type, extract a subvector equal to the
4961   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
4962   // instruction.
4963   MVT InterSubVT = VecVT;
4964   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4965     InterSubVT = getLMUL1VT(VecVT);
4966     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4967                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
4968   }
4969 
4970   // Slide this vector register down by the desired number of elements in order
4971   // to place the desired subvector starting at element 0.
4972   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4973   // For scalable vectors this must be further multiplied by vscale.
4974   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
4975 
4976   SDValue Mask, VL;
4977   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
4978   SDValue Slidedown =
4979       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
4980                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
4981 
4982   // Now the vector is in the right position, extract our final subvector. This
4983   // should resolve to a COPY.
4984   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4985                           DAG.getConstant(0, DL, XLenVT));
4986 
4987   // We might have bitcast from a mask type: cast back to the original type if
4988   // required.
4989   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
4990 }
4991 
4992 // Lower step_vector to the vid instruction. Any non-identity step value must
4993 // be accounted for my manual expansion.
4994 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
4995                                               SelectionDAG &DAG) const {
4996   SDLoc DL(Op);
4997   MVT VT = Op.getSimpleValueType();
4998   MVT XLenVT = Subtarget.getXLenVT();
4999   SDValue Mask, VL;
5000   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5001   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5002   uint64_t StepValImm = Op.getConstantOperandVal(0);
5003   if (StepValImm != 1) {
5004     if (isPowerOf2_64(StepValImm)) {
5005       SDValue StepVal =
5006           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
5007                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5008       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5009     } else {
5010       SDValue StepVal = lowerScalarSplat(
5011           DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT,
5012           DL, DAG, Subtarget);
5013       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5014     }
5015   }
5016   return StepVec;
5017 }
5018 
5019 // Implement vector_reverse using vrgather.vv with indices determined by
5020 // subtracting the id of each element from (VLMAX-1). This will convert
5021 // the indices like so:
5022 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5023 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5024 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5025                                                  SelectionDAG &DAG) const {
5026   SDLoc DL(Op);
5027   MVT VecVT = Op.getSimpleValueType();
5028   unsigned EltSize = VecVT.getScalarSizeInBits();
5029   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5030 
5031   unsigned MaxVLMAX = 0;
5032   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5033   if (VectorBitsMax != 0)
5034     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
5035 
5036   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5037   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5038 
5039   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5040   // to use vrgatherei16.vv.
5041   // TODO: It's also possible to use vrgatherei16.vv for other types to
5042   // decrease register width for the index calculation.
5043   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5044     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5045     // Reverse each half, then reassemble them in reverse order.
5046     // NOTE: It's also possible that after splitting that VLMAX no longer
5047     // requires vrgatherei16.vv.
5048     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5049       SDValue Lo, Hi;
5050       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5051       EVT LoVT, HiVT;
5052       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5053       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5054       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5055       // Reassemble the low and high pieces reversed.
5056       // FIXME: This is a CONCAT_VECTORS.
5057       SDValue Res =
5058           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5059                       DAG.getIntPtrConstant(0, DL));
5060       return DAG.getNode(
5061           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5062           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5063     }
5064 
5065     // Just promote the int type to i16 which will double the LMUL.
5066     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5067     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5068   }
5069 
5070   MVT XLenVT = Subtarget.getXLenVT();
5071   SDValue Mask, VL;
5072   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5073 
5074   // Calculate VLMAX-1 for the desired SEW.
5075   unsigned MinElts = VecVT.getVectorMinNumElements();
5076   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5077                               DAG.getConstant(MinElts, DL, XLenVT));
5078   SDValue VLMinus1 =
5079       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5080 
5081   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5082   bool IsRV32E64 =
5083       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5084   SDValue SplatVL;
5085   if (!IsRV32E64)
5086     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5087   else
5088     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
5089 
5090   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5091   SDValue Indices =
5092       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5093 
5094   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5095 }
5096 
5097 SDValue
5098 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5099                                                      SelectionDAG &DAG) const {
5100   SDLoc DL(Op);
5101   auto *Load = cast<LoadSDNode>(Op);
5102 
5103   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5104                                         Load->getMemoryVT(),
5105                                         *Load->getMemOperand()) &&
5106          "Expecting a correctly-aligned load");
5107 
5108   MVT VT = Op.getSimpleValueType();
5109   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5110 
5111   SDValue VL =
5112       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5113 
5114   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5115   SDValue NewLoad = DAG.getMemIntrinsicNode(
5116       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
5117       Load->getMemoryVT(), Load->getMemOperand());
5118 
5119   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5120   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5121 }
5122 
5123 SDValue
5124 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5125                                                       SelectionDAG &DAG) const {
5126   SDLoc DL(Op);
5127   auto *Store = cast<StoreSDNode>(Op);
5128 
5129   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5130                                         Store->getMemoryVT(),
5131                                         *Store->getMemOperand()) &&
5132          "Expecting a correctly-aligned store");
5133 
5134   SDValue StoreVal = Store->getValue();
5135   MVT VT = StoreVal.getSimpleValueType();
5136 
5137   // If the size less than a byte, we need to pad with zeros to make a byte.
5138   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5139     VT = MVT::v8i1;
5140     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5141                            DAG.getConstant(0, DL, VT), StoreVal,
5142                            DAG.getIntPtrConstant(0, DL));
5143   }
5144 
5145   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5146 
5147   SDValue VL =
5148       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5149 
5150   SDValue NewValue =
5151       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5152   return DAG.getMemIntrinsicNode(
5153       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
5154       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
5155       Store->getMemoryVT(), Store->getMemOperand());
5156 }
5157 
5158 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5159                                              SelectionDAG &DAG) const {
5160   SDLoc DL(Op);
5161   MVT VT = Op.getSimpleValueType();
5162 
5163   const auto *MemSD = cast<MemSDNode>(Op);
5164   EVT MemVT = MemSD->getMemoryVT();
5165   MachineMemOperand *MMO = MemSD->getMemOperand();
5166   SDValue Chain = MemSD->getChain();
5167   SDValue BasePtr = MemSD->getBasePtr();
5168 
5169   SDValue Mask, PassThru, VL;
5170   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5171     Mask = VPLoad->getMask();
5172     PassThru = DAG.getUNDEF(VT);
5173     VL = VPLoad->getVectorLength();
5174   } else {
5175     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5176     Mask = MLoad->getMask();
5177     PassThru = MLoad->getPassThru();
5178   }
5179 
5180   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5181 
5182   MVT XLenVT = Subtarget.getXLenVT();
5183 
5184   MVT ContainerVT = VT;
5185   if (VT.isFixedLengthVector()) {
5186     ContainerVT = getContainerForFixedLengthVector(VT);
5187     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5188     if (!IsUnmasked) {
5189       MVT MaskVT =
5190           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5191       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5192     }
5193   }
5194 
5195   if (!VL)
5196     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5197 
5198   unsigned IntID =
5199       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5200   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5201   if (!IsUnmasked)
5202     Ops.push_back(PassThru);
5203   Ops.push_back(BasePtr);
5204   if (!IsUnmasked)
5205     Ops.push_back(Mask);
5206   Ops.push_back(VL);
5207   if (!IsUnmasked)
5208     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5209 
5210   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5211 
5212   SDValue Result =
5213       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5214   Chain = Result.getValue(1);
5215 
5216   if (VT.isFixedLengthVector())
5217     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5218 
5219   return DAG.getMergeValues({Result, Chain}, DL);
5220 }
5221 
5222 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5223                                               SelectionDAG &DAG) const {
5224   SDLoc DL(Op);
5225 
5226   const auto *MemSD = cast<MemSDNode>(Op);
5227   EVT MemVT = MemSD->getMemoryVT();
5228   MachineMemOperand *MMO = MemSD->getMemOperand();
5229   SDValue Chain = MemSD->getChain();
5230   SDValue BasePtr = MemSD->getBasePtr();
5231   SDValue Val, Mask, VL;
5232 
5233   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5234     Val = VPStore->getValue();
5235     Mask = VPStore->getMask();
5236     VL = VPStore->getVectorLength();
5237   } else {
5238     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5239     Val = MStore->getValue();
5240     Mask = MStore->getMask();
5241   }
5242 
5243   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5244 
5245   MVT VT = Val.getSimpleValueType();
5246   MVT XLenVT = Subtarget.getXLenVT();
5247 
5248   MVT ContainerVT = VT;
5249   if (VT.isFixedLengthVector()) {
5250     ContainerVT = getContainerForFixedLengthVector(VT);
5251 
5252     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5253     if (!IsUnmasked) {
5254       MVT MaskVT =
5255           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5256       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5257     }
5258   }
5259 
5260   if (!VL)
5261     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5262 
5263   unsigned IntID =
5264       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5265   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5266   Ops.push_back(Val);
5267   Ops.push_back(BasePtr);
5268   if (!IsUnmasked)
5269     Ops.push_back(Mask);
5270   Ops.push_back(VL);
5271 
5272   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5273                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5274 }
5275 
5276 SDValue
5277 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5278                                                       SelectionDAG &DAG) const {
5279   MVT InVT = Op.getOperand(0).getSimpleValueType();
5280   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5281 
5282   MVT VT = Op.getSimpleValueType();
5283 
5284   SDValue Op1 =
5285       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5286   SDValue Op2 =
5287       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5288 
5289   SDLoc DL(Op);
5290   SDValue VL =
5291       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5292 
5293   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5294   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5295 
5296   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5297                             Op.getOperand(2), Mask, VL);
5298 
5299   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5300 }
5301 
5302 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5303     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5304   MVT VT = Op.getSimpleValueType();
5305 
5306   if (VT.getVectorElementType() == MVT::i1)
5307     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5308 
5309   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5310 }
5311 
5312 SDValue
5313 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5314                                                       SelectionDAG &DAG) const {
5315   unsigned Opc;
5316   switch (Op.getOpcode()) {
5317   default: llvm_unreachable("Unexpected opcode!");
5318   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5319   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5320   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5321   }
5322 
5323   return lowerToScalableOp(Op, DAG, Opc);
5324 }
5325 
5326 // Lower vector ABS to smax(X, sub(0, X)).
5327 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5328   SDLoc DL(Op);
5329   MVT VT = Op.getSimpleValueType();
5330   SDValue X = Op.getOperand(0);
5331 
5332   assert(VT.isFixedLengthVector() && "Unexpected type");
5333 
5334   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5335   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5336 
5337   SDValue Mask, VL;
5338   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5339 
5340   SDValue SplatZero =
5341       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5342                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5343   SDValue NegX =
5344       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5345   SDValue Max =
5346       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5347 
5348   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5349 }
5350 
5351 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5352     SDValue Op, SelectionDAG &DAG) const {
5353   SDLoc DL(Op);
5354   MVT VT = Op.getSimpleValueType();
5355   SDValue Mag = Op.getOperand(0);
5356   SDValue Sign = Op.getOperand(1);
5357   assert(Mag.getValueType() == Sign.getValueType() &&
5358          "Can only handle COPYSIGN with matching types.");
5359 
5360   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5361   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5362   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5363 
5364   SDValue Mask, VL;
5365   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5366 
5367   SDValue CopySign =
5368       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5369 
5370   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5371 }
5372 
5373 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5374     SDValue Op, SelectionDAG &DAG) const {
5375   MVT VT = Op.getSimpleValueType();
5376   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5377 
5378   MVT I1ContainerVT =
5379       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5380 
5381   SDValue CC =
5382       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5383   SDValue Op1 =
5384       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5385   SDValue Op2 =
5386       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5387 
5388   SDLoc DL(Op);
5389   SDValue Mask, VL;
5390   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5391 
5392   SDValue Select =
5393       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5394 
5395   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5396 }
5397 
5398 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5399                                                unsigned NewOpc,
5400                                                bool HasMask) const {
5401   MVT VT = Op.getSimpleValueType();
5402   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5403 
5404   // Create list of operands by converting existing ones to scalable types.
5405   SmallVector<SDValue, 6> Ops;
5406   for (const SDValue &V : Op->op_values()) {
5407     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5408 
5409     // Pass through non-vector operands.
5410     if (!V.getValueType().isVector()) {
5411       Ops.push_back(V);
5412       continue;
5413     }
5414 
5415     // "cast" fixed length vector to a scalable vector.
5416     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
5417            "Only fixed length vectors are supported!");
5418     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5419   }
5420 
5421   SDLoc DL(Op);
5422   SDValue Mask, VL;
5423   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5424   if (HasMask)
5425     Ops.push_back(Mask);
5426   Ops.push_back(VL);
5427 
5428   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
5429   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
5430 }
5431 
5432 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
5433 // * Operands of each node are assumed to be in the same order.
5434 // * The EVL operand is promoted from i32 to i64 on RV64.
5435 // * Fixed-length vectors are converted to their scalable-vector container
5436 //   types.
5437 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
5438                                        unsigned RISCVISDOpc) const {
5439   SDLoc DL(Op);
5440   MVT VT = Op.getSimpleValueType();
5441   SmallVector<SDValue, 4> Ops;
5442 
5443   for (const auto &OpIdx : enumerate(Op->ops())) {
5444     SDValue V = OpIdx.value();
5445     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5446     // Pass through operands which aren't fixed-length vectors.
5447     if (!V.getValueType().isFixedLengthVector()) {
5448       Ops.push_back(V);
5449       continue;
5450     }
5451     // "cast" fixed length vector to a scalable vector.
5452     MVT OpVT = V.getSimpleValueType();
5453     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
5454     assert(useRVVForFixedLengthVectorVT(OpVT) &&
5455            "Only fixed length vectors are supported!");
5456     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5457   }
5458 
5459   if (!VT.isFixedLengthVector())
5460     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
5461 
5462   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5463 
5464   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
5465 
5466   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
5467 }
5468 
5469 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
5470                                             unsigned MaskOpc,
5471                                             unsigned VecOpc) const {
5472   MVT VT = Op.getSimpleValueType();
5473   if (VT.getVectorElementType() != MVT::i1)
5474     return lowerVPOp(Op, DAG, VecOpc);
5475 
5476   // It is safe to drop mask parameter as masked-off elements are undef.
5477   SDValue Op1 = Op->getOperand(0);
5478   SDValue Op2 = Op->getOperand(1);
5479   SDValue VL = Op->getOperand(3);
5480 
5481   MVT ContainerVT = VT;
5482   const bool IsFixed = VT.isFixedLengthVector();
5483   if (IsFixed) {
5484     ContainerVT = getContainerForFixedLengthVector(VT);
5485     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
5486     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
5487   }
5488 
5489   SDLoc DL(Op);
5490   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
5491   if (!IsFixed)
5492     return Val;
5493   return convertFromScalableVector(VT, Val, DAG, Subtarget);
5494 }
5495 
5496 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
5497 // matched to a RVV indexed load. The RVV indexed load instructions only
5498 // support the "unsigned unscaled" addressing mode; indices are implicitly
5499 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5500 // signed or scaled indexing is extended to the XLEN value type and scaled
5501 // accordingly.
5502 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
5503                                                SelectionDAG &DAG) const {
5504   SDLoc DL(Op);
5505   MVT VT = Op.getSimpleValueType();
5506 
5507   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5508   EVT MemVT = MemSD->getMemoryVT();
5509   MachineMemOperand *MMO = MemSD->getMemOperand();
5510   SDValue Chain = MemSD->getChain();
5511   SDValue BasePtr = MemSD->getBasePtr();
5512 
5513   ISD::LoadExtType LoadExtType;
5514   SDValue Index, Mask, PassThru, VL;
5515 
5516   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
5517     Index = VPGN->getIndex();
5518     Mask = VPGN->getMask();
5519     PassThru = DAG.getUNDEF(VT);
5520     VL = VPGN->getVectorLength();
5521     // VP doesn't support extending loads.
5522     LoadExtType = ISD::NON_EXTLOAD;
5523   } else {
5524     // Else it must be a MGATHER.
5525     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
5526     Index = MGN->getIndex();
5527     Mask = MGN->getMask();
5528     PassThru = MGN->getPassThru();
5529     LoadExtType = MGN->getExtensionType();
5530   }
5531 
5532   MVT IndexVT = Index.getSimpleValueType();
5533   MVT XLenVT = Subtarget.getXLenVT();
5534 
5535   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5536          "Unexpected VTs!");
5537   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5538   // Targets have to explicitly opt-in for extending vector loads.
5539   assert(LoadExtType == ISD::NON_EXTLOAD &&
5540          "Unexpected extending MGATHER/VP_GATHER");
5541   (void)LoadExtType;
5542 
5543   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5544   // the selection of the masked intrinsics doesn't do this for us.
5545   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5546 
5547   MVT ContainerVT = VT;
5548   if (VT.isFixedLengthVector()) {
5549     // We need to use the larger of the result and index type to determine the
5550     // scalable type to use so we don't increase LMUL for any operand/result.
5551     if (VT.bitsGE(IndexVT)) {
5552       ContainerVT = getContainerForFixedLengthVector(VT);
5553       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5554                                  ContainerVT.getVectorElementCount());
5555     } else {
5556       IndexVT = getContainerForFixedLengthVector(IndexVT);
5557       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
5558                                      IndexVT.getVectorElementCount());
5559     }
5560 
5561     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5562 
5563     if (!IsUnmasked) {
5564       MVT MaskVT =
5565           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5566       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5567       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5568     }
5569   }
5570 
5571   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
5572       IndexVT = IndexVT.changeVectorElementType(XLenVT);
5573       Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index);
5574   }
5575 
5576   if (!VL)
5577     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5578 
5579   unsigned IntID =
5580       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
5581   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5582   if (!IsUnmasked)
5583     Ops.push_back(PassThru);
5584   Ops.push_back(BasePtr);
5585   Ops.push_back(Index);
5586   if (!IsUnmasked)
5587     Ops.push_back(Mask);
5588   Ops.push_back(VL);
5589   if (!IsUnmasked)
5590     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5591 
5592   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5593   SDValue Result =
5594       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5595   Chain = Result.getValue(1);
5596 
5597   if (VT.isFixedLengthVector())
5598     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5599 
5600   return DAG.getMergeValues({Result, Chain}, DL);
5601 }
5602 
5603 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
5604 // matched to a RVV indexed store. The RVV indexed store instructions only
5605 // support the "unsigned unscaled" addressing mode; indices are implicitly
5606 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5607 // signed or scaled indexing is extended to the XLEN value type and scaled
5608 // accordingly.
5609 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
5610                                                 SelectionDAG &DAG) const {
5611   SDLoc DL(Op);
5612   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5613   EVT MemVT = MemSD->getMemoryVT();
5614   MachineMemOperand *MMO = MemSD->getMemOperand();
5615   SDValue Chain = MemSD->getChain();
5616   SDValue BasePtr = MemSD->getBasePtr();
5617 
5618   bool IsTruncatingStore = false;
5619   SDValue Index, Mask, Val, VL;
5620 
5621   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
5622     Index = VPSN->getIndex();
5623     Mask = VPSN->getMask();
5624     Val = VPSN->getValue();
5625     VL = VPSN->getVectorLength();
5626     // VP doesn't support truncating stores.
5627     IsTruncatingStore = false;
5628   } else {
5629     // Else it must be a MSCATTER.
5630     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
5631     Index = MSN->getIndex();
5632     Mask = MSN->getMask();
5633     Val = MSN->getValue();
5634     IsTruncatingStore = MSN->isTruncatingStore();
5635   }
5636 
5637   MVT VT = Val.getSimpleValueType();
5638   MVT IndexVT = Index.getSimpleValueType();
5639   MVT XLenVT = Subtarget.getXLenVT();
5640 
5641   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5642          "Unexpected VTs!");
5643   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5644   // Targets have to explicitly opt-in for extending vector loads and
5645   // truncating vector stores.
5646   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
5647   (void)IsTruncatingStore;
5648 
5649   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5650   // the selection of the masked intrinsics doesn't do this for us.
5651   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5652 
5653   MVT ContainerVT = VT;
5654   if (VT.isFixedLengthVector()) {
5655     // We need to use the larger of the value and index type to determine the
5656     // scalable type to use so we don't increase LMUL for any operand/result.
5657     if (VT.bitsGE(IndexVT)) {
5658       ContainerVT = getContainerForFixedLengthVector(VT);
5659       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5660                                  ContainerVT.getVectorElementCount());
5661     } else {
5662       IndexVT = getContainerForFixedLengthVector(IndexVT);
5663       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
5664                                      IndexVT.getVectorElementCount());
5665     }
5666 
5667     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5668     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5669 
5670     if (!IsUnmasked) {
5671       MVT MaskVT =
5672           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5673       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5674     }
5675   }
5676 
5677   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
5678       IndexVT = IndexVT.changeVectorElementType(XLenVT);
5679       Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index);
5680   }
5681 
5682   if (!VL)
5683     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5684 
5685   unsigned IntID =
5686       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
5687   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5688   Ops.push_back(Val);
5689   Ops.push_back(BasePtr);
5690   Ops.push_back(Index);
5691   if (!IsUnmasked)
5692     Ops.push_back(Mask);
5693   Ops.push_back(VL);
5694 
5695   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5696                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5697 }
5698 
5699 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
5700                                                SelectionDAG &DAG) const {
5701   const MVT XLenVT = Subtarget.getXLenVT();
5702   SDLoc DL(Op);
5703   SDValue Chain = Op->getOperand(0);
5704   SDValue SysRegNo = DAG.getTargetConstant(
5705       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5706   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
5707   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
5708 
5709   // Encoding used for rounding mode in RISCV differs from that used in
5710   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
5711   // table, which consists of a sequence of 4-bit fields, each representing
5712   // corresponding FLT_ROUNDS mode.
5713   static const int Table =
5714       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
5715       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
5716       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
5717       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
5718       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
5719 
5720   SDValue Shift =
5721       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
5722   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5723                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5724   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5725                                DAG.getConstant(7, DL, XLenVT));
5726 
5727   return DAG.getMergeValues({Masked, Chain}, DL);
5728 }
5729 
5730 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
5731                                                SelectionDAG &DAG) const {
5732   const MVT XLenVT = Subtarget.getXLenVT();
5733   SDLoc DL(Op);
5734   SDValue Chain = Op->getOperand(0);
5735   SDValue RMValue = Op->getOperand(1);
5736   SDValue SysRegNo = DAG.getTargetConstant(
5737       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5738 
5739   // Encoding used for rounding mode in RISCV differs from that used in
5740   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
5741   // a table, which consists of a sequence of 4-bit fields, each representing
5742   // corresponding RISCV mode.
5743   static const unsigned Table =
5744       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
5745       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
5746       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
5747       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
5748       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
5749 
5750   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
5751                               DAG.getConstant(2, DL, XLenVT));
5752   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5753                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5754   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5755                         DAG.getConstant(0x7, DL, XLenVT));
5756   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
5757                      RMValue);
5758 }
5759 
5760 // Returns the opcode of the target-specific SDNode that implements the 32-bit
5761 // form of the given Opcode.
5762 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
5763   switch (Opcode) {
5764   default:
5765     llvm_unreachable("Unexpected opcode");
5766   case ISD::SHL:
5767     return RISCVISD::SLLW;
5768   case ISD::SRA:
5769     return RISCVISD::SRAW;
5770   case ISD::SRL:
5771     return RISCVISD::SRLW;
5772   case ISD::SDIV:
5773     return RISCVISD::DIVW;
5774   case ISD::UDIV:
5775     return RISCVISD::DIVUW;
5776   case ISD::UREM:
5777     return RISCVISD::REMUW;
5778   case ISD::ROTL:
5779     return RISCVISD::ROLW;
5780   case ISD::ROTR:
5781     return RISCVISD::RORW;
5782   case RISCVISD::GREV:
5783     return RISCVISD::GREVW;
5784   case RISCVISD::GORC:
5785     return RISCVISD::GORCW;
5786   }
5787 }
5788 
5789 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
5790 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
5791 // otherwise be promoted to i64, making it difficult to select the
5792 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
5793 // type i8/i16/i32 is lost.
5794 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
5795                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
5796   SDLoc DL(N);
5797   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5798   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
5799   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
5800   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5801   // ReplaceNodeResults requires we maintain the same type for the return value.
5802   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
5803 }
5804 
5805 // Converts the given 32-bit operation to a i64 operation with signed extension
5806 // semantic to reduce the signed extension instructions.
5807 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
5808   SDLoc DL(N);
5809   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5810   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5811   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
5812   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5813                                DAG.getValueType(MVT::i32));
5814   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
5815 }
5816 
5817 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
5818                                              SmallVectorImpl<SDValue> &Results,
5819                                              SelectionDAG &DAG) const {
5820   SDLoc DL(N);
5821   switch (N->getOpcode()) {
5822   default:
5823     llvm_unreachable("Don't know how to custom type legalize this operation!");
5824   case ISD::STRICT_FP_TO_SINT:
5825   case ISD::STRICT_FP_TO_UINT:
5826   case ISD::FP_TO_SINT:
5827   case ISD::FP_TO_UINT: {
5828     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5829            "Unexpected custom legalisation");
5830     bool IsStrict = N->isStrictFPOpcode();
5831     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
5832                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
5833     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
5834     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
5835         TargetLowering::TypeSoftenFloat) {
5836       if (!isTypeLegal(Op0.getValueType()))
5837         return;
5838       if (IsStrict) {
5839         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
5840                                 : RISCVISD::STRICT_FCVT_WU_RV64;
5841         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
5842         SDValue Res = DAG.getNode(
5843             Opc, DL, VTs, N->getOperand(0), Op0,
5844             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
5845         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5846         Results.push_back(Res.getValue(1));
5847         return;
5848       }
5849       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
5850       SDValue Res =
5851           DAG.getNode(Opc, DL, MVT::i64, Op0,
5852                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
5853       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5854       return;
5855     }
5856     // If the FP type needs to be softened, emit a library call using the 'si'
5857     // version. If we left it to default legalization we'd end up with 'di'. If
5858     // the FP type doesn't need to be softened just let generic type
5859     // legalization promote the result type.
5860     RTLIB::Libcall LC;
5861     if (IsSigned)
5862       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
5863     else
5864       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
5865     MakeLibCallOptions CallOptions;
5866     EVT OpVT = Op0.getValueType();
5867     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
5868     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
5869     SDValue Result;
5870     std::tie(Result, Chain) =
5871         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
5872     Results.push_back(Result);
5873     if (IsStrict)
5874       Results.push_back(Chain);
5875     break;
5876   }
5877   case ISD::READCYCLECOUNTER: {
5878     assert(!Subtarget.is64Bit() &&
5879            "READCYCLECOUNTER only has custom type legalization on riscv32");
5880 
5881     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5882     SDValue RCW =
5883         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
5884 
5885     Results.push_back(
5886         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
5887     Results.push_back(RCW.getValue(2));
5888     break;
5889   }
5890   case ISD::MUL: {
5891     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
5892     unsigned XLen = Subtarget.getXLen();
5893     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
5894     if (Size > XLen) {
5895       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
5896       SDValue LHS = N->getOperand(0);
5897       SDValue RHS = N->getOperand(1);
5898       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
5899 
5900       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
5901       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
5902       // We need exactly one side to be unsigned.
5903       if (LHSIsU == RHSIsU)
5904         return;
5905 
5906       auto MakeMULPair = [&](SDValue S, SDValue U) {
5907         MVT XLenVT = Subtarget.getXLenVT();
5908         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
5909         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
5910         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
5911         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
5912         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
5913       };
5914 
5915       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
5916       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
5917 
5918       // The other operand should be signed, but still prefer MULH when
5919       // possible.
5920       if (RHSIsU && LHSIsS && !RHSIsS)
5921         Results.push_back(MakeMULPair(LHS, RHS));
5922       else if (LHSIsU && RHSIsS && !LHSIsS)
5923         Results.push_back(MakeMULPair(RHS, LHS));
5924 
5925       return;
5926     }
5927     LLVM_FALLTHROUGH;
5928   }
5929   case ISD::ADD:
5930   case ISD::SUB:
5931     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5932            "Unexpected custom legalisation");
5933     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
5934     break;
5935   case ISD::SHL:
5936   case ISD::SRA:
5937   case ISD::SRL:
5938     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5939            "Unexpected custom legalisation");
5940     if (N->getOperand(1).getOpcode() != ISD::Constant) {
5941       Results.push_back(customLegalizeToWOp(N, DAG));
5942       break;
5943     }
5944 
5945     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
5946     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
5947     // shift amount.
5948     if (N->getOpcode() == ISD::SHL) {
5949       SDLoc DL(N);
5950       SDValue NewOp0 =
5951           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5952       SDValue NewOp1 =
5953           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
5954       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
5955       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5956                                    DAG.getValueType(MVT::i32));
5957       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5958     }
5959 
5960     break;
5961   case ISD::ROTL:
5962   case ISD::ROTR:
5963     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5964            "Unexpected custom legalisation");
5965     Results.push_back(customLegalizeToWOp(N, DAG));
5966     break;
5967   case ISD::CTTZ:
5968   case ISD::CTTZ_ZERO_UNDEF:
5969   case ISD::CTLZ:
5970   case ISD::CTLZ_ZERO_UNDEF: {
5971     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5972            "Unexpected custom legalisation");
5973 
5974     SDValue NewOp0 =
5975         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5976     bool IsCTZ =
5977         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
5978     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
5979     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
5980     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5981     return;
5982   }
5983   case ISD::SDIV:
5984   case ISD::UDIV:
5985   case ISD::UREM: {
5986     MVT VT = N->getSimpleValueType(0);
5987     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
5988            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
5989            "Unexpected custom legalisation");
5990     // Don't promote division/remainder by constant since we should expand those
5991     // to multiply by magic constant.
5992     // FIXME: What if the expansion is disabled for minsize.
5993     if (N->getOperand(1).getOpcode() == ISD::Constant)
5994       return;
5995 
5996     // If the input is i32, use ANY_EXTEND since the W instructions don't read
5997     // the upper 32 bits. For other types we need to sign or zero extend
5998     // based on the opcode.
5999     unsigned ExtOpc = ISD::ANY_EXTEND;
6000     if (VT != MVT::i32)
6001       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6002                                            : ISD::ZERO_EXTEND;
6003 
6004     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6005     break;
6006   }
6007   case ISD::UADDO:
6008   case ISD::USUBO: {
6009     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6010            "Unexpected custom legalisation");
6011     bool IsAdd = N->getOpcode() == ISD::UADDO;
6012     // Create an ADDW or SUBW.
6013     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6014     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6015     SDValue Res =
6016         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6017     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6018                       DAG.getValueType(MVT::i32));
6019 
6020     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
6021     // Since the inputs are sign extended from i32, this is equivalent to
6022     // comparing the lower 32 bits.
6023     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6024     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6025                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
6026 
6027     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6028     Results.push_back(Overflow);
6029     return;
6030   }
6031   case ISD::UADDSAT:
6032   case ISD::USUBSAT: {
6033     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6034            "Unexpected custom legalisation");
6035     if (Subtarget.hasStdExtZbb()) {
6036       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6037       // sign extend allows overflow of the lower 32 bits to be detected on
6038       // the promoted size.
6039       SDValue LHS =
6040           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6041       SDValue RHS =
6042           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6043       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6044       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6045       return;
6046     }
6047 
6048     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6049     // promotion for UADDO/USUBO.
6050     Results.push_back(expandAddSubSat(N, DAG));
6051     return;
6052   }
6053   case ISD::BITCAST: {
6054     EVT VT = N->getValueType(0);
6055     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6056     SDValue Op0 = N->getOperand(0);
6057     EVT Op0VT = Op0.getValueType();
6058     MVT XLenVT = Subtarget.getXLenVT();
6059     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6060       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6061       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6062     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6063                Subtarget.hasStdExtF()) {
6064       SDValue FPConv =
6065           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6066       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6067     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6068                isTypeLegal(Op0VT)) {
6069       // Custom-legalize bitcasts from fixed-length vector types to illegal
6070       // scalar types in order to improve codegen. Bitcast the vector to a
6071       // one-element vector type whose element type is the same as the result
6072       // type, and extract the first element.
6073       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6074       if (isTypeLegal(BVT)) {
6075         SDValue BVec = DAG.getBitcast(BVT, Op0);
6076         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6077                                       DAG.getConstant(0, DL, XLenVT)));
6078       }
6079     }
6080     break;
6081   }
6082   case RISCVISD::GREV:
6083   case RISCVISD::GORC: {
6084     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6085            "Unexpected custom legalisation");
6086     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6087     // This is similar to customLegalizeToWOp, except that we pass the second
6088     // operand (a TargetConstant) straight through: it is already of type
6089     // XLenVT.
6090     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6091     SDValue NewOp0 =
6092         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6093     SDValue NewOp1 =
6094         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6095     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6096     // ReplaceNodeResults requires we maintain the same type for the return
6097     // value.
6098     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6099     break;
6100   }
6101   case RISCVISD::SHFL: {
6102     // There is no SHFLIW instruction, but we can just promote the operation.
6103     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6104            "Unexpected custom legalisation");
6105     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6106     SDValue NewOp0 =
6107         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6108     SDValue NewOp1 =
6109         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6110     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
6111     // ReplaceNodeResults requires we maintain the same type for the return
6112     // value.
6113     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6114     break;
6115   }
6116   case ISD::BSWAP:
6117   case ISD::BITREVERSE: {
6118     MVT VT = N->getSimpleValueType(0);
6119     MVT XLenVT = Subtarget.getXLenVT();
6120     assert((VT == MVT::i8 || VT == MVT::i16 ||
6121             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6122            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6123     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6124     unsigned Imm = VT.getSizeInBits() - 1;
6125     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6126     if (N->getOpcode() == ISD::BSWAP)
6127       Imm &= ~0x7U;
6128     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
6129     SDValue GREVI =
6130         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
6131     // ReplaceNodeResults requires we maintain the same type for the return
6132     // value.
6133     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6134     break;
6135   }
6136   case ISD::FSHL:
6137   case ISD::FSHR: {
6138     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6139            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6140     SDValue NewOp0 =
6141         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6142     SDValue NewOp1 =
6143         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6144     SDValue NewOp2 =
6145         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6146     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6147     // Mask the shift amount to 5 bits.
6148     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6149                          DAG.getConstant(0x1f, DL, MVT::i64));
6150     unsigned Opc =
6151         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
6152     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
6153     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6154     break;
6155   }
6156   case ISD::EXTRACT_VECTOR_ELT: {
6157     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
6158     // type is illegal (currently only vXi64 RV32).
6159     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
6160     // transferred to the destination register. We issue two of these from the
6161     // upper- and lower- halves of the SEW-bit vector element, slid down to the
6162     // first element.
6163     SDValue Vec = N->getOperand(0);
6164     SDValue Idx = N->getOperand(1);
6165 
6166     // The vector type hasn't been legalized yet so we can't issue target
6167     // specific nodes if it needs legalization.
6168     // FIXME: We would manually legalize if it's important.
6169     if (!isTypeLegal(Vec.getValueType()))
6170       return;
6171 
6172     MVT VecVT = Vec.getSimpleValueType();
6173 
6174     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
6175            VecVT.getVectorElementType() == MVT::i64 &&
6176            "Unexpected EXTRACT_VECTOR_ELT legalization");
6177 
6178     // If this is a fixed vector, we need to convert it to a scalable vector.
6179     MVT ContainerVT = VecVT;
6180     if (VecVT.isFixedLengthVector()) {
6181       ContainerVT = getContainerForFixedLengthVector(VecVT);
6182       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6183     }
6184 
6185     MVT XLenVT = Subtarget.getXLenVT();
6186 
6187     // Use a VL of 1 to avoid processing more elements than we need.
6188     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6189     SDValue VL = DAG.getConstant(1, DL, XLenVT);
6190     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6191 
6192     // Unless the index is known to be 0, we must slide the vector down to get
6193     // the desired element into index 0.
6194     if (!isNullConstant(Idx)) {
6195       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
6196                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
6197     }
6198 
6199     // Extract the lower XLEN bits of the correct vector element.
6200     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6201 
6202     // To extract the upper XLEN bits of the vector element, shift the first
6203     // element right by 32 bits and re-extract the lower XLEN bits.
6204     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6205                                      DAG.getConstant(32, DL, XLenVT), VL);
6206     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
6207                                  ThirtyTwoV, Mask, VL);
6208 
6209     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6210 
6211     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6212     break;
6213   }
6214   case ISD::INTRINSIC_WO_CHAIN: {
6215     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6216     switch (IntNo) {
6217     default:
6218       llvm_unreachable(
6219           "Don't know how to custom type legalize this intrinsic!");
6220     case Intrinsic::riscv_orc_b: {
6221       // Lower to the GORCI encoding for orc.b with the operand extended.
6222       SDValue NewOp =
6223           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6224       // If Zbp is enabled, use GORCIW which will sign extend the result.
6225       unsigned Opc =
6226           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
6227       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
6228                                 DAG.getConstant(7, DL, MVT::i64));
6229       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6230       return;
6231     }
6232     case Intrinsic::riscv_grev:
6233     case Intrinsic::riscv_gorc: {
6234       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6235              "Unexpected custom legalisation");
6236       SDValue NewOp1 =
6237           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6238       SDValue NewOp2 =
6239           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6240       unsigned Opc =
6241           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
6242       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6243       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6244       break;
6245     }
6246     case Intrinsic::riscv_shfl:
6247     case Intrinsic::riscv_unshfl: {
6248       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6249              "Unexpected custom legalisation");
6250       SDValue NewOp1 =
6251           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6252       SDValue NewOp2 =
6253           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6254       unsigned Opc =
6255           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
6256       if (isa<ConstantSDNode>(N->getOperand(2))) {
6257         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6258                              DAG.getConstant(0xf, DL, MVT::i64));
6259         Opc =
6260             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
6261       }
6262       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6263       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6264       break;
6265     }
6266     case Intrinsic::riscv_bcompress:
6267     case Intrinsic::riscv_bdecompress: {
6268       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6269              "Unexpected custom legalisation");
6270       SDValue NewOp1 =
6271           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6272       SDValue NewOp2 =
6273           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6274       unsigned Opc = IntNo == Intrinsic::riscv_bcompress
6275                          ? RISCVISD::BCOMPRESSW
6276                          : RISCVISD::BDECOMPRESSW;
6277       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6278       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6279       break;
6280     }
6281     case Intrinsic::riscv_bfp: {
6282       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6283              "Unexpected custom legalisation");
6284       SDValue NewOp1 =
6285           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6286       SDValue NewOp2 =
6287           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6288       SDValue Res = DAG.getNode(RISCVISD::BFPW, DL, MVT::i64, NewOp1, NewOp2);
6289       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6290       break;
6291     }
6292     case Intrinsic::riscv_vmv_x_s: {
6293       EVT VT = N->getValueType(0);
6294       MVT XLenVT = Subtarget.getXLenVT();
6295       if (VT.bitsLT(XLenVT)) {
6296         // Simple case just extract using vmv.x.s and truncate.
6297         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
6298                                       Subtarget.getXLenVT(), N->getOperand(1));
6299         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
6300         return;
6301       }
6302 
6303       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
6304              "Unexpected custom legalization");
6305 
6306       // We need to do the move in two steps.
6307       SDValue Vec = N->getOperand(1);
6308       MVT VecVT = Vec.getSimpleValueType();
6309 
6310       // First extract the lower XLEN bits of the element.
6311       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6312 
6313       // To extract the upper XLEN bits of the vector element, shift the first
6314       // element right by 32 bits and re-extract the lower XLEN bits.
6315       SDValue VL = DAG.getConstant(1, DL, XLenVT);
6316       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
6317       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6318       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
6319                                        DAG.getConstant(32, DL, XLenVT), VL);
6320       SDValue LShr32 =
6321           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
6322       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6323 
6324       Results.push_back(
6325           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6326       break;
6327     }
6328     }
6329     break;
6330   }
6331   case ISD::VECREDUCE_ADD:
6332   case ISD::VECREDUCE_AND:
6333   case ISD::VECREDUCE_OR:
6334   case ISD::VECREDUCE_XOR:
6335   case ISD::VECREDUCE_SMAX:
6336   case ISD::VECREDUCE_UMAX:
6337   case ISD::VECREDUCE_SMIN:
6338   case ISD::VECREDUCE_UMIN:
6339     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
6340       Results.push_back(V);
6341     break;
6342   case ISD::VP_REDUCE_ADD:
6343   case ISD::VP_REDUCE_AND:
6344   case ISD::VP_REDUCE_OR:
6345   case ISD::VP_REDUCE_XOR:
6346   case ISD::VP_REDUCE_SMAX:
6347   case ISD::VP_REDUCE_UMAX:
6348   case ISD::VP_REDUCE_SMIN:
6349   case ISD::VP_REDUCE_UMIN:
6350     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
6351       Results.push_back(V);
6352     break;
6353   case ISD::FLT_ROUNDS_: {
6354     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
6355     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
6356     Results.push_back(Res.getValue(0));
6357     Results.push_back(Res.getValue(1));
6358     break;
6359   }
6360   }
6361 }
6362 
6363 // A structure to hold one of the bit-manipulation patterns below. Together, a
6364 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
6365 //   (or (and (shl x, 1), 0xAAAAAAAA),
6366 //       (and (srl x, 1), 0x55555555))
6367 struct RISCVBitmanipPat {
6368   SDValue Op;
6369   unsigned ShAmt;
6370   bool IsSHL;
6371 
6372   bool formsPairWith(const RISCVBitmanipPat &Other) const {
6373     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
6374   }
6375 };
6376 
6377 // Matches patterns of the form
6378 //   (and (shl x, C2), (C1 << C2))
6379 //   (and (srl x, C2), C1)
6380 //   (shl (and x, C1), C2)
6381 //   (srl (and x, (C1 << C2)), C2)
6382 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
6383 // The expected masks for each shift amount are specified in BitmanipMasks where
6384 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
6385 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
6386 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
6387 // XLen is 64.
6388 static Optional<RISCVBitmanipPat>
6389 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
6390   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
6391          "Unexpected number of masks");
6392   Optional<uint64_t> Mask;
6393   // Optionally consume a mask around the shift operation.
6394   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
6395     Mask = Op.getConstantOperandVal(1);
6396     Op = Op.getOperand(0);
6397   }
6398   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
6399     return None;
6400   bool IsSHL = Op.getOpcode() == ISD::SHL;
6401 
6402   if (!isa<ConstantSDNode>(Op.getOperand(1)))
6403     return None;
6404   uint64_t ShAmt = Op.getConstantOperandVal(1);
6405 
6406   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6407   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
6408     return None;
6409   // If we don't have enough masks for 64 bit, then we must be trying to
6410   // match SHFL so we're only allowed to shift 1/4 of the width.
6411   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
6412     return None;
6413 
6414   SDValue Src = Op.getOperand(0);
6415 
6416   // The expected mask is shifted left when the AND is found around SHL
6417   // patterns.
6418   //   ((x >> 1) & 0x55555555)
6419   //   ((x << 1) & 0xAAAAAAAA)
6420   bool SHLExpMask = IsSHL;
6421 
6422   if (!Mask) {
6423     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
6424     // the mask is all ones: consume that now.
6425     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
6426       Mask = Src.getConstantOperandVal(1);
6427       Src = Src.getOperand(0);
6428       // The expected mask is now in fact shifted left for SRL, so reverse the
6429       // decision.
6430       //   ((x & 0xAAAAAAAA) >> 1)
6431       //   ((x & 0x55555555) << 1)
6432       SHLExpMask = !SHLExpMask;
6433     } else {
6434       // Use a default shifted mask of all-ones if there's no AND, truncated
6435       // down to the expected width. This simplifies the logic later on.
6436       Mask = maskTrailingOnes<uint64_t>(Width);
6437       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
6438     }
6439   }
6440 
6441   unsigned MaskIdx = Log2_32(ShAmt);
6442   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6443 
6444   if (SHLExpMask)
6445     ExpMask <<= ShAmt;
6446 
6447   if (Mask != ExpMask)
6448     return None;
6449 
6450   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
6451 }
6452 
6453 // Matches any of the following bit-manipulation patterns:
6454 //   (and (shl x, 1), (0x55555555 << 1))
6455 //   (and (srl x, 1), 0x55555555)
6456 //   (shl (and x, 0x55555555), 1)
6457 //   (srl (and x, (0x55555555 << 1)), 1)
6458 // where the shift amount and mask may vary thus:
6459 //   [1]  = 0x55555555 / 0xAAAAAAAA
6460 //   [2]  = 0x33333333 / 0xCCCCCCCC
6461 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
6462 //   [8]  = 0x00FF00FF / 0xFF00FF00
6463 //   [16] = 0x0000FFFF / 0xFFFFFFFF
6464 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
6465 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
6466   // These are the unshifted masks which we use to match bit-manipulation
6467   // patterns. They may be shifted left in certain circumstances.
6468   static const uint64_t BitmanipMasks[] = {
6469       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
6470       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
6471 
6472   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6473 }
6474 
6475 // Match the following pattern as a GREVI(W) operation
6476 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
6477 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
6478                                const RISCVSubtarget &Subtarget) {
6479   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6480   EVT VT = Op.getValueType();
6481 
6482   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6483     auto LHS = matchGREVIPat(Op.getOperand(0));
6484     auto RHS = matchGREVIPat(Op.getOperand(1));
6485     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
6486       SDLoc DL(Op);
6487       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
6488                          DAG.getConstant(LHS->ShAmt, DL, VT));
6489     }
6490   }
6491   return SDValue();
6492 }
6493 
6494 // Matches any the following pattern as a GORCI(W) operation
6495 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
6496 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
6497 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
6498 // Note that with the variant of 3.,
6499 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
6500 // the inner pattern will first be matched as GREVI and then the outer
6501 // pattern will be matched to GORC via the first rule above.
6502 // 4.  (or (rotl/rotr x, bitwidth/2), x)
6503 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
6504                                const RISCVSubtarget &Subtarget) {
6505   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6506   EVT VT = Op.getValueType();
6507 
6508   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6509     SDLoc DL(Op);
6510     SDValue Op0 = Op.getOperand(0);
6511     SDValue Op1 = Op.getOperand(1);
6512 
6513     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
6514       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
6515           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
6516           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
6517         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
6518       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
6519       if ((Reverse.getOpcode() == ISD::ROTL ||
6520            Reverse.getOpcode() == ISD::ROTR) &&
6521           Reverse.getOperand(0) == X &&
6522           isa<ConstantSDNode>(Reverse.getOperand(1))) {
6523         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
6524         if (RotAmt == (VT.getSizeInBits() / 2))
6525           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
6526                              DAG.getConstant(RotAmt, DL, VT));
6527       }
6528       return SDValue();
6529     };
6530 
6531     // Check for either commutable permutation of (or (GREVI x, shamt), x)
6532     if (SDValue V = MatchOROfReverse(Op0, Op1))
6533       return V;
6534     if (SDValue V = MatchOROfReverse(Op1, Op0))
6535       return V;
6536 
6537     // OR is commutable so canonicalize its OR operand to the left
6538     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
6539       std::swap(Op0, Op1);
6540     if (Op0.getOpcode() != ISD::OR)
6541       return SDValue();
6542     SDValue OrOp0 = Op0.getOperand(0);
6543     SDValue OrOp1 = Op0.getOperand(1);
6544     auto LHS = matchGREVIPat(OrOp0);
6545     // OR is commutable so swap the operands and try again: x might have been
6546     // on the left
6547     if (!LHS) {
6548       std::swap(OrOp0, OrOp1);
6549       LHS = matchGREVIPat(OrOp0);
6550     }
6551     auto RHS = matchGREVIPat(Op1);
6552     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
6553       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
6554                          DAG.getConstant(LHS->ShAmt, DL, VT));
6555     }
6556   }
6557   return SDValue();
6558 }
6559 
6560 // Matches any of the following bit-manipulation patterns:
6561 //   (and (shl x, 1), (0x22222222 << 1))
6562 //   (and (srl x, 1), 0x22222222)
6563 //   (shl (and x, 0x22222222), 1)
6564 //   (srl (and x, (0x22222222 << 1)), 1)
6565 // where the shift amount and mask may vary thus:
6566 //   [1]  = 0x22222222 / 0x44444444
6567 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
6568 //   [4]  = 0x00F000F0 / 0x0F000F00
6569 //   [8]  = 0x0000FF00 / 0x00FF0000
6570 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
6571 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
6572   // These are the unshifted masks which we use to match bit-manipulation
6573   // patterns. They may be shifted left in certain circumstances.
6574   static const uint64_t BitmanipMasks[] = {
6575       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
6576       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
6577 
6578   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6579 }
6580 
6581 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
6582 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
6583                                const RISCVSubtarget &Subtarget) {
6584   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6585   EVT VT = Op.getValueType();
6586 
6587   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
6588     return SDValue();
6589 
6590   SDValue Op0 = Op.getOperand(0);
6591   SDValue Op1 = Op.getOperand(1);
6592 
6593   // Or is commutable so canonicalize the second OR to the LHS.
6594   if (Op0.getOpcode() != ISD::OR)
6595     std::swap(Op0, Op1);
6596   if (Op0.getOpcode() != ISD::OR)
6597     return SDValue();
6598 
6599   // We found an inner OR, so our operands are the operands of the inner OR
6600   // and the other operand of the outer OR.
6601   SDValue A = Op0.getOperand(0);
6602   SDValue B = Op0.getOperand(1);
6603   SDValue C = Op1;
6604 
6605   auto Match1 = matchSHFLPat(A);
6606   auto Match2 = matchSHFLPat(B);
6607 
6608   // If neither matched, we failed.
6609   if (!Match1 && !Match2)
6610     return SDValue();
6611 
6612   // We had at least one match. if one failed, try the remaining C operand.
6613   if (!Match1) {
6614     std::swap(A, C);
6615     Match1 = matchSHFLPat(A);
6616     if (!Match1)
6617       return SDValue();
6618   } else if (!Match2) {
6619     std::swap(B, C);
6620     Match2 = matchSHFLPat(B);
6621     if (!Match2)
6622       return SDValue();
6623   }
6624   assert(Match1 && Match2);
6625 
6626   // Make sure our matches pair up.
6627   if (!Match1->formsPairWith(*Match2))
6628     return SDValue();
6629 
6630   // All the remains is to make sure C is an AND with the same input, that masks
6631   // out the bits that are being shuffled.
6632   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
6633       C.getOperand(0) != Match1->Op)
6634     return SDValue();
6635 
6636   uint64_t Mask = C.getConstantOperandVal(1);
6637 
6638   static const uint64_t BitmanipMasks[] = {
6639       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
6640       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
6641   };
6642 
6643   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6644   unsigned MaskIdx = Log2_32(Match1->ShAmt);
6645   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6646 
6647   if (Mask != ExpMask)
6648     return SDValue();
6649 
6650   SDLoc DL(Op);
6651   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
6652                      DAG.getConstant(Match1->ShAmt, DL, VT));
6653 }
6654 
6655 // Optimize (add (shl x, c0), (shl y, c1)) ->
6656 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
6657 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
6658                                   const RISCVSubtarget &Subtarget) {
6659   // Perform this optimization only in the zba extension.
6660   if (!Subtarget.hasStdExtZba())
6661     return SDValue();
6662 
6663   // Skip for vector types and larger types.
6664   EVT VT = N->getValueType(0);
6665   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6666     return SDValue();
6667 
6668   // The two operand nodes must be SHL and have no other use.
6669   SDValue N0 = N->getOperand(0);
6670   SDValue N1 = N->getOperand(1);
6671   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
6672       !N0->hasOneUse() || !N1->hasOneUse())
6673     return SDValue();
6674 
6675   // Check c0 and c1.
6676   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6677   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
6678   if (!N0C || !N1C)
6679     return SDValue();
6680   int64_t C0 = N0C->getSExtValue();
6681   int64_t C1 = N1C->getSExtValue();
6682   if (C0 <= 0 || C1 <= 0)
6683     return SDValue();
6684 
6685   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
6686   int64_t Bits = std::min(C0, C1);
6687   int64_t Diff = std::abs(C0 - C1);
6688   if (Diff != 1 && Diff != 2 && Diff != 3)
6689     return SDValue();
6690 
6691   // Build nodes.
6692   SDLoc DL(N);
6693   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
6694   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
6695   SDValue NA0 =
6696       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
6697   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
6698   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
6699 }
6700 
6701 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
6702 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
6703 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
6704 // not undo itself, but they are redundant.
6705 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
6706   SDValue Src = N->getOperand(0);
6707 
6708   if (Src.getOpcode() != N->getOpcode())
6709     return SDValue();
6710 
6711   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
6712       !isa<ConstantSDNode>(Src.getOperand(1)))
6713     return SDValue();
6714 
6715   unsigned ShAmt1 = N->getConstantOperandVal(1);
6716   unsigned ShAmt2 = Src.getConstantOperandVal(1);
6717   Src = Src.getOperand(0);
6718 
6719   unsigned CombinedShAmt;
6720   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
6721     CombinedShAmt = ShAmt1 | ShAmt2;
6722   else
6723     CombinedShAmt = ShAmt1 ^ ShAmt2;
6724 
6725   if (CombinedShAmt == 0)
6726     return Src;
6727 
6728   SDLoc DL(N);
6729   return DAG.getNode(
6730       N->getOpcode(), DL, N->getValueType(0), Src,
6731       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
6732 }
6733 
6734 // Combine a constant select operand into its use:
6735 //
6736 // (and (select cond, -1, c), x)
6737 //   -> (select cond, x, (and x, c))  [AllOnes=1]
6738 // (or  (select cond, 0, c), x)
6739 //   -> (select cond, x, (or x, c))  [AllOnes=0]
6740 // (xor (select cond, 0, c), x)
6741 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
6742 // (add (select cond, 0, c), x)
6743 //   -> (select cond, x, (add x, c))  [AllOnes=0]
6744 // (sub x, (select cond, 0, c))
6745 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
6746 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6747                                    SelectionDAG &DAG, bool AllOnes) {
6748   EVT VT = N->getValueType(0);
6749 
6750   // Skip vectors.
6751   if (VT.isVector())
6752     return SDValue();
6753 
6754   if ((Slct.getOpcode() != ISD::SELECT &&
6755        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
6756       !Slct.hasOneUse())
6757     return SDValue();
6758 
6759   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
6760     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
6761   };
6762 
6763   bool SwapSelectOps;
6764   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
6765   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
6766   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
6767   SDValue NonConstantVal;
6768   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
6769     SwapSelectOps = false;
6770     NonConstantVal = FalseVal;
6771   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
6772     SwapSelectOps = true;
6773     NonConstantVal = TrueVal;
6774   } else
6775     return SDValue();
6776 
6777   // Slct is now know to be the desired identity constant when CC is true.
6778   TrueVal = OtherOp;
6779   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
6780   // Unless SwapSelectOps says the condition should be false.
6781   if (SwapSelectOps)
6782     std::swap(TrueVal, FalseVal);
6783 
6784   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
6785     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
6786                        {Slct.getOperand(0), Slct.getOperand(1),
6787                         Slct.getOperand(2), TrueVal, FalseVal});
6788 
6789   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
6790                      {Slct.getOperand(0), TrueVal, FalseVal});
6791 }
6792 
6793 // Attempt combineSelectAndUse on each operand of a commutative operator N.
6794 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
6795                                               bool AllOnes) {
6796   SDValue N0 = N->getOperand(0);
6797   SDValue N1 = N->getOperand(1);
6798   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
6799     return Result;
6800   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
6801     return Result;
6802   return SDValue();
6803 }
6804 
6805 // Transform (add (mul x, c0), c1) ->
6806 //           (add (mul (add x, c1/c0), c0), c1%c0).
6807 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
6808 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
6809 // to an infinite loop in DAGCombine if transformed.
6810 // Or transform (add (mul x, c0), c1) ->
6811 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
6812 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
6813 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
6814 // lead to an infinite loop in DAGCombine if transformed.
6815 // Or transform (add (mul x, c0), c1) ->
6816 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
6817 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
6818 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
6819 // lead to an infinite loop in DAGCombine if transformed.
6820 // Or transform (add (mul x, c0), c1) ->
6821 //              (mul (add x, c1/c0), c0).
6822 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
6823 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
6824                                      const RISCVSubtarget &Subtarget) {
6825   // Skip for vector types and larger types.
6826   EVT VT = N->getValueType(0);
6827   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6828     return SDValue();
6829   // The first operand node must be a MUL and has no other use.
6830   SDValue N0 = N->getOperand(0);
6831   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
6832     return SDValue();
6833   // Check if c0 and c1 match above conditions.
6834   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6835   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6836   if (!N0C || !N1C)
6837     return SDValue();
6838   int64_t C0 = N0C->getSExtValue();
6839   int64_t C1 = N1C->getSExtValue();
6840   int64_t CA, CB;
6841   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
6842     return SDValue();
6843   // Search for proper CA (non-zero) and CB that both are simm12.
6844   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
6845       !isInt<12>(C0 * (C1 / C0))) {
6846     CA = C1 / C0;
6847     CB = C1 % C0;
6848   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
6849              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
6850     CA = C1 / C0 + 1;
6851     CB = C1 % C0 - C0;
6852   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
6853              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
6854     CA = C1 / C0 - 1;
6855     CB = C1 % C0 + C0;
6856   } else
6857     return SDValue();
6858   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
6859   SDLoc DL(N);
6860   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
6861                              DAG.getConstant(CA, DL, VT));
6862   SDValue New1 =
6863       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
6864   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
6865 }
6866 
6867 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
6868                                  const RISCVSubtarget &Subtarget) {
6869   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
6870     return V;
6871   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
6872     return V;
6873   // fold (add (select lhs, rhs, cc, 0, y), x) ->
6874   //      (select lhs, rhs, cc, x, (add x, y))
6875   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6876 }
6877 
6878 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
6879   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
6880   //      (select lhs, rhs, cc, x, (sub x, y))
6881   SDValue N0 = N->getOperand(0);
6882   SDValue N1 = N->getOperand(1);
6883   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
6884 }
6885 
6886 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
6887   // fold (and (select lhs, rhs, cc, -1, y), x) ->
6888   //      (select lhs, rhs, cc, x, (and x, y))
6889   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
6890 }
6891 
6892 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
6893                                 const RISCVSubtarget &Subtarget) {
6894   if (Subtarget.hasStdExtZbp()) {
6895     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
6896       return GREV;
6897     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
6898       return GORC;
6899     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
6900       return SHFL;
6901   }
6902 
6903   // fold (or (select cond, 0, y), x) ->
6904   //      (select cond, x, (or x, y))
6905   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6906 }
6907 
6908 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
6909   // fold (xor (select cond, 0, y), x) ->
6910   //      (select cond, x, (xor x, y))
6911   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6912 }
6913 
6914 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
6915 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
6916 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
6917 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
6918 // ADDW/SUBW/MULW.
6919 static SDValue performANY_EXTENDCombine(SDNode *N,
6920                                         TargetLowering::DAGCombinerInfo &DCI,
6921                                         const RISCVSubtarget &Subtarget) {
6922   if (!Subtarget.is64Bit())
6923     return SDValue();
6924 
6925   SelectionDAG &DAG = DCI.DAG;
6926 
6927   SDValue Src = N->getOperand(0);
6928   EVT VT = N->getValueType(0);
6929   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
6930     return SDValue();
6931 
6932   // The opcode must be one that can implicitly sign_extend.
6933   // FIXME: Additional opcodes.
6934   switch (Src.getOpcode()) {
6935   default:
6936     return SDValue();
6937   case ISD::MUL:
6938     if (!Subtarget.hasStdExtM())
6939       return SDValue();
6940     LLVM_FALLTHROUGH;
6941   case ISD::ADD:
6942   case ISD::SUB:
6943     break;
6944   }
6945 
6946   // Only handle cases where the result is used by a CopyToReg. That likely
6947   // means the value is a liveout of the basic block. This helps prevent
6948   // infinite combine loops like PR51206.
6949   if (none_of(N->uses(),
6950               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
6951     return SDValue();
6952 
6953   SmallVector<SDNode *, 4> SetCCs;
6954   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
6955                             UE = Src.getNode()->use_end();
6956        UI != UE; ++UI) {
6957     SDNode *User = *UI;
6958     if (User == N)
6959       continue;
6960     if (UI.getUse().getResNo() != Src.getResNo())
6961       continue;
6962     // All i32 setccs are legalized by sign extending operands.
6963     if (User->getOpcode() == ISD::SETCC) {
6964       SetCCs.push_back(User);
6965       continue;
6966     }
6967     // We don't know if we can extend this user.
6968     break;
6969   }
6970 
6971   // If we don't have any SetCCs, this isn't worthwhile.
6972   if (SetCCs.empty())
6973     return SDValue();
6974 
6975   SDLoc DL(N);
6976   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
6977   DCI.CombineTo(N, SExt);
6978 
6979   // Promote all the setccs.
6980   for (SDNode *SetCC : SetCCs) {
6981     SmallVector<SDValue, 4> Ops;
6982 
6983     for (unsigned j = 0; j != 2; ++j) {
6984       SDValue SOp = SetCC->getOperand(j);
6985       if (SOp == Src)
6986         Ops.push_back(SExt);
6987       else
6988         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
6989     }
6990 
6991     Ops.push_back(SetCC->getOperand(2));
6992     DCI.CombineTo(SetCC,
6993                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
6994   }
6995   return SDValue(N, 0);
6996 }
6997 
6998 // Try to form VWMUL or VWMULU.
6999 // FIXME: Support VWMULSU.
7000 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1,
7001                                     SelectionDAG &DAG) {
7002   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
7003   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
7004   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
7005   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
7006     return SDValue();
7007 
7008   SDValue Mask = N->getOperand(2);
7009   SDValue VL = N->getOperand(3);
7010 
7011   // Make sure the mask and VL match.
7012   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
7013     return SDValue();
7014 
7015   MVT VT = N->getSimpleValueType(0);
7016 
7017   // Determine the narrow size for a widening multiply.
7018   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7019   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7020                                   VT.getVectorElementCount());
7021 
7022   SDLoc DL(N);
7023 
7024   // See if the other operand is the same opcode.
7025   if (Op0.getOpcode() == Op1.getOpcode()) {
7026     if (!Op1.hasOneUse())
7027       return SDValue();
7028 
7029     // Make sure the mask and VL match.
7030     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
7031       return SDValue();
7032 
7033     Op1 = Op1.getOperand(0);
7034   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
7035     // The operand is a splat of a scalar.
7036 
7037     // The VL must be the same.
7038     if (Op1.getOperand(1) != VL)
7039       return SDValue();
7040 
7041     // Get the scalar value.
7042     Op1 = Op1.getOperand(0);
7043 
7044     // See if have enough sign bits or zero bits in the scalar to use a
7045     // widening multiply by splatting to smaller element size.
7046     unsigned EltBits = VT.getScalarSizeInBits();
7047     unsigned ScalarBits = Op1.getValueSizeInBits();
7048     // Make sure we're getting all element bits from the scalar register.
7049     // FIXME: Support implicit sign extension of vmv.v.x?
7050     if (ScalarBits < EltBits)
7051       return SDValue();
7052 
7053     if (IsSignExt) {
7054       if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize))
7055         return SDValue();
7056     } else {
7057       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7058       if (!DAG.MaskedValueIsZero(Op1, Mask))
7059         return SDValue();
7060     }
7061 
7062     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL);
7063   } else
7064     return SDValue();
7065 
7066   Op0 = Op0.getOperand(0);
7067 
7068   // Re-introduce narrower extends if needed.
7069   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
7070   if (Op0.getValueType() != NarrowVT)
7071     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7072   if (Op1.getValueType() != NarrowVT)
7073     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7074 
7075   unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
7076   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
7077 }
7078 
7079 // Fold
7080 //   (fp_to_int (froundeven X)) -> fcvt X, rne
7081 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
7082 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
7083 //   (fp_to_int (fceil X))      -> fcvt X, rup
7084 //   (fp_to_int (fround X))     -> fcvt X, rmm
7085 // FIXME: We should also do this for fp_to_int_sat.
7086 static SDValue performFP_TO_INTCombine(SDNode *N,
7087                                        TargetLowering::DAGCombinerInfo &DCI,
7088                                        const RISCVSubtarget &Subtarget) {
7089   SelectionDAG &DAG = DCI.DAG;
7090   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7091   MVT XLenVT = Subtarget.getXLenVT();
7092 
7093   // Only handle XLen or i32 types. Other types narrower than XLen will
7094   // eventually be legalized to XLenVT.
7095   EVT VT = N->getValueType(0);
7096   if (VT != MVT::i32 && VT != XLenVT)
7097     return SDValue();
7098 
7099   SDValue Src = N->getOperand(0);
7100 
7101   // Ensure the FP type is also legal.
7102   if (!TLI.isTypeLegal(Src.getValueType()))
7103     return SDValue();
7104 
7105   // Don't do this for f16 with Zfhmin and not Zfh.
7106   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
7107     return SDValue();
7108 
7109   RISCVFPRndMode::RoundingMode FRM;
7110   switch (Src->getOpcode()) {
7111   default:
7112     return SDValue();
7113   case ISD::FROUNDEVEN: FRM = RISCVFPRndMode::RNE; break;
7114   case ISD::FTRUNC:     FRM = RISCVFPRndMode::RTZ; break;
7115   case ISD::FFLOOR:     FRM = RISCVFPRndMode::RDN; break;
7116   case ISD::FCEIL:      FRM = RISCVFPRndMode::RUP; break;
7117   case ISD::FROUND:     FRM = RISCVFPRndMode::RMM; break;
7118   }
7119 
7120   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
7121 
7122   unsigned Opc;
7123   if (VT == XLenVT)
7124     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
7125   else
7126     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
7127 
7128   SDLoc DL(N);
7129   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
7130                                 DAG.getTargetConstant(FRM, DL, XLenVT));
7131   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
7132 }
7133 
7134 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
7135                                                DAGCombinerInfo &DCI) const {
7136   SelectionDAG &DAG = DCI.DAG;
7137 
7138   // Helper to call SimplifyDemandedBits on an operand of N where only some low
7139   // bits are demanded. N will be added to the Worklist if it was not deleted.
7140   // Caller should return SDValue(N, 0) if this returns true.
7141   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
7142     SDValue Op = N->getOperand(OpNo);
7143     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
7144     if (!SimplifyDemandedBits(Op, Mask, DCI))
7145       return false;
7146 
7147     if (N->getOpcode() != ISD::DELETED_NODE)
7148       DCI.AddToWorklist(N);
7149     return true;
7150   };
7151 
7152   switch (N->getOpcode()) {
7153   default:
7154     break;
7155   case RISCVISD::SplitF64: {
7156     SDValue Op0 = N->getOperand(0);
7157     // If the input to SplitF64 is just BuildPairF64 then the operation is
7158     // redundant. Instead, use BuildPairF64's operands directly.
7159     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
7160       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
7161 
7162     SDLoc DL(N);
7163 
7164     // It's cheaper to materialise two 32-bit integers than to load a double
7165     // from the constant pool and transfer it to integer registers through the
7166     // stack.
7167     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
7168       APInt V = C->getValueAPF().bitcastToAPInt();
7169       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
7170       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
7171       return DCI.CombineTo(N, Lo, Hi);
7172     }
7173 
7174     // This is a target-specific version of a DAGCombine performed in
7175     // DAGCombiner::visitBITCAST. It performs the equivalent of:
7176     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
7177     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
7178     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
7179         !Op0.getNode()->hasOneUse())
7180       break;
7181     SDValue NewSplitF64 =
7182         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
7183                     Op0.getOperand(0));
7184     SDValue Lo = NewSplitF64.getValue(0);
7185     SDValue Hi = NewSplitF64.getValue(1);
7186     APInt SignBit = APInt::getSignMask(32);
7187     if (Op0.getOpcode() == ISD::FNEG) {
7188       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
7189                                   DAG.getConstant(SignBit, DL, MVT::i32));
7190       return DCI.CombineTo(N, Lo, NewHi);
7191     }
7192     assert(Op0.getOpcode() == ISD::FABS);
7193     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
7194                                 DAG.getConstant(~SignBit, DL, MVT::i32));
7195     return DCI.CombineTo(N, Lo, NewHi);
7196   }
7197   case RISCVISD::SLLW:
7198   case RISCVISD::SRAW:
7199   case RISCVISD::SRLW:
7200   case RISCVISD::ROLW:
7201   case RISCVISD::RORW: {
7202     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
7203     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7204         SimplifyDemandedLowBitsHelper(1, 5))
7205       return SDValue(N, 0);
7206     break;
7207   }
7208   case RISCVISD::CLZW:
7209   case RISCVISD::CTZW: {
7210     // Only the lower 32 bits of the first operand are read
7211     if (SimplifyDemandedLowBitsHelper(0, 32))
7212       return SDValue(N, 0);
7213     break;
7214   }
7215   case RISCVISD::FSL:
7216   case RISCVISD::FSR: {
7217     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
7218     unsigned BitWidth = N->getOperand(2).getValueSizeInBits();
7219     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7220     if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1))
7221       return SDValue(N, 0);
7222     break;
7223   }
7224   case RISCVISD::FSLW:
7225   case RISCVISD::FSRW: {
7226     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
7227     // read.
7228     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7229         SimplifyDemandedLowBitsHelper(1, 32) ||
7230         SimplifyDemandedLowBitsHelper(2, 6))
7231       return SDValue(N, 0);
7232     break;
7233   }
7234   case RISCVISD::GREV:
7235   case RISCVISD::GORC: {
7236     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
7237     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
7238     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7239     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
7240       return SDValue(N, 0);
7241 
7242     return combineGREVI_GORCI(N, DAG);
7243   }
7244   case RISCVISD::GREVW:
7245   case RISCVISD::GORCW: {
7246     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
7247     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7248         SimplifyDemandedLowBitsHelper(1, 5))
7249       return SDValue(N, 0);
7250 
7251     return combineGREVI_GORCI(N, DAG);
7252   }
7253   case RISCVISD::SHFL:
7254   case RISCVISD::UNSHFL: {
7255     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
7256     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
7257     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7258     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
7259       return SDValue(N, 0);
7260 
7261     break;
7262   }
7263   case RISCVISD::SHFLW:
7264   case RISCVISD::UNSHFLW: {
7265     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
7266     SDValue LHS = N->getOperand(0);
7267     SDValue RHS = N->getOperand(1);
7268     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
7269     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
7270     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7271         SimplifyDemandedLowBitsHelper(1, 4))
7272       return SDValue(N, 0);
7273 
7274     break;
7275   }
7276   case RISCVISD::BCOMPRESSW:
7277   case RISCVISD::BDECOMPRESSW: {
7278     // Only the lower 32 bits of LHS and RHS are read.
7279     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7280         SimplifyDemandedLowBitsHelper(1, 32))
7281       return SDValue(N, 0);
7282 
7283     break;
7284   }
7285   case RISCVISD::FMV_X_ANYEXTH:
7286   case RISCVISD::FMV_X_ANYEXTW_RV64: {
7287     SDLoc DL(N);
7288     SDValue Op0 = N->getOperand(0);
7289     MVT VT = N->getSimpleValueType(0);
7290     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
7291     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
7292     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
7293     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
7294          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
7295         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7296          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
7297       assert(Op0.getOperand(0).getValueType() == VT &&
7298              "Unexpected value type!");
7299       return Op0.getOperand(0);
7300     }
7301 
7302     // This is a target-specific version of a DAGCombine performed in
7303     // DAGCombiner::visitBITCAST. It performs the equivalent of:
7304     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
7305     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
7306     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
7307         !Op0.getNode()->hasOneUse())
7308       break;
7309     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
7310     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
7311     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
7312     if (Op0.getOpcode() == ISD::FNEG)
7313       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
7314                          DAG.getConstant(SignBit, DL, VT));
7315 
7316     assert(Op0.getOpcode() == ISD::FABS);
7317     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
7318                        DAG.getConstant(~SignBit, DL, VT));
7319   }
7320   case ISD::ADD:
7321     return performADDCombine(N, DAG, Subtarget);
7322   case ISD::SUB:
7323     return performSUBCombine(N, DAG);
7324   case ISD::AND:
7325     return performANDCombine(N, DAG);
7326   case ISD::OR:
7327     return performORCombine(N, DAG, Subtarget);
7328   case ISD::XOR:
7329     return performXORCombine(N, DAG);
7330   case ISD::ANY_EXTEND:
7331     return performANY_EXTENDCombine(N, DCI, Subtarget);
7332   case ISD::ZERO_EXTEND:
7333     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
7334     // type legalization. This is safe because fp_to_uint produces poison if
7335     // it overflows.
7336     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
7337       SDValue Src = N->getOperand(0);
7338       if (Src.getOpcode() == ISD::FP_TO_UINT &&
7339           isTypeLegal(Src.getOperand(0).getValueType()))
7340         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
7341                            Src.getOperand(0));
7342       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
7343           isTypeLegal(Src.getOperand(1).getValueType())) {
7344         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
7345         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
7346                                   Src.getOperand(0), Src.getOperand(1));
7347         DCI.CombineTo(N, Res);
7348         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
7349         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
7350         return SDValue(N, 0); // Return N so it doesn't get rechecked.
7351       }
7352     }
7353     return SDValue();
7354   case RISCVISD::SELECT_CC: {
7355     // Transform
7356     SDValue LHS = N->getOperand(0);
7357     SDValue RHS = N->getOperand(1);
7358     SDValue TrueV = N->getOperand(3);
7359     SDValue FalseV = N->getOperand(4);
7360 
7361     // If the True and False values are the same, we don't need a select_cc.
7362     if (TrueV == FalseV)
7363       return TrueV;
7364 
7365     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
7366     if (!ISD::isIntEqualitySetCC(CCVal))
7367       break;
7368 
7369     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
7370     //      (select_cc X, Y, lt, trueV, falseV)
7371     // Sometimes the setcc is introduced after select_cc has been formed.
7372     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7373         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7374       // If we're looking for eq 0 instead of ne 0, we need to invert the
7375       // condition.
7376       bool Invert = CCVal == ISD::SETEQ;
7377       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7378       if (Invert)
7379         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7380 
7381       SDLoc DL(N);
7382       RHS = LHS.getOperand(1);
7383       LHS = LHS.getOperand(0);
7384       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7385 
7386       SDValue TargetCC = DAG.getCondCode(CCVal);
7387       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7388                          {LHS, RHS, TargetCC, TrueV, FalseV});
7389     }
7390 
7391     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
7392     //      (select_cc X, Y, eq/ne, trueV, falseV)
7393     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7394       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
7395                          {LHS.getOperand(0), LHS.getOperand(1),
7396                           N->getOperand(2), TrueV, FalseV});
7397     // (select_cc X, 1, setne, trueV, falseV) ->
7398     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
7399     // This can occur when legalizing some floating point comparisons.
7400     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7401     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7402       SDLoc DL(N);
7403       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7404       SDValue TargetCC = DAG.getCondCode(CCVal);
7405       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7406       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7407                          {LHS, RHS, TargetCC, TrueV, FalseV});
7408     }
7409 
7410     break;
7411   }
7412   case RISCVISD::BR_CC: {
7413     SDValue LHS = N->getOperand(1);
7414     SDValue RHS = N->getOperand(2);
7415     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
7416     if (!ISD::isIntEqualitySetCC(CCVal))
7417       break;
7418 
7419     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
7420     //      (br_cc X, Y, lt, dest)
7421     // Sometimes the setcc is introduced after br_cc has been formed.
7422     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7423         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7424       // If we're looking for eq 0 instead of ne 0, we need to invert the
7425       // condition.
7426       bool Invert = CCVal == ISD::SETEQ;
7427       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7428       if (Invert)
7429         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7430 
7431       SDLoc DL(N);
7432       RHS = LHS.getOperand(1);
7433       LHS = LHS.getOperand(0);
7434       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7435 
7436       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7437                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
7438                          N->getOperand(4));
7439     }
7440 
7441     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
7442     //      (br_cc X, Y, eq/ne, trueV, falseV)
7443     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7444       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
7445                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
7446                          N->getOperand(3), N->getOperand(4));
7447 
7448     // (br_cc X, 1, setne, br_cc) ->
7449     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
7450     // This can occur when legalizing some floating point comparisons.
7451     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7452     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7453       SDLoc DL(N);
7454       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7455       SDValue TargetCC = DAG.getCondCode(CCVal);
7456       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7457       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7458                          N->getOperand(0), LHS, RHS, TargetCC,
7459                          N->getOperand(4));
7460     }
7461     break;
7462   }
7463   case ISD::FP_TO_SINT:
7464   case ISD::FP_TO_UINT:
7465     return performFP_TO_INTCombine(N, DCI, Subtarget);
7466   case ISD::FCOPYSIGN: {
7467     EVT VT = N->getValueType(0);
7468     if (!VT.isVector())
7469       break;
7470     // There is a form of VFSGNJ which injects the negated sign of its second
7471     // operand. Try and bubble any FNEG up after the extend/round to produce
7472     // this optimized pattern. Avoid modifying cases where FP_ROUND and
7473     // TRUNC=1.
7474     SDValue In2 = N->getOperand(1);
7475     // Avoid cases where the extend/round has multiple uses, as duplicating
7476     // those is typically more expensive than removing a fneg.
7477     if (!In2.hasOneUse())
7478       break;
7479     if (In2.getOpcode() != ISD::FP_EXTEND &&
7480         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
7481       break;
7482     In2 = In2.getOperand(0);
7483     if (In2.getOpcode() != ISD::FNEG)
7484       break;
7485     SDLoc DL(N);
7486     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
7487     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
7488                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
7489   }
7490   case ISD::MGATHER:
7491   case ISD::MSCATTER:
7492   case ISD::VP_GATHER:
7493   case ISD::VP_SCATTER: {
7494     if (!DCI.isBeforeLegalize())
7495       break;
7496     SDValue Index, ScaleOp;
7497     bool IsIndexScaled = false;
7498     bool IsIndexSigned = false;
7499     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
7500       Index = VPGSN->getIndex();
7501       ScaleOp = VPGSN->getScale();
7502       IsIndexScaled = VPGSN->isIndexScaled();
7503       IsIndexSigned = VPGSN->isIndexSigned();
7504     } else {
7505       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
7506       Index = MGSN->getIndex();
7507       ScaleOp = MGSN->getScale();
7508       IsIndexScaled = MGSN->isIndexScaled();
7509       IsIndexSigned = MGSN->isIndexSigned();
7510     }
7511     EVT IndexVT = Index.getValueType();
7512     MVT XLenVT = Subtarget.getXLenVT();
7513     // RISCV indexed loads only support the "unsigned unscaled" addressing
7514     // mode, so anything else must be manually legalized.
7515     bool NeedsIdxLegalization =
7516         IsIndexScaled ||
7517         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
7518     if (!NeedsIdxLegalization)
7519       break;
7520 
7521     SDLoc DL(N);
7522 
7523     // Any index legalization should first promote to XLenVT, so we don't lose
7524     // bits when scaling. This may create an illegal index type so we let
7525     // LLVM's legalization take care of the splitting.
7526     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
7527     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
7528       IndexVT = IndexVT.changeVectorElementType(XLenVT);
7529       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
7530                           DL, IndexVT, Index);
7531     }
7532 
7533     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
7534     if (IsIndexScaled && Scale != 1) {
7535       // Manually scale the indices by the element size.
7536       // TODO: Sanitize the scale operand here?
7537       // TODO: For VP nodes, should we use VP_SHL here?
7538       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
7539       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
7540       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
7541     }
7542 
7543     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
7544     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
7545       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
7546                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
7547                               VPGN->getScale(), VPGN->getMask(),
7548                               VPGN->getVectorLength()},
7549                              VPGN->getMemOperand(), NewIndexTy);
7550     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
7551       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
7552                               {VPSN->getChain(), VPSN->getValue(),
7553                                VPSN->getBasePtr(), Index, VPSN->getScale(),
7554                                VPSN->getMask(), VPSN->getVectorLength()},
7555                               VPSN->getMemOperand(), NewIndexTy);
7556     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
7557       return DAG.getMaskedGather(
7558           N->getVTList(), MGN->getMemoryVT(), DL,
7559           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
7560            MGN->getBasePtr(), Index, MGN->getScale()},
7561           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
7562     const auto *MSN = cast<MaskedScatterSDNode>(N);
7563     return DAG.getMaskedScatter(
7564         N->getVTList(), MSN->getMemoryVT(), DL,
7565         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
7566          Index, MSN->getScale()},
7567         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
7568   }
7569   case RISCVISD::SRA_VL:
7570   case RISCVISD::SRL_VL:
7571   case RISCVISD::SHL_VL: {
7572     SDValue ShAmt = N->getOperand(1);
7573     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7574       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7575       SDLoc DL(N);
7576       SDValue VL = N->getOperand(3);
7577       EVT VT = N->getValueType(0);
7578       ShAmt =
7579           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
7580       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
7581                          N->getOperand(2), N->getOperand(3));
7582     }
7583     break;
7584   }
7585   case ISD::SRA:
7586   case ISD::SRL:
7587   case ISD::SHL: {
7588     SDValue ShAmt = N->getOperand(1);
7589     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7590       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7591       SDLoc DL(N);
7592       EVT VT = N->getValueType(0);
7593       ShAmt =
7594           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0));
7595       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
7596     }
7597     break;
7598   }
7599   case RISCVISD::MUL_VL: {
7600     SDValue Op0 = N->getOperand(0);
7601     SDValue Op1 = N->getOperand(1);
7602     if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG))
7603       return V;
7604     if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG))
7605       return V;
7606     return SDValue();
7607   }
7608   case ISD::STORE: {
7609     auto *Store = cast<StoreSDNode>(N);
7610     SDValue Val = Store->getValue();
7611     // Combine store of vmv.x.s to vse with VL of 1.
7612     // FIXME: Support FP.
7613     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
7614       SDValue Src = Val.getOperand(0);
7615       EVT VecVT = Src.getValueType();
7616       EVT MemVT = Store->getMemoryVT();
7617       // The memory VT and the element type must match.
7618       if (VecVT.getVectorElementType() == MemVT) {
7619         SDLoc DL(N);
7620         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7621         return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(),
7622                               DAG.getConstant(1, DL, MaskVT),
7623                               DAG.getConstant(1, DL, Subtarget.getXLenVT()),
7624                               Store->getPointerInfo(),
7625                               Store->getOriginalAlign(),
7626                               Store->getMemOperand()->getFlags());
7627       }
7628     }
7629 
7630     break;
7631   }
7632   }
7633 
7634   return SDValue();
7635 }
7636 
7637 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
7638     const SDNode *N, CombineLevel Level) const {
7639   // The following folds are only desirable if `(OP _, c1 << c2)` can be
7640   // materialised in fewer instructions than `(OP _, c1)`:
7641   //
7642   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
7643   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
7644   SDValue N0 = N->getOperand(0);
7645   EVT Ty = N0.getValueType();
7646   if (Ty.isScalarInteger() &&
7647       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
7648     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7649     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
7650     if (C1 && C2) {
7651       const APInt &C1Int = C1->getAPIntValue();
7652       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
7653 
7654       // We can materialise `c1 << c2` into an add immediate, so it's "free",
7655       // and the combine should happen, to potentially allow further combines
7656       // later.
7657       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
7658           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
7659         return true;
7660 
7661       // We can materialise `c1` in an add immediate, so it's "free", and the
7662       // combine should be prevented.
7663       if (C1Int.getMinSignedBits() <= 64 &&
7664           isLegalAddImmediate(C1Int.getSExtValue()))
7665         return false;
7666 
7667       // Neither constant will fit into an immediate, so find materialisation
7668       // costs.
7669       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
7670                                               Subtarget.getFeatureBits(),
7671                                               /*CompressionCost*/true);
7672       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
7673           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
7674           /*CompressionCost*/true);
7675 
7676       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
7677       // combine should be prevented.
7678       if (C1Cost < ShiftedC1Cost)
7679         return false;
7680     }
7681   }
7682   return true;
7683 }
7684 
7685 bool RISCVTargetLowering::targetShrinkDemandedConstant(
7686     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
7687     TargetLoweringOpt &TLO) const {
7688   // Delay this optimization as late as possible.
7689   if (!TLO.LegalOps)
7690     return false;
7691 
7692   EVT VT = Op.getValueType();
7693   if (VT.isVector())
7694     return false;
7695 
7696   // Only handle AND for now.
7697   if (Op.getOpcode() != ISD::AND)
7698     return false;
7699 
7700   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7701   if (!C)
7702     return false;
7703 
7704   const APInt &Mask = C->getAPIntValue();
7705 
7706   // Clear all non-demanded bits initially.
7707   APInt ShrunkMask = Mask & DemandedBits;
7708 
7709   // Try to make a smaller immediate by setting undemanded bits.
7710 
7711   APInt ExpandedMask = Mask | ~DemandedBits;
7712 
7713   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
7714     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
7715   };
7716   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
7717     if (NewMask == Mask)
7718       return true;
7719     SDLoc DL(Op);
7720     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
7721     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
7722     return TLO.CombineTo(Op, NewOp);
7723   };
7724 
7725   // If the shrunk mask fits in sign extended 12 bits, let the target
7726   // independent code apply it.
7727   if (ShrunkMask.isSignedIntN(12))
7728     return false;
7729 
7730   // Preserve (and X, 0xffff) when zext.h is supported.
7731   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
7732     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
7733     if (IsLegalMask(NewMask))
7734       return UseMask(NewMask);
7735   }
7736 
7737   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
7738   if (VT == MVT::i64) {
7739     APInt NewMask = APInt(64, 0xffffffff);
7740     if (IsLegalMask(NewMask))
7741       return UseMask(NewMask);
7742   }
7743 
7744   // For the remaining optimizations, we need to be able to make a negative
7745   // number through a combination of mask and undemanded bits.
7746   if (!ExpandedMask.isNegative())
7747     return false;
7748 
7749   // What is the fewest number of bits we need to represent the negative number.
7750   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
7751 
7752   // Try to make a 12 bit negative immediate. If that fails try to make a 32
7753   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
7754   APInt NewMask = ShrunkMask;
7755   if (MinSignedBits <= 12)
7756     NewMask.setBitsFrom(11);
7757   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
7758     NewMask.setBitsFrom(31);
7759   else
7760     return false;
7761 
7762   // Check that our new mask is a subset of the demanded mask.
7763   assert(IsLegalMask(NewMask));
7764   return UseMask(NewMask);
7765 }
7766 
7767 static void computeGREV(APInt &Src, unsigned ShAmt) {
7768   ShAmt &= Src.getBitWidth() - 1;
7769   uint64_t x = Src.getZExtValue();
7770   if (ShAmt & 1)
7771     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
7772   if (ShAmt & 2)
7773     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
7774   if (ShAmt & 4)
7775     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
7776   if (ShAmt & 8)
7777     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
7778   if (ShAmt & 16)
7779     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
7780   if (ShAmt & 32)
7781     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
7782   Src = x;
7783 }
7784 
7785 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7786                                                         KnownBits &Known,
7787                                                         const APInt &DemandedElts,
7788                                                         const SelectionDAG &DAG,
7789                                                         unsigned Depth) const {
7790   unsigned BitWidth = Known.getBitWidth();
7791   unsigned Opc = Op.getOpcode();
7792   assert((Opc >= ISD::BUILTIN_OP_END ||
7793           Opc == ISD::INTRINSIC_WO_CHAIN ||
7794           Opc == ISD::INTRINSIC_W_CHAIN ||
7795           Opc == ISD::INTRINSIC_VOID) &&
7796          "Should use MaskedValueIsZero if you don't know whether Op"
7797          " is a target node!");
7798 
7799   Known.resetAll();
7800   switch (Opc) {
7801   default: break;
7802   case RISCVISD::SELECT_CC: {
7803     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
7804     // If we don't know any bits, early out.
7805     if (Known.isUnknown())
7806       break;
7807     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
7808 
7809     // Only known if known in both the LHS and RHS.
7810     Known = KnownBits::commonBits(Known, Known2);
7811     break;
7812   }
7813   case RISCVISD::REMUW: {
7814     KnownBits Known2;
7815     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7816     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7817     // We only care about the lower 32 bits.
7818     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
7819     // Restore the original width by sign extending.
7820     Known = Known.sext(BitWidth);
7821     break;
7822   }
7823   case RISCVISD::DIVUW: {
7824     KnownBits Known2;
7825     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7826     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7827     // We only care about the lower 32 bits.
7828     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
7829     // Restore the original width by sign extending.
7830     Known = Known.sext(BitWidth);
7831     break;
7832   }
7833   case RISCVISD::CTZW: {
7834     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7835     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
7836     unsigned LowBits = Log2_32(PossibleTZ) + 1;
7837     Known.Zero.setBitsFrom(LowBits);
7838     break;
7839   }
7840   case RISCVISD::CLZW: {
7841     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7842     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
7843     unsigned LowBits = Log2_32(PossibleLZ) + 1;
7844     Known.Zero.setBitsFrom(LowBits);
7845     break;
7846   }
7847   case RISCVISD::GREV:
7848   case RISCVISD::GREVW: {
7849     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7850       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7851       if (Opc == RISCVISD::GREVW)
7852         Known = Known.trunc(32);
7853       unsigned ShAmt = C->getZExtValue();
7854       computeGREV(Known.Zero, ShAmt);
7855       computeGREV(Known.One, ShAmt);
7856       if (Opc == RISCVISD::GREVW)
7857         Known = Known.sext(BitWidth);
7858     }
7859     break;
7860   }
7861   case RISCVISD::READ_VLENB:
7862     // We assume VLENB is at least 16 bytes.
7863     Known.Zero.setLowBits(4);
7864     // We assume VLENB is no more than 65536 / 8 bytes.
7865     Known.Zero.setBitsFrom(14);
7866     break;
7867   case ISD::INTRINSIC_W_CHAIN: {
7868     unsigned IntNo = Op.getConstantOperandVal(1);
7869     switch (IntNo) {
7870     default:
7871       // We can't do anything for most intrinsics.
7872       break;
7873     case Intrinsic::riscv_vsetvli:
7874     case Intrinsic::riscv_vsetvlimax:
7875       // Assume that VL output is positive and would fit in an int32_t.
7876       // TODO: VLEN might be capped at 16 bits in a future V spec update.
7877       if (BitWidth >= 32)
7878         Known.Zero.setBitsFrom(31);
7879       break;
7880     }
7881     break;
7882   }
7883   }
7884 }
7885 
7886 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
7887     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7888     unsigned Depth) const {
7889   switch (Op.getOpcode()) {
7890   default:
7891     break;
7892   case RISCVISD::SELECT_CC: {
7893     unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
7894     if (Tmp == 1) return 1;  // Early out.
7895     unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
7896     return std::min(Tmp, Tmp2);
7897   }
7898   case RISCVISD::SLLW:
7899   case RISCVISD::SRAW:
7900   case RISCVISD::SRLW:
7901   case RISCVISD::DIVW:
7902   case RISCVISD::DIVUW:
7903   case RISCVISD::REMUW:
7904   case RISCVISD::ROLW:
7905   case RISCVISD::RORW:
7906   case RISCVISD::GREVW:
7907   case RISCVISD::GORCW:
7908   case RISCVISD::FSLW:
7909   case RISCVISD::FSRW:
7910   case RISCVISD::SHFLW:
7911   case RISCVISD::UNSHFLW:
7912   case RISCVISD::BCOMPRESSW:
7913   case RISCVISD::BDECOMPRESSW:
7914   case RISCVISD::FCVT_W_RV64:
7915   case RISCVISD::FCVT_WU_RV64:
7916   case RISCVISD::STRICT_FCVT_W_RV64:
7917   case RISCVISD::STRICT_FCVT_WU_RV64:
7918     // TODO: As the result is sign-extended, this is conservatively correct. A
7919     // more precise answer could be calculated for SRAW depending on known
7920     // bits in the shift amount.
7921     return 33;
7922   case RISCVISD::SHFL:
7923   case RISCVISD::UNSHFL: {
7924     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
7925     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
7926     // will stay within the upper 32 bits. If there were more than 32 sign bits
7927     // before there will be at least 33 sign bits after.
7928     if (Op.getValueType() == MVT::i64 &&
7929         isa<ConstantSDNode>(Op.getOperand(1)) &&
7930         (Op.getConstantOperandVal(1) & 0x10) == 0) {
7931       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
7932       if (Tmp > 32)
7933         return 33;
7934     }
7935     break;
7936   }
7937   case RISCVISD::VMV_X_S:
7938     // The number of sign bits of the scalar result is computed by obtaining the
7939     // element type of the input vector operand, subtracting its width from the
7940     // XLEN, and then adding one (sign bit within the element type). If the
7941     // element type is wider than XLen, the least-significant XLEN bits are
7942     // taken.
7943     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
7944       return 1;
7945     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
7946   }
7947 
7948   return 1;
7949 }
7950 
7951 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
7952                                                   MachineBasicBlock *BB) {
7953   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
7954 
7955   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
7956   // Should the count have wrapped while it was being read, we need to try
7957   // again.
7958   // ...
7959   // read:
7960   // rdcycleh x3 # load high word of cycle
7961   // rdcycle  x2 # load low word of cycle
7962   // rdcycleh x4 # load high word of cycle
7963   // bne x3, x4, read # check if high word reads match, otherwise try again
7964   // ...
7965 
7966   MachineFunction &MF = *BB->getParent();
7967   const BasicBlock *LLVM_BB = BB->getBasicBlock();
7968   MachineFunction::iterator It = ++BB->getIterator();
7969 
7970   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7971   MF.insert(It, LoopMBB);
7972 
7973   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7974   MF.insert(It, DoneMBB);
7975 
7976   // Transfer the remainder of BB and its successor edges to DoneMBB.
7977   DoneMBB->splice(DoneMBB->begin(), BB,
7978                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
7979   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
7980 
7981   BB->addSuccessor(LoopMBB);
7982 
7983   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7984   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7985   Register LoReg = MI.getOperand(0).getReg();
7986   Register HiReg = MI.getOperand(1).getReg();
7987   DebugLoc DL = MI.getDebugLoc();
7988 
7989   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
7990   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
7991       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7992       .addReg(RISCV::X0);
7993   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
7994       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
7995       .addReg(RISCV::X0);
7996   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
7997       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7998       .addReg(RISCV::X0);
7999 
8000   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
8001       .addReg(HiReg)
8002       .addReg(ReadAgainReg)
8003       .addMBB(LoopMBB);
8004 
8005   LoopMBB->addSuccessor(LoopMBB);
8006   LoopMBB->addSuccessor(DoneMBB);
8007 
8008   MI.eraseFromParent();
8009 
8010   return DoneMBB;
8011 }
8012 
8013 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
8014                                              MachineBasicBlock *BB) {
8015   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
8016 
8017   MachineFunction &MF = *BB->getParent();
8018   DebugLoc DL = MI.getDebugLoc();
8019   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8020   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8021   Register LoReg = MI.getOperand(0).getReg();
8022   Register HiReg = MI.getOperand(1).getReg();
8023   Register SrcReg = MI.getOperand(2).getReg();
8024   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
8025   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8026 
8027   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
8028                           RI);
8029   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8030   MachineMemOperand *MMOLo =
8031       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
8032   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
8033       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
8034   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
8035       .addFrameIndex(FI)
8036       .addImm(0)
8037       .addMemOperand(MMOLo);
8038   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
8039       .addFrameIndex(FI)
8040       .addImm(4)
8041       .addMemOperand(MMOHi);
8042   MI.eraseFromParent(); // The pseudo instruction is gone now.
8043   return BB;
8044 }
8045 
8046 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
8047                                                  MachineBasicBlock *BB) {
8048   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
8049          "Unexpected instruction");
8050 
8051   MachineFunction &MF = *BB->getParent();
8052   DebugLoc DL = MI.getDebugLoc();
8053   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8054   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8055   Register DstReg = MI.getOperand(0).getReg();
8056   Register LoReg = MI.getOperand(1).getReg();
8057   Register HiReg = MI.getOperand(2).getReg();
8058   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
8059   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8060 
8061   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8062   MachineMemOperand *MMOLo =
8063       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
8064   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
8065       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
8066   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
8067       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
8068       .addFrameIndex(FI)
8069       .addImm(0)
8070       .addMemOperand(MMOLo);
8071   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
8072       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
8073       .addFrameIndex(FI)
8074       .addImm(4)
8075       .addMemOperand(MMOHi);
8076   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
8077   MI.eraseFromParent(); // The pseudo instruction is gone now.
8078   return BB;
8079 }
8080 
8081 static bool isSelectPseudo(MachineInstr &MI) {
8082   switch (MI.getOpcode()) {
8083   default:
8084     return false;
8085   case RISCV::Select_GPR_Using_CC_GPR:
8086   case RISCV::Select_FPR16_Using_CC_GPR:
8087   case RISCV::Select_FPR32_Using_CC_GPR:
8088   case RISCV::Select_FPR64_Using_CC_GPR:
8089     return true;
8090   }
8091 }
8092 
8093 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
8094                                         unsigned RelOpcode, unsigned EqOpcode,
8095                                         const RISCVSubtarget &Subtarget) {
8096   DebugLoc DL = MI.getDebugLoc();
8097   Register DstReg = MI.getOperand(0).getReg();
8098   Register Src1Reg = MI.getOperand(1).getReg();
8099   Register Src2Reg = MI.getOperand(2).getReg();
8100   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
8101   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
8102   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
8103 
8104   // Save the current FFLAGS.
8105   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
8106 
8107   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
8108                  .addReg(Src1Reg)
8109                  .addReg(Src2Reg);
8110   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
8111     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
8112 
8113   // Restore the FFLAGS.
8114   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
8115       .addReg(SavedFFlags, RegState::Kill);
8116 
8117   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
8118   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
8119                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
8120                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
8121   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
8122     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
8123 
8124   // Erase the pseudoinstruction.
8125   MI.eraseFromParent();
8126   return BB;
8127 }
8128 
8129 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
8130                                            MachineBasicBlock *BB,
8131                                            const RISCVSubtarget &Subtarget) {
8132   // To "insert" Select_* instructions, we actually have to insert the triangle
8133   // control-flow pattern.  The incoming instructions know the destination vreg
8134   // to set, the condition code register to branch on, the true/false values to
8135   // select between, and the condcode to use to select the appropriate branch.
8136   //
8137   // We produce the following control flow:
8138   //     HeadMBB
8139   //     |  \
8140   //     |  IfFalseMBB
8141   //     | /
8142   //    TailMBB
8143   //
8144   // When we find a sequence of selects we attempt to optimize their emission
8145   // by sharing the control flow. Currently we only handle cases where we have
8146   // multiple selects with the exact same condition (same LHS, RHS and CC).
8147   // The selects may be interleaved with other instructions if the other
8148   // instructions meet some requirements we deem safe:
8149   // - They are debug instructions. Otherwise,
8150   // - They do not have side-effects, do not access memory and their inputs do
8151   //   not depend on the results of the select pseudo-instructions.
8152   // The TrueV/FalseV operands of the selects cannot depend on the result of
8153   // previous selects in the sequence.
8154   // These conditions could be further relaxed. See the X86 target for a
8155   // related approach and more information.
8156   Register LHS = MI.getOperand(1).getReg();
8157   Register RHS = MI.getOperand(2).getReg();
8158   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
8159 
8160   SmallVector<MachineInstr *, 4> SelectDebugValues;
8161   SmallSet<Register, 4> SelectDests;
8162   SelectDests.insert(MI.getOperand(0).getReg());
8163 
8164   MachineInstr *LastSelectPseudo = &MI;
8165 
8166   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
8167        SequenceMBBI != E; ++SequenceMBBI) {
8168     if (SequenceMBBI->isDebugInstr())
8169       continue;
8170     else if (isSelectPseudo(*SequenceMBBI)) {
8171       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
8172           SequenceMBBI->getOperand(2).getReg() != RHS ||
8173           SequenceMBBI->getOperand(3).getImm() != CC ||
8174           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
8175           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
8176         break;
8177       LastSelectPseudo = &*SequenceMBBI;
8178       SequenceMBBI->collectDebugValues(SelectDebugValues);
8179       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
8180     } else {
8181       if (SequenceMBBI->hasUnmodeledSideEffects() ||
8182           SequenceMBBI->mayLoadOrStore())
8183         break;
8184       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
8185             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
8186           }))
8187         break;
8188     }
8189   }
8190 
8191   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
8192   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8193   DebugLoc DL = MI.getDebugLoc();
8194   MachineFunction::iterator I = ++BB->getIterator();
8195 
8196   MachineBasicBlock *HeadMBB = BB;
8197   MachineFunction *F = BB->getParent();
8198   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
8199   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
8200 
8201   F->insert(I, IfFalseMBB);
8202   F->insert(I, TailMBB);
8203 
8204   // Transfer debug instructions associated with the selects to TailMBB.
8205   for (MachineInstr *DebugInstr : SelectDebugValues) {
8206     TailMBB->push_back(DebugInstr->removeFromParent());
8207   }
8208 
8209   // Move all instructions after the sequence to TailMBB.
8210   TailMBB->splice(TailMBB->end(), HeadMBB,
8211                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
8212   // Update machine-CFG edges by transferring all successors of the current
8213   // block to the new block which will contain the Phi nodes for the selects.
8214   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
8215   // Set the successors for HeadMBB.
8216   HeadMBB->addSuccessor(IfFalseMBB);
8217   HeadMBB->addSuccessor(TailMBB);
8218 
8219   // Insert appropriate branch.
8220   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
8221     .addReg(LHS)
8222     .addReg(RHS)
8223     .addMBB(TailMBB);
8224 
8225   // IfFalseMBB just falls through to TailMBB.
8226   IfFalseMBB->addSuccessor(TailMBB);
8227 
8228   // Create PHIs for all of the select pseudo-instructions.
8229   auto SelectMBBI = MI.getIterator();
8230   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
8231   auto InsertionPoint = TailMBB->begin();
8232   while (SelectMBBI != SelectEnd) {
8233     auto Next = std::next(SelectMBBI);
8234     if (isSelectPseudo(*SelectMBBI)) {
8235       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
8236       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
8237               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
8238           .addReg(SelectMBBI->getOperand(4).getReg())
8239           .addMBB(HeadMBB)
8240           .addReg(SelectMBBI->getOperand(5).getReg())
8241           .addMBB(IfFalseMBB);
8242       SelectMBBI->eraseFromParent();
8243     }
8244     SelectMBBI = Next;
8245   }
8246 
8247   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
8248   return TailMBB;
8249 }
8250 
8251 MachineBasicBlock *
8252 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
8253                                                  MachineBasicBlock *BB) const {
8254   switch (MI.getOpcode()) {
8255   default:
8256     llvm_unreachable("Unexpected instr type to insert");
8257   case RISCV::ReadCycleWide:
8258     assert(!Subtarget.is64Bit() &&
8259            "ReadCycleWrite is only to be used on riscv32");
8260     return emitReadCycleWidePseudo(MI, BB);
8261   case RISCV::Select_GPR_Using_CC_GPR:
8262   case RISCV::Select_FPR16_Using_CC_GPR:
8263   case RISCV::Select_FPR32_Using_CC_GPR:
8264   case RISCV::Select_FPR64_Using_CC_GPR:
8265     return emitSelectPseudo(MI, BB, Subtarget);
8266   case RISCV::BuildPairF64Pseudo:
8267     return emitBuildPairF64Pseudo(MI, BB);
8268   case RISCV::SplitF64Pseudo:
8269     return emitSplitF64Pseudo(MI, BB);
8270   case RISCV::PseudoQuietFLE_H:
8271     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
8272   case RISCV::PseudoQuietFLT_H:
8273     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
8274   case RISCV::PseudoQuietFLE_S:
8275     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
8276   case RISCV::PseudoQuietFLT_S:
8277     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
8278   case RISCV::PseudoQuietFLE_D:
8279     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
8280   case RISCV::PseudoQuietFLT_D:
8281     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
8282   }
8283 }
8284 
8285 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
8286                                                         SDNode *Node) const {
8287   // Add FRM dependency to any instructions with dynamic rounding mode.
8288   unsigned Opc = MI.getOpcode();
8289   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
8290   if (Idx < 0)
8291     return;
8292   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
8293     return;
8294   // If the instruction already reads FRM, don't add another read.
8295   if (MI.readsRegister(RISCV::FRM))
8296     return;
8297   MI.addOperand(
8298       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
8299 }
8300 
8301 // Calling Convention Implementation.
8302 // The expectations for frontend ABI lowering vary from target to target.
8303 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
8304 // details, but this is a longer term goal. For now, we simply try to keep the
8305 // role of the frontend as simple and well-defined as possible. The rules can
8306 // be summarised as:
8307 // * Never split up large scalar arguments. We handle them here.
8308 // * If a hardfloat calling convention is being used, and the struct may be
8309 // passed in a pair of registers (fp+fp, int+fp), and both registers are
8310 // available, then pass as two separate arguments. If either the GPRs or FPRs
8311 // are exhausted, then pass according to the rule below.
8312 // * If a struct could never be passed in registers or directly in a stack
8313 // slot (as it is larger than 2*XLEN and the floating point rules don't
8314 // apply), then pass it using a pointer with the byval attribute.
8315 // * If a struct is less than 2*XLEN, then coerce to either a two-element
8316 // word-sized array or a 2*XLEN scalar (depending on alignment).
8317 // * The frontend can determine whether a struct is returned by reference or
8318 // not based on its size and fields. If it will be returned by reference, the
8319 // frontend must modify the prototype so a pointer with the sret annotation is
8320 // passed as the first argument. This is not necessary for large scalar
8321 // returns.
8322 // * Struct return values and varargs should be coerced to structs containing
8323 // register-size fields in the same situations they would be for fixed
8324 // arguments.
8325 
8326 static const MCPhysReg ArgGPRs[] = {
8327   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
8328   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
8329 };
8330 static const MCPhysReg ArgFPR16s[] = {
8331   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
8332   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
8333 };
8334 static const MCPhysReg ArgFPR32s[] = {
8335   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
8336   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
8337 };
8338 static const MCPhysReg ArgFPR64s[] = {
8339   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
8340   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
8341 };
8342 // This is an interim calling convention and it may be changed in the future.
8343 static const MCPhysReg ArgVRs[] = {
8344     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
8345     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
8346     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
8347 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
8348                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
8349                                      RISCV::V20M2, RISCV::V22M2};
8350 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
8351                                      RISCV::V20M4};
8352 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
8353 
8354 // Pass a 2*XLEN argument that has been split into two XLEN values through
8355 // registers or the stack as necessary.
8356 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
8357                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
8358                                 MVT ValVT2, MVT LocVT2,
8359                                 ISD::ArgFlagsTy ArgFlags2) {
8360   unsigned XLenInBytes = XLen / 8;
8361   if (Register Reg = State.AllocateReg(ArgGPRs)) {
8362     // At least one half can be passed via register.
8363     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
8364                                      VA1.getLocVT(), CCValAssign::Full));
8365   } else {
8366     // Both halves must be passed on the stack, with proper alignment.
8367     Align StackAlign =
8368         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
8369     State.addLoc(
8370         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
8371                             State.AllocateStack(XLenInBytes, StackAlign),
8372                             VA1.getLocVT(), CCValAssign::Full));
8373     State.addLoc(CCValAssign::getMem(
8374         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
8375         LocVT2, CCValAssign::Full));
8376     return false;
8377   }
8378 
8379   if (Register Reg = State.AllocateReg(ArgGPRs)) {
8380     // The second half can also be passed via register.
8381     State.addLoc(
8382         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
8383   } else {
8384     // The second half is passed via the stack, without additional alignment.
8385     State.addLoc(CCValAssign::getMem(
8386         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
8387         LocVT2, CCValAssign::Full));
8388   }
8389 
8390   return false;
8391 }
8392 
8393 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
8394                                Optional<unsigned> FirstMaskArgument,
8395                                CCState &State, const RISCVTargetLowering &TLI) {
8396   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
8397   if (RC == &RISCV::VRRegClass) {
8398     // Assign the first mask argument to V0.
8399     // This is an interim calling convention and it may be changed in the
8400     // future.
8401     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
8402       return State.AllocateReg(RISCV::V0);
8403     return State.AllocateReg(ArgVRs);
8404   }
8405   if (RC == &RISCV::VRM2RegClass)
8406     return State.AllocateReg(ArgVRM2s);
8407   if (RC == &RISCV::VRM4RegClass)
8408     return State.AllocateReg(ArgVRM4s);
8409   if (RC == &RISCV::VRM8RegClass)
8410     return State.AllocateReg(ArgVRM8s);
8411   llvm_unreachable("Unhandled register class for ValueType");
8412 }
8413 
8414 // Implements the RISC-V calling convention. Returns true upon failure.
8415 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
8416                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
8417                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
8418                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
8419                      Optional<unsigned> FirstMaskArgument) {
8420   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
8421   assert(XLen == 32 || XLen == 64);
8422   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
8423 
8424   // Any return value split in to more than two values can't be returned
8425   // directly. Vectors are returned via the available vector registers.
8426   if (!LocVT.isVector() && IsRet && ValNo > 1)
8427     return true;
8428 
8429   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
8430   // variadic argument, or if no F16/F32 argument registers are available.
8431   bool UseGPRForF16_F32 = true;
8432   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
8433   // variadic argument, or if no F64 argument registers are available.
8434   bool UseGPRForF64 = true;
8435 
8436   switch (ABI) {
8437   default:
8438     llvm_unreachable("Unexpected ABI");
8439   case RISCVABI::ABI_ILP32:
8440   case RISCVABI::ABI_LP64:
8441     break;
8442   case RISCVABI::ABI_ILP32F:
8443   case RISCVABI::ABI_LP64F:
8444     UseGPRForF16_F32 = !IsFixed;
8445     break;
8446   case RISCVABI::ABI_ILP32D:
8447   case RISCVABI::ABI_LP64D:
8448     UseGPRForF16_F32 = !IsFixed;
8449     UseGPRForF64 = !IsFixed;
8450     break;
8451   }
8452 
8453   // FPR16, FPR32, and FPR64 alias each other.
8454   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
8455     UseGPRForF16_F32 = true;
8456     UseGPRForF64 = true;
8457   }
8458 
8459   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
8460   // similar local variables rather than directly checking against the target
8461   // ABI.
8462 
8463   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
8464     LocVT = XLenVT;
8465     LocInfo = CCValAssign::BCvt;
8466   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
8467     LocVT = MVT::i64;
8468     LocInfo = CCValAssign::BCvt;
8469   }
8470 
8471   // If this is a variadic argument, the RISC-V calling convention requires
8472   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
8473   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
8474   // be used regardless of whether the original argument was split during
8475   // legalisation or not. The argument will not be passed by registers if the
8476   // original type is larger than 2*XLEN, so the register alignment rule does
8477   // not apply.
8478   unsigned TwoXLenInBytes = (2 * XLen) / 8;
8479   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
8480       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
8481     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
8482     // Skip 'odd' register if necessary.
8483     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
8484       State.AllocateReg(ArgGPRs);
8485   }
8486 
8487   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
8488   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
8489       State.getPendingArgFlags();
8490 
8491   assert(PendingLocs.size() == PendingArgFlags.size() &&
8492          "PendingLocs and PendingArgFlags out of sync");
8493 
8494   // Handle passing f64 on RV32D with a soft float ABI or when floating point
8495   // registers are exhausted.
8496   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
8497     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
8498            "Can't lower f64 if it is split");
8499     // Depending on available argument GPRS, f64 may be passed in a pair of
8500     // GPRs, split between a GPR and the stack, or passed completely on the
8501     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
8502     // cases.
8503     Register Reg = State.AllocateReg(ArgGPRs);
8504     LocVT = MVT::i32;
8505     if (!Reg) {
8506       unsigned StackOffset = State.AllocateStack(8, Align(8));
8507       State.addLoc(
8508           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8509       return false;
8510     }
8511     if (!State.AllocateReg(ArgGPRs))
8512       State.AllocateStack(4, Align(4));
8513     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8514     return false;
8515   }
8516 
8517   // Fixed-length vectors are located in the corresponding scalable-vector
8518   // container types.
8519   if (ValVT.isFixedLengthVector())
8520     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8521 
8522   // Split arguments might be passed indirectly, so keep track of the pending
8523   // values. Split vectors are passed via a mix of registers and indirectly, so
8524   // treat them as we would any other argument.
8525   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
8526     LocVT = XLenVT;
8527     LocInfo = CCValAssign::Indirect;
8528     PendingLocs.push_back(
8529         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
8530     PendingArgFlags.push_back(ArgFlags);
8531     if (!ArgFlags.isSplitEnd()) {
8532       return false;
8533     }
8534   }
8535 
8536   // If the split argument only had two elements, it should be passed directly
8537   // in registers or on the stack.
8538   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
8539       PendingLocs.size() <= 2) {
8540     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
8541     // Apply the normal calling convention rules to the first half of the
8542     // split argument.
8543     CCValAssign VA = PendingLocs[0];
8544     ISD::ArgFlagsTy AF = PendingArgFlags[0];
8545     PendingLocs.clear();
8546     PendingArgFlags.clear();
8547     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
8548                                ArgFlags);
8549   }
8550 
8551   // Allocate to a register if possible, or else a stack slot.
8552   Register Reg;
8553   unsigned StoreSizeBytes = XLen / 8;
8554   Align StackAlign = Align(XLen / 8);
8555 
8556   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
8557     Reg = State.AllocateReg(ArgFPR16s);
8558   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
8559     Reg = State.AllocateReg(ArgFPR32s);
8560   else if (ValVT == MVT::f64 && !UseGPRForF64)
8561     Reg = State.AllocateReg(ArgFPR64s);
8562   else if (ValVT.isVector()) {
8563     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
8564     if (!Reg) {
8565       // For return values, the vector must be passed fully via registers or
8566       // via the stack.
8567       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
8568       // but we're using all of them.
8569       if (IsRet)
8570         return true;
8571       // Try using a GPR to pass the address
8572       if ((Reg = State.AllocateReg(ArgGPRs))) {
8573         LocVT = XLenVT;
8574         LocInfo = CCValAssign::Indirect;
8575       } else if (ValVT.isScalableVector()) {
8576         LocVT = XLenVT;
8577         LocInfo = CCValAssign::Indirect;
8578       } else {
8579         // Pass fixed-length vectors on the stack.
8580         LocVT = ValVT;
8581         StoreSizeBytes = ValVT.getStoreSize();
8582         // Align vectors to their element sizes, being careful for vXi1
8583         // vectors.
8584         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8585       }
8586     }
8587   } else {
8588     Reg = State.AllocateReg(ArgGPRs);
8589   }
8590 
8591   unsigned StackOffset =
8592       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
8593 
8594   // If we reach this point and PendingLocs is non-empty, we must be at the
8595   // end of a split argument that must be passed indirectly.
8596   if (!PendingLocs.empty()) {
8597     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
8598     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
8599 
8600     for (auto &It : PendingLocs) {
8601       if (Reg)
8602         It.convertToReg(Reg);
8603       else
8604         It.convertToMem(StackOffset);
8605       State.addLoc(It);
8606     }
8607     PendingLocs.clear();
8608     PendingArgFlags.clear();
8609     return false;
8610   }
8611 
8612   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
8613           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
8614          "Expected an XLenVT or vector types at this stage");
8615 
8616   if (Reg) {
8617     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8618     return false;
8619   }
8620 
8621   // When a floating-point value is passed on the stack, no bit-conversion is
8622   // needed.
8623   if (ValVT.isFloatingPoint()) {
8624     LocVT = ValVT;
8625     LocInfo = CCValAssign::Full;
8626   }
8627   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8628   return false;
8629 }
8630 
8631 template <typename ArgTy>
8632 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
8633   for (const auto &ArgIdx : enumerate(Args)) {
8634     MVT ArgVT = ArgIdx.value().VT;
8635     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
8636       return ArgIdx.index();
8637   }
8638   return None;
8639 }
8640 
8641 void RISCVTargetLowering::analyzeInputArgs(
8642     MachineFunction &MF, CCState &CCInfo,
8643     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
8644     RISCVCCAssignFn Fn) const {
8645   unsigned NumArgs = Ins.size();
8646   FunctionType *FType = MF.getFunction().getFunctionType();
8647 
8648   Optional<unsigned> FirstMaskArgument;
8649   if (Subtarget.hasVInstructions())
8650     FirstMaskArgument = preAssignMask(Ins);
8651 
8652   for (unsigned i = 0; i != NumArgs; ++i) {
8653     MVT ArgVT = Ins[i].VT;
8654     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
8655 
8656     Type *ArgTy = nullptr;
8657     if (IsRet)
8658       ArgTy = FType->getReturnType();
8659     else if (Ins[i].isOrigArg())
8660       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
8661 
8662     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8663     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8664            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
8665            FirstMaskArgument)) {
8666       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
8667                         << EVT(ArgVT).getEVTString() << '\n');
8668       llvm_unreachable(nullptr);
8669     }
8670   }
8671 }
8672 
8673 void RISCVTargetLowering::analyzeOutputArgs(
8674     MachineFunction &MF, CCState &CCInfo,
8675     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
8676     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
8677   unsigned NumArgs = Outs.size();
8678 
8679   Optional<unsigned> FirstMaskArgument;
8680   if (Subtarget.hasVInstructions())
8681     FirstMaskArgument = preAssignMask(Outs);
8682 
8683   for (unsigned i = 0; i != NumArgs; i++) {
8684     MVT ArgVT = Outs[i].VT;
8685     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
8686     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
8687 
8688     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8689     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8690            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
8691            FirstMaskArgument)) {
8692       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
8693                         << EVT(ArgVT).getEVTString() << "\n");
8694       llvm_unreachable(nullptr);
8695     }
8696   }
8697 }
8698 
8699 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
8700 // values.
8701 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
8702                                    const CCValAssign &VA, const SDLoc &DL,
8703                                    const RISCVSubtarget &Subtarget) {
8704   switch (VA.getLocInfo()) {
8705   default:
8706     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8707   case CCValAssign::Full:
8708     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
8709       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
8710     break;
8711   case CCValAssign::BCvt:
8712     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8713       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
8714     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8715       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
8716     else
8717       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
8718     break;
8719   }
8720   return Val;
8721 }
8722 
8723 // The caller is responsible for loading the full value if the argument is
8724 // passed with CCValAssign::Indirect.
8725 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
8726                                 const CCValAssign &VA, const SDLoc &DL,
8727                                 const RISCVTargetLowering &TLI) {
8728   MachineFunction &MF = DAG.getMachineFunction();
8729   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8730   EVT LocVT = VA.getLocVT();
8731   SDValue Val;
8732   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
8733   Register VReg = RegInfo.createVirtualRegister(RC);
8734   RegInfo.addLiveIn(VA.getLocReg(), VReg);
8735   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
8736 
8737   if (VA.getLocInfo() == CCValAssign::Indirect)
8738     return Val;
8739 
8740   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
8741 }
8742 
8743 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
8744                                    const CCValAssign &VA, const SDLoc &DL,
8745                                    const RISCVSubtarget &Subtarget) {
8746   EVT LocVT = VA.getLocVT();
8747 
8748   switch (VA.getLocInfo()) {
8749   default:
8750     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8751   case CCValAssign::Full:
8752     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
8753       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
8754     break;
8755   case CCValAssign::BCvt:
8756     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8757       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
8758     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8759       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
8760     else
8761       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
8762     break;
8763   }
8764   return Val;
8765 }
8766 
8767 // The caller is responsible for loading the full value if the argument is
8768 // passed with CCValAssign::Indirect.
8769 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
8770                                 const CCValAssign &VA, const SDLoc &DL) {
8771   MachineFunction &MF = DAG.getMachineFunction();
8772   MachineFrameInfo &MFI = MF.getFrameInfo();
8773   EVT LocVT = VA.getLocVT();
8774   EVT ValVT = VA.getValVT();
8775   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
8776   if (ValVT.isScalableVector()) {
8777     // When the value is a scalable vector, we save the pointer which points to
8778     // the scalable vector value in the stack. The ValVT will be the pointer
8779     // type, instead of the scalable vector type.
8780     ValVT = LocVT;
8781   }
8782   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
8783                                  /*IsImmutable=*/true);
8784   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
8785   SDValue Val;
8786 
8787   ISD::LoadExtType ExtType;
8788   switch (VA.getLocInfo()) {
8789   default:
8790     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8791   case CCValAssign::Full:
8792   case CCValAssign::Indirect:
8793   case CCValAssign::BCvt:
8794     ExtType = ISD::NON_EXTLOAD;
8795     break;
8796   }
8797   Val = DAG.getExtLoad(
8798       ExtType, DL, LocVT, Chain, FIN,
8799       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
8800   return Val;
8801 }
8802 
8803 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
8804                                        const CCValAssign &VA, const SDLoc &DL) {
8805   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
8806          "Unexpected VA");
8807   MachineFunction &MF = DAG.getMachineFunction();
8808   MachineFrameInfo &MFI = MF.getFrameInfo();
8809   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8810 
8811   if (VA.isMemLoc()) {
8812     // f64 is passed on the stack.
8813     int FI =
8814         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
8815     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8816     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
8817                        MachinePointerInfo::getFixedStack(MF, FI));
8818   }
8819 
8820   assert(VA.isRegLoc() && "Expected register VA assignment");
8821 
8822   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8823   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
8824   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
8825   SDValue Hi;
8826   if (VA.getLocReg() == RISCV::X17) {
8827     // Second half of f64 is passed on the stack.
8828     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
8829     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8830     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
8831                      MachinePointerInfo::getFixedStack(MF, FI));
8832   } else {
8833     // Second half of f64 is passed in another GPR.
8834     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8835     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
8836     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
8837   }
8838   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
8839 }
8840 
8841 // FastCC has less than 1% performance improvement for some particular
8842 // benchmark. But theoretically, it may has benenfit for some cases.
8843 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
8844                             unsigned ValNo, MVT ValVT, MVT LocVT,
8845                             CCValAssign::LocInfo LocInfo,
8846                             ISD::ArgFlagsTy ArgFlags, CCState &State,
8847                             bool IsFixed, bool IsRet, Type *OrigTy,
8848                             const RISCVTargetLowering &TLI,
8849                             Optional<unsigned> FirstMaskArgument) {
8850 
8851   // X5 and X6 might be used for save-restore libcall.
8852   static const MCPhysReg GPRList[] = {
8853       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
8854       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
8855       RISCV::X29, RISCV::X30, RISCV::X31};
8856 
8857   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8858     if (unsigned Reg = State.AllocateReg(GPRList)) {
8859       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8860       return false;
8861     }
8862   }
8863 
8864   if (LocVT == MVT::f16) {
8865     static const MCPhysReg FPR16List[] = {
8866         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
8867         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
8868         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
8869         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
8870     if (unsigned Reg = State.AllocateReg(FPR16List)) {
8871       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8872       return false;
8873     }
8874   }
8875 
8876   if (LocVT == MVT::f32) {
8877     static const MCPhysReg FPR32List[] = {
8878         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
8879         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
8880         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
8881         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
8882     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8883       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8884       return false;
8885     }
8886   }
8887 
8888   if (LocVT == MVT::f64) {
8889     static const MCPhysReg FPR64List[] = {
8890         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
8891         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
8892         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
8893         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
8894     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8895       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8896       return false;
8897     }
8898   }
8899 
8900   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
8901     unsigned Offset4 = State.AllocateStack(4, Align(4));
8902     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
8903     return false;
8904   }
8905 
8906   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
8907     unsigned Offset5 = State.AllocateStack(8, Align(8));
8908     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
8909     return false;
8910   }
8911 
8912   if (LocVT.isVector()) {
8913     if (unsigned Reg =
8914             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
8915       // Fixed-length vectors are located in the corresponding scalable-vector
8916       // container types.
8917       if (ValVT.isFixedLengthVector())
8918         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8919       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8920     } else {
8921       // Try and pass the address via a "fast" GPR.
8922       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
8923         LocInfo = CCValAssign::Indirect;
8924         LocVT = TLI.getSubtarget().getXLenVT();
8925         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
8926       } else if (ValVT.isFixedLengthVector()) {
8927         auto StackAlign =
8928             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8929         unsigned StackOffset =
8930             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
8931         State.addLoc(
8932             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8933       } else {
8934         // Can't pass scalable vectors on the stack.
8935         return true;
8936       }
8937     }
8938 
8939     return false;
8940   }
8941 
8942   return true; // CC didn't match.
8943 }
8944 
8945 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
8946                          CCValAssign::LocInfo LocInfo,
8947                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
8948 
8949   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8950     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
8951     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
8952     static const MCPhysReg GPRList[] = {
8953         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
8954         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
8955     if (unsigned Reg = State.AllocateReg(GPRList)) {
8956       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8957       return false;
8958     }
8959   }
8960 
8961   if (LocVT == MVT::f32) {
8962     // Pass in STG registers: F1, ..., F6
8963     //                        fs0 ... fs5
8964     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
8965                                           RISCV::F18_F, RISCV::F19_F,
8966                                           RISCV::F20_F, RISCV::F21_F};
8967     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8968       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8969       return false;
8970     }
8971   }
8972 
8973   if (LocVT == MVT::f64) {
8974     // Pass in STG registers: D1, ..., D6
8975     //                        fs6 ... fs11
8976     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
8977                                           RISCV::F24_D, RISCV::F25_D,
8978                                           RISCV::F26_D, RISCV::F27_D};
8979     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8980       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8981       return false;
8982     }
8983   }
8984 
8985   report_fatal_error("No registers left in GHC calling convention");
8986   return true;
8987 }
8988 
8989 // Transform physical registers into virtual registers.
8990 SDValue RISCVTargetLowering::LowerFormalArguments(
8991     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
8992     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
8993     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
8994 
8995   MachineFunction &MF = DAG.getMachineFunction();
8996 
8997   switch (CallConv) {
8998   default:
8999     report_fatal_error("Unsupported calling convention");
9000   case CallingConv::C:
9001   case CallingConv::Fast:
9002     break;
9003   case CallingConv::GHC:
9004     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
9005         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
9006       report_fatal_error(
9007         "GHC calling convention requires the F and D instruction set extensions");
9008   }
9009 
9010   const Function &Func = MF.getFunction();
9011   if (Func.hasFnAttribute("interrupt")) {
9012     if (!Func.arg_empty())
9013       report_fatal_error(
9014         "Functions with the interrupt attribute cannot have arguments!");
9015 
9016     StringRef Kind =
9017       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9018 
9019     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
9020       report_fatal_error(
9021         "Function interrupt attribute argument not supported!");
9022   }
9023 
9024   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9025   MVT XLenVT = Subtarget.getXLenVT();
9026   unsigned XLenInBytes = Subtarget.getXLen() / 8;
9027   // Used with vargs to acumulate store chains.
9028   std::vector<SDValue> OutChains;
9029 
9030   // Assign locations to all of the incoming arguments.
9031   SmallVector<CCValAssign, 16> ArgLocs;
9032   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
9033 
9034   if (CallConv == CallingConv::GHC)
9035     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
9036   else
9037     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
9038                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
9039                                                    : CC_RISCV);
9040 
9041   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
9042     CCValAssign &VA = ArgLocs[i];
9043     SDValue ArgValue;
9044     // Passing f64 on RV32D with a soft float ABI must be handled as a special
9045     // case.
9046     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
9047       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
9048     else if (VA.isRegLoc())
9049       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
9050     else
9051       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
9052 
9053     if (VA.getLocInfo() == CCValAssign::Indirect) {
9054       // If the original argument was split and passed by reference (e.g. i128
9055       // on RV32), we need to load all parts of it here (using the same
9056       // address). Vectors may be partly split to registers and partly to the
9057       // stack, in which case the base address is partly offset and subsequent
9058       // stores are relative to that.
9059       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
9060                                    MachinePointerInfo()));
9061       unsigned ArgIndex = Ins[i].OrigArgIndex;
9062       unsigned ArgPartOffset = Ins[i].PartOffset;
9063       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
9064       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
9065         CCValAssign &PartVA = ArgLocs[i + 1];
9066         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
9067         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
9068         if (PartVA.getValVT().isScalableVector())
9069           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
9070         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
9071         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
9072                                      MachinePointerInfo()));
9073         ++i;
9074       }
9075       continue;
9076     }
9077     InVals.push_back(ArgValue);
9078   }
9079 
9080   if (IsVarArg) {
9081     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
9082     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
9083     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
9084     MachineFrameInfo &MFI = MF.getFrameInfo();
9085     MachineRegisterInfo &RegInfo = MF.getRegInfo();
9086     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
9087 
9088     // Offset of the first variable argument from stack pointer, and size of
9089     // the vararg save area. For now, the varargs save area is either zero or
9090     // large enough to hold a0-a7.
9091     int VaArgOffset, VarArgsSaveSize;
9092 
9093     // If all registers are allocated, then all varargs must be passed on the
9094     // stack and we don't need to save any argregs.
9095     if (ArgRegs.size() == Idx) {
9096       VaArgOffset = CCInfo.getNextStackOffset();
9097       VarArgsSaveSize = 0;
9098     } else {
9099       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
9100       VaArgOffset = -VarArgsSaveSize;
9101     }
9102 
9103     // Record the frame index of the first variable argument
9104     // which is a value necessary to VASTART.
9105     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
9106     RVFI->setVarArgsFrameIndex(FI);
9107 
9108     // If saving an odd number of registers then create an extra stack slot to
9109     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
9110     // offsets to even-numbered registered remain 2*XLEN-aligned.
9111     if (Idx % 2) {
9112       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
9113       VarArgsSaveSize += XLenInBytes;
9114     }
9115 
9116     // Copy the integer registers that may have been used for passing varargs
9117     // to the vararg save area.
9118     for (unsigned I = Idx; I < ArgRegs.size();
9119          ++I, VaArgOffset += XLenInBytes) {
9120       const Register Reg = RegInfo.createVirtualRegister(RC);
9121       RegInfo.addLiveIn(ArgRegs[I], Reg);
9122       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
9123       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
9124       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
9125       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
9126                                    MachinePointerInfo::getFixedStack(MF, FI));
9127       cast<StoreSDNode>(Store.getNode())
9128           ->getMemOperand()
9129           ->setValue((Value *)nullptr);
9130       OutChains.push_back(Store);
9131     }
9132     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
9133   }
9134 
9135   // All stores are grouped in one node to allow the matching between
9136   // the size of Ins and InVals. This only happens for vararg functions.
9137   if (!OutChains.empty()) {
9138     OutChains.push_back(Chain);
9139     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
9140   }
9141 
9142   return Chain;
9143 }
9144 
9145 /// isEligibleForTailCallOptimization - Check whether the call is eligible
9146 /// for tail call optimization.
9147 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
9148 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
9149     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
9150     const SmallVector<CCValAssign, 16> &ArgLocs) const {
9151 
9152   auto &Callee = CLI.Callee;
9153   auto CalleeCC = CLI.CallConv;
9154   auto &Outs = CLI.Outs;
9155   auto &Caller = MF.getFunction();
9156   auto CallerCC = Caller.getCallingConv();
9157 
9158   // Exception-handling functions need a special set of instructions to
9159   // indicate a return to the hardware. Tail-calling another function would
9160   // probably break this.
9161   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
9162   // should be expanded as new function attributes are introduced.
9163   if (Caller.hasFnAttribute("interrupt"))
9164     return false;
9165 
9166   // Do not tail call opt if the stack is used to pass parameters.
9167   if (CCInfo.getNextStackOffset() != 0)
9168     return false;
9169 
9170   // Do not tail call opt if any parameters need to be passed indirectly.
9171   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
9172   // passed indirectly. So the address of the value will be passed in a
9173   // register, or if not available, then the address is put on the stack. In
9174   // order to pass indirectly, space on the stack often needs to be allocated
9175   // in order to store the value. In this case the CCInfo.getNextStackOffset()
9176   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
9177   // are passed CCValAssign::Indirect.
9178   for (auto &VA : ArgLocs)
9179     if (VA.getLocInfo() == CCValAssign::Indirect)
9180       return false;
9181 
9182   // Do not tail call opt if either caller or callee uses struct return
9183   // semantics.
9184   auto IsCallerStructRet = Caller.hasStructRetAttr();
9185   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
9186   if (IsCallerStructRet || IsCalleeStructRet)
9187     return false;
9188 
9189   // Externally-defined functions with weak linkage should not be
9190   // tail-called. The behaviour of branch instructions in this situation (as
9191   // used for tail calls) is implementation-defined, so we cannot rely on the
9192   // linker replacing the tail call with a return.
9193   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
9194     const GlobalValue *GV = G->getGlobal();
9195     if (GV->hasExternalWeakLinkage())
9196       return false;
9197   }
9198 
9199   // The callee has to preserve all registers the caller needs to preserve.
9200   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
9201   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
9202   if (CalleeCC != CallerCC) {
9203     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
9204     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
9205       return false;
9206   }
9207 
9208   // Byval parameters hand the function a pointer directly into the stack area
9209   // we want to reuse during a tail call. Working around this *is* possible
9210   // but less efficient and uglier in LowerCall.
9211   for (auto &Arg : Outs)
9212     if (Arg.Flags.isByVal())
9213       return false;
9214 
9215   return true;
9216 }
9217 
9218 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
9219   return DAG.getDataLayout().getPrefTypeAlign(
9220       VT.getTypeForEVT(*DAG.getContext()));
9221 }
9222 
9223 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
9224 // and output parameter nodes.
9225 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
9226                                        SmallVectorImpl<SDValue> &InVals) const {
9227   SelectionDAG &DAG = CLI.DAG;
9228   SDLoc &DL = CLI.DL;
9229   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
9230   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
9231   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
9232   SDValue Chain = CLI.Chain;
9233   SDValue Callee = CLI.Callee;
9234   bool &IsTailCall = CLI.IsTailCall;
9235   CallingConv::ID CallConv = CLI.CallConv;
9236   bool IsVarArg = CLI.IsVarArg;
9237   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9238   MVT XLenVT = Subtarget.getXLenVT();
9239 
9240   MachineFunction &MF = DAG.getMachineFunction();
9241 
9242   // Analyze the operands of the call, assigning locations to each operand.
9243   SmallVector<CCValAssign, 16> ArgLocs;
9244   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
9245 
9246   if (CallConv == CallingConv::GHC)
9247     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
9248   else
9249     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
9250                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
9251                                                     : CC_RISCV);
9252 
9253   // Check if it's really possible to do a tail call.
9254   if (IsTailCall)
9255     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
9256 
9257   if (IsTailCall)
9258     ++NumTailCalls;
9259   else if (CLI.CB && CLI.CB->isMustTailCall())
9260     report_fatal_error("failed to perform tail call elimination on a call "
9261                        "site marked musttail");
9262 
9263   // Get a count of how many bytes are to be pushed on the stack.
9264   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
9265 
9266   // Create local copies for byval args
9267   SmallVector<SDValue, 8> ByValArgs;
9268   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
9269     ISD::ArgFlagsTy Flags = Outs[i].Flags;
9270     if (!Flags.isByVal())
9271       continue;
9272 
9273     SDValue Arg = OutVals[i];
9274     unsigned Size = Flags.getByValSize();
9275     Align Alignment = Flags.getNonZeroByValAlign();
9276 
9277     int FI =
9278         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
9279     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
9280     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
9281 
9282     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
9283                           /*IsVolatile=*/false,
9284                           /*AlwaysInline=*/false, IsTailCall,
9285                           MachinePointerInfo(), MachinePointerInfo());
9286     ByValArgs.push_back(FIPtr);
9287   }
9288 
9289   if (!IsTailCall)
9290     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
9291 
9292   // Copy argument values to their designated locations.
9293   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
9294   SmallVector<SDValue, 8> MemOpChains;
9295   SDValue StackPtr;
9296   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
9297     CCValAssign &VA = ArgLocs[i];
9298     SDValue ArgValue = OutVals[i];
9299     ISD::ArgFlagsTy Flags = Outs[i].Flags;
9300 
9301     // Handle passing f64 on RV32D with a soft float ABI as a special case.
9302     bool IsF64OnRV32DSoftABI =
9303         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
9304     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
9305       SDValue SplitF64 = DAG.getNode(
9306           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
9307       SDValue Lo = SplitF64.getValue(0);
9308       SDValue Hi = SplitF64.getValue(1);
9309 
9310       Register RegLo = VA.getLocReg();
9311       RegsToPass.push_back(std::make_pair(RegLo, Lo));
9312 
9313       if (RegLo == RISCV::X17) {
9314         // Second half of f64 is passed on the stack.
9315         // Work out the address of the stack slot.
9316         if (!StackPtr.getNode())
9317           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
9318         // Emit the store.
9319         MemOpChains.push_back(
9320             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
9321       } else {
9322         // Second half of f64 is passed in another GPR.
9323         assert(RegLo < RISCV::X31 && "Invalid register pair");
9324         Register RegHigh = RegLo + 1;
9325         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
9326       }
9327       continue;
9328     }
9329 
9330     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
9331     // as any other MemLoc.
9332 
9333     // Promote the value if needed.
9334     // For now, only handle fully promoted and indirect arguments.
9335     if (VA.getLocInfo() == CCValAssign::Indirect) {
9336       // Store the argument in a stack slot and pass its address.
9337       Align StackAlign =
9338           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
9339                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
9340       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
9341       // If the original argument was split (e.g. i128), we need
9342       // to store the required parts of it here (and pass just one address).
9343       // Vectors may be partly split to registers and partly to the stack, in
9344       // which case the base address is partly offset and subsequent stores are
9345       // relative to that.
9346       unsigned ArgIndex = Outs[i].OrigArgIndex;
9347       unsigned ArgPartOffset = Outs[i].PartOffset;
9348       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
9349       // Calculate the total size to store. We don't have access to what we're
9350       // actually storing other than performing the loop and collecting the
9351       // info.
9352       SmallVector<std::pair<SDValue, SDValue>> Parts;
9353       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
9354         SDValue PartValue = OutVals[i + 1];
9355         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
9356         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
9357         EVT PartVT = PartValue.getValueType();
9358         if (PartVT.isScalableVector())
9359           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
9360         StoredSize += PartVT.getStoreSize();
9361         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
9362         Parts.push_back(std::make_pair(PartValue, Offset));
9363         ++i;
9364       }
9365       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
9366       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
9367       MemOpChains.push_back(
9368           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
9369                        MachinePointerInfo::getFixedStack(MF, FI)));
9370       for (const auto &Part : Parts) {
9371         SDValue PartValue = Part.first;
9372         SDValue PartOffset = Part.second;
9373         SDValue Address =
9374             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
9375         MemOpChains.push_back(
9376             DAG.getStore(Chain, DL, PartValue, Address,
9377                          MachinePointerInfo::getFixedStack(MF, FI)));
9378       }
9379       ArgValue = SpillSlot;
9380     } else {
9381       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
9382     }
9383 
9384     // Use local copy if it is a byval arg.
9385     if (Flags.isByVal())
9386       ArgValue = ByValArgs[j++];
9387 
9388     if (VA.isRegLoc()) {
9389       // Queue up the argument copies and emit them at the end.
9390       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
9391     } else {
9392       assert(VA.isMemLoc() && "Argument not register or memory");
9393       assert(!IsTailCall && "Tail call not allowed if stack is used "
9394                             "for passing parameters");
9395 
9396       // Work out the address of the stack slot.
9397       if (!StackPtr.getNode())
9398         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
9399       SDValue Address =
9400           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
9401                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
9402 
9403       // Emit the store.
9404       MemOpChains.push_back(
9405           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
9406     }
9407   }
9408 
9409   // Join the stores, which are independent of one another.
9410   if (!MemOpChains.empty())
9411     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
9412 
9413   SDValue Glue;
9414 
9415   // Build a sequence of copy-to-reg nodes, chained and glued together.
9416   for (auto &Reg : RegsToPass) {
9417     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
9418     Glue = Chain.getValue(1);
9419   }
9420 
9421   // Validate that none of the argument registers have been marked as
9422   // reserved, if so report an error. Do the same for the return address if this
9423   // is not a tailcall.
9424   validateCCReservedRegs(RegsToPass, MF);
9425   if (!IsTailCall &&
9426       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
9427     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9428         MF.getFunction(),
9429         "Return address register required, but has been reserved."});
9430 
9431   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
9432   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
9433   // split it and then direct call can be matched by PseudoCALL.
9434   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
9435     const GlobalValue *GV = S->getGlobal();
9436 
9437     unsigned OpFlags = RISCVII::MO_CALL;
9438     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
9439       OpFlags = RISCVII::MO_PLT;
9440 
9441     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
9442   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
9443     unsigned OpFlags = RISCVII::MO_CALL;
9444 
9445     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
9446                                                  nullptr))
9447       OpFlags = RISCVII::MO_PLT;
9448 
9449     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
9450   }
9451 
9452   // The first call operand is the chain and the second is the target address.
9453   SmallVector<SDValue, 8> Ops;
9454   Ops.push_back(Chain);
9455   Ops.push_back(Callee);
9456 
9457   // Add argument registers to the end of the list so that they are
9458   // known live into the call.
9459   for (auto &Reg : RegsToPass)
9460     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
9461 
9462   if (!IsTailCall) {
9463     // Add a register mask operand representing the call-preserved registers.
9464     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
9465     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
9466     assert(Mask && "Missing call preserved mask for calling convention");
9467     Ops.push_back(DAG.getRegisterMask(Mask));
9468   }
9469 
9470   // Glue the call to the argument copies, if any.
9471   if (Glue.getNode())
9472     Ops.push_back(Glue);
9473 
9474   // Emit the call.
9475   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9476 
9477   if (IsTailCall) {
9478     MF.getFrameInfo().setHasTailCall();
9479     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
9480   }
9481 
9482   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
9483   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
9484   Glue = Chain.getValue(1);
9485 
9486   // Mark the end of the call, which is glued to the call itself.
9487   Chain = DAG.getCALLSEQ_END(Chain,
9488                              DAG.getConstant(NumBytes, DL, PtrVT, true),
9489                              DAG.getConstant(0, DL, PtrVT, true),
9490                              Glue, DL);
9491   Glue = Chain.getValue(1);
9492 
9493   // Assign locations to each value returned by this call.
9494   SmallVector<CCValAssign, 16> RVLocs;
9495   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
9496   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
9497 
9498   // Copy all of the result registers out of their specified physreg.
9499   for (auto &VA : RVLocs) {
9500     // Copy the value out
9501     SDValue RetValue =
9502         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
9503     // Glue the RetValue to the end of the call sequence
9504     Chain = RetValue.getValue(1);
9505     Glue = RetValue.getValue(2);
9506 
9507     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9508       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
9509       SDValue RetValue2 =
9510           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
9511       Chain = RetValue2.getValue(1);
9512       Glue = RetValue2.getValue(2);
9513       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
9514                              RetValue2);
9515     }
9516 
9517     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
9518 
9519     InVals.push_back(RetValue);
9520   }
9521 
9522   return Chain;
9523 }
9524 
9525 bool RISCVTargetLowering::CanLowerReturn(
9526     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
9527     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
9528   SmallVector<CCValAssign, 16> RVLocs;
9529   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
9530 
9531   Optional<unsigned> FirstMaskArgument;
9532   if (Subtarget.hasVInstructions())
9533     FirstMaskArgument = preAssignMask(Outs);
9534 
9535   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
9536     MVT VT = Outs[i].VT;
9537     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9538     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9539     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
9540                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
9541                  *this, FirstMaskArgument))
9542       return false;
9543   }
9544   return true;
9545 }
9546 
9547 SDValue
9548 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
9549                                  bool IsVarArg,
9550                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
9551                                  const SmallVectorImpl<SDValue> &OutVals,
9552                                  const SDLoc &DL, SelectionDAG &DAG) const {
9553   const MachineFunction &MF = DAG.getMachineFunction();
9554   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9555 
9556   // Stores the assignment of the return value to a location.
9557   SmallVector<CCValAssign, 16> RVLocs;
9558 
9559   // Info about the registers and stack slot.
9560   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
9561                  *DAG.getContext());
9562 
9563   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
9564                     nullptr, CC_RISCV);
9565 
9566   if (CallConv == CallingConv::GHC && !RVLocs.empty())
9567     report_fatal_error("GHC functions return void only");
9568 
9569   SDValue Glue;
9570   SmallVector<SDValue, 4> RetOps(1, Chain);
9571 
9572   // Copy the result values into the output registers.
9573   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
9574     SDValue Val = OutVals[i];
9575     CCValAssign &VA = RVLocs[i];
9576     assert(VA.isRegLoc() && "Can only return in registers!");
9577 
9578     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9579       // Handle returning f64 on RV32D with a soft float ABI.
9580       assert(VA.isRegLoc() && "Expected return via registers");
9581       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
9582                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
9583       SDValue Lo = SplitF64.getValue(0);
9584       SDValue Hi = SplitF64.getValue(1);
9585       Register RegLo = VA.getLocReg();
9586       assert(RegLo < RISCV::X31 && "Invalid register pair");
9587       Register RegHi = RegLo + 1;
9588 
9589       if (STI.isRegisterReservedByUser(RegLo) ||
9590           STI.isRegisterReservedByUser(RegHi))
9591         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9592             MF.getFunction(),
9593             "Return value register required, but has been reserved."});
9594 
9595       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
9596       Glue = Chain.getValue(1);
9597       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
9598       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
9599       Glue = Chain.getValue(1);
9600       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
9601     } else {
9602       // Handle a 'normal' return.
9603       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
9604       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
9605 
9606       if (STI.isRegisterReservedByUser(VA.getLocReg()))
9607         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9608             MF.getFunction(),
9609             "Return value register required, but has been reserved."});
9610 
9611       // Guarantee that all emitted copies are stuck together.
9612       Glue = Chain.getValue(1);
9613       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
9614     }
9615   }
9616 
9617   RetOps[0] = Chain; // Update chain.
9618 
9619   // Add the glue node if we have it.
9620   if (Glue.getNode()) {
9621     RetOps.push_back(Glue);
9622   }
9623 
9624   unsigned RetOpc = RISCVISD::RET_FLAG;
9625   // Interrupt service routines use different return instructions.
9626   const Function &Func = DAG.getMachineFunction().getFunction();
9627   if (Func.hasFnAttribute("interrupt")) {
9628     if (!Func.getReturnType()->isVoidTy())
9629       report_fatal_error(
9630           "Functions with the interrupt attribute must have void return type!");
9631 
9632     MachineFunction &MF = DAG.getMachineFunction();
9633     StringRef Kind =
9634       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9635 
9636     if (Kind == "user")
9637       RetOpc = RISCVISD::URET_FLAG;
9638     else if (Kind == "supervisor")
9639       RetOpc = RISCVISD::SRET_FLAG;
9640     else
9641       RetOpc = RISCVISD::MRET_FLAG;
9642   }
9643 
9644   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
9645 }
9646 
9647 void RISCVTargetLowering::validateCCReservedRegs(
9648     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
9649     MachineFunction &MF) const {
9650   const Function &F = MF.getFunction();
9651   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9652 
9653   if (llvm::any_of(Regs, [&STI](auto Reg) {
9654         return STI.isRegisterReservedByUser(Reg.first);
9655       }))
9656     F.getContext().diagnose(DiagnosticInfoUnsupported{
9657         F, "Argument register required, but has been reserved."});
9658 }
9659 
9660 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
9661   return CI->isTailCall();
9662 }
9663 
9664 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
9665 #define NODE_NAME_CASE(NODE)                                                   \
9666   case RISCVISD::NODE:                                                         \
9667     return "RISCVISD::" #NODE;
9668   // clang-format off
9669   switch ((RISCVISD::NodeType)Opcode) {
9670   case RISCVISD::FIRST_NUMBER:
9671     break;
9672   NODE_NAME_CASE(RET_FLAG)
9673   NODE_NAME_CASE(URET_FLAG)
9674   NODE_NAME_CASE(SRET_FLAG)
9675   NODE_NAME_CASE(MRET_FLAG)
9676   NODE_NAME_CASE(CALL)
9677   NODE_NAME_CASE(SELECT_CC)
9678   NODE_NAME_CASE(BR_CC)
9679   NODE_NAME_CASE(BuildPairF64)
9680   NODE_NAME_CASE(SplitF64)
9681   NODE_NAME_CASE(TAIL)
9682   NODE_NAME_CASE(MULHSU)
9683   NODE_NAME_CASE(SLLW)
9684   NODE_NAME_CASE(SRAW)
9685   NODE_NAME_CASE(SRLW)
9686   NODE_NAME_CASE(DIVW)
9687   NODE_NAME_CASE(DIVUW)
9688   NODE_NAME_CASE(REMUW)
9689   NODE_NAME_CASE(ROLW)
9690   NODE_NAME_CASE(RORW)
9691   NODE_NAME_CASE(CLZW)
9692   NODE_NAME_CASE(CTZW)
9693   NODE_NAME_CASE(FSLW)
9694   NODE_NAME_CASE(FSRW)
9695   NODE_NAME_CASE(FSL)
9696   NODE_NAME_CASE(FSR)
9697   NODE_NAME_CASE(FMV_H_X)
9698   NODE_NAME_CASE(FMV_X_ANYEXTH)
9699   NODE_NAME_CASE(FMV_W_X_RV64)
9700   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
9701   NODE_NAME_CASE(FCVT_X)
9702   NODE_NAME_CASE(FCVT_XU)
9703   NODE_NAME_CASE(FCVT_W_RV64)
9704   NODE_NAME_CASE(FCVT_WU_RV64)
9705   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
9706   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
9707   NODE_NAME_CASE(READ_CYCLE_WIDE)
9708   NODE_NAME_CASE(GREV)
9709   NODE_NAME_CASE(GREVW)
9710   NODE_NAME_CASE(GORC)
9711   NODE_NAME_CASE(GORCW)
9712   NODE_NAME_CASE(SHFL)
9713   NODE_NAME_CASE(SHFLW)
9714   NODE_NAME_CASE(UNSHFL)
9715   NODE_NAME_CASE(UNSHFLW)
9716   NODE_NAME_CASE(BFP)
9717   NODE_NAME_CASE(BFPW)
9718   NODE_NAME_CASE(BCOMPRESS)
9719   NODE_NAME_CASE(BCOMPRESSW)
9720   NODE_NAME_CASE(BDECOMPRESS)
9721   NODE_NAME_CASE(BDECOMPRESSW)
9722   NODE_NAME_CASE(VMV_V_X_VL)
9723   NODE_NAME_CASE(VFMV_V_F_VL)
9724   NODE_NAME_CASE(VMV_X_S)
9725   NODE_NAME_CASE(VMV_S_X_VL)
9726   NODE_NAME_CASE(VFMV_S_F_VL)
9727   NODE_NAME_CASE(SPLAT_VECTOR_I64)
9728   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
9729   NODE_NAME_CASE(READ_VLENB)
9730   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
9731   NODE_NAME_CASE(VSLIDEUP_VL)
9732   NODE_NAME_CASE(VSLIDE1UP_VL)
9733   NODE_NAME_CASE(VSLIDEDOWN_VL)
9734   NODE_NAME_CASE(VSLIDE1DOWN_VL)
9735   NODE_NAME_CASE(VID_VL)
9736   NODE_NAME_CASE(VFNCVT_ROD_VL)
9737   NODE_NAME_CASE(VECREDUCE_ADD_VL)
9738   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
9739   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
9740   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
9741   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
9742   NODE_NAME_CASE(VECREDUCE_AND_VL)
9743   NODE_NAME_CASE(VECREDUCE_OR_VL)
9744   NODE_NAME_CASE(VECREDUCE_XOR_VL)
9745   NODE_NAME_CASE(VECREDUCE_FADD_VL)
9746   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
9747   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
9748   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
9749   NODE_NAME_CASE(ADD_VL)
9750   NODE_NAME_CASE(AND_VL)
9751   NODE_NAME_CASE(MUL_VL)
9752   NODE_NAME_CASE(OR_VL)
9753   NODE_NAME_CASE(SDIV_VL)
9754   NODE_NAME_CASE(SHL_VL)
9755   NODE_NAME_CASE(SREM_VL)
9756   NODE_NAME_CASE(SRA_VL)
9757   NODE_NAME_CASE(SRL_VL)
9758   NODE_NAME_CASE(SUB_VL)
9759   NODE_NAME_CASE(UDIV_VL)
9760   NODE_NAME_CASE(UREM_VL)
9761   NODE_NAME_CASE(XOR_VL)
9762   NODE_NAME_CASE(SADDSAT_VL)
9763   NODE_NAME_CASE(UADDSAT_VL)
9764   NODE_NAME_CASE(SSUBSAT_VL)
9765   NODE_NAME_CASE(USUBSAT_VL)
9766   NODE_NAME_CASE(FADD_VL)
9767   NODE_NAME_CASE(FSUB_VL)
9768   NODE_NAME_CASE(FMUL_VL)
9769   NODE_NAME_CASE(FDIV_VL)
9770   NODE_NAME_CASE(FNEG_VL)
9771   NODE_NAME_CASE(FABS_VL)
9772   NODE_NAME_CASE(FSQRT_VL)
9773   NODE_NAME_CASE(FMA_VL)
9774   NODE_NAME_CASE(FCOPYSIGN_VL)
9775   NODE_NAME_CASE(SMIN_VL)
9776   NODE_NAME_CASE(SMAX_VL)
9777   NODE_NAME_CASE(UMIN_VL)
9778   NODE_NAME_CASE(UMAX_VL)
9779   NODE_NAME_CASE(FMINNUM_VL)
9780   NODE_NAME_CASE(FMAXNUM_VL)
9781   NODE_NAME_CASE(MULHS_VL)
9782   NODE_NAME_CASE(MULHU_VL)
9783   NODE_NAME_CASE(FP_TO_SINT_VL)
9784   NODE_NAME_CASE(FP_TO_UINT_VL)
9785   NODE_NAME_CASE(SINT_TO_FP_VL)
9786   NODE_NAME_CASE(UINT_TO_FP_VL)
9787   NODE_NAME_CASE(FP_EXTEND_VL)
9788   NODE_NAME_CASE(FP_ROUND_VL)
9789   NODE_NAME_CASE(VWMUL_VL)
9790   NODE_NAME_CASE(VWMULU_VL)
9791   NODE_NAME_CASE(SETCC_VL)
9792   NODE_NAME_CASE(VSELECT_VL)
9793   NODE_NAME_CASE(VMAND_VL)
9794   NODE_NAME_CASE(VMOR_VL)
9795   NODE_NAME_CASE(VMXOR_VL)
9796   NODE_NAME_CASE(VMCLR_VL)
9797   NODE_NAME_CASE(VMSET_VL)
9798   NODE_NAME_CASE(VRGATHER_VX_VL)
9799   NODE_NAME_CASE(VRGATHER_VV_VL)
9800   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
9801   NODE_NAME_CASE(VSEXT_VL)
9802   NODE_NAME_CASE(VZEXT_VL)
9803   NODE_NAME_CASE(VCPOP_VL)
9804   NODE_NAME_CASE(VLE_VL)
9805   NODE_NAME_CASE(VSE_VL)
9806   NODE_NAME_CASE(READ_CSR)
9807   NODE_NAME_CASE(WRITE_CSR)
9808   NODE_NAME_CASE(SWAP_CSR)
9809   }
9810   // clang-format on
9811   return nullptr;
9812 #undef NODE_NAME_CASE
9813 }
9814 
9815 /// getConstraintType - Given a constraint letter, return the type of
9816 /// constraint it is for this target.
9817 RISCVTargetLowering::ConstraintType
9818 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
9819   if (Constraint.size() == 1) {
9820     switch (Constraint[0]) {
9821     default:
9822       break;
9823     case 'f':
9824       return C_RegisterClass;
9825     case 'I':
9826     case 'J':
9827     case 'K':
9828       return C_Immediate;
9829     case 'A':
9830       return C_Memory;
9831     case 'S': // A symbolic address
9832       return C_Other;
9833     }
9834   } else {
9835     if (Constraint == "vr" || Constraint == "vm")
9836       return C_RegisterClass;
9837   }
9838   return TargetLowering::getConstraintType(Constraint);
9839 }
9840 
9841 std::pair<unsigned, const TargetRegisterClass *>
9842 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
9843                                                   StringRef Constraint,
9844                                                   MVT VT) const {
9845   // First, see if this is a constraint that directly corresponds to a
9846   // RISCV register class.
9847   if (Constraint.size() == 1) {
9848     switch (Constraint[0]) {
9849     case 'r':
9850       // TODO: Support fixed vectors up to XLen for P extension?
9851       if (VT.isVector())
9852         break;
9853       return std::make_pair(0U, &RISCV::GPRRegClass);
9854     case 'f':
9855       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
9856         return std::make_pair(0U, &RISCV::FPR16RegClass);
9857       if (Subtarget.hasStdExtF() && VT == MVT::f32)
9858         return std::make_pair(0U, &RISCV::FPR32RegClass);
9859       if (Subtarget.hasStdExtD() && VT == MVT::f64)
9860         return std::make_pair(0U, &RISCV::FPR64RegClass);
9861       break;
9862     default:
9863       break;
9864     }
9865   } else if (Constraint == "vr") {
9866     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
9867                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9868       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
9869         return std::make_pair(0U, RC);
9870     }
9871   } else if (Constraint == "vm") {
9872     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
9873       return std::make_pair(0U, &RISCV::VMV0RegClass);
9874   }
9875 
9876   // Clang will correctly decode the usage of register name aliases into their
9877   // official names. However, other frontends like `rustc` do not. This allows
9878   // users of these frontends to use the ABI names for registers in LLVM-style
9879   // register constraints.
9880   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
9881                                .Case("{zero}", RISCV::X0)
9882                                .Case("{ra}", RISCV::X1)
9883                                .Case("{sp}", RISCV::X2)
9884                                .Case("{gp}", RISCV::X3)
9885                                .Case("{tp}", RISCV::X4)
9886                                .Case("{t0}", RISCV::X5)
9887                                .Case("{t1}", RISCV::X6)
9888                                .Case("{t2}", RISCV::X7)
9889                                .Cases("{s0}", "{fp}", RISCV::X8)
9890                                .Case("{s1}", RISCV::X9)
9891                                .Case("{a0}", RISCV::X10)
9892                                .Case("{a1}", RISCV::X11)
9893                                .Case("{a2}", RISCV::X12)
9894                                .Case("{a3}", RISCV::X13)
9895                                .Case("{a4}", RISCV::X14)
9896                                .Case("{a5}", RISCV::X15)
9897                                .Case("{a6}", RISCV::X16)
9898                                .Case("{a7}", RISCV::X17)
9899                                .Case("{s2}", RISCV::X18)
9900                                .Case("{s3}", RISCV::X19)
9901                                .Case("{s4}", RISCV::X20)
9902                                .Case("{s5}", RISCV::X21)
9903                                .Case("{s6}", RISCV::X22)
9904                                .Case("{s7}", RISCV::X23)
9905                                .Case("{s8}", RISCV::X24)
9906                                .Case("{s9}", RISCV::X25)
9907                                .Case("{s10}", RISCV::X26)
9908                                .Case("{s11}", RISCV::X27)
9909                                .Case("{t3}", RISCV::X28)
9910                                .Case("{t4}", RISCV::X29)
9911                                .Case("{t5}", RISCV::X30)
9912                                .Case("{t6}", RISCV::X31)
9913                                .Default(RISCV::NoRegister);
9914   if (XRegFromAlias != RISCV::NoRegister)
9915     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
9916 
9917   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
9918   // TableGen record rather than the AsmName to choose registers for InlineAsm
9919   // constraints, plus we want to match those names to the widest floating point
9920   // register type available, manually select floating point registers here.
9921   //
9922   // The second case is the ABI name of the register, so that frontends can also
9923   // use the ABI names in register constraint lists.
9924   if (Subtarget.hasStdExtF()) {
9925     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
9926                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
9927                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
9928                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
9929                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
9930                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
9931                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
9932                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
9933                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
9934                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
9935                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
9936                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
9937                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
9938                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
9939                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
9940                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
9941                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
9942                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
9943                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
9944                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
9945                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
9946                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
9947                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
9948                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
9949                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
9950                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
9951                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
9952                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
9953                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
9954                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
9955                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
9956                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
9957                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
9958                         .Default(RISCV::NoRegister);
9959     if (FReg != RISCV::NoRegister) {
9960       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
9961       if (Subtarget.hasStdExtD()) {
9962         unsigned RegNo = FReg - RISCV::F0_F;
9963         unsigned DReg = RISCV::F0_D + RegNo;
9964         return std::make_pair(DReg, &RISCV::FPR64RegClass);
9965       }
9966       return std::make_pair(FReg, &RISCV::FPR32RegClass);
9967     }
9968   }
9969 
9970   if (Subtarget.hasVInstructions()) {
9971     Register VReg = StringSwitch<Register>(Constraint.lower())
9972                         .Case("{v0}", RISCV::V0)
9973                         .Case("{v1}", RISCV::V1)
9974                         .Case("{v2}", RISCV::V2)
9975                         .Case("{v3}", RISCV::V3)
9976                         .Case("{v4}", RISCV::V4)
9977                         .Case("{v5}", RISCV::V5)
9978                         .Case("{v6}", RISCV::V6)
9979                         .Case("{v7}", RISCV::V7)
9980                         .Case("{v8}", RISCV::V8)
9981                         .Case("{v9}", RISCV::V9)
9982                         .Case("{v10}", RISCV::V10)
9983                         .Case("{v11}", RISCV::V11)
9984                         .Case("{v12}", RISCV::V12)
9985                         .Case("{v13}", RISCV::V13)
9986                         .Case("{v14}", RISCV::V14)
9987                         .Case("{v15}", RISCV::V15)
9988                         .Case("{v16}", RISCV::V16)
9989                         .Case("{v17}", RISCV::V17)
9990                         .Case("{v18}", RISCV::V18)
9991                         .Case("{v19}", RISCV::V19)
9992                         .Case("{v20}", RISCV::V20)
9993                         .Case("{v21}", RISCV::V21)
9994                         .Case("{v22}", RISCV::V22)
9995                         .Case("{v23}", RISCV::V23)
9996                         .Case("{v24}", RISCV::V24)
9997                         .Case("{v25}", RISCV::V25)
9998                         .Case("{v26}", RISCV::V26)
9999                         .Case("{v27}", RISCV::V27)
10000                         .Case("{v28}", RISCV::V28)
10001                         .Case("{v29}", RISCV::V29)
10002                         .Case("{v30}", RISCV::V30)
10003                         .Case("{v31}", RISCV::V31)
10004                         .Default(RISCV::NoRegister);
10005     if (VReg != RISCV::NoRegister) {
10006       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
10007         return std::make_pair(VReg, &RISCV::VMRegClass);
10008       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
10009         return std::make_pair(VReg, &RISCV::VRRegClass);
10010       for (const auto *RC :
10011            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10012         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
10013           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
10014           return std::make_pair(VReg, RC);
10015         }
10016       }
10017     }
10018   }
10019 
10020   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10021 }
10022 
10023 unsigned
10024 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
10025   // Currently only support length 1 constraints.
10026   if (ConstraintCode.size() == 1) {
10027     switch (ConstraintCode[0]) {
10028     case 'A':
10029       return InlineAsm::Constraint_A;
10030     default:
10031       break;
10032     }
10033   }
10034 
10035   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
10036 }
10037 
10038 void RISCVTargetLowering::LowerAsmOperandForConstraint(
10039     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
10040     SelectionDAG &DAG) const {
10041   // Currently only support length 1 constraints.
10042   if (Constraint.length() == 1) {
10043     switch (Constraint[0]) {
10044     case 'I':
10045       // Validate & create a 12-bit signed immediate operand.
10046       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
10047         uint64_t CVal = C->getSExtValue();
10048         if (isInt<12>(CVal))
10049           Ops.push_back(
10050               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
10051       }
10052       return;
10053     case 'J':
10054       // Validate & create an integer zero operand.
10055       if (auto *C = dyn_cast<ConstantSDNode>(Op))
10056         if (C->getZExtValue() == 0)
10057           Ops.push_back(
10058               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
10059       return;
10060     case 'K':
10061       // Validate & create a 5-bit unsigned immediate operand.
10062       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
10063         uint64_t CVal = C->getZExtValue();
10064         if (isUInt<5>(CVal))
10065           Ops.push_back(
10066               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
10067       }
10068       return;
10069     case 'S':
10070       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
10071         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
10072                                                  GA->getValueType(0)));
10073       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
10074         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
10075                                                 BA->getValueType(0)));
10076       }
10077       return;
10078     default:
10079       break;
10080     }
10081   }
10082   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10083 }
10084 
10085 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
10086                                                    Instruction *Inst,
10087                                                    AtomicOrdering Ord) const {
10088   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
10089     return Builder.CreateFence(Ord);
10090   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
10091     return Builder.CreateFence(AtomicOrdering::Release);
10092   return nullptr;
10093 }
10094 
10095 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
10096                                                     Instruction *Inst,
10097                                                     AtomicOrdering Ord) const {
10098   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
10099     return Builder.CreateFence(AtomicOrdering::Acquire);
10100   return nullptr;
10101 }
10102 
10103 TargetLowering::AtomicExpansionKind
10104 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
10105   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
10106   // point operations can't be used in an lr/sc sequence without breaking the
10107   // forward-progress guarantee.
10108   if (AI->isFloatingPointOperation())
10109     return AtomicExpansionKind::CmpXChg;
10110 
10111   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
10112   if (Size == 8 || Size == 16)
10113     return AtomicExpansionKind::MaskedIntrinsic;
10114   return AtomicExpansionKind::None;
10115 }
10116 
10117 static Intrinsic::ID
10118 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
10119   if (XLen == 32) {
10120     switch (BinOp) {
10121     default:
10122       llvm_unreachable("Unexpected AtomicRMW BinOp");
10123     case AtomicRMWInst::Xchg:
10124       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
10125     case AtomicRMWInst::Add:
10126       return Intrinsic::riscv_masked_atomicrmw_add_i32;
10127     case AtomicRMWInst::Sub:
10128       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
10129     case AtomicRMWInst::Nand:
10130       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
10131     case AtomicRMWInst::Max:
10132       return Intrinsic::riscv_masked_atomicrmw_max_i32;
10133     case AtomicRMWInst::Min:
10134       return Intrinsic::riscv_masked_atomicrmw_min_i32;
10135     case AtomicRMWInst::UMax:
10136       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
10137     case AtomicRMWInst::UMin:
10138       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
10139     }
10140   }
10141 
10142   if (XLen == 64) {
10143     switch (BinOp) {
10144     default:
10145       llvm_unreachable("Unexpected AtomicRMW BinOp");
10146     case AtomicRMWInst::Xchg:
10147       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
10148     case AtomicRMWInst::Add:
10149       return Intrinsic::riscv_masked_atomicrmw_add_i64;
10150     case AtomicRMWInst::Sub:
10151       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
10152     case AtomicRMWInst::Nand:
10153       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
10154     case AtomicRMWInst::Max:
10155       return Intrinsic::riscv_masked_atomicrmw_max_i64;
10156     case AtomicRMWInst::Min:
10157       return Intrinsic::riscv_masked_atomicrmw_min_i64;
10158     case AtomicRMWInst::UMax:
10159       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
10160     case AtomicRMWInst::UMin:
10161       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
10162     }
10163   }
10164 
10165   llvm_unreachable("Unexpected XLen\n");
10166 }
10167 
10168 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
10169     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
10170     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
10171   unsigned XLen = Subtarget.getXLen();
10172   Value *Ordering =
10173       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
10174   Type *Tys[] = {AlignedAddr->getType()};
10175   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
10176       AI->getModule(),
10177       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
10178 
10179   if (XLen == 64) {
10180     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
10181     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
10182     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
10183   }
10184 
10185   Value *Result;
10186 
10187   // Must pass the shift amount needed to sign extend the loaded value prior
10188   // to performing a signed comparison for min/max. ShiftAmt is the number of
10189   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
10190   // is the number of bits to left+right shift the value in order to
10191   // sign-extend.
10192   if (AI->getOperation() == AtomicRMWInst::Min ||
10193       AI->getOperation() == AtomicRMWInst::Max) {
10194     const DataLayout &DL = AI->getModule()->getDataLayout();
10195     unsigned ValWidth =
10196         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
10197     Value *SextShamt =
10198         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
10199     Result = Builder.CreateCall(LrwOpScwLoop,
10200                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
10201   } else {
10202     Result =
10203         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
10204   }
10205 
10206   if (XLen == 64)
10207     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
10208   return Result;
10209 }
10210 
10211 TargetLowering::AtomicExpansionKind
10212 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
10213     AtomicCmpXchgInst *CI) const {
10214   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
10215   if (Size == 8 || Size == 16)
10216     return AtomicExpansionKind::MaskedIntrinsic;
10217   return AtomicExpansionKind::None;
10218 }
10219 
10220 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
10221     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
10222     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
10223   unsigned XLen = Subtarget.getXLen();
10224   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
10225   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
10226   if (XLen == 64) {
10227     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
10228     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
10229     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
10230     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
10231   }
10232   Type *Tys[] = {AlignedAddr->getType()};
10233   Function *MaskedCmpXchg =
10234       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
10235   Value *Result = Builder.CreateCall(
10236       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
10237   if (XLen == 64)
10238     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
10239   return Result;
10240 }
10241 
10242 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
10243   return false;
10244 }
10245 
10246 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
10247                                                EVT VT) const {
10248   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
10249     return false;
10250 
10251   switch (FPVT.getSimpleVT().SimpleTy) {
10252   case MVT::f16:
10253     return Subtarget.hasStdExtZfh();
10254   case MVT::f32:
10255     return Subtarget.hasStdExtF();
10256   case MVT::f64:
10257     return Subtarget.hasStdExtD();
10258   default:
10259     return false;
10260   }
10261 }
10262 
10263 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
10264   // If we are using the small code model, we can reduce size of jump table
10265   // entry to 4 bytes.
10266   if (Subtarget.is64Bit() && !isPositionIndependent() &&
10267       getTargetMachine().getCodeModel() == CodeModel::Small) {
10268     return MachineJumpTableInfo::EK_Custom32;
10269   }
10270   return TargetLowering::getJumpTableEncoding();
10271 }
10272 
10273 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
10274     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
10275     unsigned uid, MCContext &Ctx) const {
10276   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
10277          getTargetMachine().getCodeModel() == CodeModel::Small);
10278   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
10279 }
10280 
10281 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
10282                                                      EVT VT) const {
10283   VT = VT.getScalarType();
10284 
10285   if (!VT.isSimple())
10286     return false;
10287 
10288   switch (VT.getSimpleVT().SimpleTy) {
10289   case MVT::f16:
10290     return Subtarget.hasStdExtZfh();
10291   case MVT::f32:
10292     return Subtarget.hasStdExtF();
10293   case MVT::f64:
10294     return Subtarget.hasStdExtD();
10295   default:
10296     break;
10297   }
10298 
10299   return false;
10300 }
10301 
10302 Register RISCVTargetLowering::getExceptionPointerRegister(
10303     const Constant *PersonalityFn) const {
10304   return RISCV::X10;
10305 }
10306 
10307 Register RISCVTargetLowering::getExceptionSelectorRegister(
10308     const Constant *PersonalityFn) const {
10309   return RISCV::X11;
10310 }
10311 
10312 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
10313   // Return false to suppress the unnecessary extensions if the LibCall
10314   // arguments or return value is f32 type for LP64 ABI.
10315   RISCVABI::ABI ABI = Subtarget.getTargetABI();
10316   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
10317     return false;
10318 
10319   return true;
10320 }
10321 
10322 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
10323   if (Subtarget.is64Bit() && Type == MVT::i32)
10324     return true;
10325 
10326   return IsSigned;
10327 }
10328 
10329 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
10330                                                  SDValue C) const {
10331   // Check integral scalar types.
10332   if (VT.isScalarInteger()) {
10333     // Omit the optimization if the sub target has the M extension and the data
10334     // size exceeds XLen.
10335     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
10336       return false;
10337     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
10338       // Break the MUL to a SLLI and an ADD/SUB.
10339       const APInt &Imm = ConstNode->getAPIntValue();
10340       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
10341           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
10342         return true;
10343       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
10344       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
10345           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
10346            (Imm - 8).isPowerOf2()))
10347         return true;
10348       // Omit the following optimization if the sub target has the M extension
10349       // and the data size >= XLen.
10350       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
10351         return false;
10352       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
10353       // a pair of LUI/ADDI.
10354       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
10355         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
10356         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
10357             (1 - ImmS).isPowerOf2())
10358         return true;
10359       }
10360     }
10361   }
10362 
10363   return false;
10364 }
10365 
10366 bool RISCVTargetLowering::isMulAddWithConstProfitable(
10367     const SDValue &AddNode, const SDValue &ConstNode) const {
10368   // Let the DAGCombiner decide for vectors.
10369   EVT VT = AddNode.getValueType();
10370   if (VT.isVector())
10371     return true;
10372 
10373   // Let the DAGCombiner decide for larger types.
10374   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
10375     return true;
10376 
10377   // It is worse if c1 is simm12 while c1*c2 is not.
10378   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
10379   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
10380   const APInt &C1 = C1Node->getAPIntValue();
10381   const APInt &C2 = C2Node->getAPIntValue();
10382   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
10383     return false;
10384 
10385   // Default to true and let the DAGCombiner decide.
10386   return true;
10387 }
10388 
10389 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
10390     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
10391     bool *Fast) const {
10392   if (!VT.isVector())
10393     return false;
10394 
10395   EVT ElemVT = VT.getVectorElementType();
10396   if (Alignment >= ElemVT.getStoreSize()) {
10397     if (Fast)
10398       *Fast = true;
10399     return true;
10400   }
10401 
10402   return false;
10403 }
10404 
10405 bool RISCVTargetLowering::splitValueIntoRegisterParts(
10406     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
10407     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
10408   bool IsABIRegCopy = CC.hasValue();
10409   EVT ValueVT = Val.getValueType();
10410   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
10411     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
10412     // and cast to f32.
10413     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
10414     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
10415     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
10416                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
10417     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
10418     Parts[0] = Val;
10419     return true;
10420   }
10421 
10422   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
10423     LLVMContext &Context = *DAG.getContext();
10424     EVT ValueEltVT = ValueVT.getVectorElementType();
10425     EVT PartEltVT = PartVT.getVectorElementType();
10426     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
10427     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
10428     if (PartVTBitSize % ValueVTBitSize == 0) {
10429       assert(PartVTBitSize >= ValueVTBitSize);
10430       // If the element types are different, bitcast to the same element type of
10431       // PartVT first.
10432       // Give an example here, we want copy a <vscale x 1 x i8> value to
10433       // <vscale x 4 x i16>.
10434       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
10435       // subvector, then we can bitcast to <vscale x 4 x i16>.
10436       if (ValueEltVT != PartEltVT) {
10437         if (PartVTBitSize > ValueVTBitSize) {
10438           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
10439           assert(Count != 0 && "The number of element should not be zero.");
10440           EVT SameEltTypeVT =
10441               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
10442           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
10443                             DAG.getUNDEF(SameEltTypeVT), Val,
10444                             DAG.getVectorIdxConstant(0, DL));
10445         }
10446         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
10447       } else {
10448         Val =
10449             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
10450                         Val, DAG.getVectorIdxConstant(0, DL));
10451       }
10452       Parts[0] = Val;
10453       return true;
10454     }
10455   }
10456   return false;
10457 }
10458 
10459 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
10460     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
10461     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
10462   bool IsABIRegCopy = CC.hasValue();
10463   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
10464     SDValue Val = Parts[0];
10465 
10466     // Cast the f32 to i32, truncate to i16, and cast back to f16.
10467     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
10468     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
10469     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
10470     return Val;
10471   }
10472 
10473   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
10474     LLVMContext &Context = *DAG.getContext();
10475     SDValue Val = Parts[0];
10476     EVT ValueEltVT = ValueVT.getVectorElementType();
10477     EVT PartEltVT = PartVT.getVectorElementType();
10478     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
10479     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
10480     if (PartVTBitSize % ValueVTBitSize == 0) {
10481       assert(PartVTBitSize >= ValueVTBitSize);
10482       EVT SameEltTypeVT = ValueVT;
10483       // If the element types are different, convert it to the same element type
10484       // of PartVT.
10485       // Give an example here, we want copy a <vscale x 1 x i8> value from
10486       // <vscale x 4 x i16>.
10487       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
10488       // then we can extract <vscale x 1 x i8>.
10489       if (ValueEltVT != PartEltVT) {
10490         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
10491         assert(Count != 0 && "The number of element should not be zero.");
10492         SameEltTypeVT =
10493             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
10494         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
10495       }
10496       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
10497                         DAG.getVectorIdxConstant(0, DL));
10498       return Val;
10499     }
10500   }
10501   return SDValue();
10502 }
10503 
10504 SDValue
10505 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
10506                                    SelectionDAG &DAG,
10507                                    SmallVectorImpl<SDNode *> &Created) const {
10508   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
10509   if (isIntDivCheap(N->getValueType(0), Attr))
10510     return SDValue(N, 0); // Lower SDIV as SDIV
10511 
10512   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
10513          "Unexpected divisor!");
10514 
10515   // Conditional move is needed, so do the transformation iff Zbt is enabled.
10516   if (!Subtarget.hasStdExtZbt())
10517     return SDValue();
10518 
10519   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
10520   // Besides, more critical path instructions will be generated when dividing
10521   // by 2. So we keep using the original DAGs for these cases.
10522   unsigned Lg2 = Divisor.countTrailingZeros();
10523   if (Lg2 == 1 || Lg2 >= 12)
10524     return SDValue();
10525 
10526   // fold (sdiv X, pow2)
10527   EVT VT = N->getValueType(0);
10528   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
10529     return SDValue();
10530 
10531   SDLoc DL(N);
10532   SDValue N0 = N->getOperand(0);
10533   SDValue Zero = DAG.getConstant(0, DL, VT);
10534   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
10535 
10536   // Add (N0 < 0) ? Pow2 - 1 : 0;
10537   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
10538   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
10539   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
10540 
10541   Created.push_back(Cmp.getNode());
10542   Created.push_back(Add.getNode());
10543   Created.push_back(Sel.getNode());
10544 
10545   // Divide by pow2.
10546   SDValue SRA =
10547       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
10548 
10549   // If we're dividing by a positive value, we're done.  Otherwise, we must
10550   // negate the result.
10551   if (Divisor.isNonNegative())
10552     return SRA;
10553 
10554   Created.push_back(SRA.getNode());
10555   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
10556 }
10557 
10558 #define GET_REGISTER_MATCHER
10559 #include "RISCVGenAsmMatcher.inc"
10560 
10561 Register
10562 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
10563                                        const MachineFunction &MF) const {
10564   Register Reg = MatchRegisterAltName(RegName);
10565   if (Reg == RISCV::NoRegister)
10566     Reg = MatchRegisterName(RegName);
10567   if (Reg == RISCV::NoRegister)
10568     report_fatal_error(
10569         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
10570   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
10571   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
10572     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
10573                              StringRef(RegName) + "\"."));
10574   return Reg;
10575 }
10576 
10577 namespace llvm {
10578 namespace RISCVVIntrinsicsTable {
10579 
10580 #define GET_RISCVVIntrinsicsTable_IMPL
10581 #include "RISCVGenSearchableTables.inc"
10582 
10583 } // namespace RISCVVIntrinsicsTable
10584 
10585 } // namespace llvm
10586