1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT,
174                    MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
185 
186   setOperationAction(ISD::VASTART, MVT::Other, Custom);
187   setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
188 
189   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
190 
191   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
192 
193   if (!Subtarget.hasStdExtZbb())
194     setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand);
195 
196   if (Subtarget.is64Bit()) {
197     setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
198 
199     setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL},
200                        MVT::i32, Custom);
201 
202     setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT},
203                        MVT::i32, Custom);
204   } else {
205     setLibcallName(
206         {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128},
207         nullptr);
208     setLibcallName(RTLIB::MULO_I64, nullptr);
209   }
210 
211   if (!Subtarget.hasStdExtM()) {
212     setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU, ISD::SDIV, ISD::UDIV,
213                         ISD::SREM, ISD::UREM},
214                        XLenVT, Expand);
215   } else {
216     if (Subtarget.is64Bit()) {
217       setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom);
218 
219       setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM},
220                          {MVT::i8, MVT::i16, MVT::i32}, Custom);
221     } else {
222       setOperationAction(ISD::MUL, MVT::i64, Custom);
223     }
224   }
225 
226   setOperationAction(
227       {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT,
228       Expand);
229 
230   setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT,
231                      Custom);
232 
233   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
234       Subtarget.hasStdExtZbkb()) {
235     if (Subtarget.is64Bit())
236       setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
237   } else {
238     setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand);
239   }
240 
241   if (Subtarget.hasStdExtZbp()) {
242     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
243     // more combining.
244     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, XLenVT, Custom);
245 
246     // BSWAP i8 doesn't exist.
247     setOperationAction(ISD::BITREVERSE, MVT::i8, Custom);
248 
249     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i16, Custom);
250 
251     if (Subtarget.is64Bit())
252       setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i32, Custom);
253   } else {
254     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
255     // pattern match it directly in isel.
256     setOperationAction(ISD::BSWAP, XLenVT,
257                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
258                            ? Legal
259                            : Expand);
260     // Zbkb can use rev8+brev8 to implement bitreverse.
261     setOperationAction(ISD::BITREVERSE, XLenVT,
262                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
263   }
264 
265   if (Subtarget.hasStdExtZbb()) {
266     setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT,
267                        Legal);
268 
269     if (Subtarget.is64Bit())
270       setOperationAction(
271           {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF},
272           MVT::i32, Custom);
273   } else {
274     setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand);
275 
276     if (Subtarget.is64Bit())
277       setOperationAction(ISD::ABS, MVT::i32, Custom);
278   }
279 
280   if (Subtarget.hasStdExtZbt()) {
281     setOperationAction({ISD::FSHL, ISD::FSHR}, XLenVT, Custom);
282     setOperationAction(ISD::SELECT, XLenVT, Legal);
283 
284     if (Subtarget.is64Bit())
285       setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Custom);
286   } else {
287     setOperationAction(ISD::SELECT, XLenVT, Custom);
288   }
289 
290   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
291       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
292       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
293       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
294       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
295       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
296       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
297 
298   static const ISD::CondCode FPCCToExpand[] = {
299       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
300       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
301       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
302 
303   static const ISD::NodeType FPOpToExpand[] = {
304       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
305       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
306 
307   if (Subtarget.hasStdExtZfh())
308     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
309 
310   if (Subtarget.hasStdExtZfh()) {
311     for (auto NT : FPLegalNodeTypes)
312       setOperationAction(NT, MVT::f16, Legal);
313     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
314     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
315     setCondCodeAction(FPCCToExpand, MVT::f16, Expand);
316     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
317     setOperationAction(ISD::SELECT, MVT::f16, Custom);
318     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
319 
320     setOperationAction({ISD::FREM, ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT,
321                         ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC,
322                         ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN,
323                         ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FLOG,
324                         ISD::FLOG2, ISD::FLOG10},
325                        MVT::f16, Promote);
326 
327     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
328     // complete support for all operations in LegalizeDAG.
329 
330     // We need to custom promote this.
331     if (Subtarget.is64Bit())
332       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
333   }
334 
335   if (Subtarget.hasStdExtF()) {
336     for (auto NT : FPLegalNodeTypes)
337       setOperationAction(NT, MVT::f32, Legal);
338     setCondCodeAction(FPCCToExpand, MVT::f32, Expand);
339     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
340     setOperationAction(ISD::SELECT, MVT::f32, Custom);
341     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
342     for (auto Op : FPOpToExpand)
343       setOperationAction(Op, MVT::f32, Expand);
344     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
345     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
346   }
347 
348   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
349     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
350 
351   if (Subtarget.hasStdExtD()) {
352     for (auto NT : FPLegalNodeTypes)
353       setOperationAction(NT, MVT::f64, Legal);
354     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
355     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
356     setCondCodeAction(FPCCToExpand, MVT::f64, Expand);
357     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
358     setOperationAction(ISD::SELECT, MVT::f64, Custom);
359     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
360     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
361     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
362     for (auto Op : FPOpToExpand)
363       setOperationAction(Op, MVT::f64, Expand);
364     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
365     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
366   }
367 
368   if (Subtarget.is64Bit())
369     setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT,
370                         ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT},
371                        MVT::i32, Custom);
372 
373   if (Subtarget.hasStdExtF()) {
374     setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT,
375                        Custom);
376 
377     setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT,
378                         ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP},
379                        XLenVT, Legal);
380 
381     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
382     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
383   }
384 
385   setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
386                       ISD::JumpTable},
387                      XLenVT, Custom);
388 
389   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
390 
391   if (Subtarget.is64Bit())
392     setOperationAction(ISD::Constant, MVT::i64, Custom);
393 
394   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
395   // Unfortunately this can't be determined just from the ISA naming string.
396   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
397                      Subtarget.is64Bit() ? Legal : Custom);
398 
399   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal);
400   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
401   if (Subtarget.is64Bit())
402     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
403 
404   if (Subtarget.hasStdExtA()) {
405     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
406     setMinCmpXchgSizeInBits(32);
407   } else {
408     setMaxAtomicSizeInBitsSupported(0);
409   }
410 
411   setBooleanContents(ZeroOrOneBooleanContent);
412 
413   if (Subtarget.hasVInstructions()) {
414     setBooleanVectorContents(ZeroOrOneBooleanContent);
415 
416     setOperationAction(ISD::VSCALE, XLenVT, Custom);
417 
418     // RVV intrinsics may have illegal operands.
419     // We also need to custom legalize vmv.x.s.
420     setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
421                        {MVT::i8, MVT::i16}, Custom);
422     if (Subtarget.is64Bit())
423       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
424     else
425       setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
426                          MVT::i64, Custom);
427 
428     setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
429                        MVT::Other, Custom);
430 
431     static const unsigned IntegerVPOps[] = {
432         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
433         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
434         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
435         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
436         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
437         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
438         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
439         ISD::VP_MERGE,       ISD::VP_SELECT,      ISD::VP_FPTOSI,
440         ISD::VP_FPTOUI,      ISD::VP_SETCC,       ISD::VP_SIGN_EXTEND,
441         ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE};
442 
443     static const unsigned FloatingPointVPOps[] = {
444         ISD::VP_FADD,        ISD::VP_FSUB,
445         ISD::VP_FMUL,        ISD::VP_FDIV,
446         ISD::VP_FNEG,        ISD::VP_FMA,
447         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
448         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX,
449         ISD::VP_MERGE,       ISD::VP_SELECT,
450         ISD::VP_SITOFP,      ISD::VP_UITOFP,
451         ISD::VP_SETCC,       ISD::VP_FP_ROUND,
452         ISD::VP_FP_EXTEND};
453 
454     if (!Subtarget.is64Bit()) {
455       // We must custom-lower certain vXi64 operations on RV32 due to the vector
456       // element type being illegal.
457       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
458                          MVT::i64, Custom);
459 
460       setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND,
461                           ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR,
462                           ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
463                           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN},
464                          MVT::i64, Custom);
465 
466       setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
467                           ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR,
468                           ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN,
469                           ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN},
470                          MVT::i64, Custom);
471     }
472 
473     for (MVT VT : BoolVecVTs) {
474       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
475 
476       // Mask VTs are custom-expanded into a series of standard nodes
477       setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS,
478                           ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
479                          VT, Custom);
480 
481       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
482                          Custom);
483 
484       setOperationAction(ISD::SELECT, VT, Custom);
485       setOperationAction(
486           {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT,
487           Expand);
488 
489       setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom);
490 
491       setOperationAction(
492           {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
493           Custom);
494 
495       setOperationAction(
496           {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
497           Custom);
498 
499       // RVV has native int->float & float->int conversions where the
500       // element type sizes are within one power-of-two of each other. Any
501       // wider distances between type sizes have to be lowered as sequences
502       // which progressively narrow the gap in stages.
503       setOperationAction(
504           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
505           VT, Custom);
506 
507       // Expand all extending loads to types larger than this, and truncating
508       // stores from types larger than this.
509       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
510         setTruncStoreAction(OtherVT, VT, Expand);
511         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
512                          VT, Expand);
513       }
514 
515       setOperationAction(
516           {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_TRUNCATE, ISD::VP_SETCC}, VT,
517           Custom);
518     }
519 
520     for (MVT VT : IntVecVTs) {
521       if (VT.getVectorElementType() == MVT::i64 &&
522           !Subtarget.hasVInstructionsI64())
523         continue;
524 
525       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
526       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
527 
528       // Vectors implement MULHS/MULHU.
529       setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand);
530 
531       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
532       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV())
533         setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand);
534 
535       setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT,
536                          Legal);
537 
538       setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand);
539 
540       setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP, ISD::BSWAP}, VT,
541                          Expand);
542 
543       setOperationAction(ISD::BSWAP, VT, Expand);
544 
545       // Custom-lower extensions and truncations from/to mask types.
546       setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND},
547                          VT, Custom);
548 
549       // RVV has native int->float & float->int conversions where the
550       // element type sizes are within one power-of-two of each other. Any
551       // wider distances between type sizes have to be lowered as sequences
552       // which progressively narrow the gap in stages.
553       setOperationAction(
554           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
555           VT, Custom);
556 
557       setOperationAction(
558           {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal);
559 
560       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
561       // nodes which truncate by one power of two at a time.
562       setOperationAction(ISD::TRUNCATE, VT, Custom);
563 
564       // Custom-lower insert/extract operations to simplify patterns.
565       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
566                          Custom);
567 
568       // Custom-lower reduction operations to set up the corresponding custom
569       // nodes' operands.
570       setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND,
571                           ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR,
572                           ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
573                           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN},
574                          VT, Custom);
575 
576       setOperationAction(IntegerVPOps, VT, Custom);
577 
578       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
579 
580       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
581                          VT, Custom);
582 
583       setOperationAction(
584           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
585           Custom);
586 
587       setOperationAction(
588           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
589           VT, Custom);
590 
591       setOperationAction(ISD::SELECT, VT, Custom);
592       setOperationAction(ISD::SELECT_CC, VT, Expand);
593 
594       setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom);
595 
596       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
597         setTruncStoreAction(VT, OtherVT, Expand);
598         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
599                          VT, Expand);
600       }
601 
602       // Splice
603       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
604 
605       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
606       // type that can represent the value exactly.
607       if (VT.getVectorElementType() != MVT::i64) {
608         MVT FloatEltVT =
609             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
610         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
611         if (isTypeLegal(FloatVT)) {
612           setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
613                              Custom);
614         }
615       }
616     }
617 
618     // Expand various CCs to best match the RVV ISA, which natively supports UNE
619     // but no other unordered comparisons, and supports all ordered comparisons
620     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
621     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
622     // and we pattern-match those back to the "original", swapping operands once
623     // more. This way we catch both operations and both "vf" and "fv" forms with
624     // fewer patterns.
625     static const ISD::CondCode VFPCCToExpand[] = {
626         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
627         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
628         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
629     };
630 
631     // Sets common operation actions on RVV floating-point vector types.
632     const auto SetCommonVFPActions = [&](MVT VT) {
633       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
634       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
635       // sizes are within one power-of-two of each other. Therefore conversions
636       // between vXf16 and vXf64 must be lowered as sequences which convert via
637       // vXf32.
638       setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
639       // Custom-lower insert/extract operations to simplify patterns.
640       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
641                          Custom);
642       // Expand various condition codes (explained above).
643       setCondCodeAction(VFPCCToExpand, VT, Expand);
644 
645       setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal);
646 
647       setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
648                          VT, Custom);
649 
650       setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD,
651                           ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX},
652                          VT, Custom);
653 
654       // Expand FP operations that need libcalls.
655       setOperationAction(ISD::FREM, VT, Expand);
656       setOperationAction(ISD::FPOW, VT, Expand);
657       setOperationAction(ISD::FCOS, VT, Expand);
658       setOperationAction(ISD::FSIN, VT, Expand);
659       setOperationAction(ISD::FSINCOS, VT, Expand);
660       setOperationAction(ISD::FEXP, VT, Expand);
661       setOperationAction(ISD::FEXP2, VT, Expand);
662       setOperationAction(ISD::FLOG, VT, Expand);
663       setOperationAction(ISD::FLOG2, VT, Expand);
664       setOperationAction(ISD::FLOG10, VT, Expand);
665       setOperationAction(ISD::FRINT, VT, Expand);
666       setOperationAction(ISD::FNEARBYINT, VT, Expand);
667 
668       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
669       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
670       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
671       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
672 
673       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
674 
675       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
676 
677       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
678                          VT, Custom);
679 
680       setOperationAction(
681           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
682           Custom);
683 
684       setOperationAction(ISD::SELECT, VT, Custom);
685       setOperationAction(ISD::SELECT_CC, VT, Expand);
686 
687       setOperationAction(
688           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
689           VT, Custom);
690 
691       setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom);
692 
693       setOperationAction(FloatingPointVPOps, VT, Custom);
694     };
695 
696     // Sets common extload/truncstore actions on RVV floating-point vector
697     // types.
698     const auto SetCommonVFPExtLoadTruncStoreActions =
699         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
700           for (auto SmallVT : SmallerVTs) {
701             setTruncStoreAction(VT, SmallVT, Expand);
702             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
703           }
704         };
705 
706     if (Subtarget.hasVInstructionsF16())
707       for (MVT VT : F16VecVTs)
708         SetCommonVFPActions(VT);
709 
710     for (MVT VT : F32VecVTs) {
711       if (Subtarget.hasVInstructionsF32())
712         SetCommonVFPActions(VT);
713       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
714     }
715 
716     for (MVT VT : F64VecVTs) {
717       if (Subtarget.hasVInstructionsF64())
718         SetCommonVFPActions(VT);
719       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
720       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
721     }
722 
723     if (Subtarget.useRVVForFixedLengthVectors()) {
724       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
725         if (!useRVVForFixedLengthVectorVT(VT))
726           continue;
727 
728         // By default everything must be expanded.
729         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
730           setOperationAction(Op, VT, Expand);
731         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
732           setTruncStoreAction(VT, OtherVT, Expand);
733           setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD},
734                            OtherVT, VT, Expand);
735         }
736 
737         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
738         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
739                            Custom);
740 
741         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT,
742                            Custom);
743 
744         setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
745                            VT, Custom);
746 
747         setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
748 
749         setOperationAction(ISD::SETCC, VT, Custom);
750 
751         setOperationAction(ISD::SELECT, VT, Custom);
752 
753         setOperationAction(ISD::TRUNCATE, VT, Custom);
754 
755         setOperationAction(ISD::BITCAST, VT, Custom);
756 
757         setOperationAction(
758             {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
759             Custom);
760 
761         setOperationAction(
762             {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
763             Custom);
764 
765         setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
766                             ISD::FP_TO_UINT},
767                            VT, Custom);
768 
769         // Operations below are different for between masks and other vectors.
770         if (VT.getVectorElementType() == MVT::i1) {
771           setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND,
772                               ISD::OR, ISD::XOR},
773                              VT, Custom);
774 
775           setOperationAction(
776               {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_TRUNCATE},
777               VT, Custom);
778           continue;
779         }
780 
781         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
782         // it before type legalization for i64 vectors on RV32. It will then be
783         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
784         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
785         // improvements first.
786         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
787           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
788           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
789         }
790 
791         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
792         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
793 
794         setOperationAction(
795             {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom);
796 
797         setOperationAction(
798             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
799             Custom);
800 
801         setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR,
802                             ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV,
803                             ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL},
804                            VT, Custom);
805 
806         setOperationAction(
807             {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom);
808 
809         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
810         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV())
811           setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom);
812 
813         setOperationAction(
814             {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT,
815             Custom);
816 
817         setOperationAction(ISD::VSELECT, VT, Custom);
818         setOperationAction(ISD::SELECT_CC, VT, Expand);
819 
820         setOperationAction(
821             {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom);
822 
823         // Custom-lower reduction operations to set up the corresponding custom
824         // nodes' operands.
825         setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX,
826                             ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX,
827                             ISD::VECREDUCE_UMIN},
828                            VT, Custom);
829 
830         setOperationAction(IntegerVPOps, VT, Custom);
831 
832         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
833         // type that can represent the value exactly.
834         if (VT.getVectorElementType() != MVT::i64) {
835           MVT FloatEltVT =
836               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
837           EVT FloatVT =
838               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
839           if (isTypeLegal(FloatVT))
840             setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
841                                Custom);
842         }
843       }
844 
845       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
846         if (!useRVVForFixedLengthVectorVT(VT))
847           continue;
848 
849         // By default everything must be expanded.
850         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
851           setOperationAction(Op, VT, Expand);
852         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
853           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
854           setTruncStoreAction(VT, OtherVT, Expand);
855         }
856 
857         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
858         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
859                            Custom);
860 
861         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS,
862                             ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT,
863                             ISD::EXTRACT_VECTOR_ELT},
864                            VT, Custom);
865 
866         setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE,
867                             ISD::MGATHER, ISD::MSCATTER},
868                            VT, Custom);
869 
870         setOperationAction(
871             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
872             Custom);
873 
874         setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
875                             ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT,
876                             ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM},
877                            VT, Custom);
878 
879         setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
880 
881         setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
882                            VT, Custom);
883 
884         for (auto CC : VFPCCToExpand)
885           setCondCodeAction(CC, VT, Expand);
886 
887         setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom);
888         setOperationAction(ISD::SELECT_CC, VT, Expand);
889 
890         setOperationAction(ISD::BITCAST, VT, Custom);
891 
892         setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD,
893                             ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX},
894                            VT, Custom);
895 
896         setOperationAction(FloatingPointVPOps, VT, Custom);
897       }
898 
899       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
900       setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64},
901                          Custom);
902       if (Subtarget.hasStdExtZfh())
903         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
904       if (Subtarget.hasStdExtF())
905         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
906       if (Subtarget.hasStdExtD())
907         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
908     }
909   }
910 
911   // Function alignments.
912   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
913   setMinFunctionAlignment(FunctionAlignment);
914   setPrefFunctionAlignment(FunctionAlignment);
915 
916   setMinimumJumpTableEntries(5);
917 
918   // Jumps are expensive, compared to logic
919   setJumpIsExpensive();
920 
921   setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND,
922                        ISD::OR, ISD::XOR});
923 
924   if (Subtarget.hasStdExtF())
925     setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM});
926 
927   if (Subtarget.hasStdExtZbp())
928     setTargetDAGCombine({ISD::ROTL, ISD::ROTR});
929 
930   if (Subtarget.hasStdExtZbb())
931     setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN});
932 
933   if (Subtarget.hasStdExtZbkb())
934     setTargetDAGCombine(ISD::BITREVERSE);
935   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
936     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
937   if (Subtarget.hasStdExtF())
938     setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
939                          ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
940   if (Subtarget.hasVInstructions())
941     setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
942                          ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
943                          ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR});
944 
945   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
946   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
947 }
948 
949 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
950                                             LLVMContext &Context,
951                                             EVT VT) const {
952   if (!VT.isVector())
953     return getPointerTy(DL);
954   if (Subtarget.hasVInstructions() &&
955       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
956     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
957   return VT.changeVectorElementTypeToInteger();
958 }
959 
960 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
961   return Subtarget.getXLenVT();
962 }
963 
964 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
965                                              const CallInst &I,
966                                              MachineFunction &MF,
967                                              unsigned Intrinsic) const {
968   auto &DL = I.getModule()->getDataLayout();
969   switch (Intrinsic) {
970   default:
971     return false;
972   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
973   case Intrinsic::riscv_masked_atomicrmw_add_i32:
974   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
975   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
976   case Intrinsic::riscv_masked_atomicrmw_max_i32:
977   case Intrinsic::riscv_masked_atomicrmw_min_i32:
978   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
979   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
980   case Intrinsic::riscv_masked_cmpxchg_i32:
981     Info.opc = ISD::INTRINSIC_W_CHAIN;
982     Info.memVT = MVT::i32;
983     Info.ptrVal = I.getArgOperand(0);
984     Info.offset = 0;
985     Info.align = Align(4);
986     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
987                  MachineMemOperand::MOVolatile;
988     return true;
989   case Intrinsic::riscv_masked_strided_load:
990     Info.opc = ISD::INTRINSIC_W_CHAIN;
991     Info.ptrVal = I.getArgOperand(1);
992     Info.memVT = getValueType(DL, I.getType()->getScalarType());
993     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
994     Info.size = MemoryLocation::UnknownSize;
995     Info.flags |= MachineMemOperand::MOLoad;
996     return true;
997   case Intrinsic::riscv_masked_strided_store:
998     Info.opc = ISD::INTRINSIC_VOID;
999     Info.ptrVal = I.getArgOperand(1);
1000     Info.memVT =
1001         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1002     Info.align = Align(
1003         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1004         8);
1005     Info.size = MemoryLocation::UnknownSize;
1006     Info.flags |= MachineMemOperand::MOStore;
1007     return true;
1008   case Intrinsic::riscv_seg2_load:
1009   case Intrinsic::riscv_seg3_load:
1010   case Intrinsic::riscv_seg4_load:
1011   case Intrinsic::riscv_seg5_load:
1012   case Intrinsic::riscv_seg6_load:
1013   case Intrinsic::riscv_seg7_load:
1014   case Intrinsic::riscv_seg8_load:
1015     Info.opc = ISD::INTRINSIC_W_CHAIN;
1016     Info.ptrVal = I.getArgOperand(0);
1017     Info.memVT =
1018         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
1019     Info.align =
1020         Align(DL.getTypeSizeInBits(
1021                   I.getType()->getStructElementType(0)->getScalarType()) /
1022               8);
1023     Info.size = MemoryLocation::UnknownSize;
1024     Info.flags |= MachineMemOperand::MOLoad;
1025     return true;
1026   }
1027 }
1028 
1029 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1030                                                 const AddrMode &AM, Type *Ty,
1031                                                 unsigned AS,
1032                                                 Instruction *I) const {
1033   // No global is ever allowed as a base.
1034   if (AM.BaseGV)
1035     return false;
1036 
1037   // RVV instructions only support register addressing.
1038   if (Subtarget.hasVInstructions() && isa<VectorType>(Ty))
1039     return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs;
1040 
1041   // Require a 12-bit signed offset.
1042   if (!isInt<12>(AM.BaseOffs))
1043     return false;
1044 
1045   switch (AM.Scale) {
1046   case 0: // "r+i" or just "i", depending on HasBaseReg.
1047     break;
1048   case 1:
1049     if (!AM.HasBaseReg) // allow "r+i".
1050       break;
1051     return false; // disallow "r+r" or "r+r+i".
1052   default:
1053     return false;
1054   }
1055 
1056   return true;
1057 }
1058 
1059 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1060   return isInt<12>(Imm);
1061 }
1062 
1063 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1064   return isInt<12>(Imm);
1065 }
1066 
1067 // On RV32, 64-bit integers are split into their high and low parts and held
1068 // in two different registers, so the trunc is free since the low register can
1069 // just be used.
1070 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1071   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1072     return false;
1073   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1074   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1075   return (SrcBits == 64 && DestBits == 32);
1076 }
1077 
1078 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1079   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1080       !SrcVT.isInteger() || !DstVT.isInteger())
1081     return false;
1082   unsigned SrcBits = SrcVT.getSizeInBits();
1083   unsigned DestBits = DstVT.getSizeInBits();
1084   return (SrcBits == 64 && DestBits == 32);
1085 }
1086 
1087 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1088   // Zexts are free if they can be combined with a load.
1089   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1090   // poorly with type legalization of compares preferring sext.
1091   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1092     EVT MemVT = LD->getMemoryVT();
1093     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1094         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1095          LD->getExtensionType() == ISD::ZEXTLOAD))
1096       return true;
1097   }
1098 
1099   return TargetLowering::isZExtFree(Val, VT2);
1100 }
1101 
1102 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1103   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1104 }
1105 
1106 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const {
1107   return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
1108 }
1109 
1110 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1111   return Subtarget.hasStdExtZbb();
1112 }
1113 
1114 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1115   return Subtarget.hasStdExtZbb();
1116 }
1117 
1118 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1119   EVT VT = Y.getValueType();
1120 
1121   // FIXME: Support vectors once we have tests.
1122   if (VT.isVector())
1123     return false;
1124 
1125   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1126           Subtarget.hasStdExtZbkb()) &&
1127          !isa<ConstantSDNode>(Y);
1128 }
1129 
1130 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1131   // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
1132   auto *C = dyn_cast<ConstantSDNode>(Y);
1133   return C && C->getAPIntValue().ule(10);
1134 }
1135 
1136 bool RISCVTargetLowering::
1137     shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
1138         SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
1139         unsigned OldShiftOpcode, unsigned NewShiftOpcode,
1140         SelectionDAG &DAG) const {
1141   // One interesting pattern that we'd want to form is 'bit extract':
1142   //   ((1 >> Y) & 1) ==/!= 0
1143   // But we also need to be careful not to try to reverse that fold.
1144 
1145   // Is this '((1 >> Y) & 1)'?
1146   if (XC && OldShiftOpcode == ISD::SRL && XC->isOne())
1147     return false; // Keep the 'bit extract' pattern.
1148 
1149   // Will this be '((1 >> Y) & 1)' after the transform?
1150   if (NewShiftOpcode == ISD::SRL && CC->isOne())
1151     return true; // Do form the 'bit extract' pattern.
1152 
1153   // If 'X' is a constant, and we transform, then we will immediately
1154   // try to undo the fold, thus causing endless combine loop.
1155   // So only do the transform if X is not a constant. This matches the default
1156   // implementation of this function.
1157   return !XC;
1158 }
1159 
1160 /// Check if sinking \p I's operands to I's basic block is profitable, because
1161 /// the operands can be folded into a target instruction, e.g.
1162 /// splats of scalars can fold into vector instructions.
1163 bool RISCVTargetLowering::shouldSinkOperands(
1164     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1165   using namespace llvm::PatternMatch;
1166 
1167   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1168     return false;
1169 
1170   auto IsSinker = [&](Instruction *I, int Operand) {
1171     switch (I->getOpcode()) {
1172     case Instruction::Add:
1173     case Instruction::Sub:
1174     case Instruction::Mul:
1175     case Instruction::And:
1176     case Instruction::Or:
1177     case Instruction::Xor:
1178     case Instruction::FAdd:
1179     case Instruction::FSub:
1180     case Instruction::FMul:
1181     case Instruction::FDiv:
1182     case Instruction::ICmp:
1183     case Instruction::FCmp:
1184       return true;
1185     case Instruction::Shl:
1186     case Instruction::LShr:
1187     case Instruction::AShr:
1188     case Instruction::UDiv:
1189     case Instruction::SDiv:
1190     case Instruction::URem:
1191     case Instruction::SRem:
1192       return Operand == 1;
1193     case Instruction::Call:
1194       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1195         switch (II->getIntrinsicID()) {
1196         case Intrinsic::fma:
1197         case Intrinsic::vp_fma:
1198           return Operand == 0 || Operand == 1;
1199         // FIXME: Our patterns can only match vx/vf instructions when the splat
1200         // it on the RHS, because TableGen doesn't recognize our VP operations
1201         // as commutative.
1202         case Intrinsic::vp_add:
1203         case Intrinsic::vp_mul:
1204         case Intrinsic::vp_and:
1205         case Intrinsic::vp_or:
1206         case Intrinsic::vp_xor:
1207         case Intrinsic::vp_fadd:
1208         case Intrinsic::vp_fmul:
1209         case Intrinsic::vp_shl:
1210         case Intrinsic::vp_lshr:
1211         case Intrinsic::vp_ashr:
1212         case Intrinsic::vp_udiv:
1213         case Intrinsic::vp_sdiv:
1214         case Intrinsic::vp_urem:
1215         case Intrinsic::vp_srem:
1216           return Operand == 1;
1217         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1218         // explicit patterns for both LHS and RHS (as 'vr' versions).
1219         case Intrinsic::vp_sub:
1220         case Intrinsic::vp_fsub:
1221         case Intrinsic::vp_fdiv:
1222           return Operand == 0 || Operand == 1;
1223         default:
1224           return false;
1225         }
1226       }
1227       return false;
1228     default:
1229       return false;
1230     }
1231   };
1232 
1233   for (auto OpIdx : enumerate(I->operands())) {
1234     if (!IsSinker(I, OpIdx.index()))
1235       continue;
1236 
1237     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1238     // Make sure we are not already sinking this operand
1239     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1240       continue;
1241 
1242     // We are looking for a splat that can be sunk.
1243     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1244                              m_Undef(), m_ZeroMask())))
1245       continue;
1246 
1247     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1248     // and vector registers
1249     for (Use &U : Op->uses()) {
1250       Instruction *Insn = cast<Instruction>(U.getUser());
1251       if (!IsSinker(Insn, U.getOperandNo()))
1252         return false;
1253     }
1254 
1255     Ops.push_back(&Op->getOperandUse(0));
1256     Ops.push_back(&OpIdx.value());
1257   }
1258   return true;
1259 }
1260 
1261 bool RISCVTargetLowering::isOffsetFoldingLegal(
1262     const GlobalAddressSDNode *GA) const {
1263   // In order to maximise the opportunity for common subexpression elimination,
1264   // keep a separate ADD node for the global address offset instead of folding
1265   // it in the global address node. Later peephole optimisations may choose to
1266   // fold it back in when profitable.
1267   return false;
1268 }
1269 
1270 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1271                                        bool ForCodeSize) const {
1272   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1273   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1274     return false;
1275   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1276     return false;
1277   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1278     return false;
1279   return Imm.isZero();
1280 }
1281 
1282 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1283   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1284          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1285          (VT == MVT::f64 && Subtarget.hasStdExtD());
1286 }
1287 
1288 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1289                                                       CallingConv::ID CC,
1290                                                       EVT VT) const {
1291   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1292   // We might still end up using a GPR but that will be decided based on ABI.
1293   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1294   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1295     return MVT::f32;
1296 
1297   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1298 }
1299 
1300 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1301                                                            CallingConv::ID CC,
1302                                                            EVT VT) const {
1303   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1304   // We might still end up using a GPR but that will be decided based on ABI.
1305   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1306   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1307     return 1;
1308 
1309   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1310 }
1311 
1312 // Changes the condition code and swaps operands if necessary, so the SetCC
1313 // operation matches one of the comparisons supported directly by branches
1314 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1315 // with 1/-1.
1316 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1317                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1318   // Convert X > -1 to X >= 0.
1319   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1320     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1321     CC = ISD::SETGE;
1322     return;
1323   }
1324   // Convert X < 1 to 0 >= X.
1325   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1326     RHS = LHS;
1327     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1328     CC = ISD::SETGE;
1329     return;
1330   }
1331 
1332   switch (CC) {
1333   default:
1334     break;
1335   case ISD::SETGT:
1336   case ISD::SETLE:
1337   case ISD::SETUGT:
1338   case ISD::SETULE:
1339     CC = ISD::getSetCCSwappedOperands(CC);
1340     std::swap(LHS, RHS);
1341     break;
1342   }
1343 }
1344 
1345 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1346   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1347   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1348   if (VT.getVectorElementType() == MVT::i1)
1349     KnownSize *= 8;
1350 
1351   switch (KnownSize) {
1352   default:
1353     llvm_unreachable("Invalid LMUL.");
1354   case 8:
1355     return RISCVII::VLMUL::LMUL_F8;
1356   case 16:
1357     return RISCVII::VLMUL::LMUL_F4;
1358   case 32:
1359     return RISCVII::VLMUL::LMUL_F2;
1360   case 64:
1361     return RISCVII::VLMUL::LMUL_1;
1362   case 128:
1363     return RISCVII::VLMUL::LMUL_2;
1364   case 256:
1365     return RISCVII::VLMUL::LMUL_4;
1366   case 512:
1367     return RISCVII::VLMUL::LMUL_8;
1368   }
1369 }
1370 
1371 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1372   switch (LMul) {
1373   default:
1374     llvm_unreachable("Invalid LMUL.");
1375   case RISCVII::VLMUL::LMUL_F8:
1376   case RISCVII::VLMUL::LMUL_F4:
1377   case RISCVII::VLMUL::LMUL_F2:
1378   case RISCVII::VLMUL::LMUL_1:
1379     return RISCV::VRRegClassID;
1380   case RISCVII::VLMUL::LMUL_2:
1381     return RISCV::VRM2RegClassID;
1382   case RISCVII::VLMUL::LMUL_4:
1383     return RISCV::VRM4RegClassID;
1384   case RISCVII::VLMUL::LMUL_8:
1385     return RISCV::VRM8RegClassID;
1386   }
1387 }
1388 
1389 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1390   RISCVII::VLMUL LMUL = getLMUL(VT);
1391   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1392       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1393       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1394       LMUL == RISCVII::VLMUL::LMUL_1) {
1395     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1396                   "Unexpected subreg numbering");
1397     return RISCV::sub_vrm1_0 + Index;
1398   }
1399   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1400     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1401                   "Unexpected subreg numbering");
1402     return RISCV::sub_vrm2_0 + Index;
1403   }
1404   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1405     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1406                   "Unexpected subreg numbering");
1407     return RISCV::sub_vrm4_0 + Index;
1408   }
1409   llvm_unreachable("Invalid vector type.");
1410 }
1411 
1412 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1413   if (VT.getVectorElementType() == MVT::i1)
1414     return RISCV::VRRegClassID;
1415   return getRegClassIDForLMUL(getLMUL(VT));
1416 }
1417 
1418 // Attempt to decompose a subvector insert/extract between VecVT and
1419 // SubVecVT via subregister indices. Returns the subregister index that
1420 // can perform the subvector insert/extract with the given element index, as
1421 // well as the index corresponding to any leftover subvectors that must be
1422 // further inserted/extracted within the register class for SubVecVT.
1423 std::pair<unsigned, unsigned>
1424 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1425     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1426     const RISCVRegisterInfo *TRI) {
1427   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1428                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1429                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1430                 "Register classes not ordered");
1431   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1432   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1433   // Try to compose a subregister index that takes us from the incoming
1434   // LMUL>1 register class down to the outgoing one. At each step we half
1435   // the LMUL:
1436   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1437   // Note that this is not guaranteed to find a subregister index, such as
1438   // when we are extracting from one VR type to another.
1439   unsigned SubRegIdx = RISCV::NoSubRegister;
1440   for (const unsigned RCID :
1441        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1442     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1443       VecVT = VecVT.getHalfNumVectorElementsVT();
1444       bool IsHi =
1445           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1446       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1447                                             getSubregIndexByMVT(VecVT, IsHi));
1448       if (IsHi)
1449         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1450     }
1451   return {SubRegIdx, InsertExtractIdx};
1452 }
1453 
1454 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1455 // stores for those types.
1456 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1457   return !Subtarget.useRVVForFixedLengthVectors() ||
1458          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1459 }
1460 
1461 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1462   if (ScalarTy->isPointerTy())
1463     return true;
1464 
1465   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1466       ScalarTy->isIntegerTy(32))
1467     return true;
1468 
1469   if (ScalarTy->isIntegerTy(64))
1470     return Subtarget.hasVInstructionsI64();
1471 
1472   if (ScalarTy->isHalfTy())
1473     return Subtarget.hasVInstructionsF16();
1474   if (ScalarTy->isFloatTy())
1475     return Subtarget.hasVInstructionsF32();
1476   if (ScalarTy->isDoubleTy())
1477     return Subtarget.hasVInstructionsF64();
1478 
1479   return false;
1480 }
1481 
1482 static SDValue getVLOperand(SDValue Op) {
1483   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1484           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1485          "Unexpected opcode");
1486   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1487   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1488   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1489       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1490   if (!II)
1491     return SDValue();
1492   return Op.getOperand(II->VLOperand + 1 + HasChain);
1493 }
1494 
1495 static bool useRVVForFixedLengthVectorVT(MVT VT,
1496                                          const RISCVSubtarget &Subtarget) {
1497   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1498   if (!Subtarget.useRVVForFixedLengthVectors())
1499     return false;
1500 
1501   // We only support a set of vector types with a consistent maximum fixed size
1502   // across all supported vector element types to avoid legalization issues.
1503   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1504   // fixed-length vector type we support is 1024 bytes.
1505   if (VT.getFixedSizeInBits() > 1024 * 8)
1506     return false;
1507 
1508   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1509 
1510   MVT EltVT = VT.getVectorElementType();
1511 
1512   // Don't use RVV for vectors we cannot scalarize if required.
1513   switch (EltVT.SimpleTy) {
1514   // i1 is supported but has different rules.
1515   default:
1516     return false;
1517   case MVT::i1:
1518     // Masks can only use a single register.
1519     if (VT.getVectorNumElements() > MinVLen)
1520       return false;
1521     MinVLen /= 8;
1522     break;
1523   case MVT::i8:
1524   case MVT::i16:
1525   case MVT::i32:
1526     break;
1527   case MVT::i64:
1528     if (!Subtarget.hasVInstructionsI64())
1529       return false;
1530     break;
1531   case MVT::f16:
1532     if (!Subtarget.hasVInstructionsF16())
1533       return false;
1534     break;
1535   case MVT::f32:
1536     if (!Subtarget.hasVInstructionsF32())
1537       return false;
1538     break;
1539   case MVT::f64:
1540     if (!Subtarget.hasVInstructionsF64())
1541       return false;
1542     break;
1543   }
1544 
1545   // Reject elements larger than ELEN.
1546   if (EltVT.getSizeInBits() > Subtarget.getELEN())
1547     return false;
1548 
1549   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1550   // Don't use RVV for types that don't fit.
1551   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1552     return false;
1553 
1554   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1555   // the base fixed length RVV support in place.
1556   if (!VT.isPow2VectorType())
1557     return false;
1558 
1559   return true;
1560 }
1561 
1562 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1563   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1564 }
1565 
1566 // Return the largest legal scalable vector type that matches VT's element type.
1567 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1568                                             const RISCVSubtarget &Subtarget) {
1569   // This may be called before legal types are setup.
1570   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1571           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1572          "Expected legal fixed length vector!");
1573 
1574   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1575   unsigned MaxELen = Subtarget.getELEN();
1576 
1577   MVT EltVT = VT.getVectorElementType();
1578   switch (EltVT.SimpleTy) {
1579   default:
1580     llvm_unreachable("unexpected element type for RVV container");
1581   case MVT::i1:
1582   case MVT::i8:
1583   case MVT::i16:
1584   case MVT::i32:
1585   case MVT::i64:
1586   case MVT::f16:
1587   case MVT::f32:
1588   case MVT::f64: {
1589     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1590     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1591     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1592     unsigned NumElts =
1593         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1594     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1595     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1596     return MVT::getScalableVectorVT(EltVT, NumElts);
1597   }
1598   }
1599 }
1600 
1601 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1602                                             const RISCVSubtarget &Subtarget) {
1603   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1604                                           Subtarget);
1605 }
1606 
1607 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1608   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1609 }
1610 
1611 // Grow V to consume an entire RVV register.
1612 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1613                                        const RISCVSubtarget &Subtarget) {
1614   assert(VT.isScalableVector() &&
1615          "Expected to convert into a scalable vector!");
1616   assert(V.getValueType().isFixedLengthVector() &&
1617          "Expected a fixed length vector operand!");
1618   SDLoc DL(V);
1619   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1620   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1621 }
1622 
1623 // Shrink V so it's just big enough to maintain a VT's worth of data.
1624 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1625                                          const RISCVSubtarget &Subtarget) {
1626   assert(VT.isFixedLengthVector() &&
1627          "Expected to convert into a fixed length vector!");
1628   assert(V.getValueType().isScalableVector() &&
1629          "Expected a scalable vector operand!");
1630   SDLoc DL(V);
1631   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1632   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1633 }
1634 
1635 /// Return the type of the mask type suitable for masking the provided
1636 /// vector type.  This is simply an i1 element type vector of the same
1637 /// (possibly scalable) length.
1638 static MVT getMaskTypeFor(EVT VecVT) {
1639   assert(VecVT.isVector());
1640   ElementCount EC = VecVT.getVectorElementCount();
1641   return MVT::getVectorVT(MVT::i1, EC);
1642 }
1643 
1644 /// Creates an all ones mask suitable for masking a vector of type VecTy with
1645 /// vector length VL.  .
1646 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL,
1647                               SelectionDAG &DAG) {
1648   MVT MaskVT = getMaskTypeFor(VecVT);
1649   return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1650 }
1651 
1652 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1653 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1654 // the vector type that it is contained in.
1655 static std::pair<SDValue, SDValue>
1656 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1657                 const RISCVSubtarget &Subtarget) {
1658   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1659   MVT XLenVT = Subtarget.getXLenVT();
1660   SDValue VL = VecVT.isFixedLengthVector()
1661                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1662                    : DAG.getRegister(RISCV::X0, XLenVT);
1663   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
1664   return {Mask, VL};
1665 }
1666 
1667 // As above but assuming the given type is a scalable vector type.
1668 static std::pair<SDValue, SDValue>
1669 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1670                         const RISCVSubtarget &Subtarget) {
1671   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1672   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1673 }
1674 
1675 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1676 // of either is (currently) supported. This can get us into an infinite loop
1677 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1678 // as a ..., etc.
1679 // Until either (or both) of these can reliably lower any node, reporting that
1680 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1681 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1682 // which is not desirable.
1683 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1684     EVT VT, unsigned DefinedValues) const {
1685   return false;
1686 }
1687 
1688 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1689                                   const RISCVSubtarget &Subtarget) {
1690   // RISCV FP-to-int conversions saturate to the destination register size, but
1691   // don't produce 0 for nan. We can use a conversion instruction and fix the
1692   // nan case with a compare and a select.
1693   SDValue Src = Op.getOperand(0);
1694 
1695   EVT DstVT = Op.getValueType();
1696   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1697 
1698   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1699   unsigned Opc;
1700   if (SatVT == DstVT)
1701     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1702   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1703     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1704   else
1705     return SDValue();
1706   // FIXME: Support other SatVTs by clamping before or after the conversion.
1707 
1708   SDLoc DL(Op);
1709   SDValue FpToInt = DAG.getNode(
1710       Opc, DL, DstVT, Src,
1711       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1712 
1713   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1714   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1715 }
1716 
1717 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1718 // and back. Taking care to avoid converting values that are nan or already
1719 // correct.
1720 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1721 // have FRM dependencies modeled yet.
1722 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1723   MVT VT = Op.getSimpleValueType();
1724   assert(VT.isVector() && "Unexpected type");
1725 
1726   SDLoc DL(Op);
1727 
1728   // Freeze the source since we are increasing the number of uses.
1729   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1730 
1731   // Truncate to integer and convert back to FP.
1732   MVT IntVT = VT.changeVectorElementTypeToInteger();
1733   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1734   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1735 
1736   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1737 
1738   if (Op.getOpcode() == ISD::FCEIL) {
1739     // If the truncated value is the greater than or equal to the original
1740     // value, we've computed the ceil. Otherwise, we went the wrong way and
1741     // need to increase by 1.
1742     // FIXME: This should use a masked operation. Handle here or in isel?
1743     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1744                                  DAG.getConstantFP(1.0, DL, VT));
1745     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1746     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1747   } else if (Op.getOpcode() == ISD::FFLOOR) {
1748     // If the truncated value is the less than or equal to the original value,
1749     // we've computed the floor. Otherwise, we went the wrong way and need to
1750     // decrease by 1.
1751     // FIXME: This should use a masked operation. Handle here or in isel?
1752     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1753                                  DAG.getConstantFP(1.0, DL, VT));
1754     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1755     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1756   }
1757 
1758   // Restore the original sign so that -0.0 is preserved.
1759   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1760 
1761   // Determine the largest integer that can be represented exactly. This and
1762   // values larger than it don't have any fractional bits so don't need to
1763   // be converted.
1764   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1765   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1766   APFloat MaxVal = APFloat(FltSem);
1767   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1768                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1769   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1770 
1771   // If abs(Src) was larger than MaxVal or nan, keep it.
1772   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1773   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1774   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1775 }
1776 
1777 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1778 // This mode isn't supported in vector hardware on RISCV. But as long as we
1779 // aren't compiling with trapping math, we can emulate this with
1780 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1781 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1782 // dependencies modeled yet.
1783 // FIXME: Use masked operations to avoid final merge.
1784 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1785   MVT VT = Op.getSimpleValueType();
1786   assert(VT.isVector() && "Unexpected type");
1787 
1788   SDLoc DL(Op);
1789 
1790   // Freeze the source since we are increasing the number of uses.
1791   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1792 
1793   // We do the conversion on the absolute value and fix the sign at the end.
1794   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1795 
1796   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1797   bool Ignored;
1798   APFloat Point5Pred = APFloat(0.5f);
1799   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1800   Point5Pred.next(/*nextDown*/ true);
1801 
1802   // Add the adjustment.
1803   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1804                                DAG.getConstantFP(Point5Pred, DL, VT));
1805 
1806   // Truncate to integer and convert back to fp.
1807   MVT IntVT = VT.changeVectorElementTypeToInteger();
1808   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1809   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1810 
1811   // Restore the original sign.
1812   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1813 
1814   // Determine the largest integer that can be represented exactly. This and
1815   // values larger than it don't have any fractional bits so don't need to
1816   // be converted.
1817   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1818   APFloat MaxVal = APFloat(FltSem);
1819   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1820                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1821   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1822 
1823   // If abs(Src) was larger than MaxVal or nan, keep it.
1824   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1825   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1826   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1827 }
1828 
1829 struct VIDSequence {
1830   int64_t StepNumerator;
1831   unsigned StepDenominator;
1832   int64_t Addend;
1833 };
1834 
1835 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1836 // to the (non-zero) step S and start value X. This can be then lowered as the
1837 // RVV sequence (VID * S) + X, for example.
1838 // The step S is represented as an integer numerator divided by a positive
1839 // denominator. Note that the implementation currently only identifies
1840 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1841 // cannot detect 2/3, for example.
1842 // Note that this method will also match potentially unappealing index
1843 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1844 // determine whether this is worth generating code for.
1845 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1846   unsigned NumElts = Op.getNumOperands();
1847   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1848   if (!Op.getValueType().isInteger())
1849     return None;
1850 
1851   Optional<unsigned> SeqStepDenom;
1852   Optional<int64_t> SeqStepNum, SeqAddend;
1853   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1854   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1855   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1856     // Assume undef elements match the sequence; we just have to be careful
1857     // when interpolating across them.
1858     if (Op.getOperand(Idx).isUndef())
1859       continue;
1860     // The BUILD_VECTOR must be all constants.
1861     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1862       return None;
1863 
1864     uint64_t Val = Op.getConstantOperandVal(Idx) &
1865                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1866 
1867     if (PrevElt) {
1868       // Calculate the step since the last non-undef element, and ensure
1869       // it's consistent across the entire sequence.
1870       unsigned IdxDiff = Idx - PrevElt->second;
1871       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1872 
1873       // A zero-value value difference means that we're somewhere in the middle
1874       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1875       // step change before evaluating the sequence.
1876       if (ValDiff == 0)
1877         continue;
1878 
1879       int64_t Remainder = ValDiff % IdxDiff;
1880       // Normalize the step if it's greater than 1.
1881       if (Remainder != ValDiff) {
1882         // The difference must cleanly divide the element span.
1883         if (Remainder != 0)
1884           return None;
1885         ValDiff /= IdxDiff;
1886         IdxDiff = 1;
1887       }
1888 
1889       if (!SeqStepNum)
1890         SeqStepNum = ValDiff;
1891       else if (ValDiff != SeqStepNum)
1892         return None;
1893 
1894       if (!SeqStepDenom)
1895         SeqStepDenom = IdxDiff;
1896       else if (IdxDiff != *SeqStepDenom)
1897         return None;
1898     }
1899 
1900     // Record this non-undef element for later.
1901     if (!PrevElt || PrevElt->first != Val)
1902       PrevElt = std::make_pair(Val, Idx);
1903   }
1904 
1905   // We need to have logged a step for this to count as a legal index sequence.
1906   if (!SeqStepNum || !SeqStepDenom)
1907     return None;
1908 
1909   // Loop back through the sequence and validate elements we might have skipped
1910   // while waiting for a valid step. While doing this, log any sequence addend.
1911   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1912     if (Op.getOperand(Idx).isUndef())
1913       continue;
1914     uint64_t Val = Op.getConstantOperandVal(Idx) &
1915                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1916     uint64_t ExpectedVal =
1917         (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1918     int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1919     if (!SeqAddend)
1920       SeqAddend = Addend;
1921     else if (Addend != SeqAddend)
1922       return None;
1923   }
1924 
1925   assert(SeqAddend && "Must have an addend if we have a step");
1926 
1927   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1928 }
1929 
1930 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1931 // and lower it as a VRGATHER_VX_VL from the source vector.
1932 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1933                                   SelectionDAG &DAG,
1934                                   const RISCVSubtarget &Subtarget) {
1935   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1936     return SDValue();
1937   SDValue Vec = SplatVal.getOperand(0);
1938   // Only perform this optimization on vectors of the same size for simplicity.
1939   // Don't perform this optimization for i1 vectors.
1940   // FIXME: Support i1 vectors, maybe by promoting to i8?
1941   if (Vec.getValueType() != VT || VT.getVectorElementType() == MVT::i1)
1942     return SDValue();
1943   SDValue Idx = SplatVal.getOperand(1);
1944   // The index must be a legal type.
1945   if (Idx.getValueType() != Subtarget.getXLenVT())
1946     return SDValue();
1947 
1948   MVT ContainerVT = VT;
1949   if (VT.isFixedLengthVector()) {
1950     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1951     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
1952   }
1953 
1954   SDValue Mask, VL;
1955   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1956 
1957   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
1958                                Idx, Mask, VL);
1959 
1960   if (!VT.isFixedLengthVector())
1961     return Gather;
1962 
1963   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1964 }
1965 
1966 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1967                                  const RISCVSubtarget &Subtarget) {
1968   MVT VT = Op.getSimpleValueType();
1969   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1970 
1971   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1972 
1973   SDLoc DL(Op);
1974   SDValue Mask, VL;
1975   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1976 
1977   MVT XLenVT = Subtarget.getXLenVT();
1978   unsigned NumElts = Op.getNumOperands();
1979 
1980   if (VT.getVectorElementType() == MVT::i1) {
1981     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1982       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1983       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1984     }
1985 
1986     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1987       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1988       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1989     }
1990 
1991     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1992     // scalar integer chunks whose bit-width depends on the number of mask
1993     // bits and XLEN.
1994     // First, determine the most appropriate scalar integer type to use. This
1995     // is at most XLenVT, but may be shrunk to a smaller vector element type
1996     // according to the size of the final vector - use i8 chunks rather than
1997     // XLenVT if we're producing a v8i1. This results in more consistent
1998     // codegen across RV32 and RV64.
1999     unsigned NumViaIntegerBits =
2000         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2001     NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN());
2002     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2003       // If we have to use more than one INSERT_VECTOR_ELT then this
2004       // optimization is likely to increase code size; avoid peforming it in
2005       // such a case. We can use a load from a constant pool in this case.
2006       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2007         return SDValue();
2008       // Now we can create our integer vector type. Note that it may be larger
2009       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2010       MVT IntegerViaVecVT =
2011           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2012                            divideCeil(NumElts, NumViaIntegerBits));
2013 
2014       uint64_t Bits = 0;
2015       unsigned BitPos = 0, IntegerEltIdx = 0;
2016       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2017 
2018       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2019         // Once we accumulate enough bits to fill our scalar type, insert into
2020         // our vector and clear our accumulated data.
2021         if (I != 0 && I % NumViaIntegerBits == 0) {
2022           if (NumViaIntegerBits <= 32)
2023             Bits = SignExtend64<32>(Bits);
2024           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2025           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2026                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2027           Bits = 0;
2028           BitPos = 0;
2029           IntegerEltIdx++;
2030         }
2031         SDValue V = Op.getOperand(I);
2032         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2033         Bits |= ((uint64_t)BitValue << BitPos);
2034       }
2035 
2036       // Insert the (remaining) scalar value into position in our integer
2037       // vector type.
2038       if (NumViaIntegerBits <= 32)
2039         Bits = SignExtend64<32>(Bits);
2040       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2041       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2042                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2043 
2044       if (NumElts < NumViaIntegerBits) {
2045         // If we're producing a smaller vector than our minimum legal integer
2046         // type, bitcast to the equivalent (known-legal) mask type, and extract
2047         // our final mask.
2048         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2049         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2050         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2051                           DAG.getConstant(0, DL, XLenVT));
2052       } else {
2053         // Else we must have produced an integer type with the same size as the
2054         // mask type; bitcast for the final result.
2055         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2056         Vec = DAG.getBitcast(VT, Vec);
2057       }
2058 
2059       return Vec;
2060     }
2061 
2062     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2063     // vector type, we have a legal equivalently-sized i8 type, so we can use
2064     // that.
2065     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2066     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2067 
2068     SDValue WideVec;
2069     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2070       // For a splat, perform a scalar truncate before creating the wider
2071       // vector.
2072       assert(Splat.getValueType() == XLenVT &&
2073              "Unexpected type for i1 splat value");
2074       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2075                           DAG.getConstant(1, DL, XLenVT));
2076       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2077     } else {
2078       SmallVector<SDValue, 8> Ops(Op->op_values());
2079       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2080       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2081       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2082     }
2083 
2084     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2085   }
2086 
2087   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2088     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2089       return Gather;
2090     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2091                                         : RISCVISD::VMV_V_X_VL;
2092     Splat =
2093         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2094     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2095   }
2096 
2097   // Try and match index sequences, which we can lower to the vid instruction
2098   // with optional modifications. An all-undef vector is matched by
2099   // getSplatValue, above.
2100   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2101     int64_t StepNumerator = SimpleVID->StepNumerator;
2102     unsigned StepDenominator = SimpleVID->StepDenominator;
2103     int64_t Addend = SimpleVID->Addend;
2104 
2105     assert(StepNumerator != 0 && "Invalid step");
2106     bool Negate = false;
2107     int64_t SplatStepVal = StepNumerator;
2108     unsigned StepOpcode = ISD::MUL;
2109     if (StepNumerator != 1) {
2110       if (isPowerOf2_64(std::abs(StepNumerator))) {
2111         Negate = StepNumerator < 0;
2112         StepOpcode = ISD::SHL;
2113         SplatStepVal = Log2_64(std::abs(StepNumerator));
2114       }
2115     }
2116 
2117     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2118     // threshold since it's the immediate value many RVV instructions accept.
2119     // There is no vmul.vi instruction so ensure multiply constant can fit in
2120     // a single addi instruction.
2121     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2122          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2123         isPowerOf2_32(StepDenominator) &&
2124         (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) {
2125       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2126       // Convert right out of the scalable type so we can use standard ISD
2127       // nodes for the rest of the computation. If we used scalable types with
2128       // these, we'd lose the fixed-length vector info and generate worse
2129       // vsetvli code.
2130       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2131       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2132           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2133         SDValue SplatStep = DAG.getSplatBuildVector(
2134             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2135         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2136       }
2137       if (StepDenominator != 1) {
2138         SDValue SplatStep = DAG.getSplatBuildVector(
2139             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2140         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2141       }
2142       if (Addend != 0 || Negate) {
2143         SDValue SplatAddend = DAG.getSplatBuildVector(
2144             VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2145         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2146       }
2147       return VID;
2148     }
2149   }
2150 
2151   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2152   // when re-interpreted as a vector with a larger element type. For example,
2153   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2154   // could be instead splat as
2155   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2156   // TODO: This optimization could also work on non-constant splats, but it
2157   // would require bit-manipulation instructions to construct the splat value.
2158   SmallVector<SDValue> Sequence;
2159   unsigned EltBitSize = VT.getScalarSizeInBits();
2160   const auto *BV = cast<BuildVectorSDNode>(Op);
2161   if (VT.isInteger() && EltBitSize < 64 &&
2162       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2163       BV->getRepeatedSequence(Sequence) &&
2164       (Sequence.size() * EltBitSize) <= 64) {
2165     unsigned SeqLen = Sequence.size();
2166     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2167     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2168     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2169             ViaIntVT == MVT::i64) &&
2170            "Unexpected sequence type");
2171 
2172     unsigned EltIdx = 0;
2173     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2174     uint64_t SplatValue = 0;
2175     // Construct the amalgamated value which can be splatted as this larger
2176     // vector type.
2177     for (const auto &SeqV : Sequence) {
2178       if (!SeqV.isUndef())
2179         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2180                        << (EltIdx * EltBitSize));
2181       EltIdx++;
2182     }
2183 
2184     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2185     // achieve better constant materializion.
2186     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2187       SplatValue = SignExtend64<32>(SplatValue);
2188 
2189     // Since we can't introduce illegal i64 types at this stage, we can only
2190     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2191     // way we can use RVV instructions to splat.
2192     assert((ViaIntVT.bitsLE(XLenVT) ||
2193             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2194            "Unexpected bitcast sequence");
2195     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2196       SDValue ViaVL =
2197           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2198       MVT ViaContainerVT =
2199           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2200       SDValue Splat =
2201           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2202                       DAG.getUNDEF(ViaContainerVT),
2203                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2204       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2205       return DAG.getBitcast(VT, Splat);
2206     }
2207   }
2208 
2209   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2210   // which constitute a large proportion of the elements. In such cases we can
2211   // splat a vector with the dominant element and make up the shortfall with
2212   // INSERT_VECTOR_ELTs.
2213   // Note that this includes vectors of 2 elements by association. The
2214   // upper-most element is the "dominant" one, allowing us to use a splat to
2215   // "insert" the upper element, and an insert of the lower element at position
2216   // 0, which improves codegen.
2217   SDValue DominantValue;
2218   unsigned MostCommonCount = 0;
2219   DenseMap<SDValue, unsigned> ValueCounts;
2220   unsigned NumUndefElts =
2221       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2222 
2223   // Track the number of scalar loads we know we'd be inserting, estimated as
2224   // any non-zero floating-point constant. Other kinds of element are either
2225   // already in registers or are materialized on demand. The threshold at which
2226   // a vector load is more desirable than several scalar materializion and
2227   // vector-insertion instructions is not known.
2228   unsigned NumScalarLoads = 0;
2229 
2230   for (SDValue V : Op->op_values()) {
2231     if (V.isUndef())
2232       continue;
2233 
2234     ValueCounts.insert(std::make_pair(V, 0));
2235     unsigned &Count = ValueCounts[V];
2236 
2237     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2238       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2239 
2240     // Is this value dominant? In case of a tie, prefer the highest element as
2241     // it's cheaper to insert near the beginning of a vector than it is at the
2242     // end.
2243     if (++Count >= MostCommonCount) {
2244       DominantValue = V;
2245       MostCommonCount = Count;
2246     }
2247   }
2248 
2249   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2250   unsigned NumDefElts = NumElts - NumUndefElts;
2251   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2252 
2253   // Don't perform this optimization when optimizing for size, since
2254   // materializing elements and inserting them tends to cause code bloat.
2255   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2256       ((MostCommonCount > DominantValueCountThreshold) ||
2257        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2258     // Start by splatting the most common element.
2259     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2260 
2261     DenseSet<SDValue> Processed{DominantValue};
2262     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2263     for (const auto &OpIdx : enumerate(Op->ops())) {
2264       const SDValue &V = OpIdx.value();
2265       if (V.isUndef() || !Processed.insert(V).second)
2266         continue;
2267       if (ValueCounts[V] == 1) {
2268         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2269                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2270       } else {
2271         // Blend in all instances of this value using a VSELECT, using a
2272         // mask where each bit signals whether that element is the one
2273         // we're after.
2274         SmallVector<SDValue> Ops;
2275         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2276           return DAG.getConstant(V == V1, DL, XLenVT);
2277         });
2278         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2279                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2280                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2281       }
2282     }
2283 
2284     return Vec;
2285   }
2286 
2287   return SDValue();
2288 }
2289 
2290 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2291                                    SDValue Lo, SDValue Hi, SDValue VL,
2292                                    SelectionDAG &DAG) {
2293   if (!Passthru)
2294     Passthru = DAG.getUNDEF(VT);
2295   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2296     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2297     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2298     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2299     // node in order to try and match RVV vector/scalar instructions.
2300     if ((LoC >> 31) == HiC)
2301       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2302 
2303     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2304     // vmv.v.x whose EEW = 32 to lower it.
2305     auto *Const = dyn_cast<ConstantSDNode>(VL);
2306     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2307       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2308       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2309       // access the subtarget here now.
2310       auto InterVec = DAG.getNode(
2311           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2312                                   DAG.getRegister(RISCV::X0, MVT::i32));
2313       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2314     }
2315   }
2316 
2317   // Fall back to a stack store and stride x0 vector load.
2318   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2319                      Hi, VL);
2320 }
2321 
2322 // Called by type legalization to handle splat of i64 on RV32.
2323 // FIXME: We can optimize this when the type has sign or zero bits in one
2324 // of the halves.
2325 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2326                                    SDValue Scalar, SDValue VL,
2327                                    SelectionDAG &DAG) {
2328   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2329   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2330                            DAG.getConstant(0, DL, MVT::i32));
2331   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2332                            DAG.getConstant(1, DL, MVT::i32));
2333   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2334 }
2335 
2336 // This function lowers a splat of a scalar operand Splat with the vector
2337 // length VL. It ensures the final sequence is type legal, which is useful when
2338 // lowering a splat after type legalization.
2339 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2340                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2341                                 const RISCVSubtarget &Subtarget) {
2342   bool HasPassthru = Passthru && !Passthru.isUndef();
2343   if (!HasPassthru && !Passthru)
2344     Passthru = DAG.getUNDEF(VT);
2345   if (VT.isFloatingPoint()) {
2346     // If VL is 1, we could use vfmv.s.f.
2347     if (isOneConstant(VL))
2348       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2349     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2350   }
2351 
2352   MVT XLenVT = Subtarget.getXLenVT();
2353 
2354   // Simplest case is that the operand needs to be promoted to XLenVT.
2355   if (Scalar.getValueType().bitsLE(XLenVT)) {
2356     // If the operand is a constant, sign extend to increase our chances
2357     // of being able to use a .vi instruction. ANY_EXTEND would become a
2358     // a zero extend and the simm5 check in isel would fail.
2359     // FIXME: Should we ignore the upper bits in isel instead?
2360     unsigned ExtOpc =
2361         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2362     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2363     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2364     // If VL is 1 and the scalar value won't benefit from immediate, we could
2365     // use vmv.s.x.
2366     if (isOneConstant(VL) &&
2367         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2368       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2369     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2370   }
2371 
2372   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2373          "Unexpected scalar for splat lowering!");
2374 
2375   if (isOneConstant(VL) && isNullConstant(Scalar))
2376     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2377                        DAG.getConstant(0, DL, XLenVT), VL);
2378 
2379   // Otherwise use the more complicated splatting algorithm.
2380   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2381 }
2382 
2383 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2384                                 const RISCVSubtarget &Subtarget) {
2385   // We need to be able to widen elements to the next larger integer type.
2386   if (VT.getScalarSizeInBits() >= Subtarget.getELEN())
2387     return false;
2388 
2389   int Size = Mask.size();
2390   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2391 
2392   int Srcs[] = {-1, -1};
2393   for (int i = 0; i != Size; ++i) {
2394     // Ignore undef elements.
2395     if (Mask[i] < 0)
2396       continue;
2397 
2398     // Is this an even or odd element.
2399     int Pol = i % 2;
2400 
2401     // Ensure we consistently use the same source for this element polarity.
2402     int Src = Mask[i] / Size;
2403     if (Srcs[Pol] < 0)
2404       Srcs[Pol] = Src;
2405     if (Srcs[Pol] != Src)
2406       return false;
2407 
2408     // Make sure the element within the source is appropriate for this element
2409     // in the destination.
2410     int Elt = Mask[i] % Size;
2411     if (Elt != i / 2)
2412       return false;
2413   }
2414 
2415   // We need to find a source for each polarity and they can't be the same.
2416   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2417     return false;
2418 
2419   // Swap the sources if the second source was in the even polarity.
2420   SwapSources = Srcs[0] > Srcs[1];
2421 
2422   return true;
2423 }
2424 
2425 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2426 /// and then extract the original number of elements from the rotated result.
2427 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2428 /// returned rotation amount is for a rotate right, where elements move from
2429 /// higher elements to lower elements. \p LoSrc indicates the first source
2430 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2431 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2432 /// 0 or 1 if a rotation is found.
2433 ///
2434 /// NOTE: We talk about rotate to the right which matches how bit shift and
2435 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2436 /// and the table below write vectors with the lowest elements on the left.
2437 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2438   int Size = Mask.size();
2439 
2440   // We need to detect various ways of spelling a rotation:
2441   //   [11, 12, 13, 14, 15,  0,  1,  2]
2442   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2443   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2444   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2445   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2446   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2447   int Rotation = 0;
2448   LoSrc = -1;
2449   HiSrc = -1;
2450   for (int i = 0; i != Size; ++i) {
2451     int M = Mask[i];
2452     if (M < 0)
2453       continue;
2454 
2455     // Determine where a rotate vector would have started.
2456     int StartIdx = i - (M % Size);
2457     // The identity rotation isn't interesting, stop.
2458     if (StartIdx == 0)
2459       return -1;
2460 
2461     // If we found the tail of a vector the rotation must be the missing
2462     // front. If we found the head of a vector, it must be how much of the
2463     // head.
2464     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2465 
2466     if (Rotation == 0)
2467       Rotation = CandidateRotation;
2468     else if (Rotation != CandidateRotation)
2469       // The rotations don't match, so we can't match this mask.
2470       return -1;
2471 
2472     // Compute which value this mask is pointing at.
2473     int MaskSrc = M < Size ? 0 : 1;
2474 
2475     // Compute which of the two target values this index should be assigned to.
2476     // This reflects whether the high elements are remaining or the low elemnts
2477     // are remaining.
2478     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2479 
2480     // Either set up this value if we've not encountered it before, or check
2481     // that it remains consistent.
2482     if (TargetSrc < 0)
2483       TargetSrc = MaskSrc;
2484     else if (TargetSrc != MaskSrc)
2485       // This may be a rotation, but it pulls from the inputs in some
2486       // unsupported interleaving.
2487       return -1;
2488   }
2489 
2490   // Check that we successfully analyzed the mask, and normalize the results.
2491   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2492   assert((LoSrc >= 0 || HiSrc >= 0) &&
2493          "Failed to find a rotated input vector!");
2494 
2495   return Rotation;
2496 }
2497 
2498 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2499                                    const RISCVSubtarget &Subtarget) {
2500   SDValue V1 = Op.getOperand(0);
2501   SDValue V2 = Op.getOperand(1);
2502   SDLoc DL(Op);
2503   MVT XLenVT = Subtarget.getXLenVT();
2504   MVT VT = Op.getSimpleValueType();
2505   unsigned NumElts = VT.getVectorNumElements();
2506   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2507 
2508   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2509 
2510   SDValue TrueMask, VL;
2511   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2512 
2513   if (SVN->isSplat()) {
2514     const int Lane = SVN->getSplatIndex();
2515     if (Lane >= 0) {
2516       MVT SVT = VT.getVectorElementType();
2517 
2518       // Turn splatted vector load into a strided load with an X0 stride.
2519       SDValue V = V1;
2520       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2521       // with undef.
2522       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2523       int Offset = Lane;
2524       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2525         int OpElements =
2526             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2527         V = V.getOperand(Offset / OpElements);
2528         Offset %= OpElements;
2529       }
2530 
2531       // We need to ensure the load isn't atomic or volatile.
2532       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2533         auto *Ld = cast<LoadSDNode>(V);
2534         Offset *= SVT.getStoreSize();
2535         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2536                                                    TypeSize::Fixed(Offset), DL);
2537 
2538         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2539         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2540           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2541           SDValue IntID =
2542               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2543           SDValue Ops[] = {Ld->getChain(),
2544                            IntID,
2545                            DAG.getUNDEF(ContainerVT),
2546                            NewAddr,
2547                            DAG.getRegister(RISCV::X0, XLenVT),
2548                            VL};
2549           SDValue NewLoad = DAG.getMemIntrinsicNode(
2550               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2551               DAG.getMachineFunction().getMachineMemOperand(
2552                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2553           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2554           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2555         }
2556 
2557         // Otherwise use a scalar load and splat. This will give the best
2558         // opportunity to fold a splat into the operation. ISel can turn it into
2559         // the x0 strided load if we aren't able to fold away the select.
2560         if (SVT.isFloatingPoint())
2561           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2562                           Ld->getPointerInfo().getWithOffset(Offset),
2563                           Ld->getOriginalAlign(),
2564                           Ld->getMemOperand()->getFlags());
2565         else
2566           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2567                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2568                              Ld->getOriginalAlign(),
2569                              Ld->getMemOperand()->getFlags());
2570         DAG.makeEquivalentMemoryOrdering(Ld, V);
2571 
2572         unsigned Opc =
2573             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2574         SDValue Splat =
2575             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2576         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2577       }
2578 
2579       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2580       assert(Lane < (int)NumElts && "Unexpected lane!");
2581       SDValue Gather =
2582           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2583                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2584       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2585     }
2586   }
2587 
2588   ArrayRef<int> Mask = SVN->getMask();
2589 
2590   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2591   // be undef which can be handled with a single SLIDEDOWN/UP.
2592   int LoSrc, HiSrc;
2593   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2594   if (Rotation > 0) {
2595     SDValue LoV, HiV;
2596     if (LoSrc >= 0) {
2597       LoV = LoSrc == 0 ? V1 : V2;
2598       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2599     }
2600     if (HiSrc >= 0) {
2601       HiV = HiSrc == 0 ? V1 : V2;
2602       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2603     }
2604 
2605     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2606     // to slide LoV up by (NumElts - Rotation).
2607     unsigned InvRotate = NumElts - Rotation;
2608 
2609     SDValue Res = DAG.getUNDEF(ContainerVT);
2610     if (HiV) {
2611       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2612       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2613       // causes multiple vsetvlis in some test cases such as lowering
2614       // reduce.mul
2615       SDValue DownVL = VL;
2616       if (LoV)
2617         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2618       Res =
2619           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2620                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2621     }
2622     if (LoV)
2623       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2624                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2625 
2626     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2627   }
2628 
2629   // Detect an interleave shuffle and lower to
2630   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2631   bool SwapSources;
2632   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2633     // Swap sources if needed.
2634     if (SwapSources)
2635       std::swap(V1, V2);
2636 
2637     // Extract the lower half of the vectors.
2638     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2639     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2640                      DAG.getConstant(0, DL, XLenVT));
2641     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2642                      DAG.getConstant(0, DL, XLenVT));
2643 
2644     // Double the element width and halve the number of elements in an int type.
2645     unsigned EltBits = VT.getScalarSizeInBits();
2646     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2647     MVT WideIntVT =
2648         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2649     // Convert this to a scalable vector. We need to base this on the
2650     // destination size to ensure there's always a type with a smaller LMUL.
2651     MVT WideIntContainerVT =
2652         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2653 
2654     // Convert sources to scalable vectors with the same element count as the
2655     // larger type.
2656     MVT HalfContainerVT = MVT::getVectorVT(
2657         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2658     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2659     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2660 
2661     // Cast sources to integer.
2662     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2663     MVT IntHalfVT =
2664         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2665     V1 = DAG.getBitcast(IntHalfVT, V1);
2666     V2 = DAG.getBitcast(IntHalfVT, V2);
2667 
2668     // Freeze V2 since we use it twice and we need to be sure that the add and
2669     // multiply see the same value.
2670     V2 = DAG.getFreeze(V2);
2671 
2672     // Recreate TrueMask using the widened type's element count.
2673     TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG);
2674 
2675     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2676     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2677                               V2, TrueMask, VL);
2678     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2679     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2680                                      DAG.getUNDEF(IntHalfVT),
2681                                      DAG.getAllOnesConstant(DL, XLenVT));
2682     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2683                                    V2, Multiplier, TrueMask, VL);
2684     // Add the new copies to our previous addition giving us 2^eltbits copies of
2685     // V2. This is equivalent to shifting V2 left by eltbits. This should
2686     // combine with the vwmulu.vv above to form vwmaccu.vv.
2687     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2688                       TrueMask, VL);
2689     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2690     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2691     // vector VT.
2692     ContainerVT =
2693         MVT::getVectorVT(VT.getVectorElementType(),
2694                          WideIntContainerVT.getVectorElementCount() * 2);
2695     Add = DAG.getBitcast(ContainerVT, Add);
2696     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2697   }
2698 
2699   // Detect shuffles which can be re-expressed as vector selects; these are
2700   // shuffles in which each element in the destination is taken from an element
2701   // at the corresponding index in either source vectors.
2702   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2703     int MaskIndex = MaskIdx.value();
2704     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2705   });
2706 
2707   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2708 
2709   SmallVector<SDValue> MaskVals;
2710   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2711   // merged with a second vrgather.
2712   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2713 
2714   // By default we preserve the original operand order, and use a mask to
2715   // select LHS as true and RHS as false. However, since RVV vector selects may
2716   // feature splats but only on the LHS, we may choose to invert our mask and
2717   // instead select between RHS and LHS.
2718   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2719   bool InvertMask = IsSelect == SwapOps;
2720 
2721   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2722   // half.
2723   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2724 
2725   // Now construct the mask that will be used by the vselect or blended
2726   // vrgather operation. For vrgathers, construct the appropriate indices into
2727   // each vector.
2728   for (int MaskIndex : Mask) {
2729     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2730     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2731     if (!IsSelect) {
2732       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2733       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2734                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2735                                      : DAG.getUNDEF(XLenVT));
2736       GatherIndicesRHS.push_back(
2737           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2738                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2739       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2740         ++LHSIndexCounts[MaskIndex];
2741       if (!IsLHSOrUndefIndex)
2742         ++RHSIndexCounts[MaskIndex - NumElts];
2743     }
2744   }
2745 
2746   if (SwapOps) {
2747     std::swap(V1, V2);
2748     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2749   }
2750 
2751   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2752   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2753   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2754 
2755   if (IsSelect)
2756     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2757 
2758   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2759     // On such a large vector we're unable to use i8 as the index type.
2760     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2761     // may involve vector splitting if we're already at LMUL=8, or our
2762     // user-supplied maximum fixed-length LMUL.
2763     return SDValue();
2764   }
2765 
2766   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2767   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2768   MVT IndexVT = VT.changeTypeToInteger();
2769   // Since we can't introduce illegal index types at this stage, use i16 and
2770   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2771   // than XLenVT.
2772   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2773     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2774     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2775   }
2776 
2777   MVT IndexContainerVT =
2778       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2779 
2780   SDValue Gather;
2781   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2782   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2783   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2784     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2785                               Subtarget);
2786   } else {
2787     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2788     // If only one index is used, we can use a "splat" vrgather.
2789     // TODO: We can splat the most-common index and fix-up any stragglers, if
2790     // that's beneficial.
2791     if (LHSIndexCounts.size() == 1) {
2792       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2793       Gather =
2794           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2795                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2796     } else {
2797       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2798       LHSIndices =
2799           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2800 
2801       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2802                            TrueMask, VL);
2803     }
2804   }
2805 
2806   // If a second vector operand is used by this shuffle, blend it in with an
2807   // additional vrgather.
2808   if (!V2.isUndef()) {
2809     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2810     // If only one index is used, we can use a "splat" vrgather.
2811     // TODO: We can splat the most-common index and fix-up any stragglers, if
2812     // that's beneficial.
2813     if (RHSIndexCounts.size() == 1) {
2814       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2815       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2816                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2817     } else {
2818       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2819       RHSIndices =
2820           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2821       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2822                        VL);
2823     }
2824 
2825     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2826     SelectMask =
2827         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2828 
2829     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2830                          Gather, VL);
2831   }
2832 
2833   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2834 }
2835 
2836 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2837   // Support splats for any type. These should type legalize well.
2838   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2839     return true;
2840 
2841   // Only support legal VTs for other shuffles for now.
2842   if (!isTypeLegal(VT))
2843     return false;
2844 
2845   MVT SVT = VT.getSimpleVT();
2846 
2847   bool SwapSources;
2848   int LoSrc, HiSrc;
2849   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2850          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2851 }
2852 
2853 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2854 // the exponent.
2855 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2856   MVT VT = Op.getSimpleValueType();
2857   unsigned EltSize = VT.getScalarSizeInBits();
2858   SDValue Src = Op.getOperand(0);
2859   SDLoc DL(Op);
2860 
2861   // We need a FP type that can represent the value.
2862   // TODO: Use f16 for i8 when possible?
2863   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2864   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2865 
2866   // Legal types should have been checked in the RISCVTargetLowering
2867   // constructor.
2868   // TODO: Splitting may make sense in some cases.
2869   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2870          "Expected legal float type!");
2871 
2872   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2873   // The trailing zero count is equal to log2 of this single bit value.
2874   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2875     SDValue Neg =
2876         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2877     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2878   }
2879 
2880   // We have a legal FP type, convert to it.
2881   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2882   // Bitcast to integer and shift the exponent to the LSB.
2883   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2884   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2885   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2886   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2887                               DAG.getConstant(ShiftAmt, DL, IntVT));
2888   // Truncate back to original type to allow vnsrl.
2889   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2890   // The exponent contains log2 of the value in biased form.
2891   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2892 
2893   // For trailing zeros, we just need to subtract the bias.
2894   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2895     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2896                        DAG.getConstant(ExponentBias, DL, VT));
2897 
2898   // For leading zeros, we need to remove the bias and convert from log2 to
2899   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2900   unsigned Adjust = ExponentBias + (EltSize - 1);
2901   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2902 }
2903 
2904 // While RVV has alignment restrictions, we should always be able to load as a
2905 // legal equivalently-sized byte-typed vector instead. This method is
2906 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2907 // the load is already correctly-aligned, it returns SDValue().
2908 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2909                                                     SelectionDAG &DAG) const {
2910   auto *Load = cast<LoadSDNode>(Op);
2911   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2912 
2913   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2914                                      Load->getMemoryVT(),
2915                                      *Load->getMemOperand()))
2916     return SDValue();
2917 
2918   SDLoc DL(Op);
2919   MVT VT = Op.getSimpleValueType();
2920   unsigned EltSizeBits = VT.getScalarSizeInBits();
2921   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2922          "Unexpected unaligned RVV load type");
2923   MVT NewVT =
2924       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2925   assert(NewVT.isValid() &&
2926          "Expecting equally-sized RVV vector types to be legal");
2927   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2928                           Load->getPointerInfo(), Load->getOriginalAlign(),
2929                           Load->getMemOperand()->getFlags());
2930   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2931 }
2932 
2933 // While RVV has alignment restrictions, we should always be able to store as a
2934 // legal equivalently-sized byte-typed vector instead. This method is
2935 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2936 // returns SDValue() if the store is already correctly aligned.
2937 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2938                                                      SelectionDAG &DAG) const {
2939   auto *Store = cast<StoreSDNode>(Op);
2940   assert(Store && Store->getValue().getValueType().isVector() &&
2941          "Expected vector store");
2942 
2943   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2944                                      Store->getMemoryVT(),
2945                                      *Store->getMemOperand()))
2946     return SDValue();
2947 
2948   SDLoc DL(Op);
2949   SDValue StoredVal = Store->getValue();
2950   MVT VT = StoredVal.getSimpleValueType();
2951   unsigned EltSizeBits = VT.getScalarSizeInBits();
2952   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2953          "Unexpected unaligned RVV store type");
2954   MVT NewVT =
2955       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2956   assert(NewVT.isValid() &&
2957          "Expecting equally-sized RVV vector types to be legal");
2958   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2959   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2960                       Store->getPointerInfo(), Store->getOriginalAlign(),
2961                       Store->getMemOperand()->getFlags());
2962 }
2963 
2964 static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG,
2965                              const RISCVSubtarget &Subtarget) {
2966   assert(Op.getValueType() == MVT::i64 && "Unexpected VT");
2967 
2968   int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue();
2969 
2970   // All simm32 constants should be handled by isel.
2971   // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making
2972   // this check redundant, but small immediates are common so this check
2973   // should have better compile time.
2974   if (isInt<32>(Imm))
2975     return Op;
2976 
2977   // We only need to cost the immediate, if constant pool lowering is enabled.
2978   if (!Subtarget.useConstantPoolForLargeInts())
2979     return Op;
2980 
2981   RISCVMatInt::InstSeq Seq =
2982       RISCVMatInt::generateInstSeq(Imm, Subtarget.getFeatureBits());
2983   if (Seq.size() <= Subtarget.getMaxBuildIntsCost())
2984     return Op;
2985 
2986   // Expand to a constant pool using the default expansion code.
2987   return SDValue();
2988 }
2989 
2990 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2991                                             SelectionDAG &DAG) const {
2992   switch (Op.getOpcode()) {
2993   default:
2994     report_fatal_error("unimplemented operand");
2995   case ISD::GlobalAddress:
2996     return lowerGlobalAddress(Op, DAG);
2997   case ISD::BlockAddress:
2998     return lowerBlockAddress(Op, DAG);
2999   case ISD::ConstantPool:
3000     return lowerConstantPool(Op, DAG);
3001   case ISD::JumpTable:
3002     return lowerJumpTable(Op, DAG);
3003   case ISD::GlobalTLSAddress:
3004     return lowerGlobalTLSAddress(Op, DAG);
3005   case ISD::Constant:
3006     return lowerConstant(Op, DAG, Subtarget);
3007   case ISD::SELECT:
3008     return lowerSELECT(Op, DAG);
3009   case ISD::BRCOND:
3010     return lowerBRCOND(Op, DAG);
3011   case ISD::VASTART:
3012     return lowerVASTART(Op, DAG);
3013   case ISD::FRAMEADDR:
3014     return lowerFRAMEADDR(Op, DAG);
3015   case ISD::RETURNADDR:
3016     return lowerRETURNADDR(Op, DAG);
3017   case ISD::SHL_PARTS:
3018     return lowerShiftLeftParts(Op, DAG);
3019   case ISD::SRA_PARTS:
3020     return lowerShiftRightParts(Op, DAG, true);
3021   case ISD::SRL_PARTS:
3022     return lowerShiftRightParts(Op, DAG, false);
3023   case ISD::BITCAST: {
3024     SDLoc DL(Op);
3025     EVT VT = Op.getValueType();
3026     SDValue Op0 = Op.getOperand(0);
3027     EVT Op0VT = Op0.getValueType();
3028     MVT XLenVT = Subtarget.getXLenVT();
3029     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3030       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3031       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3032       return FPConv;
3033     }
3034     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3035         Subtarget.hasStdExtF()) {
3036       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3037       SDValue FPConv =
3038           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3039       return FPConv;
3040     }
3041 
3042     // Consider other scalar<->scalar casts as legal if the types are legal.
3043     // Otherwise expand them.
3044     if (!VT.isVector() && !Op0VT.isVector()) {
3045       if (isTypeLegal(VT) && isTypeLegal(Op0VT))
3046         return Op;
3047       return SDValue();
3048     }
3049 
3050     assert(!VT.isScalableVector() && !Op0VT.isScalableVector() &&
3051            "Unexpected types");
3052 
3053     if (VT.isFixedLengthVector()) {
3054       // We can handle fixed length vector bitcasts with a simple replacement
3055       // in isel.
3056       if (Op0VT.isFixedLengthVector())
3057         return Op;
3058       // When bitcasting from scalar to fixed-length vector, insert the scalar
3059       // into a one-element vector of the result type, and perform a vector
3060       // bitcast.
3061       if (!Op0VT.isVector()) {
3062         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3063         if (!isTypeLegal(BVT))
3064           return SDValue();
3065         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3066                                               DAG.getUNDEF(BVT), Op0,
3067                                               DAG.getConstant(0, DL, XLenVT)));
3068       }
3069       return SDValue();
3070     }
3071     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3072     // thus: bitcast the vector to a one-element vector type whose element type
3073     // is the same as the result type, and extract the first element.
3074     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3075       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3076       if (!isTypeLegal(BVT))
3077         return SDValue();
3078       SDValue BVec = DAG.getBitcast(BVT, Op0);
3079       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3080                          DAG.getConstant(0, DL, XLenVT));
3081     }
3082     return SDValue();
3083   }
3084   case ISD::INTRINSIC_WO_CHAIN:
3085     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3086   case ISD::INTRINSIC_W_CHAIN:
3087     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3088   case ISD::INTRINSIC_VOID:
3089     return LowerINTRINSIC_VOID(Op, DAG);
3090   case ISD::BSWAP:
3091   case ISD::BITREVERSE: {
3092     MVT VT = Op.getSimpleValueType();
3093     SDLoc DL(Op);
3094     if (Subtarget.hasStdExtZbp()) {
3095       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3096       // Start with the maximum immediate value which is the bitwidth - 1.
3097       unsigned Imm = VT.getSizeInBits() - 1;
3098       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3099       if (Op.getOpcode() == ISD::BSWAP)
3100         Imm &= ~0x7U;
3101       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3102                          DAG.getConstant(Imm, DL, VT));
3103     }
3104     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3105     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3106     // Expand bitreverse to a bswap(rev8) followed by brev8.
3107     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3108     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3109     // as brev8 by an isel pattern.
3110     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3111                        DAG.getConstant(7, DL, VT));
3112   }
3113   case ISD::FSHL:
3114   case ISD::FSHR: {
3115     MVT VT = Op.getSimpleValueType();
3116     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3117     SDLoc DL(Op);
3118     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3119     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3120     // accidentally setting the extra bit.
3121     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3122     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3123                                 DAG.getConstant(ShAmtWidth, DL, VT));
3124     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3125     // instruction use different orders. fshl will return its first operand for
3126     // shift of zero, fshr will return its second operand. fsl and fsr both
3127     // return rs1 so the ISD nodes need to have different operand orders.
3128     // Shift amount is in rs2.
3129     SDValue Op0 = Op.getOperand(0);
3130     SDValue Op1 = Op.getOperand(1);
3131     unsigned Opc = RISCVISD::FSL;
3132     if (Op.getOpcode() == ISD::FSHR) {
3133       std::swap(Op0, Op1);
3134       Opc = RISCVISD::FSR;
3135     }
3136     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3137   }
3138   case ISD::TRUNCATE:
3139     // Only custom-lower vector truncates
3140     if (!Op.getSimpleValueType().isVector())
3141       return Op;
3142     return lowerVectorTruncLike(Op, DAG);
3143   case ISD::ANY_EXTEND:
3144   case ISD::ZERO_EXTEND:
3145     if (Op.getOperand(0).getValueType().isVector() &&
3146         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3147       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3148     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3149   case ISD::SIGN_EXTEND:
3150     if (Op.getOperand(0).getValueType().isVector() &&
3151         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3152       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3153     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3154   case ISD::SPLAT_VECTOR_PARTS:
3155     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3156   case ISD::INSERT_VECTOR_ELT:
3157     return lowerINSERT_VECTOR_ELT(Op, DAG);
3158   case ISD::EXTRACT_VECTOR_ELT:
3159     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3160   case ISD::VSCALE: {
3161     MVT VT = Op.getSimpleValueType();
3162     SDLoc DL(Op);
3163     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3164     // We define our scalable vector types for lmul=1 to use a 64 bit known
3165     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3166     // vscale as VLENB / 8.
3167     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3168     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3169       report_fatal_error("Support for VLEN==32 is incomplete.");
3170     // We assume VLENB is a multiple of 8. We manually choose the best shift
3171     // here because SimplifyDemandedBits isn't always able to simplify it.
3172     uint64_t Val = Op.getConstantOperandVal(0);
3173     if (isPowerOf2_64(Val)) {
3174       uint64_t Log2 = Log2_64(Val);
3175       if (Log2 < 3)
3176         return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3177                            DAG.getConstant(3 - Log2, DL, VT));
3178       if (Log2 > 3)
3179         return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3180                            DAG.getConstant(Log2 - 3, DL, VT));
3181       return VLENB;
3182     }
3183     // If the multiplier is a multiple of 8, scale it down to avoid needing
3184     // to shift the VLENB value.
3185     if ((Val % 8) == 0)
3186       return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3187                          DAG.getConstant(Val / 8, DL, VT));
3188 
3189     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3190                                  DAG.getConstant(3, DL, VT));
3191     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3192   }
3193   case ISD::FPOWI: {
3194     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3195     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3196     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3197         Op.getOperand(1).getValueType() == MVT::i32) {
3198       SDLoc DL(Op);
3199       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3200       SDValue Powi =
3201           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3202       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3203                          DAG.getIntPtrConstant(0, DL));
3204     }
3205     return SDValue();
3206   }
3207   case ISD::FP_EXTEND:
3208   case ISD::FP_ROUND:
3209     if (!Op.getValueType().isVector())
3210       return Op;
3211     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3212   case ISD::FP_TO_SINT:
3213   case ISD::FP_TO_UINT:
3214   case ISD::SINT_TO_FP:
3215   case ISD::UINT_TO_FP: {
3216     // RVV can only do fp<->int conversions to types half/double the size as
3217     // the source. We custom-lower any conversions that do two hops into
3218     // sequences.
3219     MVT VT = Op.getSimpleValueType();
3220     if (!VT.isVector())
3221       return Op;
3222     SDLoc DL(Op);
3223     SDValue Src = Op.getOperand(0);
3224     MVT EltVT = VT.getVectorElementType();
3225     MVT SrcVT = Src.getSimpleValueType();
3226     MVT SrcEltVT = SrcVT.getVectorElementType();
3227     unsigned EltSize = EltVT.getSizeInBits();
3228     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3229     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3230            "Unexpected vector element types");
3231 
3232     bool IsInt2FP = SrcEltVT.isInteger();
3233     // Widening conversions
3234     if (EltSize > (2 * SrcEltSize)) {
3235       if (IsInt2FP) {
3236         // Do a regular integer sign/zero extension then convert to float.
3237         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize),
3238                                       VT.getVectorElementCount());
3239         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3240                                  ? ISD::ZERO_EXTEND
3241                                  : ISD::SIGN_EXTEND;
3242         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3243         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3244       }
3245       // FP2Int
3246       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3247       // Do one doubling fp_extend then complete the operation by converting
3248       // to int.
3249       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3250       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3251       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3252     }
3253 
3254     // Narrowing conversions
3255     if (SrcEltSize > (2 * EltSize)) {
3256       if (IsInt2FP) {
3257         // One narrowing int_to_fp, then an fp_round.
3258         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3259         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3260         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3261         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3262       }
3263       // FP2Int
3264       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3265       // representable by the integer, the result is poison.
3266       MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
3267                                     VT.getVectorElementCount());
3268       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3269       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3270     }
3271 
3272     // Scalable vectors can exit here. Patterns will handle equally-sized
3273     // conversions halving/doubling ones.
3274     if (!VT.isFixedLengthVector())
3275       return Op;
3276 
3277     // For fixed-length vectors we lower to a custom "VL" node.
3278     unsigned RVVOpc = 0;
3279     switch (Op.getOpcode()) {
3280     default:
3281       llvm_unreachable("Impossible opcode");
3282     case ISD::FP_TO_SINT:
3283       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3284       break;
3285     case ISD::FP_TO_UINT:
3286       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3287       break;
3288     case ISD::SINT_TO_FP:
3289       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3290       break;
3291     case ISD::UINT_TO_FP:
3292       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3293       break;
3294     }
3295 
3296     MVT ContainerVT, SrcContainerVT;
3297     // Derive the reference container type from the larger vector type.
3298     if (SrcEltSize > EltSize) {
3299       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3300       ContainerVT =
3301           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3302     } else {
3303       ContainerVT = getContainerForFixedLengthVector(VT);
3304       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3305     }
3306 
3307     SDValue Mask, VL;
3308     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3309 
3310     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3311     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3312     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3313   }
3314   case ISD::FP_TO_SINT_SAT:
3315   case ISD::FP_TO_UINT_SAT:
3316     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3317   case ISD::FTRUNC:
3318   case ISD::FCEIL:
3319   case ISD::FFLOOR:
3320     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3321   case ISD::FROUND:
3322     return lowerFROUND(Op, DAG);
3323   case ISD::VECREDUCE_ADD:
3324   case ISD::VECREDUCE_UMAX:
3325   case ISD::VECREDUCE_SMAX:
3326   case ISD::VECREDUCE_UMIN:
3327   case ISD::VECREDUCE_SMIN:
3328     return lowerVECREDUCE(Op, DAG);
3329   case ISD::VECREDUCE_AND:
3330   case ISD::VECREDUCE_OR:
3331   case ISD::VECREDUCE_XOR:
3332     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3333       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3334     return lowerVECREDUCE(Op, DAG);
3335   case ISD::VECREDUCE_FADD:
3336   case ISD::VECREDUCE_SEQ_FADD:
3337   case ISD::VECREDUCE_FMIN:
3338   case ISD::VECREDUCE_FMAX:
3339     return lowerFPVECREDUCE(Op, DAG);
3340   case ISD::VP_REDUCE_ADD:
3341   case ISD::VP_REDUCE_UMAX:
3342   case ISD::VP_REDUCE_SMAX:
3343   case ISD::VP_REDUCE_UMIN:
3344   case ISD::VP_REDUCE_SMIN:
3345   case ISD::VP_REDUCE_FADD:
3346   case ISD::VP_REDUCE_SEQ_FADD:
3347   case ISD::VP_REDUCE_FMIN:
3348   case ISD::VP_REDUCE_FMAX:
3349     return lowerVPREDUCE(Op, DAG);
3350   case ISD::VP_REDUCE_AND:
3351   case ISD::VP_REDUCE_OR:
3352   case ISD::VP_REDUCE_XOR:
3353     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3354       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3355     return lowerVPREDUCE(Op, DAG);
3356   case ISD::INSERT_SUBVECTOR:
3357     return lowerINSERT_SUBVECTOR(Op, DAG);
3358   case ISD::EXTRACT_SUBVECTOR:
3359     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3360   case ISD::STEP_VECTOR:
3361     return lowerSTEP_VECTOR(Op, DAG);
3362   case ISD::VECTOR_REVERSE:
3363     return lowerVECTOR_REVERSE(Op, DAG);
3364   case ISD::VECTOR_SPLICE:
3365     return lowerVECTOR_SPLICE(Op, DAG);
3366   case ISD::BUILD_VECTOR:
3367     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3368   case ISD::SPLAT_VECTOR:
3369     if (Op.getValueType().getVectorElementType() == MVT::i1)
3370       return lowerVectorMaskSplat(Op, DAG);
3371     return SDValue();
3372   case ISD::VECTOR_SHUFFLE:
3373     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3374   case ISD::CONCAT_VECTORS: {
3375     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3376     // better than going through the stack, as the default expansion does.
3377     SDLoc DL(Op);
3378     MVT VT = Op.getSimpleValueType();
3379     unsigned NumOpElts =
3380         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3381     SDValue Vec = DAG.getUNDEF(VT);
3382     for (const auto &OpIdx : enumerate(Op->ops())) {
3383       SDValue SubVec = OpIdx.value();
3384       // Don't insert undef subvectors.
3385       if (SubVec.isUndef())
3386         continue;
3387       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3388                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3389     }
3390     return Vec;
3391   }
3392   case ISD::LOAD:
3393     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3394       return V;
3395     if (Op.getValueType().isFixedLengthVector())
3396       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3397     return Op;
3398   case ISD::STORE:
3399     if (auto V = expandUnalignedRVVStore(Op, DAG))
3400       return V;
3401     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3402       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3403     return Op;
3404   case ISD::MLOAD:
3405   case ISD::VP_LOAD:
3406     return lowerMaskedLoad(Op, DAG);
3407   case ISD::MSTORE:
3408   case ISD::VP_STORE:
3409     return lowerMaskedStore(Op, DAG);
3410   case ISD::SETCC:
3411     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3412   case ISD::ADD:
3413     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3414   case ISD::SUB:
3415     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3416   case ISD::MUL:
3417     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3418   case ISD::MULHS:
3419     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3420   case ISD::MULHU:
3421     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3422   case ISD::AND:
3423     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3424                                               RISCVISD::AND_VL);
3425   case ISD::OR:
3426     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3427                                               RISCVISD::OR_VL);
3428   case ISD::XOR:
3429     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3430                                               RISCVISD::XOR_VL);
3431   case ISD::SDIV:
3432     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3433   case ISD::SREM:
3434     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3435   case ISD::UDIV:
3436     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3437   case ISD::UREM:
3438     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3439   case ISD::SHL:
3440   case ISD::SRA:
3441   case ISD::SRL:
3442     if (Op.getSimpleValueType().isFixedLengthVector())
3443       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3444     // This can be called for an i32 shift amount that needs to be promoted.
3445     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3446            "Unexpected custom legalisation");
3447     return SDValue();
3448   case ISD::SADDSAT:
3449     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3450   case ISD::UADDSAT:
3451     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3452   case ISD::SSUBSAT:
3453     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3454   case ISD::USUBSAT:
3455     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3456   case ISD::FADD:
3457     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3458   case ISD::FSUB:
3459     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3460   case ISD::FMUL:
3461     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3462   case ISD::FDIV:
3463     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3464   case ISD::FNEG:
3465     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3466   case ISD::FABS:
3467     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3468   case ISD::FSQRT:
3469     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3470   case ISD::FMA:
3471     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3472   case ISD::SMIN:
3473     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3474   case ISD::SMAX:
3475     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3476   case ISD::UMIN:
3477     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3478   case ISD::UMAX:
3479     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3480   case ISD::FMINNUM:
3481     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3482   case ISD::FMAXNUM:
3483     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3484   case ISD::ABS:
3485     return lowerABS(Op, DAG);
3486   case ISD::CTLZ_ZERO_UNDEF:
3487   case ISD::CTTZ_ZERO_UNDEF:
3488     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3489   case ISD::VSELECT:
3490     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3491   case ISD::FCOPYSIGN:
3492     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3493   case ISD::MGATHER:
3494   case ISD::VP_GATHER:
3495     return lowerMaskedGather(Op, DAG);
3496   case ISD::MSCATTER:
3497   case ISD::VP_SCATTER:
3498     return lowerMaskedScatter(Op, DAG);
3499   case ISD::FLT_ROUNDS_:
3500     return lowerGET_ROUNDING(Op, DAG);
3501   case ISD::SET_ROUNDING:
3502     return lowerSET_ROUNDING(Op, DAG);
3503   case ISD::EH_DWARF_CFA:
3504     return lowerEH_DWARF_CFA(Op, DAG);
3505   case ISD::VP_SELECT:
3506     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3507   case ISD::VP_MERGE:
3508     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3509   case ISD::VP_ADD:
3510     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3511   case ISD::VP_SUB:
3512     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3513   case ISD::VP_MUL:
3514     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3515   case ISD::VP_SDIV:
3516     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3517   case ISD::VP_UDIV:
3518     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3519   case ISD::VP_SREM:
3520     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3521   case ISD::VP_UREM:
3522     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3523   case ISD::VP_AND:
3524     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3525   case ISD::VP_OR:
3526     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3527   case ISD::VP_XOR:
3528     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3529   case ISD::VP_ASHR:
3530     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3531   case ISD::VP_LSHR:
3532     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3533   case ISD::VP_SHL:
3534     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3535   case ISD::VP_FADD:
3536     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3537   case ISD::VP_FSUB:
3538     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3539   case ISD::VP_FMUL:
3540     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3541   case ISD::VP_FDIV:
3542     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3543   case ISD::VP_FNEG:
3544     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3545   case ISD::VP_FMA:
3546     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3547   case ISD::VP_SIGN_EXTEND:
3548   case ISD::VP_ZERO_EXTEND:
3549     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3550       return lowerVPExtMaskOp(Op, DAG);
3551     return lowerVPOp(Op, DAG,
3552                      Op.getOpcode() == ISD::VP_SIGN_EXTEND
3553                          ? RISCVISD::VSEXT_VL
3554                          : RISCVISD::VZEXT_VL);
3555   case ISD::VP_TRUNCATE:
3556     return lowerVectorTruncLike(Op, DAG);
3557   case ISD::VP_FP_EXTEND:
3558   case ISD::VP_FP_ROUND:
3559     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3560   case ISD::VP_FPTOSI:
3561     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL);
3562   case ISD::VP_FPTOUI:
3563     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL);
3564   case ISD::VP_SITOFP:
3565     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL);
3566   case ISD::VP_UITOFP:
3567     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL);
3568   case ISD::VP_SETCC:
3569     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3570       return lowerVPSetCCMaskOp(Op, DAG);
3571     return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL);
3572   }
3573 }
3574 
3575 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3576                              SelectionDAG &DAG, unsigned Flags) {
3577   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3578 }
3579 
3580 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3581                              SelectionDAG &DAG, unsigned Flags) {
3582   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3583                                    Flags);
3584 }
3585 
3586 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3587                              SelectionDAG &DAG, unsigned Flags) {
3588   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3589                                    N->getOffset(), Flags);
3590 }
3591 
3592 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3593                              SelectionDAG &DAG, unsigned Flags) {
3594   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3595 }
3596 
3597 template <class NodeTy>
3598 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3599                                      bool IsLocal) const {
3600   SDLoc DL(N);
3601   EVT Ty = getPointerTy(DAG.getDataLayout());
3602 
3603   if (isPositionIndependent()) {
3604     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3605     if (IsLocal)
3606       // Use PC-relative addressing to access the symbol. This generates the
3607       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3608       // %pcrel_lo(auipc)).
3609       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3610 
3611     // Use PC-relative addressing to access the GOT for this symbol, then load
3612     // the address from the GOT. This generates the pattern (PseudoLA sym),
3613     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3614     SDValue Load =
3615         SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3616     MachineFunction &MF = DAG.getMachineFunction();
3617     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3618         MachinePointerInfo::getGOT(MF),
3619         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3620             MachineMemOperand::MOInvariant,
3621         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3622     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3623     return Load;
3624   }
3625 
3626   switch (getTargetMachine().getCodeModel()) {
3627   default:
3628     report_fatal_error("Unsupported code model for lowering");
3629   case CodeModel::Small: {
3630     // Generate a sequence for accessing addresses within the first 2 GiB of
3631     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3632     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3633     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3634     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3635     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3636   }
3637   case CodeModel::Medium: {
3638     // Generate a sequence for accessing addresses within any 2GiB range within
3639     // the address space. This generates the pattern (PseudoLLA sym), which
3640     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3641     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3642     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3643   }
3644   }
3645 }
3646 
3647 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3648                                                 SelectionDAG &DAG) const {
3649   SDLoc DL(Op);
3650   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3651   assert(N->getOffset() == 0 && "unexpected offset in global node");
3652 
3653   const GlobalValue *GV = N->getGlobal();
3654   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3655   return getAddr(N, DAG, IsLocal);
3656 }
3657 
3658 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3659                                                SelectionDAG &DAG) const {
3660   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3661 
3662   return getAddr(N, DAG);
3663 }
3664 
3665 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3666                                                SelectionDAG &DAG) const {
3667   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3668 
3669   return getAddr(N, DAG);
3670 }
3671 
3672 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3673                                             SelectionDAG &DAG) const {
3674   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3675 
3676   return getAddr(N, DAG);
3677 }
3678 
3679 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3680                                               SelectionDAG &DAG,
3681                                               bool UseGOT) const {
3682   SDLoc DL(N);
3683   EVT Ty = getPointerTy(DAG.getDataLayout());
3684   const GlobalValue *GV = N->getGlobal();
3685   MVT XLenVT = Subtarget.getXLenVT();
3686 
3687   if (UseGOT) {
3688     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3689     // load the address from the GOT and add the thread pointer. This generates
3690     // the pattern (PseudoLA_TLS_IE sym), which expands to
3691     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3692     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3693     SDValue Load =
3694         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3695     MachineFunction &MF = DAG.getMachineFunction();
3696     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3697         MachinePointerInfo::getGOT(MF),
3698         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3699             MachineMemOperand::MOInvariant,
3700         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3701     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3702 
3703     // Add the thread pointer.
3704     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3705     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3706   }
3707 
3708   // Generate a sequence for accessing the address relative to the thread
3709   // pointer, with the appropriate adjustment for the thread pointer offset.
3710   // This generates the pattern
3711   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3712   SDValue AddrHi =
3713       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3714   SDValue AddrAdd =
3715       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3716   SDValue AddrLo =
3717       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3718 
3719   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3720   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3721   SDValue MNAdd = SDValue(
3722       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3723       0);
3724   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3725 }
3726 
3727 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3728                                                SelectionDAG &DAG) const {
3729   SDLoc DL(N);
3730   EVT Ty = getPointerTy(DAG.getDataLayout());
3731   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3732   const GlobalValue *GV = N->getGlobal();
3733 
3734   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3735   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3736   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3737   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3738   SDValue Load =
3739       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3740 
3741   // Prepare argument list to generate call.
3742   ArgListTy Args;
3743   ArgListEntry Entry;
3744   Entry.Node = Load;
3745   Entry.Ty = CallTy;
3746   Args.push_back(Entry);
3747 
3748   // Setup call to __tls_get_addr.
3749   TargetLowering::CallLoweringInfo CLI(DAG);
3750   CLI.setDebugLoc(DL)
3751       .setChain(DAG.getEntryNode())
3752       .setLibCallee(CallingConv::C, CallTy,
3753                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3754                     std::move(Args));
3755 
3756   return LowerCallTo(CLI).first;
3757 }
3758 
3759 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3760                                                    SelectionDAG &DAG) const {
3761   SDLoc DL(Op);
3762   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3763   assert(N->getOffset() == 0 && "unexpected offset in global node");
3764 
3765   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3766 
3767   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3768       CallingConv::GHC)
3769     report_fatal_error("In GHC calling convention TLS is not supported");
3770 
3771   SDValue Addr;
3772   switch (Model) {
3773   case TLSModel::LocalExec:
3774     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3775     break;
3776   case TLSModel::InitialExec:
3777     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3778     break;
3779   case TLSModel::LocalDynamic:
3780   case TLSModel::GeneralDynamic:
3781     Addr = getDynamicTLSAddr(N, DAG);
3782     break;
3783   }
3784 
3785   return Addr;
3786 }
3787 
3788 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3789   SDValue CondV = Op.getOperand(0);
3790   SDValue TrueV = Op.getOperand(1);
3791   SDValue FalseV = Op.getOperand(2);
3792   SDLoc DL(Op);
3793   MVT VT = Op.getSimpleValueType();
3794   MVT XLenVT = Subtarget.getXLenVT();
3795 
3796   // Lower vector SELECTs to VSELECTs by splatting the condition.
3797   if (VT.isVector()) {
3798     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3799     SDValue CondSplat = VT.isScalableVector()
3800                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3801                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3802     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3803   }
3804 
3805   // If the result type is XLenVT and CondV is the output of a SETCC node
3806   // which also operated on XLenVT inputs, then merge the SETCC node into the
3807   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3808   // compare+branch instructions. i.e.:
3809   // (select (setcc lhs, rhs, cc), truev, falsev)
3810   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3811   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3812       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3813     SDValue LHS = CondV.getOperand(0);
3814     SDValue RHS = CondV.getOperand(1);
3815     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3816     ISD::CondCode CCVal = CC->get();
3817 
3818     // Special case for a select of 2 constants that have a diffence of 1.
3819     // Normally this is done by DAGCombine, but if the select is introduced by
3820     // type legalization or op legalization, we miss it. Restricting to SETLT
3821     // case for now because that is what signed saturating add/sub need.
3822     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3823     // but we would probably want to swap the true/false values if the condition
3824     // is SETGE/SETLE to avoid an XORI.
3825     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3826         CCVal == ISD::SETLT) {
3827       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3828       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3829       if (TrueVal - 1 == FalseVal)
3830         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3831       if (TrueVal + 1 == FalseVal)
3832         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3833     }
3834 
3835     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3836 
3837     SDValue TargetCC = DAG.getCondCode(CCVal);
3838     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3839     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3840   }
3841 
3842   // Otherwise:
3843   // (select condv, truev, falsev)
3844   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3845   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3846   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3847 
3848   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3849 
3850   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3851 }
3852 
3853 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3854   SDValue CondV = Op.getOperand(1);
3855   SDLoc DL(Op);
3856   MVT XLenVT = Subtarget.getXLenVT();
3857 
3858   if (CondV.getOpcode() == ISD::SETCC &&
3859       CondV.getOperand(0).getValueType() == XLenVT) {
3860     SDValue LHS = CondV.getOperand(0);
3861     SDValue RHS = CondV.getOperand(1);
3862     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3863 
3864     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3865 
3866     SDValue TargetCC = DAG.getCondCode(CCVal);
3867     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3868                        LHS, RHS, TargetCC, Op.getOperand(2));
3869   }
3870 
3871   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3872                      CondV, DAG.getConstant(0, DL, XLenVT),
3873                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3874 }
3875 
3876 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3877   MachineFunction &MF = DAG.getMachineFunction();
3878   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3879 
3880   SDLoc DL(Op);
3881   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3882                                  getPointerTy(MF.getDataLayout()));
3883 
3884   // vastart just stores the address of the VarArgsFrameIndex slot into the
3885   // memory location argument.
3886   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3887   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3888                       MachinePointerInfo(SV));
3889 }
3890 
3891 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3892                                             SelectionDAG &DAG) const {
3893   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3894   MachineFunction &MF = DAG.getMachineFunction();
3895   MachineFrameInfo &MFI = MF.getFrameInfo();
3896   MFI.setFrameAddressIsTaken(true);
3897   Register FrameReg = RI.getFrameRegister(MF);
3898   int XLenInBytes = Subtarget.getXLen() / 8;
3899 
3900   EVT VT = Op.getValueType();
3901   SDLoc DL(Op);
3902   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3903   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3904   while (Depth--) {
3905     int Offset = -(XLenInBytes * 2);
3906     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3907                               DAG.getIntPtrConstant(Offset, DL));
3908     FrameAddr =
3909         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3910   }
3911   return FrameAddr;
3912 }
3913 
3914 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3915                                              SelectionDAG &DAG) const {
3916   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3917   MachineFunction &MF = DAG.getMachineFunction();
3918   MachineFrameInfo &MFI = MF.getFrameInfo();
3919   MFI.setReturnAddressIsTaken(true);
3920   MVT XLenVT = Subtarget.getXLenVT();
3921   int XLenInBytes = Subtarget.getXLen() / 8;
3922 
3923   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3924     return SDValue();
3925 
3926   EVT VT = Op.getValueType();
3927   SDLoc DL(Op);
3928   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3929   if (Depth) {
3930     int Off = -XLenInBytes;
3931     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3932     SDValue Offset = DAG.getConstant(Off, DL, VT);
3933     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3934                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3935                        MachinePointerInfo());
3936   }
3937 
3938   // Return the value of the return address register, marking it an implicit
3939   // live-in.
3940   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3941   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3942 }
3943 
3944 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3945                                                  SelectionDAG &DAG) const {
3946   SDLoc DL(Op);
3947   SDValue Lo = Op.getOperand(0);
3948   SDValue Hi = Op.getOperand(1);
3949   SDValue Shamt = Op.getOperand(2);
3950   EVT VT = Lo.getValueType();
3951 
3952   // if Shamt-XLEN < 0: // Shamt < XLEN
3953   //   Lo = Lo << Shamt
3954   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
3955   // else:
3956   //   Lo = 0
3957   //   Hi = Lo << (Shamt-XLEN)
3958 
3959   SDValue Zero = DAG.getConstant(0, DL, VT);
3960   SDValue One = DAG.getConstant(1, DL, VT);
3961   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3962   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3963   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3964   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
3965 
3966   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3967   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3968   SDValue ShiftRightLo =
3969       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3970   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3971   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3972   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3973 
3974   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3975 
3976   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3977   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3978 
3979   SDValue Parts[2] = {Lo, Hi};
3980   return DAG.getMergeValues(Parts, DL);
3981 }
3982 
3983 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3984                                                   bool IsSRA) const {
3985   SDLoc DL(Op);
3986   SDValue Lo = Op.getOperand(0);
3987   SDValue Hi = Op.getOperand(1);
3988   SDValue Shamt = Op.getOperand(2);
3989   EVT VT = Lo.getValueType();
3990 
3991   // SRA expansion:
3992   //   if Shamt-XLEN < 0: // Shamt < XLEN
3993   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
3994   //     Hi = Hi >>s Shamt
3995   //   else:
3996   //     Lo = Hi >>s (Shamt-XLEN);
3997   //     Hi = Hi >>s (XLEN-1)
3998   //
3999   // SRL expansion:
4000   //   if Shamt-XLEN < 0: // Shamt < XLEN
4001   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4002   //     Hi = Hi >>u Shamt
4003   //   else:
4004   //     Lo = Hi >>u (Shamt-XLEN);
4005   //     Hi = 0;
4006 
4007   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4008 
4009   SDValue Zero = DAG.getConstant(0, DL, VT);
4010   SDValue One = DAG.getConstant(1, DL, VT);
4011   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4012   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4013   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4014   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4015 
4016   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4017   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4018   SDValue ShiftLeftHi =
4019       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4020   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4021   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4022   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4023   SDValue HiFalse =
4024       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4025 
4026   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4027 
4028   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4029   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4030 
4031   SDValue Parts[2] = {Lo, Hi};
4032   return DAG.getMergeValues(Parts, DL);
4033 }
4034 
4035 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4036 // legal equivalently-sized i8 type, so we can use that as a go-between.
4037 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4038                                                   SelectionDAG &DAG) const {
4039   SDLoc DL(Op);
4040   MVT VT = Op.getSimpleValueType();
4041   SDValue SplatVal = Op.getOperand(0);
4042   // All-zeros or all-ones splats are handled specially.
4043   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4044     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4045     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4046   }
4047   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4048     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4049     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4050   }
4051   MVT XLenVT = Subtarget.getXLenVT();
4052   assert(SplatVal.getValueType() == XLenVT &&
4053          "Unexpected type for i1 splat value");
4054   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4055   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4056                          DAG.getConstant(1, DL, XLenVT));
4057   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4058   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4059   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4060 }
4061 
4062 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4063 // illegal (currently only vXi64 RV32).
4064 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4065 // them to VMV_V_X_VL.
4066 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4067                                                      SelectionDAG &DAG) const {
4068   SDLoc DL(Op);
4069   MVT VecVT = Op.getSimpleValueType();
4070   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4071          "Unexpected SPLAT_VECTOR_PARTS lowering");
4072 
4073   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4074   SDValue Lo = Op.getOperand(0);
4075   SDValue Hi = Op.getOperand(1);
4076 
4077   if (VecVT.isFixedLengthVector()) {
4078     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4079     SDLoc DL(Op);
4080     SDValue Mask, VL;
4081     std::tie(Mask, VL) =
4082         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4083 
4084     SDValue Res =
4085         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4086     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4087   }
4088 
4089   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4090     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4091     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4092     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4093     // node in order to try and match RVV vector/scalar instructions.
4094     if ((LoC >> 31) == HiC)
4095       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4096                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4097   }
4098 
4099   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4100   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4101       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4102       Hi.getConstantOperandVal(1) == 31)
4103     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4104                        DAG.getRegister(RISCV::X0, MVT::i32));
4105 
4106   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4107   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4108                      DAG.getUNDEF(VecVT), Lo, Hi,
4109                      DAG.getRegister(RISCV::X0, MVT::i32));
4110 }
4111 
4112 // Custom-lower extensions from mask vectors by using a vselect either with 1
4113 // for zero/any-extension or -1 for sign-extension:
4114 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4115 // Note that any-extension is lowered identically to zero-extension.
4116 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4117                                                 int64_t ExtTrueVal) const {
4118   SDLoc DL(Op);
4119   MVT VecVT = Op.getSimpleValueType();
4120   SDValue Src = Op.getOperand(0);
4121   // Only custom-lower extensions from mask types
4122   assert(Src.getValueType().isVector() &&
4123          Src.getValueType().getVectorElementType() == MVT::i1);
4124 
4125   if (VecVT.isScalableVector()) {
4126     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4127     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4128     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4129   }
4130 
4131   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4132   MVT I1ContainerVT =
4133       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4134 
4135   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4136 
4137   SDValue Mask, VL;
4138   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4139 
4140   MVT XLenVT = Subtarget.getXLenVT();
4141   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4142   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4143 
4144   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4145                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4146   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4147                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4148   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4149                                SplatTrueVal, SplatZero, VL);
4150 
4151   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4152 }
4153 
4154 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4155     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4156   MVT ExtVT = Op.getSimpleValueType();
4157   // Only custom-lower extensions from fixed-length vector types.
4158   if (!ExtVT.isFixedLengthVector())
4159     return Op;
4160   MVT VT = Op.getOperand(0).getSimpleValueType();
4161   // Grab the canonical container type for the extended type. Infer the smaller
4162   // type from that to ensure the same number of vector elements, as we know
4163   // the LMUL will be sufficient to hold the smaller type.
4164   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4165   // Get the extended container type manually to ensure the same number of
4166   // vector elements between source and dest.
4167   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4168                                      ContainerExtVT.getVectorElementCount());
4169 
4170   SDValue Op1 =
4171       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4172 
4173   SDLoc DL(Op);
4174   SDValue Mask, VL;
4175   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4176 
4177   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4178 
4179   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4180 }
4181 
4182 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4183 // setcc operation:
4184 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4185 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op,
4186                                                       SelectionDAG &DAG) const {
4187   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4188   SDLoc DL(Op);
4189   EVT MaskVT = Op.getValueType();
4190   // Only expect to custom-lower truncations to mask types
4191   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4192          "Unexpected type for vector mask lowering");
4193   SDValue Src = Op.getOperand(0);
4194   MVT VecVT = Src.getSimpleValueType();
4195   SDValue Mask, VL;
4196   if (IsVPTrunc) {
4197     Mask = Op.getOperand(1);
4198     VL = Op.getOperand(2);
4199   }
4200   // If this is a fixed vector, we need to convert it to a scalable vector.
4201   MVT ContainerVT = VecVT;
4202 
4203   if (VecVT.isFixedLengthVector()) {
4204     ContainerVT = getContainerForFixedLengthVector(VecVT);
4205     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4206     if (IsVPTrunc) {
4207       MVT MaskContainerVT =
4208           getContainerForFixedLengthVector(Mask.getSimpleValueType());
4209       Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
4210     }
4211   }
4212 
4213   if (!IsVPTrunc) {
4214     std::tie(Mask, VL) =
4215         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4216   }
4217 
4218   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4219   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4220 
4221   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4222                          DAG.getUNDEF(ContainerVT), SplatOne, VL);
4223   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4224                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4225 
4226   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4227   SDValue Trunc =
4228       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4229   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4230                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4231   if (MaskVT.isFixedLengthVector())
4232     Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4233   return Trunc;
4234 }
4235 
4236 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op,
4237                                                   SelectionDAG &DAG) const {
4238   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4239   SDLoc DL(Op);
4240 
4241   MVT VT = Op.getSimpleValueType();
4242   // Only custom-lower vector truncates
4243   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4244 
4245   // Truncates to mask types are handled differently
4246   if (VT.getVectorElementType() == MVT::i1)
4247     return lowerVectorMaskTruncLike(Op, DAG);
4248 
4249   // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
4250   // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
4251   // truncate by one power of two at a time.
4252   MVT DstEltVT = VT.getVectorElementType();
4253 
4254   SDValue Src = Op.getOperand(0);
4255   MVT SrcVT = Src.getSimpleValueType();
4256   MVT SrcEltVT = SrcVT.getVectorElementType();
4257 
4258   assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) &&
4259          isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
4260          "Unexpected vector truncate lowering");
4261 
4262   MVT ContainerVT = SrcVT;
4263   SDValue Mask, VL;
4264   if (IsVPTrunc) {
4265     Mask = Op.getOperand(1);
4266     VL = Op.getOperand(2);
4267   }
4268   if (SrcVT.isFixedLengthVector()) {
4269     ContainerVT = getContainerForFixedLengthVector(SrcVT);
4270     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4271     if (IsVPTrunc) {
4272       MVT MaskVT = getMaskTypeFor(ContainerVT);
4273       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4274     }
4275   }
4276 
4277   SDValue Result = Src;
4278   if (!IsVPTrunc) {
4279     std::tie(Mask, VL) =
4280         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4281   }
4282 
4283   LLVMContext &Context = *DAG.getContext();
4284   const ElementCount Count = ContainerVT.getVectorElementCount();
4285   do {
4286     SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
4287     EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
4288     Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
4289                          Mask, VL);
4290   } while (SrcEltVT != DstEltVT);
4291 
4292   if (SrcVT.isFixedLengthVector())
4293     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4294 
4295   return Result;
4296 }
4297 
4298 SDValue
4299 RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op,
4300                                                     SelectionDAG &DAG) const {
4301   bool IsVP =
4302       Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND;
4303   bool IsExtend =
4304       Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND;
4305   // RVV can only do truncate fp to types half the size as the source. We
4306   // custom-lower f64->f16 rounds via RVV's round-to-odd float
4307   // conversion instruction.
4308   SDLoc DL(Op);
4309   MVT VT = Op.getSimpleValueType();
4310 
4311   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4312 
4313   SDValue Src = Op.getOperand(0);
4314   MVT SrcVT = Src.getSimpleValueType();
4315 
4316   bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 ||
4317                                      SrcVT.getVectorElementType() != MVT::f16);
4318   bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 ||
4319                                      SrcVT.getVectorElementType() != MVT::f64);
4320 
4321   bool IsDirectConv = IsDirectExtend || IsDirectTrunc;
4322 
4323   // Prepare any fixed-length vector operands.
4324   MVT ContainerVT = VT;
4325   SDValue Mask, VL;
4326   if (IsVP) {
4327     Mask = Op.getOperand(1);
4328     VL = Op.getOperand(2);
4329   }
4330   if (VT.isFixedLengthVector()) {
4331     MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
4332     ContainerVT =
4333         SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
4334     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
4335     if (IsVP) {
4336       MVT MaskVT = getMaskTypeFor(ContainerVT);
4337       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4338     }
4339   }
4340 
4341   if (!IsVP)
4342     std::tie(Mask, VL) =
4343         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4344 
4345   unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL;
4346 
4347   if (IsDirectConv) {
4348     Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL);
4349     if (VT.isFixedLengthVector())
4350       Src = convertFromScalableVector(VT, Src, DAG, Subtarget);
4351     return Src;
4352   }
4353 
4354   unsigned InterConvOpc =
4355       IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL;
4356 
4357   MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
4358   SDValue IntermediateConv =
4359       DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL);
4360   SDValue Result =
4361       DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL);
4362   if (VT.isFixedLengthVector())
4363     return convertFromScalableVector(VT, Result, DAG, Subtarget);
4364   return Result;
4365 }
4366 
4367 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4368 // first position of a vector, and that vector is slid up to the insert index.
4369 // By limiting the active vector length to index+1 and merging with the
4370 // original vector (with an undisturbed tail policy for elements >= VL), we
4371 // achieve the desired result of leaving all elements untouched except the one
4372 // at VL-1, which is replaced with the desired value.
4373 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4374                                                     SelectionDAG &DAG) const {
4375   SDLoc DL(Op);
4376   MVT VecVT = Op.getSimpleValueType();
4377   SDValue Vec = Op.getOperand(0);
4378   SDValue Val = Op.getOperand(1);
4379   SDValue Idx = Op.getOperand(2);
4380 
4381   if (VecVT.getVectorElementType() == MVT::i1) {
4382     // FIXME: For now we just promote to an i8 vector and insert into that,
4383     // but this is probably not optimal.
4384     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4385     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4386     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4387     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4388   }
4389 
4390   MVT ContainerVT = VecVT;
4391   // If the operand is a fixed-length vector, convert to a scalable one.
4392   if (VecVT.isFixedLengthVector()) {
4393     ContainerVT = getContainerForFixedLengthVector(VecVT);
4394     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4395   }
4396 
4397   MVT XLenVT = Subtarget.getXLenVT();
4398 
4399   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4400   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4401   // Even i64-element vectors on RV32 can be lowered without scalar
4402   // legalization if the most-significant 32 bits of the value are not affected
4403   // by the sign-extension of the lower 32 bits.
4404   // TODO: We could also catch sign extensions of a 32-bit value.
4405   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4406     const auto *CVal = cast<ConstantSDNode>(Val);
4407     if (isInt<32>(CVal->getSExtValue())) {
4408       IsLegalInsert = true;
4409       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4410     }
4411   }
4412 
4413   SDValue Mask, VL;
4414   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4415 
4416   SDValue ValInVec;
4417 
4418   if (IsLegalInsert) {
4419     unsigned Opc =
4420         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4421     if (isNullConstant(Idx)) {
4422       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4423       if (!VecVT.isFixedLengthVector())
4424         return Vec;
4425       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4426     }
4427     ValInVec =
4428         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4429   } else {
4430     // On RV32, i64-element vectors must be specially handled to place the
4431     // value at element 0, by using two vslide1up instructions in sequence on
4432     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4433     // this.
4434     SDValue One = DAG.getConstant(1, DL, XLenVT);
4435     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4436     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4437     MVT I32ContainerVT =
4438         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4439     SDValue I32Mask =
4440         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4441     // Limit the active VL to two.
4442     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4443     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4444     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4445     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4446                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4447     // First slide in the hi value, then the lo in underneath it.
4448     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4449                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4450                            I32Mask, InsertI64VL);
4451     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4452                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4453                            I32Mask, InsertI64VL);
4454     // Bitcast back to the right container type.
4455     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4456   }
4457 
4458   // Now that the value is in a vector, slide it into position.
4459   SDValue InsertVL =
4460       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4461   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4462                                 ValInVec, Idx, Mask, InsertVL);
4463   if (!VecVT.isFixedLengthVector())
4464     return Slideup;
4465   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4466 }
4467 
4468 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4469 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4470 // types this is done using VMV_X_S to allow us to glean information about the
4471 // sign bits of the result.
4472 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4473                                                      SelectionDAG &DAG) const {
4474   SDLoc DL(Op);
4475   SDValue Idx = Op.getOperand(1);
4476   SDValue Vec = Op.getOperand(0);
4477   EVT EltVT = Op.getValueType();
4478   MVT VecVT = Vec.getSimpleValueType();
4479   MVT XLenVT = Subtarget.getXLenVT();
4480 
4481   if (VecVT.getVectorElementType() == MVT::i1) {
4482     if (VecVT.isFixedLengthVector()) {
4483       unsigned NumElts = VecVT.getVectorNumElements();
4484       if (NumElts >= 8) {
4485         MVT WideEltVT;
4486         unsigned WidenVecLen;
4487         SDValue ExtractElementIdx;
4488         SDValue ExtractBitIdx;
4489         unsigned MaxEEW = Subtarget.getELEN();
4490         MVT LargestEltVT = MVT::getIntegerVT(
4491             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4492         if (NumElts <= LargestEltVT.getSizeInBits()) {
4493           assert(isPowerOf2_32(NumElts) &&
4494                  "the number of elements should be power of 2");
4495           WideEltVT = MVT::getIntegerVT(NumElts);
4496           WidenVecLen = 1;
4497           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4498           ExtractBitIdx = Idx;
4499         } else {
4500           WideEltVT = LargestEltVT;
4501           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4502           // extract element index = index / element width
4503           ExtractElementIdx = DAG.getNode(
4504               ISD::SRL, DL, XLenVT, Idx,
4505               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4506           // mask bit index = index % element width
4507           ExtractBitIdx = DAG.getNode(
4508               ISD::AND, DL, XLenVT, Idx,
4509               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4510         }
4511         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4512         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4513         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4514                                          Vec, ExtractElementIdx);
4515         // Extract the bit from GPR.
4516         SDValue ShiftRight =
4517             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4518         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4519                            DAG.getConstant(1, DL, XLenVT));
4520       }
4521     }
4522     // Otherwise, promote to an i8 vector and extract from that.
4523     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4524     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4525     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4526   }
4527 
4528   // If this is a fixed vector, we need to convert it to a scalable vector.
4529   MVT ContainerVT = VecVT;
4530   if (VecVT.isFixedLengthVector()) {
4531     ContainerVT = getContainerForFixedLengthVector(VecVT);
4532     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4533   }
4534 
4535   // If the index is 0, the vector is already in the right position.
4536   if (!isNullConstant(Idx)) {
4537     // Use a VL of 1 to avoid processing more elements than we need.
4538     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4539     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
4540     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4541                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4542   }
4543 
4544   if (!EltVT.isInteger()) {
4545     // Floating-point extracts are handled in TableGen.
4546     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4547                        DAG.getConstant(0, DL, XLenVT));
4548   }
4549 
4550   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4551   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4552 }
4553 
4554 // Some RVV intrinsics may claim that they want an integer operand to be
4555 // promoted or expanded.
4556 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4557                                            const RISCVSubtarget &Subtarget) {
4558   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4559           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4560          "Unexpected opcode");
4561 
4562   if (!Subtarget.hasVInstructions())
4563     return SDValue();
4564 
4565   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4566   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4567   SDLoc DL(Op);
4568 
4569   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4570       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4571   if (!II || !II->hasScalarOperand())
4572     return SDValue();
4573 
4574   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4575   assert(SplatOp < Op.getNumOperands());
4576 
4577   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4578   SDValue &ScalarOp = Operands[SplatOp];
4579   MVT OpVT = ScalarOp.getSimpleValueType();
4580   MVT XLenVT = Subtarget.getXLenVT();
4581 
4582   // If this isn't a scalar, or its type is XLenVT we're done.
4583   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4584     return SDValue();
4585 
4586   // Simplest case is that the operand needs to be promoted to XLenVT.
4587   if (OpVT.bitsLT(XLenVT)) {
4588     // If the operand is a constant, sign extend to increase our chances
4589     // of being able to use a .vi instruction. ANY_EXTEND would become a
4590     // a zero extend and the simm5 check in isel would fail.
4591     // FIXME: Should we ignore the upper bits in isel instead?
4592     unsigned ExtOpc =
4593         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4594     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4595     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4596   }
4597 
4598   // Use the previous operand to get the vXi64 VT. The result might be a mask
4599   // VT for compares. Using the previous operand assumes that the previous
4600   // operand will never have a smaller element size than a scalar operand and
4601   // that a widening operation never uses SEW=64.
4602   // NOTE: If this fails the below assert, we can probably just find the
4603   // element count from any operand or result and use it to construct the VT.
4604   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4605   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4606 
4607   // The more complex case is when the scalar is larger than XLenVT.
4608   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4609          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4610 
4611   // If this is a sign-extended 32-bit value, we can truncate it and rely on the
4612   // instruction to sign-extend since SEW>XLEN.
4613   if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
4614     ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
4615     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4616   }
4617 
4618   switch (IntNo) {
4619   case Intrinsic::riscv_vslide1up:
4620   case Intrinsic::riscv_vslide1down:
4621   case Intrinsic::riscv_vslide1up_mask:
4622   case Intrinsic::riscv_vslide1down_mask: {
4623     // We need to special case these when the scalar is larger than XLen.
4624     unsigned NumOps = Op.getNumOperands();
4625     bool IsMasked = NumOps == 7;
4626 
4627     // Convert the vector source to the equivalent nxvXi32 vector.
4628     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4629     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4630 
4631     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4632                                    DAG.getConstant(0, DL, XLenVT));
4633     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4634                                    DAG.getConstant(1, DL, XLenVT));
4635 
4636     // Double the VL since we halved SEW.
4637     SDValue AVL = getVLOperand(Op);
4638     SDValue I32VL;
4639 
4640     // Optimize for constant AVL
4641     if (isa<ConstantSDNode>(AVL)) {
4642       unsigned EltSize = VT.getScalarSizeInBits();
4643       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4644 
4645       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4646       unsigned MaxVLMAX =
4647           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4648 
4649       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4650       unsigned MinVLMAX =
4651           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4652 
4653       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4654       if (AVLInt <= MinVLMAX) {
4655         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4656       } else if (AVLInt >= 2 * MaxVLMAX) {
4657         // Just set vl to VLMAX in this situation
4658         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4659         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4660         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4661         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4662         SDValue SETVLMAX = DAG.getTargetConstant(
4663             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4664         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4665                             LMUL);
4666       } else {
4667         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4668         // is related to the hardware implementation.
4669         // So let the following code handle
4670       }
4671     }
4672     if (!I32VL) {
4673       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4674       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4675       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4676       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4677       SDValue SETVL =
4678           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4679       // Using vsetvli instruction to get actually used length which related to
4680       // the hardware implementation
4681       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4682                                SEW, LMUL);
4683       I32VL =
4684           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4685     }
4686 
4687     SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG);
4688 
4689     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4690     // instructions.
4691     SDValue Passthru;
4692     if (IsMasked)
4693       Passthru = DAG.getUNDEF(I32VT);
4694     else
4695       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4696 
4697     if (IntNo == Intrinsic::riscv_vslide1up ||
4698         IntNo == Intrinsic::riscv_vslide1up_mask) {
4699       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4700                         ScalarHi, I32Mask, I32VL);
4701       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4702                         ScalarLo, I32Mask, I32VL);
4703     } else {
4704       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4705                         ScalarLo, I32Mask, I32VL);
4706       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4707                         ScalarHi, I32Mask, I32VL);
4708     }
4709 
4710     // Convert back to nxvXi64.
4711     Vec = DAG.getBitcast(VT, Vec);
4712 
4713     if (!IsMasked)
4714       return Vec;
4715     // Apply mask after the operation.
4716     SDValue Mask = Operands[NumOps - 3];
4717     SDValue MaskedOff = Operands[1];
4718     // Assume Policy operand is the last operand.
4719     uint64_t Policy =
4720         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4721     // We don't need to select maskedoff if it's undef.
4722     if (MaskedOff.isUndef())
4723       return Vec;
4724     // TAMU
4725     if (Policy == RISCVII::TAIL_AGNOSTIC)
4726       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4727                          AVL);
4728     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4729     // It's fine because vmerge does not care mask policy.
4730     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4731                        AVL);
4732   }
4733   }
4734 
4735   // We need to convert the scalar to a splat vector.
4736   SDValue VL = getVLOperand(Op);
4737   assert(VL.getValueType() == XLenVT);
4738   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4739   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4740 }
4741 
4742 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4743                                                      SelectionDAG &DAG) const {
4744   unsigned IntNo = Op.getConstantOperandVal(0);
4745   SDLoc DL(Op);
4746   MVT XLenVT = Subtarget.getXLenVT();
4747 
4748   switch (IntNo) {
4749   default:
4750     break; // Don't custom lower most intrinsics.
4751   case Intrinsic::thread_pointer: {
4752     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4753     return DAG.getRegister(RISCV::X4, PtrVT);
4754   }
4755   case Intrinsic::riscv_orc_b:
4756   case Intrinsic::riscv_brev8: {
4757     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4758     unsigned Opc =
4759         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4760     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4761                        DAG.getConstant(7, DL, XLenVT));
4762   }
4763   case Intrinsic::riscv_grev:
4764   case Intrinsic::riscv_gorc: {
4765     unsigned Opc =
4766         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4767     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4768   }
4769   case Intrinsic::riscv_zip:
4770   case Intrinsic::riscv_unzip: {
4771     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4772     // For i32 the immediate is 15. For i64 the immediate is 31.
4773     unsigned Opc =
4774         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4775     unsigned BitWidth = Op.getValueSizeInBits();
4776     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4777     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4778                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4779   }
4780   case Intrinsic::riscv_shfl:
4781   case Intrinsic::riscv_unshfl: {
4782     unsigned Opc =
4783         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4784     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4785   }
4786   case Intrinsic::riscv_bcompress:
4787   case Intrinsic::riscv_bdecompress: {
4788     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4789                                                        : RISCVISD::BDECOMPRESS;
4790     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4791   }
4792   case Intrinsic::riscv_bfp:
4793     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4794                        Op.getOperand(2));
4795   case Intrinsic::riscv_fsl:
4796     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4797                        Op.getOperand(2), Op.getOperand(3));
4798   case Intrinsic::riscv_fsr:
4799     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4800                        Op.getOperand(2), Op.getOperand(3));
4801   case Intrinsic::riscv_vmv_x_s:
4802     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4803     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4804                        Op.getOperand(1));
4805   case Intrinsic::riscv_vmv_v_x:
4806     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4807                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4808                             Subtarget);
4809   case Intrinsic::riscv_vfmv_v_f:
4810     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4811                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4812   case Intrinsic::riscv_vmv_s_x: {
4813     SDValue Scalar = Op.getOperand(2);
4814 
4815     if (Scalar.getValueType().bitsLE(XLenVT)) {
4816       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4817       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4818                          Op.getOperand(1), Scalar, Op.getOperand(3));
4819     }
4820 
4821     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4822 
4823     // This is an i64 value that lives in two scalar registers. We have to
4824     // insert this in a convoluted way. First we build vXi64 splat containing
4825     // the two values that we assemble using some bit math. Next we'll use
4826     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4827     // to merge element 0 from our splat into the source vector.
4828     // FIXME: This is probably not the best way to do this, but it is
4829     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4830     // point.
4831     //   sw lo, (a0)
4832     //   sw hi, 4(a0)
4833     //   vlse vX, (a0)
4834     //
4835     //   vid.v      vVid
4836     //   vmseq.vx   mMask, vVid, 0
4837     //   vmerge.vvm vDest, vSrc, vVal, mMask
4838     MVT VT = Op.getSimpleValueType();
4839     SDValue Vec = Op.getOperand(1);
4840     SDValue VL = getVLOperand(Op);
4841 
4842     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4843     if (Op.getOperand(1).isUndef())
4844       return SplattedVal;
4845     SDValue SplattedIdx =
4846         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4847                     DAG.getConstant(0, DL, MVT::i32), VL);
4848 
4849     MVT MaskVT = getMaskTypeFor(VT);
4850     SDValue Mask = getAllOnesMask(VT, VL, DL, DAG);
4851     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4852     SDValue SelectCond =
4853         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4854                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4855     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4856                        Vec, VL);
4857   }
4858   }
4859 
4860   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4861 }
4862 
4863 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4864                                                     SelectionDAG &DAG) const {
4865   unsigned IntNo = Op.getConstantOperandVal(1);
4866   switch (IntNo) {
4867   default:
4868     break;
4869   case Intrinsic::riscv_masked_strided_load: {
4870     SDLoc DL(Op);
4871     MVT XLenVT = Subtarget.getXLenVT();
4872 
4873     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4874     // the selection of the masked intrinsics doesn't do this for us.
4875     SDValue Mask = Op.getOperand(5);
4876     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4877 
4878     MVT VT = Op->getSimpleValueType(0);
4879     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4880 
4881     SDValue PassThru = Op.getOperand(2);
4882     if (!IsUnmasked) {
4883       MVT MaskVT = getMaskTypeFor(ContainerVT);
4884       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4885       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4886     }
4887 
4888     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4889 
4890     SDValue IntID = DAG.getTargetConstant(
4891         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4892         XLenVT);
4893 
4894     auto *Load = cast<MemIntrinsicSDNode>(Op);
4895     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4896     if (IsUnmasked)
4897       Ops.push_back(DAG.getUNDEF(ContainerVT));
4898     else
4899       Ops.push_back(PassThru);
4900     Ops.push_back(Op.getOperand(3)); // Ptr
4901     Ops.push_back(Op.getOperand(4)); // Stride
4902     if (!IsUnmasked)
4903       Ops.push_back(Mask);
4904     Ops.push_back(VL);
4905     if (!IsUnmasked) {
4906       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4907       Ops.push_back(Policy);
4908     }
4909 
4910     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4911     SDValue Result =
4912         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4913                                 Load->getMemoryVT(), Load->getMemOperand());
4914     SDValue Chain = Result.getValue(1);
4915     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4916     return DAG.getMergeValues({Result, Chain}, DL);
4917   }
4918   case Intrinsic::riscv_seg2_load:
4919   case Intrinsic::riscv_seg3_load:
4920   case Intrinsic::riscv_seg4_load:
4921   case Intrinsic::riscv_seg5_load:
4922   case Intrinsic::riscv_seg6_load:
4923   case Intrinsic::riscv_seg7_load:
4924   case Intrinsic::riscv_seg8_load: {
4925     SDLoc DL(Op);
4926     static const Intrinsic::ID VlsegInts[7] = {
4927         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
4928         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
4929         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
4930         Intrinsic::riscv_vlseg8};
4931     unsigned NF = Op->getNumValues() - 1;
4932     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
4933     MVT XLenVT = Subtarget.getXLenVT();
4934     MVT VT = Op->getSimpleValueType(0);
4935     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4936 
4937     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4938     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
4939     auto *Load = cast<MemIntrinsicSDNode>(Op);
4940     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
4941     ContainerVTs.push_back(MVT::Other);
4942     SDVTList VTs = DAG.getVTList(ContainerVTs);
4943     SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID};
4944     Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT));
4945     Ops.push_back(Op.getOperand(2));
4946     Ops.push_back(VL);
4947     SDValue Result =
4948         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4949                                 Load->getMemoryVT(), Load->getMemOperand());
4950     SmallVector<SDValue, 9> Results;
4951     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
4952       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
4953                                                   DAG, Subtarget));
4954     Results.push_back(Result.getValue(NF));
4955     return DAG.getMergeValues(Results, DL);
4956   }
4957   }
4958 
4959   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4960 }
4961 
4962 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4963                                                  SelectionDAG &DAG) const {
4964   unsigned IntNo = Op.getConstantOperandVal(1);
4965   switch (IntNo) {
4966   default:
4967     break;
4968   case Intrinsic::riscv_masked_strided_store: {
4969     SDLoc DL(Op);
4970     MVT XLenVT = Subtarget.getXLenVT();
4971 
4972     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4973     // the selection of the masked intrinsics doesn't do this for us.
4974     SDValue Mask = Op.getOperand(5);
4975     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4976 
4977     SDValue Val = Op.getOperand(2);
4978     MVT VT = Val.getSimpleValueType();
4979     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4980 
4981     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4982     if (!IsUnmasked) {
4983       MVT MaskVT = getMaskTypeFor(ContainerVT);
4984       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4985     }
4986 
4987     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4988 
4989     SDValue IntID = DAG.getTargetConstant(
4990         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4991         XLenVT);
4992 
4993     auto *Store = cast<MemIntrinsicSDNode>(Op);
4994     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4995     Ops.push_back(Val);
4996     Ops.push_back(Op.getOperand(3)); // Ptr
4997     Ops.push_back(Op.getOperand(4)); // Stride
4998     if (!IsUnmasked)
4999       Ops.push_back(Mask);
5000     Ops.push_back(VL);
5001 
5002     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
5003                                    Ops, Store->getMemoryVT(),
5004                                    Store->getMemOperand());
5005   }
5006   }
5007 
5008   return SDValue();
5009 }
5010 
5011 static MVT getLMUL1VT(MVT VT) {
5012   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
5013          "Unexpected vector MVT");
5014   return MVT::getScalableVectorVT(
5015       VT.getVectorElementType(),
5016       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
5017 }
5018 
5019 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
5020   switch (ISDOpcode) {
5021   default:
5022     llvm_unreachable("Unhandled reduction");
5023   case ISD::VECREDUCE_ADD:
5024     return RISCVISD::VECREDUCE_ADD_VL;
5025   case ISD::VECREDUCE_UMAX:
5026     return RISCVISD::VECREDUCE_UMAX_VL;
5027   case ISD::VECREDUCE_SMAX:
5028     return RISCVISD::VECREDUCE_SMAX_VL;
5029   case ISD::VECREDUCE_UMIN:
5030     return RISCVISD::VECREDUCE_UMIN_VL;
5031   case ISD::VECREDUCE_SMIN:
5032     return RISCVISD::VECREDUCE_SMIN_VL;
5033   case ISD::VECREDUCE_AND:
5034     return RISCVISD::VECREDUCE_AND_VL;
5035   case ISD::VECREDUCE_OR:
5036     return RISCVISD::VECREDUCE_OR_VL;
5037   case ISD::VECREDUCE_XOR:
5038     return RISCVISD::VECREDUCE_XOR_VL;
5039   }
5040 }
5041 
5042 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5043                                                          SelectionDAG &DAG,
5044                                                          bool IsVP) const {
5045   SDLoc DL(Op);
5046   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5047   MVT VecVT = Vec.getSimpleValueType();
5048   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5049           Op.getOpcode() == ISD::VECREDUCE_OR ||
5050           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5051           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5052           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5053           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5054          "Unexpected reduction lowering");
5055 
5056   MVT XLenVT = Subtarget.getXLenVT();
5057   assert(Op.getValueType() == XLenVT &&
5058          "Expected reduction output to be legalized to XLenVT");
5059 
5060   MVT ContainerVT = VecVT;
5061   if (VecVT.isFixedLengthVector()) {
5062     ContainerVT = getContainerForFixedLengthVector(VecVT);
5063     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5064   }
5065 
5066   SDValue Mask, VL;
5067   if (IsVP) {
5068     Mask = Op.getOperand(2);
5069     VL = Op.getOperand(3);
5070   } else {
5071     std::tie(Mask, VL) =
5072         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5073   }
5074 
5075   unsigned BaseOpc;
5076   ISD::CondCode CC;
5077   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5078 
5079   switch (Op.getOpcode()) {
5080   default:
5081     llvm_unreachable("Unhandled reduction");
5082   case ISD::VECREDUCE_AND:
5083   case ISD::VP_REDUCE_AND: {
5084     // vcpop ~x == 0
5085     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5086     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5087     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5088     CC = ISD::SETEQ;
5089     BaseOpc = ISD::AND;
5090     break;
5091   }
5092   case ISD::VECREDUCE_OR:
5093   case ISD::VP_REDUCE_OR:
5094     // vcpop x != 0
5095     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5096     CC = ISD::SETNE;
5097     BaseOpc = ISD::OR;
5098     break;
5099   case ISD::VECREDUCE_XOR:
5100   case ISD::VP_REDUCE_XOR: {
5101     // ((vcpop x) & 1) != 0
5102     SDValue One = DAG.getConstant(1, DL, XLenVT);
5103     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5104     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5105     CC = ISD::SETNE;
5106     BaseOpc = ISD::XOR;
5107     break;
5108   }
5109   }
5110 
5111   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5112 
5113   if (!IsVP)
5114     return SetCC;
5115 
5116   // Now include the start value in the operation.
5117   // Note that we must return the start value when no elements are operated
5118   // upon. The vcpop instructions we've emitted in each case above will return
5119   // 0 for an inactive vector, and so we've already received the neutral value:
5120   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5121   // can simply include the start value.
5122   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5123 }
5124 
5125 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5126                                             SelectionDAG &DAG) const {
5127   SDLoc DL(Op);
5128   SDValue Vec = Op.getOperand(0);
5129   EVT VecEVT = Vec.getValueType();
5130 
5131   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5132 
5133   // Due to ordering in legalize types we may have a vector type that needs to
5134   // be split. Do that manually so we can get down to a legal type.
5135   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5136          TargetLowering::TypeSplitVector) {
5137     SDValue Lo, Hi;
5138     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5139     VecEVT = Lo.getValueType();
5140     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5141   }
5142 
5143   // TODO: The type may need to be widened rather than split. Or widened before
5144   // it can be split.
5145   if (!isTypeLegal(VecEVT))
5146     return SDValue();
5147 
5148   MVT VecVT = VecEVT.getSimpleVT();
5149   MVT VecEltVT = VecVT.getVectorElementType();
5150   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5151 
5152   MVT ContainerVT = VecVT;
5153   if (VecVT.isFixedLengthVector()) {
5154     ContainerVT = getContainerForFixedLengthVector(VecVT);
5155     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5156   }
5157 
5158   MVT M1VT = getLMUL1VT(ContainerVT);
5159   MVT XLenVT = Subtarget.getXLenVT();
5160 
5161   SDValue Mask, VL;
5162   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5163 
5164   SDValue NeutralElem =
5165       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5166   SDValue IdentitySplat =
5167       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5168                        M1VT, DL, DAG, Subtarget);
5169   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5170                                   IdentitySplat, Mask, VL);
5171   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5172                              DAG.getConstant(0, DL, XLenVT));
5173   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5174 }
5175 
5176 // Given a reduction op, this function returns the matching reduction opcode,
5177 // the vector SDValue and the scalar SDValue required to lower this to a
5178 // RISCVISD node.
5179 static std::tuple<unsigned, SDValue, SDValue>
5180 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5181   SDLoc DL(Op);
5182   auto Flags = Op->getFlags();
5183   unsigned Opcode = Op.getOpcode();
5184   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5185   switch (Opcode) {
5186   default:
5187     llvm_unreachable("Unhandled reduction");
5188   case ISD::VECREDUCE_FADD: {
5189     // Use positive zero if we can. It is cheaper to materialize.
5190     SDValue Zero =
5191         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5192     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5193   }
5194   case ISD::VECREDUCE_SEQ_FADD:
5195     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5196                            Op.getOperand(0));
5197   case ISD::VECREDUCE_FMIN:
5198     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5199                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5200   case ISD::VECREDUCE_FMAX:
5201     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5202                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5203   }
5204 }
5205 
5206 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5207                                               SelectionDAG &DAG) const {
5208   SDLoc DL(Op);
5209   MVT VecEltVT = Op.getSimpleValueType();
5210 
5211   unsigned RVVOpcode;
5212   SDValue VectorVal, ScalarVal;
5213   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5214       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5215   MVT VecVT = VectorVal.getSimpleValueType();
5216 
5217   MVT ContainerVT = VecVT;
5218   if (VecVT.isFixedLengthVector()) {
5219     ContainerVT = getContainerForFixedLengthVector(VecVT);
5220     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5221   }
5222 
5223   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5224   MVT XLenVT = Subtarget.getXLenVT();
5225 
5226   SDValue Mask, VL;
5227   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5228 
5229   SDValue ScalarSplat =
5230       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5231                        M1VT, DL, DAG, Subtarget);
5232   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5233                                   VectorVal, ScalarSplat, Mask, VL);
5234   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5235                      DAG.getConstant(0, DL, XLenVT));
5236 }
5237 
5238 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5239   switch (ISDOpcode) {
5240   default:
5241     llvm_unreachable("Unhandled reduction");
5242   case ISD::VP_REDUCE_ADD:
5243     return RISCVISD::VECREDUCE_ADD_VL;
5244   case ISD::VP_REDUCE_UMAX:
5245     return RISCVISD::VECREDUCE_UMAX_VL;
5246   case ISD::VP_REDUCE_SMAX:
5247     return RISCVISD::VECREDUCE_SMAX_VL;
5248   case ISD::VP_REDUCE_UMIN:
5249     return RISCVISD::VECREDUCE_UMIN_VL;
5250   case ISD::VP_REDUCE_SMIN:
5251     return RISCVISD::VECREDUCE_SMIN_VL;
5252   case ISD::VP_REDUCE_AND:
5253     return RISCVISD::VECREDUCE_AND_VL;
5254   case ISD::VP_REDUCE_OR:
5255     return RISCVISD::VECREDUCE_OR_VL;
5256   case ISD::VP_REDUCE_XOR:
5257     return RISCVISD::VECREDUCE_XOR_VL;
5258   case ISD::VP_REDUCE_FADD:
5259     return RISCVISD::VECREDUCE_FADD_VL;
5260   case ISD::VP_REDUCE_SEQ_FADD:
5261     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5262   case ISD::VP_REDUCE_FMAX:
5263     return RISCVISD::VECREDUCE_FMAX_VL;
5264   case ISD::VP_REDUCE_FMIN:
5265     return RISCVISD::VECREDUCE_FMIN_VL;
5266   }
5267 }
5268 
5269 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5270                                            SelectionDAG &DAG) const {
5271   SDLoc DL(Op);
5272   SDValue Vec = Op.getOperand(1);
5273   EVT VecEVT = Vec.getValueType();
5274 
5275   // TODO: The type may need to be widened rather than split. Or widened before
5276   // it can be split.
5277   if (!isTypeLegal(VecEVT))
5278     return SDValue();
5279 
5280   MVT VecVT = VecEVT.getSimpleVT();
5281   MVT VecEltVT = VecVT.getVectorElementType();
5282   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5283 
5284   MVT ContainerVT = VecVT;
5285   if (VecVT.isFixedLengthVector()) {
5286     ContainerVT = getContainerForFixedLengthVector(VecVT);
5287     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5288   }
5289 
5290   SDValue VL = Op.getOperand(3);
5291   SDValue Mask = Op.getOperand(2);
5292 
5293   MVT M1VT = getLMUL1VT(ContainerVT);
5294   MVT XLenVT = Subtarget.getXLenVT();
5295   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5296 
5297   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5298                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5299                                         DL, DAG, Subtarget);
5300   SDValue Reduction =
5301       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5302   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5303                              DAG.getConstant(0, DL, XLenVT));
5304   if (!VecVT.isInteger())
5305     return Elt0;
5306   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5307 }
5308 
5309 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5310                                                    SelectionDAG &DAG) const {
5311   SDValue Vec = Op.getOperand(0);
5312   SDValue SubVec = Op.getOperand(1);
5313   MVT VecVT = Vec.getSimpleValueType();
5314   MVT SubVecVT = SubVec.getSimpleValueType();
5315 
5316   SDLoc DL(Op);
5317   MVT XLenVT = Subtarget.getXLenVT();
5318   unsigned OrigIdx = Op.getConstantOperandVal(2);
5319   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5320 
5321   // We don't have the ability to slide mask vectors up indexed by their i1
5322   // elements; the smallest we can do is i8. Often we are able to bitcast to
5323   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5324   // into a scalable one, we might not necessarily have enough scalable
5325   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5326   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5327       (OrigIdx != 0 || !Vec.isUndef())) {
5328     if (VecVT.getVectorMinNumElements() >= 8 &&
5329         SubVecVT.getVectorMinNumElements() >= 8) {
5330       assert(OrigIdx % 8 == 0 && "Invalid index");
5331       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5332              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5333              "Unexpected mask vector lowering");
5334       OrigIdx /= 8;
5335       SubVecVT =
5336           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5337                            SubVecVT.isScalableVector());
5338       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5339                                VecVT.isScalableVector());
5340       Vec = DAG.getBitcast(VecVT, Vec);
5341       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5342     } else {
5343       // We can't slide this mask vector up indexed by its i1 elements.
5344       // This poses a problem when we wish to insert a scalable vector which
5345       // can't be re-expressed as a larger type. Just choose the slow path and
5346       // extend to a larger type, then truncate back down.
5347       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5348       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5349       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5350       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5351       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5352                         Op.getOperand(2));
5353       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5354       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5355     }
5356   }
5357 
5358   // If the subvector vector is a fixed-length type, we cannot use subregister
5359   // manipulation to simplify the codegen; we don't know which register of a
5360   // LMUL group contains the specific subvector as we only know the minimum
5361   // register size. Therefore we must slide the vector group up the full
5362   // amount.
5363   if (SubVecVT.isFixedLengthVector()) {
5364     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5365       return Op;
5366     MVT ContainerVT = VecVT;
5367     if (VecVT.isFixedLengthVector()) {
5368       ContainerVT = getContainerForFixedLengthVector(VecVT);
5369       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5370     }
5371     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5372                          DAG.getUNDEF(ContainerVT), SubVec,
5373                          DAG.getConstant(0, DL, XLenVT));
5374     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5375       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5376       return DAG.getBitcast(Op.getValueType(), SubVec);
5377     }
5378     SDValue Mask =
5379         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5380     // Set the vector length to only the number of elements we care about. Note
5381     // that for slideup this includes the offset.
5382     SDValue VL =
5383         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5384     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5385     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5386                                   SubVec, SlideupAmt, Mask, VL);
5387     if (VecVT.isFixedLengthVector())
5388       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5389     return DAG.getBitcast(Op.getValueType(), Slideup);
5390   }
5391 
5392   unsigned SubRegIdx, RemIdx;
5393   std::tie(SubRegIdx, RemIdx) =
5394       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5395           VecVT, SubVecVT, OrigIdx, TRI);
5396 
5397   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5398   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5399                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5400                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5401 
5402   // 1. If the Idx has been completely eliminated and this subvector's size is
5403   // a vector register or a multiple thereof, or the surrounding elements are
5404   // undef, then this is a subvector insert which naturally aligns to a vector
5405   // register. These can easily be handled using subregister manipulation.
5406   // 2. If the subvector is smaller than a vector register, then the insertion
5407   // must preserve the undisturbed elements of the register. We do this by
5408   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5409   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5410   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5411   // LMUL=1 type back into the larger vector (resolving to another subregister
5412   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5413   // to avoid allocating a large register group to hold our subvector.
5414   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5415     return Op;
5416 
5417   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5418   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5419   // (in our case undisturbed). This means we can set up a subvector insertion
5420   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5421   // size of the subvector.
5422   MVT InterSubVT = VecVT;
5423   SDValue AlignedExtract = Vec;
5424   unsigned AlignedIdx = OrigIdx - RemIdx;
5425   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5426     InterSubVT = getLMUL1VT(VecVT);
5427     // Extract a subvector equal to the nearest full vector register type. This
5428     // should resolve to a EXTRACT_SUBREG instruction.
5429     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5430                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5431   }
5432 
5433   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5434   // For scalable vectors this must be further multiplied by vscale.
5435   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5436 
5437   SDValue Mask, VL;
5438   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5439 
5440   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5441   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5442   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5443   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5444 
5445   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5446                        DAG.getUNDEF(InterSubVT), SubVec,
5447                        DAG.getConstant(0, DL, XLenVT));
5448 
5449   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5450                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5451 
5452   // If required, insert this subvector back into the correct vector register.
5453   // This should resolve to an INSERT_SUBREG instruction.
5454   if (VecVT.bitsGT(InterSubVT))
5455     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5456                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5457 
5458   // We might have bitcast from a mask type: cast back to the original type if
5459   // required.
5460   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5461 }
5462 
5463 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5464                                                     SelectionDAG &DAG) const {
5465   SDValue Vec = Op.getOperand(0);
5466   MVT SubVecVT = Op.getSimpleValueType();
5467   MVT VecVT = Vec.getSimpleValueType();
5468 
5469   SDLoc DL(Op);
5470   MVT XLenVT = Subtarget.getXLenVT();
5471   unsigned OrigIdx = Op.getConstantOperandVal(1);
5472   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5473 
5474   // We don't have the ability to slide mask vectors down indexed by their i1
5475   // elements; the smallest we can do is i8. Often we are able to bitcast to
5476   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5477   // from a scalable one, we might not necessarily have enough scalable
5478   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5479   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5480     if (VecVT.getVectorMinNumElements() >= 8 &&
5481         SubVecVT.getVectorMinNumElements() >= 8) {
5482       assert(OrigIdx % 8 == 0 && "Invalid index");
5483       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5484              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5485              "Unexpected mask vector lowering");
5486       OrigIdx /= 8;
5487       SubVecVT =
5488           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5489                            SubVecVT.isScalableVector());
5490       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5491                                VecVT.isScalableVector());
5492       Vec = DAG.getBitcast(VecVT, Vec);
5493     } else {
5494       // We can't slide this mask vector down, indexed by its i1 elements.
5495       // This poses a problem when we wish to extract a scalable vector which
5496       // can't be re-expressed as a larger type. Just choose the slow path and
5497       // extend to a larger type, then truncate back down.
5498       // TODO: We could probably improve this when extracting certain fixed
5499       // from fixed, where we can extract as i8 and shift the correct element
5500       // right to reach the desired subvector?
5501       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5502       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5503       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5504       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5505                         Op.getOperand(1));
5506       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5507       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5508     }
5509   }
5510 
5511   // If the subvector vector is a fixed-length type, we cannot use subregister
5512   // manipulation to simplify the codegen; we don't know which register of a
5513   // LMUL group contains the specific subvector as we only know the minimum
5514   // register size. Therefore we must slide the vector group down the full
5515   // amount.
5516   if (SubVecVT.isFixedLengthVector()) {
5517     // With an index of 0 this is a cast-like subvector, which can be performed
5518     // with subregister operations.
5519     if (OrigIdx == 0)
5520       return Op;
5521     MVT ContainerVT = VecVT;
5522     if (VecVT.isFixedLengthVector()) {
5523       ContainerVT = getContainerForFixedLengthVector(VecVT);
5524       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5525     }
5526     SDValue Mask =
5527         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5528     // Set the vector length to only the number of elements we care about. This
5529     // avoids sliding down elements we're going to discard straight away.
5530     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5531     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5532     SDValue Slidedown =
5533         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5534                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5535     // Now we can use a cast-like subvector extract to get the result.
5536     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5537                             DAG.getConstant(0, DL, XLenVT));
5538     return DAG.getBitcast(Op.getValueType(), Slidedown);
5539   }
5540 
5541   unsigned SubRegIdx, RemIdx;
5542   std::tie(SubRegIdx, RemIdx) =
5543       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5544           VecVT, SubVecVT, OrigIdx, TRI);
5545 
5546   // If the Idx has been completely eliminated then this is a subvector extract
5547   // which naturally aligns to a vector register. These can easily be handled
5548   // using subregister manipulation.
5549   if (RemIdx == 0)
5550     return Op;
5551 
5552   // Else we must shift our vector register directly to extract the subvector.
5553   // Do this using VSLIDEDOWN.
5554 
5555   // If the vector type is an LMUL-group type, extract a subvector equal to the
5556   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5557   // instruction.
5558   MVT InterSubVT = VecVT;
5559   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5560     InterSubVT = getLMUL1VT(VecVT);
5561     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5562                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5563   }
5564 
5565   // Slide this vector register down by the desired number of elements in order
5566   // to place the desired subvector starting at element 0.
5567   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5568   // For scalable vectors this must be further multiplied by vscale.
5569   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5570 
5571   SDValue Mask, VL;
5572   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5573   SDValue Slidedown =
5574       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5575                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5576 
5577   // Now the vector is in the right position, extract our final subvector. This
5578   // should resolve to a COPY.
5579   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5580                           DAG.getConstant(0, DL, XLenVT));
5581 
5582   // We might have bitcast from a mask type: cast back to the original type if
5583   // required.
5584   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5585 }
5586 
5587 // Lower step_vector to the vid instruction. Any non-identity step value must
5588 // be accounted for my manual expansion.
5589 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5590                                               SelectionDAG &DAG) const {
5591   SDLoc DL(Op);
5592   MVT VT = Op.getSimpleValueType();
5593   MVT XLenVT = Subtarget.getXLenVT();
5594   SDValue Mask, VL;
5595   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5596   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5597   uint64_t StepValImm = Op.getConstantOperandVal(0);
5598   if (StepValImm != 1) {
5599     if (isPowerOf2_64(StepValImm)) {
5600       SDValue StepVal =
5601           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5602                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5603       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5604     } else {
5605       SDValue StepVal = lowerScalarSplat(
5606           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5607           VL, VT, DL, DAG, Subtarget);
5608       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5609     }
5610   }
5611   return StepVec;
5612 }
5613 
5614 // Implement vector_reverse using vrgather.vv with indices determined by
5615 // subtracting the id of each element from (VLMAX-1). This will convert
5616 // the indices like so:
5617 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5618 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5619 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5620                                                  SelectionDAG &DAG) const {
5621   SDLoc DL(Op);
5622   MVT VecVT = Op.getSimpleValueType();
5623   unsigned EltSize = VecVT.getScalarSizeInBits();
5624   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5625 
5626   unsigned MaxVLMAX = 0;
5627   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5628   if (VectorBitsMax != 0)
5629     MaxVLMAX =
5630         RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5631 
5632   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5633   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5634 
5635   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5636   // to use vrgatherei16.vv.
5637   // TODO: It's also possible to use vrgatherei16.vv for other types to
5638   // decrease register width for the index calculation.
5639   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5640     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5641     // Reverse each half, then reassemble them in reverse order.
5642     // NOTE: It's also possible that after splitting that VLMAX no longer
5643     // requires vrgatherei16.vv.
5644     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5645       SDValue Lo, Hi;
5646       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5647       EVT LoVT, HiVT;
5648       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5649       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5650       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5651       // Reassemble the low and high pieces reversed.
5652       // FIXME: This is a CONCAT_VECTORS.
5653       SDValue Res =
5654           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5655                       DAG.getIntPtrConstant(0, DL));
5656       return DAG.getNode(
5657           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5658           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5659     }
5660 
5661     // Just promote the int type to i16 which will double the LMUL.
5662     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5663     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5664   }
5665 
5666   MVT XLenVT = Subtarget.getXLenVT();
5667   SDValue Mask, VL;
5668   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5669 
5670   // Calculate VLMAX-1 for the desired SEW.
5671   unsigned MinElts = VecVT.getVectorMinNumElements();
5672   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5673                               DAG.getConstant(MinElts, DL, XLenVT));
5674   SDValue VLMinus1 =
5675       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5676 
5677   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5678   bool IsRV32E64 =
5679       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5680   SDValue SplatVL;
5681   if (!IsRV32E64)
5682     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5683   else
5684     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5685                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5686 
5687   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5688   SDValue Indices =
5689       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5690 
5691   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5692 }
5693 
5694 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5695                                                 SelectionDAG &DAG) const {
5696   SDLoc DL(Op);
5697   SDValue V1 = Op.getOperand(0);
5698   SDValue V2 = Op.getOperand(1);
5699   MVT XLenVT = Subtarget.getXLenVT();
5700   MVT VecVT = Op.getSimpleValueType();
5701 
5702   unsigned MinElts = VecVT.getVectorMinNumElements();
5703   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5704                               DAG.getConstant(MinElts, DL, XLenVT));
5705 
5706   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5707   SDValue DownOffset, UpOffset;
5708   if (ImmValue >= 0) {
5709     // The operand is a TargetConstant, we need to rebuild it as a regular
5710     // constant.
5711     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5712     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5713   } else {
5714     // The operand is a TargetConstant, we need to rebuild it as a regular
5715     // constant rather than negating the original operand.
5716     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5717     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5718   }
5719 
5720   SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG);
5721 
5722   SDValue SlideDown =
5723       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5724                   DownOffset, TrueMask, UpOffset);
5725   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5726                      TrueMask,
5727                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5728 }
5729 
5730 SDValue
5731 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5732                                                      SelectionDAG &DAG) const {
5733   SDLoc DL(Op);
5734   auto *Load = cast<LoadSDNode>(Op);
5735 
5736   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5737                                         Load->getMemoryVT(),
5738                                         *Load->getMemOperand()) &&
5739          "Expecting a correctly-aligned load");
5740 
5741   MVT VT = Op.getSimpleValueType();
5742   MVT XLenVT = Subtarget.getXLenVT();
5743   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5744 
5745   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5746 
5747   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5748   SDValue IntID = DAG.getTargetConstant(
5749       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5750   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5751   if (!IsMaskOp)
5752     Ops.push_back(DAG.getUNDEF(ContainerVT));
5753   Ops.push_back(Load->getBasePtr());
5754   Ops.push_back(VL);
5755   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5756   SDValue NewLoad =
5757       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5758                               Load->getMemoryVT(), Load->getMemOperand());
5759 
5760   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5761   return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL);
5762 }
5763 
5764 SDValue
5765 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5766                                                       SelectionDAG &DAG) const {
5767   SDLoc DL(Op);
5768   auto *Store = cast<StoreSDNode>(Op);
5769 
5770   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5771                                         Store->getMemoryVT(),
5772                                         *Store->getMemOperand()) &&
5773          "Expecting a correctly-aligned store");
5774 
5775   SDValue StoreVal = Store->getValue();
5776   MVT VT = StoreVal.getSimpleValueType();
5777   MVT XLenVT = Subtarget.getXLenVT();
5778 
5779   // If the size less than a byte, we need to pad with zeros to make a byte.
5780   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5781     VT = MVT::v8i1;
5782     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5783                            DAG.getConstant(0, DL, VT), StoreVal,
5784                            DAG.getIntPtrConstant(0, DL));
5785   }
5786 
5787   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5788 
5789   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5790 
5791   SDValue NewValue =
5792       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5793 
5794   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5795   SDValue IntID = DAG.getTargetConstant(
5796       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5797   return DAG.getMemIntrinsicNode(
5798       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5799       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5800       Store->getMemoryVT(), Store->getMemOperand());
5801 }
5802 
5803 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5804                                              SelectionDAG &DAG) const {
5805   SDLoc DL(Op);
5806   MVT VT = Op.getSimpleValueType();
5807 
5808   const auto *MemSD = cast<MemSDNode>(Op);
5809   EVT MemVT = MemSD->getMemoryVT();
5810   MachineMemOperand *MMO = MemSD->getMemOperand();
5811   SDValue Chain = MemSD->getChain();
5812   SDValue BasePtr = MemSD->getBasePtr();
5813 
5814   SDValue Mask, PassThru, VL;
5815   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5816     Mask = VPLoad->getMask();
5817     PassThru = DAG.getUNDEF(VT);
5818     VL = VPLoad->getVectorLength();
5819   } else {
5820     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5821     Mask = MLoad->getMask();
5822     PassThru = MLoad->getPassThru();
5823   }
5824 
5825   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5826 
5827   MVT XLenVT = Subtarget.getXLenVT();
5828 
5829   MVT ContainerVT = VT;
5830   if (VT.isFixedLengthVector()) {
5831     ContainerVT = getContainerForFixedLengthVector(VT);
5832     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5833     if (!IsUnmasked) {
5834       MVT MaskVT = getMaskTypeFor(ContainerVT);
5835       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5836     }
5837   }
5838 
5839   if (!VL)
5840     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5841 
5842   unsigned IntID =
5843       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5844   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5845   if (IsUnmasked)
5846     Ops.push_back(DAG.getUNDEF(ContainerVT));
5847   else
5848     Ops.push_back(PassThru);
5849   Ops.push_back(BasePtr);
5850   if (!IsUnmasked)
5851     Ops.push_back(Mask);
5852   Ops.push_back(VL);
5853   if (!IsUnmasked)
5854     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5855 
5856   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5857 
5858   SDValue Result =
5859       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5860   Chain = Result.getValue(1);
5861 
5862   if (VT.isFixedLengthVector())
5863     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5864 
5865   return DAG.getMergeValues({Result, Chain}, DL);
5866 }
5867 
5868 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5869                                               SelectionDAG &DAG) const {
5870   SDLoc DL(Op);
5871 
5872   const auto *MemSD = cast<MemSDNode>(Op);
5873   EVT MemVT = MemSD->getMemoryVT();
5874   MachineMemOperand *MMO = MemSD->getMemOperand();
5875   SDValue Chain = MemSD->getChain();
5876   SDValue BasePtr = MemSD->getBasePtr();
5877   SDValue Val, Mask, VL;
5878 
5879   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5880     Val = VPStore->getValue();
5881     Mask = VPStore->getMask();
5882     VL = VPStore->getVectorLength();
5883   } else {
5884     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5885     Val = MStore->getValue();
5886     Mask = MStore->getMask();
5887   }
5888 
5889   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5890 
5891   MVT VT = Val.getSimpleValueType();
5892   MVT XLenVT = Subtarget.getXLenVT();
5893 
5894   MVT ContainerVT = VT;
5895   if (VT.isFixedLengthVector()) {
5896     ContainerVT = getContainerForFixedLengthVector(VT);
5897 
5898     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5899     if (!IsUnmasked) {
5900       MVT MaskVT = getMaskTypeFor(ContainerVT);
5901       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5902     }
5903   }
5904 
5905   if (!VL)
5906     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5907 
5908   unsigned IntID =
5909       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5910   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5911   Ops.push_back(Val);
5912   Ops.push_back(BasePtr);
5913   if (!IsUnmasked)
5914     Ops.push_back(Mask);
5915   Ops.push_back(VL);
5916 
5917   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5918                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5919 }
5920 
5921 SDValue
5922 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5923                                                       SelectionDAG &DAG) const {
5924   MVT InVT = Op.getOperand(0).getSimpleValueType();
5925   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5926 
5927   MVT VT = Op.getSimpleValueType();
5928 
5929   SDValue Op1 =
5930       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5931   SDValue Op2 =
5932       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5933 
5934   SDLoc DL(Op);
5935   SDValue VL =
5936       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5937 
5938   MVT MaskVT = getMaskTypeFor(ContainerVT);
5939   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
5940 
5941   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5942                             Op.getOperand(2), Mask, VL);
5943 
5944   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5945 }
5946 
5947 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5948     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5949   MVT VT = Op.getSimpleValueType();
5950 
5951   if (VT.getVectorElementType() == MVT::i1)
5952     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5953 
5954   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5955 }
5956 
5957 SDValue
5958 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5959                                                       SelectionDAG &DAG) const {
5960   unsigned Opc;
5961   switch (Op.getOpcode()) {
5962   default: llvm_unreachable("Unexpected opcode!");
5963   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5964   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5965   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5966   }
5967 
5968   return lowerToScalableOp(Op, DAG, Opc);
5969 }
5970 
5971 // Lower vector ABS to smax(X, sub(0, X)).
5972 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5973   SDLoc DL(Op);
5974   MVT VT = Op.getSimpleValueType();
5975   SDValue X = Op.getOperand(0);
5976 
5977   assert(VT.isFixedLengthVector() && "Unexpected type");
5978 
5979   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5980   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5981 
5982   SDValue Mask, VL;
5983   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5984 
5985   SDValue SplatZero = DAG.getNode(
5986       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
5987       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5988   SDValue NegX =
5989       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5990   SDValue Max =
5991       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5992 
5993   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5994 }
5995 
5996 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5997     SDValue Op, SelectionDAG &DAG) const {
5998   SDLoc DL(Op);
5999   MVT VT = Op.getSimpleValueType();
6000   SDValue Mag = Op.getOperand(0);
6001   SDValue Sign = Op.getOperand(1);
6002   assert(Mag.getValueType() == Sign.getValueType() &&
6003          "Can only handle COPYSIGN with matching types.");
6004 
6005   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6006   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
6007   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
6008 
6009   SDValue Mask, VL;
6010   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6011 
6012   SDValue CopySign =
6013       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
6014 
6015   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
6016 }
6017 
6018 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
6019     SDValue Op, SelectionDAG &DAG) const {
6020   MVT VT = Op.getSimpleValueType();
6021   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6022 
6023   MVT I1ContainerVT =
6024       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6025 
6026   SDValue CC =
6027       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
6028   SDValue Op1 =
6029       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6030   SDValue Op2 =
6031       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
6032 
6033   SDLoc DL(Op);
6034   SDValue Mask, VL;
6035   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6036 
6037   SDValue Select =
6038       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6039 
6040   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6041 }
6042 
6043 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6044                                                unsigned NewOpc,
6045                                                bool HasMask) const {
6046   MVT VT = Op.getSimpleValueType();
6047   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6048 
6049   // Create list of operands by converting existing ones to scalable types.
6050   SmallVector<SDValue, 6> Ops;
6051   for (const SDValue &V : Op->op_values()) {
6052     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6053 
6054     // Pass through non-vector operands.
6055     if (!V.getValueType().isVector()) {
6056       Ops.push_back(V);
6057       continue;
6058     }
6059 
6060     // "cast" fixed length vector to a scalable vector.
6061     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6062            "Only fixed length vectors are supported!");
6063     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6064   }
6065 
6066   SDLoc DL(Op);
6067   SDValue Mask, VL;
6068   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6069   if (HasMask)
6070     Ops.push_back(Mask);
6071   Ops.push_back(VL);
6072 
6073   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6074   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6075 }
6076 
6077 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6078 // * Operands of each node are assumed to be in the same order.
6079 // * The EVL operand is promoted from i32 to i64 on RV64.
6080 // * Fixed-length vectors are converted to their scalable-vector container
6081 //   types.
6082 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6083                                        unsigned RISCVISDOpc) const {
6084   SDLoc DL(Op);
6085   MVT VT = Op.getSimpleValueType();
6086   SmallVector<SDValue, 4> Ops;
6087 
6088   for (const auto &OpIdx : enumerate(Op->ops())) {
6089     SDValue V = OpIdx.value();
6090     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6091     // Pass through operands which aren't fixed-length vectors.
6092     if (!V.getValueType().isFixedLengthVector()) {
6093       Ops.push_back(V);
6094       continue;
6095     }
6096     // "cast" fixed length vector to a scalable vector.
6097     MVT OpVT = V.getSimpleValueType();
6098     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6099     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6100            "Only fixed length vectors are supported!");
6101     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6102   }
6103 
6104   if (!VT.isFixedLengthVector())
6105     return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags());
6106 
6107   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6108 
6109   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags());
6110 
6111   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6112 }
6113 
6114 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op,
6115                                               SelectionDAG &DAG) const {
6116   SDLoc DL(Op);
6117   MVT VT = Op.getSimpleValueType();
6118 
6119   SDValue Src = Op.getOperand(0);
6120   // NOTE: Mask is dropped.
6121   SDValue VL = Op.getOperand(2);
6122 
6123   MVT ContainerVT = VT;
6124   if (VT.isFixedLengthVector()) {
6125     ContainerVT = getContainerForFixedLengthVector(VT);
6126     MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6127     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6128   }
6129 
6130   MVT XLenVT = Subtarget.getXLenVT();
6131   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6132   SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6133                                   DAG.getUNDEF(ContainerVT), Zero, VL);
6134 
6135   SDValue SplatValue = DAG.getConstant(
6136       Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT);
6137   SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6138                               DAG.getUNDEF(ContainerVT), SplatValue, VL);
6139 
6140   SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src,
6141                                Splat, ZeroSplat, VL);
6142   if (!VT.isFixedLengthVector())
6143     return Result;
6144   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6145 }
6146 
6147 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op,
6148                                                 SelectionDAG &DAG) const {
6149   SDLoc DL(Op);
6150   MVT VT = Op.getSimpleValueType();
6151 
6152   SDValue Op1 = Op.getOperand(0);
6153   SDValue Op2 = Op.getOperand(1);
6154   ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6155   // NOTE: Mask is dropped.
6156   SDValue VL = Op.getOperand(4);
6157 
6158   MVT ContainerVT = VT;
6159   if (VT.isFixedLengthVector()) {
6160     ContainerVT = getContainerForFixedLengthVector(VT);
6161     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6162     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6163   }
6164 
6165   SDValue Result;
6166   SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
6167 
6168   switch (Condition) {
6169   default:
6170     break;
6171   // X != Y  --> (X^Y)
6172   case ISD::SETNE:
6173     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6174     break;
6175   // X == Y  --> ~(X^Y)
6176   case ISD::SETEQ: {
6177     SDValue Temp =
6178         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6179     Result =
6180         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL);
6181     break;
6182   }
6183   // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
6184   // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
6185   case ISD::SETGT:
6186   case ISD::SETULT: {
6187     SDValue Temp =
6188         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6189     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL);
6190     break;
6191   }
6192   // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
6193   // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
6194   case ISD::SETLT:
6195   case ISD::SETUGT: {
6196     SDValue Temp =
6197         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6198     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL);
6199     break;
6200   }
6201   // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
6202   // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
6203   case ISD::SETGE:
6204   case ISD::SETULE: {
6205     SDValue Temp =
6206         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6207     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL);
6208     break;
6209   }
6210   // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
6211   // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
6212   case ISD::SETLE:
6213   case ISD::SETUGE: {
6214     SDValue Temp =
6215         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6216     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL);
6217     break;
6218   }
6219   }
6220 
6221   if (!VT.isFixedLengthVector())
6222     return Result;
6223   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6224 }
6225 
6226 // Lower Floating-Point/Integer Type-Convert VP SDNodes
6227 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG,
6228                                                 unsigned RISCVISDOpc) const {
6229   SDLoc DL(Op);
6230 
6231   SDValue Src = Op.getOperand(0);
6232   SDValue Mask = Op.getOperand(1);
6233   SDValue VL = Op.getOperand(2);
6234 
6235   MVT DstVT = Op.getSimpleValueType();
6236   MVT SrcVT = Src.getSimpleValueType();
6237   if (DstVT.isFixedLengthVector()) {
6238     DstVT = getContainerForFixedLengthVector(DstVT);
6239     SrcVT = getContainerForFixedLengthVector(SrcVT);
6240     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6241     MVT MaskVT = getMaskTypeFor(DstVT);
6242     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6243   }
6244 
6245   unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL ||
6246                              RISCVISDOpc == RISCVISD::FP_TO_SINT_VL)
6247                                 ? RISCVISD::VSEXT_VL
6248                                 : RISCVISD::VZEXT_VL;
6249 
6250   unsigned DstEltSize = DstVT.getScalarSizeInBits();
6251   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
6252 
6253   SDValue Result;
6254   if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
6255     if (SrcVT.isInteger()) {
6256       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6257 
6258       // Do we need to do any pre-widening before converting?
6259       if (SrcEltSize == 1) {
6260         MVT IntVT = DstVT.changeVectorElementTypeToInteger();
6261         MVT XLenVT = Subtarget.getXLenVT();
6262         SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6263         SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6264                                         DAG.getUNDEF(IntVT), Zero, VL);
6265         SDValue One = DAG.getConstant(
6266             RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
6267         SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6268                                        DAG.getUNDEF(IntVT), One, VL);
6269         Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat,
6270                           ZeroSplat, VL);
6271       } else if (DstEltSize > (2 * SrcEltSize)) {
6272         // Widen before converting.
6273         MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
6274                                      DstVT.getVectorElementCount());
6275         Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
6276       }
6277 
6278       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6279     } else {
6280       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6281              "Wrong input/output vector types");
6282 
6283       // Convert f16 to f32 then convert f32 to i64.
6284       if (DstEltSize > (2 * SrcEltSize)) {
6285         assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6286         MVT InterimFVT =
6287             MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6288         Src =
6289             DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
6290       }
6291 
6292       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6293     }
6294   } else { // Narrowing + Conversion
6295     if (SrcVT.isInteger()) {
6296       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6297       // First do a narrowing convert to an FP type half the size, then round
6298       // the FP type to a small FP type if needed.
6299 
6300       MVT InterimFVT = DstVT;
6301       if (SrcEltSize > (2 * DstEltSize)) {
6302         assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
6303         assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6304         InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6305       }
6306 
6307       Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
6308 
6309       if (InterimFVT != DstVT) {
6310         Src = Result;
6311         Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
6312       }
6313     } else {
6314       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6315              "Wrong input/output vector types");
6316       // First do a narrowing conversion to an integer half the size, then
6317       // truncate if needed.
6318 
6319       if (DstEltSize == 1) {
6320         // First convert to the same size integer, then convert to mask using
6321         // setcc.
6322         assert(SrcEltSize >= 16 && "Unexpected FP type!");
6323         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
6324                                           DstVT.getVectorElementCount());
6325         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6326 
6327         // Compare the integer result to 0. The integer should be 0 or 1/-1,
6328         // otherwise the conversion was undefined.
6329         MVT XLenVT = Subtarget.getXLenVT();
6330         SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
6331         SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
6332                                 DAG.getUNDEF(InterimIVT), SplatZero);
6333         Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero,
6334                              DAG.getCondCode(ISD::SETNE), Mask, VL);
6335       } else {
6336         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6337                                           DstVT.getVectorElementCount());
6338 
6339         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6340 
6341         while (InterimIVT != DstVT) {
6342           SrcEltSize /= 2;
6343           Src = Result;
6344           InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6345                                         DstVT.getVectorElementCount());
6346           Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
6347                                Src, Mask, VL);
6348         }
6349       }
6350     }
6351   }
6352 
6353   MVT VT = Op.getSimpleValueType();
6354   if (!VT.isFixedLengthVector())
6355     return Result;
6356   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6357 }
6358 
6359 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6360                                             unsigned MaskOpc,
6361                                             unsigned VecOpc) const {
6362   MVT VT = Op.getSimpleValueType();
6363   if (VT.getVectorElementType() != MVT::i1)
6364     return lowerVPOp(Op, DAG, VecOpc);
6365 
6366   // It is safe to drop mask parameter as masked-off elements are undef.
6367   SDValue Op1 = Op->getOperand(0);
6368   SDValue Op2 = Op->getOperand(1);
6369   SDValue VL = Op->getOperand(3);
6370 
6371   MVT ContainerVT = VT;
6372   const bool IsFixed = VT.isFixedLengthVector();
6373   if (IsFixed) {
6374     ContainerVT = getContainerForFixedLengthVector(VT);
6375     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6376     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6377   }
6378 
6379   SDLoc DL(Op);
6380   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6381   if (!IsFixed)
6382     return Val;
6383   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6384 }
6385 
6386 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6387 // matched to a RVV indexed load. The RVV indexed load instructions only
6388 // support the "unsigned unscaled" addressing mode; indices are implicitly
6389 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6390 // signed or scaled indexing is extended to the XLEN value type and scaled
6391 // accordingly.
6392 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6393                                                SelectionDAG &DAG) const {
6394   SDLoc DL(Op);
6395   MVT VT = Op.getSimpleValueType();
6396 
6397   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6398   EVT MemVT = MemSD->getMemoryVT();
6399   MachineMemOperand *MMO = MemSD->getMemOperand();
6400   SDValue Chain = MemSD->getChain();
6401   SDValue BasePtr = MemSD->getBasePtr();
6402 
6403   ISD::LoadExtType LoadExtType;
6404   SDValue Index, Mask, PassThru, VL;
6405 
6406   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6407     Index = VPGN->getIndex();
6408     Mask = VPGN->getMask();
6409     PassThru = DAG.getUNDEF(VT);
6410     VL = VPGN->getVectorLength();
6411     // VP doesn't support extending loads.
6412     LoadExtType = ISD::NON_EXTLOAD;
6413   } else {
6414     // Else it must be a MGATHER.
6415     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6416     Index = MGN->getIndex();
6417     Mask = MGN->getMask();
6418     PassThru = MGN->getPassThru();
6419     LoadExtType = MGN->getExtensionType();
6420   }
6421 
6422   MVT IndexVT = Index.getSimpleValueType();
6423   MVT XLenVT = Subtarget.getXLenVT();
6424 
6425   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6426          "Unexpected VTs!");
6427   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6428   // Targets have to explicitly opt-in for extending vector loads.
6429   assert(LoadExtType == ISD::NON_EXTLOAD &&
6430          "Unexpected extending MGATHER/VP_GATHER");
6431   (void)LoadExtType;
6432 
6433   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6434   // the selection of the masked intrinsics doesn't do this for us.
6435   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6436 
6437   MVT ContainerVT = VT;
6438   if (VT.isFixedLengthVector()) {
6439     ContainerVT = getContainerForFixedLengthVector(VT);
6440     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6441                                ContainerVT.getVectorElementCount());
6442 
6443     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6444 
6445     if (!IsUnmasked) {
6446       MVT MaskVT = getMaskTypeFor(ContainerVT);
6447       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6448       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6449     }
6450   }
6451 
6452   if (!VL)
6453     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6454 
6455   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6456     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6457     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6458                                    VL);
6459     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6460                         TrueMask, VL);
6461   }
6462 
6463   unsigned IntID =
6464       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6465   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6466   if (IsUnmasked)
6467     Ops.push_back(DAG.getUNDEF(ContainerVT));
6468   else
6469     Ops.push_back(PassThru);
6470   Ops.push_back(BasePtr);
6471   Ops.push_back(Index);
6472   if (!IsUnmasked)
6473     Ops.push_back(Mask);
6474   Ops.push_back(VL);
6475   if (!IsUnmasked)
6476     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6477 
6478   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6479   SDValue Result =
6480       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6481   Chain = Result.getValue(1);
6482 
6483   if (VT.isFixedLengthVector())
6484     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6485 
6486   return DAG.getMergeValues({Result, Chain}, DL);
6487 }
6488 
6489 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6490 // matched to a RVV indexed store. The RVV indexed store instructions only
6491 // support the "unsigned unscaled" addressing mode; indices are implicitly
6492 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6493 // signed or scaled indexing is extended to the XLEN value type and scaled
6494 // accordingly.
6495 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6496                                                 SelectionDAG &DAG) const {
6497   SDLoc DL(Op);
6498   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6499   EVT MemVT = MemSD->getMemoryVT();
6500   MachineMemOperand *MMO = MemSD->getMemOperand();
6501   SDValue Chain = MemSD->getChain();
6502   SDValue BasePtr = MemSD->getBasePtr();
6503 
6504   bool IsTruncatingStore = false;
6505   SDValue Index, Mask, Val, VL;
6506 
6507   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6508     Index = VPSN->getIndex();
6509     Mask = VPSN->getMask();
6510     Val = VPSN->getValue();
6511     VL = VPSN->getVectorLength();
6512     // VP doesn't support truncating stores.
6513     IsTruncatingStore = false;
6514   } else {
6515     // Else it must be a MSCATTER.
6516     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6517     Index = MSN->getIndex();
6518     Mask = MSN->getMask();
6519     Val = MSN->getValue();
6520     IsTruncatingStore = MSN->isTruncatingStore();
6521   }
6522 
6523   MVT VT = Val.getSimpleValueType();
6524   MVT IndexVT = Index.getSimpleValueType();
6525   MVT XLenVT = Subtarget.getXLenVT();
6526 
6527   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6528          "Unexpected VTs!");
6529   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6530   // Targets have to explicitly opt-in for extending vector loads and
6531   // truncating vector stores.
6532   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6533   (void)IsTruncatingStore;
6534 
6535   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6536   // the selection of the masked intrinsics doesn't do this for us.
6537   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6538 
6539   MVT ContainerVT = VT;
6540   if (VT.isFixedLengthVector()) {
6541     ContainerVT = getContainerForFixedLengthVector(VT);
6542     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6543                                ContainerVT.getVectorElementCount());
6544 
6545     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6546     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6547 
6548     if (!IsUnmasked) {
6549       MVT MaskVT = getMaskTypeFor(ContainerVT);
6550       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6551     }
6552   }
6553 
6554   if (!VL)
6555     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6556 
6557   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6558     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6559     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6560                                    VL);
6561     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6562                         TrueMask, VL);
6563   }
6564 
6565   unsigned IntID =
6566       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6567   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6568   Ops.push_back(Val);
6569   Ops.push_back(BasePtr);
6570   Ops.push_back(Index);
6571   if (!IsUnmasked)
6572     Ops.push_back(Mask);
6573   Ops.push_back(VL);
6574 
6575   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6576                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6577 }
6578 
6579 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6580                                                SelectionDAG &DAG) const {
6581   const MVT XLenVT = Subtarget.getXLenVT();
6582   SDLoc DL(Op);
6583   SDValue Chain = Op->getOperand(0);
6584   SDValue SysRegNo = DAG.getTargetConstant(
6585       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6586   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6587   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6588 
6589   // Encoding used for rounding mode in RISCV differs from that used in
6590   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6591   // table, which consists of a sequence of 4-bit fields, each representing
6592   // corresponding FLT_ROUNDS mode.
6593   static const int Table =
6594       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6595       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6596       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6597       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6598       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6599 
6600   SDValue Shift =
6601       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6602   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6603                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6604   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6605                                DAG.getConstant(7, DL, XLenVT));
6606 
6607   return DAG.getMergeValues({Masked, Chain}, DL);
6608 }
6609 
6610 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6611                                                SelectionDAG &DAG) const {
6612   const MVT XLenVT = Subtarget.getXLenVT();
6613   SDLoc DL(Op);
6614   SDValue Chain = Op->getOperand(0);
6615   SDValue RMValue = Op->getOperand(1);
6616   SDValue SysRegNo = DAG.getTargetConstant(
6617       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6618 
6619   // Encoding used for rounding mode in RISCV differs from that used in
6620   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6621   // a table, which consists of a sequence of 4-bit fields, each representing
6622   // corresponding RISCV mode.
6623   static const unsigned Table =
6624       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6625       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6626       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6627       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6628       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6629 
6630   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6631                               DAG.getConstant(2, DL, XLenVT));
6632   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6633                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6634   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6635                         DAG.getConstant(0x7, DL, XLenVT));
6636   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6637                      RMValue);
6638 }
6639 
6640 SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
6641                                                SelectionDAG &DAG) const {
6642   MachineFunction &MF = DAG.getMachineFunction();
6643 
6644   bool isRISCV64 = Subtarget.is64Bit();
6645   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6646 
6647   int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false);
6648   return DAG.getFrameIndex(FI, PtrVT);
6649 }
6650 
6651 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6652   switch (IntNo) {
6653   default:
6654     llvm_unreachable("Unexpected Intrinsic");
6655   case Intrinsic::riscv_bcompress:
6656     return RISCVISD::BCOMPRESSW;
6657   case Intrinsic::riscv_bdecompress:
6658     return RISCVISD::BDECOMPRESSW;
6659   case Intrinsic::riscv_bfp:
6660     return RISCVISD::BFPW;
6661   case Intrinsic::riscv_fsl:
6662     return RISCVISD::FSLW;
6663   case Intrinsic::riscv_fsr:
6664     return RISCVISD::FSRW;
6665   }
6666 }
6667 
6668 // Converts the given intrinsic to a i64 operation with any extension.
6669 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6670                                          unsigned IntNo) {
6671   SDLoc DL(N);
6672   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6673   // Deal with the Instruction Operands
6674   SmallVector<SDValue, 3> NewOps;
6675   for (SDValue Op : drop_begin(N->ops()))
6676     // Promote the operand to i64 type
6677     NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op));
6678   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps);
6679   // ReplaceNodeResults requires we maintain the same type for the return value.
6680   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6681 }
6682 
6683 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6684 // form of the given Opcode.
6685 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6686   switch (Opcode) {
6687   default:
6688     llvm_unreachable("Unexpected opcode");
6689   case ISD::SHL:
6690     return RISCVISD::SLLW;
6691   case ISD::SRA:
6692     return RISCVISD::SRAW;
6693   case ISD::SRL:
6694     return RISCVISD::SRLW;
6695   case ISD::SDIV:
6696     return RISCVISD::DIVW;
6697   case ISD::UDIV:
6698     return RISCVISD::DIVUW;
6699   case ISD::UREM:
6700     return RISCVISD::REMUW;
6701   case ISD::ROTL:
6702     return RISCVISD::ROLW;
6703   case ISD::ROTR:
6704     return RISCVISD::RORW;
6705   }
6706 }
6707 
6708 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6709 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6710 // otherwise be promoted to i64, making it difficult to select the
6711 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6712 // type i8/i16/i32 is lost.
6713 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6714                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6715   SDLoc DL(N);
6716   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6717   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6718   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6719   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6720   // ReplaceNodeResults requires we maintain the same type for the return value.
6721   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6722 }
6723 
6724 // Converts the given 32-bit operation to a i64 operation with signed extension
6725 // semantic to reduce the signed extension instructions.
6726 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6727   SDLoc DL(N);
6728   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6729   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6730   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6731   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6732                                DAG.getValueType(MVT::i32));
6733   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6734 }
6735 
6736 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6737                                              SmallVectorImpl<SDValue> &Results,
6738                                              SelectionDAG &DAG) const {
6739   SDLoc DL(N);
6740   switch (N->getOpcode()) {
6741   default:
6742     llvm_unreachable("Don't know how to custom type legalize this operation!");
6743   case ISD::STRICT_FP_TO_SINT:
6744   case ISD::STRICT_FP_TO_UINT:
6745   case ISD::FP_TO_SINT:
6746   case ISD::FP_TO_UINT: {
6747     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6748            "Unexpected custom legalisation");
6749     bool IsStrict = N->isStrictFPOpcode();
6750     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6751                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6752     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6753     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6754         TargetLowering::TypeSoftenFloat) {
6755       if (!isTypeLegal(Op0.getValueType()))
6756         return;
6757       if (IsStrict) {
6758         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6759                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6760         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6761         SDValue Res = DAG.getNode(
6762             Opc, DL, VTs, N->getOperand(0), Op0,
6763             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6764         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6765         Results.push_back(Res.getValue(1));
6766         return;
6767       }
6768       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6769       SDValue Res =
6770           DAG.getNode(Opc, DL, MVT::i64, Op0,
6771                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6772       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6773       return;
6774     }
6775     // If the FP type needs to be softened, emit a library call using the 'si'
6776     // version. If we left it to default legalization we'd end up with 'di'. If
6777     // the FP type doesn't need to be softened just let generic type
6778     // legalization promote the result type.
6779     RTLIB::Libcall LC;
6780     if (IsSigned)
6781       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6782     else
6783       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6784     MakeLibCallOptions CallOptions;
6785     EVT OpVT = Op0.getValueType();
6786     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6787     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6788     SDValue Result;
6789     std::tie(Result, Chain) =
6790         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6791     Results.push_back(Result);
6792     if (IsStrict)
6793       Results.push_back(Chain);
6794     break;
6795   }
6796   case ISD::READCYCLECOUNTER: {
6797     assert(!Subtarget.is64Bit() &&
6798            "READCYCLECOUNTER only has custom type legalization on riscv32");
6799 
6800     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6801     SDValue RCW =
6802         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6803 
6804     Results.push_back(
6805         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6806     Results.push_back(RCW.getValue(2));
6807     break;
6808   }
6809   case ISD::MUL: {
6810     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6811     unsigned XLen = Subtarget.getXLen();
6812     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6813     if (Size > XLen) {
6814       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6815       SDValue LHS = N->getOperand(0);
6816       SDValue RHS = N->getOperand(1);
6817       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6818 
6819       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6820       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6821       // We need exactly one side to be unsigned.
6822       if (LHSIsU == RHSIsU)
6823         return;
6824 
6825       auto MakeMULPair = [&](SDValue S, SDValue U) {
6826         MVT XLenVT = Subtarget.getXLenVT();
6827         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6828         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6829         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6830         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6831         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6832       };
6833 
6834       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6835       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6836 
6837       // The other operand should be signed, but still prefer MULH when
6838       // possible.
6839       if (RHSIsU && LHSIsS && !RHSIsS)
6840         Results.push_back(MakeMULPair(LHS, RHS));
6841       else if (LHSIsU && RHSIsS && !LHSIsS)
6842         Results.push_back(MakeMULPair(RHS, LHS));
6843 
6844       return;
6845     }
6846     LLVM_FALLTHROUGH;
6847   }
6848   case ISD::ADD:
6849   case ISD::SUB:
6850     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6851            "Unexpected custom legalisation");
6852     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6853     break;
6854   case ISD::SHL:
6855   case ISD::SRA:
6856   case ISD::SRL:
6857     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6858            "Unexpected custom legalisation");
6859     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6860       // If we can use a BSET instruction, allow default promotion to apply.
6861       if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() &&
6862           isOneConstant(N->getOperand(0)))
6863         break;
6864       Results.push_back(customLegalizeToWOp(N, DAG));
6865       break;
6866     }
6867 
6868     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6869     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6870     // shift amount.
6871     if (N->getOpcode() == ISD::SHL) {
6872       SDLoc DL(N);
6873       SDValue NewOp0 =
6874           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6875       SDValue NewOp1 =
6876           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6877       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6878       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6879                                    DAG.getValueType(MVT::i32));
6880       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6881     }
6882 
6883     break;
6884   case ISD::ROTL:
6885   case ISD::ROTR:
6886     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6887            "Unexpected custom legalisation");
6888     Results.push_back(customLegalizeToWOp(N, DAG));
6889     break;
6890   case ISD::CTTZ:
6891   case ISD::CTTZ_ZERO_UNDEF:
6892   case ISD::CTLZ:
6893   case ISD::CTLZ_ZERO_UNDEF: {
6894     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6895            "Unexpected custom legalisation");
6896 
6897     SDValue NewOp0 =
6898         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6899     bool IsCTZ =
6900         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6901     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6902     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6903     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6904     return;
6905   }
6906   case ISD::SDIV:
6907   case ISD::UDIV:
6908   case ISD::UREM: {
6909     MVT VT = N->getSimpleValueType(0);
6910     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6911            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6912            "Unexpected custom legalisation");
6913     // Don't promote division/remainder by constant since we should expand those
6914     // to multiply by magic constant.
6915     // FIXME: What if the expansion is disabled for minsize.
6916     if (N->getOperand(1).getOpcode() == ISD::Constant)
6917       return;
6918 
6919     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6920     // the upper 32 bits. For other types we need to sign or zero extend
6921     // based on the opcode.
6922     unsigned ExtOpc = ISD::ANY_EXTEND;
6923     if (VT != MVT::i32)
6924       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6925                                            : ISD::ZERO_EXTEND;
6926 
6927     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6928     break;
6929   }
6930   case ISD::UADDO:
6931   case ISD::USUBO: {
6932     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6933            "Unexpected custom legalisation");
6934     bool IsAdd = N->getOpcode() == ISD::UADDO;
6935     // Create an ADDW or SUBW.
6936     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6937     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6938     SDValue Res =
6939         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6940     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6941                       DAG.getValueType(MVT::i32));
6942 
6943     SDValue Overflow;
6944     if (IsAdd && isOneConstant(RHS)) {
6945       // Special case uaddo X, 1 overflowed if the addition result is 0.
6946       // The general case (X + C) < C is not necessarily beneficial. Although we
6947       // reduce the live range of X, we may introduce the materialization of
6948       // constant C, especially when the setcc result is used by branch. We have
6949       // no compare with constant and branch instructions.
6950       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
6951                               DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
6952     } else {
6953       // Sign extend the LHS and perform an unsigned compare with the ADDW
6954       // result. Since the inputs are sign extended from i32, this is equivalent
6955       // to comparing the lower 32 bits.
6956       LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6957       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6958                               IsAdd ? ISD::SETULT : ISD::SETUGT);
6959     }
6960 
6961     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6962     Results.push_back(Overflow);
6963     return;
6964   }
6965   case ISD::UADDSAT:
6966   case ISD::USUBSAT: {
6967     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6968            "Unexpected custom legalisation");
6969     if (Subtarget.hasStdExtZbb()) {
6970       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6971       // sign extend allows overflow of the lower 32 bits to be detected on
6972       // the promoted size.
6973       SDValue LHS =
6974           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6975       SDValue RHS =
6976           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6977       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6978       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6979       return;
6980     }
6981 
6982     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6983     // promotion for UADDO/USUBO.
6984     Results.push_back(expandAddSubSat(N, DAG));
6985     return;
6986   }
6987   case ISD::ABS: {
6988     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6989            "Unexpected custom legalisation");
6990           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6991 
6992     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
6993 
6994     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6995 
6996     // Freeze the source so we can increase it's use count.
6997     Src = DAG.getFreeze(Src);
6998 
6999     // Copy sign bit to all bits using the sraiw pattern.
7000     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
7001                                    DAG.getValueType(MVT::i32));
7002     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
7003                            DAG.getConstant(31, DL, MVT::i64));
7004 
7005     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
7006     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
7007 
7008     // NOTE: The result is only required to be anyextended, but sext is
7009     // consistent with type legalization of sub.
7010     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
7011                          DAG.getValueType(MVT::i32));
7012     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
7013     return;
7014   }
7015   case ISD::BITCAST: {
7016     EVT VT = N->getValueType(0);
7017     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
7018     SDValue Op0 = N->getOperand(0);
7019     EVT Op0VT = Op0.getValueType();
7020     MVT XLenVT = Subtarget.getXLenVT();
7021     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
7022       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
7023       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
7024     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
7025                Subtarget.hasStdExtF()) {
7026       SDValue FPConv =
7027           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
7028       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
7029     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
7030                isTypeLegal(Op0VT)) {
7031       // Custom-legalize bitcasts from fixed-length vector types to illegal
7032       // scalar types in order to improve codegen. Bitcast the vector to a
7033       // one-element vector type whose element type is the same as the result
7034       // type, and extract the first element.
7035       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
7036       if (isTypeLegal(BVT)) {
7037         SDValue BVec = DAG.getBitcast(BVT, Op0);
7038         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
7039                                       DAG.getConstant(0, DL, XLenVT)));
7040       }
7041     }
7042     break;
7043   }
7044   case RISCVISD::GREV:
7045   case RISCVISD::GORC:
7046   case RISCVISD::SHFL: {
7047     MVT VT = N->getSimpleValueType(0);
7048     MVT XLenVT = Subtarget.getXLenVT();
7049     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
7050            "Unexpected custom legalisation");
7051     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
7052     assert((Subtarget.hasStdExtZbp() ||
7053             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
7054              N->getConstantOperandVal(1) == 7)) &&
7055            "Unexpected extension");
7056     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7057     SDValue NewOp1 =
7058         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
7059     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
7060     // ReplaceNodeResults requires we maintain the same type for the return
7061     // value.
7062     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
7063     break;
7064   }
7065   case ISD::BSWAP:
7066   case ISD::BITREVERSE: {
7067     MVT VT = N->getSimpleValueType(0);
7068     MVT XLenVT = Subtarget.getXLenVT();
7069     assert((VT == MVT::i8 || VT == MVT::i16 ||
7070             (VT == MVT::i32 && Subtarget.is64Bit())) &&
7071            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
7072     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7073     unsigned Imm = VT.getSizeInBits() - 1;
7074     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
7075     if (N->getOpcode() == ISD::BSWAP)
7076       Imm &= ~0x7U;
7077     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
7078                                 DAG.getConstant(Imm, DL, XLenVT));
7079     // ReplaceNodeResults requires we maintain the same type for the return
7080     // value.
7081     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
7082     break;
7083   }
7084   case ISD::FSHL:
7085   case ISD::FSHR: {
7086     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7087            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
7088     SDValue NewOp0 =
7089         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7090     SDValue NewOp1 =
7091         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7092     SDValue NewShAmt =
7093         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7094     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
7095     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
7096     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
7097                            DAG.getConstant(0x1f, DL, MVT::i64));
7098     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
7099     // instruction use different orders. fshl will return its first operand for
7100     // shift of zero, fshr will return its second operand. fsl and fsr both
7101     // return rs1 so the ISD nodes need to have different operand orders.
7102     // Shift amount is in rs2.
7103     unsigned Opc = RISCVISD::FSLW;
7104     if (N->getOpcode() == ISD::FSHR) {
7105       std::swap(NewOp0, NewOp1);
7106       Opc = RISCVISD::FSRW;
7107     }
7108     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
7109     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
7110     break;
7111   }
7112   case ISD::EXTRACT_VECTOR_ELT: {
7113     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
7114     // type is illegal (currently only vXi64 RV32).
7115     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
7116     // transferred to the destination register. We issue two of these from the
7117     // upper- and lower- halves of the SEW-bit vector element, slid down to the
7118     // first element.
7119     SDValue Vec = N->getOperand(0);
7120     SDValue Idx = N->getOperand(1);
7121 
7122     // The vector type hasn't been legalized yet so we can't issue target
7123     // specific nodes if it needs legalization.
7124     // FIXME: We would manually legalize if it's important.
7125     if (!isTypeLegal(Vec.getValueType()))
7126       return;
7127 
7128     MVT VecVT = Vec.getSimpleValueType();
7129 
7130     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
7131            VecVT.getVectorElementType() == MVT::i64 &&
7132            "Unexpected EXTRACT_VECTOR_ELT legalization");
7133 
7134     // If this is a fixed vector, we need to convert it to a scalable vector.
7135     MVT ContainerVT = VecVT;
7136     if (VecVT.isFixedLengthVector()) {
7137       ContainerVT = getContainerForFixedLengthVector(VecVT);
7138       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
7139     }
7140 
7141     MVT XLenVT = Subtarget.getXLenVT();
7142 
7143     // Use a VL of 1 to avoid processing more elements than we need.
7144     SDValue VL = DAG.getConstant(1, DL, XLenVT);
7145     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
7146 
7147     // Unless the index is known to be 0, we must slide the vector down to get
7148     // the desired element into index 0.
7149     if (!isNullConstant(Idx)) {
7150       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
7151                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
7152     }
7153 
7154     // Extract the lower XLEN bits of the correct vector element.
7155     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7156 
7157     // To extract the upper XLEN bits of the vector element, shift the first
7158     // element right by 32 bits and re-extract the lower XLEN bits.
7159     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
7160                                      DAG.getUNDEF(ContainerVT),
7161                                      DAG.getConstant(32, DL, XLenVT), VL);
7162     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
7163                                  ThirtyTwoV, Mask, VL);
7164 
7165     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7166 
7167     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7168     break;
7169   }
7170   case ISD::INTRINSIC_WO_CHAIN: {
7171     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7172     switch (IntNo) {
7173     default:
7174       llvm_unreachable(
7175           "Don't know how to custom type legalize this intrinsic!");
7176     case Intrinsic::riscv_grev:
7177     case Intrinsic::riscv_gorc: {
7178       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7179              "Unexpected custom legalisation");
7180       SDValue NewOp1 =
7181           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7182       SDValue NewOp2 =
7183           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7184       unsigned Opc =
7185           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
7186       // If the control is a constant, promote the node by clearing any extra
7187       // bits bits in the control. isel will form greviw/gorciw if the result is
7188       // sign extended.
7189       if (isa<ConstantSDNode>(NewOp2)) {
7190         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7191                              DAG.getConstant(0x1f, DL, MVT::i64));
7192         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
7193       }
7194       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7195       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7196       break;
7197     }
7198     case Intrinsic::riscv_bcompress:
7199     case Intrinsic::riscv_bdecompress:
7200     case Intrinsic::riscv_bfp:
7201     case Intrinsic::riscv_fsl:
7202     case Intrinsic::riscv_fsr: {
7203       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7204              "Unexpected custom legalisation");
7205       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
7206       break;
7207     }
7208     case Intrinsic::riscv_orc_b: {
7209       // Lower to the GORCI encoding for orc.b with the operand extended.
7210       SDValue NewOp =
7211           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7212       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
7213                                 DAG.getConstant(7, DL, MVT::i64));
7214       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7215       return;
7216     }
7217     case Intrinsic::riscv_shfl:
7218     case Intrinsic::riscv_unshfl: {
7219       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7220              "Unexpected custom legalisation");
7221       SDValue NewOp1 =
7222           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7223       SDValue NewOp2 =
7224           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7225       unsigned Opc =
7226           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7227       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7228       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7229       // will be shuffled the same way as the lower 32 bit half, but the two
7230       // halves won't cross.
7231       if (isa<ConstantSDNode>(NewOp2)) {
7232         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7233                              DAG.getConstant(0xf, DL, MVT::i64));
7234         Opc =
7235             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7236       }
7237       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7238       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7239       break;
7240     }
7241     case Intrinsic::riscv_vmv_x_s: {
7242       EVT VT = N->getValueType(0);
7243       MVT XLenVT = Subtarget.getXLenVT();
7244       if (VT.bitsLT(XLenVT)) {
7245         // Simple case just extract using vmv.x.s and truncate.
7246         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7247                                       Subtarget.getXLenVT(), N->getOperand(1));
7248         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7249         return;
7250       }
7251 
7252       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7253              "Unexpected custom legalization");
7254 
7255       // We need to do the move in two steps.
7256       SDValue Vec = N->getOperand(1);
7257       MVT VecVT = Vec.getSimpleValueType();
7258 
7259       // First extract the lower XLEN bits of the element.
7260       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7261 
7262       // To extract the upper XLEN bits of the vector element, shift the first
7263       // element right by 32 bits and re-extract the lower XLEN bits.
7264       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7265       SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG);
7266 
7267       SDValue ThirtyTwoV =
7268           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7269                       DAG.getConstant(32, DL, XLenVT), VL);
7270       SDValue LShr32 =
7271           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7272       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7273 
7274       Results.push_back(
7275           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7276       break;
7277     }
7278     }
7279     break;
7280   }
7281   case ISD::VECREDUCE_ADD:
7282   case ISD::VECREDUCE_AND:
7283   case ISD::VECREDUCE_OR:
7284   case ISD::VECREDUCE_XOR:
7285   case ISD::VECREDUCE_SMAX:
7286   case ISD::VECREDUCE_UMAX:
7287   case ISD::VECREDUCE_SMIN:
7288   case ISD::VECREDUCE_UMIN:
7289     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7290       Results.push_back(V);
7291     break;
7292   case ISD::VP_REDUCE_ADD:
7293   case ISD::VP_REDUCE_AND:
7294   case ISD::VP_REDUCE_OR:
7295   case ISD::VP_REDUCE_XOR:
7296   case ISD::VP_REDUCE_SMAX:
7297   case ISD::VP_REDUCE_UMAX:
7298   case ISD::VP_REDUCE_SMIN:
7299   case ISD::VP_REDUCE_UMIN:
7300     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7301       Results.push_back(V);
7302     break;
7303   case ISD::FLT_ROUNDS_: {
7304     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7305     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7306     Results.push_back(Res.getValue(0));
7307     Results.push_back(Res.getValue(1));
7308     break;
7309   }
7310   }
7311 }
7312 
7313 // A structure to hold one of the bit-manipulation patterns below. Together, a
7314 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7315 //   (or (and (shl x, 1), 0xAAAAAAAA),
7316 //       (and (srl x, 1), 0x55555555))
7317 struct RISCVBitmanipPat {
7318   SDValue Op;
7319   unsigned ShAmt;
7320   bool IsSHL;
7321 
7322   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7323     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7324   }
7325 };
7326 
7327 // Matches patterns of the form
7328 //   (and (shl x, C2), (C1 << C2))
7329 //   (and (srl x, C2), C1)
7330 //   (shl (and x, C1), C2)
7331 //   (srl (and x, (C1 << C2)), C2)
7332 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7333 // The expected masks for each shift amount are specified in BitmanipMasks where
7334 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7335 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7336 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7337 // XLen is 64.
7338 static Optional<RISCVBitmanipPat>
7339 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7340   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7341          "Unexpected number of masks");
7342   Optional<uint64_t> Mask;
7343   // Optionally consume a mask around the shift operation.
7344   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7345     Mask = Op.getConstantOperandVal(1);
7346     Op = Op.getOperand(0);
7347   }
7348   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7349     return None;
7350   bool IsSHL = Op.getOpcode() == ISD::SHL;
7351 
7352   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7353     return None;
7354   uint64_t ShAmt = Op.getConstantOperandVal(1);
7355 
7356   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7357   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7358     return None;
7359   // If we don't have enough masks for 64 bit, then we must be trying to
7360   // match SHFL so we're only allowed to shift 1/4 of the width.
7361   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7362     return None;
7363 
7364   SDValue Src = Op.getOperand(0);
7365 
7366   // The expected mask is shifted left when the AND is found around SHL
7367   // patterns.
7368   //   ((x >> 1) & 0x55555555)
7369   //   ((x << 1) & 0xAAAAAAAA)
7370   bool SHLExpMask = IsSHL;
7371 
7372   if (!Mask) {
7373     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7374     // the mask is all ones: consume that now.
7375     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7376       Mask = Src.getConstantOperandVal(1);
7377       Src = Src.getOperand(0);
7378       // The expected mask is now in fact shifted left for SRL, so reverse the
7379       // decision.
7380       //   ((x & 0xAAAAAAAA) >> 1)
7381       //   ((x & 0x55555555) << 1)
7382       SHLExpMask = !SHLExpMask;
7383     } else {
7384       // Use a default shifted mask of all-ones if there's no AND, truncated
7385       // down to the expected width. This simplifies the logic later on.
7386       Mask = maskTrailingOnes<uint64_t>(Width);
7387       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7388     }
7389   }
7390 
7391   unsigned MaskIdx = Log2_32(ShAmt);
7392   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7393 
7394   if (SHLExpMask)
7395     ExpMask <<= ShAmt;
7396 
7397   if (Mask != ExpMask)
7398     return None;
7399 
7400   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7401 }
7402 
7403 // Matches any of the following bit-manipulation patterns:
7404 //   (and (shl x, 1), (0x55555555 << 1))
7405 //   (and (srl x, 1), 0x55555555)
7406 //   (shl (and x, 0x55555555), 1)
7407 //   (srl (and x, (0x55555555 << 1)), 1)
7408 // where the shift amount and mask may vary thus:
7409 //   [1]  = 0x55555555 / 0xAAAAAAAA
7410 //   [2]  = 0x33333333 / 0xCCCCCCCC
7411 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7412 //   [8]  = 0x00FF00FF / 0xFF00FF00
7413 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7414 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7415 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7416   // These are the unshifted masks which we use to match bit-manipulation
7417   // patterns. They may be shifted left in certain circumstances.
7418   static const uint64_t BitmanipMasks[] = {
7419       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7420       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7421 
7422   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7423 }
7424 
7425 // Try to fold (<bop> x, (reduction.<bop> vec, start))
7426 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG) {
7427   auto BinOpToRVVReduce = [](unsigned Opc) {
7428     switch (Opc) {
7429     default:
7430       llvm_unreachable("Unhandled binary to transfrom reduction");
7431     case ISD::ADD:
7432       return RISCVISD::VECREDUCE_ADD_VL;
7433     case ISD::UMAX:
7434       return RISCVISD::VECREDUCE_UMAX_VL;
7435     case ISD::SMAX:
7436       return RISCVISD::VECREDUCE_SMAX_VL;
7437     case ISD::UMIN:
7438       return RISCVISD::VECREDUCE_UMIN_VL;
7439     case ISD::SMIN:
7440       return RISCVISD::VECREDUCE_SMIN_VL;
7441     case ISD::AND:
7442       return RISCVISD::VECREDUCE_AND_VL;
7443     case ISD::OR:
7444       return RISCVISD::VECREDUCE_OR_VL;
7445     case ISD::XOR:
7446       return RISCVISD::VECREDUCE_XOR_VL;
7447     case ISD::FADD:
7448       return RISCVISD::VECREDUCE_FADD_VL;
7449     case ISD::FMAXNUM:
7450       return RISCVISD::VECREDUCE_FMAX_VL;
7451     case ISD::FMINNUM:
7452       return RISCVISD::VECREDUCE_FMIN_VL;
7453     }
7454   };
7455 
7456   auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) {
7457     return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7458            isNullConstant(V.getOperand(1)) &&
7459            V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc);
7460   };
7461 
7462   unsigned Opc = N->getOpcode();
7463   unsigned ReduceIdx;
7464   if (IsReduction(N->getOperand(0), Opc))
7465     ReduceIdx = 0;
7466   else if (IsReduction(N->getOperand(1), Opc))
7467     ReduceIdx = 1;
7468   else
7469     return SDValue();
7470 
7471   // Skip if FADD disallows reassociation but the combiner needs.
7472   if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation())
7473     return SDValue();
7474 
7475   SDValue Extract = N->getOperand(ReduceIdx);
7476   SDValue Reduce = Extract.getOperand(0);
7477   if (!Reduce.hasOneUse())
7478     return SDValue();
7479 
7480   SDValue ScalarV = Reduce.getOperand(2);
7481 
7482   // Make sure that ScalarV is a splat with VL=1.
7483   if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL &&
7484       ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL &&
7485       ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL)
7486     return SDValue();
7487 
7488   if (!isOneConstant(ScalarV.getOperand(2)))
7489     return SDValue();
7490 
7491   // TODO: Deal with value other than neutral element.
7492   auto IsRVVNeutralElement = [Opc, &DAG](SDNode *N, SDValue V) {
7493     if (Opc == ISD::FADD && N->getFlags().hasNoSignedZeros() &&
7494         isNullFPConstant(V))
7495       return true;
7496     return DAG.getNeutralElement(Opc, SDLoc(V), V.getSimpleValueType(),
7497                                  N->getFlags()) == V;
7498   };
7499 
7500   // Check the scalar of ScalarV is neutral element
7501   if (!IsRVVNeutralElement(N, ScalarV.getOperand(1)))
7502     return SDValue();
7503 
7504   if (!ScalarV.hasOneUse())
7505     return SDValue();
7506 
7507   EVT SplatVT = ScalarV.getValueType();
7508   SDValue NewStart = N->getOperand(1 - ReduceIdx);
7509   unsigned SplatOpc = RISCVISD::VFMV_S_F_VL;
7510   if (SplatVT.isInteger()) {
7511     auto *C = dyn_cast<ConstantSDNode>(NewStart.getNode());
7512     if (!C || C->isZero() || !isInt<5>(C->getSExtValue()))
7513       SplatOpc = RISCVISD::VMV_S_X_VL;
7514     else
7515       SplatOpc = RISCVISD::VMV_V_X_VL;
7516   }
7517 
7518   SDValue NewScalarV =
7519       DAG.getNode(SplatOpc, SDLoc(N), SplatVT, ScalarV.getOperand(0), NewStart,
7520                   ScalarV.getOperand(2));
7521   SDValue NewReduce =
7522       DAG.getNode(Reduce.getOpcode(), SDLoc(Reduce), Reduce.getValueType(),
7523                   Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV,
7524                   Reduce.getOperand(3), Reduce.getOperand(4));
7525   return DAG.getNode(Extract.getOpcode(), SDLoc(Extract),
7526                      Extract.getValueType(), NewReduce, Extract.getOperand(1));
7527 }
7528 
7529 // Match the following pattern as a GREVI(W) operation
7530 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7531 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7532                                const RISCVSubtarget &Subtarget) {
7533   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7534   EVT VT = Op.getValueType();
7535 
7536   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7537     auto LHS = matchGREVIPat(Op.getOperand(0));
7538     auto RHS = matchGREVIPat(Op.getOperand(1));
7539     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7540       SDLoc DL(Op);
7541       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7542                          DAG.getConstant(LHS->ShAmt, DL, VT));
7543     }
7544   }
7545   return SDValue();
7546 }
7547 
7548 // Matches any the following pattern as a GORCI(W) operation
7549 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7550 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7551 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7552 // Note that with the variant of 3.,
7553 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7554 // the inner pattern will first be matched as GREVI and then the outer
7555 // pattern will be matched to GORC via the first rule above.
7556 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7557 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7558                                const RISCVSubtarget &Subtarget) {
7559   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7560   EVT VT = Op.getValueType();
7561 
7562   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7563     SDLoc DL(Op);
7564     SDValue Op0 = Op.getOperand(0);
7565     SDValue Op1 = Op.getOperand(1);
7566 
7567     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7568       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7569           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7570           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7571         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7572       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7573       if ((Reverse.getOpcode() == ISD::ROTL ||
7574            Reverse.getOpcode() == ISD::ROTR) &&
7575           Reverse.getOperand(0) == X &&
7576           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7577         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7578         if (RotAmt == (VT.getSizeInBits() / 2))
7579           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7580                              DAG.getConstant(RotAmt, DL, VT));
7581       }
7582       return SDValue();
7583     };
7584 
7585     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7586     if (SDValue V = MatchOROfReverse(Op0, Op1))
7587       return V;
7588     if (SDValue V = MatchOROfReverse(Op1, Op0))
7589       return V;
7590 
7591     // OR is commutable so canonicalize its OR operand to the left
7592     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7593       std::swap(Op0, Op1);
7594     if (Op0.getOpcode() != ISD::OR)
7595       return SDValue();
7596     SDValue OrOp0 = Op0.getOperand(0);
7597     SDValue OrOp1 = Op0.getOperand(1);
7598     auto LHS = matchGREVIPat(OrOp0);
7599     // OR is commutable so swap the operands and try again: x might have been
7600     // on the left
7601     if (!LHS) {
7602       std::swap(OrOp0, OrOp1);
7603       LHS = matchGREVIPat(OrOp0);
7604     }
7605     auto RHS = matchGREVIPat(Op1);
7606     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7607       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7608                          DAG.getConstant(LHS->ShAmt, DL, VT));
7609     }
7610   }
7611   return SDValue();
7612 }
7613 
7614 // Matches any of the following bit-manipulation patterns:
7615 //   (and (shl x, 1), (0x22222222 << 1))
7616 //   (and (srl x, 1), 0x22222222)
7617 //   (shl (and x, 0x22222222), 1)
7618 //   (srl (and x, (0x22222222 << 1)), 1)
7619 // where the shift amount and mask may vary thus:
7620 //   [1]  = 0x22222222 / 0x44444444
7621 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7622 //   [4]  = 0x00F000F0 / 0x0F000F00
7623 //   [8]  = 0x0000FF00 / 0x00FF0000
7624 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7625 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7626   // These are the unshifted masks which we use to match bit-manipulation
7627   // patterns. They may be shifted left in certain circumstances.
7628   static const uint64_t BitmanipMasks[] = {
7629       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7630       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7631 
7632   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7633 }
7634 
7635 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7636 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7637                                const RISCVSubtarget &Subtarget) {
7638   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7639   EVT VT = Op.getValueType();
7640 
7641   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7642     return SDValue();
7643 
7644   SDValue Op0 = Op.getOperand(0);
7645   SDValue Op1 = Op.getOperand(1);
7646 
7647   // Or is commutable so canonicalize the second OR to the LHS.
7648   if (Op0.getOpcode() != ISD::OR)
7649     std::swap(Op0, Op1);
7650   if (Op0.getOpcode() != ISD::OR)
7651     return SDValue();
7652 
7653   // We found an inner OR, so our operands are the operands of the inner OR
7654   // and the other operand of the outer OR.
7655   SDValue A = Op0.getOperand(0);
7656   SDValue B = Op0.getOperand(1);
7657   SDValue C = Op1;
7658 
7659   auto Match1 = matchSHFLPat(A);
7660   auto Match2 = matchSHFLPat(B);
7661 
7662   // If neither matched, we failed.
7663   if (!Match1 && !Match2)
7664     return SDValue();
7665 
7666   // We had at least one match. if one failed, try the remaining C operand.
7667   if (!Match1) {
7668     std::swap(A, C);
7669     Match1 = matchSHFLPat(A);
7670     if (!Match1)
7671       return SDValue();
7672   } else if (!Match2) {
7673     std::swap(B, C);
7674     Match2 = matchSHFLPat(B);
7675     if (!Match2)
7676       return SDValue();
7677   }
7678   assert(Match1 && Match2);
7679 
7680   // Make sure our matches pair up.
7681   if (!Match1->formsPairWith(*Match2))
7682     return SDValue();
7683 
7684   // All the remains is to make sure C is an AND with the same input, that masks
7685   // out the bits that are being shuffled.
7686   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7687       C.getOperand(0) != Match1->Op)
7688     return SDValue();
7689 
7690   uint64_t Mask = C.getConstantOperandVal(1);
7691 
7692   static const uint64_t BitmanipMasks[] = {
7693       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7694       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7695   };
7696 
7697   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7698   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7699   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7700 
7701   if (Mask != ExpMask)
7702     return SDValue();
7703 
7704   SDLoc DL(Op);
7705   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7706                      DAG.getConstant(Match1->ShAmt, DL, VT));
7707 }
7708 
7709 // Optimize (add (shl x, c0), (shl y, c1)) ->
7710 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7711 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7712                                   const RISCVSubtarget &Subtarget) {
7713   // Perform this optimization only in the zba extension.
7714   if (!Subtarget.hasStdExtZba())
7715     return SDValue();
7716 
7717   // Skip for vector types and larger types.
7718   EVT VT = N->getValueType(0);
7719   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7720     return SDValue();
7721 
7722   // The two operand nodes must be SHL and have no other use.
7723   SDValue N0 = N->getOperand(0);
7724   SDValue N1 = N->getOperand(1);
7725   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7726       !N0->hasOneUse() || !N1->hasOneUse())
7727     return SDValue();
7728 
7729   // Check c0 and c1.
7730   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7731   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7732   if (!N0C || !N1C)
7733     return SDValue();
7734   int64_t C0 = N0C->getSExtValue();
7735   int64_t C1 = N1C->getSExtValue();
7736   if (C0 <= 0 || C1 <= 0)
7737     return SDValue();
7738 
7739   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7740   int64_t Bits = std::min(C0, C1);
7741   int64_t Diff = std::abs(C0 - C1);
7742   if (Diff != 1 && Diff != 2 && Diff != 3)
7743     return SDValue();
7744 
7745   // Build nodes.
7746   SDLoc DL(N);
7747   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7748   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7749   SDValue NA0 =
7750       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7751   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7752   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7753 }
7754 
7755 // Combine
7756 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7757 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7758 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7759 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7760 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7761 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7762 // The grev patterns represents BSWAP.
7763 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7764 // off the grev.
7765 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7766                                           const RISCVSubtarget &Subtarget) {
7767   bool IsWInstruction =
7768       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7769   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7770           IsWInstruction) &&
7771          "Unexpected opcode!");
7772   SDValue Src = N->getOperand(0);
7773   EVT VT = N->getValueType(0);
7774   SDLoc DL(N);
7775 
7776   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7777     return SDValue();
7778 
7779   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7780       !isa<ConstantSDNode>(Src.getOperand(1)))
7781     return SDValue();
7782 
7783   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7784   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7785 
7786   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7787   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7788   unsigned ShAmt1 = N->getConstantOperandVal(1);
7789   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7790   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7791     return SDValue();
7792 
7793   Src = Src.getOperand(0);
7794 
7795   // Toggle bit the MSB of the shift.
7796   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7797   if (CombinedShAmt == 0)
7798     return Src;
7799 
7800   SDValue Res = DAG.getNode(
7801       RISCVISD::GREV, DL, VT, Src,
7802       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7803   if (!IsWInstruction)
7804     return Res;
7805 
7806   // Sign extend the result to match the behavior of the rotate. This will be
7807   // selected to GREVIW in isel.
7808   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7809                      DAG.getValueType(MVT::i32));
7810 }
7811 
7812 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7813 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7814 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7815 // not undo itself, but they are redundant.
7816 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7817   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7818   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7819   SDValue Src = N->getOperand(0);
7820 
7821   if (Src.getOpcode() != N->getOpcode())
7822     return SDValue();
7823 
7824   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7825       !isa<ConstantSDNode>(Src.getOperand(1)))
7826     return SDValue();
7827 
7828   unsigned ShAmt1 = N->getConstantOperandVal(1);
7829   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7830   Src = Src.getOperand(0);
7831 
7832   unsigned CombinedShAmt;
7833   if (IsGORC)
7834     CombinedShAmt = ShAmt1 | ShAmt2;
7835   else
7836     CombinedShAmt = ShAmt1 ^ ShAmt2;
7837 
7838   if (CombinedShAmt == 0)
7839     return Src;
7840 
7841   SDLoc DL(N);
7842   return DAG.getNode(
7843       N->getOpcode(), DL, N->getValueType(0), Src,
7844       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7845 }
7846 
7847 // Combine a constant select operand into its use:
7848 //
7849 // (and (select cond, -1, c), x)
7850 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7851 // (or  (select cond, 0, c), x)
7852 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7853 // (xor (select cond, 0, c), x)
7854 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7855 // (add (select cond, 0, c), x)
7856 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7857 // (sub x, (select cond, 0, c))
7858 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7859 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7860                                    SelectionDAG &DAG, bool AllOnes) {
7861   EVT VT = N->getValueType(0);
7862 
7863   // Skip vectors.
7864   if (VT.isVector())
7865     return SDValue();
7866 
7867   if ((Slct.getOpcode() != ISD::SELECT &&
7868        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7869       !Slct.hasOneUse())
7870     return SDValue();
7871 
7872   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7873     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7874   };
7875 
7876   bool SwapSelectOps;
7877   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7878   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7879   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7880   SDValue NonConstantVal;
7881   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7882     SwapSelectOps = false;
7883     NonConstantVal = FalseVal;
7884   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7885     SwapSelectOps = true;
7886     NonConstantVal = TrueVal;
7887   } else
7888     return SDValue();
7889 
7890   // Slct is now know to be the desired identity constant when CC is true.
7891   TrueVal = OtherOp;
7892   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7893   // Unless SwapSelectOps says the condition should be false.
7894   if (SwapSelectOps)
7895     std::swap(TrueVal, FalseVal);
7896 
7897   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7898     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7899                        {Slct.getOperand(0), Slct.getOperand(1),
7900                         Slct.getOperand(2), TrueVal, FalseVal});
7901 
7902   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7903                      {Slct.getOperand(0), TrueVal, FalseVal});
7904 }
7905 
7906 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7907 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7908                                               bool AllOnes) {
7909   SDValue N0 = N->getOperand(0);
7910   SDValue N1 = N->getOperand(1);
7911   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7912     return Result;
7913   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7914     return Result;
7915   return SDValue();
7916 }
7917 
7918 // Transform (add (mul x, c0), c1) ->
7919 //           (add (mul (add x, c1/c0), c0), c1%c0).
7920 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7921 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7922 // to an infinite loop in DAGCombine if transformed.
7923 // Or transform (add (mul x, c0), c1) ->
7924 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7925 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7926 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7927 // lead to an infinite loop in DAGCombine if transformed.
7928 // Or transform (add (mul x, c0), c1) ->
7929 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7930 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7931 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7932 // lead to an infinite loop in DAGCombine if transformed.
7933 // Or transform (add (mul x, c0), c1) ->
7934 //              (mul (add x, c1/c0), c0).
7935 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7936 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7937                                      const RISCVSubtarget &Subtarget) {
7938   // Skip for vector types and larger types.
7939   EVT VT = N->getValueType(0);
7940   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7941     return SDValue();
7942   // The first operand node must be a MUL and has no other use.
7943   SDValue N0 = N->getOperand(0);
7944   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7945     return SDValue();
7946   // Check if c0 and c1 match above conditions.
7947   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7948   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7949   if (!N0C || !N1C)
7950     return SDValue();
7951   // If N0C has multiple uses it's possible one of the cases in
7952   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7953   // in an infinite loop.
7954   if (!N0C->hasOneUse())
7955     return SDValue();
7956   int64_t C0 = N0C->getSExtValue();
7957   int64_t C1 = N1C->getSExtValue();
7958   int64_t CA, CB;
7959   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7960     return SDValue();
7961   // Search for proper CA (non-zero) and CB that both are simm12.
7962   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7963       !isInt<12>(C0 * (C1 / C0))) {
7964     CA = C1 / C0;
7965     CB = C1 % C0;
7966   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7967              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7968     CA = C1 / C0 + 1;
7969     CB = C1 % C0 - C0;
7970   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7971              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7972     CA = C1 / C0 - 1;
7973     CB = C1 % C0 + C0;
7974   } else
7975     return SDValue();
7976   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7977   SDLoc DL(N);
7978   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7979                              DAG.getConstant(CA, DL, VT));
7980   SDValue New1 =
7981       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7982   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7983 }
7984 
7985 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7986                                  const RISCVSubtarget &Subtarget) {
7987   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7988     return V;
7989   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7990     return V;
7991   if (SDValue V = combineBinOpToReduce(N, DAG))
7992     return V;
7993   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7994   //      (select lhs, rhs, cc, x, (add x, y))
7995   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7996 }
7997 
7998 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7999   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
8000   //      (select lhs, rhs, cc, x, (sub x, y))
8001   SDValue N0 = N->getOperand(0);
8002   SDValue N1 = N->getOperand(1);
8003   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
8004 }
8005 
8006 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
8007                                  const RISCVSubtarget &Subtarget) {
8008   SDValue N0 = N->getOperand(0);
8009   // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero
8010   // extending X. This is safe since we only need the LSB after the shift and
8011   // shift amounts larger than 31 would produce poison. If we wait until
8012   // type legalization, we'll create RISCVISD::SRLW and we can't recover it
8013   // to use a BEXT instruction.
8014   if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() &&
8015       N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) &&
8016       N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) &&
8017       N0.hasOneUse()) {
8018     SDLoc DL(N);
8019     SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
8020     SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
8021     SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
8022     SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl,
8023                               DAG.getConstant(1, DL, MVT::i64));
8024     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And);
8025   }
8026 
8027   if (SDValue V = combineBinOpToReduce(N, DAG))
8028     return V;
8029 
8030   // fold (and (select lhs, rhs, cc, -1, y), x) ->
8031   //      (select lhs, rhs, cc, x, (and x, y))
8032   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
8033 }
8034 
8035 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
8036                                 const RISCVSubtarget &Subtarget) {
8037   if (Subtarget.hasStdExtZbp()) {
8038     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
8039       return GREV;
8040     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
8041       return GORC;
8042     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
8043       return SHFL;
8044   }
8045 
8046   if (SDValue V = combineBinOpToReduce(N, DAG))
8047     return V;
8048   // fold (or (select cond, 0, y), x) ->
8049   //      (select cond, x, (or x, y))
8050   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8051 }
8052 
8053 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
8054   SDValue N0 = N->getOperand(0);
8055   SDValue N1 = N->getOperand(1);
8056 
8057   // fold (xor (sllw 1, x), -1) -> (rolw ~1, x)
8058   // NOTE: Assumes ROL being legal means ROLW is legal.
8059   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8060   if (N0.getOpcode() == RISCVISD::SLLW &&
8061       isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) &&
8062       TLI.isOperationLegal(ISD::ROTL, MVT::i64)) {
8063     SDLoc DL(N);
8064     return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64,
8065                        DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1));
8066   }
8067 
8068   if (SDValue V = combineBinOpToReduce(N, DAG))
8069     return V;
8070   // fold (xor (select cond, 0, y), x) ->
8071   //      (select cond, x, (xor x, y))
8072   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8073 }
8074 
8075 static SDValue
8076 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
8077                                 const RISCVSubtarget &Subtarget) {
8078   SDValue Src = N->getOperand(0);
8079   EVT VT = N->getValueType(0);
8080 
8081   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
8082   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8083       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
8084     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
8085                        Src.getOperand(0));
8086 
8087   // Fold (i64 (sext_inreg (abs X), i32)) ->
8088   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
8089   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
8090   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
8091   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
8092   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
8093   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
8094   // may get combined into an earlier operation so we need to use
8095   // ComputeNumSignBits.
8096   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
8097   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
8098   // we can't assume that X has 33 sign bits. We must check.
8099   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
8100       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
8101       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
8102       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
8103     SDLoc DL(N);
8104     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
8105     SDValue Neg =
8106         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
8107     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
8108                       DAG.getValueType(MVT::i32));
8109     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
8110   }
8111 
8112   return SDValue();
8113 }
8114 
8115 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
8116 // vwadd(u).vv/vx or vwsub(u).vv/vx.
8117 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
8118                                              bool Commute = false) {
8119   assert((N->getOpcode() == RISCVISD::ADD_VL ||
8120           N->getOpcode() == RISCVISD::SUB_VL) &&
8121          "Unexpected opcode");
8122   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
8123   SDValue Op0 = N->getOperand(0);
8124   SDValue Op1 = N->getOperand(1);
8125   if (Commute)
8126     std::swap(Op0, Op1);
8127 
8128   MVT VT = N->getSimpleValueType(0);
8129 
8130   // Determine the narrow size for a widening add/sub.
8131   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8132   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8133                                   VT.getVectorElementCount());
8134 
8135   SDValue Mask = N->getOperand(2);
8136   SDValue VL = N->getOperand(3);
8137 
8138   SDLoc DL(N);
8139 
8140   // If the RHS is a sext or zext, we can form a widening op.
8141   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
8142        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
8143       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
8144     unsigned ExtOpc = Op1.getOpcode();
8145     Op1 = Op1.getOperand(0);
8146     // Re-introduce narrower extends if needed.
8147     if (Op1.getValueType() != NarrowVT)
8148       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8149 
8150     unsigned WOpc;
8151     if (ExtOpc == RISCVISD::VSEXT_VL)
8152       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
8153     else
8154       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
8155 
8156     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
8157   }
8158 
8159   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
8160   // sext/zext?
8161 
8162   return SDValue();
8163 }
8164 
8165 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
8166 // vwsub(u).vv/vx.
8167 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
8168   SDValue Op0 = N->getOperand(0);
8169   SDValue Op1 = N->getOperand(1);
8170   SDValue Mask = N->getOperand(2);
8171   SDValue VL = N->getOperand(3);
8172 
8173   MVT VT = N->getSimpleValueType(0);
8174   MVT NarrowVT = Op1.getSimpleValueType();
8175   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
8176 
8177   unsigned VOpc;
8178   switch (N->getOpcode()) {
8179   default: llvm_unreachable("Unexpected opcode");
8180   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
8181   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
8182   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
8183   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
8184   }
8185 
8186   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8187                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
8188 
8189   SDLoc DL(N);
8190 
8191   // If the LHS is a sext or zext, we can narrow this op to the same size as
8192   // the RHS.
8193   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
8194        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
8195       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
8196     unsigned ExtOpc = Op0.getOpcode();
8197     Op0 = Op0.getOperand(0);
8198     // Re-introduce narrower extends if needed.
8199     if (Op0.getValueType() != NarrowVT)
8200       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8201     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
8202   }
8203 
8204   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8205                N->getOpcode() == RISCVISD::VWADDU_W_VL;
8206 
8207   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
8208   // to commute and use a vwadd(u).vx instead.
8209   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
8210       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
8211     Op0 = Op0.getOperand(1);
8212 
8213     // See if have enough sign bits or zero bits in the scalar to use a
8214     // widening add/sub by splatting to smaller element size.
8215     unsigned EltBits = VT.getScalarSizeInBits();
8216     unsigned ScalarBits = Op0.getValueSizeInBits();
8217     // Make sure we're getting all element bits from the scalar register.
8218     // FIXME: Support implicit sign extension of vmv.v.x?
8219     if (ScalarBits < EltBits)
8220       return SDValue();
8221 
8222     if (IsSigned) {
8223       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
8224         return SDValue();
8225     } else {
8226       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8227       if (!DAG.MaskedValueIsZero(Op0, Mask))
8228         return SDValue();
8229     }
8230 
8231     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8232                       DAG.getUNDEF(NarrowVT), Op0, VL);
8233     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
8234   }
8235 
8236   return SDValue();
8237 }
8238 
8239 // Try to form VWMUL, VWMULU or VWMULSU.
8240 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
8241 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
8242                                        bool Commute) {
8243   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
8244   SDValue Op0 = N->getOperand(0);
8245   SDValue Op1 = N->getOperand(1);
8246   if (Commute)
8247     std::swap(Op0, Op1);
8248 
8249   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
8250   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
8251   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
8252   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
8253     return SDValue();
8254 
8255   SDValue Mask = N->getOperand(2);
8256   SDValue VL = N->getOperand(3);
8257 
8258   // Make sure the mask and VL match.
8259   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
8260     return SDValue();
8261 
8262   MVT VT = N->getSimpleValueType(0);
8263 
8264   // Determine the narrow size for a widening multiply.
8265   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8266   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8267                                   VT.getVectorElementCount());
8268 
8269   SDLoc DL(N);
8270 
8271   // See if the other operand is the same opcode.
8272   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
8273     if (!Op1.hasOneUse())
8274       return SDValue();
8275 
8276     // Make sure the mask and VL match.
8277     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
8278       return SDValue();
8279 
8280     Op1 = Op1.getOperand(0);
8281   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
8282     // The operand is a splat of a scalar.
8283 
8284     // The pasthru must be undef for tail agnostic
8285     if (!Op1.getOperand(0).isUndef())
8286       return SDValue();
8287     // The VL must be the same.
8288     if (Op1.getOperand(2) != VL)
8289       return SDValue();
8290 
8291     // Get the scalar value.
8292     Op1 = Op1.getOperand(1);
8293 
8294     // See if have enough sign bits or zero bits in the scalar to use a
8295     // widening multiply by splatting to smaller element size.
8296     unsigned EltBits = VT.getScalarSizeInBits();
8297     unsigned ScalarBits = Op1.getValueSizeInBits();
8298     // Make sure we're getting all element bits from the scalar register.
8299     // FIXME: Support implicit sign extension of vmv.v.x?
8300     if (ScalarBits < EltBits)
8301       return SDValue();
8302 
8303     // If the LHS is a sign extend, try to use vwmul.
8304     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
8305       // Can use vwmul.
8306     } else {
8307       // Otherwise try to use vwmulu or vwmulsu.
8308       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8309       if (DAG.MaskedValueIsZero(Op1, Mask))
8310         IsVWMULSU = IsSignExt;
8311       else
8312         return SDValue();
8313     }
8314 
8315     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8316                       DAG.getUNDEF(NarrowVT), Op1, VL);
8317   } else
8318     return SDValue();
8319 
8320   Op0 = Op0.getOperand(0);
8321 
8322   // Re-introduce narrower extends if needed.
8323   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
8324   if (Op0.getValueType() != NarrowVT)
8325     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8326   // vwmulsu requires second operand to be zero extended.
8327   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
8328   if (Op1.getValueType() != NarrowVT)
8329     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8330 
8331   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
8332   if (!IsVWMULSU)
8333     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
8334   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
8335 }
8336 
8337 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
8338   switch (Op.getOpcode()) {
8339   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
8340   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
8341   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
8342   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
8343   case ISD::FROUND:     return RISCVFPRndMode::RMM;
8344   }
8345 
8346   return RISCVFPRndMode::Invalid;
8347 }
8348 
8349 // Fold
8350 //   (fp_to_int (froundeven X)) -> fcvt X, rne
8351 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
8352 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
8353 //   (fp_to_int (fceil X))      -> fcvt X, rup
8354 //   (fp_to_int (fround X))     -> fcvt X, rmm
8355 static SDValue performFP_TO_INTCombine(SDNode *N,
8356                                        TargetLowering::DAGCombinerInfo &DCI,
8357                                        const RISCVSubtarget &Subtarget) {
8358   SelectionDAG &DAG = DCI.DAG;
8359   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8360   MVT XLenVT = Subtarget.getXLenVT();
8361 
8362   // Only handle XLen or i32 types. Other types narrower than XLen will
8363   // eventually be legalized to XLenVT.
8364   EVT VT = N->getValueType(0);
8365   if (VT != MVT::i32 && VT != XLenVT)
8366     return SDValue();
8367 
8368   SDValue Src = N->getOperand(0);
8369 
8370   // Ensure the FP type is also legal.
8371   if (!TLI.isTypeLegal(Src.getValueType()))
8372     return SDValue();
8373 
8374   // Don't do this for f16 with Zfhmin and not Zfh.
8375   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8376     return SDValue();
8377 
8378   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8379   if (FRM == RISCVFPRndMode::Invalid)
8380     return SDValue();
8381 
8382   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8383 
8384   unsigned Opc;
8385   if (VT == XLenVT)
8386     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8387   else
8388     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8389 
8390   SDLoc DL(N);
8391   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8392                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8393   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8394 }
8395 
8396 // Fold
8397 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8398 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8399 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8400 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8401 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8402 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8403                                        TargetLowering::DAGCombinerInfo &DCI,
8404                                        const RISCVSubtarget &Subtarget) {
8405   SelectionDAG &DAG = DCI.DAG;
8406   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8407   MVT XLenVT = Subtarget.getXLenVT();
8408 
8409   // Only handle XLen types. Other types narrower than XLen will eventually be
8410   // legalized to XLenVT.
8411   EVT DstVT = N->getValueType(0);
8412   if (DstVT != XLenVT)
8413     return SDValue();
8414 
8415   SDValue Src = N->getOperand(0);
8416 
8417   // Ensure the FP type is also legal.
8418   if (!TLI.isTypeLegal(Src.getValueType()))
8419     return SDValue();
8420 
8421   // Don't do this for f16 with Zfhmin and not Zfh.
8422   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8423     return SDValue();
8424 
8425   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8426 
8427   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8428   if (FRM == RISCVFPRndMode::Invalid)
8429     return SDValue();
8430 
8431   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8432 
8433   unsigned Opc;
8434   if (SatVT == DstVT)
8435     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8436   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8437     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8438   else
8439     return SDValue();
8440   // FIXME: Support other SatVTs by clamping before or after the conversion.
8441 
8442   Src = Src.getOperand(0);
8443 
8444   SDLoc DL(N);
8445   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8446                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8447 
8448   // RISCV FP-to-int conversions saturate to the destination register size, but
8449   // don't produce 0 for nan.
8450   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8451   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8452 }
8453 
8454 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8455 // smaller than XLenVT.
8456 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8457                                         const RISCVSubtarget &Subtarget) {
8458   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8459 
8460   SDValue Src = N->getOperand(0);
8461   if (Src.getOpcode() != ISD::BSWAP)
8462     return SDValue();
8463 
8464   EVT VT = N->getValueType(0);
8465   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8466       !isPowerOf2_32(VT.getSizeInBits()))
8467     return SDValue();
8468 
8469   SDLoc DL(N);
8470   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8471                      DAG.getConstant(7, DL, VT));
8472 }
8473 
8474 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8475                                                DAGCombinerInfo &DCI) const {
8476   SelectionDAG &DAG = DCI.DAG;
8477 
8478   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8479   // bits are demanded. N will be added to the Worklist if it was not deleted.
8480   // Caller should return SDValue(N, 0) if this returns true.
8481   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8482     SDValue Op = N->getOperand(OpNo);
8483     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8484     if (!SimplifyDemandedBits(Op, Mask, DCI))
8485       return false;
8486 
8487     if (N->getOpcode() != ISD::DELETED_NODE)
8488       DCI.AddToWorklist(N);
8489     return true;
8490   };
8491 
8492   switch (N->getOpcode()) {
8493   default:
8494     break;
8495   case RISCVISD::SplitF64: {
8496     SDValue Op0 = N->getOperand(0);
8497     // If the input to SplitF64 is just BuildPairF64 then the operation is
8498     // redundant. Instead, use BuildPairF64's operands directly.
8499     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8500       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8501 
8502     if (Op0->isUndef()) {
8503       SDValue Lo = DAG.getUNDEF(MVT::i32);
8504       SDValue Hi = DAG.getUNDEF(MVT::i32);
8505       return DCI.CombineTo(N, Lo, Hi);
8506     }
8507 
8508     SDLoc DL(N);
8509 
8510     // It's cheaper to materialise two 32-bit integers than to load a double
8511     // from the constant pool and transfer it to integer registers through the
8512     // stack.
8513     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8514       APInt V = C->getValueAPF().bitcastToAPInt();
8515       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8516       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8517       return DCI.CombineTo(N, Lo, Hi);
8518     }
8519 
8520     // This is a target-specific version of a DAGCombine performed in
8521     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8522     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8523     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8524     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8525         !Op0.getNode()->hasOneUse())
8526       break;
8527     SDValue NewSplitF64 =
8528         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8529                     Op0.getOperand(0));
8530     SDValue Lo = NewSplitF64.getValue(0);
8531     SDValue Hi = NewSplitF64.getValue(1);
8532     APInt SignBit = APInt::getSignMask(32);
8533     if (Op0.getOpcode() == ISD::FNEG) {
8534       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8535                                   DAG.getConstant(SignBit, DL, MVT::i32));
8536       return DCI.CombineTo(N, Lo, NewHi);
8537     }
8538     assert(Op0.getOpcode() == ISD::FABS);
8539     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8540                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8541     return DCI.CombineTo(N, Lo, NewHi);
8542   }
8543   case RISCVISD::SLLW:
8544   case RISCVISD::SRAW:
8545   case RISCVISD::SRLW: {
8546     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8547     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8548         SimplifyDemandedLowBitsHelper(1, 5))
8549       return SDValue(N, 0);
8550 
8551     break;
8552   }
8553   case ISD::ROTR:
8554   case ISD::ROTL:
8555   case RISCVISD::RORW:
8556   case RISCVISD::ROLW: {
8557     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8558       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8559       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8560           SimplifyDemandedLowBitsHelper(1, 5))
8561         return SDValue(N, 0);
8562     }
8563 
8564     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8565   }
8566   case RISCVISD::CLZW:
8567   case RISCVISD::CTZW: {
8568     // Only the lower 32 bits of the first operand are read
8569     if (SimplifyDemandedLowBitsHelper(0, 32))
8570       return SDValue(N, 0);
8571     break;
8572   }
8573   case RISCVISD::GREV:
8574   case RISCVISD::GORC: {
8575     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8576     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8577     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8578     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8579       return SDValue(N, 0);
8580 
8581     return combineGREVI_GORCI(N, DAG);
8582   }
8583   case RISCVISD::GREVW:
8584   case RISCVISD::GORCW: {
8585     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8586     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8587         SimplifyDemandedLowBitsHelper(1, 5))
8588       return SDValue(N, 0);
8589 
8590     break;
8591   }
8592   case RISCVISD::SHFL:
8593   case RISCVISD::UNSHFL: {
8594     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8595     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8596     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8597     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8598       return SDValue(N, 0);
8599 
8600     break;
8601   }
8602   case RISCVISD::SHFLW:
8603   case RISCVISD::UNSHFLW: {
8604     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8605     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8606         SimplifyDemandedLowBitsHelper(1, 4))
8607       return SDValue(N, 0);
8608 
8609     break;
8610   }
8611   case RISCVISD::BCOMPRESSW:
8612   case RISCVISD::BDECOMPRESSW: {
8613     // Only the lower 32 bits of LHS and RHS are read.
8614     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8615         SimplifyDemandedLowBitsHelper(1, 32))
8616       return SDValue(N, 0);
8617 
8618     break;
8619   }
8620   case RISCVISD::FSR:
8621   case RISCVISD::FSL:
8622   case RISCVISD::FSRW:
8623   case RISCVISD::FSLW: {
8624     bool IsWInstruction =
8625         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8626     unsigned BitWidth =
8627         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8628     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8629     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8630     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8631       return SDValue(N, 0);
8632 
8633     break;
8634   }
8635   case RISCVISD::FMV_X_ANYEXTH:
8636   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8637     SDLoc DL(N);
8638     SDValue Op0 = N->getOperand(0);
8639     MVT VT = N->getSimpleValueType(0);
8640     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8641     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8642     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8643     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8644          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8645         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8646          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8647       assert(Op0.getOperand(0).getValueType() == VT &&
8648              "Unexpected value type!");
8649       return Op0.getOperand(0);
8650     }
8651 
8652     // This is a target-specific version of a DAGCombine performed in
8653     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8654     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8655     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8656     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8657         !Op0.getNode()->hasOneUse())
8658       break;
8659     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8660     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8661     APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits());
8662     if (Op0.getOpcode() == ISD::FNEG)
8663       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8664                          DAG.getConstant(SignBit, DL, VT));
8665 
8666     assert(Op0.getOpcode() == ISD::FABS);
8667     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8668                        DAG.getConstant(~SignBit, DL, VT));
8669   }
8670   case ISD::ADD:
8671     return performADDCombine(N, DAG, Subtarget);
8672   case ISD::SUB:
8673     return performSUBCombine(N, DAG);
8674   case ISD::AND:
8675     return performANDCombine(N, DAG, Subtarget);
8676   case ISD::OR:
8677     return performORCombine(N, DAG, Subtarget);
8678   case ISD::XOR:
8679     return performXORCombine(N, DAG);
8680   case ISD::FADD:
8681   case ISD::UMAX:
8682   case ISD::UMIN:
8683   case ISD::SMAX:
8684   case ISD::SMIN:
8685   case ISD::FMAXNUM:
8686   case ISD::FMINNUM:
8687     return combineBinOpToReduce(N, DAG);
8688   case ISD::SIGN_EXTEND_INREG:
8689     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8690   case ISD::ZERO_EXTEND:
8691     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8692     // type legalization. This is safe because fp_to_uint produces poison if
8693     // it overflows.
8694     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8695       SDValue Src = N->getOperand(0);
8696       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8697           isTypeLegal(Src.getOperand(0).getValueType()))
8698         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8699                            Src.getOperand(0));
8700       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8701           isTypeLegal(Src.getOperand(1).getValueType())) {
8702         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8703         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8704                                   Src.getOperand(0), Src.getOperand(1));
8705         DCI.CombineTo(N, Res);
8706         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8707         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8708         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8709       }
8710     }
8711     return SDValue();
8712   case RISCVISD::SELECT_CC: {
8713     // Transform
8714     SDValue LHS = N->getOperand(0);
8715     SDValue RHS = N->getOperand(1);
8716     SDValue TrueV = N->getOperand(3);
8717     SDValue FalseV = N->getOperand(4);
8718 
8719     // If the True and False values are the same, we don't need a select_cc.
8720     if (TrueV == FalseV)
8721       return TrueV;
8722 
8723     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8724     if (!ISD::isIntEqualitySetCC(CCVal))
8725       break;
8726 
8727     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8728     //      (select_cc X, Y, lt, trueV, falseV)
8729     // Sometimes the setcc is introduced after select_cc has been formed.
8730     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8731         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8732       // If we're looking for eq 0 instead of ne 0, we need to invert the
8733       // condition.
8734       bool Invert = CCVal == ISD::SETEQ;
8735       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8736       if (Invert)
8737         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8738 
8739       SDLoc DL(N);
8740       RHS = LHS.getOperand(1);
8741       LHS = LHS.getOperand(0);
8742       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8743 
8744       SDValue TargetCC = DAG.getCondCode(CCVal);
8745       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8746                          {LHS, RHS, TargetCC, TrueV, FalseV});
8747     }
8748 
8749     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8750     //      (select_cc X, Y, eq/ne, trueV, falseV)
8751     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8752       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8753                          {LHS.getOperand(0), LHS.getOperand(1),
8754                           N->getOperand(2), TrueV, FalseV});
8755     // (select_cc X, 1, setne, trueV, falseV) ->
8756     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8757     // This can occur when legalizing some floating point comparisons.
8758     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8759     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8760       SDLoc DL(N);
8761       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8762       SDValue TargetCC = DAG.getCondCode(CCVal);
8763       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8764       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8765                          {LHS, RHS, TargetCC, TrueV, FalseV});
8766     }
8767 
8768     break;
8769   }
8770   case RISCVISD::BR_CC: {
8771     SDValue LHS = N->getOperand(1);
8772     SDValue RHS = N->getOperand(2);
8773     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8774     if (!ISD::isIntEqualitySetCC(CCVal))
8775       break;
8776 
8777     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8778     //      (br_cc X, Y, lt, dest)
8779     // Sometimes the setcc is introduced after br_cc has been formed.
8780     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8781         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8782       // If we're looking for eq 0 instead of ne 0, we need to invert the
8783       // condition.
8784       bool Invert = CCVal == ISD::SETEQ;
8785       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8786       if (Invert)
8787         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8788 
8789       SDLoc DL(N);
8790       RHS = LHS.getOperand(1);
8791       LHS = LHS.getOperand(0);
8792       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8793 
8794       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8795                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8796                          N->getOperand(4));
8797     }
8798 
8799     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8800     //      (br_cc X, Y, eq/ne, trueV, falseV)
8801     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8802       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8803                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8804                          N->getOperand(3), N->getOperand(4));
8805 
8806     // (br_cc X, 1, setne, br_cc) ->
8807     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8808     // This can occur when legalizing some floating point comparisons.
8809     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8810     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8811       SDLoc DL(N);
8812       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8813       SDValue TargetCC = DAG.getCondCode(CCVal);
8814       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8815       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8816                          N->getOperand(0), LHS, RHS, TargetCC,
8817                          N->getOperand(4));
8818     }
8819     break;
8820   }
8821   case ISD::BITREVERSE:
8822     return performBITREVERSECombine(N, DAG, Subtarget);
8823   case ISD::FP_TO_SINT:
8824   case ISD::FP_TO_UINT:
8825     return performFP_TO_INTCombine(N, DCI, Subtarget);
8826   case ISD::FP_TO_SINT_SAT:
8827   case ISD::FP_TO_UINT_SAT:
8828     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8829   case ISD::FCOPYSIGN: {
8830     EVT VT = N->getValueType(0);
8831     if (!VT.isVector())
8832       break;
8833     // There is a form of VFSGNJ which injects the negated sign of its second
8834     // operand. Try and bubble any FNEG up after the extend/round to produce
8835     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8836     // TRUNC=1.
8837     SDValue In2 = N->getOperand(1);
8838     // Avoid cases where the extend/round has multiple uses, as duplicating
8839     // those is typically more expensive than removing a fneg.
8840     if (!In2.hasOneUse())
8841       break;
8842     if (In2.getOpcode() != ISD::FP_EXTEND &&
8843         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8844       break;
8845     In2 = In2.getOperand(0);
8846     if (In2.getOpcode() != ISD::FNEG)
8847       break;
8848     SDLoc DL(N);
8849     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8850     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8851                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8852   }
8853   case ISD::MGATHER:
8854   case ISD::MSCATTER:
8855   case ISD::VP_GATHER:
8856   case ISD::VP_SCATTER: {
8857     if (!DCI.isBeforeLegalize())
8858       break;
8859     SDValue Index, ScaleOp;
8860     bool IsIndexScaled = false;
8861     bool IsIndexSigned = false;
8862     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8863       Index = VPGSN->getIndex();
8864       ScaleOp = VPGSN->getScale();
8865       IsIndexScaled = VPGSN->isIndexScaled();
8866       IsIndexSigned = VPGSN->isIndexSigned();
8867     } else {
8868       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8869       Index = MGSN->getIndex();
8870       ScaleOp = MGSN->getScale();
8871       IsIndexScaled = MGSN->isIndexScaled();
8872       IsIndexSigned = MGSN->isIndexSigned();
8873     }
8874     EVT IndexVT = Index.getValueType();
8875     MVT XLenVT = Subtarget.getXLenVT();
8876     // RISCV indexed loads only support the "unsigned unscaled" addressing
8877     // mode, so anything else must be manually legalized.
8878     bool NeedsIdxLegalization =
8879         IsIndexScaled ||
8880         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8881     if (!NeedsIdxLegalization)
8882       break;
8883 
8884     SDLoc DL(N);
8885 
8886     // Any index legalization should first promote to XLenVT, so we don't lose
8887     // bits when scaling. This may create an illegal index type so we let
8888     // LLVM's legalization take care of the splitting.
8889     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8890     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8891       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8892       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8893                           DL, IndexVT, Index);
8894     }
8895 
8896     if (IsIndexScaled) {
8897       // Manually scale the indices.
8898       // TODO: Sanitize the scale operand here?
8899       // TODO: For VP nodes, should we use VP_SHL here?
8900       unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8901       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8902       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8903       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8904       ScaleOp = DAG.getTargetConstant(1, DL, ScaleOp.getValueType());
8905     }
8906 
8907     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_SCALED;
8908     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8909       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8910                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8911                               ScaleOp, VPGN->getMask(),
8912                               VPGN->getVectorLength()},
8913                              VPGN->getMemOperand(), NewIndexTy);
8914     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8915       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8916                               {VPSN->getChain(), VPSN->getValue(),
8917                                VPSN->getBasePtr(), Index, ScaleOp,
8918                                VPSN->getMask(), VPSN->getVectorLength()},
8919                               VPSN->getMemOperand(), NewIndexTy);
8920     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8921       return DAG.getMaskedGather(
8922           N->getVTList(), MGN->getMemoryVT(), DL,
8923           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8924            MGN->getBasePtr(), Index, ScaleOp},
8925           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8926     const auto *MSN = cast<MaskedScatterSDNode>(N);
8927     return DAG.getMaskedScatter(
8928         N->getVTList(), MSN->getMemoryVT(), DL,
8929         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8930          Index, ScaleOp},
8931         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8932   }
8933   case RISCVISD::SRA_VL:
8934   case RISCVISD::SRL_VL:
8935   case RISCVISD::SHL_VL: {
8936     SDValue ShAmt = N->getOperand(1);
8937     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8938       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8939       SDLoc DL(N);
8940       SDValue VL = N->getOperand(3);
8941       EVT VT = N->getValueType(0);
8942       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8943                           ShAmt.getOperand(1), VL);
8944       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8945                          N->getOperand(2), N->getOperand(3));
8946     }
8947     break;
8948   }
8949   case ISD::SRA:
8950   case ISD::SRL:
8951   case ISD::SHL: {
8952     SDValue ShAmt = N->getOperand(1);
8953     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8954       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8955       SDLoc DL(N);
8956       EVT VT = N->getValueType(0);
8957       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8958                           ShAmt.getOperand(1),
8959                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8960       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8961     }
8962     break;
8963   }
8964   case RISCVISD::ADD_VL:
8965     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8966       return V;
8967     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8968   case RISCVISD::SUB_VL:
8969     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8970   case RISCVISD::VWADD_W_VL:
8971   case RISCVISD::VWADDU_W_VL:
8972   case RISCVISD::VWSUB_W_VL:
8973   case RISCVISD::VWSUBU_W_VL:
8974     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8975   case RISCVISD::MUL_VL:
8976     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8977       return V;
8978     // Mul is commutative.
8979     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8980   case ISD::STORE: {
8981     auto *Store = cast<StoreSDNode>(N);
8982     SDValue Val = Store->getValue();
8983     // Combine store of vmv.x.s to vse with VL of 1.
8984     // FIXME: Support FP.
8985     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8986       SDValue Src = Val.getOperand(0);
8987       EVT VecVT = Src.getValueType();
8988       EVT MemVT = Store->getMemoryVT();
8989       // The memory VT and the element type must match.
8990       if (VecVT.getVectorElementType() == MemVT) {
8991         SDLoc DL(N);
8992         MVT MaskVT = getMaskTypeFor(VecVT);
8993         return DAG.getStoreVP(
8994             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8995             DAG.getConstant(1, DL, MaskVT),
8996             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8997             Store->getMemOperand(), Store->getAddressingMode(),
8998             Store->isTruncatingStore(), /*IsCompress*/ false);
8999       }
9000     }
9001 
9002     break;
9003   }
9004   case ISD::SPLAT_VECTOR: {
9005     EVT VT = N->getValueType(0);
9006     // Only perform this combine on legal MVT types.
9007     if (!isTypeLegal(VT))
9008       break;
9009     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
9010                                          DAG, Subtarget))
9011       return Gather;
9012     break;
9013   }
9014   case RISCVISD::VMV_V_X_VL: {
9015     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
9016     // scalar input.
9017     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
9018     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
9019     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
9020       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
9021         return SDValue(N, 0);
9022 
9023     break;
9024   }
9025   case ISD::INTRINSIC_WO_CHAIN: {
9026     unsigned IntNo = N->getConstantOperandVal(0);
9027     switch (IntNo) {
9028       // By default we do not combine any intrinsic.
9029     default:
9030       return SDValue();
9031     case Intrinsic::riscv_vcpop:
9032     case Intrinsic::riscv_vcpop_mask:
9033     case Intrinsic::riscv_vfirst:
9034     case Intrinsic::riscv_vfirst_mask: {
9035       SDValue VL = N->getOperand(2);
9036       if (IntNo == Intrinsic::riscv_vcpop_mask ||
9037           IntNo == Intrinsic::riscv_vfirst_mask)
9038         VL = N->getOperand(3);
9039       if (!isNullConstant(VL))
9040         return SDValue();
9041       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
9042       SDLoc DL(N);
9043       EVT VT = N->getValueType(0);
9044       if (IntNo == Intrinsic::riscv_vfirst ||
9045           IntNo == Intrinsic::riscv_vfirst_mask)
9046         return DAG.getConstant(-1, DL, VT);
9047       return DAG.getConstant(0, DL, VT);
9048     }
9049     }
9050   }
9051   }
9052 
9053   return SDValue();
9054 }
9055 
9056 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
9057     const SDNode *N, CombineLevel Level) const {
9058   // The following folds are only desirable if `(OP _, c1 << c2)` can be
9059   // materialised in fewer instructions than `(OP _, c1)`:
9060   //
9061   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
9062   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
9063   SDValue N0 = N->getOperand(0);
9064   EVT Ty = N0.getValueType();
9065   if (Ty.isScalarInteger() &&
9066       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
9067     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9068     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
9069     if (C1 && C2) {
9070       const APInt &C1Int = C1->getAPIntValue();
9071       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
9072 
9073       // We can materialise `c1 << c2` into an add immediate, so it's "free",
9074       // and the combine should happen, to potentially allow further combines
9075       // later.
9076       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
9077           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
9078         return true;
9079 
9080       // We can materialise `c1` in an add immediate, so it's "free", and the
9081       // combine should be prevented.
9082       if (C1Int.getMinSignedBits() <= 64 &&
9083           isLegalAddImmediate(C1Int.getSExtValue()))
9084         return false;
9085 
9086       // Neither constant will fit into an immediate, so find materialisation
9087       // costs.
9088       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
9089                                               Subtarget.getFeatureBits(),
9090                                               /*CompressionCost*/true);
9091       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
9092           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
9093           /*CompressionCost*/true);
9094 
9095       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
9096       // combine should be prevented.
9097       if (C1Cost < ShiftedC1Cost)
9098         return false;
9099     }
9100   }
9101   return true;
9102 }
9103 
9104 bool RISCVTargetLowering::targetShrinkDemandedConstant(
9105     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
9106     TargetLoweringOpt &TLO) const {
9107   // Delay this optimization as late as possible.
9108   if (!TLO.LegalOps)
9109     return false;
9110 
9111   EVT VT = Op.getValueType();
9112   if (VT.isVector())
9113     return false;
9114 
9115   // Only handle AND for now.
9116   if (Op.getOpcode() != ISD::AND)
9117     return false;
9118 
9119   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9120   if (!C)
9121     return false;
9122 
9123   const APInt &Mask = C->getAPIntValue();
9124 
9125   // Clear all non-demanded bits initially.
9126   APInt ShrunkMask = Mask & DemandedBits;
9127 
9128   // Try to make a smaller immediate by setting undemanded bits.
9129 
9130   APInt ExpandedMask = Mask | ~DemandedBits;
9131 
9132   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
9133     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
9134   };
9135   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
9136     if (NewMask == Mask)
9137       return true;
9138     SDLoc DL(Op);
9139     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
9140     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
9141     return TLO.CombineTo(Op, NewOp);
9142   };
9143 
9144   // If the shrunk mask fits in sign extended 12 bits, let the target
9145   // independent code apply it.
9146   if (ShrunkMask.isSignedIntN(12))
9147     return false;
9148 
9149   // Preserve (and X, 0xffff) when zext.h is supported.
9150   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
9151     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
9152     if (IsLegalMask(NewMask))
9153       return UseMask(NewMask);
9154   }
9155 
9156   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
9157   if (VT == MVT::i64) {
9158     APInt NewMask = APInt(64, 0xffffffff);
9159     if (IsLegalMask(NewMask))
9160       return UseMask(NewMask);
9161   }
9162 
9163   // For the remaining optimizations, we need to be able to make a negative
9164   // number through a combination of mask and undemanded bits.
9165   if (!ExpandedMask.isNegative())
9166     return false;
9167 
9168   // What is the fewest number of bits we need to represent the negative number.
9169   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
9170 
9171   // Try to make a 12 bit negative immediate. If that fails try to make a 32
9172   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
9173   APInt NewMask = ShrunkMask;
9174   if (MinSignedBits <= 12)
9175     NewMask.setBitsFrom(11);
9176   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
9177     NewMask.setBitsFrom(31);
9178   else
9179     return false;
9180 
9181   // Check that our new mask is a subset of the demanded mask.
9182   assert(IsLegalMask(NewMask));
9183   return UseMask(NewMask);
9184 }
9185 
9186 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
9187   static const uint64_t GREVMasks[] = {
9188       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
9189       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
9190 
9191   for (unsigned Stage = 0; Stage != 6; ++Stage) {
9192     unsigned Shift = 1 << Stage;
9193     if (ShAmt & Shift) {
9194       uint64_t Mask = GREVMasks[Stage];
9195       uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
9196       if (IsGORC)
9197         Res |= x;
9198       x = Res;
9199     }
9200   }
9201 
9202   return x;
9203 }
9204 
9205 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
9206                                                         KnownBits &Known,
9207                                                         const APInt &DemandedElts,
9208                                                         const SelectionDAG &DAG,
9209                                                         unsigned Depth) const {
9210   unsigned BitWidth = Known.getBitWidth();
9211   unsigned Opc = Op.getOpcode();
9212   assert((Opc >= ISD::BUILTIN_OP_END ||
9213           Opc == ISD::INTRINSIC_WO_CHAIN ||
9214           Opc == ISD::INTRINSIC_W_CHAIN ||
9215           Opc == ISD::INTRINSIC_VOID) &&
9216          "Should use MaskedValueIsZero if you don't know whether Op"
9217          " is a target node!");
9218 
9219   Known.resetAll();
9220   switch (Opc) {
9221   default: break;
9222   case RISCVISD::SELECT_CC: {
9223     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
9224     // If we don't know any bits, early out.
9225     if (Known.isUnknown())
9226       break;
9227     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
9228 
9229     // Only known if known in both the LHS and RHS.
9230     Known = KnownBits::commonBits(Known, Known2);
9231     break;
9232   }
9233   case RISCVISD::REMUW: {
9234     KnownBits Known2;
9235     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9236     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9237     // We only care about the lower 32 bits.
9238     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
9239     // Restore the original width by sign extending.
9240     Known = Known.sext(BitWidth);
9241     break;
9242   }
9243   case RISCVISD::DIVUW: {
9244     KnownBits Known2;
9245     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9246     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9247     // We only care about the lower 32 bits.
9248     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
9249     // Restore the original width by sign extending.
9250     Known = Known.sext(BitWidth);
9251     break;
9252   }
9253   case RISCVISD::CTZW: {
9254     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9255     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
9256     unsigned LowBits = Log2_32(PossibleTZ) + 1;
9257     Known.Zero.setBitsFrom(LowBits);
9258     break;
9259   }
9260   case RISCVISD::CLZW: {
9261     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9262     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
9263     unsigned LowBits = Log2_32(PossibleLZ) + 1;
9264     Known.Zero.setBitsFrom(LowBits);
9265     break;
9266   }
9267   case RISCVISD::GREV:
9268   case RISCVISD::GORC: {
9269     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9270       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9271       unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1);
9272       bool IsGORC = Op.getOpcode() == RISCVISD::GORC;
9273       // To compute zeros, we need to invert the value and invert it back after.
9274       Known.Zero =
9275           ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC);
9276       Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC);
9277     }
9278     break;
9279   }
9280   case RISCVISD::READ_VLENB: {
9281     // If we know the minimum VLen from Zvl extensions, we can use that to
9282     // determine the trailing zeros of VLENB.
9283     // FIXME: Limit to 128 bit vectors until we have more testing.
9284     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
9285     if (MinVLenB > 0)
9286       Known.Zero.setLowBits(Log2_32(MinVLenB));
9287     // We assume VLENB is no more than 65536 / 8 bytes.
9288     Known.Zero.setBitsFrom(14);
9289     break;
9290   }
9291   case ISD::INTRINSIC_W_CHAIN:
9292   case ISD::INTRINSIC_WO_CHAIN: {
9293     unsigned IntNo =
9294         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
9295     switch (IntNo) {
9296     default:
9297       // We can't do anything for most intrinsics.
9298       break;
9299     case Intrinsic::riscv_vsetvli:
9300     case Intrinsic::riscv_vsetvlimax:
9301     case Intrinsic::riscv_vsetvli_opt:
9302     case Intrinsic::riscv_vsetvlimax_opt:
9303       // Assume that VL output is positive and would fit in an int32_t.
9304       // TODO: VLEN might be capped at 16 bits in a future V spec update.
9305       if (BitWidth >= 32)
9306         Known.Zero.setBitsFrom(31);
9307       break;
9308     }
9309     break;
9310   }
9311   }
9312 }
9313 
9314 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
9315     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
9316     unsigned Depth) const {
9317   switch (Op.getOpcode()) {
9318   default:
9319     break;
9320   case RISCVISD::SELECT_CC: {
9321     unsigned Tmp =
9322         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
9323     if (Tmp == 1) return 1;  // Early out.
9324     unsigned Tmp2 =
9325         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
9326     return std::min(Tmp, Tmp2);
9327   }
9328   case RISCVISD::SLLW:
9329   case RISCVISD::SRAW:
9330   case RISCVISD::SRLW:
9331   case RISCVISD::DIVW:
9332   case RISCVISD::DIVUW:
9333   case RISCVISD::REMUW:
9334   case RISCVISD::ROLW:
9335   case RISCVISD::RORW:
9336   case RISCVISD::GREVW:
9337   case RISCVISD::GORCW:
9338   case RISCVISD::FSLW:
9339   case RISCVISD::FSRW:
9340   case RISCVISD::SHFLW:
9341   case RISCVISD::UNSHFLW:
9342   case RISCVISD::BCOMPRESSW:
9343   case RISCVISD::BDECOMPRESSW:
9344   case RISCVISD::BFPW:
9345   case RISCVISD::FCVT_W_RV64:
9346   case RISCVISD::FCVT_WU_RV64:
9347   case RISCVISD::STRICT_FCVT_W_RV64:
9348   case RISCVISD::STRICT_FCVT_WU_RV64:
9349     // TODO: As the result is sign-extended, this is conservatively correct. A
9350     // more precise answer could be calculated for SRAW depending on known
9351     // bits in the shift amount.
9352     return 33;
9353   case RISCVISD::SHFL:
9354   case RISCVISD::UNSHFL: {
9355     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
9356     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
9357     // will stay within the upper 32 bits. If there were more than 32 sign bits
9358     // before there will be at least 33 sign bits after.
9359     if (Op.getValueType() == MVT::i64 &&
9360         isa<ConstantSDNode>(Op.getOperand(1)) &&
9361         (Op.getConstantOperandVal(1) & 0x10) == 0) {
9362       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
9363       if (Tmp > 32)
9364         return 33;
9365     }
9366     break;
9367   }
9368   case RISCVISD::VMV_X_S: {
9369     // The number of sign bits of the scalar result is computed by obtaining the
9370     // element type of the input vector operand, subtracting its width from the
9371     // XLEN, and then adding one (sign bit within the element type). If the
9372     // element type is wider than XLen, the least-significant XLEN bits are
9373     // taken.
9374     unsigned XLen = Subtarget.getXLen();
9375     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
9376     if (EltBits <= XLen)
9377       return XLen - EltBits + 1;
9378     break;
9379   }
9380   }
9381 
9382   return 1;
9383 }
9384 
9385 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
9386                                                   MachineBasicBlock *BB) {
9387   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9388 
9389   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9390   // Should the count have wrapped while it was being read, we need to try
9391   // again.
9392   // ...
9393   // read:
9394   // rdcycleh x3 # load high word of cycle
9395   // rdcycle  x2 # load low word of cycle
9396   // rdcycleh x4 # load high word of cycle
9397   // bne x3, x4, read # check if high word reads match, otherwise try again
9398   // ...
9399 
9400   MachineFunction &MF = *BB->getParent();
9401   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9402   MachineFunction::iterator It = ++BB->getIterator();
9403 
9404   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9405   MF.insert(It, LoopMBB);
9406 
9407   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9408   MF.insert(It, DoneMBB);
9409 
9410   // Transfer the remainder of BB and its successor edges to DoneMBB.
9411   DoneMBB->splice(DoneMBB->begin(), BB,
9412                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9413   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9414 
9415   BB->addSuccessor(LoopMBB);
9416 
9417   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9418   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9419   Register LoReg = MI.getOperand(0).getReg();
9420   Register HiReg = MI.getOperand(1).getReg();
9421   DebugLoc DL = MI.getDebugLoc();
9422 
9423   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9424   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9425       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9426       .addReg(RISCV::X0);
9427   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9428       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9429       .addReg(RISCV::X0);
9430   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9431       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9432       .addReg(RISCV::X0);
9433 
9434   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9435       .addReg(HiReg)
9436       .addReg(ReadAgainReg)
9437       .addMBB(LoopMBB);
9438 
9439   LoopMBB->addSuccessor(LoopMBB);
9440   LoopMBB->addSuccessor(DoneMBB);
9441 
9442   MI.eraseFromParent();
9443 
9444   return DoneMBB;
9445 }
9446 
9447 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9448                                              MachineBasicBlock *BB) {
9449   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9450 
9451   MachineFunction &MF = *BB->getParent();
9452   DebugLoc DL = MI.getDebugLoc();
9453   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9454   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9455   Register LoReg = MI.getOperand(0).getReg();
9456   Register HiReg = MI.getOperand(1).getReg();
9457   Register SrcReg = MI.getOperand(2).getReg();
9458   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9459   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9460 
9461   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9462                           RI);
9463   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9464   MachineMemOperand *MMOLo =
9465       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9466   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9467       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9468   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9469       .addFrameIndex(FI)
9470       .addImm(0)
9471       .addMemOperand(MMOLo);
9472   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9473       .addFrameIndex(FI)
9474       .addImm(4)
9475       .addMemOperand(MMOHi);
9476   MI.eraseFromParent(); // The pseudo instruction is gone now.
9477   return BB;
9478 }
9479 
9480 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9481                                                  MachineBasicBlock *BB) {
9482   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9483          "Unexpected instruction");
9484 
9485   MachineFunction &MF = *BB->getParent();
9486   DebugLoc DL = MI.getDebugLoc();
9487   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9488   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9489   Register DstReg = MI.getOperand(0).getReg();
9490   Register LoReg = MI.getOperand(1).getReg();
9491   Register HiReg = MI.getOperand(2).getReg();
9492   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9493   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9494 
9495   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9496   MachineMemOperand *MMOLo =
9497       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9498   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9499       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9500   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9501       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9502       .addFrameIndex(FI)
9503       .addImm(0)
9504       .addMemOperand(MMOLo);
9505   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9506       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9507       .addFrameIndex(FI)
9508       .addImm(4)
9509       .addMemOperand(MMOHi);
9510   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9511   MI.eraseFromParent(); // The pseudo instruction is gone now.
9512   return BB;
9513 }
9514 
9515 static bool isSelectPseudo(MachineInstr &MI) {
9516   switch (MI.getOpcode()) {
9517   default:
9518     return false;
9519   case RISCV::Select_GPR_Using_CC_GPR:
9520   case RISCV::Select_FPR16_Using_CC_GPR:
9521   case RISCV::Select_FPR32_Using_CC_GPR:
9522   case RISCV::Select_FPR64_Using_CC_GPR:
9523     return true;
9524   }
9525 }
9526 
9527 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9528                                         unsigned RelOpcode, unsigned EqOpcode,
9529                                         const RISCVSubtarget &Subtarget) {
9530   DebugLoc DL = MI.getDebugLoc();
9531   Register DstReg = MI.getOperand(0).getReg();
9532   Register Src1Reg = MI.getOperand(1).getReg();
9533   Register Src2Reg = MI.getOperand(2).getReg();
9534   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9535   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9536   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9537 
9538   // Save the current FFLAGS.
9539   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9540 
9541   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9542                  .addReg(Src1Reg)
9543                  .addReg(Src2Reg);
9544   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9545     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9546 
9547   // Restore the FFLAGS.
9548   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9549       .addReg(SavedFFlags, RegState::Kill);
9550 
9551   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9552   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9553                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9554                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9555   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9556     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9557 
9558   // Erase the pseudoinstruction.
9559   MI.eraseFromParent();
9560   return BB;
9561 }
9562 
9563 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9564                                            MachineBasicBlock *BB,
9565                                            const RISCVSubtarget &Subtarget) {
9566   // To "insert" Select_* instructions, we actually have to insert the triangle
9567   // control-flow pattern.  The incoming instructions know the destination vreg
9568   // to set, the condition code register to branch on, the true/false values to
9569   // select between, and the condcode to use to select the appropriate branch.
9570   //
9571   // We produce the following control flow:
9572   //     HeadMBB
9573   //     |  \
9574   //     |  IfFalseMBB
9575   //     | /
9576   //    TailMBB
9577   //
9578   // When we find a sequence of selects we attempt to optimize their emission
9579   // by sharing the control flow. Currently we only handle cases where we have
9580   // multiple selects with the exact same condition (same LHS, RHS and CC).
9581   // The selects may be interleaved with other instructions if the other
9582   // instructions meet some requirements we deem safe:
9583   // - They are debug instructions. Otherwise,
9584   // - They do not have side-effects, do not access memory and their inputs do
9585   //   not depend on the results of the select pseudo-instructions.
9586   // The TrueV/FalseV operands of the selects cannot depend on the result of
9587   // previous selects in the sequence.
9588   // These conditions could be further relaxed. See the X86 target for a
9589   // related approach and more information.
9590   Register LHS = MI.getOperand(1).getReg();
9591   Register RHS = MI.getOperand(2).getReg();
9592   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9593 
9594   SmallVector<MachineInstr *, 4> SelectDebugValues;
9595   SmallSet<Register, 4> SelectDests;
9596   SelectDests.insert(MI.getOperand(0).getReg());
9597 
9598   MachineInstr *LastSelectPseudo = &MI;
9599 
9600   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9601        SequenceMBBI != E; ++SequenceMBBI) {
9602     if (SequenceMBBI->isDebugInstr())
9603       continue;
9604     if (isSelectPseudo(*SequenceMBBI)) {
9605       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9606           SequenceMBBI->getOperand(2).getReg() != RHS ||
9607           SequenceMBBI->getOperand(3).getImm() != CC ||
9608           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9609           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9610         break;
9611       LastSelectPseudo = &*SequenceMBBI;
9612       SequenceMBBI->collectDebugValues(SelectDebugValues);
9613       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9614     } else {
9615       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9616           SequenceMBBI->mayLoadOrStore())
9617         break;
9618       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9619             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9620           }))
9621         break;
9622     }
9623   }
9624 
9625   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9626   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9627   DebugLoc DL = MI.getDebugLoc();
9628   MachineFunction::iterator I = ++BB->getIterator();
9629 
9630   MachineBasicBlock *HeadMBB = BB;
9631   MachineFunction *F = BB->getParent();
9632   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9633   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9634 
9635   F->insert(I, IfFalseMBB);
9636   F->insert(I, TailMBB);
9637 
9638   // Transfer debug instructions associated with the selects to TailMBB.
9639   for (MachineInstr *DebugInstr : SelectDebugValues) {
9640     TailMBB->push_back(DebugInstr->removeFromParent());
9641   }
9642 
9643   // Move all instructions after the sequence to TailMBB.
9644   TailMBB->splice(TailMBB->end(), HeadMBB,
9645                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9646   // Update machine-CFG edges by transferring all successors of the current
9647   // block to the new block which will contain the Phi nodes for the selects.
9648   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9649   // Set the successors for HeadMBB.
9650   HeadMBB->addSuccessor(IfFalseMBB);
9651   HeadMBB->addSuccessor(TailMBB);
9652 
9653   // Insert appropriate branch.
9654   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9655     .addReg(LHS)
9656     .addReg(RHS)
9657     .addMBB(TailMBB);
9658 
9659   // IfFalseMBB just falls through to TailMBB.
9660   IfFalseMBB->addSuccessor(TailMBB);
9661 
9662   // Create PHIs for all of the select pseudo-instructions.
9663   auto SelectMBBI = MI.getIterator();
9664   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9665   auto InsertionPoint = TailMBB->begin();
9666   while (SelectMBBI != SelectEnd) {
9667     auto Next = std::next(SelectMBBI);
9668     if (isSelectPseudo(*SelectMBBI)) {
9669       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9670       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9671               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9672           .addReg(SelectMBBI->getOperand(4).getReg())
9673           .addMBB(HeadMBB)
9674           .addReg(SelectMBBI->getOperand(5).getReg())
9675           .addMBB(IfFalseMBB);
9676       SelectMBBI->eraseFromParent();
9677     }
9678     SelectMBBI = Next;
9679   }
9680 
9681   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9682   return TailMBB;
9683 }
9684 
9685 MachineBasicBlock *
9686 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9687                                                  MachineBasicBlock *BB) const {
9688   switch (MI.getOpcode()) {
9689   default:
9690     llvm_unreachable("Unexpected instr type to insert");
9691   case RISCV::ReadCycleWide:
9692     assert(!Subtarget.is64Bit() &&
9693            "ReadCycleWrite is only to be used on riscv32");
9694     return emitReadCycleWidePseudo(MI, BB);
9695   case RISCV::Select_GPR_Using_CC_GPR:
9696   case RISCV::Select_FPR16_Using_CC_GPR:
9697   case RISCV::Select_FPR32_Using_CC_GPR:
9698   case RISCV::Select_FPR64_Using_CC_GPR:
9699     return emitSelectPseudo(MI, BB, Subtarget);
9700   case RISCV::BuildPairF64Pseudo:
9701     return emitBuildPairF64Pseudo(MI, BB);
9702   case RISCV::SplitF64Pseudo:
9703     return emitSplitF64Pseudo(MI, BB);
9704   case RISCV::PseudoQuietFLE_H:
9705     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9706   case RISCV::PseudoQuietFLT_H:
9707     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9708   case RISCV::PseudoQuietFLE_S:
9709     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9710   case RISCV::PseudoQuietFLT_S:
9711     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9712   case RISCV::PseudoQuietFLE_D:
9713     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9714   case RISCV::PseudoQuietFLT_D:
9715     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9716   }
9717 }
9718 
9719 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9720                                                         SDNode *Node) const {
9721   // Add FRM dependency to any instructions with dynamic rounding mode.
9722   unsigned Opc = MI.getOpcode();
9723   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9724   if (Idx < 0)
9725     return;
9726   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9727     return;
9728   // If the instruction already reads FRM, don't add another read.
9729   if (MI.readsRegister(RISCV::FRM))
9730     return;
9731   MI.addOperand(
9732       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9733 }
9734 
9735 // Calling Convention Implementation.
9736 // The expectations for frontend ABI lowering vary from target to target.
9737 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9738 // details, but this is a longer term goal. For now, we simply try to keep the
9739 // role of the frontend as simple and well-defined as possible. The rules can
9740 // be summarised as:
9741 // * Never split up large scalar arguments. We handle them here.
9742 // * If a hardfloat calling convention is being used, and the struct may be
9743 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9744 // available, then pass as two separate arguments. If either the GPRs or FPRs
9745 // are exhausted, then pass according to the rule below.
9746 // * If a struct could never be passed in registers or directly in a stack
9747 // slot (as it is larger than 2*XLEN and the floating point rules don't
9748 // apply), then pass it using a pointer with the byval attribute.
9749 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9750 // word-sized array or a 2*XLEN scalar (depending on alignment).
9751 // * The frontend can determine whether a struct is returned by reference or
9752 // not based on its size and fields. If it will be returned by reference, the
9753 // frontend must modify the prototype so a pointer with the sret annotation is
9754 // passed as the first argument. This is not necessary for large scalar
9755 // returns.
9756 // * Struct return values and varargs should be coerced to structs containing
9757 // register-size fields in the same situations they would be for fixed
9758 // arguments.
9759 
9760 static const MCPhysReg ArgGPRs[] = {
9761   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9762   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9763 };
9764 static const MCPhysReg ArgFPR16s[] = {
9765   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9766   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9767 };
9768 static const MCPhysReg ArgFPR32s[] = {
9769   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9770   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9771 };
9772 static const MCPhysReg ArgFPR64s[] = {
9773   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9774   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9775 };
9776 // This is an interim calling convention and it may be changed in the future.
9777 static const MCPhysReg ArgVRs[] = {
9778     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9779     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9780     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9781 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9782                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9783                                      RISCV::V20M2, RISCV::V22M2};
9784 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9785                                      RISCV::V20M4};
9786 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9787 
9788 // Pass a 2*XLEN argument that has been split into two XLEN values through
9789 // registers or the stack as necessary.
9790 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9791                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9792                                 MVT ValVT2, MVT LocVT2,
9793                                 ISD::ArgFlagsTy ArgFlags2) {
9794   unsigned XLenInBytes = XLen / 8;
9795   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9796     // At least one half can be passed via register.
9797     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9798                                      VA1.getLocVT(), CCValAssign::Full));
9799   } else {
9800     // Both halves must be passed on the stack, with proper alignment.
9801     Align StackAlign =
9802         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9803     State.addLoc(
9804         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9805                             State.AllocateStack(XLenInBytes, StackAlign),
9806                             VA1.getLocVT(), CCValAssign::Full));
9807     State.addLoc(CCValAssign::getMem(
9808         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9809         LocVT2, CCValAssign::Full));
9810     return false;
9811   }
9812 
9813   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9814     // The second half can also be passed via register.
9815     State.addLoc(
9816         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9817   } else {
9818     // The second half is passed via the stack, without additional alignment.
9819     State.addLoc(CCValAssign::getMem(
9820         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9821         LocVT2, CCValAssign::Full));
9822   }
9823 
9824   return false;
9825 }
9826 
9827 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9828                                Optional<unsigned> FirstMaskArgument,
9829                                CCState &State, const RISCVTargetLowering &TLI) {
9830   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9831   if (RC == &RISCV::VRRegClass) {
9832     // Assign the first mask argument to V0.
9833     // This is an interim calling convention and it may be changed in the
9834     // future.
9835     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9836       return State.AllocateReg(RISCV::V0);
9837     return State.AllocateReg(ArgVRs);
9838   }
9839   if (RC == &RISCV::VRM2RegClass)
9840     return State.AllocateReg(ArgVRM2s);
9841   if (RC == &RISCV::VRM4RegClass)
9842     return State.AllocateReg(ArgVRM4s);
9843   if (RC == &RISCV::VRM8RegClass)
9844     return State.AllocateReg(ArgVRM8s);
9845   llvm_unreachable("Unhandled register class for ValueType");
9846 }
9847 
9848 // Implements the RISC-V calling convention. Returns true upon failure.
9849 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9850                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9851                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9852                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9853                      Optional<unsigned> FirstMaskArgument) {
9854   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9855   assert(XLen == 32 || XLen == 64);
9856   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9857 
9858   // Any return value split in to more than two values can't be returned
9859   // directly. Vectors are returned via the available vector registers.
9860   if (!LocVT.isVector() && IsRet && ValNo > 1)
9861     return true;
9862 
9863   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9864   // variadic argument, or if no F16/F32 argument registers are available.
9865   bool UseGPRForF16_F32 = true;
9866   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9867   // variadic argument, or if no F64 argument registers are available.
9868   bool UseGPRForF64 = true;
9869 
9870   switch (ABI) {
9871   default:
9872     llvm_unreachable("Unexpected ABI");
9873   case RISCVABI::ABI_ILP32:
9874   case RISCVABI::ABI_LP64:
9875     break;
9876   case RISCVABI::ABI_ILP32F:
9877   case RISCVABI::ABI_LP64F:
9878     UseGPRForF16_F32 = !IsFixed;
9879     break;
9880   case RISCVABI::ABI_ILP32D:
9881   case RISCVABI::ABI_LP64D:
9882     UseGPRForF16_F32 = !IsFixed;
9883     UseGPRForF64 = !IsFixed;
9884     break;
9885   }
9886 
9887   // FPR16, FPR32, and FPR64 alias each other.
9888   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9889     UseGPRForF16_F32 = true;
9890     UseGPRForF64 = true;
9891   }
9892 
9893   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9894   // similar local variables rather than directly checking against the target
9895   // ABI.
9896 
9897   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9898     LocVT = XLenVT;
9899     LocInfo = CCValAssign::BCvt;
9900   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9901     LocVT = MVT::i64;
9902     LocInfo = CCValAssign::BCvt;
9903   }
9904 
9905   // If this is a variadic argument, the RISC-V calling convention requires
9906   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9907   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9908   // be used regardless of whether the original argument was split during
9909   // legalisation or not. The argument will not be passed by registers if the
9910   // original type is larger than 2*XLEN, so the register alignment rule does
9911   // not apply.
9912   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9913   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9914       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9915     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9916     // Skip 'odd' register if necessary.
9917     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9918       State.AllocateReg(ArgGPRs);
9919   }
9920 
9921   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9922   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9923       State.getPendingArgFlags();
9924 
9925   assert(PendingLocs.size() == PendingArgFlags.size() &&
9926          "PendingLocs and PendingArgFlags out of sync");
9927 
9928   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9929   // registers are exhausted.
9930   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9931     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9932            "Can't lower f64 if it is split");
9933     // Depending on available argument GPRS, f64 may be passed in a pair of
9934     // GPRs, split between a GPR and the stack, or passed completely on the
9935     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9936     // cases.
9937     Register Reg = State.AllocateReg(ArgGPRs);
9938     LocVT = MVT::i32;
9939     if (!Reg) {
9940       unsigned StackOffset = State.AllocateStack(8, Align(8));
9941       State.addLoc(
9942           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9943       return false;
9944     }
9945     if (!State.AllocateReg(ArgGPRs))
9946       State.AllocateStack(4, Align(4));
9947     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9948     return false;
9949   }
9950 
9951   // Fixed-length vectors are located in the corresponding scalable-vector
9952   // container types.
9953   if (ValVT.isFixedLengthVector())
9954     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9955 
9956   // Split arguments might be passed indirectly, so keep track of the pending
9957   // values. Split vectors are passed via a mix of registers and indirectly, so
9958   // treat them as we would any other argument.
9959   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9960     LocVT = XLenVT;
9961     LocInfo = CCValAssign::Indirect;
9962     PendingLocs.push_back(
9963         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9964     PendingArgFlags.push_back(ArgFlags);
9965     if (!ArgFlags.isSplitEnd()) {
9966       return false;
9967     }
9968   }
9969 
9970   // If the split argument only had two elements, it should be passed directly
9971   // in registers or on the stack.
9972   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9973       PendingLocs.size() <= 2) {
9974     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9975     // Apply the normal calling convention rules to the first half of the
9976     // split argument.
9977     CCValAssign VA = PendingLocs[0];
9978     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9979     PendingLocs.clear();
9980     PendingArgFlags.clear();
9981     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9982                                ArgFlags);
9983   }
9984 
9985   // Allocate to a register if possible, or else a stack slot.
9986   Register Reg;
9987   unsigned StoreSizeBytes = XLen / 8;
9988   Align StackAlign = Align(XLen / 8);
9989 
9990   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9991     Reg = State.AllocateReg(ArgFPR16s);
9992   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9993     Reg = State.AllocateReg(ArgFPR32s);
9994   else if (ValVT == MVT::f64 && !UseGPRForF64)
9995     Reg = State.AllocateReg(ArgFPR64s);
9996   else if (ValVT.isVector()) {
9997     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9998     if (!Reg) {
9999       // For return values, the vector must be passed fully via registers or
10000       // via the stack.
10001       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
10002       // but we're using all of them.
10003       if (IsRet)
10004         return true;
10005       // Try using a GPR to pass the address
10006       if ((Reg = State.AllocateReg(ArgGPRs))) {
10007         LocVT = XLenVT;
10008         LocInfo = CCValAssign::Indirect;
10009       } else if (ValVT.isScalableVector()) {
10010         LocVT = XLenVT;
10011         LocInfo = CCValAssign::Indirect;
10012       } else {
10013         // Pass fixed-length vectors on the stack.
10014         LocVT = ValVT;
10015         StoreSizeBytes = ValVT.getStoreSize();
10016         // Align vectors to their element sizes, being careful for vXi1
10017         // vectors.
10018         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10019       }
10020     }
10021   } else {
10022     Reg = State.AllocateReg(ArgGPRs);
10023   }
10024 
10025   unsigned StackOffset =
10026       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
10027 
10028   // If we reach this point and PendingLocs is non-empty, we must be at the
10029   // end of a split argument that must be passed indirectly.
10030   if (!PendingLocs.empty()) {
10031     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
10032     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
10033 
10034     for (auto &It : PendingLocs) {
10035       if (Reg)
10036         It.convertToReg(Reg);
10037       else
10038         It.convertToMem(StackOffset);
10039       State.addLoc(It);
10040     }
10041     PendingLocs.clear();
10042     PendingArgFlags.clear();
10043     return false;
10044   }
10045 
10046   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
10047           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
10048          "Expected an XLenVT or vector types at this stage");
10049 
10050   if (Reg) {
10051     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10052     return false;
10053   }
10054 
10055   // When a floating-point value is passed on the stack, no bit-conversion is
10056   // needed.
10057   if (ValVT.isFloatingPoint()) {
10058     LocVT = ValVT;
10059     LocInfo = CCValAssign::Full;
10060   }
10061   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10062   return false;
10063 }
10064 
10065 template <typename ArgTy>
10066 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
10067   for (const auto &ArgIdx : enumerate(Args)) {
10068     MVT ArgVT = ArgIdx.value().VT;
10069     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
10070       return ArgIdx.index();
10071   }
10072   return None;
10073 }
10074 
10075 void RISCVTargetLowering::analyzeInputArgs(
10076     MachineFunction &MF, CCState &CCInfo,
10077     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
10078     RISCVCCAssignFn Fn) const {
10079   unsigned NumArgs = Ins.size();
10080   FunctionType *FType = MF.getFunction().getFunctionType();
10081 
10082   Optional<unsigned> FirstMaskArgument;
10083   if (Subtarget.hasVInstructions())
10084     FirstMaskArgument = preAssignMask(Ins);
10085 
10086   for (unsigned i = 0; i != NumArgs; ++i) {
10087     MVT ArgVT = Ins[i].VT;
10088     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
10089 
10090     Type *ArgTy = nullptr;
10091     if (IsRet)
10092       ArgTy = FType->getReturnType();
10093     else if (Ins[i].isOrigArg())
10094       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
10095 
10096     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10097     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10098            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
10099            FirstMaskArgument)) {
10100       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
10101                         << EVT(ArgVT).getEVTString() << '\n');
10102       llvm_unreachable(nullptr);
10103     }
10104   }
10105 }
10106 
10107 void RISCVTargetLowering::analyzeOutputArgs(
10108     MachineFunction &MF, CCState &CCInfo,
10109     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
10110     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
10111   unsigned NumArgs = Outs.size();
10112 
10113   Optional<unsigned> FirstMaskArgument;
10114   if (Subtarget.hasVInstructions())
10115     FirstMaskArgument = preAssignMask(Outs);
10116 
10117   for (unsigned i = 0; i != NumArgs; i++) {
10118     MVT ArgVT = Outs[i].VT;
10119     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10120     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
10121 
10122     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10123     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10124            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
10125            FirstMaskArgument)) {
10126       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
10127                         << EVT(ArgVT).getEVTString() << "\n");
10128       llvm_unreachable(nullptr);
10129     }
10130   }
10131 }
10132 
10133 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
10134 // values.
10135 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
10136                                    const CCValAssign &VA, const SDLoc &DL,
10137                                    const RISCVSubtarget &Subtarget) {
10138   switch (VA.getLocInfo()) {
10139   default:
10140     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10141   case CCValAssign::Full:
10142     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
10143       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
10144     break;
10145   case CCValAssign::BCvt:
10146     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10147       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
10148     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10149       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
10150     else
10151       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
10152     break;
10153   }
10154   return Val;
10155 }
10156 
10157 // The caller is responsible for loading the full value if the argument is
10158 // passed with CCValAssign::Indirect.
10159 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
10160                                 const CCValAssign &VA, const SDLoc &DL,
10161                                 const RISCVTargetLowering &TLI) {
10162   MachineFunction &MF = DAG.getMachineFunction();
10163   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10164   EVT LocVT = VA.getLocVT();
10165   SDValue Val;
10166   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
10167   Register VReg = RegInfo.createVirtualRegister(RC);
10168   RegInfo.addLiveIn(VA.getLocReg(), VReg);
10169   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
10170 
10171   if (VA.getLocInfo() == CCValAssign::Indirect)
10172     return Val;
10173 
10174   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
10175 }
10176 
10177 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
10178                                    const CCValAssign &VA, const SDLoc &DL,
10179                                    const RISCVSubtarget &Subtarget) {
10180   EVT LocVT = VA.getLocVT();
10181 
10182   switch (VA.getLocInfo()) {
10183   default:
10184     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10185   case CCValAssign::Full:
10186     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
10187       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
10188     break;
10189   case CCValAssign::BCvt:
10190     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10191       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
10192     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10193       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
10194     else
10195       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
10196     break;
10197   }
10198   return Val;
10199 }
10200 
10201 // The caller is responsible for loading the full value if the argument is
10202 // passed with CCValAssign::Indirect.
10203 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
10204                                 const CCValAssign &VA, const SDLoc &DL) {
10205   MachineFunction &MF = DAG.getMachineFunction();
10206   MachineFrameInfo &MFI = MF.getFrameInfo();
10207   EVT LocVT = VA.getLocVT();
10208   EVT ValVT = VA.getValVT();
10209   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
10210   if (ValVT.isScalableVector()) {
10211     // When the value is a scalable vector, we save the pointer which points to
10212     // the scalable vector value in the stack. The ValVT will be the pointer
10213     // type, instead of the scalable vector type.
10214     ValVT = LocVT;
10215   }
10216   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
10217                                  /*IsImmutable=*/true);
10218   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
10219   SDValue Val;
10220 
10221   ISD::LoadExtType ExtType;
10222   switch (VA.getLocInfo()) {
10223   default:
10224     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10225   case CCValAssign::Full:
10226   case CCValAssign::Indirect:
10227   case CCValAssign::BCvt:
10228     ExtType = ISD::NON_EXTLOAD;
10229     break;
10230   }
10231   Val = DAG.getExtLoad(
10232       ExtType, DL, LocVT, Chain, FIN,
10233       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
10234   return Val;
10235 }
10236 
10237 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
10238                                        const CCValAssign &VA, const SDLoc &DL) {
10239   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
10240          "Unexpected VA");
10241   MachineFunction &MF = DAG.getMachineFunction();
10242   MachineFrameInfo &MFI = MF.getFrameInfo();
10243   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10244 
10245   if (VA.isMemLoc()) {
10246     // f64 is passed on the stack.
10247     int FI =
10248         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
10249     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10250     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
10251                        MachinePointerInfo::getFixedStack(MF, FI));
10252   }
10253 
10254   assert(VA.isRegLoc() && "Expected register VA assignment");
10255 
10256   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10257   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
10258   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
10259   SDValue Hi;
10260   if (VA.getLocReg() == RISCV::X17) {
10261     // Second half of f64 is passed on the stack.
10262     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
10263     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10264     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
10265                      MachinePointerInfo::getFixedStack(MF, FI));
10266   } else {
10267     // Second half of f64 is passed in another GPR.
10268     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10269     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
10270     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
10271   }
10272   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
10273 }
10274 
10275 // FastCC has less than 1% performance improvement for some particular
10276 // benchmark. But theoretically, it may has benenfit for some cases.
10277 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
10278                             unsigned ValNo, MVT ValVT, MVT LocVT,
10279                             CCValAssign::LocInfo LocInfo,
10280                             ISD::ArgFlagsTy ArgFlags, CCState &State,
10281                             bool IsFixed, bool IsRet, Type *OrigTy,
10282                             const RISCVTargetLowering &TLI,
10283                             Optional<unsigned> FirstMaskArgument) {
10284 
10285   // X5 and X6 might be used for save-restore libcall.
10286   static const MCPhysReg GPRList[] = {
10287       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
10288       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
10289       RISCV::X29, RISCV::X30, RISCV::X31};
10290 
10291   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10292     if (unsigned Reg = State.AllocateReg(GPRList)) {
10293       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10294       return false;
10295     }
10296   }
10297 
10298   if (LocVT == MVT::f16) {
10299     static const MCPhysReg FPR16List[] = {
10300         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
10301         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
10302         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
10303         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
10304     if (unsigned Reg = State.AllocateReg(FPR16List)) {
10305       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10306       return false;
10307     }
10308   }
10309 
10310   if (LocVT == MVT::f32) {
10311     static const MCPhysReg FPR32List[] = {
10312         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
10313         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
10314         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
10315         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
10316     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10317       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10318       return false;
10319     }
10320   }
10321 
10322   if (LocVT == MVT::f64) {
10323     static const MCPhysReg FPR64List[] = {
10324         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
10325         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
10326         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
10327         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
10328     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10329       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10330       return false;
10331     }
10332   }
10333 
10334   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
10335     unsigned Offset4 = State.AllocateStack(4, Align(4));
10336     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
10337     return false;
10338   }
10339 
10340   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
10341     unsigned Offset5 = State.AllocateStack(8, Align(8));
10342     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
10343     return false;
10344   }
10345 
10346   if (LocVT.isVector()) {
10347     if (unsigned Reg =
10348             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
10349       // Fixed-length vectors are located in the corresponding scalable-vector
10350       // container types.
10351       if (ValVT.isFixedLengthVector())
10352         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10353       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10354     } else {
10355       // Try and pass the address via a "fast" GPR.
10356       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
10357         LocInfo = CCValAssign::Indirect;
10358         LocVT = TLI.getSubtarget().getXLenVT();
10359         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
10360       } else if (ValVT.isFixedLengthVector()) {
10361         auto StackAlign =
10362             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10363         unsigned StackOffset =
10364             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
10365         State.addLoc(
10366             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10367       } else {
10368         // Can't pass scalable vectors on the stack.
10369         return true;
10370       }
10371     }
10372 
10373     return false;
10374   }
10375 
10376   return true; // CC didn't match.
10377 }
10378 
10379 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
10380                          CCValAssign::LocInfo LocInfo,
10381                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
10382 
10383   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10384     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
10385     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
10386     static const MCPhysReg GPRList[] = {
10387         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10388         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10389     if (unsigned Reg = State.AllocateReg(GPRList)) {
10390       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10391       return false;
10392     }
10393   }
10394 
10395   if (LocVT == MVT::f32) {
10396     // Pass in STG registers: F1, ..., F6
10397     //                        fs0 ... fs5
10398     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10399                                           RISCV::F18_F, RISCV::F19_F,
10400                                           RISCV::F20_F, RISCV::F21_F};
10401     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10402       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10403       return false;
10404     }
10405   }
10406 
10407   if (LocVT == MVT::f64) {
10408     // Pass in STG registers: D1, ..., D6
10409     //                        fs6 ... fs11
10410     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10411                                           RISCV::F24_D, RISCV::F25_D,
10412                                           RISCV::F26_D, RISCV::F27_D};
10413     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10414       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10415       return false;
10416     }
10417   }
10418 
10419   report_fatal_error("No registers left in GHC calling convention");
10420   return true;
10421 }
10422 
10423 // Transform physical registers into virtual registers.
10424 SDValue RISCVTargetLowering::LowerFormalArguments(
10425     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10426     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10427     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10428 
10429   MachineFunction &MF = DAG.getMachineFunction();
10430 
10431   switch (CallConv) {
10432   default:
10433     report_fatal_error("Unsupported calling convention");
10434   case CallingConv::C:
10435   case CallingConv::Fast:
10436     break;
10437   case CallingConv::GHC:
10438     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10439         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10440       report_fatal_error(
10441         "GHC calling convention requires the F and D instruction set extensions");
10442   }
10443 
10444   const Function &Func = MF.getFunction();
10445   if (Func.hasFnAttribute("interrupt")) {
10446     if (!Func.arg_empty())
10447       report_fatal_error(
10448         "Functions with the interrupt attribute cannot have arguments!");
10449 
10450     StringRef Kind =
10451       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10452 
10453     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10454       report_fatal_error(
10455         "Function interrupt attribute argument not supported!");
10456   }
10457 
10458   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10459   MVT XLenVT = Subtarget.getXLenVT();
10460   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10461   // Used with vargs to acumulate store chains.
10462   std::vector<SDValue> OutChains;
10463 
10464   // Assign locations to all of the incoming arguments.
10465   SmallVector<CCValAssign, 16> ArgLocs;
10466   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10467 
10468   if (CallConv == CallingConv::GHC)
10469     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10470   else
10471     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10472                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10473                                                    : CC_RISCV);
10474 
10475   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10476     CCValAssign &VA = ArgLocs[i];
10477     SDValue ArgValue;
10478     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10479     // case.
10480     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10481       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10482     else if (VA.isRegLoc())
10483       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10484     else
10485       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10486 
10487     if (VA.getLocInfo() == CCValAssign::Indirect) {
10488       // If the original argument was split and passed by reference (e.g. i128
10489       // on RV32), we need to load all parts of it here (using the same
10490       // address). Vectors may be partly split to registers and partly to the
10491       // stack, in which case the base address is partly offset and subsequent
10492       // stores are relative to that.
10493       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10494                                    MachinePointerInfo()));
10495       unsigned ArgIndex = Ins[i].OrigArgIndex;
10496       unsigned ArgPartOffset = Ins[i].PartOffset;
10497       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10498       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10499         CCValAssign &PartVA = ArgLocs[i + 1];
10500         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10501         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10502         if (PartVA.getValVT().isScalableVector())
10503           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10504         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10505         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10506                                      MachinePointerInfo()));
10507         ++i;
10508       }
10509       continue;
10510     }
10511     InVals.push_back(ArgValue);
10512   }
10513 
10514   if (IsVarArg) {
10515     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10516     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10517     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10518     MachineFrameInfo &MFI = MF.getFrameInfo();
10519     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10520     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10521 
10522     // Offset of the first variable argument from stack pointer, and size of
10523     // the vararg save area. For now, the varargs save area is either zero or
10524     // large enough to hold a0-a7.
10525     int VaArgOffset, VarArgsSaveSize;
10526 
10527     // If all registers are allocated, then all varargs must be passed on the
10528     // stack and we don't need to save any argregs.
10529     if (ArgRegs.size() == Idx) {
10530       VaArgOffset = CCInfo.getNextStackOffset();
10531       VarArgsSaveSize = 0;
10532     } else {
10533       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10534       VaArgOffset = -VarArgsSaveSize;
10535     }
10536 
10537     // Record the frame index of the first variable argument
10538     // which is a value necessary to VASTART.
10539     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10540     RVFI->setVarArgsFrameIndex(FI);
10541 
10542     // If saving an odd number of registers then create an extra stack slot to
10543     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10544     // offsets to even-numbered registered remain 2*XLEN-aligned.
10545     if (Idx % 2) {
10546       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10547       VarArgsSaveSize += XLenInBytes;
10548     }
10549 
10550     // Copy the integer registers that may have been used for passing varargs
10551     // to the vararg save area.
10552     for (unsigned I = Idx; I < ArgRegs.size();
10553          ++I, VaArgOffset += XLenInBytes) {
10554       const Register Reg = RegInfo.createVirtualRegister(RC);
10555       RegInfo.addLiveIn(ArgRegs[I], Reg);
10556       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10557       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10558       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10559       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10560                                    MachinePointerInfo::getFixedStack(MF, FI));
10561       cast<StoreSDNode>(Store.getNode())
10562           ->getMemOperand()
10563           ->setValue((Value *)nullptr);
10564       OutChains.push_back(Store);
10565     }
10566     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10567   }
10568 
10569   // All stores are grouped in one node to allow the matching between
10570   // the size of Ins and InVals. This only happens for vararg functions.
10571   if (!OutChains.empty()) {
10572     OutChains.push_back(Chain);
10573     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10574   }
10575 
10576   return Chain;
10577 }
10578 
10579 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10580 /// for tail call optimization.
10581 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10582 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10583     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10584     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10585 
10586   auto &Callee = CLI.Callee;
10587   auto CalleeCC = CLI.CallConv;
10588   auto &Outs = CLI.Outs;
10589   auto &Caller = MF.getFunction();
10590   auto CallerCC = Caller.getCallingConv();
10591 
10592   // Exception-handling functions need a special set of instructions to
10593   // indicate a return to the hardware. Tail-calling another function would
10594   // probably break this.
10595   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10596   // should be expanded as new function attributes are introduced.
10597   if (Caller.hasFnAttribute("interrupt"))
10598     return false;
10599 
10600   // Do not tail call opt if the stack is used to pass parameters.
10601   if (CCInfo.getNextStackOffset() != 0)
10602     return false;
10603 
10604   // Do not tail call opt if any parameters need to be passed indirectly.
10605   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10606   // passed indirectly. So the address of the value will be passed in a
10607   // register, or if not available, then the address is put on the stack. In
10608   // order to pass indirectly, space on the stack often needs to be allocated
10609   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10610   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10611   // are passed CCValAssign::Indirect.
10612   for (auto &VA : ArgLocs)
10613     if (VA.getLocInfo() == CCValAssign::Indirect)
10614       return false;
10615 
10616   // Do not tail call opt if either caller or callee uses struct return
10617   // semantics.
10618   auto IsCallerStructRet = Caller.hasStructRetAttr();
10619   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10620   if (IsCallerStructRet || IsCalleeStructRet)
10621     return false;
10622 
10623   // Externally-defined functions with weak linkage should not be
10624   // tail-called. The behaviour of branch instructions in this situation (as
10625   // used for tail calls) is implementation-defined, so we cannot rely on the
10626   // linker replacing the tail call with a return.
10627   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10628     const GlobalValue *GV = G->getGlobal();
10629     if (GV->hasExternalWeakLinkage())
10630       return false;
10631   }
10632 
10633   // The callee has to preserve all registers the caller needs to preserve.
10634   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10635   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10636   if (CalleeCC != CallerCC) {
10637     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10638     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10639       return false;
10640   }
10641 
10642   // Byval parameters hand the function a pointer directly into the stack area
10643   // we want to reuse during a tail call. Working around this *is* possible
10644   // but less efficient and uglier in LowerCall.
10645   for (auto &Arg : Outs)
10646     if (Arg.Flags.isByVal())
10647       return false;
10648 
10649   return true;
10650 }
10651 
10652 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10653   return DAG.getDataLayout().getPrefTypeAlign(
10654       VT.getTypeForEVT(*DAG.getContext()));
10655 }
10656 
10657 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10658 // and output parameter nodes.
10659 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10660                                        SmallVectorImpl<SDValue> &InVals) const {
10661   SelectionDAG &DAG = CLI.DAG;
10662   SDLoc &DL = CLI.DL;
10663   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10664   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10665   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10666   SDValue Chain = CLI.Chain;
10667   SDValue Callee = CLI.Callee;
10668   bool &IsTailCall = CLI.IsTailCall;
10669   CallingConv::ID CallConv = CLI.CallConv;
10670   bool IsVarArg = CLI.IsVarArg;
10671   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10672   MVT XLenVT = Subtarget.getXLenVT();
10673 
10674   MachineFunction &MF = DAG.getMachineFunction();
10675 
10676   // Analyze the operands of the call, assigning locations to each operand.
10677   SmallVector<CCValAssign, 16> ArgLocs;
10678   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10679 
10680   if (CallConv == CallingConv::GHC)
10681     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10682   else
10683     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10684                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10685                                                     : CC_RISCV);
10686 
10687   // Check if it's really possible to do a tail call.
10688   if (IsTailCall)
10689     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10690 
10691   if (IsTailCall)
10692     ++NumTailCalls;
10693   else if (CLI.CB && CLI.CB->isMustTailCall())
10694     report_fatal_error("failed to perform tail call elimination on a call "
10695                        "site marked musttail");
10696 
10697   // Get a count of how many bytes are to be pushed on the stack.
10698   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10699 
10700   // Create local copies for byval args
10701   SmallVector<SDValue, 8> ByValArgs;
10702   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10703     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10704     if (!Flags.isByVal())
10705       continue;
10706 
10707     SDValue Arg = OutVals[i];
10708     unsigned Size = Flags.getByValSize();
10709     Align Alignment = Flags.getNonZeroByValAlign();
10710 
10711     int FI =
10712         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10713     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10714     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10715 
10716     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10717                           /*IsVolatile=*/false,
10718                           /*AlwaysInline=*/false, IsTailCall,
10719                           MachinePointerInfo(), MachinePointerInfo());
10720     ByValArgs.push_back(FIPtr);
10721   }
10722 
10723   if (!IsTailCall)
10724     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10725 
10726   // Copy argument values to their designated locations.
10727   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10728   SmallVector<SDValue, 8> MemOpChains;
10729   SDValue StackPtr;
10730   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10731     CCValAssign &VA = ArgLocs[i];
10732     SDValue ArgValue = OutVals[i];
10733     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10734 
10735     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10736     bool IsF64OnRV32DSoftABI =
10737         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10738     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10739       SDValue SplitF64 = DAG.getNode(
10740           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10741       SDValue Lo = SplitF64.getValue(0);
10742       SDValue Hi = SplitF64.getValue(1);
10743 
10744       Register RegLo = VA.getLocReg();
10745       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10746 
10747       if (RegLo == RISCV::X17) {
10748         // Second half of f64 is passed on the stack.
10749         // Work out the address of the stack slot.
10750         if (!StackPtr.getNode())
10751           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10752         // Emit the store.
10753         MemOpChains.push_back(
10754             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10755       } else {
10756         // Second half of f64 is passed in another GPR.
10757         assert(RegLo < RISCV::X31 && "Invalid register pair");
10758         Register RegHigh = RegLo + 1;
10759         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10760       }
10761       continue;
10762     }
10763 
10764     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10765     // as any other MemLoc.
10766 
10767     // Promote the value if needed.
10768     // For now, only handle fully promoted and indirect arguments.
10769     if (VA.getLocInfo() == CCValAssign::Indirect) {
10770       // Store the argument in a stack slot and pass its address.
10771       Align StackAlign =
10772           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10773                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10774       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10775       // If the original argument was split (e.g. i128), we need
10776       // to store the required parts of it here (and pass just one address).
10777       // Vectors may be partly split to registers and partly to the stack, in
10778       // which case the base address is partly offset and subsequent stores are
10779       // relative to that.
10780       unsigned ArgIndex = Outs[i].OrigArgIndex;
10781       unsigned ArgPartOffset = Outs[i].PartOffset;
10782       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10783       // Calculate the total size to store. We don't have access to what we're
10784       // actually storing other than performing the loop and collecting the
10785       // info.
10786       SmallVector<std::pair<SDValue, SDValue>> Parts;
10787       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10788         SDValue PartValue = OutVals[i + 1];
10789         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10790         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10791         EVT PartVT = PartValue.getValueType();
10792         if (PartVT.isScalableVector())
10793           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10794         StoredSize += PartVT.getStoreSize();
10795         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10796         Parts.push_back(std::make_pair(PartValue, Offset));
10797         ++i;
10798       }
10799       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10800       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10801       MemOpChains.push_back(
10802           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10803                        MachinePointerInfo::getFixedStack(MF, FI)));
10804       for (const auto &Part : Parts) {
10805         SDValue PartValue = Part.first;
10806         SDValue PartOffset = Part.second;
10807         SDValue Address =
10808             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10809         MemOpChains.push_back(
10810             DAG.getStore(Chain, DL, PartValue, Address,
10811                          MachinePointerInfo::getFixedStack(MF, FI)));
10812       }
10813       ArgValue = SpillSlot;
10814     } else {
10815       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10816     }
10817 
10818     // Use local copy if it is a byval arg.
10819     if (Flags.isByVal())
10820       ArgValue = ByValArgs[j++];
10821 
10822     if (VA.isRegLoc()) {
10823       // Queue up the argument copies and emit them at the end.
10824       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10825     } else {
10826       assert(VA.isMemLoc() && "Argument not register or memory");
10827       assert(!IsTailCall && "Tail call not allowed if stack is used "
10828                             "for passing parameters");
10829 
10830       // Work out the address of the stack slot.
10831       if (!StackPtr.getNode())
10832         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10833       SDValue Address =
10834           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10835                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10836 
10837       // Emit the store.
10838       MemOpChains.push_back(
10839           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10840     }
10841   }
10842 
10843   // Join the stores, which are independent of one another.
10844   if (!MemOpChains.empty())
10845     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10846 
10847   SDValue Glue;
10848 
10849   // Build a sequence of copy-to-reg nodes, chained and glued together.
10850   for (auto &Reg : RegsToPass) {
10851     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10852     Glue = Chain.getValue(1);
10853   }
10854 
10855   // Validate that none of the argument registers have been marked as
10856   // reserved, if so report an error. Do the same for the return address if this
10857   // is not a tailcall.
10858   validateCCReservedRegs(RegsToPass, MF);
10859   if (!IsTailCall &&
10860       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10861     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10862         MF.getFunction(),
10863         "Return address register required, but has been reserved."});
10864 
10865   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10866   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10867   // split it and then direct call can be matched by PseudoCALL.
10868   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10869     const GlobalValue *GV = S->getGlobal();
10870 
10871     unsigned OpFlags = RISCVII::MO_CALL;
10872     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10873       OpFlags = RISCVII::MO_PLT;
10874 
10875     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10876   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10877     unsigned OpFlags = RISCVII::MO_CALL;
10878 
10879     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10880                                                  nullptr))
10881       OpFlags = RISCVII::MO_PLT;
10882 
10883     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10884   }
10885 
10886   // The first call operand is the chain and the second is the target address.
10887   SmallVector<SDValue, 8> Ops;
10888   Ops.push_back(Chain);
10889   Ops.push_back(Callee);
10890 
10891   // Add argument registers to the end of the list so that they are
10892   // known live into the call.
10893   for (auto &Reg : RegsToPass)
10894     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10895 
10896   if (!IsTailCall) {
10897     // Add a register mask operand representing the call-preserved registers.
10898     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10899     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10900     assert(Mask && "Missing call preserved mask for calling convention");
10901     Ops.push_back(DAG.getRegisterMask(Mask));
10902   }
10903 
10904   // Glue the call to the argument copies, if any.
10905   if (Glue.getNode())
10906     Ops.push_back(Glue);
10907 
10908   // Emit the call.
10909   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10910 
10911   if (IsTailCall) {
10912     MF.getFrameInfo().setHasTailCall();
10913     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10914   }
10915 
10916   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10917   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10918   Glue = Chain.getValue(1);
10919 
10920   // Mark the end of the call, which is glued to the call itself.
10921   Chain = DAG.getCALLSEQ_END(Chain,
10922                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10923                              DAG.getConstant(0, DL, PtrVT, true),
10924                              Glue, DL);
10925   Glue = Chain.getValue(1);
10926 
10927   // Assign locations to each value returned by this call.
10928   SmallVector<CCValAssign, 16> RVLocs;
10929   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10930   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10931 
10932   // Copy all of the result registers out of their specified physreg.
10933   for (auto &VA : RVLocs) {
10934     // Copy the value out
10935     SDValue RetValue =
10936         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10937     // Glue the RetValue to the end of the call sequence
10938     Chain = RetValue.getValue(1);
10939     Glue = RetValue.getValue(2);
10940 
10941     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10942       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10943       SDValue RetValue2 =
10944           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10945       Chain = RetValue2.getValue(1);
10946       Glue = RetValue2.getValue(2);
10947       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10948                              RetValue2);
10949     }
10950 
10951     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10952 
10953     InVals.push_back(RetValue);
10954   }
10955 
10956   return Chain;
10957 }
10958 
10959 bool RISCVTargetLowering::CanLowerReturn(
10960     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10961     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10962   SmallVector<CCValAssign, 16> RVLocs;
10963   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10964 
10965   Optional<unsigned> FirstMaskArgument;
10966   if (Subtarget.hasVInstructions())
10967     FirstMaskArgument = preAssignMask(Outs);
10968 
10969   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10970     MVT VT = Outs[i].VT;
10971     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10972     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10973     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10974                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10975                  *this, FirstMaskArgument))
10976       return false;
10977   }
10978   return true;
10979 }
10980 
10981 SDValue
10982 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10983                                  bool IsVarArg,
10984                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10985                                  const SmallVectorImpl<SDValue> &OutVals,
10986                                  const SDLoc &DL, SelectionDAG &DAG) const {
10987   const MachineFunction &MF = DAG.getMachineFunction();
10988   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10989 
10990   // Stores the assignment of the return value to a location.
10991   SmallVector<CCValAssign, 16> RVLocs;
10992 
10993   // Info about the registers and stack slot.
10994   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10995                  *DAG.getContext());
10996 
10997   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10998                     nullptr, CC_RISCV);
10999 
11000   if (CallConv == CallingConv::GHC && !RVLocs.empty())
11001     report_fatal_error("GHC functions return void only");
11002 
11003   SDValue Glue;
11004   SmallVector<SDValue, 4> RetOps(1, Chain);
11005 
11006   // Copy the result values into the output registers.
11007   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
11008     SDValue Val = OutVals[i];
11009     CCValAssign &VA = RVLocs[i];
11010     assert(VA.isRegLoc() && "Can only return in registers!");
11011 
11012     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
11013       // Handle returning f64 on RV32D with a soft float ABI.
11014       assert(VA.isRegLoc() && "Expected return via registers");
11015       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
11016                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
11017       SDValue Lo = SplitF64.getValue(0);
11018       SDValue Hi = SplitF64.getValue(1);
11019       Register RegLo = VA.getLocReg();
11020       assert(RegLo < RISCV::X31 && "Invalid register pair");
11021       Register RegHi = RegLo + 1;
11022 
11023       if (STI.isRegisterReservedByUser(RegLo) ||
11024           STI.isRegisterReservedByUser(RegHi))
11025         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11026             MF.getFunction(),
11027             "Return value register required, but has been reserved."});
11028 
11029       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
11030       Glue = Chain.getValue(1);
11031       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
11032       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
11033       Glue = Chain.getValue(1);
11034       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
11035     } else {
11036       // Handle a 'normal' return.
11037       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
11038       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
11039 
11040       if (STI.isRegisterReservedByUser(VA.getLocReg()))
11041         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11042             MF.getFunction(),
11043             "Return value register required, but has been reserved."});
11044 
11045       // Guarantee that all emitted copies are stuck together.
11046       Glue = Chain.getValue(1);
11047       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
11048     }
11049   }
11050 
11051   RetOps[0] = Chain; // Update chain.
11052 
11053   // Add the glue node if we have it.
11054   if (Glue.getNode()) {
11055     RetOps.push_back(Glue);
11056   }
11057 
11058   unsigned RetOpc = RISCVISD::RET_FLAG;
11059   // Interrupt service routines use different return instructions.
11060   const Function &Func = DAG.getMachineFunction().getFunction();
11061   if (Func.hasFnAttribute("interrupt")) {
11062     if (!Func.getReturnType()->isVoidTy())
11063       report_fatal_error(
11064           "Functions with the interrupt attribute must have void return type!");
11065 
11066     MachineFunction &MF = DAG.getMachineFunction();
11067     StringRef Kind =
11068       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
11069 
11070     if (Kind == "user")
11071       RetOpc = RISCVISD::URET_FLAG;
11072     else if (Kind == "supervisor")
11073       RetOpc = RISCVISD::SRET_FLAG;
11074     else
11075       RetOpc = RISCVISD::MRET_FLAG;
11076   }
11077 
11078   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
11079 }
11080 
11081 void RISCVTargetLowering::validateCCReservedRegs(
11082     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
11083     MachineFunction &MF) const {
11084   const Function &F = MF.getFunction();
11085   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
11086 
11087   if (llvm::any_of(Regs, [&STI](auto Reg) {
11088         return STI.isRegisterReservedByUser(Reg.first);
11089       }))
11090     F.getContext().diagnose(DiagnosticInfoUnsupported{
11091         F, "Argument register required, but has been reserved."});
11092 }
11093 
11094 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
11095   return CI->isTailCall();
11096 }
11097 
11098 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
11099 #define NODE_NAME_CASE(NODE)                                                   \
11100   case RISCVISD::NODE:                                                         \
11101     return "RISCVISD::" #NODE;
11102   // clang-format off
11103   switch ((RISCVISD::NodeType)Opcode) {
11104   case RISCVISD::FIRST_NUMBER:
11105     break;
11106   NODE_NAME_CASE(RET_FLAG)
11107   NODE_NAME_CASE(URET_FLAG)
11108   NODE_NAME_CASE(SRET_FLAG)
11109   NODE_NAME_CASE(MRET_FLAG)
11110   NODE_NAME_CASE(CALL)
11111   NODE_NAME_CASE(SELECT_CC)
11112   NODE_NAME_CASE(BR_CC)
11113   NODE_NAME_CASE(BuildPairF64)
11114   NODE_NAME_CASE(SplitF64)
11115   NODE_NAME_CASE(TAIL)
11116   NODE_NAME_CASE(MULHSU)
11117   NODE_NAME_CASE(SLLW)
11118   NODE_NAME_CASE(SRAW)
11119   NODE_NAME_CASE(SRLW)
11120   NODE_NAME_CASE(DIVW)
11121   NODE_NAME_CASE(DIVUW)
11122   NODE_NAME_CASE(REMUW)
11123   NODE_NAME_CASE(ROLW)
11124   NODE_NAME_CASE(RORW)
11125   NODE_NAME_CASE(CLZW)
11126   NODE_NAME_CASE(CTZW)
11127   NODE_NAME_CASE(FSLW)
11128   NODE_NAME_CASE(FSRW)
11129   NODE_NAME_CASE(FSL)
11130   NODE_NAME_CASE(FSR)
11131   NODE_NAME_CASE(FMV_H_X)
11132   NODE_NAME_CASE(FMV_X_ANYEXTH)
11133   NODE_NAME_CASE(FMV_X_SIGNEXTH)
11134   NODE_NAME_CASE(FMV_W_X_RV64)
11135   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
11136   NODE_NAME_CASE(FCVT_X)
11137   NODE_NAME_CASE(FCVT_XU)
11138   NODE_NAME_CASE(FCVT_W_RV64)
11139   NODE_NAME_CASE(FCVT_WU_RV64)
11140   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
11141   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
11142   NODE_NAME_CASE(READ_CYCLE_WIDE)
11143   NODE_NAME_CASE(GREV)
11144   NODE_NAME_CASE(GREVW)
11145   NODE_NAME_CASE(GORC)
11146   NODE_NAME_CASE(GORCW)
11147   NODE_NAME_CASE(SHFL)
11148   NODE_NAME_CASE(SHFLW)
11149   NODE_NAME_CASE(UNSHFL)
11150   NODE_NAME_CASE(UNSHFLW)
11151   NODE_NAME_CASE(BFP)
11152   NODE_NAME_CASE(BFPW)
11153   NODE_NAME_CASE(BCOMPRESS)
11154   NODE_NAME_CASE(BCOMPRESSW)
11155   NODE_NAME_CASE(BDECOMPRESS)
11156   NODE_NAME_CASE(BDECOMPRESSW)
11157   NODE_NAME_CASE(VMV_V_X_VL)
11158   NODE_NAME_CASE(VFMV_V_F_VL)
11159   NODE_NAME_CASE(VMV_X_S)
11160   NODE_NAME_CASE(VMV_S_X_VL)
11161   NODE_NAME_CASE(VFMV_S_F_VL)
11162   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
11163   NODE_NAME_CASE(READ_VLENB)
11164   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
11165   NODE_NAME_CASE(VSLIDEUP_VL)
11166   NODE_NAME_CASE(VSLIDE1UP_VL)
11167   NODE_NAME_CASE(VSLIDEDOWN_VL)
11168   NODE_NAME_CASE(VSLIDE1DOWN_VL)
11169   NODE_NAME_CASE(VID_VL)
11170   NODE_NAME_CASE(VFNCVT_ROD_VL)
11171   NODE_NAME_CASE(VECREDUCE_ADD_VL)
11172   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
11173   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
11174   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
11175   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
11176   NODE_NAME_CASE(VECREDUCE_AND_VL)
11177   NODE_NAME_CASE(VECREDUCE_OR_VL)
11178   NODE_NAME_CASE(VECREDUCE_XOR_VL)
11179   NODE_NAME_CASE(VECREDUCE_FADD_VL)
11180   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
11181   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
11182   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
11183   NODE_NAME_CASE(ADD_VL)
11184   NODE_NAME_CASE(AND_VL)
11185   NODE_NAME_CASE(MUL_VL)
11186   NODE_NAME_CASE(OR_VL)
11187   NODE_NAME_CASE(SDIV_VL)
11188   NODE_NAME_CASE(SHL_VL)
11189   NODE_NAME_CASE(SREM_VL)
11190   NODE_NAME_CASE(SRA_VL)
11191   NODE_NAME_CASE(SRL_VL)
11192   NODE_NAME_CASE(SUB_VL)
11193   NODE_NAME_CASE(UDIV_VL)
11194   NODE_NAME_CASE(UREM_VL)
11195   NODE_NAME_CASE(XOR_VL)
11196   NODE_NAME_CASE(SADDSAT_VL)
11197   NODE_NAME_CASE(UADDSAT_VL)
11198   NODE_NAME_CASE(SSUBSAT_VL)
11199   NODE_NAME_CASE(USUBSAT_VL)
11200   NODE_NAME_CASE(FADD_VL)
11201   NODE_NAME_CASE(FSUB_VL)
11202   NODE_NAME_CASE(FMUL_VL)
11203   NODE_NAME_CASE(FDIV_VL)
11204   NODE_NAME_CASE(FNEG_VL)
11205   NODE_NAME_CASE(FABS_VL)
11206   NODE_NAME_CASE(FSQRT_VL)
11207   NODE_NAME_CASE(FMA_VL)
11208   NODE_NAME_CASE(FCOPYSIGN_VL)
11209   NODE_NAME_CASE(SMIN_VL)
11210   NODE_NAME_CASE(SMAX_VL)
11211   NODE_NAME_CASE(UMIN_VL)
11212   NODE_NAME_CASE(UMAX_VL)
11213   NODE_NAME_CASE(FMINNUM_VL)
11214   NODE_NAME_CASE(FMAXNUM_VL)
11215   NODE_NAME_CASE(MULHS_VL)
11216   NODE_NAME_CASE(MULHU_VL)
11217   NODE_NAME_CASE(FP_TO_SINT_VL)
11218   NODE_NAME_CASE(FP_TO_UINT_VL)
11219   NODE_NAME_CASE(SINT_TO_FP_VL)
11220   NODE_NAME_CASE(UINT_TO_FP_VL)
11221   NODE_NAME_CASE(FP_EXTEND_VL)
11222   NODE_NAME_CASE(FP_ROUND_VL)
11223   NODE_NAME_CASE(VWMUL_VL)
11224   NODE_NAME_CASE(VWMULU_VL)
11225   NODE_NAME_CASE(VWMULSU_VL)
11226   NODE_NAME_CASE(VWADD_VL)
11227   NODE_NAME_CASE(VWADDU_VL)
11228   NODE_NAME_CASE(VWSUB_VL)
11229   NODE_NAME_CASE(VWSUBU_VL)
11230   NODE_NAME_CASE(VWADD_W_VL)
11231   NODE_NAME_CASE(VWADDU_W_VL)
11232   NODE_NAME_CASE(VWSUB_W_VL)
11233   NODE_NAME_CASE(VWSUBU_W_VL)
11234   NODE_NAME_CASE(SETCC_VL)
11235   NODE_NAME_CASE(VSELECT_VL)
11236   NODE_NAME_CASE(VP_MERGE_VL)
11237   NODE_NAME_CASE(VMAND_VL)
11238   NODE_NAME_CASE(VMOR_VL)
11239   NODE_NAME_CASE(VMXOR_VL)
11240   NODE_NAME_CASE(VMCLR_VL)
11241   NODE_NAME_CASE(VMSET_VL)
11242   NODE_NAME_CASE(VRGATHER_VX_VL)
11243   NODE_NAME_CASE(VRGATHER_VV_VL)
11244   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
11245   NODE_NAME_CASE(VSEXT_VL)
11246   NODE_NAME_CASE(VZEXT_VL)
11247   NODE_NAME_CASE(VCPOP_VL)
11248   NODE_NAME_CASE(READ_CSR)
11249   NODE_NAME_CASE(WRITE_CSR)
11250   NODE_NAME_CASE(SWAP_CSR)
11251   }
11252   // clang-format on
11253   return nullptr;
11254 #undef NODE_NAME_CASE
11255 }
11256 
11257 /// getConstraintType - Given a constraint letter, return the type of
11258 /// constraint it is for this target.
11259 RISCVTargetLowering::ConstraintType
11260 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
11261   if (Constraint.size() == 1) {
11262     switch (Constraint[0]) {
11263     default:
11264       break;
11265     case 'f':
11266       return C_RegisterClass;
11267     case 'I':
11268     case 'J':
11269     case 'K':
11270       return C_Immediate;
11271     case 'A':
11272       return C_Memory;
11273     case 'S': // A symbolic address
11274       return C_Other;
11275     }
11276   } else {
11277     if (Constraint == "vr" || Constraint == "vm")
11278       return C_RegisterClass;
11279   }
11280   return TargetLowering::getConstraintType(Constraint);
11281 }
11282 
11283 std::pair<unsigned, const TargetRegisterClass *>
11284 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11285                                                   StringRef Constraint,
11286                                                   MVT VT) const {
11287   // First, see if this is a constraint that directly corresponds to a
11288   // RISCV register class.
11289   if (Constraint.size() == 1) {
11290     switch (Constraint[0]) {
11291     case 'r':
11292       // TODO: Support fixed vectors up to XLen for P extension?
11293       if (VT.isVector())
11294         break;
11295       return std::make_pair(0U, &RISCV::GPRRegClass);
11296     case 'f':
11297       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
11298         return std::make_pair(0U, &RISCV::FPR16RegClass);
11299       if (Subtarget.hasStdExtF() && VT == MVT::f32)
11300         return std::make_pair(0U, &RISCV::FPR32RegClass);
11301       if (Subtarget.hasStdExtD() && VT == MVT::f64)
11302         return std::make_pair(0U, &RISCV::FPR64RegClass);
11303       break;
11304     default:
11305       break;
11306     }
11307   } else if (Constraint == "vr") {
11308     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
11309                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11310       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
11311         return std::make_pair(0U, RC);
11312     }
11313   } else if (Constraint == "vm") {
11314     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
11315       return std::make_pair(0U, &RISCV::VMV0RegClass);
11316   }
11317 
11318   // Clang will correctly decode the usage of register name aliases into their
11319   // official names. However, other frontends like `rustc` do not. This allows
11320   // users of these frontends to use the ABI names for registers in LLVM-style
11321   // register constraints.
11322   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
11323                                .Case("{zero}", RISCV::X0)
11324                                .Case("{ra}", RISCV::X1)
11325                                .Case("{sp}", RISCV::X2)
11326                                .Case("{gp}", RISCV::X3)
11327                                .Case("{tp}", RISCV::X4)
11328                                .Case("{t0}", RISCV::X5)
11329                                .Case("{t1}", RISCV::X6)
11330                                .Case("{t2}", RISCV::X7)
11331                                .Cases("{s0}", "{fp}", RISCV::X8)
11332                                .Case("{s1}", RISCV::X9)
11333                                .Case("{a0}", RISCV::X10)
11334                                .Case("{a1}", RISCV::X11)
11335                                .Case("{a2}", RISCV::X12)
11336                                .Case("{a3}", RISCV::X13)
11337                                .Case("{a4}", RISCV::X14)
11338                                .Case("{a5}", RISCV::X15)
11339                                .Case("{a6}", RISCV::X16)
11340                                .Case("{a7}", RISCV::X17)
11341                                .Case("{s2}", RISCV::X18)
11342                                .Case("{s3}", RISCV::X19)
11343                                .Case("{s4}", RISCV::X20)
11344                                .Case("{s5}", RISCV::X21)
11345                                .Case("{s6}", RISCV::X22)
11346                                .Case("{s7}", RISCV::X23)
11347                                .Case("{s8}", RISCV::X24)
11348                                .Case("{s9}", RISCV::X25)
11349                                .Case("{s10}", RISCV::X26)
11350                                .Case("{s11}", RISCV::X27)
11351                                .Case("{t3}", RISCV::X28)
11352                                .Case("{t4}", RISCV::X29)
11353                                .Case("{t5}", RISCV::X30)
11354                                .Case("{t6}", RISCV::X31)
11355                                .Default(RISCV::NoRegister);
11356   if (XRegFromAlias != RISCV::NoRegister)
11357     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
11358 
11359   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
11360   // TableGen record rather than the AsmName to choose registers for InlineAsm
11361   // constraints, plus we want to match those names to the widest floating point
11362   // register type available, manually select floating point registers here.
11363   //
11364   // The second case is the ABI name of the register, so that frontends can also
11365   // use the ABI names in register constraint lists.
11366   if (Subtarget.hasStdExtF()) {
11367     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
11368                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
11369                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
11370                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
11371                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
11372                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
11373                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
11374                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
11375                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
11376                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
11377                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
11378                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
11379                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
11380                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
11381                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
11382                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
11383                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
11384                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
11385                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
11386                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
11387                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11388                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11389                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11390                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11391                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11392                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11393                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11394                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11395                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11396                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11397                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11398                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11399                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11400                         .Default(RISCV::NoRegister);
11401     if (FReg != RISCV::NoRegister) {
11402       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11403       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11404         unsigned RegNo = FReg - RISCV::F0_F;
11405         unsigned DReg = RISCV::F0_D + RegNo;
11406         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11407       }
11408       if (VT == MVT::f32 || VT == MVT::Other)
11409         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11410       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11411         unsigned RegNo = FReg - RISCV::F0_F;
11412         unsigned HReg = RISCV::F0_H + RegNo;
11413         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11414       }
11415     }
11416   }
11417 
11418   if (Subtarget.hasVInstructions()) {
11419     Register VReg = StringSwitch<Register>(Constraint.lower())
11420                         .Case("{v0}", RISCV::V0)
11421                         .Case("{v1}", RISCV::V1)
11422                         .Case("{v2}", RISCV::V2)
11423                         .Case("{v3}", RISCV::V3)
11424                         .Case("{v4}", RISCV::V4)
11425                         .Case("{v5}", RISCV::V5)
11426                         .Case("{v6}", RISCV::V6)
11427                         .Case("{v7}", RISCV::V7)
11428                         .Case("{v8}", RISCV::V8)
11429                         .Case("{v9}", RISCV::V9)
11430                         .Case("{v10}", RISCV::V10)
11431                         .Case("{v11}", RISCV::V11)
11432                         .Case("{v12}", RISCV::V12)
11433                         .Case("{v13}", RISCV::V13)
11434                         .Case("{v14}", RISCV::V14)
11435                         .Case("{v15}", RISCV::V15)
11436                         .Case("{v16}", RISCV::V16)
11437                         .Case("{v17}", RISCV::V17)
11438                         .Case("{v18}", RISCV::V18)
11439                         .Case("{v19}", RISCV::V19)
11440                         .Case("{v20}", RISCV::V20)
11441                         .Case("{v21}", RISCV::V21)
11442                         .Case("{v22}", RISCV::V22)
11443                         .Case("{v23}", RISCV::V23)
11444                         .Case("{v24}", RISCV::V24)
11445                         .Case("{v25}", RISCV::V25)
11446                         .Case("{v26}", RISCV::V26)
11447                         .Case("{v27}", RISCV::V27)
11448                         .Case("{v28}", RISCV::V28)
11449                         .Case("{v29}", RISCV::V29)
11450                         .Case("{v30}", RISCV::V30)
11451                         .Case("{v31}", RISCV::V31)
11452                         .Default(RISCV::NoRegister);
11453     if (VReg != RISCV::NoRegister) {
11454       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11455         return std::make_pair(VReg, &RISCV::VMRegClass);
11456       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11457         return std::make_pair(VReg, &RISCV::VRRegClass);
11458       for (const auto *RC :
11459            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11460         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11461           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11462           return std::make_pair(VReg, RC);
11463         }
11464       }
11465     }
11466   }
11467 
11468   std::pair<Register, const TargetRegisterClass *> Res =
11469       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11470 
11471   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11472   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11473   // Subtarget into account.
11474   if (Res.second == &RISCV::GPRF16RegClass ||
11475       Res.second == &RISCV::GPRF32RegClass ||
11476       Res.second == &RISCV::GPRF64RegClass)
11477     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11478 
11479   return Res;
11480 }
11481 
11482 unsigned
11483 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11484   // Currently only support length 1 constraints.
11485   if (ConstraintCode.size() == 1) {
11486     switch (ConstraintCode[0]) {
11487     case 'A':
11488       return InlineAsm::Constraint_A;
11489     default:
11490       break;
11491     }
11492   }
11493 
11494   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11495 }
11496 
11497 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11498     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11499     SelectionDAG &DAG) const {
11500   // Currently only support length 1 constraints.
11501   if (Constraint.length() == 1) {
11502     switch (Constraint[0]) {
11503     case 'I':
11504       // Validate & create a 12-bit signed immediate operand.
11505       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11506         uint64_t CVal = C->getSExtValue();
11507         if (isInt<12>(CVal))
11508           Ops.push_back(
11509               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11510       }
11511       return;
11512     case 'J':
11513       // Validate & create an integer zero operand.
11514       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11515         if (C->getZExtValue() == 0)
11516           Ops.push_back(
11517               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11518       return;
11519     case 'K':
11520       // Validate & create a 5-bit unsigned immediate operand.
11521       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11522         uint64_t CVal = C->getZExtValue();
11523         if (isUInt<5>(CVal))
11524           Ops.push_back(
11525               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11526       }
11527       return;
11528     case 'S':
11529       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11530         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11531                                                  GA->getValueType(0)));
11532       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11533         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11534                                                 BA->getValueType(0)));
11535       }
11536       return;
11537     default:
11538       break;
11539     }
11540   }
11541   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11542 }
11543 
11544 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11545                                                    Instruction *Inst,
11546                                                    AtomicOrdering Ord) const {
11547   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11548     return Builder.CreateFence(Ord);
11549   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11550     return Builder.CreateFence(AtomicOrdering::Release);
11551   return nullptr;
11552 }
11553 
11554 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11555                                                     Instruction *Inst,
11556                                                     AtomicOrdering Ord) const {
11557   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11558     return Builder.CreateFence(AtomicOrdering::Acquire);
11559   return nullptr;
11560 }
11561 
11562 TargetLowering::AtomicExpansionKind
11563 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11564   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11565   // point operations can't be used in an lr/sc sequence without breaking the
11566   // forward-progress guarantee.
11567   if (AI->isFloatingPointOperation())
11568     return AtomicExpansionKind::CmpXChg;
11569 
11570   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11571   if (Size == 8 || Size == 16)
11572     return AtomicExpansionKind::MaskedIntrinsic;
11573   return AtomicExpansionKind::None;
11574 }
11575 
11576 static Intrinsic::ID
11577 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11578   if (XLen == 32) {
11579     switch (BinOp) {
11580     default:
11581       llvm_unreachable("Unexpected AtomicRMW BinOp");
11582     case AtomicRMWInst::Xchg:
11583       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11584     case AtomicRMWInst::Add:
11585       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11586     case AtomicRMWInst::Sub:
11587       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11588     case AtomicRMWInst::Nand:
11589       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11590     case AtomicRMWInst::Max:
11591       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11592     case AtomicRMWInst::Min:
11593       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11594     case AtomicRMWInst::UMax:
11595       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11596     case AtomicRMWInst::UMin:
11597       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11598     }
11599   }
11600 
11601   if (XLen == 64) {
11602     switch (BinOp) {
11603     default:
11604       llvm_unreachable("Unexpected AtomicRMW BinOp");
11605     case AtomicRMWInst::Xchg:
11606       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11607     case AtomicRMWInst::Add:
11608       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11609     case AtomicRMWInst::Sub:
11610       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11611     case AtomicRMWInst::Nand:
11612       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11613     case AtomicRMWInst::Max:
11614       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11615     case AtomicRMWInst::Min:
11616       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11617     case AtomicRMWInst::UMax:
11618       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11619     case AtomicRMWInst::UMin:
11620       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11621     }
11622   }
11623 
11624   llvm_unreachable("Unexpected XLen\n");
11625 }
11626 
11627 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11628     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11629     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11630   unsigned XLen = Subtarget.getXLen();
11631   Value *Ordering =
11632       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11633   Type *Tys[] = {AlignedAddr->getType()};
11634   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11635       AI->getModule(),
11636       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11637 
11638   if (XLen == 64) {
11639     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11640     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11641     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11642   }
11643 
11644   Value *Result;
11645 
11646   // Must pass the shift amount needed to sign extend the loaded value prior
11647   // to performing a signed comparison for min/max. ShiftAmt is the number of
11648   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11649   // is the number of bits to left+right shift the value in order to
11650   // sign-extend.
11651   if (AI->getOperation() == AtomicRMWInst::Min ||
11652       AI->getOperation() == AtomicRMWInst::Max) {
11653     const DataLayout &DL = AI->getModule()->getDataLayout();
11654     unsigned ValWidth =
11655         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11656     Value *SextShamt =
11657         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11658     Result = Builder.CreateCall(LrwOpScwLoop,
11659                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11660   } else {
11661     Result =
11662         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11663   }
11664 
11665   if (XLen == 64)
11666     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11667   return Result;
11668 }
11669 
11670 TargetLowering::AtomicExpansionKind
11671 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11672     AtomicCmpXchgInst *CI) const {
11673   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11674   if (Size == 8 || Size == 16)
11675     return AtomicExpansionKind::MaskedIntrinsic;
11676   return AtomicExpansionKind::None;
11677 }
11678 
11679 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11680     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11681     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11682   unsigned XLen = Subtarget.getXLen();
11683   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11684   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11685   if (XLen == 64) {
11686     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11687     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11688     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11689     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11690   }
11691   Type *Tys[] = {AlignedAddr->getType()};
11692   Function *MaskedCmpXchg =
11693       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11694   Value *Result = Builder.CreateCall(
11695       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11696   if (XLen == 64)
11697     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11698   return Result;
11699 }
11700 
11701 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT,
11702                                                         EVT DataVT) const {
11703   return false;
11704 }
11705 
11706 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11707                                                EVT VT) const {
11708   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11709     return false;
11710 
11711   switch (FPVT.getSimpleVT().SimpleTy) {
11712   case MVT::f16:
11713     return Subtarget.hasStdExtZfh();
11714   case MVT::f32:
11715     return Subtarget.hasStdExtF();
11716   case MVT::f64:
11717     return Subtarget.hasStdExtD();
11718   default:
11719     return false;
11720   }
11721 }
11722 
11723 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11724   // If we are using the small code model, we can reduce size of jump table
11725   // entry to 4 bytes.
11726   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11727       getTargetMachine().getCodeModel() == CodeModel::Small) {
11728     return MachineJumpTableInfo::EK_Custom32;
11729   }
11730   return TargetLowering::getJumpTableEncoding();
11731 }
11732 
11733 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11734     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11735     unsigned uid, MCContext &Ctx) const {
11736   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11737          getTargetMachine().getCodeModel() == CodeModel::Small);
11738   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11739 }
11740 
11741 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11742                                                      EVT VT) const {
11743   VT = VT.getScalarType();
11744 
11745   if (!VT.isSimple())
11746     return false;
11747 
11748   switch (VT.getSimpleVT().SimpleTy) {
11749   case MVT::f16:
11750     return Subtarget.hasStdExtZfh();
11751   case MVT::f32:
11752     return Subtarget.hasStdExtF();
11753   case MVT::f64:
11754     return Subtarget.hasStdExtD();
11755   default:
11756     break;
11757   }
11758 
11759   return false;
11760 }
11761 
11762 Register RISCVTargetLowering::getExceptionPointerRegister(
11763     const Constant *PersonalityFn) const {
11764   return RISCV::X10;
11765 }
11766 
11767 Register RISCVTargetLowering::getExceptionSelectorRegister(
11768     const Constant *PersonalityFn) const {
11769   return RISCV::X11;
11770 }
11771 
11772 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11773   // Return false to suppress the unnecessary extensions if the LibCall
11774   // arguments or return value is f32 type for LP64 ABI.
11775   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11776   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11777     return false;
11778 
11779   return true;
11780 }
11781 
11782 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11783   if (Subtarget.is64Bit() && Type == MVT::i32)
11784     return true;
11785 
11786   return IsSigned;
11787 }
11788 
11789 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11790                                                  SDValue C) const {
11791   // Check integral scalar types.
11792   if (VT.isScalarInteger()) {
11793     // Omit the optimization if the sub target has the M extension and the data
11794     // size exceeds XLen.
11795     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11796       return false;
11797     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11798       // Break the MUL to a SLLI and an ADD/SUB.
11799       const APInt &Imm = ConstNode->getAPIntValue();
11800       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11801           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11802         return true;
11803       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11804       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11805           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11806            (Imm - 8).isPowerOf2()))
11807         return true;
11808       // Omit the following optimization if the sub target has the M extension
11809       // and the data size >= XLen.
11810       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11811         return false;
11812       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11813       // a pair of LUI/ADDI.
11814       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11815         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11816         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11817             (1 - ImmS).isPowerOf2())
11818         return true;
11819       }
11820     }
11821   }
11822 
11823   return false;
11824 }
11825 
11826 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11827                                                       SDValue ConstNode) const {
11828   // Let the DAGCombiner decide for vectors.
11829   EVT VT = AddNode.getValueType();
11830   if (VT.isVector())
11831     return true;
11832 
11833   // Let the DAGCombiner decide for larger types.
11834   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11835     return true;
11836 
11837   // It is worse if c1 is simm12 while c1*c2 is not.
11838   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11839   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11840   const APInt &C1 = C1Node->getAPIntValue();
11841   const APInt &C2 = C2Node->getAPIntValue();
11842   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11843     return false;
11844 
11845   // Default to true and let the DAGCombiner decide.
11846   return true;
11847 }
11848 
11849 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11850     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11851     bool *Fast) const {
11852   if (!VT.isVector()) {
11853     if (Fast)
11854       *Fast = false;
11855     return Subtarget.enableUnalignedScalarMem();
11856   }
11857 
11858   // All vector implementations must support element alignment
11859   EVT ElemVT = VT.getVectorElementType();
11860   if (Alignment >= ElemVT.getStoreSize()) {
11861     if (Fast)
11862       *Fast = true;
11863     return true;
11864   }
11865 
11866   return false;
11867 }
11868 
11869 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11870     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11871     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11872   bool IsABIRegCopy = CC.hasValue();
11873   EVT ValueVT = Val.getValueType();
11874   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11875     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11876     // and cast to f32.
11877     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11878     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11879     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11880                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11881     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11882     Parts[0] = Val;
11883     return true;
11884   }
11885 
11886   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11887     LLVMContext &Context = *DAG.getContext();
11888     EVT ValueEltVT = ValueVT.getVectorElementType();
11889     EVT PartEltVT = PartVT.getVectorElementType();
11890     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11891     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11892     if (PartVTBitSize % ValueVTBitSize == 0) {
11893       assert(PartVTBitSize >= ValueVTBitSize);
11894       // If the element types are different, bitcast to the same element type of
11895       // PartVT first.
11896       // Give an example here, we want copy a <vscale x 1 x i8> value to
11897       // <vscale x 4 x i16>.
11898       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11899       // subvector, then we can bitcast to <vscale x 4 x i16>.
11900       if (ValueEltVT != PartEltVT) {
11901         if (PartVTBitSize > ValueVTBitSize) {
11902           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11903           assert(Count != 0 && "The number of element should not be zero.");
11904           EVT SameEltTypeVT =
11905               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11906           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11907                             DAG.getUNDEF(SameEltTypeVT), Val,
11908                             DAG.getVectorIdxConstant(0, DL));
11909         }
11910         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11911       } else {
11912         Val =
11913             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11914                         Val, DAG.getVectorIdxConstant(0, DL));
11915       }
11916       Parts[0] = Val;
11917       return true;
11918     }
11919   }
11920   return false;
11921 }
11922 
11923 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11924     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11925     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11926   bool IsABIRegCopy = CC.hasValue();
11927   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11928     SDValue Val = Parts[0];
11929 
11930     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11931     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11932     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11933     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11934     return Val;
11935   }
11936 
11937   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11938     LLVMContext &Context = *DAG.getContext();
11939     SDValue Val = Parts[0];
11940     EVT ValueEltVT = ValueVT.getVectorElementType();
11941     EVT PartEltVT = PartVT.getVectorElementType();
11942     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11943     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11944     if (PartVTBitSize % ValueVTBitSize == 0) {
11945       assert(PartVTBitSize >= ValueVTBitSize);
11946       EVT SameEltTypeVT = ValueVT;
11947       // If the element types are different, convert it to the same element type
11948       // of PartVT.
11949       // Give an example here, we want copy a <vscale x 1 x i8> value from
11950       // <vscale x 4 x i16>.
11951       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11952       // then we can extract <vscale x 1 x i8>.
11953       if (ValueEltVT != PartEltVT) {
11954         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11955         assert(Count != 0 && "The number of element should not be zero.");
11956         SameEltTypeVT =
11957             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11958         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11959       }
11960       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11961                         DAG.getVectorIdxConstant(0, DL));
11962       return Val;
11963     }
11964   }
11965   return SDValue();
11966 }
11967 
11968 SDValue
11969 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11970                                    SelectionDAG &DAG,
11971                                    SmallVectorImpl<SDNode *> &Created) const {
11972   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11973   if (isIntDivCheap(N->getValueType(0), Attr))
11974     return SDValue(N, 0); // Lower SDIV as SDIV
11975 
11976   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11977          "Unexpected divisor!");
11978 
11979   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11980   if (!Subtarget.hasStdExtZbt())
11981     return SDValue();
11982 
11983   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11984   // Besides, more critical path instructions will be generated when dividing
11985   // by 2. So we keep using the original DAGs for these cases.
11986   unsigned Lg2 = Divisor.countTrailingZeros();
11987   if (Lg2 == 1 || Lg2 >= 12)
11988     return SDValue();
11989 
11990   // fold (sdiv X, pow2)
11991   EVT VT = N->getValueType(0);
11992   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11993     return SDValue();
11994 
11995   SDLoc DL(N);
11996   SDValue N0 = N->getOperand(0);
11997   SDValue Zero = DAG.getConstant(0, DL, VT);
11998   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11999 
12000   // Add (N0 < 0) ? Pow2 - 1 : 0;
12001   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
12002   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
12003   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
12004 
12005   Created.push_back(Cmp.getNode());
12006   Created.push_back(Add.getNode());
12007   Created.push_back(Sel.getNode());
12008 
12009   // Divide by pow2.
12010   SDValue SRA =
12011       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
12012 
12013   // If we're dividing by a positive value, we're done.  Otherwise, we must
12014   // negate the result.
12015   if (Divisor.isNonNegative())
12016     return SRA;
12017 
12018   Created.push_back(SRA.getNode());
12019   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
12020 }
12021 
12022 #define GET_REGISTER_MATCHER
12023 #include "RISCVGenAsmMatcher.inc"
12024 
12025 Register
12026 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
12027                                        const MachineFunction &MF) const {
12028   Register Reg = MatchRegisterAltName(RegName);
12029   if (Reg == RISCV::NoRegister)
12030     Reg = MatchRegisterName(RegName);
12031   if (Reg == RISCV::NoRegister)
12032     report_fatal_error(
12033         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
12034   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
12035   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
12036     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
12037                              StringRef(RegName) + "\"."));
12038   return Reg;
12039 }
12040 
12041 namespace llvm {
12042 namespace RISCVVIntrinsicsTable {
12043 
12044 #define GET_RISCVVIntrinsicsTable_IMPL
12045 #include "RISCVGenSearchableTables.inc"
12046 
12047 } // namespace RISCVVIntrinsicsTable
12048 
12049 } // namespace llvm
12050