1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 28 #include "llvm/CodeGen/ValueTypes.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/DiagnosticPrinter.h" 31 #include "llvm/IR/IntrinsicsRISCV.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 MVT ContainerVT = getContainerForFixedLengthVector(VT); 147 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 148 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 149 addRegisterClass(VT, TRI.getRegClass(RCID)); 150 }; 151 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 152 if (useRVVForFixedLengthVectorVT(VT)) 153 addRegClassForFixedVectors(VT); 154 155 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 156 if (useRVVForFixedLengthVectorVT(VT)) 157 addRegClassForFixedVectors(VT); 158 } 159 } 160 161 // Compute derived properties from the register classes. 162 computeRegisterProperties(STI.getRegisterInfo()); 163 164 setStackPointerRegisterToSaveRestore(RISCV::X2); 165 166 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 167 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 168 169 // TODO: add all necessary setOperationAction calls. 170 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 171 172 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 173 setOperationAction(ISD::BR_CC, XLenVT, Expand); 174 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 175 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 176 177 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 178 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 179 180 setOperationAction(ISD::VASTART, MVT::Other, Custom); 181 setOperationAction(ISD::VAARG, MVT::Other, Expand); 182 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 183 setOperationAction(ISD::VAEND, MVT::Other, Expand); 184 185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 186 if (!Subtarget.hasStdExtZbb()) { 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 189 } 190 191 if (Subtarget.is64Bit()) { 192 setOperationAction(ISD::ADD, MVT::i32, Custom); 193 setOperationAction(ISD::SUB, MVT::i32, Custom); 194 setOperationAction(ISD::SHL, MVT::i32, Custom); 195 setOperationAction(ISD::SRA, MVT::i32, Custom); 196 setOperationAction(ISD::SRL, MVT::i32, Custom); 197 198 setOperationAction(ISD::UADDO, MVT::i32, Custom); 199 setOperationAction(ISD::USUBO, MVT::i32, Custom); 200 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 201 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 202 } 203 204 if (!Subtarget.hasStdExtM()) { 205 setOperationAction(ISD::MUL, XLenVT, Expand); 206 setOperationAction(ISD::MULHS, XLenVT, Expand); 207 setOperationAction(ISD::MULHU, XLenVT, Expand); 208 setOperationAction(ISD::SDIV, XLenVT, Expand); 209 setOperationAction(ISD::UDIV, XLenVT, Expand); 210 setOperationAction(ISD::SREM, XLenVT, Expand); 211 setOperationAction(ISD::UREM, XLenVT, Expand); 212 } else { 213 if (Subtarget.is64Bit()) { 214 setOperationAction(ISD::MUL, MVT::i32, Custom); 215 setOperationAction(ISD::MUL, MVT::i128, Custom); 216 217 setOperationAction(ISD::SDIV, MVT::i8, Custom); 218 setOperationAction(ISD::UDIV, MVT::i8, Custom); 219 setOperationAction(ISD::UREM, MVT::i8, Custom); 220 setOperationAction(ISD::SDIV, MVT::i16, Custom); 221 setOperationAction(ISD::UDIV, MVT::i16, Custom); 222 setOperationAction(ISD::UREM, MVT::i16, Custom); 223 setOperationAction(ISD::SDIV, MVT::i32, Custom); 224 setOperationAction(ISD::UDIV, MVT::i32, Custom); 225 setOperationAction(ISD::UREM, MVT::i32, Custom); 226 } else { 227 setOperationAction(ISD::MUL, MVT::i64, Custom); 228 } 229 } 230 231 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 232 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 233 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 234 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 235 236 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 237 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 238 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 239 240 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 241 if (Subtarget.is64Bit()) { 242 setOperationAction(ISD::ROTL, MVT::i32, Custom); 243 setOperationAction(ISD::ROTR, MVT::i32, Custom); 244 } 245 } else { 246 setOperationAction(ISD::ROTL, XLenVT, Expand); 247 setOperationAction(ISD::ROTR, XLenVT, Expand); 248 } 249 250 if (Subtarget.hasStdExtZbp()) { 251 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 252 // more combining. 253 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 254 setOperationAction(ISD::BSWAP, XLenVT, Custom); 255 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 256 // BSWAP i8 doesn't exist. 257 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 258 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 259 260 if (Subtarget.is64Bit()) { 261 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 262 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 263 } 264 } else { 265 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 266 // pattern match it directly in isel. 267 setOperationAction(ISD::BSWAP, XLenVT, 268 Subtarget.hasStdExtZbb() ? Legal : Expand); 269 } 270 271 if (Subtarget.hasStdExtZbb()) { 272 setOperationAction(ISD::SMIN, XLenVT, Legal); 273 setOperationAction(ISD::SMAX, XLenVT, Legal); 274 setOperationAction(ISD::UMIN, XLenVT, Legal); 275 setOperationAction(ISD::UMAX, XLenVT, Legal); 276 277 if (Subtarget.is64Bit()) { 278 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 279 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 280 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 281 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 282 } 283 } else { 284 setOperationAction(ISD::CTTZ, XLenVT, Expand); 285 setOperationAction(ISD::CTLZ, XLenVT, Expand); 286 setOperationAction(ISD::CTPOP, XLenVT, Expand); 287 } 288 289 if (Subtarget.hasStdExtZbt()) { 290 setOperationAction(ISD::FSHL, XLenVT, Custom); 291 setOperationAction(ISD::FSHR, XLenVT, Custom); 292 setOperationAction(ISD::SELECT, XLenVT, Legal); 293 294 if (Subtarget.is64Bit()) { 295 setOperationAction(ISD::FSHL, MVT::i32, Custom); 296 setOperationAction(ISD::FSHR, MVT::i32, Custom); 297 } 298 } else { 299 setOperationAction(ISD::SELECT, XLenVT, Custom); 300 } 301 302 ISD::CondCode FPCCToExpand[] = { 303 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 304 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 305 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 306 307 ISD::NodeType FPOpToExpand[] = { 308 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 309 ISD::FP_TO_FP16}; 310 311 if (Subtarget.hasStdExtZfh()) 312 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 313 314 if (Subtarget.hasStdExtZfh()) { 315 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 316 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 317 setOperationAction(ISD::LRINT, MVT::f16, Legal); 318 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 319 setOperationAction(ISD::LROUND, MVT::f16, Legal); 320 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 321 for (auto CC : FPCCToExpand) 322 setCondCodeAction(CC, MVT::f16, Expand); 323 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 324 setOperationAction(ISD::SELECT, MVT::f16, Custom); 325 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 326 for (auto Op : FPOpToExpand) 327 setOperationAction(Op, MVT::f16, Expand); 328 } 329 330 if (Subtarget.hasStdExtF()) { 331 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 332 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 333 setOperationAction(ISD::LRINT, MVT::f32, Legal); 334 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 335 setOperationAction(ISD::LROUND, MVT::f32, Legal); 336 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 337 for (auto CC : FPCCToExpand) 338 setCondCodeAction(CC, MVT::f32, Expand); 339 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 340 setOperationAction(ISD::SELECT, MVT::f32, Custom); 341 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 342 for (auto Op : FPOpToExpand) 343 setOperationAction(Op, MVT::f32, Expand); 344 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 345 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 346 } 347 348 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 349 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 350 351 if (Subtarget.hasStdExtD()) { 352 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 353 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 354 setOperationAction(ISD::LRINT, MVT::f64, Legal); 355 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 356 setOperationAction(ISD::LROUND, MVT::f64, Legal); 357 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 358 for (auto CC : FPCCToExpand) 359 setCondCodeAction(CC, MVT::f64, Expand); 360 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 361 setOperationAction(ISD::SELECT, MVT::f64, Custom); 362 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 363 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 364 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 365 for (auto Op : FPOpToExpand) 366 setOperationAction(Op, MVT::f64, Expand); 367 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 368 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 369 } 370 371 if (Subtarget.is64Bit()) { 372 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 373 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 374 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 375 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 376 } 377 378 if (Subtarget.hasStdExtF()) { 379 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 380 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 381 } 382 383 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 384 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 385 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 386 setOperationAction(ISD::JumpTable, XLenVT, Custom); 387 388 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 389 390 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 391 // Unfortunately this can't be determined just from the ISA naming string. 392 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 393 Subtarget.is64Bit() ? Legal : Custom); 394 395 setOperationAction(ISD::TRAP, MVT::Other, Legal); 396 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 397 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 398 if (Subtarget.is64Bit()) 399 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 400 401 if (Subtarget.hasStdExtA()) { 402 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 403 setMinCmpXchgSizeInBits(32); 404 } else { 405 setMaxAtomicSizeInBitsSupported(0); 406 } 407 408 setBooleanContents(ZeroOrOneBooleanContent); 409 410 if (Subtarget.hasStdExtV()) { 411 setBooleanVectorContents(ZeroOrOneBooleanContent); 412 413 setOperationAction(ISD::VSCALE, XLenVT, Custom); 414 415 // RVV intrinsics may have illegal operands. 416 // We also need to custom legalize vmv.x.s. 417 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 418 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 419 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 420 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 421 if (Subtarget.is64Bit()) { 422 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 423 } else { 424 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 425 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 426 } 427 428 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 429 430 static unsigned IntegerVPOps[] = { 431 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV, 432 ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, 433 ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL}; 434 435 static unsigned FloatingPointVPOps[] = {ISD::VP_FADD, ISD::VP_FSUB, 436 ISD::VP_FMUL, ISD::VP_FDIV}; 437 438 if (!Subtarget.is64Bit()) { 439 // We must custom-lower certain vXi64 operations on RV32 due to the vector 440 // element type being illegal. 441 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 442 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 443 444 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 445 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 446 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 447 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 448 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 449 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 450 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 451 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 452 } 453 454 for (MVT VT : BoolVecVTs) { 455 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 456 457 // Mask VTs are custom-expanded into a series of standard nodes 458 setOperationAction(ISD::TRUNCATE, VT, Custom); 459 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 460 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 461 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 462 463 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 464 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 465 466 setOperationAction(ISD::SELECT, VT, Custom); 467 setOperationAction(ISD::SELECT_CC, VT, Expand); 468 setOperationAction(ISD::VSELECT, VT, Expand); 469 470 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 471 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 472 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 473 474 // RVV has native int->float & float->int conversions where the 475 // element type sizes are within one power-of-two of each other. Any 476 // wider distances between type sizes have to be lowered as sequences 477 // which progressively narrow the gap in stages. 478 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 479 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 480 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 481 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 482 483 // Expand all extending loads to types larger than this, and truncating 484 // stores from types larger than this. 485 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 486 setTruncStoreAction(OtherVT, VT, Expand); 487 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 488 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 489 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 490 } 491 } 492 493 for (MVT VT : IntVecVTs) { 494 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 495 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 496 497 setOperationAction(ISD::SMIN, VT, Legal); 498 setOperationAction(ISD::SMAX, VT, Legal); 499 setOperationAction(ISD::UMIN, VT, Legal); 500 setOperationAction(ISD::UMAX, VT, Legal); 501 502 setOperationAction(ISD::ROTL, VT, Expand); 503 setOperationAction(ISD::ROTR, VT, Expand); 504 505 // Custom-lower extensions and truncations from/to mask types. 506 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 507 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 508 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 509 510 // RVV has native int->float & float->int conversions where the 511 // element type sizes are within one power-of-two of each other. Any 512 // wider distances between type sizes have to be lowered as sequences 513 // which progressively narrow the gap in stages. 514 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 515 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 516 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 517 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 518 519 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 520 // nodes which truncate by one power of two at a time. 521 setOperationAction(ISD::TRUNCATE, VT, Custom); 522 523 // Custom-lower insert/extract operations to simplify patterns. 524 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 525 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 526 527 // Custom-lower reduction operations to set up the corresponding custom 528 // nodes' operands. 529 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 530 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 531 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 532 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 533 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 534 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 535 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 536 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 537 538 for (unsigned VPOpc : IntegerVPOps) 539 setOperationAction(VPOpc, VT, Custom); 540 541 setOperationAction(ISD::LOAD, VT, Custom); 542 setOperationAction(ISD::STORE, VT, Custom); 543 544 setOperationAction(ISD::MLOAD, VT, Custom); 545 setOperationAction(ISD::MSTORE, VT, Custom); 546 setOperationAction(ISD::MGATHER, VT, Custom); 547 setOperationAction(ISD::MSCATTER, VT, Custom); 548 549 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 550 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 551 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 552 553 setOperationAction(ISD::SELECT, VT, Custom); 554 setOperationAction(ISD::SELECT_CC, VT, Expand); 555 556 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 557 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 558 559 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 560 setTruncStoreAction(VT, OtherVT, Expand); 561 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 562 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 563 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 564 } 565 } 566 567 // Expand various CCs to best match the RVV ISA, which natively supports UNE 568 // but no other unordered comparisons, and supports all ordered comparisons 569 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 570 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 571 // and we pattern-match those back to the "original", swapping operands once 572 // more. This way we catch both operations and both "vf" and "fv" forms with 573 // fewer patterns. 574 ISD::CondCode VFPCCToExpand[] = { 575 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 576 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 577 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 578 }; 579 580 // Sets common operation actions on RVV floating-point vector types. 581 const auto SetCommonVFPActions = [&](MVT VT) { 582 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 583 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 584 // sizes are within one power-of-two of each other. Therefore conversions 585 // between vXf16 and vXf64 must be lowered as sequences which convert via 586 // vXf32. 587 setOperationAction(ISD::FP_ROUND, VT, Custom); 588 setOperationAction(ISD::FP_EXTEND, VT, Custom); 589 // Custom-lower insert/extract operations to simplify patterns. 590 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 591 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 592 // Expand various condition codes (explained above). 593 for (auto CC : VFPCCToExpand) 594 setCondCodeAction(CC, VT, Expand); 595 596 setOperationAction(ISD::FMINNUM, VT, Legal); 597 setOperationAction(ISD::FMAXNUM, VT, Legal); 598 599 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 600 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 601 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 602 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 603 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 604 605 setOperationAction(ISD::LOAD, VT, Custom); 606 setOperationAction(ISD::STORE, VT, Custom); 607 608 setOperationAction(ISD::MLOAD, VT, Custom); 609 setOperationAction(ISD::MSTORE, VT, Custom); 610 setOperationAction(ISD::MGATHER, VT, Custom); 611 setOperationAction(ISD::MSCATTER, VT, Custom); 612 613 setOperationAction(ISD::SELECT, VT, Custom); 614 setOperationAction(ISD::SELECT_CC, VT, Expand); 615 616 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 617 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 618 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 619 620 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 621 622 for (unsigned VPOpc : FloatingPointVPOps) 623 setOperationAction(VPOpc, VT, Custom); 624 }; 625 626 // Sets common extload/truncstore actions on RVV floating-point vector 627 // types. 628 const auto SetCommonVFPExtLoadTruncStoreActions = 629 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 630 for (auto SmallVT : SmallerVTs) { 631 setTruncStoreAction(VT, SmallVT, Expand); 632 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 633 } 634 }; 635 636 if (Subtarget.hasStdExtZfh()) 637 for (MVT VT : F16VecVTs) 638 SetCommonVFPActions(VT); 639 640 for (MVT VT : F32VecVTs) { 641 if (Subtarget.hasStdExtF()) 642 SetCommonVFPActions(VT); 643 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 644 } 645 646 for (MVT VT : F64VecVTs) { 647 if (Subtarget.hasStdExtD()) 648 SetCommonVFPActions(VT); 649 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 650 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 651 } 652 653 if (Subtarget.useRVVForFixedLengthVectors()) { 654 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 655 if (!useRVVForFixedLengthVectorVT(VT)) 656 continue; 657 658 // By default everything must be expanded. 659 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 660 setOperationAction(Op, VT, Expand); 661 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 662 setTruncStoreAction(VT, OtherVT, Expand); 663 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 664 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 665 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 666 } 667 668 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 669 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 670 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 671 672 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 673 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 674 675 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 676 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 677 678 setOperationAction(ISD::LOAD, VT, Custom); 679 setOperationAction(ISD::STORE, VT, Custom); 680 681 setOperationAction(ISD::SETCC, VT, Custom); 682 683 setOperationAction(ISD::SELECT, VT, Custom); 684 685 setOperationAction(ISD::TRUNCATE, VT, Custom); 686 687 setOperationAction(ISD::BITCAST, VT, Custom); 688 689 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 690 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 691 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 692 693 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 694 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 695 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 696 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 697 698 // Operations below are different for between masks and other vectors. 699 if (VT.getVectorElementType() == MVT::i1) { 700 setOperationAction(ISD::AND, VT, Custom); 701 setOperationAction(ISD::OR, VT, Custom); 702 setOperationAction(ISD::XOR, VT, Custom); 703 continue; 704 } 705 706 // Use SPLAT_VECTOR to prevent type legalization from destroying the 707 // splats when type legalizing i64 scalar on RV32. 708 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 709 // improvements first. 710 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 711 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 712 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 713 } 714 715 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 716 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 717 718 setOperationAction(ISD::MLOAD, VT, Custom); 719 setOperationAction(ISD::MSTORE, VT, Custom); 720 setOperationAction(ISD::MGATHER, VT, Custom); 721 setOperationAction(ISD::MSCATTER, VT, Custom); 722 setOperationAction(ISD::ADD, VT, Custom); 723 setOperationAction(ISD::MUL, VT, Custom); 724 setOperationAction(ISD::SUB, VT, Custom); 725 setOperationAction(ISD::AND, VT, Custom); 726 setOperationAction(ISD::OR, VT, Custom); 727 setOperationAction(ISD::XOR, VT, Custom); 728 setOperationAction(ISD::SDIV, VT, Custom); 729 setOperationAction(ISD::SREM, VT, Custom); 730 setOperationAction(ISD::UDIV, VT, Custom); 731 setOperationAction(ISD::UREM, VT, Custom); 732 setOperationAction(ISD::SHL, VT, Custom); 733 setOperationAction(ISD::SRA, VT, Custom); 734 setOperationAction(ISD::SRL, VT, Custom); 735 736 setOperationAction(ISD::SMIN, VT, Custom); 737 setOperationAction(ISD::SMAX, VT, Custom); 738 setOperationAction(ISD::UMIN, VT, Custom); 739 setOperationAction(ISD::UMAX, VT, Custom); 740 setOperationAction(ISD::ABS, VT, Custom); 741 742 setOperationAction(ISD::MULHS, VT, Custom); 743 setOperationAction(ISD::MULHU, VT, Custom); 744 745 setOperationAction(ISD::VSELECT, VT, Custom); 746 setOperationAction(ISD::SELECT_CC, VT, Expand); 747 748 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 749 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 750 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 751 752 // Custom-lower reduction operations to set up the corresponding custom 753 // nodes' operands. 754 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 755 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 756 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 757 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 758 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 759 760 for (unsigned VPOpc : IntegerVPOps) 761 setOperationAction(VPOpc, VT, Custom); 762 } 763 764 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 765 if (!useRVVForFixedLengthVectorVT(VT)) 766 continue; 767 768 // By default everything must be expanded. 769 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 770 setOperationAction(Op, VT, Expand); 771 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 772 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 773 setTruncStoreAction(VT, OtherVT, Expand); 774 } 775 776 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 777 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 778 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 779 780 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 781 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 782 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 783 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 784 785 setOperationAction(ISD::LOAD, VT, Custom); 786 setOperationAction(ISD::STORE, VT, Custom); 787 setOperationAction(ISD::MLOAD, VT, Custom); 788 setOperationAction(ISD::MSTORE, VT, Custom); 789 setOperationAction(ISD::MGATHER, VT, Custom); 790 setOperationAction(ISD::MSCATTER, VT, Custom); 791 setOperationAction(ISD::FADD, VT, Custom); 792 setOperationAction(ISD::FSUB, VT, Custom); 793 setOperationAction(ISD::FMUL, VT, Custom); 794 setOperationAction(ISD::FDIV, VT, Custom); 795 setOperationAction(ISD::FNEG, VT, Custom); 796 setOperationAction(ISD::FABS, VT, Custom); 797 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 798 setOperationAction(ISD::FSQRT, VT, Custom); 799 setOperationAction(ISD::FMA, VT, Custom); 800 setOperationAction(ISD::FMINNUM, VT, Custom); 801 setOperationAction(ISD::FMAXNUM, VT, Custom); 802 803 setOperationAction(ISD::FP_ROUND, VT, Custom); 804 setOperationAction(ISD::FP_EXTEND, VT, Custom); 805 806 for (auto CC : VFPCCToExpand) 807 setCondCodeAction(CC, VT, Expand); 808 809 setOperationAction(ISD::VSELECT, VT, Custom); 810 setOperationAction(ISD::SELECT, VT, Custom); 811 setOperationAction(ISD::SELECT_CC, VT, Expand); 812 813 setOperationAction(ISD::BITCAST, VT, Custom); 814 815 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 816 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 817 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 818 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 819 820 for (unsigned VPOpc : FloatingPointVPOps) 821 setOperationAction(VPOpc, VT, Custom); 822 } 823 824 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 825 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 826 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 827 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 828 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 829 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 830 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 831 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 832 } 833 } 834 835 // Function alignments. 836 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 837 setMinFunctionAlignment(FunctionAlignment); 838 setPrefFunctionAlignment(FunctionAlignment); 839 840 setMinimumJumpTableEntries(5); 841 842 // Jumps are expensive, compared to logic 843 setJumpIsExpensive(); 844 845 // We can use any register for comparisons 846 setHasMultipleConditionRegisters(); 847 848 setTargetDAGCombine(ISD::AND); 849 setTargetDAGCombine(ISD::OR); 850 setTargetDAGCombine(ISD::XOR); 851 setTargetDAGCombine(ISD::ANY_EXTEND); 852 if (Subtarget.hasStdExtV()) { 853 setTargetDAGCombine(ISD::FCOPYSIGN); 854 setTargetDAGCombine(ISD::MGATHER); 855 setTargetDAGCombine(ISD::MSCATTER); 856 setTargetDAGCombine(ISD::SRA); 857 setTargetDAGCombine(ISD::SRL); 858 setTargetDAGCombine(ISD::SHL); 859 } 860 } 861 862 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 863 LLVMContext &Context, 864 EVT VT) const { 865 if (!VT.isVector()) 866 return getPointerTy(DL); 867 if (Subtarget.hasStdExtV() && 868 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 869 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 870 return VT.changeVectorElementTypeToInteger(); 871 } 872 873 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 874 return Subtarget.getXLenVT(); 875 } 876 877 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 878 const CallInst &I, 879 MachineFunction &MF, 880 unsigned Intrinsic) const { 881 switch (Intrinsic) { 882 default: 883 return false; 884 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 885 case Intrinsic::riscv_masked_atomicrmw_add_i32: 886 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 887 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 888 case Intrinsic::riscv_masked_atomicrmw_max_i32: 889 case Intrinsic::riscv_masked_atomicrmw_min_i32: 890 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 891 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 892 case Intrinsic::riscv_masked_cmpxchg_i32: 893 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 894 Info.opc = ISD::INTRINSIC_W_CHAIN; 895 Info.memVT = MVT::getVT(PtrTy->getElementType()); 896 Info.ptrVal = I.getArgOperand(0); 897 Info.offset = 0; 898 Info.align = Align(4); 899 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 900 MachineMemOperand::MOVolatile; 901 return true; 902 } 903 } 904 905 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 906 const AddrMode &AM, Type *Ty, 907 unsigned AS, 908 Instruction *I) const { 909 // No global is ever allowed as a base. 910 if (AM.BaseGV) 911 return false; 912 913 // Require a 12-bit signed offset. 914 if (!isInt<12>(AM.BaseOffs)) 915 return false; 916 917 switch (AM.Scale) { 918 case 0: // "r+i" or just "i", depending on HasBaseReg. 919 break; 920 case 1: 921 if (!AM.HasBaseReg) // allow "r+i". 922 break; 923 return false; // disallow "r+r" or "r+r+i". 924 default: 925 return false; 926 } 927 928 return true; 929 } 930 931 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 932 return isInt<12>(Imm); 933 } 934 935 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 936 return isInt<12>(Imm); 937 } 938 939 // On RV32, 64-bit integers are split into their high and low parts and held 940 // in two different registers, so the trunc is free since the low register can 941 // just be used. 942 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 943 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 944 return false; 945 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 946 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 947 return (SrcBits == 64 && DestBits == 32); 948 } 949 950 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 951 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 952 !SrcVT.isInteger() || !DstVT.isInteger()) 953 return false; 954 unsigned SrcBits = SrcVT.getSizeInBits(); 955 unsigned DestBits = DstVT.getSizeInBits(); 956 return (SrcBits == 64 && DestBits == 32); 957 } 958 959 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 960 // Zexts are free if they can be combined with a load. 961 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 962 EVT MemVT = LD->getMemoryVT(); 963 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 964 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 965 (LD->getExtensionType() == ISD::NON_EXTLOAD || 966 LD->getExtensionType() == ISD::ZEXTLOAD)) 967 return true; 968 } 969 970 return TargetLowering::isZExtFree(Val, VT2); 971 } 972 973 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 974 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 975 } 976 977 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 978 return Subtarget.hasStdExtZbb(); 979 } 980 981 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 982 return Subtarget.hasStdExtZbb(); 983 } 984 985 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 986 bool ForCodeSize) const { 987 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 988 return false; 989 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 990 return false; 991 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 992 return false; 993 if (Imm.isNegZero()) 994 return false; 995 return Imm.isZero(); 996 } 997 998 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 999 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1000 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1001 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1002 } 1003 1004 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1005 CallingConv::ID CC, 1006 EVT VT) const { 1007 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1008 // end up using a GPR but that will be decided based on ABI. 1009 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1010 return MVT::f32; 1011 1012 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1013 } 1014 1015 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1016 CallingConv::ID CC, 1017 EVT VT) const { 1018 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1019 // end up using a GPR but that will be decided based on ABI. 1020 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1021 return 1; 1022 1023 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1024 } 1025 1026 // Changes the condition code and swaps operands if necessary, so the SetCC 1027 // operation matches one of the comparisons supported directly by branches 1028 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1029 // with 1/-1. 1030 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1031 ISD::CondCode &CC, SelectionDAG &DAG) { 1032 // Convert X > -1 to X >= 0. 1033 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1034 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1035 CC = ISD::SETGE; 1036 return; 1037 } 1038 // Convert X < 1 to 0 >= X. 1039 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1040 RHS = LHS; 1041 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1042 CC = ISD::SETGE; 1043 return; 1044 } 1045 1046 switch (CC) { 1047 default: 1048 break; 1049 case ISD::SETGT: 1050 case ISD::SETLE: 1051 case ISD::SETUGT: 1052 case ISD::SETULE: 1053 CC = ISD::getSetCCSwappedOperands(CC); 1054 std::swap(LHS, RHS); 1055 break; 1056 } 1057 } 1058 1059 // Return the RISC-V branch opcode that matches the given DAG integer 1060 // condition code. The CondCode must be one of those supported by the RISC-V 1061 // ISA (see translateSetCCForBranch). 1062 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 1063 switch (CC) { 1064 default: 1065 llvm_unreachable("Unsupported CondCode"); 1066 case ISD::SETEQ: 1067 return RISCV::BEQ; 1068 case ISD::SETNE: 1069 return RISCV::BNE; 1070 case ISD::SETLT: 1071 return RISCV::BLT; 1072 case ISD::SETGE: 1073 return RISCV::BGE; 1074 case ISD::SETULT: 1075 return RISCV::BLTU; 1076 case ISD::SETUGE: 1077 return RISCV::BGEU; 1078 } 1079 } 1080 1081 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1082 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1083 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1084 if (VT.getVectorElementType() == MVT::i1) 1085 KnownSize *= 8; 1086 1087 switch (KnownSize) { 1088 default: 1089 llvm_unreachable("Invalid LMUL."); 1090 case 8: 1091 return RISCVII::VLMUL::LMUL_F8; 1092 case 16: 1093 return RISCVII::VLMUL::LMUL_F4; 1094 case 32: 1095 return RISCVII::VLMUL::LMUL_F2; 1096 case 64: 1097 return RISCVII::VLMUL::LMUL_1; 1098 case 128: 1099 return RISCVII::VLMUL::LMUL_2; 1100 case 256: 1101 return RISCVII::VLMUL::LMUL_4; 1102 case 512: 1103 return RISCVII::VLMUL::LMUL_8; 1104 } 1105 } 1106 1107 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1108 switch (LMul) { 1109 default: 1110 llvm_unreachable("Invalid LMUL."); 1111 case RISCVII::VLMUL::LMUL_F8: 1112 case RISCVII::VLMUL::LMUL_F4: 1113 case RISCVII::VLMUL::LMUL_F2: 1114 case RISCVII::VLMUL::LMUL_1: 1115 return RISCV::VRRegClassID; 1116 case RISCVII::VLMUL::LMUL_2: 1117 return RISCV::VRM2RegClassID; 1118 case RISCVII::VLMUL::LMUL_4: 1119 return RISCV::VRM4RegClassID; 1120 case RISCVII::VLMUL::LMUL_8: 1121 return RISCV::VRM8RegClassID; 1122 } 1123 } 1124 1125 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1126 RISCVII::VLMUL LMUL = getLMUL(VT); 1127 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1128 LMUL == RISCVII::VLMUL::LMUL_F4 || 1129 LMUL == RISCVII::VLMUL::LMUL_F2 || 1130 LMUL == RISCVII::VLMUL::LMUL_1) { 1131 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1132 "Unexpected subreg numbering"); 1133 return RISCV::sub_vrm1_0 + Index; 1134 } 1135 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1136 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1137 "Unexpected subreg numbering"); 1138 return RISCV::sub_vrm2_0 + Index; 1139 } 1140 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1141 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1142 "Unexpected subreg numbering"); 1143 return RISCV::sub_vrm4_0 + Index; 1144 } 1145 llvm_unreachable("Invalid vector type."); 1146 } 1147 1148 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1149 if (VT.getVectorElementType() == MVT::i1) 1150 return RISCV::VRRegClassID; 1151 return getRegClassIDForLMUL(getLMUL(VT)); 1152 } 1153 1154 // Attempt to decompose a subvector insert/extract between VecVT and 1155 // SubVecVT via subregister indices. Returns the subregister index that 1156 // can perform the subvector insert/extract with the given element index, as 1157 // well as the index corresponding to any leftover subvectors that must be 1158 // further inserted/extracted within the register class for SubVecVT. 1159 std::pair<unsigned, unsigned> 1160 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1161 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1162 const RISCVRegisterInfo *TRI) { 1163 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1164 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1165 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1166 "Register classes not ordered"); 1167 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1168 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1169 // Try to compose a subregister index that takes us from the incoming 1170 // LMUL>1 register class down to the outgoing one. At each step we half 1171 // the LMUL: 1172 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1173 // Note that this is not guaranteed to find a subregister index, such as 1174 // when we are extracting from one VR type to another. 1175 unsigned SubRegIdx = RISCV::NoSubRegister; 1176 for (const unsigned RCID : 1177 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1178 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1179 VecVT = VecVT.getHalfNumVectorElementsVT(); 1180 bool IsHi = 1181 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1182 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1183 getSubregIndexByMVT(VecVT, IsHi)); 1184 if (IsHi) 1185 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1186 } 1187 return {SubRegIdx, InsertExtractIdx}; 1188 } 1189 1190 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1191 // stores for those types. 1192 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1193 return !Subtarget.useRVVForFixedLengthVectors() || 1194 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1195 } 1196 1197 static bool useRVVForFixedLengthVectorVT(MVT VT, 1198 const RISCVSubtarget &Subtarget) { 1199 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1200 if (!Subtarget.useRVVForFixedLengthVectors()) 1201 return false; 1202 1203 // We only support a set of vector types with a consistent maximum fixed size 1204 // across all supported vector element types to avoid legalization issues. 1205 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1206 // fixed-length vector type we support is 1024 bytes. 1207 if (VT.getFixedSizeInBits() > 1024 * 8) 1208 return false; 1209 1210 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1211 1212 // Don't use RVV for vectors we cannot scalarize if required. 1213 switch (VT.getVectorElementType().SimpleTy) { 1214 // i1 is supported but has different rules. 1215 default: 1216 return false; 1217 case MVT::i1: 1218 // Masks can only use a single register. 1219 if (VT.getVectorNumElements() > MinVLen) 1220 return false; 1221 MinVLen /= 8; 1222 break; 1223 case MVT::i8: 1224 case MVT::i16: 1225 case MVT::i32: 1226 case MVT::i64: 1227 break; 1228 case MVT::f16: 1229 if (!Subtarget.hasStdExtZfh()) 1230 return false; 1231 break; 1232 case MVT::f32: 1233 if (!Subtarget.hasStdExtF()) 1234 return false; 1235 break; 1236 case MVT::f64: 1237 if (!Subtarget.hasStdExtD()) 1238 return false; 1239 break; 1240 } 1241 1242 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1243 // Don't use RVV for types that don't fit. 1244 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1245 return false; 1246 1247 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1248 // the base fixed length RVV support in place. 1249 if (!VT.isPow2VectorType()) 1250 return false; 1251 1252 return true; 1253 } 1254 1255 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1256 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1257 } 1258 1259 // Return the largest legal scalable vector type that matches VT's element type. 1260 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1261 const RISCVSubtarget &Subtarget) { 1262 // This may be called before legal types are setup. 1263 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1264 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1265 "Expected legal fixed length vector!"); 1266 1267 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1268 1269 MVT EltVT = VT.getVectorElementType(); 1270 switch (EltVT.SimpleTy) { 1271 default: 1272 llvm_unreachable("unexpected element type for RVV container"); 1273 case MVT::i1: 1274 case MVT::i8: 1275 case MVT::i16: 1276 case MVT::i32: 1277 case MVT::i64: 1278 case MVT::f16: 1279 case MVT::f32: 1280 case MVT::f64: { 1281 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1282 // narrower types, but we can't have a fractional LMUL with demoninator less 1283 // than 64/SEW. 1284 unsigned NumElts = 1285 divideCeil(VT.getVectorNumElements(), MinVLen / RISCV::RVVBitsPerBlock); 1286 return MVT::getScalableVectorVT(EltVT, NumElts); 1287 } 1288 } 1289 } 1290 1291 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1292 const RISCVSubtarget &Subtarget) { 1293 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1294 Subtarget); 1295 } 1296 1297 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1298 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1299 } 1300 1301 // Grow V to consume an entire RVV register. 1302 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1303 const RISCVSubtarget &Subtarget) { 1304 assert(VT.isScalableVector() && 1305 "Expected to convert into a scalable vector!"); 1306 assert(V.getValueType().isFixedLengthVector() && 1307 "Expected a fixed length vector operand!"); 1308 SDLoc DL(V); 1309 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1310 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1311 } 1312 1313 // Shrink V so it's just big enough to maintain a VT's worth of data. 1314 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1315 const RISCVSubtarget &Subtarget) { 1316 assert(VT.isFixedLengthVector() && 1317 "Expected to convert into a fixed length vector!"); 1318 assert(V.getValueType().isScalableVector() && 1319 "Expected a scalable vector operand!"); 1320 SDLoc DL(V); 1321 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1322 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1323 } 1324 1325 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1326 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1327 // the vector type that it is contained in. 1328 static std::pair<SDValue, SDValue> 1329 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1330 const RISCVSubtarget &Subtarget) { 1331 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1332 MVT XLenVT = Subtarget.getXLenVT(); 1333 SDValue VL = VecVT.isFixedLengthVector() 1334 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1335 : DAG.getRegister(RISCV::X0, XLenVT); 1336 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1337 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1338 return {Mask, VL}; 1339 } 1340 1341 // As above but assuming the given type is a scalable vector type. 1342 static std::pair<SDValue, SDValue> 1343 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1344 const RISCVSubtarget &Subtarget) { 1345 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1346 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1347 } 1348 1349 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1350 // of either is (currently) supported. This can get us into an infinite loop 1351 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1352 // as a ..., etc. 1353 // Until either (or both) of these can reliably lower any node, reporting that 1354 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1355 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1356 // which is not desirable. 1357 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1358 EVT VT, unsigned DefinedValues) const { 1359 return false; 1360 } 1361 1362 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1363 // Only splats are currently supported. 1364 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1365 return true; 1366 1367 return false; 1368 } 1369 1370 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1371 const RISCVSubtarget &Subtarget) { 1372 MVT VT = Op.getSimpleValueType(); 1373 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1374 1375 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1376 1377 SDLoc DL(Op); 1378 SDValue Mask, VL; 1379 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1380 1381 unsigned Opc = 1382 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1383 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1384 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1385 } 1386 1387 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1388 const RISCVSubtarget &Subtarget) { 1389 MVT VT = Op.getSimpleValueType(); 1390 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1391 1392 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1393 1394 SDLoc DL(Op); 1395 SDValue Mask, VL; 1396 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1397 1398 MVT XLenVT = Subtarget.getXLenVT(); 1399 unsigned NumElts = Op.getNumOperands(); 1400 1401 if (VT.getVectorElementType() == MVT::i1) { 1402 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1403 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1404 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1405 } 1406 1407 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1408 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1409 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1410 } 1411 1412 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1413 // scalar integer chunks whose bit-width depends on the number of mask 1414 // bits and XLEN. 1415 // First, determine the most appropriate scalar integer type to use. This 1416 // is at most XLenVT, but may be shrunk to a smaller vector element type 1417 // according to the size of the final vector - use i8 chunks rather than 1418 // XLenVT if we're producing a v8i1. This results in more consistent 1419 // codegen across RV32 and RV64. 1420 unsigned NumViaIntegerBits = 1421 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1422 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1423 // If we have to use more than one INSERT_VECTOR_ELT then this 1424 // optimization is likely to increase code size; avoid peforming it in 1425 // such a case. We can use a load from a constant pool in this case. 1426 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1427 return SDValue(); 1428 // Now we can create our integer vector type. Note that it may be larger 1429 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1430 MVT IntegerViaVecVT = 1431 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1432 divideCeil(NumElts, NumViaIntegerBits)); 1433 1434 uint64_t Bits = 0; 1435 unsigned BitPos = 0, IntegerEltIdx = 0; 1436 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1437 1438 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1439 // Once we accumulate enough bits to fill our scalar type, insert into 1440 // our vector and clear our accumulated data. 1441 if (I != 0 && I % NumViaIntegerBits == 0) { 1442 if (NumViaIntegerBits <= 32) 1443 Bits = SignExtend64(Bits, 32); 1444 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1445 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1446 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1447 Bits = 0; 1448 BitPos = 0; 1449 IntegerEltIdx++; 1450 } 1451 SDValue V = Op.getOperand(I); 1452 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1453 Bits |= ((uint64_t)BitValue << BitPos); 1454 } 1455 1456 // Insert the (remaining) scalar value into position in our integer 1457 // vector type. 1458 if (NumViaIntegerBits <= 32) 1459 Bits = SignExtend64(Bits, 32); 1460 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1461 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1462 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1463 1464 if (NumElts < NumViaIntegerBits) { 1465 // If we're producing a smaller vector than our minimum legal integer 1466 // type, bitcast to the equivalent (known-legal) mask type, and extract 1467 // our final mask. 1468 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1469 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1470 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1471 DAG.getConstant(0, DL, XLenVT)); 1472 } else { 1473 // Else we must have produced an integer type with the same size as the 1474 // mask type; bitcast for the final result. 1475 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1476 Vec = DAG.getBitcast(VT, Vec); 1477 } 1478 1479 return Vec; 1480 } 1481 1482 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1483 // vector type, we have a legal equivalently-sized i8 type, so we can use 1484 // that. 1485 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1486 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1487 1488 SDValue WideVec; 1489 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1490 // For a splat, perform a scalar truncate before creating the wider 1491 // vector. 1492 assert(Splat.getValueType() == XLenVT && 1493 "Unexpected type for i1 splat value"); 1494 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1495 DAG.getConstant(1, DL, XLenVT)); 1496 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1497 } else { 1498 SmallVector<SDValue, 8> Ops(Op->op_values()); 1499 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1500 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1501 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1502 } 1503 1504 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1505 } 1506 1507 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1508 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1509 : RISCVISD::VMV_V_X_VL; 1510 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1511 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1512 } 1513 1514 // Try and match an index sequence, which we can lower directly to the vid 1515 // instruction. An all-undef vector is matched by getSplatValue, above. 1516 if (VT.isInteger()) { 1517 bool IsVID = true; 1518 for (unsigned I = 0; I < NumElts && IsVID; I++) 1519 IsVID &= Op.getOperand(I).isUndef() || 1520 (isa<ConstantSDNode>(Op.getOperand(I)) && 1521 Op.getConstantOperandVal(I) == I); 1522 1523 if (IsVID) { 1524 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1525 return convertFromScalableVector(VT, VID, DAG, Subtarget); 1526 } 1527 } 1528 1529 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1530 // when re-interpreted as a vector with a larger element type. For example, 1531 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1532 // could be instead splat as 1533 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1534 // TODO: This optimization could also work on non-constant splats, but it 1535 // would require bit-manipulation instructions to construct the splat value. 1536 SmallVector<SDValue> Sequence; 1537 unsigned EltBitSize = VT.getScalarSizeInBits(); 1538 const auto *BV = cast<BuildVectorSDNode>(Op); 1539 if (VT.isInteger() && EltBitSize < 64 && 1540 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1541 BV->getRepeatedSequence(Sequence) && 1542 (Sequence.size() * EltBitSize) <= 64) { 1543 unsigned SeqLen = Sequence.size(); 1544 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1545 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1546 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1547 ViaIntVT == MVT::i64) && 1548 "Unexpected sequence type"); 1549 1550 unsigned EltIdx = 0; 1551 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1552 uint64_t SplatValue = 0; 1553 // Construct the amalgamated value which can be splatted as this larger 1554 // vector type. 1555 for (const auto &SeqV : Sequence) { 1556 if (!SeqV.isUndef()) 1557 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1558 << (EltIdx * EltBitSize)); 1559 EltIdx++; 1560 } 1561 1562 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1563 // achieve better constant materializion. 1564 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1565 SplatValue = SignExtend64(SplatValue, 32); 1566 1567 // Since we can't introduce illegal i64 types at this stage, we can only 1568 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1569 // way we can use RVV instructions to splat. 1570 assert((ViaIntVT.bitsLE(XLenVT) || 1571 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1572 "Unexpected bitcast sequence"); 1573 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1574 SDValue ViaVL = 1575 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1576 MVT ViaContainerVT = 1577 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1578 SDValue Splat = 1579 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1580 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1581 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1582 return DAG.getBitcast(VT, Splat); 1583 } 1584 } 1585 1586 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1587 // which constitute a large proportion of the elements. In such cases we can 1588 // splat a vector with the dominant element and make up the shortfall with 1589 // INSERT_VECTOR_ELTs. 1590 // Note that this includes vectors of 2 elements by association. The 1591 // upper-most element is the "dominant" one, allowing us to use a splat to 1592 // "insert" the upper element, and an insert of the lower element at position 1593 // 0, which improves codegen. 1594 SDValue DominantValue; 1595 unsigned MostCommonCount = 0; 1596 DenseMap<SDValue, unsigned> ValueCounts; 1597 unsigned NumUndefElts = 1598 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1599 1600 for (SDValue V : Op->op_values()) { 1601 if (V.isUndef()) 1602 continue; 1603 1604 ValueCounts.insert(std::make_pair(V, 0)); 1605 unsigned &Count = ValueCounts[V]; 1606 1607 // Is this value dominant? In case of a tie, prefer the highest element as 1608 // it's cheaper to insert near the beginning of a vector than it is at the 1609 // end. 1610 if (++Count >= MostCommonCount) { 1611 DominantValue = V; 1612 MostCommonCount = Count; 1613 } 1614 } 1615 1616 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1617 unsigned NumDefElts = NumElts - NumUndefElts; 1618 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1619 1620 // Don't perform this optimization when optimizing for size, since 1621 // materializing elements and inserting them tends to cause code bloat. 1622 if (!DAG.shouldOptForSize() && 1623 ((MostCommonCount > DominantValueCountThreshold) || 1624 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1625 // Start by splatting the most common element. 1626 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1627 1628 DenseSet<SDValue> Processed{DominantValue}; 1629 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1630 for (const auto &OpIdx : enumerate(Op->ops())) { 1631 const SDValue &V = OpIdx.value(); 1632 if (V.isUndef() || !Processed.insert(V).second) 1633 continue; 1634 if (ValueCounts[V] == 1) { 1635 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1636 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1637 } else { 1638 // Blend in all instances of this value using a VSELECT, using a 1639 // mask where each bit signals whether that element is the one 1640 // we're after. 1641 SmallVector<SDValue> Ops; 1642 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1643 return DAG.getConstant(V == V1, DL, XLenVT); 1644 }); 1645 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1646 DAG.getBuildVector(SelMaskTy, DL, Ops), 1647 DAG.getSplatBuildVector(VT, DL, V), Vec); 1648 } 1649 } 1650 1651 return Vec; 1652 } 1653 1654 return SDValue(); 1655 } 1656 1657 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1658 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1659 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1660 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1661 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1662 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1663 // node in order to try and match RVV vector/scalar instructions. 1664 if ((LoC >> 31) == HiC) 1665 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1666 } 1667 1668 // Fall back to a stack store and stride x0 vector load. 1669 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 1670 } 1671 1672 // Called by type legalization to handle splat of i64 on RV32. 1673 // FIXME: We can optimize this when the type has sign or zero bits in one 1674 // of the halves. 1675 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 1676 SDValue VL, SelectionDAG &DAG) { 1677 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 1678 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1679 DAG.getConstant(0, DL, MVT::i32)); 1680 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1681 DAG.getConstant(1, DL, MVT::i32)); 1682 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 1683 } 1684 1685 // This function lowers a splat of a scalar operand Splat with the vector 1686 // length VL. It ensures the final sequence is type legal, which is useful when 1687 // lowering a splat after type legalization. 1688 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 1689 SelectionDAG &DAG, 1690 const RISCVSubtarget &Subtarget) { 1691 if (VT.isFloatingPoint()) 1692 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 1693 1694 MVT XLenVT = Subtarget.getXLenVT(); 1695 1696 // Simplest case is that the operand needs to be promoted to XLenVT. 1697 if (Scalar.getValueType().bitsLE(XLenVT)) { 1698 // If the operand is a constant, sign extend to increase our chances 1699 // of being able to use a .vi instruction. ANY_EXTEND would become a 1700 // a zero extend and the simm5 check in isel would fail. 1701 // FIXME: Should we ignore the upper bits in isel instead? 1702 unsigned ExtOpc = 1703 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 1704 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 1705 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 1706 } 1707 1708 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 1709 "Unexpected scalar for splat lowering!"); 1710 1711 // Otherwise use the more complicated splatting algorithm. 1712 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 1713 } 1714 1715 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1716 const RISCVSubtarget &Subtarget) { 1717 SDValue V1 = Op.getOperand(0); 1718 SDValue V2 = Op.getOperand(1); 1719 SDLoc DL(Op); 1720 MVT XLenVT = Subtarget.getXLenVT(); 1721 MVT VT = Op.getSimpleValueType(); 1722 unsigned NumElts = VT.getVectorNumElements(); 1723 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1724 1725 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1726 1727 SDValue TrueMask, VL; 1728 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1729 1730 if (SVN->isSplat()) { 1731 const int Lane = SVN->getSplatIndex(); 1732 if (Lane >= 0) { 1733 MVT SVT = VT.getVectorElementType(); 1734 1735 // Turn splatted vector load into a strided load with an X0 stride. 1736 SDValue V = V1; 1737 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 1738 // with undef. 1739 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 1740 int Offset = Lane; 1741 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 1742 int OpElements = 1743 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 1744 V = V.getOperand(Offset / OpElements); 1745 Offset %= OpElements; 1746 } 1747 1748 // We need to ensure the load isn't atomic or volatile. 1749 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 1750 auto *Ld = cast<LoadSDNode>(V); 1751 Offset *= SVT.getStoreSize(); 1752 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 1753 TypeSize::Fixed(Offset), DL); 1754 1755 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 1756 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 1757 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 1758 SDValue IntID = 1759 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 1760 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 1761 DAG.getRegister(RISCV::X0, XLenVT), VL}; 1762 SDValue NewLoad = DAG.getMemIntrinsicNode( 1763 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 1764 DAG.getMachineFunction().getMachineMemOperand( 1765 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 1766 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 1767 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 1768 } 1769 1770 // Otherwise use a scalar load and splat. This will give the best 1771 // opportunity to fold a splat into the operation. ISel can turn it into 1772 // the x0 strided load if we aren't able to fold away the select. 1773 if (SVT.isFloatingPoint()) 1774 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 1775 Ld->getPointerInfo().getWithOffset(Offset), 1776 Ld->getOriginalAlign(), 1777 Ld->getMemOperand()->getFlags()); 1778 else 1779 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 1780 Ld->getPointerInfo().getWithOffset(Offset), SVT, 1781 Ld->getOriginalAlign(), 1782 Ld->getMemOperand()->getFlags()); 1783 DAG.makeEquivalentMemoryOrdering(Ld, V); 1784 1785 unsigned Opc = 1786 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1787 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 1788 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1789 } 1790 1791 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1792 assert(Lane < (int)NumElts && "Unexpected lane!"); 1793 SDValue Gather = 1794 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1795 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 1796 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1797 } 1798 } 1799 1800 // Detect shuffles which can be re-expressed as vector selects; these are 1801 // shuffles in which each element in the destination is taken from an element 1802 // at the corresponding index in either source vectors. 1803 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 1804 int MaskIndex = MaskIdx.value(); 1805 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 1806 }); 1807 1808 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 1809 1810 SmallVector<SDValue> MaskVals; 1811 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 1812 // merged with a second vrgather. 1813 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 1814 1815 // By default we preserve the original operand order, and use a mask to 1816 // select LHS as true and RHS as false. However, since RVV vector selects may 1817 // feature splats but only on the LHS, we may choose to invert our mask and 1818 // instead select between RHS and LHS. 1819 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 1820 bool InvertMask = IsSelect == SwapOps; 1821 1822 // Now construct the mask that will be used by the vselect or blended 1823 // vrgather operation. For vrgathers, construct the appropriate indices into 1824 // each vector. 1825 for (int MaskIndex : SVN->getMask()) { 1826 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 1827 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 1828 if (!IsSelect) { 1829 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 1830 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 1831 ? DAG.getConstant(MaskIndex, DL, XLenVT) 1832 : DAG.getUNDEF(XLenVT)); 1833 GatherIndicesRHS.push_back( 1834 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 1835 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 1836 } 1837 } 1838 1839 if (SwapOps) { 1840 std::swap(V1, V2); 1841 std::swap(GatherIndicesLHS, GatherIndicesRHS); 1842 } 1843 1844 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 1845 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 1846 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 1847 1848 if (IsSelect) 1849 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 1850 1851 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 1852 // On such a large vector we're unable to use i8 as the index type. 1853 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 1854 // may involve vector splitting if we're already at LMUL=8, or our 1855 // user-supplied maximum fixed-length LMUL. 1856 return SDValue(); 1857 } 1858 1859 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 1860 MVT IndexVT = VT.changeTypeToInteger(); 1861 // Since we can't introduce illegal index types at this stage, use i16 and 1862 // vrgatherei16 if the corresponding index type for plain vrgather is greater 1863 // than XLenVT. 1864 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 1865 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 1866 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 1867 } 1868 1869 MVT IndexContainerVT = 1870 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 1871 1872 SDValue Gather; 1873 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 1874 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 1875 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 1876 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 1877 } else { 1878 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 1879 LHSIndices = 1880 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 1881 1882 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1883 Gather = 1884 DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL); 1885 } 1886 1887 // If a second vector operand is used by this shuffle, blend it in with an 1888 // additional vrgather. 1889 if (!V2.isUndef()) { 1890 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 1891 SelectMask = 1892 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 1893 1894 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 1895 RHSIndices = 1896 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 1897 1898 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 1899 V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL); 1900 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 1901 Gather, VL); 1902 } 1903 1904 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1905 } 1906 1907 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 1908 SDLoc DL, SelectionDAG &DAG, 1909 const RISCVSubtarget &Subtarget) { 1910 if (VT.isScalableVector()) 1911 return DAG.getFPExtendOrRound(Op, DL, VT); 1912 assert(VT.isFixedLengthVector() && 1913 "Unexpected value type for RVV FP extend/round lowering"); 1914 SDValue Mask, VL; 1915 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1916 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 1917 ? RISCVISD::FP_EXTEND_VL 1918 : RISCVISD::FP_ROUND_VL; 1919 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 1920 } 1921 1922 // While RVV has alignment restrictions, we should always be able to load as a 1923 // legal equivalently-sized byte-typed vector instead. This method is 1924 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 1925 // the load is already correctly-aligned, it returns SDValue(). 1926 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 1927 SelectionDAG &DAG) const { 1928 auto *Load = cast<LoadSDNode>(Op); 1929 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 1930 1931 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 1932 Load->getMemoryVT(), 1933 *Load->getMemOperand())) 1934 return SDValue(); 1935 1936 SDLoc DL(Op); 1937 MVT VT = Op.getSimpleValueType(); 1938 unsigned EltSizeBits = VT.getScalarSizeInBits(); 1939 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 1940 "Unexpected unaligned RVV load type"); 1941 MVT NewVT = 1942 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 1943 assert(NewVT.isValid() && 1944 "Expecting equally-sized RVV vector types to be legal"); 1945 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 1946 Load->getPointerInfo(), Load->getOriginalAlign(), 1947 Load->getMemOperand()->getFlags()); 1948 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 1949 } 1950 1951 // While RVV has alignment restrictions, we should always be able to store as a 1952 // legal equivalently-sized byte-typed vector instead. This method is 1953 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 1954 // returns SDValue() if the store is already correctly aligned. 1955 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 1956 SelectionDAG &DAG) const { 1957 auto *Store = cast<StoreSDNode>(Op); 1958 assert(Store && Store->getValue().getValueType().isVector() && 1959 "Expected vector store"); 1960 1961 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 1962 Store->getMemoryVT(), 1963 *Store->getMemOperand())) 1964 return SDValue(); 1965 1966 SDLoc DL(Op); 1967 SDValue StoredVal = Store->getValue(); 1968 MVT VT = StoredVal.getSimpleValueType(); 1969 unsigned EltSizeBits = VT.getScalarSizeInBits(); 1970 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 1971 "Unexpected unaligned RVV store type"); 1972 MVT NewVT = 1973 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 1974 assert(NewVT.isValid() && 1975 "Expecting equally-sized RVV vector types to be legal"); 1976 StoredVal = DAG.getBitcast(NewVT, StoredVal); 1977 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 1978 Store->getPointerInfo(), Store->getOriginalAlign(), 1979 Store->getMemOperand()->getFlags()); 1980 } 1981 1982 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 1983 SelectionDAG &DAG) const { 1984 switch (Op.getOpcode()) { 1985 default: 1986 report_fatal_error("unimplemented operand"); 1987 case ISD::GlobalAddress: 1988 return lowerGlobalAddress(Op, DAG); 1989 case ISD::BlockAddress: 1990 return lowerBlockAddress(Op, DAG); 1991 case ISD::ConstantPool: 1992 return lowerConstantPool(Op, DAG); 1993 case ISD::JumpTable: 1994 return lowerJumpTable(Op, DAG); 1995 case ISD::GlobalTLSAddress: 1996 return lowerGlobalTLSAddress(Op, DAG); 1997 case ISD::SELECT: 1998 return lowerSELECT(Op, DAG); 1999 case ISD::BRCOND: 2000 return lowerBRCOND(Op, DAG); 2001 case ISD::VASTART: 2002 return lowerVASTART(Op, DAG); 2003 case ISD::FRAMEADDR: 2004 return lowerFRAMEADDR(Op, DAG); 2005 case ISD::RETURNADDR: 2006 return lowerRETURNADDR(Op, DAG); 2007 case ISD::SHL_PARTS: 2008 return lowerShiftLeftParts(Op, DAG); 2009 case ISD::SRA_PARTS: 2010 return lowerShiftRightParts(Op, DAG, true); 2011 case ISD::SRL_PARTS: 2012 return lowerShiftRightParts(Op, DAG, false); 2013 case ISD::BITCAST: { 2014 SDLoc DL(Op); 2015 EVT VT = Op.getValueType(); 2016 SDValue Op0 = Op.getOperand(0); 2017 EVT Op0VT = Op0.getValueType(); 2018 MVT XLenVT = Subtarget.getXLenVT(); 2019 if (VT.isFixedLengthVector()) { 2020 // We can handle fixed length vector bitcasts with a simple replacement 2021 // in isel. 2022 if (Op0VT.isFixedLengthVector()) 2023 return Op; 2024 // When bitcasting from scalar to fixed-length vector, insert the scalar 2025 // into a one-element vector of the result type, and perform a vector 2026 // bitcast. 2027 if (!Op0VT.isVector()) { 2028 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2029 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2030 DAG.getUNDEF(BVT), Op0, 2031 DAG.getConstant(0, DL, XLenVT))); 2032 } 2033 return SDValue(); 2034 } 2035 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2036 // thus: bitcast the vector to a one-element vector type whose element type 2037 // is the same as the result type, and extract the first element. 2038 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2039 LLVMContext &Context = *DAG.getContext(); 2040 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 2041 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2042 DAG.getConstant(0, DL, XLenVT)); 2043 } 2044 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2045 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2046 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2047 return FPConv; 2048 } 2049 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2050 Subtarget.hasStdExtF()) { 2051 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2052 SDValue FPConv = 2053 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2054 return FPConv; 2055 } 2056 return SDValue(); 2057 } 2058 case ISD::INTRINSIC_WO_CHAIN: 2059 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2060 case ISD::INTRINSIC_W_CHAIN: 2061 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2062 case ISD::BSWAP: 2063 case ISD::BITREVERSE: { 2064 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2065 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2066 MVT VT = Op.getSimpleValueType(); 2067 SDLoc DL(Op); 2068 // Start with the maximum immediate value which is the bitwidth - 1. 2069 unsigned Imm = VT.getSizeInBits() - 1; 2070 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2071 if (Op.getOpcode() == ISD::BSWAP) 2072 Imm &= ~0x7U; 2073 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2074 DAG.getConstant(Imm, DL, VT)); 2075 } 2076 case ISD::FSHL: 2077 case ISD::FSHR: { 2078 MVT VT = Op.getSimpleValueType(); 2079 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2080 SDLoc DL(Op); 2081 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2082 return Op; 2083 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2084 // use log(XLen) bits. Mask the shift amount accordingly. 2085 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2086 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2087 DAG.getConstant(ShAmtWidth, DL, VT)); 2088 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2089 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2090 } 2091 case ISD::TRUNCATE: { 2092 SDLoc DL(Op); 2093 MVT VT = Op.getSimpleValueType(); 2094 // Only custom-lower vector truncates 2095 if (!VT.isVector()) 2096 return Op; 2097 2098 // Truncates to mask types are handled differently 2099 if (VT.getVectorElementType() == MVT::i1) 2100 return lowerVectorMaskTrunc(Op, DAG); 2101 2102 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2103 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2104 // truncate by one power of two at a time. 2105 MVT DstEltVT = VT.getVectorElementType(); 2106 2107 SDValue Src = Op.getOperand(0); 2108 MVT SrcVT = Src.getSimpleValueType(); 2109 MVT SrcEltVT = SrcVT.getVectorElementType(); 2110 2111 assert(DstEltVT.bitsLT(SrcEltVT) && 2112 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2113 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2114 "Unexpected vector truncate lowering"); 2115 2116 MVT ContainerVT = SrcVT; 2117 if (SrcVT.isFixedLengthVector()) { 2118 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2119 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2120 } 2121 2122 SDValue Result = Src; 2123 SDValue Mask, VL; 2124 std::tie(Mask, VL) = 2125 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2126 LLVMContext &Context = *DAG.getContext(); 2127 const ElementCount Count = ContainerVT.getVectorElementCount(); 2128 do { 2129 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2130 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2131 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2132 Mask, VL); 2133 } while (SrcEltVT != DstEltVT); 2134 2135 if (SrcVT.isFixedLengthVector()) 2136 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2137 2138 return Result; 2139 } 2140 case ISD::ANY_EXTEND: 2141 case ISD::ZERO_EXTEND: 2142 if (Op.getOperand(0).getValueType().isVector() && 2143 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2144 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2145 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2146 case ISD::SIGN_EXTEND: 2147 if (Op.getOperand(0).getValueType().isVector() && 2148 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2149 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2150 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2151 case ISD::SPLAT_VECTOR_PARTS: 2152 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2153 case ISD::INSERT_VECTOR_ELT: 2154 return lowerINSERT_VECTOR_ELT(Op, DAG); 2155 case ISD::EXTRACT_VECTOR_ELT: 2156 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2157 case ISD::VSCALE: { 2158 MVT VT = Op.getSimpleValueType(); 2159 SDLoc DL(Op); 2160 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2161 // We define our scalable vector types for lmul=1 to use a 64 bit known 2162 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2163 // vscale as VLENB / 8. 2164 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2165 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2166 DAG.getConstant(3, DL, VT)); 2167 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2168 } 2169 case ISD::FP_EXTEND: { 2170 // RVV can only do fp_extend to types double the size as the source. We 2171 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2172 // via f32. 2173 SDLoc DL(Op); 2174 MVT VT = Op.getSimpleValueType(); 2175 SDValue Src = Op.getOperand(0); 2176 MVT SrcVT = Src.getSimpleValueType(); 2177 2178 // Prepare any fixed-length vector operands. 2179 MVT ContainerVT = VT; 2180 if (SrcVT.isFixedLengthVector()) { 2181 ContainerVT = getContainerForFixedLengthVector(VT); 2182 MVT SrcContainerVT = 2183 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2184 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2185 } 2186 2187 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2188 SrcVT.getVectorElementType() != MVT::f16) { 2189 // For scalable vectors, we only need to close the gap between 2190 // vXf16->vXf64. 2191 if (!VT.isFixedLengthVector()) 2192 return Op; 2193 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2194 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2195 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2196 } 2197 2198 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2199 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2200 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2201 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2202 2203 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2204 DL, DAG, Subtarget); 2205 if (VT.isFixedLengthVector()) 2206 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2207 return Extend; 2208 } 2209 case ISD::FP_ROUND: { 2210 // RVV can only do fp_round to types half the size as the source. We 2211 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2212 // conversion instruction. 2213 SDLoc DL(Op); 2214 MVT VT = Op.getSimpleValueType(); 2215 SDValue Src = Op.getOperand(0); 2216 MVT SrcVT = Src.getSimpleValueType(); 2217 2218 // Prepare any fixed-length vector operands. 2219 MVT ContainerVT = VT; 2220 if (VT.isFixedLengthVector()) { 2221 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2222 ContainerVT = 2223 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2224 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2225 } 2226 2227 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2228 SrcVT.getVectorElementType() != MVT::f64) { 2229 // For scalable vectors, we only need to close the gap between 2230 // vXf64<->vXf16. 2231 if (!VT.isFixedLengthVector()) 2232 return Op; 2233 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2234 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2235 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2236 } 2237 2238 SDValue Mask, VL; 2239 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2240 2241 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2242 SDValue IntermediateRound = 2243 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2244 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2245 DL, DAG, Subtarget); 2246 2247 if (VT.isFixedLengthVector()) 2248 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2249 return Round; 2250 } 2251 case ISD::FP_TO_SINT: 2252 case ISD::FP_TO_UINT: 2253 case ISD::SINT_TO_FP: 2254 case ISD::UINT_TO_FP: { 2255 // RVV can only do fp<->int conversions to types half/double the size as 2256 // the source. We custom-lower any conversions that do two hops into 2257 // sequences. 2258 MVT VT = Op.getSimpleValueType(); 2259 if (!VT.isVector()) 2260 return Op; 2261 SDLoc DL(Op); 2262 SDValue Src = Op.getOperand(0); 2263 MVT EltVT = VT.getVectorElementType(); 2264 MVT SrcVT = Src.getSimpleValueType(); 2265 MVT SrcEltVT = SrcVT.getVectorElementType(); 2266 unsigned EltSize = EltVT.getSizeInBits(); 2267 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2268 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2269 "Unexpected vector element types"); 2270 2271 bool IsInt2FP = SrcEltVT.isInteger(); 2272 // Widening conversions 2273 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2274 if (IsInt2FP) { 2275 // Do a regular integer sign/zero extension then convert to float. 2276 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2277 VT.getVectorElementCount()); 2278 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2279 ? ISD::ZERO_EXTEND 2280 : ISD::SIGN_EXTEND; 2281 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2282 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2283 } 2284 // FP2Int 2285 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2286 // Do one doubling fp_extend then complete the operation by converting 2287 // to int. 2288 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2289 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2290 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2291 } 2292 2293 // Narrowing conversions 2294 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2295 if (IsInt2FP) { 2296 // One narrowing int_to_fp, then an fp_round. 2297 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2298 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2299 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2300 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2301 } 2302 // FP2Int 2303 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2304 // representable by the integer, the result is poison. 2305 MVT IVecVT = 2306 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2307 VT.getVectorElementCount()); 2308 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2309 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2310 } 2311 2312 // Scalable vectors can exit here. Patterns will handle equally-sized 2313 // conversions halving/doubling ones. 2314 if (!VT.isFixedLengthVector()) 2315 return Op; 2316 2317 // For fixed-length vectors we lower to a custom "VL" node. 2318 unsigned RVVOpc = 0; 2319 switch (Op.getOpcode()) { 2320 default: 2321 llvm_unreachable("Impossible opcode"); 2322 case ISD::FP_TO_SINT: 2323 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2324 break; 2325 case ISD::FP_TO_UINT: 2326 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2327 break; 2328 case ISD::SINT_TO_FP: 2329 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2330 break; 2331 case ISD::UINT_TO_FP: 2332 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2333 break; 2334 } 2335 2336 MVT ContainerVT, SrcContainerVT; 2337 // Derive the reference container type from the larger vector type. 2338 if (SrcEltSize > EltSize) { 2339 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2340 ContainerVT = 2341 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2342 } else { 2343 ContainerVT = getContainerForFixedLengthVector(VT); 2344 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2345 } 2346 2347 SDValue Mask, VL; 2348 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2349 2350 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2351 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2352 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2353 } 2354 case ISD::VECREDUCE_ADD: 2355 case ISD::VECREDUCE_UMAX: 2356 case ISD::VECREDUCE_SMAX: 2357 case ISD::VECREDUCE_UMIN: 2358 case ISD::VECREDUCE_SMIN: 2359 return lowerVECREDUCE(Op, DAG); 2360 case ISD::VECREDUCE_AND: 2361 case ISD::VECREDUCE_OR: 2362 case ISD::VECREDUCE_XOR: 2363 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2364 return lowerVectorMaskVECREDUCE(Op, DAG); 2365 return lowerVECREDUCE(Op, DAG); 2366 case ISD::VECREDUCE_FADD: 2367 case ISD::VECREDUCE_SEQ_FADD: 2368 case ISD::VECREDUCE_FMIN: 2369 case ISD::VECREDUCE_FMAX: 2370 return lowerFPVECREDUCE(Op, DAG); 2371 case ISD::INSERT_SUBVECTOR: 2372 return lowerINSERT_SUBVECTOR(Op, DAG); 2373 case ISD::EXTRACT_SUBVECTOR: 2374 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2375 case ISD::STEP_VECTOR: 2376 return lowerSTEP_VECTOR(Op, DAG); 2377 case ISD::VECTOR_REVERSE: 2378 return lowerVECTOR_REVERSE(Op, DAG); 2379 case ISD::BUILD_VECTOR: 2380 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2381 case ISD::SPLAT_VECTOR: 2382 if (Op.getValueType().getVectorElementType() == MVT::i1) 2383 return lowerVectorMaskSplat(Op, DAG); 2384 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2385 case ISD::VECTOR_SHUFFLE: 2386 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2387 case ISD::CONCAT_VECTORS: { 2388 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2389 // better than going through the stack, as the default expansion does. 2390 SDLoc DL(Op); 2391 MVT VT = Op.getSimpleValueType(); 2392 unsigned NumOpElts = 2393 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2394 SDValue Vec = DAG.getUNDEF(VT); 2395 for (const auto &OpIdx : enumerate(Op->ops())) 2396 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2397 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2398 return Vec; 2399 } 2400 case ISD::LOAD: 2401 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2402 return V; 2403 if (Op.getValueType().isFixedLengthVector()) 2404 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2405 return Op; 2406 case ISD::STORE: 2407 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2408 return V; 2409 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2410 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2411 return Op; 2412 case ISD::MLOAD: 2413 return lowerMLOAD(Op, DAG); 2414 case ISD::MSTORE: 2415 return lowerMSTORE(Op, DAG); 2416 case ISD::SETCC: 2417 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2418 case ISD::ADD: 2419 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2420 case ISD::SUB: 2421 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2422 case ISD::MUL: 2423 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2424 case ISD::MULHS: 2425 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2426 case ISD::MULHU: 2427 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2428 case ISD::AND: 2429 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2430 RISCVISD::AND_VL); 2431 case ISD::OR: 2432 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2433 RISCVISD::OR_VL); 2434 case ISD::XOR: 2435 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2436 RISCVISD::XOR_VL); 2437 case ISD::SDIV: 2438 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2439 case ISD::SREM: 2440 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2441 case ISD::UDIV: 2442 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2443 case ISD::UREM: 2444 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2445 case ISD::SHL: 2446 case ISD::SRA: 2447 case ISD::SRL: 2448 if (Op.getSimpleValueType().isFixedLengthVector()) 2449 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2450 // This can be called for an i32 shift amount that needs to be promoted. 2451 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2452 "Unexpected custom legalisation"); 2453 return SDValue(); 2454 case ISD::FADD: 2455 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2456 case ISD::FSUB: 2457 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2458 case ISD::FMUL: 2459 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2460 case ISD::FDIV: 2461 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2462 case ISD::FNEG: 2463 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2464 case ISD::FABS: 2465 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2466 case ISD::FSQRT: 2467 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2468 case ISD::FMA: 2469 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2470 case ISD::SMIN: 2471 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2472 case ISD::SMAX: 2473 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2474 case ISD::UMIN: 2475 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2476 case ISD::UMAX: 2477 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2478 case ISD::FMINNUM: 2479 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2480 case ISD::FMAXNUM: 2481 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2482 case ISD::ABS: 2483 return lowerABS(Op, DAG); 2484 case ISD::VSELECT: 2485 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2486 case ISD::FCOPYSIGN: 2487 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2488 case ISD::MGATHER: 2489 return lowerMGATHER(Op, DAG); 2490 case ISD::MSCATTER: 2491 return lowerMSCATTER(Op, DAG); 2492 case ISD::FLT_ROUNDS_: 2493 return lowerGET_ROUNDING(Op, DAG); 2494 case ISD::SET_ROUNDING: 2495 return lowerSET_ROUNDING(Op, DAG); 2496 case ISD::VP_ADD: 2497 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2498 case ISD::VP_SUB: 2499 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2500 case ISD::VP_MUL: 2501 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2502 case ISD::VP_SDIV: 2503 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2504 case ISD::VP_UDIV: 2505 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2506 case ISD::VP_SREM: 2507 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2508 case ISD::VP_UREM: 2509 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2510 case ISD::VP_AND: 2511 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2512 case ISD::VP_OR: 2513 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2514 case ISD::VP_XOR: 2515 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2516 case ISD::VP_ASHR: 2517 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2518 case ISD::VP_LSHR: 2519 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2520 case ISD::VP_SHL: 2521 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2522 case ISD::VP_FADD: 2523 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2524 case ISD::VP_FSUB: 2525 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2526 case ISD::VP_FMUL: 2527 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2528 case ISD::VP_FDIV: 2529 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2530 } 2531 } 2532 2533 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2534 SelectionDAG &DAG, unsigned Flags) { 2535 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2536 } 2537 2538 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2539 SelectionDAG &DAG, unsigned Flags) { 2540 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2541 Flags); 2542 } 2543 2544 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2545 SelectionDAG &DAG, unsigned Flags) { 2546 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2547 N->getOffset(), Flags); 2548 } 2549 2550 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2551 SelectionDAG &DAG, unsigned Flags) { 2552 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2553 } 2554 2555 template <class NodeTy> 2556 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2557 bool IsLocal) const { 2558 SDLoc DL(N); 2559 EVT Ty = getPointerTy(DAG.getDataLayout()); 2560 2561 if (isPositionIndependent()) { 2562 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2563 if (IsLocal) 2564 // Use PC-relative addressing to access the symbol. This generates the 2565 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2566 // %pcrel_lo(auipc)). 2567 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2568 2569 // Use PC-relative addressing to access the GOT for this symbol, then load 2570 // the address from the GOT. This generates the pattern (PseudoLA sym), 2571 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2572 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2573 } 2574 2575 switch (getTargetMachine().getCodeModel()) { 2576 default: 2577 report_fatal_error("Unsupported code model for lowering"); 2578 case CodeModel::Small: { 2579 // Generate a sequence for accessing addresses within the first 2 GiB of 2580 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2581 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2582 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2583 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2584 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2585 } 2586 case CodeModel::Medium: { 2587 // Generate a sequence for accessing addresses within any 2GiB range within 2588 // the address space. This generates the pattern (PseudoLLA sym), which 2589 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2590 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2591 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2592 } 2593 } 2594 } 2595 2596 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 2597 SelectionDAG &DAG) const { 2598 SDLoc DL(Op); 2599 EVT Ty = Op.getValueType(); 2600 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2601 int64_t Offset = N->getOffset(); 2602 MVT XLenVT = Subtarget.getXLenVT(); 2603 2604 const GlobalValue *GV = N->getGlobal(); 2605 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 2606 SDValue Addr = getAddr(N, DAG, IsLocal); 2607 2608 // In order to maximise the opportunity for common subexpression elimination, 2609 // emit a separate ADD node for the global address offset instead of folding 2610 // it in the global address node. Later peephole optimisations may choose to 2611 // fold it back in when profitable. 2612 if (Offset != 0) 2613 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2614 DAG.getConstant(Offset, DL, XLenVT)); 2615 return Addr; 2616 } 2617 2618 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2619 SelectionDAG &DAG) const { 2620 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2621 2622 return getAddr(N, DAG); 2623 } 2624 2625 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2626 SelectionDAG &DAG) const { 2627 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2628 2629 return getAddr(N, DAG); 2630 } 2631 2632 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 2633 SelectionDAG &DAG) const { 2634 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2635 2636 return getAddr(N, DAG); 2637 } 2638 2639 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 2640 SelectionDAG &DAG, 2641 bool UseGOT) const { 2642 SDLoc DL(N); 2643 EVT Ty = getPointerTy(DAG.getDataLayout()); 2644 const GlobalValue *GV = N->getGlobal(); 2645 MVT XLenVT = Subtarget.getXLenVT(); 2646 2647 if (UseGOT) { 2648 // Use PC-relative addressing to access the GOT for this TLS symbol, then 2649 // load the address from the GOT and add the thread pointer. This generates 2650 // the pattern (PseudoLA_TLS_IE sym), which expands to 2651 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 2652 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2653 SDValue Load = 2654 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 2655 2656 // Add the thread pointer. 2657 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2658 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 2659 } 2660 2661 // Generate a sequence for accessing the address relative to the thread 2662 // pointer, with the appropriate adjustment for the thread pointer offset. 2663 // This generates the pattern 2664 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 2665 SDValue AddrHi = 2666 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 2667 SDValue AddrAdd = 2668 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 2669 SDValue AddrLo = 2670 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 2671 2672 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2673 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2674 SDValue MNAdd = SDValue( 2675 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 2676 0); 2677 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 2678 } 2679 2680 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 2681 SelectionDAG &DAG) const { 2682 SDLoc DL(N); 2683 EVT Ty = getPointerTy(DAG.getDataLayout()); 2684 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 2685 const GlobalValue *GV = N->getGlobal(); 2686 2687 // Use a PC-relative addressing mode to access the global dynamic GOT address. 2688 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 2689 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 2690 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2691 SDValue Load = 2692 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 2693 2694 // Prepare argument list to generate call. 2695 ArgListTy Args; 2696 ArgListEntry Entry; 2697 Entry.Node = Load; 2698 Entry.Ty = CallTy; 2699 Args.push_back(Entry); 2700 2701 // Setup call to __tls_get_addr. 2702 TargetLowering::CallLoweringInfo CLI(DAG); 2703 CLI.setDebugLoc(DL) 2704 .setChain(DAG.getEntryNode()) 2705 .setLibCallee(CallingConv::C, CallTy, 2706 DAG.getExternalSymbol("__tls_get_addr", Ty), 2707 std::move(Args)); 2708 2709 return LowerCallTo(CLI).first; 2710 } 2711 2712 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 2713 SelectionDAG &DAG) const { 2714 SDLoc DL(Op); 2715 EVT Ty = Op.getValueType(); 2716 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2717 int64_t Offset = N->getOffset(); 2718 MVT XLenVT = Subtarget.getXLenVT(); 2719 2720 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 2721 2722 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2723 CallingConv::GHC) 2724 report_fatal_error("In GHC calling convention TLS is not supported"); 2725 2726 SDValue Addr; 2727 switch (Model) { 2728 case TLSModel::LocalExec: 2729 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 2730 break; 2731 case TLSModel::InitialExec: 2732 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 2733 break; 2734 case TLSModel::LocalDynamic: 2735 case TLSModel::GeneralDynamic: 2736 Addr = getDynamicTLSAddr(N, DAG); 2737 break; 2738 } 2739 2740 // In order to maximise the opportunity for common subexpression elimination, 2741 // emit a separate ADD node for the global address offset instead of folding 2742 // it in the global address node. Later peephole optimisations may choose to 2743 // fold it back in when profitable. 2744 if (Offset != 0) 2745 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2746 DAG.getConstant(Offset, DL, XLenVT)); 2747 return Addr; 2748 } 2749 2750 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 2751 SDValue CondV = Op.getOperand(0); 2752 SDValue TrueV = Op.getOperand(1); 2753 SDValue FalseV = Op.getOperand(2); 2754 SDLoc DL(Op); 2755 MVT VT = Op.getSimpleValueType(); 2756 MVT XLenVT = Subtarget.getXLenVT(); 2757 2758 // Lower vector SELECTs to VSELECTs by splatting the condition. 2759 if (VT.isVector()) { 2760 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 2761 SDValue CondSplat = VT.isScalableVector() 2762 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 2763 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 2764 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 2765 } 2766 2767 // If the result type is XLenVT and CondV is the output of a SETCC node 2768 // which also operated on XLenVT inputs, then merge the SETCC node into the 2769 // lowered RISCVISD::SELECT_CC to take advantage of the integer 2770 // compare+branch instructions. i.e.: 2771 // (select (setcc lhs, rhs, cc), truev, falsev) 2772 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 2773 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 2774 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 2775 SDValue LHS = CondV.getOperand(0); 2776 SDValue RHS = CondV.getOperand(1); 2777 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 2778 ISD::CondCode CCVal = CC->get(); 2779 2780 // Special case for a select of 2 constants that have a diffence of 1. 2781 // Normally this is done by DAGCombine, but if the select is introduced by 2782 // type legalization or op legalization, we miss it. Restricting to SETLT 2783 // case for now because that is what signed saturating add/sub need. 2784 // FIXME: We don't need the condition to be SETLT or even a SETCC, 2785 // but we would probably want to swap the true/false values if the condition 2786 // is SETGE/SETLE to avoid an XORI. 2787 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 2788 CCVal == ISD::SETLT) { 2789 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 2790 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 2791 if (TrueVal - 1 == FalseVal) 2792 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 2793 if (TrueVal + 1 == FalseVal) 2794 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 2795 } 2796 2797 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2798 2799 SDValue TargetCC = DAG.getTargetConstant(CCVal, DL, XLenVT); 2800 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 2801 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2802 } 2803 2804 // Otherwise: 2805 // (select condv, truev, falsev) 2806 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 2807 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 2808 SDValue SetNE = DAG.getTargetConstant(ISD::SETNE, DL, XLenVT); 2809 2810 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 2811 2812 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2813 } 2814 2815 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 2816 SDValue CondV = Op.getOperand(1); 2817 SDLoc DL(Op); 2818 MVT XLenVT = Subtarget.getXLenVT(); 2819 2820 if (CondV.getOpcode() == ISD::SETCC && 2821 CondV.getOperand(0).getValueType() == XLenVT) { 2822 SDValue LHS = CondV.getOperand(0); 2823 SDValue RHS = CondV.getOperand(1); 2824 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 2825 2826 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2827 2828 SDValue TargetCC = DAG.getCondCode(CCVal); 2829 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2830 LHS, RHS, TargetCC, Op.getOperand(2)); 2831 } 2832 2833 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2834 CondV, DAG.getConstant(0, DL, XLenVT), 2835 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 2836 } 2837 2838 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2839 MachineFunction &MF = DAG.getMachineFunction(); 2840 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 2841 2842 SDLoc DL(Op); 2843 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2844 getPointerTy(MF.getDataLayout())); 2845 2846 // vastart just stores the address of the VarArgsFrameIndex slot into the 2847 // memory location argument. 2848 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2849 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 2850 MachinePointerInfo(SV)); 2851 } 2852 2853 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 2854 SelectionDAG &DAG) const { 2855 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2856 MachineFunction &MF = DAG.getMachineFunction(); 2857 MachineFrameInfo &MFI = MF.getFrameInfo(); 2858 MFI.setFrameAddressIsTaken(true); 2859 Register FrameReg = RI.getFrameRegister(MF); 2860 int XLenInBytes = Subtarget.getXLen() / 8; 2861 2862 EVT VT = Op.getValueType(); 2863 SDLoc DL(Op); 2864 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 2865 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2866 while (Depth--) { 2867 int Offset = -(XLenInBytes * 2); 2868 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 2869 DAG.getIntPtrConstant(Offset, DL)); 2870 FrameAddr = 2871 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2872 } 2873 return FrameAddr; 2874 } 2875 2876 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 2877 SelectionDAG &DAG) const { 2878 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2879 MachineFunction &MF = DAG.getMachineFunction(); 2880 MachineFrameInfo &MFI = MF.getFrameInfo(); 2881 MFI.setReturnAddressIsTaken(true); 2882 MVT XLenVT = Subtarget.getXLenVT(); 2883 int XLenInBytes = Subtarget.getXLen() / 8; 2884 2885 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2886 return SDValue(); 2887 2888 EVT VT = Op.getValueType(); 2889 SDLoc DL(Op); 2890 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2891 if (Depth) { 2892 int Off = -XLenInBytes; 2893 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 2894 SDValue Offset = DAG.getConstant(Off, DL, VT); 2895 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 2896 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 2897 MachinePointerInfo()); 2898 } 2899 2900 // Return the value of the return address register, marking it an implicit 2901 // live-in. 2902 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 2903 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 2904 } 2905 2906 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 2907 SelectionDAG &DAG) const { 2908 SDLoc DL(Op); 2909 SDValue Lo = Op.getOperand(0); 2910 SDValue Hi = Op.getOperand(1); 2911 SDValue Shamt = Op.getOperand(2); 2912 EVT VT = Lo.getValueType(); 2913 2914 // if Shamt-XLEN < 0: // Shamt < XLEN 2915 // Lo = Lo << Shamt 2916 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 2917 // else: 2918 // Lo = 0 2919 // Hi = Lo << (Shamt-XLEN) 2920 2921 SDValue Zero = DAG.getConstant(0, DL, VT); 2922 SDValue One = DAG.getConstant(1, DL, VT); 2923 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2924 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2925 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2926 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2927 2928 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 2929 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 2930 SDValue ShiftRightLo = 2931 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 2932 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 2933 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2934 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 2935 2936 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2937 2938 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 2939 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2940 2941 SDValue Parts[2] = {Lo, Hi}; 2942 return DAG.getMergeValues(Parts, DL); 2943 } 2944 2945 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 2946 bool IsSRA) const { 2947 SDLoc DL(Op); 2948 SDValue Lo = Op.getOperand(0); 2949 SDValue Hi = Op.getOperand(1); 2950 SDValue Shamt = Op.getOperand(2); 2951 EVT VT = Lo.getValueType(); 2952 2953 // SRA expansion: 2954 // if Shamt-XLEN < 0: // Shamt < XLEN 2955 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2956 // Hi = Hi >>s Shamt 2957 // else: 2958 // Lo = Hi >>s (Shamt-XLEN); 2959 // Hi = Hi >>s (XLEN-1) 2960 // 2961 // SRL expansion: 2962 // if Shamt-XLEN < 0: // Shamt < XLEN 2963 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2964 // Hi = Hi >>u Shamt 2965 // else: 2966 // Lo = Hi >>u (Shamt-XLEN); 2967 // Hi = 0; 2968 2969 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 2970 2971 SDValue Zero = DAG.getConstant(0, DL, VT); 2972 SDValue One = DAG.getConstant(1, DL, VT); 2973 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2974 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2975 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2976 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2977 2978 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 2979 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 2980 SDValue ShiftLeftHi = 2981 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 2982 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 2983 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 2984 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 2985 SDValue HiFalse = 2986 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 2987 2988 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2989 2990 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 2991 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2992 2993 SDValue Parts[2] = {Lo, Hi}; 2994 return DAG.getMergeValues(Parts, DL); 2995 } 2996 2997 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 2998 // legal equivalently-sized i8 type, so we can use that as a go-between. 2999 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3000 SelectionDAG &DAG) const { 3001 SDLoc DL(Op); 3002 MVT VT = Op.getSimpleValueType(); 3003 SDValue SplatVal = Op.getOperand(0); 3004 // All-zeros or all-ones splats are handled specially. 3005 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3006 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3007 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3008 } 3009 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3010 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3011 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3012 } 3013 MVT XLenVT = Subtarget.getXLenVT(); 3014 assert(SplatVal.getValueType() == XLenVT && 3015 "Unexpected type for i1 splat value"); 3016 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3017 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3018 DAG.getConstant(1, DL, XLenVT)); 3019 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3020 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3021 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3022 } 3023 3024 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3025 // illegal (currently only vXi64 RV32). 3026 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3027 // them to SPLAT_VECTOR_I64 3028 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3029 SelectionDAG &DAG) const { 3030 SDLoc DL(Op); 3031 MVT VecVT = Op.getSimpleValueType(); 3032 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3033 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3034 3035 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3036 SDValue Lo = Op.getOperand(0); 3037 SDValue Hi = Op.getOperand(1); 3038 3039 if (VecVT.isFixedLengthVector()) { 3040 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3041 SDLoc DL(Op); 3042 SDValue Mask, VL; 3043 std::tie(Mask, VL) = 3044 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3045 3046 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3047 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3048 } 3049 3050 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3051 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3052 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3053 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3054 // node in order to try and match RVV vector/scalar instructions. 3055 if ((LoC >> 31) == HiC) 3056 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3057 } 3058 3059 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3060 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3061 isa<ConstantSDNode>(Hi.getOperand(1)) && 3062 Hi.getConstantOperandVal(1) == 31) 3063 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3064 3065 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3066 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3067 DAG.getRegister(RISCV::X0, MVT::i64)); 3068 } 3069 3070 // Custom-lower extensions from mask vectors by using a vselect either with 1 3071 // for zero/any-extension or -1 for sign-extension: 3072 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3073 // Note that any-extension is lowered identically to zero-extension. 3074 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3075 int64_t ExtTrueVal) const { 3076 SDLoc DL(Op); 3077 MVT VecVT = Op.getSimpleValueType(); 3078 SDValue Src = Op.getOperand(0); 3079 // Only custom-lower extensions from mask types 3080 assert(Src.getValueType().isVector() && 3081 Src.getValueType().getVectorElementType() == MVT::i1); 3082 3083 MVT XLenVT = Subtarget.getXLenVT(); 3084 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3085 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3086 3087 if (VecVT.isScalableVector()) { 3088 // Be careful not to introduce illegal scalar types at this stage, and be 3089 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3090 // illegal and must be expanded. Since we know that the constants are 3091 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3092 bool IsRV32E64 = 3093 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3094 3095 if (!IsRV32E64) { 3096 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3097 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3098 } else { 3099 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3100 SplatTrueVal = 3101 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3102 } 3103 3104 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3105 } 3106 3107 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3108 MVT I1ContainerVT = 3109 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3110 3111 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3112 3113 SDValue Mask, VL; 3114 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3115 3116 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3117 SplatTrueVal = 3118 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3119 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3120 SplatTrueVal, SplatZero, VL); 3121 3122 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3123 } 3124 3125 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3126 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3127 MVT ExtVT = Op.getSimpleValueType(); 3128 // Only custom-lower extensions from fixed-length vector types. 3129 if (!ExtVT.isFixedLengthVector()) 3130 return Op; 3131 MVT VT = Op.getOperand(0).getSimpleValueType(); 3132 // Grab the canonical container type for the extended type. Infer the smaller 3133 // type from that to ensure the same number of vector elements, as we know 3134 // the LMUL will be sufficient to hold the smaller type. 3135 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3136 // Get the extended container type manually to ensure the same number of 3137 // vector elements between source and dest. 3138 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3139 ContainerExtVT.getVectorElementCount()); 3140 3141 SDValue Op1 = 3142 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3143 3144 SDLoc DL(Op); 3145 SDValue Mask, VL; 3146 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3147 3148 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3149 3150 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3151 } 3152 3153 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3154 // setcc operation: 3155 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3156 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3157 SelectionDAG &DAG) const { 3158 SDLoc DL(Op); 3159 EVT MaskVT = Op.getValueType(); 3160 // Only expect to custom-lower truncations to mask types 3161 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3162 "Unexpected type for vector mask lowering"); 3163 SDValue Src = Op.getOperand(0); 3164 MVT VecVT = Src.getSimpleValueType(); 3165 3166 // If this is a fixed vector, we need to convert it to a scalable vector. 3167 MVT ContainerVT = VecVT; 3168 if (VecVT.isFixedLengthVector()) { 3169 ContainerVT = getContainerForFixedLengthVector(VecVT); 3170 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3171 } 3172 3173 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3174 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3175 3176 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3177 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3178 3179 if (VecVT.isScalableVector()) { 3180 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3181 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3182 } 3183 3184 SDValue Mask, VL; 3185 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3186 3187 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3188 SDValue Trunc = 3189 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3190 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3191 DAG.getCondCode(ISD::SETNE), Mask, VL); 3192 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3193 } 3194 3195 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3196 // first position of a vector, and that vector is slid up to the insert index. 3197 // By limiting the active vector length to index+1 and merging with the 3198 // original vector (with an undisturbed tail policy for elements >= VL), we 3199 // achieve the desired result of leaving all elements untouched except the one 3200 // at VL-1, which is replaced with the desired value. 3201 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3202 SelectionDAG &DAG) const { 3203 SDLoc DL(Op); 3204 MVT VecVT = Op.getSimpleValueType(); 3205 SDValue Vec = Op.getOperand(0); 3206 SDValue Val = Op.getOperand(1); 3207 SDValue Idx = Op.getOperand(2); 3208 3209 if (VecVT.getVectorElementType() == MVT::i1) { 3210 // FIXME: For now we just promote to an i8 vector and insert into that, 3211 // but this is probably not optimal. 3212 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3213 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3214 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3215 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3216 } 3217 3218 MVT ContainerVT = VecVT; 3219 // If the operand is a fixed-length vector, convert to a scalable one. 3220 if (VecVT.isFixedLengthVector()) { 3221 ContainerVT = getContainerForFixedLengthVector(VecVT); 3222 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3223 } 3224 3225 MVT XLenVT = Subtarget.getXLenVT(); 3226 3227 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3228 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3229 // Even i64-element vectors on RV32 can be lowered without scalar 3230 // legalization if the most-significant 32 bits of the value are not affected 3231 // by the sign-extension of the lower 32 bits. 3232 // TODO: We could also catch sign extensions of a 32-bit value. 3233 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3234 const auto *CVal = cast<ConstantSDNode>(Val); 3235 if (isInt<32>(CVal->getSExtValue())) { 3236 IsLegalInsert = true; 3237 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3238 } 3239 } 3240 3241 SDValue Mask, VL; 3242 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3243 3244 SDValue ValInVec; 3245 3246 if (IsLegalInsert) { 3247 unsigned Opc = 3248 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3249 if (isNullConstant(Idx)) { 3250 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3251 if (!VecVT.isFixedLengthVector()) 3252 return Vec; 3253 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3254 } 3255 ValInVec = 3256 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3257 } else { 3258 // On RV32, i64-element vectors must be specially handled to place the 3259 // value at element 0, by using two vslide1up instructions in sequence on 3260 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3261 // this. 3262 SDValue One = DAG.getConstant(1, DL, XLenVT); 3263 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3264 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3265 MVT I32ContainerVT = 3266 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3267 SDValue I32Mask = 3268 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3269 // Limit the active VL to two. 3270 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3271 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3272 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3273 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3274 InsertI64VL); 3275 // First slide in the hi value, then the lo in underneath it. 3276 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3277 ValHi, I32Mask, InsertI64VL); 3278 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3279 ValLo, I32Mask, InsertI64VL); 3280 // Bitcast back to the right container type. 3281 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3282 } 3283 3284 // Now that the value is in a vector, slide it into position. 3285 SDValue InsertVL = 3286 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3287 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3288 ValInVec, Idx, Mask, InsertVL); 3289 if (!VecVT.isFixedLengthVector()) 3290 return Slideup; 3291 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3292 } 3293 3294 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3295 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3296 // types this is done using VMV_X_S to allow us to glean information about the 3297 // sign bits of the result. 3298 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3299 SelectionDAG &DAG) const { 3300 SDLoc DL(Op); 3301 SDValue Idx = Op.getOperand(1); 3302 SDValue Vec = Op.getOperand(0); 3303 EVT EltVT = Op.getValueType(); 3304 MVT VecVT = Vec.getSimpleValueType(); 3305 MVT XLenVT = Subtarget.getXLenVT(); 3306 3307 if (VecVT.getVectorElementType() == MVT::i1) { 3308 // FIXME: For now we just promote to an i8 vector and extract from that, 3309 // but this is probably not optimal. 3310 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3311 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3312 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3313 } 3314 3315 // If this is a fixed vector, we need to convert it to a scalable vector. 3316 MVT ContainerVT = VecVT; 3317 if (VecVT.isFixedLengthVector()) { 3318 ContainerVT = getContainerForFixedLengthVector(VecVT); 3319 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3320 } 3321 3322 // If the index is 0, the vector is already in the right position. 3323 if (!isNullConstant(Idx)) { 3324 // Use a VL of 1 to avoid processing more elements than we need. 3325 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3326 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3327 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3328 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3329 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3330 } 3331 3332 if (!EltVT.isInteger()) { 3333 // Floating-point extracts are handled in TableGen. 3334 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3335 DAG.getConstant(0, DL, XLenVT)); 3336 } 3337 3338 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3339 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3340 } 3341 3342 // Some RVV intrinsics may claim that they want an integer operand to be 3343 // promoted or expanded. 3344 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3345 const RISCVSubtarget &Subtarget) { 3346 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3347 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3348 "Unexpected opcode"); 3349 3350 if (!Subtarget.hasStdExtV()) 3351 return SDValue(); 3352 3353 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3354 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3355 SDLoc DL(Op); 3356 3357 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3358 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3359 if (!II || !II->SplatOperand) 3360 return SDValue(); 3361 3362 unsigned SplatOp = II->SplatOperand + HasChain; 3363 assert(SplatOp < Op.getNumOperands()); 3364 3365 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3366 SDValue &ScalarOp = Operands[SplatOp]; 3367 MVT OpVT = ScalarOp.getSimpleValueType(); 3368 MVT XLenVT = Subtarget.getXLenVT(); 3369 3370 // If this isn't a scalar, or its type is XLenVT we're done. 3371 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3372 return SDValue(); 3373 3374 // Simplest case is that the operand needs to be promoted to XLenVT. 3375 if (OpVT.bitsLT(XLenVT)) { 3376 // If the operand is a constant, sign extend to increase our chances 3377 // of being able to use a .vi instruction. ANY_EXTEND would become a 3378 // a zero extend and the simm5 check in isel would fail. 3379 // FIXME: Should we ignore the upper bits in isel instead? 3380 unsigned ExtOpc = 3381 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3382 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3383 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3384 } 3385 3386 // Use the previous operand to get the vXi64 VT. The result might be a mask 3387 // VT for compares. Using the previous operand assumes that the previous 3388 // operand will never have a smaller element size than a scalar operand and 3389 // that a widening operation never uses SEW=64. 3390 // NOTE: If this fails the below assert, we can probably just find the 3391 // element count from any operand or result and use it to construct the VT. 3392 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3393 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3394 3395 // The more complex case is when the scalar is larger than XLenVT. 3396 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3397 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3398 3399 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3400 // on the instruction to sign-extend since SEW>XLEN. 3401 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3402 if (isInt<32>(CVal->getSExtValue())) { 3403 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3404 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3405 } 3406 } 3407 3408 // We need to convert the scalar to a splat vector. 3409 // FIXME: Can we implicitly truncate the scalar if it is known to 3410 // be sign extended? 3411 // VL should be the last operand. 3412 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3413 assert(VL.getValueType() == XLenVT); 3414 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3415 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3416 } 3417 3418 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3419 SelectionDAG &DAG) const { 3420 unsigned IntNo = Op.getConstantOperandVal(0); 3421 SDLoc DL(Op); 3422 MVT XLenVT = Subtarget.getXLenVT(); 3423 3424 switch (IntNo) { 3425 default: 3426 break; // Don't custom lower most intrinsics. 3427 case Intrinsic::thread_pointer: { 3428 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3429 return DAG.getRegister(RISCV::X4, PtrVT); 3430 } 3431 case Intrinsic::riscv_orc_b: 3432 // Lower to the GORCI encoding for orc.b. 3433 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3434 DAG.getConstant(7, DL, XLenVT)); 3435 case Intrinsic::riscv_grev: 3436 case Intrinsic::riscv_gorc: { 3437 unsigned Opc = 3438 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3439 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3440 } 3441 case Intrinsic::riscv_shfl: 3442 case Intrinsic::riscv_unshfl: { 3443 unsigned Opc = 3444 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3445 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3446 } 3447 case Intrinsic::riscv_bcompress: 3448 case Intrinsic::riscv_bdecompress: { 3449 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3450 : RISCVISD::BDECOMPRESS; 3451 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3452 } 3453 case Intrinsic::riscv_vmv_x_s: 3454 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3455 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3456 Op.getOperand(1)); 3457 case Intrinsic::riscv_vmv_v_x: 3458 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3459 Op.getSimpleValueType(), DL, DAG, Subtarget); 3460 case Intrinsic::riscv_vfmv_v_f: 3461 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3462 Op.getOperand(1), Op.getOperand(2)); 3463 case Intrinsic::riscv_vmv_s_x: { 3464 SDValue Scalar = Op.getOperand(2); 3465 3466 if (Scalar.getValueType().bitsLE(XLenVT)) { 3467 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3468 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3469 Op.getOperand(1), Scalar, Op.getOperand(3)); 3470 } 3471 3472 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3473 3474 // This is an i64 value that lives in two scalar registers. We have to 3475 // insert this in a convoluted way. First we build vXi64 splat containing 3476 // the/ two values that we assemble using some bit math. Next we'll use 3477 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3478 // to merge element 0 from our splat into the source vector. 3479 // FIXME: This is probably not the best way to do this, but it is 3480 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3481 // point. 3482 // sw lo, (a0) 3483 // sw hi, 4(a0) 3484 // vlse vX, (a0) 3485 // 3486 // vid.v vVid 3487 // vmseq.vx mMask, vVid, 0 3488 // vmerge.vvm vDest, vSrc, vVal, mMask 3489 MVT VT = Op.getSimpleValueType(); 3490 SDValue Vec = Op.getOperand(1); 3491 SDValue VL = Op.getOperand(3); 3492 3493 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3494 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3495 DAG.getConstant(0, DL, MVT::i32), VL); 3496 3497 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3498 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3499 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3500 SDValue SelectCond = 3501 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3502 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3503 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3504 Vec, VL); 3505 } 3506 case Intrinsic::riscv_vslide1up: 3507 case Intrinsic::riscv_vslide1down: 3508 case Intrinsic::riscv_vslide1up_mask: 3509 case Intrinsic::riscv_vslide1down_mask: { 3510 // We need to special case these when the scalar is larger than XLen. 3511 unsigned NumOps = Op.getNumOperands(); 3512 bool IsMasked = NumOps == 6; 3513 unsigned OpOffset = IsMasked ? 1 : 0; 3514 SDValue Scalar = Op.getOperand(2 + OpOffset); 3515 if (Scalar.getValueType().bitsLE(XLenVT)) 3516 break; 3517 3518 // Splatting a sign extended constant is fine. 3519 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3520 if (isInt<32>(CVal->getSExtValue())) 3521 break; 3522 3523 MVT VT = Op.getSimpleValueType(); 3524 assert(VT.getVectorElementType() == MVT::i64 && 3525 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3526 3527 // Convert the vector source to the equivalent nxvXi32 vector. 3528 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3529 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3530 3531 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3532 DAG.getConstant(0, DL, XLenVT)); 3533 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3534 DAG.getConstant(1, DL, XLenVT)); 3535 3536 // Double the VL since we halved SEW. 3537 SDValue VL = Op.getOperand(NumOps - 1); 3538 SDValue I32VL = 3539 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3540 3541 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3542 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3543 3544 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3545 // instructions. 3546 if (IntNo == Intrinsic::riscv_vslide1up || 3547 IntNo == Intrinsic::riscv_vslide1up_mask) { 3548 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3549 I32Mask, I32VL); 3550 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3551 I32Mask, I32VL); 3552 } else { 3553 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3554 I32Mask, I32VL); 3555 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3556 I32Mask, I32VL); 3557 } 3558 3559 // Convert back to nxvXi64. 3560 Vec = DAG.getBitcast(VT, Vec); 3561 3562 if (!IsMasked) 3563 return Vec; 3564 3565 // Apply mask after the operation. 3566 SDValue Mask = Op.getOperand(NumOps - 2); 3567 SDValue MaskedOff = Op.getOperand(1); 3568 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3569 } 3570 } 3571 3572 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3573 } 3574 3575 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3576 SelectionDAG &DAG) const { 3577 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3578 } 3579 3580 static MVT getLMUL1VT(MVT VT) { 3581 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 3582 "Unexpected vector MVT"); 3583 return MVT::getScalableVectorVT( 3584 VT.getVectorElementType(), 3585 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 3586 } 3587 3588 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 3589 switch (ISDOpcode) { 3590 default: 3591 llvm_unreachable("Unhandled reduction"); 3592 case ISD::VECREDUCE_ADD: 3593 return RISCVISD::VECREDUCE_ADD_VL; 3594 case ISD::VECREDUCE_UMAX: 3595 return RISCVISD::VECREDUCE_UMAX_VL; 3596 case ISD::VECREDUCE_SMAX: 3597 return RISCVISD::VECREDUCE_SMAX_VL; 3598 case ISD::VECREDUCE_UMIN: 3599 return RISCVISD::VECREDUCE_UMIN_VL; 3600 case ISD::VECREDUCE_SMIN: 3601 return RISCVISD::VECREDUCE_SMIN_VL; 3602 case ISD::VECREDUCE_AND: 3603 return RISCVISD::VECREDUCE_AND_VL; 3604 case ISD::VECREDUCE_OR: 3605 return RISCVISD::VECREDUCE_OR_VL; 3606 case ISD::VECREDUCE_XOR: 3607 return RISCVISD::VECREDUCE_XOR_VL; 3608 } 3609 } 3610 3611 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op, 3612 SelectionDAG &DAG) const { 3613 SDLoc DL(Op); 3614 SDValue Vec = Op.getOperand(0); 3615 MVT VecVT = Vec.getSimpleValueType(); 3616 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 3617 Op.getOpcode() == ISD::VECREDUCE_OR || 3618 Op.getOpcode() == ISD::VECREDUCE_XOR) && 3619 "Unexpected reduction lowering"); 3620 3621 MVT XLenVT = Subtarget.getXLenVT(); 3622 assert(Op.getValueType() == XLenVT && 3623 "Expected reduction output to be legalized to XLenVT"); 3624 3625 MVT ContainerVT = VecVT; 3626 if (VecVT.isFixedLengthVector()) { 3627 ContainerVT = getContainerForFixedLengthVector(VecVT); 3628 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3629 } 3630 3631 SDValue Mask, VL; 3632 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3633 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3634 3635 switch (Op.getOpcode()) { 3636 default: 3637 llvm_unreachable("Unhandled reduction"); 3638 case ISD::VECREDUCE_AND: 3639 // vpopc ~x == 0 3640 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL); 3641 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3642 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ); 3643 case ISD::VECREDUCE_OR: 3644 // vpopc x != 0 3645 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3646 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3647 case ISD::VECREDUCE_XOR: { 3648 // ((vpopc x) & 1) != 0 3649 SDValue One = DAG.getConstant(1, DL, XLenVT); 3650 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3651 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 3652 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3653 } 3654 } 3655 } 3656 3657 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 3658 SelectionDAG &DAG) const { 3659 SDLoc DL(Op); 3660 SDValue Vec = Op.getOperand(0); 3661 EVT VecEVT = Vec.getValueType(); 3662 3663 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 3664 3665 // Due to ordering in legalize types we may have a vector type that needs to 3666 // be split. Do that manually so we can get down to a legal type. 3667 while (getTypeAction(*DAG.getContext(), VecEVT) == 3668 TargetLowering::TypeSplitVector) { 3669 SDValue Lo, Hi; 3670 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 3671 VecEVT = Lo.getValueType(); 3672 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 3673 } 3674 3675 // TODO: The type may need to be widened rather than split. Or widened before 3676 // it can be split. 3677 if (!isTypeLegal(VecEVT)) 3678 return SDValue(); 3679 3680 MVT VecVT = VecEVT.getSimpleVT(); 3681 MVT VecEltVT = VecVT.getVectorElementType(); 3682 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 3683 3684 MVT ContainerVT = VecVT; 3685 if (VecVT.isFixedLengthVector()) { 3686 ContainerVT = getContainerForFixedLengthVector(VecVT); 3687 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3688 } 3689 3690 MVT M1VT = getLMUL1VT(ContainerVT); 3691 3692 SDValue Mask, VL; 3693 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3694 3695 // FIXME: This is a VLMAX splat which might be too large and can prevent 3696 // vsetvli removal. 3697 SDValue NeutralElem = 3698 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 3699 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 3700 SDValue Reduction = 3701 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 3702 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3703 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3704 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 3705 } 3706 3707 // Given a reduction op, this function returns the matching reduction opcode, 3708 // the vector SDValue and the scalar SDValue required to lower this to a 3709 // RISCVISD node. 3710 static std::tuple<unsigned, SDValue, SDValue> 3711 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 3712 SDLoc DL(Op); 3713 auto Flags = Op->getFlags(); 3714 unsigned Opcode = Op.getOpcode(); 3715 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 3716 switch (Opcode) { 3717 default: 3718 llvm_unreachable("Unhandled reduction"); 3719 case ISD::VECREDUCE_FADD: 3720 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 3721 DAG.getConstantFP(0.0, DL, EltVT)); 3722 case ISD::VECREDUCE_SEQ_FADD: 3723 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 3724 Op.getOperand(0)); 3725 case ISD::VECREDUCE_FMIN: 3726 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 3727 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3728 case ISD::VECREDUCE_FMAX: 3729 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 3730 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3731 } 3732 } 3733 3734 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 3735 SelectionDAG &DAG) const { 3736 SDLoc DL(Op); 3737 MVT VecEltVT = Op.getSimpleValueType(); 3738 3739 unsigned RVVOpcode; 3740 SDValue VectorVal, ScalarVal; 3741 std::tie(RVVOpcode, VectorVal, ScalarVal) = 3742 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 3743 MVT VecVT = VectorVal.getSimpleValueType(); 3744 3745 MVT ContainerVT = VecVT; 3746 if (VecVT.isFixedLengthVector()) { 3747 ContainerVT = getContainerForFixedLengthVector(VecVT); 3748 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 3749 } 3750 3751 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 3752 3753 SDValue Mask, VL; 3754 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3755 3756 // FIXME: This is a VLMAX splat which might be too large and can prevent 3757 // vsetvli removal. 3758 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 3759 SDValue Reduction = 3760 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 3761 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3762 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3763 } 3764 3765 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 3766 SelectionDAG &DAG) const { 3767 SDValue Vec = Op.getOperand(0); 3768 SDValue SubVec = Op.getOperand(1); 3769 MVT VecVT = Vec.getSimpleValueType(); 3770 MVT SubVecVT = SubVec.getSimpleValueType(); 3771 3772 SDLoc DL(Op); 3773 MVT XLenVT = Subtarget.getXLenVT(); 3774 unsigned OrigIdx = Op.getConstantOperandVal(2); 3775 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3776 3777 // We don't have the ability to slide mask vectors up indexed by their i1 3778 // elements; the smallest we can do is i8. Often we are able to bitcast to 3779 // equivalent i8 vectors. Note that when inserting a fixed-length vector 3780 // into a scalable one, we might not necessarily have enough scalable 3781 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 3782 if (SubVecVT.getVectorElementType() == MVT::i1 && 3783 (OrigIdx != 0 || !Vec.isUndef())) { 3784 if (VecVT.getVectorMinNumElements() >= 8 && 3785 SubVecVT.getVectorMinNumElements() >= 8) { 3786 assert(OrigIdx % 8 == 0 && "Invalid index"); 3787 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3788 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3789 "Unexpected mask vector lowering"); 3790 OrigIdx /= 8; 3791 SubVecVT = 3792 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3793 SubVecVT.isScalableVector()); 3794 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3795 VecVT.isScalableVector()); 3796 Vec = DAG.getBitcast(VecVT, Vec); 3797 SubVec = DAG.getBitcast(SubVecVT, SubVec); 3798 } else { 3799 // We can't slide this mask vector up indexed by its i1 elements. 3800 // This poses a problem when we wish to insert a scalable vector which 3801 // can't be re-expressed as a larger type. Just choose the slow path and 3802 // extend to a larger type, then truncate back down. 3803 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3804 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3805 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3806 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 3807 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 3808 Op.getOperand(2)); 3809 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 3810 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 3811 } 3812 } 3813 3814 // If the subvector vector is a fixed-length type, we cannot use subregister 3815 // manipulation to simplify the codegen; we don't know which register of a 3816 // LMUL group contains the specific subvector as we only know the minimum 3817 // register size. Therefore we must slide the vector group up the full 3818 // amount. 3819 if (SubVecVT.isFixedLengthVector()) { 3820 if (OrigIdx == 0 && Vec.isUndef()) 3821 return Op; 3822 MVT ContainerVT = VecVT; 3823 if (VecVT.isFixedLengthVector()) { 3824 ContainerVT = getContainerForFixedLengthVector(VecVT); 3825 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3826 } 3827 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 3828 DAG.getUNDEF(ContainerVT), SubVec, 3829 DAG.getConstant(0, DL, XLenVT)); 3830 SDValue Mask = 3831 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3832 // Set the vector length to only the number of elements we care about. Note 3833 // that for slideup this includes the offset. 3834 SDValue VL = 3835 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 3836 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3837 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3838 SubVec, SlideupAmt, Mask, VL); 3839 if (VecVT.isFixedLengthVector()) 3840 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3841 return DAG.getBitcast(Op.getValueType(), Slideup); 3842 } 3843 3844 unsigned SubRegIdx, RemIdx; 3845 std::tie(SubRegIdx, RemIdx) = 3846 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3847 VecVT, SubVecVT, OrigIdx, TRI); 3848 3849 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 3850 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 3851 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 3852 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 3853 3854 // 1. If the Idx has been completely eliminated and this subvector's size is 3855 // a vector register or a multiple thereof, or the surrounding elements are 3856 // undef, then this is a subvector insert which naturally aligns to a vector 3857 // register. These can easily be handled using subregister manipulation. 3858 // 2. If the subvector is smaller than a vector register, then the insertion 3859 // must preserve the undisturbed elements of the register. We do this by 3860 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 3861 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 3862 // subvector within the vector register, and an INSERT_SUBVECTOR of that 3863 // LMUL=1 type back into the larger vector (resolving to another subregister 3864 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 3865 // to avoid allocating a large register group to hold our subvector. 3866 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 3867 return Op; 3868 3869 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 3870 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 3871 // (in our case undisturbed). This means we can set up a subvector insertion 3872 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 3873 // size of the subvector. 3874 MVT InterSubVT = VecVT; 3875 SDValue AlignedExtract = Vec; 3876 unsigned AlignedIdx = OrigIdx - RemIdx; 3877 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3878 InterSubVT = getLMUL1VT(VecVT); 3879 // Extract a subvector equal to the nearest full vector register type. This 3880 // should resolve to a EXTRACT_SUBREG instruction. 3881 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3882 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3883 } 3884 3885 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3886 // For scalable vectors this must be further multiplied by vscale. 3887 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 3888 3889 SDValue Mask, VL; 3890 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3891 3892 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 3893 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 3894 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 3895 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 3896 3897 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 3898 DAG.getUNDEF(InterSubVT), SubVec, 3899 DAG.getConstant(0, DL, XLenVT)); 3900 3901 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 3902 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 3903 3904 // If required, insert this subvector back into the correct vector register. 3905 // This should resolve to an INSERT_SUBREG instruction. 3906 if (VecVT.bitsGT(InterSubVT)) 3907 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 3908 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3909 3910 // We might have bitcast from a mask type: cast back to the original type if 3911 // required. 3912 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 3913 } 3914 3915 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 3916 SelectionDAG &DAG) const { 3917 SDValue Vec = Op.getOperand(0); 3918 MVT SubVecVT = Op.getSimpleValueType(); 3919 MVT VecVT = Vec.getSimpleValueType(); 3920 3921 SDLoc DL(Op); 3922 MVT XLenVT = Subtarget.getXLenVT(); 3923 unsigned OrigIdx = Op.getConstantOperandVal(1); 3924 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3925 3926 // We don't have the ability to slide mask vectors down indexed by their i1 3927 // elements; the smallest we can do is i8. Often we are able to bitcast to 3928 // equivalent i8 vectors. Note that when extracting a fixed-length vector 3929 // from a scalable one, we might not necessarily have enough scalable 3930 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 3931 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 3932 if (VecVT.getVectorMinNumElements() >= 8 && 3933 SubVecVT.getVectorMinNumElements() >= 8) { 3934 assert(OrigIdx % 8 == 0 && "Invalid index"); 3935 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3936 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3937 "Unexpected mask vector lowering"); 3938 OrigIdx /= 8; 3939 SubVecVT = 3940 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3941 SubVecVT.isScalableVector()); 3942 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3943 VecVT.isScalableVector()); 3944 Vec = DAG.getBitcast(VecVT, Vec); 3945 } else { 3946 // We can't slide this mask vector down, indexed by its i1 elements. 3947 // This poses a problem when we wish to extract a scalable vector which 3948 // can't be re-expressed as a larger type. Just choose the slow path and 3949 // extend to a larger type, then truncate back down. 3950 // TODO: We could probably improve this when extracting certain fixed 3951 // from fixed, where we can extract as i8 and shift the correct element 3952 // right to reach the desired subvector? 3953 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3954 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3955 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3956 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 3957 Op.getOperand(1)); 3958 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 3959 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 3960 } 3961 } 3962 3963 // If the subvector vector is a fixed-length type, we cannot use subregister 3964 // manipulation to simplify the codegen; we don't know which register of a 3965 // LMUL group contains the specific subvector as we only know the minimum 3966 // register size. Therefore we must slide the vector group down the full 3967 // amount. 3968 if (SubVecVT.isFixedLengthVector()) { 3969 // With an index of 0 this is a cast-like subvector, which can be performed 3970 // with subregister operations. 3971 if (OrigIdx == 0) 3972 return Op; 3973 MVT ContainerVT = VecVT; 3974 if (VecVT.isFixedLengthVector()) { 3975 ContainerVT = getContainerForFixedLengthVector(VecVT); 3976 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3977 } 3978 SDValue Mask = 3979 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3980 // Set the vector length to only the number of elements we care about. This 3981 // avoids sliding down elements we're going to discard straight away. 3982 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 3983 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3984 SDValue Slidedown = 3985 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3986 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 3987 // Now we can use a cast-like subvector extract to get the result. 3988 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3989 DAG.getConstant(0, DL, XLenVT)); 3990 return DAG.getBitcast(Op.getValueType(), Slidedown); 3991 } 3992 3993 unsigned SubRegIdx, RemIdx; 3994 std::tie(SubRegIdx, RemIdx) = 3995 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3996 VecVT, SubVecVT, OrigIdx, TRI); 3997 3998 // If the Idx has been completely eliminated then this is a subvector extract 3999 // which naturally aligns to a vector register. These can easily be handled 4000 // using subregister manipulation. 4001 if (RemIdx == 0) 4002 return Op; 4003 4004 // Else we must shift our vector register directly to extract the subvector. 4005 // Do this using VSLIDEDOWN. 4006 4007 // If the vector type is an LMUL-group type, extract a subvector equal to the 4008 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4009 // instruction. 4010 MVT InterSubVT = VecVT; 4011 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4012 InterSubVT = getLMUL1VT(VecVT); 4013 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4014 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4015 } 4016 4017 // Slide this vector register down by the desired number of elements in order 4018 // to place the desired subvector starting at element 0. 4019 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4020 // For scalable vectors this must be further multiplied by vscale. 4021 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4022 4023 SDValue Mask, VL; 4024 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4025 SDValue Slidedown = 4026 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4027 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4028 4029 // Now the vector is in the right position, extract our final subvector. This 4030 // should resolve to a COPY. 4031 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4032 DAG.getConstant(0, DL, XLenVT)); 4033 4034 // We might have bitcast from a mask type: cast back to the original type if 4035 // required. 4036 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4037 } 4038 4039 // Lower step_vector to the vid instruction. Any non-identity step value must 4040 // be accounted for my manual expansion. 4041 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4042 SelectionDAG &DAG) const { 4043 SDLoc DL(Op); 4044 MVT VT = Op.getSimpleValueType(); 4045 MVT XLenVT = Subtarget.getXLenVT(); 4046 SDValue Mask, VL; 4047 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4048 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4049 uint64_t StepValImm = Op.getConstantOperandVal(0); 4050 if (StepValImm != 1) { 4051 assert(Op.getOperand(0).getValueType() == XLenVT && 4052 "Unexpected step value type"); 4053 if (isPowerOf2_64(StepValImm)) { 4054 SDValue StepVal = 4055 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4056 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4057 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4058 } else { 4059 SDValue StepVal = 4060 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Op.getOperand(0)); 4061 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4062 } 4063 } 4064 return StepVec; 4065 } 4066 4067 // Implement vector_reverse using vrgather.vv with indices determined by 4068 // subtracting the id of each element from (VLMAX-1). This will convert 4069 // the indices like so: 4070 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4071 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4072 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4073 SelectionDAG &DAG) const { 4074 SDLoc DL(Op); 4075 MVT VecVT = Op.getSimpleValueType(); 4076 unsigned EltSize = VecVT.getScalarSizeInBits(); 4077 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4078 4079 unsigned MaxVLMAX = 0; 4080 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4081 if (VectorBitsMax != 0) 4082 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4083 4084 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4085 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4086 4087 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4088 // to use vrgatherei16.vv. 4089 // TODO: It's also possible to use vrgatherei16.vv for other types to 4090 // decrease register width for the index calculation. 4091 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4092 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4093 // Reverse each half, then reassemble them in reverse order. 4094 // NOTE: It's also possible that after splitting that VLMAX no longer 4095 // requires vrgatherei16.vv. 4096 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4097 SDValue Lo, Hi; 4098 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4099 EVT LoVT, HiVT; 4100 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4101 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4102 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4103 // Reassemble the low and high pieces reversed. 4104 // FIXME: This is a CONCAT_VECTORS. 4105 SDValue Res = 4106 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4107 DAG.getIntPtrConstant(0, DL)); 4108 return DAG.getNode( 4109 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4110 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4111 } 4112 4113 // Just promote the int type to i16 which will double the LMUL. 4114 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4115 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4116 } 4117 4118 MVT XLenVT = Subtarget.getXLenVT(); 4119 SDValue Mask, VL; 4120 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4121 4122 // Calculate VLMAX-1 for the desired SEW. 4123 unsigned MinElts = VecVT.getVectorMinNumElements(); 4124 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4125 DAG.getConstant(MinElts, DL, XLenVT)); 4126 SDValue VLMinus1 = 4127 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4128 4129 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4130 bool IsRV32E64 = 4131 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4132 SDValue SplatVL; 4133 if (!IsRV32E64) 4134 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4135 else 4136 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4137 4138 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4139 SDValue Indices = 4140 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4141 4142 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4143 } 4144 4145 SDValue 4146 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4147 SelectionDAG &DAG) const { 4148 SDLoc DL(Op); 4149 auto *Load = cast<LoadSDNode>(Op); 4150 4151 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4152 Load->getMemoryVT(), 4153 *Load->getMemOperand()) && 4154 "Expecting a correctly-aligned load"); 4155 4156 MVT VT = Op.getSimpleValueType(); 4157 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4158 4159 SDValue VL = 4160 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4161 4162 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4163 SDValue NewLoad = DAG.getMemIntrinsicNode( 4164 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4165 Load->getMemoryVT(), Load->getMemOperand()); 4166 4167 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4168 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4169 } 4170 4171 SDValue 4172 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4173 SelectionDAG &DAG) const { 4174 SDLoc DL(Op); 4175 auto *Store = cast<StoreSDNode>(Op); 4176 4177 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4178 Store->getMemoryVT(), 4179 *Store->getMemOperand()) && 4180 "Expecting a correctly-aligned store"); 4181 4182 SDValue StoreVal = Store->getValue(); 4183 MVT VT = StoreVal.getSimpleValueType(); 4184 4185 // If the size less than a byte, we need to pad with zeros to make a byte. 4186 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4187 VT = MVT::v8i1; 4188 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4189 DAG.getConstant(0, DL, VT), StoreVal, 4190 DAG.getIntPtrConstant(0, DL)); 4191 } 4192 4193 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4194 4195 SDValue VL = 4196 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4197 4198 SDValue NewValue = 4199 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4200 return DAG.getMemIntrinsicNode( 4201 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4202 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4203 Store->getMemoryVT(), Store->getMemOperand()); 4204 } 4205 4206 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const { 4207 auto *Load = cast<MaskedLoadSDNode>(Op); 4208 4209 SDLoc DL(Op); 4210 MVT VT = Op.getSimpleValueType(); 4211 MVT XLenVT = Subtarget.getXLenVT(); 4212 4213 SDValue Mask = Load->getMask(); 4214 SDValue PassThru = Load->getPassThru(); 4215 SDValue VL; 4216 4217 MVT ContainerVT = VT; 4218 if (VT.isFixedLengthVector()) { 4219 ContainerVT = getContainerForFixedLengthVector(VT); 4220 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4221 4222 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4223 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4224 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4225 } else 4226 VL = DAG.getRegister(RISCV::X0, XLenVT); 4227 4228 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4229 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4230 SDValue Ops[] = {Load->getChain(), IntID, PassThru, 4231 Load->getBasePtr(), Mask, VL}; 4232 SDValue Result = 4233 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4234 Load->getMemoryVT(), Load->getMemOperand()); 4235 SDValue Chain = Result.getValue(1); 4236 4237 if (VT.isFixedLengthVector()) 4238 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4239 4240 return DAG.getMergeValues({Result, Chain}, DL); 4241 } 4242 4243 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const { 4244 auto *Store = cast<MaskedStoreSDNode>(Op); 4245 4246 SDLoc DL(Op); 4247 SDValue Val = Store->getValue(); 4248 SDValue Mask = Store->getMask(); 4249 MVT VT = Val.getSimpleValueType(); 4250 MVT XLenVT = Subtarget.getXLenVT(); 4251 SDValue VL; 4252 4253 MVT ContainerVT = VT; 4254 if (VT.isFixedLengthVector()) { 4255 ContainerVT = getContainerForFixedLengthVector(VT); 4256 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4257 4258 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4259 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4260 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4261 } else 4262 VL = DAG.getRegister(RISCV::X0, XLenVT); 4263 4264 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT); 4265 return DAG.getMemIntrinsicNode( 4266 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 4267 {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL}, 4268 Store->getMemoryVT(), Store->getMemOperand()); 4269 } 4270 4271 SDValue 4272 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4273 SelectionDAG &DAG) const { 4274 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4275 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4276 4277 MVT VT = Op.getSimpleValueType(); 4278 4279 SDValue Op1 = 4280 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4281 SDValue Op2 = 4282 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4283 4284 SDLoc DL(Op); 4285 SDValue VL = 4286 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4287 4288 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4289 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4290 4291 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4292 Op.getOperand(2), Mask, VL); 4293 4294 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4295 } 4296 4297 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4298 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4299 MVT VT = Op.getSimpleValueType(); 4300 4301 if (VT.getVectorElementType() == MVT::i1) 4302 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4303 4304 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4305 } 4306 4307 SDValue 4308 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 4309 SelectionDAG &DAG) const { 4310 unsigned Opc; 4311 switch (Op.getOpcode()) { 4312 default: llvm_unreachable("Unexpected opcode!"); 4313 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 4314 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 4315 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 4316 } 4317 4318 return lowerToScalableOp(Op, DAG, Opc); 4319 } 4320 4321 // Lower vector ABS to smax(X, sub(0, X)). 4322 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4323 SDLoc DL(Op); 4324 MVT VT = Op.getSimpleValueType(); 4325 SDValue X = Op.getOperand(0); 4326 4327 assert(VT.isFixedLengthVector() && "Unexpected type"); 4328 4329 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4330 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4331 4332 SDValue Mask, VL; 4333 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4334 4335 SDValue SplatZero = 4336 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4337 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4338 SDValue NegX = 4339 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 4340 SDValue Max = 4341 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 4342 4343 return convertFromScalableVector(VT, Max, DAG, Subtarget); 4344 } 4345 4346 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 4347 SDValue Op, SelectionDAG &DAG) const { 4348 SDLoc DL(Op); 4349 MVT VT = Op.getSimpleValueType(); 4350 SDValue Mag = Op.getOperand(0); 4351 SDValue Sign = Op.getOperand(1); 4352 assert(Mag.getValueType() == Sign.getValueType() && 4353 "Can only handle COPYSIGN with matching types."); 4354 4355 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4356 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 4357 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 4358 4359 SDValue Mask, VL; 4360 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4361 4362 SDValue CopySign = 4363 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 4364 4365 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 4366 } 4367 4368 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 4369 SDValue Op, SelectionDAG &DAG) const { 4370 MVT VT = Op.getSimpleValueType(); 4371 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4372 4373 MVT I1ContainerVT = 4374 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4375 4376 SDValue CC = 4377 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 4378 SDValue Op1 = 4379 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4380 SDValue Op2 = 4381 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 4382 4383 SDLoc DL(Op); 4384 SDValue Mask, VL; 4385 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4386 4387 SDValue Select = 4388 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 4389 4390 return convertFromScalableVector(VT, Select, DAG, Subtarget); 4391 } 4392 4393 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 4394 unsigned NewOpc, 4395 bool HasMask) const { 4396 MVT VT = Op.getSimpleValueType(); 4397 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4398 4399 // Create list of operands by converting existing ones to scalable types. 4400 SmallVector<SDValue, 6> Ops; 4401 for (const SDValue &V : Op->op_values()) { 4402 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4403 4404 // Pass through non-vector operands. 4405 if (!V.getValueType().isVector()) { 4406 Ops.push_back(V); 4407 continue; 4408 } 4409 4410 // "cast" fixed length vector to a scalable vector. 4411 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 4412 "Only fixed length vectors are supported!"); 4413 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4414 } 4415 4416 SDLoc DL(Op); 4417 SDValue Mask, VL; 4418 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4419 if (HasMask) 4420 Ops.push_back(Mask); 4421 Ops.push_back(VL); 4422 4423 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 4424 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 4425 } 4426 4427 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 4428 // * Operands of each node are assumed to be in the same order. 4429 // * The EVL operand is promoted from i32 to i64 on RV64. 4430 // * Fixed-length vectors are converted to their scalable-vector container 4431 // types. 4432 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 4433 unsigned RISCVISDOpc) const { 4434 SDLoc DL(Op); 4435 MVT VT = Op.getSimpleValueType(); 4436 SmallVector<SDValue, 4> Ops; 4437 4438 for (const auto &OpIdx : enumerate(Op->ops())) { 4439 SDValue V = OpIdx.value(); 4440 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4441 // Pass through operands which aren't fixed-length vectors. 4442 if (!V.getValueType().isFixedLengthVector()) { 4443 Ops.push_back(V); 4444 continue; 4445 } 4446 // "cast" fixed length vector to a scalable vector. 4447 MVT OpVT = V.getSimpleValueType(); 4448 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 4449 assert(useRVVForFixedLengthVectorVT(OpVT) && 4450 "Only fixed length vectors are supported!"); 4451 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4452 } 4453 4454 if (!VT.isFixedLengthVector()) 4455 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 4456 4457 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4458 4459 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 4460 4461 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 4462 } 4463 4464 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to 4465 // a RVV indexed load. The RVV indexed load instructions only support the 4466 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4467 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4468 // indexing is extended to the XLEN value type and scaled accordingly. 4469 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const { 4470 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 4471 SDLoc DL(Op); 4472 4473 SDValue Index = MGN->getIndex(); 4474 SDValue Mask = MGN->getMask(); 4475 SDValue PassThru = MGN->getPassThru(); 4476 4477 MVT VT = Op.getSimpleValueType(); 4478 MVT IndexVT = Index.getSimpleValueType(); 4479 MVT XLenVT = Subtarget.getXLenVT(); 4480 4481 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4482 "Unexpected VTs!"); 4483 assert(MGN->getBasePtr().getSimpleValueType() == XLenVT && 4484 "Unexpected pointer type"); 4485 // Targets have to explicitly opt-in for extending vector loads. 4486 assert(MGN->getExtensionType() == ISD::NON_EXTLOAD && 4487 "Unexpected extending MGATHER"); 4488 4489 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4490 // the selection of the masked intrinsics doesn't do this for us. 4491 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4492 4493 SDValue VL; 4494 MVT ContainerVT = VT; 4495 if (VT.isFixedLengthVector()) { 4496 // We need to use the larger of the result and index type to determine the 4497 // scalable type to use so we don't increase LMUL for any operand/result. 4498 if (VT.bitsGE(IndexVT)) { 4499 ContainerVT = getContainerForFixedLengthVector(VT); 4500 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4501 ContainerVT.getVectorElementCount()); 4502 } else { 4503 IndexVT = getContainerForFixedLengthVector(IndexVT); 4504 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 4505 IndexVT.getVectorElementCount()); 4506 } 4507 4508 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4509 4510 if (!IsUnmasked) { 4511 MVT MaskVT = 4512 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4513 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4514 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4515 } 4516 4517 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4518 } else 4519 VL = DAG.getRegister(RISCV::X0, XLenVT); 4520 4521 unsigned IntID = 4522 IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask; 4523 SmallVector<SDValue, 8> Ops{MGN->getChain(), 4524 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4525 if (!IsUnmasked) 4526 Ops.push_back(PassThru); 4527 Ops.push_back(MGN->getBasePtr()); 4528 Ops.push_back(Index); 4529 if (!IsUnmasked) 4530 Ops.push_back(Mask); 4531 Ops.push_back(VL); 4532 4533 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4534 SDValue Result = 4535 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4536 MGN->getMemoryVT(), MGN->getMemOperand()); 4537 SDValue Chain = Result.getValue(1); 4538 4539 if (VT.isFixedLengthVector()) 4540 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4541 4542 return DAG.getMergeValues({Result, Chain}, DL); 4543 } 4544 4545 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to 4546 // a RVV indexed store. The RVV indexed store instructions only support the 4547 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4548 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4549 // indexing is extended to the XLEN value type and scaled accordingly. 4550 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op, 4551 SelectionDAG &DAG) const { 4552 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 4553 SDLoc DL(Op); 4554 SDValue Index = MSN->getIndex(); 4555 SDValue Mask = MSN->getMask(); 4556 SDValue Val = MSN->getValue(); 4557 4558 MVT VT = Val.getSimpleValueType(); 4559 MVT IndexVT = Index.getSimpleValueType(); 4560 MVT XLenVT = Subtarget.getXLenVT(); 4561 4562 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4563 "Unexpected VTs!"); 4564 assert(MSN->getBasePtr().getSimpleValueType() == XLenVT && 4565 "Unexpected pointer type"); 4566 // Targets have to explicitly opt-in for extending vector loads and 4567 // truncating vector stores. 4568 assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER"); 4569 4570 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4571 // the selection of the masked intrinsics doesn't do this for us. 4572 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4573 4574 SDValue VL; 4575 if (VT.isFixedLengthVector()) { 4576 // We need to use the larger of the value and index type to determine the 4577 // scalable type to use so we don't increase LMUL for any operand/result. 4578 MVT ContainerVT; 4579 if (VT.bitsGE(IndexVT)) { 4580 ContainerVT = getContainerForFixedLengthVector(VT); 4581 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4582 ContainerVT.getVectorElementCount()); 4583 } else { 4584 IndexVT = getContainerForFixedLengthVector(IndexVT); 4585 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4586 IndexVT.getVectorElementCount()); 4587 } 4588 4589 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4590 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4591 4592 if (!IsUnmasked) { 4593 MVT MaskVT = 4594 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4595 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4596 } 4597 4598 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4599 } else 4600 VL = DAG.getRegister(RISCV::X0, XLenVT); 4601 4602 unsigned IntID = 4603 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 4604 SmallVector<SDValue, 8> Ops{MSN->getChain(), 4605 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4606 Ops.push_back(Val); 4607 Ops.push_back(MSN->getBasePtr()); 4608 Ops.push_back(Index); 4609 if (!IsUnmasked) 4610 Ops.push_back(Mask); 4611 Ops.push_back(VL); 4612 4613 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops, 4614 MSN->getMemoryVT(), MSN->getMemOperand()); 4615 } 4616 4617 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 4618 SelectionDAG &DAG) const { 4619 const MVT XLenVT = Subtarget.getXLenVT(); 4620 SDLoc DL(Op); 4621 SDValue Chain = Op->getOperand(0); 4622 SDValue SysRegNo = DAG.getConstant( 4623 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4624 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 4625 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 4626 4627 // Encoding used for rounding mode in RISCV differs from that used in 4628 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 4629 // table, which consists of a sequence of 4-bit fields, each representing 4630 // corresponding FLT_ROUNDS mode. 4631 static const int Table = 4632 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 4633 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 4634 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 4635 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 4636 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 4637 4638 SDValue Shift = 4639 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 4640 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4641 DAG.getConstant(Table, DL, XLenVT), Shift); 4642 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4643 DAG.getConstant(7, DL, XLenVT)); 4644 4645 return DAG.getMergeValues({Masked, Chain}, DL); 4646 } 4647 4648 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 4649 SelectionDAG &DAG) const { 4650 const MVT XLenVT = Subtarget.getXLenVT(); 4651 SDLoc DL(Op); 4652 SDValue Chain = Op->getOperand(0); 4653 SDValue RMValue = Op->getOperand(1); 4654 SDValue SysRegNo = DAG.getConstant( 4655 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4656 4657 // Encoding used for rounding mode in RISCV differs from that used in 4658 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 4659 // a table, which consists of a sequence of 4-bit fields, each representing 4660 // corresponding RISCV mode. 4661 static const unsigned Table = 4662 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 4663 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 4664 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 4665 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 4666 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 4667 4668 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 4669 DAG.getConstant(2, DL, XLenVT)); 4670 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4671 DAG.getConstant(Table, DL, XLenVT), Shift); 4672 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4673 DAG.getConstant(0x7, DL, XLenVT)); 4674 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 4675 RMValue); 4676 } 4677 4678 // Returns the opcode of the target-specific SDNode that implements the 32-bit 4679 // form of the given Opcode. 4680 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 4681 switch (Opcode) { 4682 default: 4683 llvm_unreachable("Unexpected opcode"); 4684 case ISD::SHL: 4685 return RISCVISD::SLLW; 4686 case ISD::SRA: 4687 return RISCVISD::SRAW; 4688 case ISD::SRL: 4689 return RISCVISD::SRLW; 4690 case ISD::SDIV: 4691 return RISCVISD::DIVW; 4692 case ISD::UDIV: 4693 return RISCVISD::DIVUW; 4694 case ISD::UREM: 4695 return RISCVISD::REMUW; 4696 case ISD::ROTL: 4697 return RISCVISD::ROLW; 4698 case ISD::ROTR: 4699 return RISCVISD::RORW; 4700 case RISCVISD::GREV: 4701 return RISCVISD::GREVW; 4702 case RISCVISD::GORC: 4703 return RISCVISD::GORCW; 4704 } 4705 } 4706 4707 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 4708 // Because i32 isn't a legal type for RV64, these operations would otherwise 4709 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 4710 // later one because the fact the operation was originally of type i32 is 4711 // lost. 4712 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 4713 unsigned ExtOpc = ISD::ANY_EXTEND) { 4714 SDLoc DL(N); 4715 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4716 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 4717 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 4718 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4719 // ReplaceNodeResults requires we maintain the same type for the return value. 4720 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 4721 } 4722 4723 // Converts the given 32-bit operation to a i64 operation with signed extension 4724 // semantic to reduce the signed extension instructions. 4725 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 4726 SDLoc DL(N); 4727 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4728 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4729 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 4730 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 4731 DAG.getValueType(MVT::i32)); 4732 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 4733 } 4734 4735 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 4736 SmallVectorImpl<SDValue> &Results, 4737 SelectionDAG &DAG) const { 4738 SDLoc DL(N); 4739 switch (N->getOpcode()) { 4740 default: 4741 llvm_unreachable("Don't know how to custom type legalize this operation!"); 4742 case ISD::STRICT_FP_TO_SINT: 4743 case ISD::STRICT_FP_TO_UINT: 4744 case ISD::FP_TO_SINT: 4745 case ISD::FP_TO_UINT: { 4746 bool IsStrict = N->isStrictFPOpcode(); 4747 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4748 "Unexpected custom legalisation"); 4749 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 4750 // If the FP type needs to be softened, emit a library call using the 'si' 4751 // version. If we left it to default legalization we'd end up with 'di'. If 4752 // the FP type doesn't need to be softened just let generic type 4753 // legalization promote the result type. 4754 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 4755 TargetLowering::TypeSoftenFloat) 4756 return; 4757 RTLIB::Libcall LC; 4758 if (N->getOpcode() == ISD::FP_TO_SINT || 4759 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 4760 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 4761 else 4762 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 4763 MakeLibCallOptions CallOptions; 4764 EVT OpVT = Op0.getValueType(); 4765 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 4766 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 4767 SDValue Result; 4768 std::tie(Result, Chain) = 4769 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 4770 Results.push_back(Result); 4771 if (IsStrict) 4772 Results.push_back(Chain); 4773 break; 4774 } 4775 case ISD::READCYCLECOUNTER: { 4776 assert(!Subtarget.is64Bit() && 4777 "READCYCLECOUNTER only has custom type legalization on riscv32"); 4778 4779 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 4780 SDValue RCW = 4781 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 4782 4783 Results.push_back( 4784 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 4785 Results.push_back(RCW.getValue(2)); 4786 break; 4787 } 4788 case ISD::MUL: { 4789 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 4790 unsigned XLen = Subtarget.getXLen(); 4791 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 4792 if (Size > XLen) { 4793 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 4794 SDValue LHS = N->getOperand(0); 4795 SDValue RHS = N->getOperand(1); 4796 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 4797 4798 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 4799 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 4800 // We need exactly one side to be unsigned. 4801 if (LHSIsU == RHSIsU) 4802 return; 4803 4804 auto MakeMULPair = [&](SDValue S, SDValue U) { 4805 MVT XLenVT = Subtarget.getXLenVT(); 4806 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 4807 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 4808 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 4809 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 4810 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 4811 }; 4812 4813 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 4814 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 4815 4816 // The other operand should be signed, but still prefer MULH when 4817 // possible. 4818 if (RHSIsU && LHSIsS && !RHSIsS) 4819 Results.push_back(MakeMULPair(LHS, RHS)); 4820 else if (LHSIsU && RHSIsS && !LHSIsS) 4821 Results.push_back(MakeMULPair(RHS, LHS)); 4822 4823 return; 4824 } 4825 LLVM_FALLTHROUGH; 4826 } 4827 case ISD::ADD: 4828 case ISD::SUB: 4829 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4830 "Unexpected custom legalisation"); 4831 if (N->getOperand(1).getOpcode() == ISD::Constant) 4832 return; 4833 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 4834 break; 4835 case ISD::SHL: 4836 case ISD::SRA: 4837 case ISD::SRL: 4838 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4839 "Unexpected custom legalisation"); 4840 if (N->getOperand(1).getOpcode() == ISD::Constant) 4841 return; 4842 Results.push_back(customLegalizeToWOp(N, DAG)); 4843 break; 4844 case ISD::ROTL: 4845 case ISD::ROTR: 4846 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4847 "Unexpected custom legalisation"); 4848 Results.push_back(customLegalizeToWOp(N, DAG)); 4849 break; 4850 case ISD::CTTZ: 4851 case ISD::CTTZ_ZERO_UNDEF: 4852 case ISD::CTLZ: 4853 case ISD::CTLZ_ZERO_UNDEF: { 4854 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4855 "Unexpected custom legalisation"); 4856 4857 SDValue NewOp0 = 4858 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4859 bool IsCTZ = 4860 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 4861 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 4862 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 4863 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4864 return; 4865 } 4866 case ISD::SDIV: 4867 case ISD::UDIV: 4868 case ISD::UREM: { 4869 MVT VT = N->getSimpleValueType(0); 4870 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 4871 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 4872 "Unexpected custom legalisation"); 4873 if (N->getOperand(0).getOpcode() == ISD::Constant || 4874 N->getOperand(1).getOpcode() == ISD::Constant) 4875 return; 4876 4877 // If the input is i32, use ANY_EXTEND since the W instructions don't read 4878 // the upper 32 bits. For other types we need to sign or zero extend 4879 // based on the opcode. 4880 unsigned ExtOpc = ISD::ANY_EXTEND; 4881 if (VT != MVT::i32) 4882 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 4883 : ISD::ZERO_EXTEND; 4884 4885 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 4886 break; 4887 } 4888 case ISD::UADDO: 4889 case ISD::USUBO: { 4890 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4891 "Unexpected custom legalisation"); 4892 bool IsAdd = N->getOpcode() == ISD::UADDO; 4893 // Create an ADDW or SUBW. 4894 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4895 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4896 SDValue Res = 4897 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 4898 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 4899 DAG.getValueType(MVT::i32)); 4900 4901 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 4902 // Since the inputs are sign extended from i32, this is equivalent to 4903 // comparing the lower 32 bits. 4904 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4905 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 4906 IsAdd ? ISD::SETULT : ISD::SETUGT); 4907 4908 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4909 Results.push_back(Overflow); 4910 return; 4911 } 4912 case ISD::UADDSAT: 4913 case ISD::USUBSAT: { 4914 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4915 "Unexpected custom legalisation"); 4916 if (Subtarget.hasStdExtZbb()) { 4917 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 4918 // sign extend allows overflow of the lower 32 bits to be detected on 4919 // the promoted size. 4920 SDValue LHS = 4921 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4922 SDValue RHS = 4923 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 4924 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 4925 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4926 return; 4927 } 4928 4929 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 4930 // promotion for UADDO/USUBO. 4931 Results.push_back(expandAddSubSat(N, DAG)); 4932 return; 4933 } 4934 case ISD::BITCAST: { 4935 EVT VT = N->getValueType(0); 4936 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 4937 SDValue Op0 = N->getOperand(0); 4938 EVT Op0VT = Op0.getValueType(); 4939 MVT XLenVT = Subtarget.getXLenVT(); 4940 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 4941 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 4942 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 4943 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 4944 Subtarget.hasStdExtF()) { 4945 SDValue FPConv = 4946 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 4947 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 4948 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 4949 isTypeLegal(Op0VT)) { 4950 // Custom-legalize bitcasts from fixed-length vector types to illegal 4951 // scalar types in order to improve codegen. Bitcast the vector to a 4952 // one-element vector type whose element type is the same as the result 4953 // type, and extract the first element. 4954 LLVMContext &Context = *DAG.getContext(); 4955 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 4956 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 4957 DAG.getConstant(0, DL, XLenVT))); 4958 } 4959 break; 4960 } 4961 case RISCVISD::GREV: 4962 case RISCVISD::GORC: { 4963 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4964 "Unexpected custom legalisation"); 4965 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4966 // This is similar to customLegalizeToWOp, except that we pass the second 4967 // operand (a TargetConstant) straight through: it is already of type 4968 // XLenVT. 4969 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4970 SDValue NewOp0 = 4971 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4972 SDValue NewOp1 = 4973 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4974 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4975 // ReplaceNodeResults requires we maintain the same type for the return 4976 // value. 4977 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4978 break; 4979 } 4980 case RISCVISD::SHFL: { 4981 // There is no SHFLIW instruction, but we can just promote the operation. 4982 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4983 "Unexpected custom legalisation"); 4984 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4985 SDValue NewOp0 = 4986 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4987 SDValue NewOp1 = 4988 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4989 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 4990 // ReplaceNodeResults requires we maintain the same type for the return 4991 // value. 4992 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4993 break; 4994 } 4995 case ISD::BSWAP: 4996 case ISD::BITREVERSE: { 4997 MVT VT = N->getSimpleValueType(0); 4998 MVT XLenVT = Subtarget.getXLenVT(); 4999 assert((VT == MVT::i8 || VT == MVT::i16 || 5000 (VT == MVT::i32 && Subtarget.is64Bit())) && 5001 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5002 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5003 unsigned Imm = VT.getSizeInBits() - 1; 5004 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5005 if (N->getOpcode() == ISD::BSWAP) 5006 Imm &= ~0x7U; 5007 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5008 SDValue GREVI = 5009 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5010 // ReplaceNodeResults requires we maintain the same type for the return 5011 // value. 5012 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5013 break; 5014 } 5015 case ISD::FSHL: 5016 case ISD::FSHR: { 5017 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5018 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5019 SDValue NewOp0 = 5020 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5021 SDValue NewOp1 = 5022 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5023 SDValue NewOp2 = 5024 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5025 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5026 // Mask the shift amount to 5 bits. 5027 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5028 DAG.getConstant(0x1f, DL, MVT::i64)); 5029 unsigned Opc = 5030 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5031 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5032 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5033 break; 5034 } 5035 case ISD::EXTRACT_VECTOR_ELT: { 5036 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5037 // type is illegal (currently only vXi64 RV32). 5038 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5039 // transferred to the destination register. We issue two of these from the 5040 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5041 // first element. 5042 SDValue Vec = N->getOperand(0); 5043 SDValue Idx = N->getOperand(1); 5044 5045 // The vector type hasn't been legalized yet so we can't issue target 5046 // specific nodes if it needs legalization. 5047 // FIXME: We would manually legalize if it's important. 5048 if (!isTypeLegal(Vec.getValueType())) 5049 return; 5050 5051 MVT VecVT = Vec.getSimpleValueType(); 5052 5053 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5054 VecVT.getVectorElementType() == MVT::i64 && 5055 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5056 5057 // If this is a fixed vector, we need to convert it to a scalable vector. 5058 MVT ContainerVT = VecVT; 5059 if (VecVT.isFixedLengthVector()) { 5060 ContainerVT = getContainerForFixedLengthVector(VecVT); 5061 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5062 } 5063 5064 MVT XLenVT = Subtarget.getXLenVT(); 5065 5066 // Use a VL of 1 to avoid processing more elements than we need. 5067 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5068 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5069 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5070 5071 // Unless the index is known to be 0, we must slide the vector down to get 5072 // the desired element into index 0. 5073 if (!isNullConstant(Idx)) { 5074 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5075 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5076 } 5077 5078 // Extract the lower XLEN bits of the correct vector element. 5079 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5080 5081 // To extract the upper XLEN bits of the vector element, shift the first 5082 // element right by 32 bits and re-extract the lower XLEN bits. 5083 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5084 DAG.getConstant(32, DL, XLenVT), VL); 5085 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5086 ThirtyTwoV, Mask, VL); 5087 5088 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5089 5090 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5091 break; 5092 } 5093 case ISD::INTRINSIC_WO_CHAIN: { 5094 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5095 switch (IntNo) { 5096 default: 5097 llvm_unreachable( 5098 "Don't know how to custom type legalize this intrinsic!"); 5099 case Intrinsic::riscv_orc_b: { 5100 // Lower to the GORCI encoding for orc.b with the operand extended. 5101 SDValue NewOp = 5102 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5103 // If Zbp is enabled, use GORCIW which will sign extend the result. 5104 unsigned Opc = 5105 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5106 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5107 DAG.getConstant(7, DL, MVT::i64)); 5108 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5109 return; 5110 } 5111 case Intrinsic::riscv_grev: 5112 case Intrinsic::riscv_gorc: { 5113 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5114 "Unexpected custom legalisation"); 5115 SDValue NewOp1 = 5116 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5117 SDValue NewOp2 = 5118 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5119 unsigned Opc = 5120 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5121 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5122 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5123 break; 5124 } 5125 case Intrinsic::riscv_shfl: 5126 case Intrinsic::riscv_unshfl: { 5127 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5128 "Unexpected custom legalisation"); 5129 SDValue NewOp1 = 5130 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5131 SDValue NewOp2 = 5132 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5133 unsigned Opc = 5134 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5135 if (isa<ConstantSDNode>(N->getOperand(2))) { 5136 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5137 DAG.getConstant(0xf, DL, MVT::i64)); 5138 Opc = 5139 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5140 } 5141 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5142 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5143 break; 5144 } 5145 case Intrinsic::riscv_bcompress: 5146 case Intrinsic::riscv_bdecompress: { 5147 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5148 "Unexpected custom legalisation"); 5149 SDValue NewOp1 = 5150 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5151 SDValue NewOp2 = 5152 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5153 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5154 ? RISCVISD::BCOMPRESSW 5155 : RISCVISD::BDECOMPRESSW; 5156 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5157 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5158 break; 5159 } 5160 case Intrinsic::riscv_vmv_x_s: { 5161 EVT VT = N->getValueType(0); 5162 MVT XLenVT = Subtarget.getXLenVT(); 5163 if (VT.bitsLT(XLenVT)) { 5164 // Simple case just extract using vmv.x.s and truncate. 5165 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5166 Subtarget.getXLenVT(), N->getOperand(1)); 5167 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5168 return; 5169 } 5170 5171 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5172 "Unexpected custom legalization"); 5173 5174 // We need to do the move in two steps. 5175 SDValue Vec = N->getOperand(1); 5176 MVT VecVT = Vec.getSimpleValueType(); 5177 5178 // First extract the lower XLEN bits of the element. 5179 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5180 5181 // To extract the upper XLEN bits of the vector element, shift the first 5182 // element right by 32 bits and re-extract the lower XLEN bits. 5183 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5184 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5185 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5186 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5187 DAG.getConstant(32, DL, XLenVT), VL); 5188 SDValue LShr32 = 5189 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5190 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5191 5192 Results.push_back( 5193 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5194 break; 5195 } 5196 } 5197 break; 5198 } 5199 case ISD::VECREDUCE_ADD: 5200 case ISD::VECREDUCE_AND: 5201 case ISD::VECREDUCE_OR: 5202 case ISD::VECREDUCE_XOR: 5203 case ISD::VECREDUCE_SMAX: 5204 case ISD::VECREDUCE_UMAX: 5205 case ISD::VECREDUCE_SMIN: 5206 case ISD::VECREDUCE_UMIN: 5207 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5208 Results.push_back(V); 5209 break; 5210 case ISD::FLT_ROUNDS_: { 5211 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5212 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5213 Results.push_back(Res.getValue(0)); 5214 Results.push_back(Res.getValue(1)); 5215 break; 5216 } 5217 } 5218 } 5219 5220 // A structure to hold one of the bit-manipulation patterns below. Together, a 5221 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5222 // (or (and (shl x, 1), 0xAAAAAAAA), 5223 // (and (srl x, 1), 0x55555555)) 5224 struct RISCVBitmanipPat { 5225 SDValue Op; 5226 unsigned ShAmt; 5227 bool IsSHL; 5228 5229 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5230 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5231 } 5232 }; 5233 5234 // Matches patterns of the form 5235 // (and (shl x, C2), (C1 << C2)) 5236 // (and (srl x, C2), C1) 5237 // (shl (and x, C1), C2) 5238 // (srl (and x, (C1 << C2)), C2) 5239 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5240 // The expected masks for each shift amount are specified in BitmanipMasks where 5241 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5242 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5243 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5244 // XLen is 64. 5245 static Optional<RISCVBitmanipPat> 5246 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5247 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5248 "Unexpected number of masks"); 5249 Optional<uint64_t> Mask; 5250 // Optionally consume a mask around the shift operation. 5251 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 5252 Mask = Op.getConstantOperandVal(1); 5253 Op = Op.getOperand(0); 5254 } 5255 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 5256 return None; 5257 bool IsSHL = Op.getOpcode() == ISD::SHL; 5258 5259 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5260 return None; 5261 uint64_t ShAmt = Op.getConstantOperandVal(1); 5262 5263 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5264 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 5265 return None; 5266 // If we don't have enough masks for 64 bit, then we must be trying to 5267 // match SHFL so we're only allowed to shift 1/4 of the width. 5268 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 5269 return None; 5270 5271 SDValue Src = Op.getOperand(0); 5272 5273 // The expected mask is shifted left when the AND is found around SHL 5274 // patterns. 5275 // ((x >> 1) & 0x55555555) 5276 // ((x << 1) & 0xAAAAAAAA) 5277 bool SHLExpMask = IsSHL; 5278 5279 if (!Mask) { 5280 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 5281 // the mask is all ones: consume that now. 5282 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 5283 Mask = Src.getConstantOperandVal(1); 5284 Src = Src.getOperand(0); 5285 // The expected mask is now in fact shifted left for SRL, so reverse the 5286 // decision. 5287 // ((x & 0xAAAAAAAA) >> 1) 5288 // ((x & 0x55555555) << 1) 5289 SHLExpMask = !SHLExpMask; 5290 } else { 5291 // Use a default shifted mask of all-ones if there's no AND, truncated 5292 // down to the expected width. This simplifies the logic later on. 5293 Mask = maskTrailingOnes<uint64_t>(Width); 5294 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 5295 } 5296 } 5297 5298 unsigned MaskIdx = Log2_32(ShAmt); 5299 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5300 5301 if (SHLExpMask) 5302 ExpMask <<= ShAmt; 5303 5304 if (Mask != ExpMask) 5305 return None; 5306 5307 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 5308 } 5309 5310 // Matches any of the following bit-manipulation patterns: 5311 // (and (shl x, 1), (0x55555555 << 1)) 5312 // (and (srl x, 1), 0x55555555) 5313 // (shl (and x, 0x55555555), 1) 5314 // (srl (and x, (0x55555555 << 1)), 1) 5315 // where the shift amount and mask may vary thus: 5316 // [1] = 0x55555555 / 0xAAAAAAAA 5317 // [2] = 0x33333333 / 0xCCCCCCCC 5318 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 5319 // [8] = 0x00FF00FF / 0xFF00FF00 5320 // [16] = 0x0000FFFF / 0xFFFFFFFF 5321 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 5322 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 5323 // These are the unshifted masks which we use to match bit-manipulation 5324 // patterns. They may be shifted left in certain circumstances. 5325 static const uint64_t BitmanipMasks[] = { 5326 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 5327 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 5328 5329 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5330 } 5331 5332 // Match the following pattern as a GREVI(W) operation 5333 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 5334 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 5335 const RISCVSubtarget &Subtarget) { 5336 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5337 EVT VT = Op.getValueType(); 5338 5339 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5340 auto LHS = matchGREVIPat(Op.getOperand(0)); 5341 auto RHS = matchGREVIPat(Op.getOperand(1)); 5342 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 5343 SDLoc DL(Op); 5344 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 5345 DAG.getConstant(LHS->ShAmt, DL, VT)); 5346 } 5347 } 5348 return SDValue(); 5349 } 5350 5351 // Matches any the following pattern as a GORCI(W) operation 5352 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 5353 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 5354 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 5355 // Note that with the variant of 3., 5356 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 5357 // the inner pattern will first be matched as GREVI and then the outer 5358 // pattern will be matched to GORC via the first rule above. 5359 // 4. (or (rotl/rotr x, bitwidth/2), x) 5360 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 5361 const RISCVSubtarget &Subtarget) { 5362 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5363 EVT VT = Op.getValueType(); 5364 5365 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5366 SDLoc DL(Op); 5367 SDValue Op0 = Op.getOperand(0); 5368 SDValue Op1 = Op.getOperand(1); 5369 5370 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 5371 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 5372 isa<ConstantSDNode>(Reverse.getOperand(1)) && 5373 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 5374 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 5375 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 5376 if ((Reverse.getOpcode() == ISD::ROTL || 5377 Reverse.getOpcode() == ISD::ROTR) && 5378 Reverse.getOperand(0) == X && 5379 isa<ConstantSDNode>(Reverse.getOperand(1))) { 5380 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 5381 if (RotAmt == (VT.getSizeInBits() / 2)) 5382 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 5383 DAG.getConstant(RotAmt, DL, VT)); 5384 } 5385 return SDValue(); 5386 }; 5387 5388 // Check for either commutable permutation of (or (GREVI x, shamt), x) 5389 if (SDValue V = MatchOROfReverse(Op0, Op1)) 5390 return V; 5391 if (SDValue V = MatchOROfReverse(Op1, Op0)) 5392 return V; 5393 5394 // OR is commutable so canonicalize its OR operand to the left 5395 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 5396 std::swap(Op0, Op1); 5397 if (Op0.getOpcode() != ISD::OR) 5398 return SDValue(); 5399 SDValue OrOp0 = Op0.getOperand(0); 5400 SDValue OrOp1 = Op0.getOperand(1); 5401 auto LHS = matchGREVIPat(OrOp0); 5402 // OR is commutable so swap the operands and try again: x might have been 5403 // on the left 5404 if (!LHS) { 5405 std::swap(OrOp0, OrOp1); 5406 LHS = matchGREVIPat(OrOp0); 5407 } 5408 auto RHS = matchGREVIPat(Op1); 5409 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 5410 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 5411 DAG.getConstant(LHS->ShAmt, DL, VT)); 5412 } 5413 } 5414 return SDValue(); 5415 } 5416 5417 // Matches any of the following bit-manipulation patterns: 5418 // (and (shl x, 1), (0x22222222 << 1)) 5419 // (and (srl x, 1), 0x22222222) 5420 // (shl (and x, 0x22222222), 1) 5421 // (srl (and x, (0x22222222 << 1)), 1) 5422 // where the shift amount and mask may vary thus: 5423 // [1] = 0x22222222 / 0x44444444 5424 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 5425 // [4] = 0x00F000F0 / 0x0F000F00 5426 // [8] = 0x0000FF00 / 0x00FF0000 5427 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 5428 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 5429 // These are the unshifted masks which we use to match bit-manipulation 5430 // patterns. They may be shifted left in certain circumstances. 5431 static const uint64_t BitmanipMasks[] = { 5432 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 5433 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 5434 5435 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5436 } 5437 5438 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 5439 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 5440 const RISCVSubtarget &Subtarget) { 5441 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5442 EVT VT = Op.getValueType(); 5443 5444 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 5445 return SDValue(); 5446 5447 SDValue Op0 = Op.getOperand(0); 5448 SDValue Op1 = Op.getOperand(1); 5449 5450 // Or is commutable so canonicalize the second OR to the LHS. 5451 if (Op0.getOpcode() != ISD::OR) 5452 std::swap(Op0, Op1); 5453 if (Op0.getOpcode() != ISD::OR) 5454 return SDValue(); 5455 5456 // We found an inner OR, so our operands are the operands of the inner OR 5457 // and the other operand of the outer OR. 5458 SDValue A = Op0.getOperand(0); 5459 SDValue B = Op0.getOperand(1); 5460 SDValue C = Op1; 5461 5462 auto Match1 = matchSHFLPat(A); 5463 auto Match2 = matchSHFLPat(B); 5464 5465 // If neither matched, we failed. 5466 if (!Match1 && !Match2) 5467 return SDValue(); 5468 5469 // We had at least one match. if one failed, try the remaining C operand. 5470 if (!Match1) { 5471 std::swap(A, C); 5472 Match1 = matchSHFLPat(A); 5473 if (!Match1) 5474 return SDValue(); 5475 } else if (!Match2) { 5476 std::swap(B, C); 5477 Match2 = matchSHFLPat(B); 5478 if (!Match2) 5479 return SDValue(); 5480 } 5481 assert(Match1 && Match2); 5482 5483 // Make sure our matches pair up. 5484 if (!Match1->formsPairWith(*Match2)) 5485 return SDValue(); 5486 5487 // All the remains is to make sure C is an AND with the same input, that masks 5488 // out the bits that are being shuffled. 5489 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 5490 C.getOperand(0) != Match1->Op) 5491 return SDValue(); 5492 5493 uint64_t Mask = C.getConstantOperandVal(1); 5494 5495 static const uint64_t BitmanipMasks[] = { 5496 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 5497 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 5498 }; 5499 5500 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5501 unsigned MaskIdx = Log2_32(Match1->ShAmt); 5502 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5503 5504 if (Mask != ExpMask) 5505 return SDValue(); 5506 5507 SDLoc DL(Op); 5508 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 5509 DAG.getConstant(Match1->ShAmt, DL, VT)); 5510 } 5511 5512 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 5513 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 5514 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 5515 // not undo itself, but they are redundant. 5516 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 5517 SDValue Src = N->getOperand(0); 5518 5519 if (Src.getOpcode() != N->getOpcode()) 5520 return SDValue(); 5521 5522 if (!isa<ConstantSDNode>(N->getOperand(1)) || 5523 !isa<ConstantSDNode>(Src.getOperand(1))) 5524 return SDValue(); 5525 5526 unsigned ShAmt1 = N->getConstantOperandVal(1); 5527 unsigned ShAmt2 = Src.getConstantOperandVal(1); 5528 Src = Src.getOperand(0); 5529 5530 unsigned CombinedShAmt; 5531 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 5532 CombinedShAmt = ShAmt1 | ShAmt2; 5533 else 5534 CombinedShAmt = ShAmt1 ^ ShAmt2; 5535 5536 if (CombinedShAmt == 0) 5537 return Src; 5538 5539 SDLoc DL(N); 5540 return DAG.getNode( 5541 N->getOpcode(), DL, N->getValueType(0), Src, 5542 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 5543 } 5544 5545 // Combine a constant select operand into its use: 5546 // 5547 // (and (select_cc lhs, rhs, cc, -1, c), x) 5548 // -> (select_cc lhs, rhs, cc, x, (and, x, c)) [AllOnes=1] 5549 // (or (select_cc lhs, rhs, cc, 0, c), x) 5550 // -> (select_cc lhs, rhs, cc, x, (or, x, c)) [AllOnes=0] 5551 // (xor (select_cc lhs, rhs, cc, 0, c), x) 5552 // -> (select_cc lhs, rhs, cc, x, (xor, x, c)) [AllOnes=0] 5553 static SDValue combineSelectCCAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 5554 SelectionDAG &DAG, bool AllOnes) { 5555 EVT VT = N->getValueType(0); 5556 5557 if (Slct.getOpcode() != RISCVISD::SELECT_CC || !Slct.hasOneUse()) 5558 return SDValue(); 5559 5560 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 5561 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 5562 }; 5563 5564 bool SwapSelectOps; 5565 SDValue TrueVal = Slct.getOperand(3); 5566 SDValue FalseVal = Slct.getOperand(4); 5567 SDValue NonConstantVal; 5568 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 5569 SwapSelectOps = false; 5570 NonConstantVal = FalseVal; 5571 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 5572 SwapSelectOps = true; 5573 NonConstantVal = TrueVal; 5574 } else 5575 return SDValue(); 5576 5577 // Slct is now know to be the desired identity constant when CC is true. 5578 TrueVal = OtherOp; 5579 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 5580 // Unless SwapSelectOps says CC should be false. 5581 if (SwapSelectOps) 5582 std::swap(TrueVal, FalseVal); 5583 5584 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 5585 {Slct.getOperand(0), Slct.getOperand(1), 5586 Slct.getOperand(2), TrueVal, FalseVal}); 5587 } 5588 5589 // Attempt combineSelectAndUse on each operand of a commutative operator N. 5590 static SDValue combineSelectCCAndUseCommutative(SDNode *N, SelectionDAG &DAG, 5591 bool AllOnes) { 5592 SDValue N0 = N->getOperand(0); 5593 SDValue N1 = N->getOperand(1); 5594 if (SDValue Result = combineSelectCCAndUse(N, N0, N1, DAG, AllOnes)) 5595 return Result; 5596 if (SDValue Result = combineSelectCCAndUse(N, N1, N0, DAG, AllOnes)) 5597 return Result; 5598 return SDValue(); 5599 } 5600 5601 static SDValue performANDCombine(SDNode *N, 5602 TargetLowering::DAGCombinerInfo &DCI, 5603 const RISCVSubtarget &Subtarget) { 5604 SelectionDAG &DAG = DCI.DAG; 5605 5606 // fold (and (select_cc lhs, rhs, cc, -1, y), x) -> 5607 // (select lhs, rhs, cc, x, (and x, y)) 5608 return combineSelectCCAndUseCommutative(N, DAG, true); 5609 } 5610 5611 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 5612 const RISCVSubtarget &Subtarget) { 5613 SelectionDAG &DAG = DCI.DAG; 5614 if (Subtarget.hasStdExtZbp()) { 5615 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 5616 return GREV; 5617 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 5618 return GORC; 5619 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 5620 return SHFL; 5621 } 5622 5623 // fold (or (select_cc lhs, rhs, cc, 0, y), x) -> 5624 // (select lhs, rhs, cc, x, (or x, y)) 5625 return combineSelectCCAndUseCommutative(N, DAG, false); 5626 } 5627 5628 static SDValue performXORCombine(SDNode *N, 5629 TargetLowering::DAGCombinerInfo &DCI, 5630 const RISCVSubtarget &Subtarget) { 5631 SelectionDAG &DAG = DCI.DAG; 5632 5633 // fold (xor (select_cc lhs, rhs, cc, 0, y), x) -> 5634 // (select lhs, rhs, cc, x, (xor x, y)) 5635 return combineSelectCCAndUseCommutative(N, DAG, false); 5636 } 5637 5638 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 5639 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 5640 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 5641 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 5642 // ADDW/SUBW/MULW. 5643 static SDValue performANY_EXTENDCombine(SDNode *N, 5644 TargetLowering::DAGCombinerInfo &DCI, 5645 const RISCVSubtarget &Subtarget) { 5646 if (!Subtarget.is64Bit()) 5647 return SDValue(); 5648 5649 SelectionDAG &DAG = DCI.DAG; 5650 5651 SDValue Src = N->getOperand(0); 5652 EVT VT = N->getValueType(0); 5653 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 5654 return SDValue(); 5655 5656 // The opcode must be one that can implicitly sign_extend. 5657 // FIXME: Additional opcodes. 5658 switch (Src.getOpcode()) { 5659 default: 5660 return SDValue(); 5661 case ISD::MUL: 5662 if (!Subtarget.hasStdExtM()) 5663 return SDValue(); 5664 LLVM_FALLTHROUGH; 5665 case ISD::ADD: 5666 case ISD::SUB: 5667 break; 5668 } 5669 5670 SmallVector<SDNode *, 4> SetCCs; 5671 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 5672 UE = Src.getNode()->use_end(); 5673 UI != UE; ++UI) { 5674 SDNode *User = *UI; 5675 if (User == N) 5676 continue; 5677 if (UI.getUse().getResNo() != Src.getResNo()) 5678 continue; 5679 // All i32 setccs are legalized by sign extending operands. 5680 if (User->getOpcode() == ISD::SETCC) { 5681 SetCCs.push_back(User); 5682 continue; 5683 } 5684 // We don't know if we can extend this user. 5685 break; 5686 } 5687 5688 // If we don't have any SetCCs, this isn't worthwhile. 5689 if (SetCCs.empty()) 5690 return SDValue(); 5691 5692 SDLoc DL(N); 5693 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 5694 DCI.CombineTo(N, SExt); 5695 5696 // Promote all the setccs. 5697 for (SDNode *SetCC : SetCCs) { 5698 SmallVector<SDValue, 4> Ops; 5699 5700 for (unsigned j = 0; j != 2; ++j) { 5701 SDValue SOp = SetCC->getOperand(j); 5702 if (SOp == Src) 5703 Ops.push_back(SExt); 5704 else 5705 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 5706 } 5707 5708 Ops.push_back(SetCC->getOperand(2)); 5709 DCI.CombineTo(SetCC, 5710 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 5711 } 5712 return SDValue(N, 0); 5713 } 5714 5715 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 5716 DAGCombinerInfo &DCI) const { 5717 SelectionDAG &DAG = DCI.DAG; 5718 5719 switch (N->getOpcode()) { 5720 default: 5721 break; 5722 case RISCVISD::SplitF64: { 5723 SDValue Op0 = N->getOperand(0); 5724 // If the input to SplitF64 is just BuildPairF64 then the operation is 5725 // redundant. Instead, use BuildPairF64's operands directly. 5726 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 5727 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 5728 5729 SDLoc DL(N); 5730 5731 // It's cheaper to materialise two 32-bit integers than to load a double 5732 // from the constant pool and transfer it to integer registers through the 5733 // stack. 5734 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 5735 APInt V = C->getValueAPF().bitcastToAPInt(); 5736 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 5737 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 5738 return DCI.CombineTo(N, Lo, Hi); 5739 } 5740 5741 // This is a target-specific version of a DAGCombine performed in 5742 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5743 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5744 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5745 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5746 !Op0.getNode()->hasOneUse()) 5747 break; 5748 SDValue NewSplitF64 = 5749 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 5750 Op0.getOperand(0)); 5751 SDValue Lo = NewSplitF64.getValue(0); 5752 SDValue Hi = NewSplitF64.getValue(1); 5753 APInt SignBit = APInt::getSignMask(32); 5754 if (Op0.getOpcode() == ISD::FNEG) { 5755 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 5756 DAG.getConstant(SignBit, DL, MVT::i32)); 5757 return DCI.CombineTo(N, Lo, NewHi); 5758 } 5759 assert(Op0.getOpcode() == ISD::FABS); 5760 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 5761 DAG.getConstant(~SignBit, DL, MVT::i32)); 5762 return DCI.CombineTo(N, Lo, NewHi); 5763 } 5764 case RISCVISD::SLLW: 5765 case RISCVISD::SRAW: 5766 case RISCVISD::SRLW: 5767 case RISCVISD::ROLW: 5768 case RISCVISD::RORW: { 5769 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5770 SDValue LHS = N->getOperand(0); 5771 SDValue RHS = N->getOperand(1); 5772 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5773 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5774 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 5775 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 5776 if (N->getOpcode() != ISD::DELETED_NODE) 5777 DCI.AddToWorklist(N); 5778 return SDValue(N, 0); 5779 } 5780 break; 5781 } 5782 case RISCVISD::CLZW: 5783 case RISCVISD::CTZW: { 5784 // Only the lower 32 bits of the first operand are read 5785 SDValue Op0 = N->getOperand(0); 5786 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5787 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 5788 if (N->getOpcode() != ISD::DELETED_NODE) 5789 DCI.AddToWorklist(N); 5790 return SDValue(N, 0); 5791 } 5792 break; 5793 } 5794 case RISCVISD::FSL: 5795 case RISCVISD::FSR: { 5796 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 5797 SDValue ShAmt = N->getOperand(2); 5798 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5799 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5800 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1); 5801 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5802 if (N->getOpcode() != ISD::DELETED_NODE) 5803 DCI.AddToWorklist(N); 5804 return SDValue(N, 0); 5805 } 5806 break; 5807 } 5808 case RISCVISD::FSLW: 5809 case RISCVISD::FSRW: { 5810 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 5811 // read. 5812 SDValue Op0 = N->getOperand(0); 5813 SDValue Op1 = N->getOperand(1); 5814 SDValue ShAmt = N->getOperand(2); 5815 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5816 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 5817 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 5818 SimplifyDemandedBits(Op1, OpMask, DCI) || 5819 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5820 if (N->getOpcode() != ISD::DELETED_NODE) 5821 DCI.AddToWorklist(N); 5822 return SDValue(N, 0); 5823 } 5824 break; 5825 } 5826 case RISCVISD::GREV: 5827 case RISCVISD::GORC: { 5828 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5829 SDValue ShAmt = N->getOperand(1); 5830 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5831 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5832 APInt ShAmtMask(BitWidth, BitWidth - 1); 5833 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5834 if (N->getOpcode() != ISD::DELETED_NODE) 5835 DCI.AddToWorklist(N); 5836 return SDValue(N, 0); 5837 } 5838 5839 return combineGREVI_GORCI(N, DCI.DAG); 5840 } 5841 case RISCVISD::GREVW: 5842 case RISCVISD::GORCW: { 5843 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5844 SDValue LHS = N->getOperand(0); 5845 SDValue RHS = N->getOperand(1); 5846 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5847 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5848 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5849 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5850 if (N->getOpcode() != ISD::DELETED_NODE) 5851 DCI.AddToWorklist(N); 5852 return SDValue(N, 0); 5853 } 5854 5855 return combineGREVI_GORCI(N, DCI.DAG); 5856 } 5857 case RISCVISD::SHFL: 5858 case RISCVISD::UNSHFL: { 5859 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5860 SDValue ShAmt = N->getOperand(1); 5861 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5862 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5863 APInt ShAmtMask(BitWidth, (BitWidth / 2) - 1); 5864 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5865 if (N->getOpcode() != ISD::DELETED_NODE) 5866 DCI.AddToWorklist(N); 5867 return SDValue(N, 0); 5868 } 5869 5870 break; 5871 } 5872 case RISCVISD::SHFLW: 5873 case RISCVISD::UNSHFLW: { 5874 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5875 SDValue LHS = N->getOperand(0); 5876 SDValue RHS = N->getOperand(1); 5877 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5878 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 5879 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5880 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5881 if (N->getOpcode() != ISD::DELETED_NODE) 5882 DCI.AddToWorklist(N); 5883 return SDValue(N, 0); 5884 } 5885 5886 break; 5887 } 5888 case RISCVISD::BCOMPRESSW: 5889 case RISCVISD::BDECOMPRESSW: { 5890 // Only the lower 32 bits of LHS and RHS are read. 5891 SDValue LHS = N->getOperand(0); 5892 SDValue RHS = N->getOperand(1); 5893 APInt Mask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5894 if (SimplifyDemandedBits(LHS, Mask, DCI) || 5895 SimplifyDemandedBits(RHS, Mask, DCI)) { 5896 if (N->getOpcode() != ISD::DELETED_NODE) 5897 DCI.AddToWorklist(N); 5898 return SDValue(N, 0); 5899 } 5900 5901 break; 5902 } 5903 case RISCVISD::FMV_X_ANYEXTW_RV64: { 5904 SDLoc DL(N); 5905 SDValue Op0 = N->getOperand(0); 5906 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 5907 // conversion is unnecessary and can be replaced with an ANY_EXTEND 5908 // of the FMV_W_X_RV64 operand. 5909 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 5910 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 5911 "Unexpected value type!"); 5912 return Op0.getOperand(0); 5913 } 5914 5915 // This is a target-specific version of a DAGCombine performed in 5916 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5917 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5918 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5919 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5920 !Op0.getNode()->hasOneUse()) 5921 break; 5922 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 5923 Op0.getOperand(0)); 5924 APInt SignBit = APInt::getSignMask(32).sext(64); 5925 if (Op0.getOpcode() == ISD::FNEG) 5926 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 5927 DAG.getConstant(SignBit, DL, MVT::i64)); 5928 5929 assert(Op0.getOpcode() == ISD::FABS); 5930 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 5931 DAG.getConstant(~SignBit, DL, MVT::i64)); 5932 } 5933 case ISD::AND: 5934 return performANDCombine(N, DCI, Subtarget); 5935 case ISD::OR: 5936 return performORCombine(N, DCI, Subtarget); 5937 case ISD::XOR: 5938 return performXORCombine(N, DCI, Subtarget); 5939 case ISD::ANY_EXTEND: 5940 return performANY_EXTENDCombine(N, DCI, Subtarget); 5941 case RISCVISD::SELECT_CC: { 5942 // Transform 5943 SDValue LHS = N->getOperand(0); 5944 SDValue RHS = N->getOperand(1); 5945 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 5946 if (!ISD::isIntEqualitySetCC(CCVal)) 5947 break; 5948 5949 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 5950 // (select_cc X, Y, lt, trueV, falseV) 5951 // Sometimes the setcc is introduced after select_cc has been formed. 5952 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5953 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5954 // If we're looking for eq 0 instead of ne 0, we need to invert the 5955 // condition. 5956 bool Invert = CCVal == ISD::SETEQ; 5957 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 5958 if (Invert) 5959 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5960 5961 SDLoc DL(N); 5962 RHS = LHS.getOperand(1); 5963 LHS = LHS.getOperand(0); 5964 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 5965 5966 SDValue TargetCC = 5967 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5968 return DAG.getNode( 5969 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5970 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5971 } 5972 5973 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 5974 // (select_cc X, Y, eq/ne, trueV, falseV) 5975 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 5976 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 5977 {LHS.getOperand(0), LHS.getOperand(1), 5978 N->getOperand(2), N->getOperand(3), 5979 N->getOperand(4)}); 5980 // (select_cc X, 1, setne, trueV, falseV) -> 5981 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 5982 // This can occur when legalizing some floating point comparisons. 5983 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 5984 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 5985 SDLoc DL(N); 5986 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5987 SDValue TargetCC = 5988 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5989 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 5990 return DAG.getNode( 5991 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5992 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5993 } 5994 5995 break; 5996 } 5997 case RISCVISD::BR_CC: { 5998 SDValue LHS = N->getOperand(1); 5999 SDValue RHS = N->getOperand(2); 6000 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 6001 if (!ISD::isIntEqualitySetCC(CCVal)) 6002 break; 6003 6004 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 6005 // (br_cc X, Y, lt, dest) 6006 // Sometimes the setcc is introduced after br_cc has been formed. 6007 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6008 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6009 // If we're looking for eq 0 instead of ne 0, we need to invert the 6010 // condition. 6011 bool Invert = CCVal == ISD::SETEQ; 6012 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6013 if (Invert) 6014 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6015 6016 SDLoc DL(N); 6017 RHS = LHS.getOperand(1); 6018 LHS = LHS.getOperand(0); 6019 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6020 6021 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6022 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 6023 N->getOperand(4)); 6024 } 6025 6026 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 6027 // (br_cc X, Y, eq/ne, trueV, falseV) 6028 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6029 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 6030 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 6031 N->getOperand(3), N->getOperand(4)); 6032 6033 // (br_cc X, 1, setne, br_cc) -> 6034 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 6035 // This can occur when legalizing some floating point comparisons. 6036 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6037 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6038 SDLoc DL(N); 6039 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6040 SDValue TargetCC = DAG.getCondCode(CCVal); 6041 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6042 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6043 N->getOperand(0), LHS, RHS, TargetCC, 6044 N->getOperand(4)); 6045 } 6046 break; 6047 } 6048 case ISD::FCOPYSIGN: { 6049 EVT VT = N->getValueType(0); 6050 if (!VT.isVector()) 6051 break; 6052 // There is a form of VFSGNJ which injects the negated sign of its second 6053 // operand. Try and bubble any FNEG up after the extend/round to produce 6054 // this optimized pattern. Avoid modifying cases where FP_ROUND and 6055 // TRUNC=1. 6056 SDValue In2 = N->getOperand(1); 6057 // Avoid cases where the extend/round has multiple uses, as duplicating 6058 // those is typically more expensive than removing a fneg. 6059 if (!In2.hasOneUse()) 6060 break; 6061 if (In2.getOpcode() != ISD::FP_EXTEND && 6062 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 6063 break; 6064 In2 = In2.getOperand(0); 6065 if (In2.getOpcode() != ISD::FNEG) 6066 break; 6067 SDLoc DL(N); 6068 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 6069 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 6070 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 6071 } 6072 case ISD::MGATHER: 6073 case ISD::MSCATTER: { 6074 if (!DCI.isBeforeLegalize()) 6075 break; 6076 MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N); 6077 SDValue Index = MGSN->getIndex(); 6078 EVT IndexVT = Index.getValueType(); 6079 MVT XLenVT = Subtarget.getXLenVT(); 6080 // RISCV indexed loads only support the "unsigned unscaled" addressing 6081 // mode, so anything else must be manually legalized. 6082 bool NeedsIdxLegalization = MGSN->isIndexScaled() || 6083 (MGSN->isIndexSigned() && 6084 IndexVT.getVectorElementType().bitsLT(XLenVT)); 6085 if (!NeedsIdxLegalization) 6086 break; 6087 6088 SDLoc DL(N); 6089 6090 // Any index legalization should first promote to XLenVT, so we don't lose 6091 // bits when scaling. This may create an illegal index type so we let 6092 // LLVM's legalization take care of the splitting. 6093 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 6094 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6095 Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND 6096 : ISD::ZERO_EXTEND, 6097 DL, IndexVT, Index); 6098 } 6099 6100 unsigned Scale = N->getConstantOperandVal(5); 6101 if (MGSN->isIndexScaled() && Scale != 1) { 6102 // Manually scale the indices by the element size. 6103 // TODO: Sanitize the scale operand here? 6104 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 6105 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 6106 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 6107 } 6108 6109 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 6110 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) { 6111 return DAG.getMaskedGather( 6112 N->getVTList(), MGSN->getMemoryVT(), DL, 6113 {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(), 6114 MGSN->getBasePtr(), Index, MGN->getScale()}, 6115 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 6116 } 6117 const auto *MSN = cast<MaskedScatterSDNode>(N); 6118 return DAG.getMaskedScatter( 6119 N->getVTList(), MGSN->getMemoryVT(), DL, 6120 {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(), 6121 Index, MGSN->getScale()}, 6122 MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 6123 } 6124 case RISCVISD::SRA_VL: 6125 case RISCVISD::SRL_VL: 6126 case RISCVISD::SHL_VL: { 6127 SDValue ShAmt = N->getOperand(1); 6128 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6129 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6130 SDLoc DL(N); 6131 SDValue VL = N->getOperand(3); 6132 EVT VT = N->getValueType(0); 6133 ShAmt = 6134 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 6135 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 6136 N->getOperand(2), N->getOperand(3)); 6137 } 6138 break; 6139 } 6140 case ISD::SRA: 6141 case ISD::SRL: 6142 case ISD::SHL: { 6143 SDValue ShAmt = N->getOperand(1); 6144 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6145 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6146 SDLoc DL(N); 6147 EVT VT = N->getValueType(0); 6148 ShAmt = 6149 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 6150 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 6151 } 6152 break; 6153 } 6154 case RISCVISD::MUL_VL: { 6155 // Try to form VWMUL or VWMULU. 6156 // FIXME: Look for splat of extended scalar as well. 6157 // FIXME: Support VWMULSU. 6158 SDValue Op0 = N->getOperand(0); 6159 SDValue Op1 = N->getOperand(1); 6160 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6161 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6162 if ((!IsSignExt && !IsZeroExt) || Op0.getOpcode() != Op1.getOpcode()) 6163 return SDValue(); 6164 6165 // Make sure the extends have a single use. 6166 if (!Op0.hasOneUse() || !Op1.hasOneUse()) 6167 return SDValue(); 6168 6169 SDValue Mask = N->getOperand(2); 6170 SDValue VL = N->getOperand(3); 6171 if (Op0.getOperand(1) != Mask || Op1.getOperand(1) != Mask || 6172 Op0.getOperand(2) != VL || Op1.getOperand(2) != VL) 6173 return SDValue(); 6174 6175 Op0 = Op0.getOperand(0); 6176 Op1 = Op1.getOperand(0); 6177 6178 MVT VT = N->getSimpleValueType(0); 6179 MVT NarrowVT = 6180 MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits() / 2), 6181 VT.getVectorElementCount()); 6182 6183 SDLoc DL(N); 6184 6185 // Re-introduce narrower extends if needed. 6186 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6187 if (Op0.getValueType() != NarrowVT) 6188 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6189 if (Op1.getValueType() != NarrowVT) 6190 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6191 6192 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6193 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6194 } 6195 } 6196 6197 return SDValue(); 6198 } 6199 6200 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 6201 const SDNode *N, CombineLevel Level) const { 6202 // The following folds are only desirable if `(OP _, c1 << c2)` can be 6203 // materialised in fewer instructions than `(OP _, c1)`: 6204 // 6205 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 6206 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 6207 SDValue N0 = N->getOperand(0); 6208 EVT Ty = N0.getValueType(); 6209 if (Ty.isScalarInteger() && 6210 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 6211 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6212 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6213 if (C1 && C2) { 6214 const APInt &C1Int = C1->getAPIntValue(); 6215 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 6216 6217 // We can materialise `c1 << c2` into an add immediate, so it's "free", 6218 // and the combine should happen, to potentially allow further combines 6219 // later. 6220 if (ShiftedC1Int.getMinSignedBits() <= 64 && 6221 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 6222 return true; 6223 6224 // We can materialise `c1` in an add immediate, so it's "free", and the 6225 // combine should be prevented. 6226 if (C1Int.getMinSignedBits() <= 64 && 6227 isLegalAddImmediate(C1Int.getSExtValue())) 6228 return false; 6229 6230 // Neither constant will fit into an immediate, so find materialisation 6231 // costs. 6232 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 6233 Subtarget.is64Bit()); 6234 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 6235 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 6236 6237 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 6238 // combine should be prevented. 6239 if (C1Cost < ShiftedC1Cost) 6240 return false; 6241 } 6242 } 6243 return true; 6244 } 6245 6246 bool RISCVTargetLowering::targetShrinkDemandedConstant( 6247 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 6248 TargetLoweringOpt &TLO) const { 6249 // Delay this optimization as late as possible. 6250 if (!TLO.LegalOps) 6251 return false; 6252 6253 EVT VT = Op.getValueType(); 6254 if (VT.isVector()) 6255 return false; 6256 6257 // Only handle AND for now. 6258 if (Op.getOpcode() != ISD::AND) 6259 return false; 6260 6261 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 6262 if (!C) 6263 return false; 6264 6265 const APInt &Mask = C->getAPIntValue(); 6266 6267 // Clear all non-demanded bits initially. 6268 APInt ShrunkMask = Mask & DemandedBits; 6269 6270 // Try to make a smaller immediate by setting undemanded bits. 6271 6272 APInt ExpandedMask = Mask | ~DemandedBits; 6273 6274 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 6275 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 6276 }; 6277 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 6278 if (NewMask == Mask) 6279 return true; 6280 SDLoc DL(Op); 6281 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 6282 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 6283 return TLO.CombineTo(Op, NewOp); 6284 }; 6285 6286 // If the shrunk mask fits in sign extended 12 bits, let the target 6287 // independent code apply it. 6288 if (ShrunkMask.isSignedIntN(12)) 6289 return false; 6290 6291 // Preserve (and X, 0xffff) when zext.h is supported. 6292 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 6293 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 6294 if (IsLegalMask(NewMask)) 6295 return UseMask(NewMask); 6296 } 6297 6298 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 6299 if (VT == MVT::i64) { 6300 APInt NewMask = APInt(64, 0xffffffff); 6301 if (IsLegalMask(NewMask)) 6302 return UseMask(NewMask); 6303 } 6304 6305 // For the remaining optimizations, we need to be able to make a negative 6306 // number through a combination of mask and undemanded bits. 6307 if (!ExpandedMask.isNegative()) 6308 return false; 6309 6310 // What is the fewest number of bits we need to represent the negative number. 6311 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 6312 6313 // Try to make a 12 bit negative immediate. If that fails try to make a 32 6314 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 6315 APInt NewMask = ShrunkMask; 6316 if (MinSignedBits <= 12) 6317 NewMask.setBitsFrom(11); 6318 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 6319 NewMask.setBitsFrom(31); 6320 else 6321 return false; 6322 6323 // Sanity check that our new mask is a subset of the demanded mask. 6324 assert(IsLegalMask(NewMask)); 6325 return UseMask(NewMask); 6326 } 6327 6328 static void computeGREV(APInt &Src, unsigned ShAmt) { 6329 ShAmt &= Src.getBitWidth() - 1; 6330 uint64_t x = Src.getZExtValue(); 6331 if (ShAmt & 1) 6332 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 6333 if (ShAmt & 2) 6334 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 6335 if (ShAmt & 4) 6336 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 6337 if (ShAmt & 8) 6338 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 6339 if (ShAmt & 16) 6340 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 6341 if (ShAmt & 32) 6342 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 6343 Src = x; 6344 } 6345 6346 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6347 KnownBits &Known, 6348 const APInt &DemandedElts, 6349 const SelectionDAG &DAG, 6350 unsigned Depth) const { 6351 unsigned BitWidth = Known.getBitWidth(); 6352 unsigned Opc = Op.getOpcode(); 6353 assert((Opc >= ISD::BUILTIN_OP_END || 6354 Opc == ISD::INTRINSIC_WO_CHAIN || 6355 Opc == ISD::INTRINSIC_W_CHAIN || 6356 Opc == ISD::INTRINSIC_VOID) && 6357 "Should use MaskedValueIsZero if you don't know whether Op" 6358 " is a target node!"); 6359 6360 Known.resetAll(); 6361 switch (Opc) { 6362 default: break; 6363 case RISCVISD::SELECT_CC: { 6364 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 6365 // If we don't know any bits, early out. 6366 if (Known.isUnknown()) 6367 break; 6368 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 6369 6370 // Only known if known in both the LHS and RHS. 6371 Known = KnownBits::commonBits(Known, Known2); 6372 break; 6373 } 6374 case RISCVISD::REMUW: { 6375 KnownBits Known2; 6376 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6377 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6378 // We only care about the lower 32 bits. 6379 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 6380 // Restore the original width by sign extending. 6381 Known = Known.sext(BitWidth); 6382 break; 6383 } 6384 case RISCVISD::DIVUW: { 6385 KnownBits Known2; 6386 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6387 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6388 // We only care about the lower 32 bits. 6389 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 6390 // Restore the original width by sign extending. 6391 Known = Known.sext(BitWidth); 6392 break; 6393 } 6394 case RISCVISD::CTZW: { 6395 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6396 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 6397 unsigned LowBits = Log2_32(PossibleTZ) + 1; 6398 Known.Zero.setBitsFrom(LowBits); 6399 break; 6400 } 6401 case RISCVISD::CLZW: { 6402 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6403 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 6404 unsigned LowBits = Log2_32(PossibleLZ) + 1; 6405 Known.Zero.setBitsFrom(LowBits); 6406 break; 6407 } 6408 case RISCVISD::GREV: 6409 case RISCVISD::GREVW: { 6410 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6411 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6412 if (Opc == RISCVISD::GREVW) 6413 Known = Known.trunc(32); 6414 unsigned ShAmt = C->getZExtValue(); 6415 computeGREV(Known.Zero, ShAmt); 6416 computeGREV(Known.One, ShAmt); 6417 if (Opc == RISCVISD::GREVW) 6418 Known = Known.sext(BitWidth); 6419 } 6420 break; 6421 } 6422 case RISCVISD::READ_VLENB: 6423 // We assume VLENB is at least 16 bytes. 6424 Known.Zero.setLowBits(4); 6425 break; 6426 case ISD::INTRINSIC_W_CHAIN: { 6427 unsigned IntNo = Op.getConstantOperandVal(1); 6428 switch (IntNo) { 6429 default: 6430 // We can't do anything for most intrinsics. 6431 break; 6432 case Intrinsic::riscv_vsetvli: 6433 case Intrinsic::riscv_vsetvlimax: 6434 // Assume that VL output is positive and would fit in an int32_t. 6435 // TODO: VLEN might be capped at 16 bits in a future V spec update. 6436 if (BitWidth >= 32) 6437 Known.Zero.setBitsFrom(31); 6438 break; 6439 } 6440 break; 6441 } 6442 } 6443 } 6444 6445 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 6446 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6447 unsigned Depth) const { 6448 switch (Op.getOpcode()) { 6449 default: 6450 break; 6451 case RISCVISD::SLLW: 6452 case RISCVISD::SRAW: 6453 case RISCVISD::SRLW: 6454 case RISCVISD::DIVW: 6455 case RISCVISD::DIVUW: 6456 case RISCVISD::REMUW: 6457 case RISCVISD::ROLW: 6458 case RISCVISD::RORW: 6459 case RISCVISD::GREVW: 6460 case RISCVISD::GORCW: 6461 case RISCVISD::FSLW: 6462 case RISCVISD::FSRW: 6463 case RISCVISD::SHFLW: 6464 case RISCVISD::UNSHFLW: 6465 case RISCVISD::BCOMPRESSW: 6466 case RISCVISD::BDECOMPRESSW: 6467 // TODO: As the result is sign-extended, this is conservatively correct. A 6468 // more precise answer could be calculated for SRAW depending on known 6469 // bits in the shift amount. 6470 return 33; 6471 case RISCVISD::SHFL: 6472 case RISCVISD::UNSHFL: { 6473 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 6474 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 6475 // will stay within the upper 32 bits. If there were more than 32 sign bits 6476 // before there will be at least 33 sign bits after. 6477 if (Op.getValueType() == MVT::i64 && 6478 isa<ConstantSDNode>(Op.getOperand(1)) && 6479 (Op.getConstantOperandVal(1) & 0x10) == 0) { 6480 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 6481 if (Tmp > 32) 6482 return 33; 6483 } 6484 break; 6485 } 6486 case RISCVISD::VMV_X_S: 6487 // The number of sign bits of the scalar result is computed by obtaining the 6488 // element type of the input vector operand, subtracting its width from the 6489 // XLEN, and then adding one (sign bit within the element type). If the 6490 // element type is wider than XLen, the least-significant XLEN bits are 6491 // taken. 6492 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 6493 return 1; 6494 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 6495 } 6496 6497 return 1; 6498 } 6499 6500 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 6501 MachineBasicBlock *BB) { 6502 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 6503 6504 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 6505 // Should the count have wrapped while it was being read, we need to try 6506 // again. 6507 // ... 6508 // read: 6509 // rdcycleh x3 # load high word of cycle 6510 // rdcycle x2 # load low word of cycle 6511 // rdcycleh x4 # load high word of cycle 6512 // bne x3, x4, read # check if high word reads match, otherwise try again 6513 // ... 6514 6515 MachineFunction &MF = *BB->getParent(); 6516 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6517 MachineFunction::iterator It = ++BB->getIterator(); 6518 6519 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6520 MF.insert(It, LoopMBB); 6521 6522 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6523 MF.insert(It, DoneMBB); 6524 6525 // Transfer the remainder of BB and its successor edges to DoneMBB. 6526 DoneMBB->splice(DoneMBB->begin(), BB, 6527 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 6528 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 6529 6530 BB->addSuccessor(LoopMBB); 6531 6532 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6533 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6534 Register LoReg = MI.getOperand(0).getReg(); 6535 Register HiReg = MI.getOperand(1).getReg(); 6536 DebugLoc DL = MI.getDebugLoc(); 6537 6538 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 6539 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 6540 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6541 .addReg(RISCV::X0); 6542 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 6543 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 6544 .addReg(RISCV::X0); 6545 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 6546 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6547 .addReg(RISCV::X0); 6548 6549 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 6550 .addReg(HiReg) 6551 .addReg(ReadAgainReg) 6552 .addMBB(LoopMBB); 6553 6554 LoopMBB->addSuccessor(LoopMBB); 6555 LoopMBB->addSuccessor(DoneMBB); 6556 6557 MI.eraseFromParent(); 6558 6559 return DoneMBB; 6560 } 6561 6562 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 6563 MachineBasicBlock *BB) { 6564 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 6565 6566 MachineFunction &MF = *BB->getParent(); 6567 DebugLoc DL = MI.getDebugLoc(); 6568 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6569 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6570 Register LoReg = MI.getOperand(0).getReg(); 6571 Register HiReg = MI.getOperand(1).getReg(); 6572 Register SrcReg = MI.getOperand(2).getReg(); 6573 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 6574 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6575 6576 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 6577 RI); 6578 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6579 MachineMemOperand *MMOLo = 6580 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 6581 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6582 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 6583 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 6584 .addFrameIndex(FI) 6585 .addImm(0) 6586 .addMemOperand(MMOLo); 6587 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 6588 .addFrameIndex(FI) 6589 .addImm(4) 6590 .addMemOperand(MMOHi); 6591 MI.eraseFromParent(); // The pseudo instruction is gone now. 6592 return BB; 6593 } 6594 6595 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 6596 MachineBasicBlock *BB) { 6597 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 6598 "Unexpected instruction"); 6599 6600 MachineFunction &MF = *BB->getParent(); 6601 DebugLoc DL = MI.getDebugLoc(); 6602 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6603 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6604 Register DstReg = MI.getOperand(0).getReg(); 6605 Register LoReg = MI.getOperand(1).getReg(); 6606 Register HiReg = MI.getOperand(2).getReg(); 6607 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 6608 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6609 6610 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6611 MachineMemOperand *MMOLo = 6612 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 6613 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6614 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 6615 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6616 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 6617 .addFrameIndex(FI) 6618 .addImm(0) 6619 .addMemOperand(MMOLo); 6620 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6621 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 6622 .addFrameIndex(FI) 6623 .addImm(4) 6624 .addMemOperand(MMOHi); 6625 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 6626 MI.eraseFromParent(); // The pseudo instruction is gone now. 6627 return BB; 6628 } 6629 6630 static bool isSelectPseudo(MachineInstr &MI) { 6631 switch (MI.getOpcode()) { 6632 default: 6633 return false; 6634 case RISCV::Select_GPR_Using_CC_GPR: 6635 case RISCV::Select_FPR16_Using_CC_GPR: 6636 case RISCV::Select_FPR32_Using_CC_GPR: 6637 case RISCV::Select_FPR64_Using_CC_GPR: 6638 return true; 6639 } 6640 } 6641 6642 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 6643 MachineBasicBlock *BB) { 6644 // To "insert" Select_* instructions, we actually have to insert the triangle 6645 // control-flow pattern. The incoming instructions know the destination vreg 6646 // to set, the condition code register to branch on, the true/false values to 6647 // select between, and the condcode to use to select the appropriate branch. 6648 // 6649 // We produce the following control flow: 6650 // HeadMBB 6651 // | \ 6652 // | IfFalseMBB 6653 // | / 6654 // TailMBB 6655 // 6656 // When we find a sequence of selects we attempt to optimize their emission 6657 // by sharing the control flow. Currently we only handle cases where we have 6658 // multiple selects with the exact same condition (same LHS, RHS and CC). 6659 // The selects may be interleaved with other instructions if the other 6660 // instructions meet some requirements we deem safe: 6661 // - They are debug instructions. Otherwise, 6662 // - They do not have side-effects, do not access memory and their inputs do 6663 // not depend on the results of the select pseudo-instructions. 6664 // The TrueV/FalseV operands of the selects cannot depend on the result of 6665 // previous selects in the sequence. 6666 // These conditions could be further relaxed. See the X86 target for a 6667 // related approach and more information. 6668 Register LHS = MI.getOperand(1).getReg(); 6669 Register RHS = MI.getOperand(2).getReg(); 6670 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 6671 6672 SmallVector<MachineInstr *, 4> SelectDebugValues; 6673 SmallSet<Register, 4> SelectDests; 6674 SelectDests.insert(MI.getOperand(0).getReg()); 6675 6676 MachineInstr *LastSelectPseudo = &MI; 6677 6678 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 6679 SequenceMBBI != E; ++SequenceMBBI) { 6680 if (SequenceMBBI->isDebugInstr()) 6681 continue; 6682 else if (isSelectPseudo(*SequenceMBBI)) { 6683 if (SequenceMBBI->getOperand(1).getReg() != LHS || 6684 SequenceMBBI->getOperand(2).getReg() != RHS || 6685 SequenceMBBI->getOperand(3).getImm() != CC || 6686 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 6687 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 6688 break; 6689 LastSelectPseudo = &*SequenceMBBI; 6690 SequenceMBBI->collectDebugValues(SelectDebugValues); 6691 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 6692 } else { 6693 if (SequenceMBBI->hasUnmodeledSideEffects() || 6694 SequenceMBBI->mayLoadOrStore()) 6695 break; 6696 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 6697 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 6698 })) 6699 break; 6700 } 6701 } 6702 6703 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 6704 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6705 DebugLoc DL = MI.getDebugLoc(); 6706 MachineFunction::iterator I = ++BB->getIterator(); 6707 6708 MachineBasicBlock *HeadMBB = BB; 6709 MachineFunction *F = BB->getParent(); 6710 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 6711 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 6712 6713 F->insert(I, IfFalseMBB); 6714 F->insert(I, TailMBB); 6715 6716 // Transfer debug instructions associated with the selects to TailMBB. 6717 for (MachineInstr *DebugInstr : SelectDebugValues) { 6718 TailMBB->push_back(DebugInstr->removeFromParent()); 6719 } 6720 6721 // Move all instructions after the sequence to TailMBB. 6722 TailMBB->splice(TailMBB->end(), HeadMBB, 6723 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 6724 // Update machine-CFG edges by transferring all successors of the current 6725 // block to the new block which will contain the Phi nodes for the selects. 6726 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 6727 // Set the successors for HeadMBB. 6728 HeadMBB->addSuccessor(IfFalseMBB); 6729 HeadMBB->addSuccessor(TailMBB); 6730 6731 // Insert appropriate branch. 6732 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 6733 6734 BuildMI(HeadMBB, DL, TII.get(Opcode)) 6735 .addReg(LHS) 6736 .addReg(RHS) 6737 .addMBB(TailMBB); 6738 6739 // IfFalseMBB just falls through to TailMBB. 6740 IfFalseMBB->addSuccessor(TailMBB); 6741 6742 // Create PHIs for all of the select pseudo-instructions. 6743 auto SelectMBBI = MI.getIterator(); 6744 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 6745 auto InsertionPoint = TailMBB->begin(); 6746 while (SelectMBBI != SelectEnd) { 6747 auto Next = std::next(SelectMBBI); 6748 if (isSelectPseudo(*SelectMBBI)) { 6749 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 6750 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 6751 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 6752 .addReg(SelectMBBI->getOperand(4).getReg()) 6753 .addMBB(HeadMBB) 6754 .addReg(SelectMBBI->getOperand(5).getReg()) 6755 .addMBB(IfFalseMBB); 6756 SelectMBBI->eraseFromParent(); 6757 } 6758 SelectMBBI = Next; 6759 } 6760 6761 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6762 return TailMBB; 6763 } 6764 6765 MachineBasicBlock * 6766 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 6767 MachineBasicBlock *BB) const { 6768 switch (MI.getOpcode()) { 6769 default: 6770 llvm_unreachable("Unexpected instr type to insert"); 6771 case RISCV::ReadCycleWide: 6772 assert(!Subtarget.is64Bit() && 6773 "ReadCycleWrite is only to be used on riscv32"); 6774 return emitReadCycleWidePseudo(MI, BB); 6775 case RISCV::Select_GPR_Using_CC_GPR: 6776 case RISCV::Select_FPR16_Using_CC_GPR: 6777 case RISCV::Select_FPR32_Using_CC_GPR: 6778 case RISCV::Select_FPR64_Using_CC_GPR: 6779 return emitSelectPseudo(MI, BB); 6780 case RISCV::BuildPairF64Pseudo: 6781 return emitBuildPairF64Pseudo(MI, BB); 6782 case RISCV::SplitF64Pseudo: 6783 return emitSplitF64Pseudo(MI, BB); 6784 } 6785 } 6786 6787 // Calling Convention Implementation. 6788 // The expectations for frontend ABI lowering vary from target to target. 6789 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 6790 // details, but this is a longer term goal. For now, we simply try to keep the 6791 // role of the frontend as simple and well-defined as possible. The rules can 6792 // be summarised as: 6793 // * Never split up large scalar arguments. We handle them here. 6794 // * If a hardfloat calling convention is being used, and the struct may be 6795 // passed in a pair of registers (fp+fp, int+fp), and both registers are 6796 // available, then pass as two separate arguments. If either the GPRs or FPRs 6797 // are exhausted, then pass according to the rule below. 6798 // * If a struct could never be passed in registers or directly in a stack 6799 // slot (as it is larger than 2*XLEN and the floating point rules don't 6800 // apply), then pass it using a pointer with the byval attribute. 6801 // * If a struct is less than 2*XLEN, then coerce to either a two-element 6802 // word-sized array or a 2*XLEN scalar (depending on alignment). 6803 // * The frontend can determine whether a struct is returned by reference or 6804 // not based on its size and fields. If it will be returned by reference, the 6805 // frontend must modify the prototype so a pointer with the sret annotation is 6806 // passed as the first argument. This is not necessary for large scalar 6807 // returns. 6808 // * Struct return values and varargs should be coerced to structs containing 6809 // register-size fields in the same situations they would be for fixed 6810 // arguments. 6811 6812 static const MCPhysReg ArgGPRs[] = { 6813 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 6814 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 6815 }; 6816 static const MCPhysReg ArgFPR16s[] = { 6817 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 6818 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 6819 }; 6820 static const MCPhysReg ArgFPR32s[] = { 6821 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 6822 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 6823 }; 6824 static const MCPhysReg ArgFPR64s[] = { 6825 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 6826 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 6827 }; 6828 // This is an interim calling convention and it may be changed in the future. 6829 static const MCPhysReg ArgVRs[] = { 6830 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 6831 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 6832 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 6833 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 6834 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 6835 RISCV::V20M2, RISCV::V22M2}; 6836 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 6837 RISCV::V20M4}; 6838 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 6839 6840 // Pass a 2*XLEN argument that has been split into two XLEN values through 6841 // registers or the stack as necessary. 6842 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 6843 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 6844 MVT ValVT2, MVT LocVT2, 6845 ISD::ArgFlagsTy ArgFlags2) { 6846 unsigned XLenInBytes = XLen / 8; 6847 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6848 // At least one half can be passed via register. 6849 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 6850 VA1.getLocVT(), CCValAssign::Full)); 6851 } else { 6852 // Both halves must be passed on the stack, with proper alignment. 6853 Align StackAlign = 6854 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 6855 State.addLoc( 6856 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 6857 State.AllocateStack(XLenInBytes, StackAlign), 6858 VA1.getLocVT(), CCValAssign::Full)); 6859 State.addLoc(CCValAssign::getMem( 6860 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6861 LocVT2, CCValAssign::Full)); 6862 return false; 6863 } 6864 6865 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6866 // The second half can also be passed via register. 6867 State.addLoc( 6868 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 6869 } else { 6870 // The second half is passed via the stack, without additional alignment. 6871 State.addLoc(CCValAssign::getMem( 6872 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6873 LocVT2, CCValAssign::Full)); 6874 } 6875 6876 return false; 6877 } 6878 6879 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 6880 Optional<unsigned> FirstMaskArgument, 6881 CCState &State, const RISCVTargetLowering &TLI) { 6882 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 6883 if (RC == &RISCV::VRRegClass) { 6884 // Assign the first mask argument to V0. 6885 // This is an interim calling convention and it may be changed in the 6886 // future. 6887 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 6888 return State.AllocateReg(RISCV::V0); 6889 return State.AllocateReg(ArgVRs); 6890 } 6891 if (RC == &RISCV::VRM2RegClass) 6892 return State.AllocateReg(ArgVRM2s); 6893 if (RC == &RISCV::VRM4RegClass) 6894 return State.AllocateReg(ArgVRM4s); 6895 if (RC == &RISCV::VRM8RegClass) 6896 return State.AllocateReg(ArgVRM8s); 6897 llvm_unreachable("Unhandled register class for ValueType"); 6898 } 6899 6900 // Implements the RISC-V calling convention. Returns true upon failure. 6901 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 6902 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 6903 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 6904 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 6905 Optional<unsigned> FirstMaskArgument) { 6906 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 6907 assert(XLen == 32 || XLen == 64); 6908 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 6909 6910 // Any return value split in to more than two values can't be returned 6911 // directly. Vectors are returned via the available vector registers. 6912 if (!LocVT.isVector() && IsRet && ValNo > 1) 6913 return true; 6914 6915 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 6916 // variadic argument, or if no F16/F32 argument registers are available. 6917 bool UseGPRForF16_F32 = true; 6918 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 6919 // variadic argument, or if no F64 argument registers are available. 6920 bool UseGPRForF64 = true; 6921 6922 switch (ABI) { 6923 default: 6924 llvm_unreachable("Unexpected ABI"); 6925 case RISCVABI::ABI_ILP32: 6926 case RISCVABI::ABI_LP64: 6927 break; 6928 case RISCVABI::ABI_ILP32F: 6929 case RISCVABI::ABI_LP64F: 6930 UseGPRForF16_F32 = !IsFixed; 6931 break; 6932 case RISCVABI::ABI_ILP32D: 6933 case RISCVABI::ABI_LP64D: 6934 UseGPRForF16_F32 = !IsFixed; 6935 UseGPRForF64 = !IsFixed; 6936 break; 6937 } 6938 6939 // FPR16, FPR32, and FPR64 alias each other. 6940 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 6941 UseGPRForF16_F32 = true; 6942 UseGPRForF64 = true; 6943 } 6944 6945 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 6946 // similar local variables rather than directly checking against the target 6947 // ABI. 6948 6949 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 6950 LocVT = XLenVT; 6951 LocInfo = CCValAssign::BCvt; 6952 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 6953 LocVT = MVT::i64; 6954 LocInfo = CCValAssign::BCvt; 6955 } 6956 6957 // If this is a variadic argument, the RISC-V calling convention requires 6958 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 6959 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 6960 // be used regardless of whether the original argument was split during 6961 // legalisation or not. The argument will not be passed by registers if the 6962 // original type is larger than 2*XLEN, so the register alignment rule does 6963 // not apply. 6964 unsigned TwoXLenInBytes = (2 * XLen) / 8; 6965 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 6966 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 6967 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 6968 // Skip 'odd' register if necessary. 6969 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 6970 State.AllocateReg(ArgGPRs); 6971 } 6972 6973 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 6974 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 6975 State.getPendingArgFlags(); 6976 6977 assert(PendingLocs.size() == PendingArgFlags.size() && 6978 "PendingLocs and PendingArgFlags out of sync"); 6979 6980 // Handle passing f64 on RV32D with a soft float ABI or when floating point 6981 // registers are exhausted. 6982 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 6983 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 6984 "Can't lower f64 if it is split"); 6985 // Depending on available argument GPRS, f64 may be passed in a pair of 6986 // GPRs, split between a GPR and the stack, or passed completely on the 6987 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 6988 // cases. 6989 Register Reg = State.AllocateReg(ArgGPRs); 6990 LocVT = MVT::i32; 6991 if (!Reg) { 6992 unsigned StackOffset = State.AllocateStack(8, Align(8)); 6993 State.addLoc( 6994 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 6995 return false; 6996 } 6997 if (!State.AllocateReg(ArgGPRs)) 6998 State.AllocateStack(4, Align(4)); 6999 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7000 return false; 7001 } 7002 7003 // Fixed-length vectors are located in the corresponding scalable-vector 7004 // container types. 7005 if (ValVT.isFixedLengthVector()) 7006 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7007 7008 // Split arguments might be passed indirectly, so keep track of the pending 7009 // values. Split vectors are passed via a mix of registers and indirectly, so 7010 // treat them as we would any other argument. 7011 if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 7012 LocVT = XLenVT; 7013 LocInfo = CCValAssign::Indirect; 7014 PendingLocs.push_back( 7015 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 7016 PendingArgFlags.push_back(ArgFlags); 7017 if (!ArgFlags.isSplitEnd()) { 7018 return false; 7019 } 7020 } 7021 7022 // If the split argument only had two elements, it should be passed directly 7023 // in registers or on the stack. 7024 if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 7025 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 7026 // Apply the normal calling convention rules to the first half of the 7027 // split argument. 7028 CCValAssign VA = PendingLocs[0]; 7029 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 7030 PendingLocs.clear(); 7031 PendingArgFlags.clear(); 7032 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 7033 ArgFlags); 7034 } 7035 7036 // Allocate to a register if possible, or else a stack slot. 7037 Register Reg; 7038 unsigned StoreSizeBytes = XLen / 8; 7039 Align StackAlign = Align(XLen / 8); 7040 7041 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 7042 Reg = State.AllocateReg(ArgFPR16s); 7043 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 7044 Reg = State.AllocateReg(ArgFPR32s); 7045 else if (ValVT == MVT::f64 && !UseGPRForF64) 7046 Reg = State.AllocateReg(ArgFPR64s); 7047 else if (ValVT.isVector()) { 7048 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 7049 if (!Reg) { 7050 // For return values, the vector must be passed fully via registers or 7051 // via the stack. 7052 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 7053 // but we're using all of them. 7054 if (IsRet) 7055 return true; 7056 // Try using a GPR to pass the address 7057 if ((Reg = State.AllocateReg(ArgGPRs))) { 7058 LocVT = XLenVT; 7059 LocInfo = CCValAssign::Indirect; 7060 } else if (ValVT.isScalableVector()) { 7061 report_fatal_error("Unable to pass scalable vector types on the stack"); 7062 } else { 7063 // Pass fixed-length vectors on the stack. 7064 LocVT = ValVT; 7065 StoreSizeBytes = ValVT.getStoreSize(); 7066 // Align vectors to their element sizes, being careful for vXi1 7067 // vectors. 7068 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7069 } 7070 } 7071 } else { 7072 Reg = State.AllocateReg(ArgGPRs); 7073 } 7074 7075 unsigned StackOffset = 7076 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 7077 7078 // If we reach this point and PendingLocs is non-empty, we must be at the 7079 // end of a split argument that must be passed indirectly. 7080 if (!PendingLocs.empty()) { 7081 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 7082 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 7083 7084 for (auto &It : PendingLocs) { 7085 if (Reg) 7086 It.convertToReg(Reg); 7087 else 7088 It.convertToMem(StackOffset); 7089 State.addLoc(It); 7090 } 7091 PendingLocs.clear(); 7092 PendingArgFlags.clear(); 7093 return false; 7094 } 7095 7096 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 7097 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 7098 "Expected an XLenVT or vector types at this stage"); 7099 7100 if (Reg) { 7101 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7102 return false; 7103 } 7104 7105 // When a floating-point value is passed on the stack, no bit-conversion is 7106 // needed. 7107 if (ValVT.isFloatingPoint()) { 7108 LocVT = ValVT; 7109 LocInfo = CCValAssign::Full; 7110 } 7111 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7112 return false; 7113 } 7114 7115 template <typename ArgTy> 7116 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 7117 for (const auto &ArgIdx : enumerate(Args)) { 7118 MVT ArgVT = ArgIdx.value().VT; 7119 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 7120 return ArgIdx.index(); 7121 } 7122 return None; 7123 } 7124 7125 void RISCVTargetLowering::analyzeInputArgs( 7126 MachineFunction &MF, CCState &CCInfo, 7127 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 7128 RISCVCCAssignFn Fn) const { 7129 unsigned NumArgs = Ins.size(); 7130 FunctionType *FType = MF.getFunction().getFunctionType(); 7131 7132 Optional<unsigned> FirstMaskArgument; 7133 if (Subtarget.hasStdExtV()) 7134 FirstMaskArgument = preAssignMask(Ins); 7135 7136 for (unsigned i = 0; i != NumArgs; ++i) { 7137 MVT ArgVT = Ins[i].VT; 7138 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 7139 7140 Type *ArgTy = nullptr; 7141 if (IsRet) 7142 ArgTy = FType->getReturnType(); 7143 else if (Ins[i].isOrigArg()) 7144 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 7145 7146 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7147 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7148 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 7149 FirstMaskArgument)) { 7150 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 7151 << EVT(ArgVT).getEVTString() << '\n'); 7152 llvm_unreachable(nullptr); 7153 } 7154 } 7155 } 7156 7157 void RISCVTargetLowering::analyzeOutputArgs( 7158 MachineFunction &MF, CCState &CCInfo, 7159 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 7160 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 7161 unsigned NumArgs = Outs.size(); 7162 7163 Optional<unsigned> FirstMaskArgument; 7164 if (Subtarget.hasStdExtV()) 7165 FirstMaskArgument = preAssignMask(Outs); 7166 7167 for (unsigned i = 0; i != NumArgs; i++) { 7168 MVT ArgVT = Outs[i].VT; 7169 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 7170 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 7171 7172 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7173 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7174 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 7175 FirstMaskArgument)) { 7176 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 7177 << EVT(ArgVT).getEVTString() << "\n"); 7178 llvm_unreachable(nullptr); 7179 } 7180 } 7181 } 7182 7183 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 7184 // values. 7185 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 7186 const CCValAssign &VA, const SDLoc &DL, 7187 const RISCVSubtarget &Subtarget) { 7188 switch (VA.getLocInfo()) { 7189 default: 7190 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7191 case CCValAssign::Full: 7192 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 7193 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 7194 break; 7195 case CCValAssign::BCvt: 7196 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7197 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 7198 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7199 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 7200 else 7201 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 7202 break; 7203 } 7204 return Val; 7205 } 7206 7207 // The caller is responsible for loading the full value if the argument is 7208 // passed with CCValAssign::Indirect. 7209 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 7210 const CCValAssign &VA, const SDLoc &DL, 7211 const RISCVTargetLowering &TLI) { 7212 MachineFunction &MF = DAG.getMachineFunction(); 7213 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7214 EVT LocVT = VA.getLocVT(); 7215 SDValue Val; 7216 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 7217 Register VReg = RegInfo.createVirtualRegister(RC); 7218 RegInfo.addLiveIn(VA.getLocReg(), VReg); 7219 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 7220 7221 if (VA.getLocInfo() == CCValAssign::Indirect) 7222 return Val; 7223 7224 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 7225 } 7226 7227 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 7228 const CCValAssign &VA, const SDLoc &DL, 7229 const RISCVSubtarget &Subtarget) { 7230 EVT LocVT = VA.getLocVT(); 7231 7232 switch (VA.getLocInfo()) { 7233 default: 7234 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7235 case CCValAssign::Full: 7236 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 7237 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 7238 break; 7239 case CCValAssign::BCvt: 7240 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7241 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 7242 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7243 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 7244 else 7245 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 7246 break; 7247 } 7248 return Val; 7249 } 7250 7251 // The caller is responsible for loading the full value if the argument is 7252 // passed with CCValAssign::Indirect. 7253 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 7254 const CCValAssign &VA, const SDLoc &DL) { 7255 MachineFunction &MF = DAG.getMachineFunction(); 7256 MachineFrameInfo &MFI = MF.getFrameInfo(); 7257 EVT LocVT = VA.getLocVT(); 7258 EVT ValVT = VA.getValVT(); 7259 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 7260 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 7261 /*Immutable=*/true); 7262 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7263 SDValue Val; 7264 7265 ISD::LoadExtType ExtType; 7266 switch (VA.getLocInfo()) { 7267 default: 7268 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7269 case CCValAssign::Full: 7270 case CCValAssign::Indirect: 7271 case CCValAssign::BCvt: 7272 ExtType = ISD::NON_EXTLOAD; 7273 break; 7274 } 7275 Val = DAG.getExtLoad( 7276 ExtType, DL, LocVT, Chain, FIN, 7277 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 7278 return Val; 7279 } 7280 7281 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 7282 const CCValAssign &VA, const SDLoc &DL) { 7283 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 7284 "Unexpected VA"); 7285 MachineFunction &MF = DAG.getMachineFunction(); 7286 MachineFrameInfo &MFI = MF.getFrameInfo(); 7287 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7288 7289 if (VA.isMemLoc()) { 7290 // f64 is passed on the stack. 7291 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 7292 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7293 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 7294 MachinePointerInfo::getFixedStack(MF, FI)); 7295 } 7296 7297 assert(VA.isRegLoc() && "Expected register VA assignment"); 7298 7299 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7300 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 7301 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 7302 SDValue Hi; 7303 if (VA.getLocReg() == RISCV::X17) { 7304 // Second half of f64 is passed on the stack. 7305 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 7306 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7307 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 7308 MachinePointerInfo::getFixedStack(MF, FI)); 7309 } else { 7310 // Second half of f64 is passed in another GPR. 7311 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7312 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 7313 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 7314 } 7315 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 7316 } 7317 7318 // FastCC has less than 1% performance improvement for some particular 7319 // benchmark. But theoretically, it may has benenfit for some cases. 7320 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 7321 unsigned ValNo, MVT ValVT, MVT LocVT, 7322 CCValAssign::LocInfo LocInfo, 7323 ISD::ArgFlagsTy ArgFlags, CCState &State, 7324 bool IsFixed, bool IsRet, Type *OrigTy, 7325 const RISCVTargetLowering &TLI, 7326 Optional<unsigned> FirstMaskArgument) { 7327 7328 // X5 and X6 might be used for save-restore libcall. 7329 static const MCPhysReg GPRList[] = { 7330 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 7331 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 7332 RISCV::X29, RISCV::X30, RISCV::X31}; 7333 7334 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7335 if (unsigned Reg = State.AllocateReg(GPRList)) { 7336 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7337 return false; 7338 } 7339 } 7340 7341 if (LocVT == MVT::f16) { 7342 static const MCPhysReg FPR16List[] = { 7343 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 7344 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 7345 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 7346 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 7347 if (unsigned Reg = State.AllocateReg(FPR16List)) { 7348 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7349 return false; 7350 } 7351 } 7352 7353 if (LocVT == MVT::f32) { 7354 static const MCPhysReg FPR32List[] = { 7355 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 7356 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 7357 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 7358 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 7359 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7360 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7361 return false; 7362 } 7363 } 7364 7365 if (LocVT == MVT::f64) { 7366 static const MCPhysReg FPR64List[] = { 7367 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 7368 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 7369 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 7370 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 7371 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7372 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7373 return false; 7374 } 7375 } 7376 7377 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 7378 unsigned Offset4 = State.AllocateStack(4, Align(4)); 7379 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 7380 return false; 7381 } 7382 7383 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 7384 unsigned Offset5 = State.AllocateStack(8, Align(8)); 7385 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 7386 return false; 7387 } 7388 7389 if (LocVT.isVector()) { 7390 if (unsigned Reg = 7391 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 7392 // Fixed-length vectors are located in the corresponding scalable-vector 7393 // container types. 7394 if (ValVT.isFixedLengthVector()) 7395 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7396 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7397 } else { 7398 // Try and pass the address via a "fast" GPR. 7399 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 7400 LocInfo = CCValAssign::Indirect; 7401 LocVT = TLI.getSubtarget().getXLenVT(); 7402 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 7403 } else if (ValVT.isFixedLengthVector()) { 7404 auto StackAlign = 7405 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7406 unsigned StackOffset = 7407 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 7408 State.addLoc( 7409 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7410 } else { 7411 // Can't pass scalable vectors on the stack. 7412 return true; 7413 } 7414 } 7415 7416 return false; 7417 } 7418 7419 return true; // CC didn't match. 7420 } 7421 7422 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 7423 CCValAssign::LocInfo LocInfo, 7424 ISD::ArgFlagsTy ArgFlags, CCState &State) { 7425 7426 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7427 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 7428 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 7429 static const MCPhysReg GPRList[] = { 7430 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 7431 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 7432 if (unsigned Reg = State.AllocateReg(GPRList)) { 7433 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7434 return false; 7435 } 7436 } 7437 7438 if (LocVT == MVT::f32) { 7439 // Pass in STG registers: F1, ..., F6 7440 // fs0 ... fs5 7441 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 7442 RISCV::F18_F, RISCV::F19_F, 7443 RISCV::F20_F, RISCV::F21_F}; 7444 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7445 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7446 return false; 7447 } 7448 } 7449 7450 if (LocVT == MVT::f64) { 7451 // Pass in STG registers: D1, ..., D6 7452 // fs6 ... fs11 7453 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 7454 RISCV::F24_D, RISCV::F25_D, 7455 RISCV::F26_D, RISCV::F27_D}; 7456 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7457 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7458 return false; 7459 } 7460 } 7461 7462 report_fatal_error("No registers left in GHC calling convention"); 7463 return true; 7464 } 7465 7466 // Transform physical registers into virtual registers. 7467 SDValue RISCVTargetLowering::LowerFormalArguments( 7468 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 7469 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 7470 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7471 7472 MachineFunction &MF = DAG.getMachineFunction(); 7473 7474 switch (CallConv) { 7475 default: 7476 report_fatal_error("Unsupported calling convention"); 7477 case CallingConv::C: 7478 case CallingConv::Fast: 7479 break; 7480 case CallingConv::GHC: 7481 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 7482 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 7483 report_fatal_error( 7484 "GHC calling convention requires the F and D instruction set extensions"); 7485 } 7486 7487 const Function &Func = MF.getFunction(); 7488 if (Func.hasFnAttribute("interrupt")) { 7489 if (!Func.arg_empty()) 7490 report_fatal_error( 7491 "Functions with the interrupt attribute cannot have arguments!"); 7492 7493 StringRef Kind = 7494 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7495 7496 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 7497 report_fatal_error( 7498 "Function interrupt attribute argument not supported!"); 7499 } 7500 7501 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7502 MVT XLenVT = Subtarget.getXLenVT(); 7503 unsigned XLenInBytes = Subtarget.getXLen() / 8; 7504 // Used with vargs to acumulate store chains. 7505 std::vector<SDValue> OutChains; 7506 7507 // Assign locations to all of the incoming arguments. 7508 SmallVector<CCValAssign, 16> ArgLocs; 7509 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7510 7511 if (CallConv == CallingConv::GHC) 7512 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 7513 else 7514 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 7515 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 7516 : CC_RISCV); 7517 7518 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 7519 CCValAssign &VA = ArgLocs[i]; 7520 SDValue ArgValue; 7521 // Passing f64 on RV32D with a soft float ABI must be handled as a special 7522 // case. 7523 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 7524 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 7525 else if (VA.isRegLoc()) 7526 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 7527 else 7528 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 7529 7530 if (VA.getLocInfo() == CCValAssign::Indirect) { 7531 // If the original argument was split and passed by reference (e.g. i128 7532 // on RV32), we need to load all parts of it here (using the same 7533 // address). Vectors may be partly split to registers and partly to the 7534 // stack, in which case the base address is partly offset and subsequent 7535 // stores are relative to that. 7536 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 7537 MachinePointerInfo())); 7538 unsigned ArgIndex = Ins[i].OrigArgIndex; 7539 unsigned ArgPartOffset = Ins[i].PartOffset; 7540 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7541 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 7542 CCValAssign &PartVA = ArgLocs[i + 1]; 7543 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 7544 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 7545 if (PartVA.getValVT().isScalableVector()) 7546 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 7547 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 7548 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 7549 MachinePointerInfo())); 7550 ++i; 7551 } 7552 continue; 7553 } 7554 InVals.push_back(ArgValue); 7555 } 7556 7557 if (IsVarArg) { 7558 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 7559 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 7560 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 7561 MachineFrameInfo &MFI = MF.getFrameInfo(); 7562 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7563 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 7564 7565 // Offset of the first variable argument from stack pointer, and size of 7566 // the vararg save area. For now, the varargs save area is either zero or 7567 // large enough to hold a0-a7. 7568 int VaArgOffset, VarArgsSaveSize; 7569 7570 // If all registers are allocated, then all varargs must be passed on the 7571 // stack and we don't need to save any argregs. 7572 if (ArgRegs.size() == Idx) { 7573 VaArgOffset = CCInfo.getNextStackOffset(); 7574 VarArgsSaveSize = 0; 7575 } else { 7576 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 7577 VaArgOffset = -VarArgsSaveSize; 7578 } 7579 7580 // Record the frame index of the first variable argument 7581 // which is a value necessary to VASTART. 7582 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7583 RVFI->setVarArgsFrameIndex(FI); 7584 7585 // If saving an odd number of registers then create an extra stack slot to 7586 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 7587 // offsets to even-numbered registered remain 2*XLEN-aligned. 7588 if (Idx % 2) { 7589 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 7590 VarArgsSaveSize += XLenInBytes; 7591 } 7592 7593 // Copy the integer registers that may have been used for passing varargs 7594 // to the vararg save area. 7595 for (unsigned I = Idx; I < ArgRegs.size(); 7596 ++I, VaArgOffset += XLenInBytes) { 7597 const Register Reg = RegInfo.createVirtualRegister(RC); 7598 RegInfo.addLiveIn(ArgRegs[I], Reg); 7599 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 7600 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7601 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7602 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 7603 MachinePointerInfo::getFixedStack(MF, FI)); 7604 cast<StoreSDNode>(Store.getNode()) 7605 ->getMemOperand() 7606 ->setValue((Value *)nullptr); 7607 OutChains.push_back(Store); 7608 } 7609 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 7610 } 7611 7612 // All stores are grouped in one node to allow the matching between 7613 // the size of Ins and InVals. This only happens for vararg functions. 7614 if (!OutChains.empty()) { 7615 OutChains.push_back(Chain); 7616 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 7617 } 7618 7619 return Chain; 7620 } 7621 7622 /// isEligibleForTailCallOptimization - Check whether the call is eligible 7623 /// for tail call optimization. 7624 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 7625 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 7626 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 7627 const SmallVector<CCValAssign, 16> &ArgLocs) const { 7628 7629 auto &Callee = CLI.Callee; 7630 auto CalleeCC = CLI.CallConv; 7631 auto &Outs = CLI.Outs; 7632 auto &Caller = MF.getFunction(); 7633 auto CallerCC = Caller.getCallingConv(); 7634 7635 // Exception-handling functions need a special set of instructions to 7636 // indicate a return to the hardware. Tail-calling another function would 7637 // probably break this. 7638 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 7639 // should be expanded as new function attributes are introduced. 7640 if (Caller.hasFnAttribute("interrupt")) 7641 return false; 7642 7643 // Do not tail call opt if the stack is used to pass parameters. 7644 if (CCInfo.getNextStackOffset() != 0) 7645 return false; 7646 7647 // Do not tail call opt if any parameters need to be passed indirectly. 7648 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 7649 // passed indirectly. So the address of the value will be passed in a 7650 // register, or if not available, then the address is put on the stack. In 7651 // order to pass indirectly, space on the stack often needs to be allocated 7652 // in order to store the value. In this case the CCInfo.getNextStackOffset() 7653 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 7654 // are passed CCValAssign::Indirect. 7655 for (auto &VA : ArgLocs) 7656 if (VA.getLocInfo() == CCValAssign::Indirect) 7657 return false; 7658 7659 // Do not tail call opt if either caller or callee uses struct return 7660 // semantics. 7661 auto IsCallerStructRet = Caller.hasStructRetAttr(); 7662 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 7663 if (IsCallerStructRet || IsCalleeStructRet) 7664 return false; 7665 7666 // Externally-defined functions with weak linkage should not be 7667 // tail-called. The behaviour of branch instructions in this situation (as 7668 // used for tail calls) is implementation-defined, so we cannot rely on the 7669 // linker replacing the tail call with a return. 7670 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 7671 const GlobalValue *GV = G->getGlobal(); 7672 if (GV->hasExternalWeakLinkage()) 7673 return false; 7674 } 7675 7676 // The callee has to preserve all registers the caller needs to preserve. 7677 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7678 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 7679 if (CalleeCC != CallerCC) { 7680 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 7681 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 7682 return false; 7683 } 7684 7685 // Byval parameters hand the function a pointer directly into the stack area 7686 // we want to reuse during a tail call. Working around this *is* possible 7687 // but less efficient and uglier in LowerCall. 7688 for (auto &Arg : Outs) 7689 if (Arg.Flags.isByVal()) 7690 return false; 7691 7692 return true; 7693 } 7694 7695 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 7696 return DAG.getDataLayout().getPrefTypeAlign( 7697 VT.getTypeForEVT(*DAG.getContext())); 7698 } 7699 7700 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 7701 // and output parameter nodes. 7702 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 7703 SmallVectorImpl<SDValue> &InVals) const { 7704 SelectionDAG &DAG = CLI.DAG; 7705 SDLoc &DL = CLI.DL; 7706 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 7707 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 7708 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 7709 SDValue Chain = CLI.Chain; 7710 SDValue Callee = CLI.Callee; 7711 bool &IsTailCall = CLI.IsTailCall; 7712 CallingConv::ID CallConv = CLI.CallConv; 7713 bool IsVarArg = CLI.IsVarArg; 7714 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7715 MVT XLenVT = Subtarget.getXLenVT(); 7716 7717 MachineFunction &MF = DAG.getMachineFunction(); 7718 7719 // Analyze the operands of the call, assigning locations to each operand. 7720 SmallVector<CCValAssign, 16> ArgLocs; 7721 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7722 7723 if (CallConv == CallingConv::GHC) 7724 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 7725 else 7726 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 7727 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 7728 : CC_RISCV); 7729 7730 // Check if it's really possible to do a tail call. 7731 if (IsTailCall) 7732 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 7733 7734 if (IsTailCall) 7735 ++NumTailCalls; 7736 else if (CLI.CB && CLI.CB->isMustTailCall()) 7737 report_fatal_error("failed to perform tail call elimination on a call " 7738 "site marked musttail"); 7739 7740 // Get a count of how many bytes are to be pushed on the stack. 7741 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 7742 7743 // Create local copies for byval args 7744 SmallVector<SDValue, 8> ByValArgs; 7745 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7746 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7747 if (!Flags.isByVal()) 7748 continue; 7749 7750 SDValue Arg = OutVals[i]; 7751 unsigned Size = Flags.getByValSize(); 7752 Align Alignment = Flags.getNonZeroByValAlign(); 7753 7754 int FI = 7755 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 7756 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7757 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 7758 7759 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 7760 /*IsVolatile=*/false, 7761 /*AlwaysInline=*/false, IsTailCall, 7762 MachinePointerInfo(), MachinePointerInfo()); 7763 ByValArgs.push_back(FIPtr); 7764 } 7765 7766 if (!IsTailCall) 7767 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 7768 7769 // Copy argument values to their designated locations. 7770 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 7771 SmallVector<SDValue, 8> MemOpChains; 7772 SDValue StackPtr; 7773 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 7774 CCValAssign &VA = ArgLocs[i]; 7775 SDValue ArgValue = OutVals[i]; 7776 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7777 7778 // Handle passing f64 on RV32D with a soft float ABI as a special case. 7779 bool IsF64OnRV32DSoftABI = 7780 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 7781 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 7782 SDValue SplitF64 = DAG.getNode( 7783 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 7784 SDValue Lo = SplitF64.getValue(0); 7785 SDValue Hi = SplitF64.getValue(1); 7786 7787 Register RegLo = VA.getLocReg(); 7788 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 7789 7790 if (RegLo == RISCV::X17) { 7791 // Second half of f64 is passed on the stack. 7792 // Work out the address of the stack slot. 7793 if (!StackPtr.getNode()) 7794 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7795 // Emit the store. 7796 MemOpChains.push_back( 7797 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 7798 } else { 7799 // Second half of f64 is passed in another GPR. 7800 assert(RegLo < RISCV::X31 && "Invalid register pair"); 7801 Register RegHigh = RegLo + 1; 7802 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 7803 } 7804 continue; 7805 } 7806 7807 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 7808 // as any other MemLoc. 7809 7810 // Promote the value if needed. 7811 // For now, only handle fully promoted and indirect arguments. 7812 if (VA.getLocInfo() == CCValAssign::Indirect) { 7813 // Store the argument in a stack slot and pass its address. 7814 Align StackAlign = 7815 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 7816 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 7817 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 7818 // If the original argument was split (e.g. i128), we need 7819 // to store the required parts of it here (and pass just one address). 7820 // Vectors may be partly split to registers and partly to the stack, in 7821 // which case the base address is partly offset and subsequent stores are 7822 // relative to that. 7823 unsigned ArgIndex = Outs[i].OrigArgIndex; 7824 unsigned ArgPartOffset = Outs[i].PartOffset; 7825 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7826 // Calculate the total size to store. We don't have access to what we're 7827 // actually storing other than performing the loop and collecting the 7828 // info. 7829 SmallVector<std::pair<SDValue, SDValue>> Parts; 7830 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 7831 SDValue PartValue = OutVals[i + 1]; 7832 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 7833 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 7834 EVT PartVT = PartValue.getValueType(); 7835 if (PartVT.isScalableVector()) 7836 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 7837 StoredSize += PartVT.getStoreSize(); 7838 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 7839 Parts.push_back(std::make_pair(PartValue, Offset)); 7840 ++i; 7841 } 7842 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 7843 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 7844 MemOpChains.push_back( 7845 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 7846 MachinePointerInfo::getFixedStack(MF, FI))); 7847 for (const auto &Part : Parts) { 7848 SDValue PartValue = Part.first; 7849 SDValue PartOffset = Part.second; 7850 SDValue Address = 7851 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 7852 MemOpChains.push_back( 7853 DAG.getStore(Chain, DL, PartValue, Address, 7854 MachinePointerInfo::getFixedStack(MF, FI))); 7855 } 7856 ArgValue = SpillSlot; 7857 } else { 7858 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 7859 } 7860 7861 // Use local copy if it is a byval arg. 7862 if (Flags.isByVal()) 7863 ArgValue = ByValArgs[j++]; 7864 7865 if (VA.isRegLoc()) { 7866 // Queue up the argument copies and emit them at the end. 7867 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 7868 } else { 7869 assert(VA.isMemLoc() && "Argument not register or memory"); 7870 assert(!IsTailCall && "Tail call not allowed if stack is used " 7871 "for passing parameters"); 7872 7873 // Work out the address of the stack slot. 7874 if (!StackPtr.getNode()) 7875 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7876 SDValue Address = 7877 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 7878 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 7879 7880 // Emit the store. 7881 MemOpChains.push_back( 7882 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 7883 } 7884 } 7885 7886 // Join the stores, which are independent of one another. 7887 if (!MemOpChains.empty()) 7888 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 7889 7890 SDValue Glue; 7891 7892 // Build a sequence of copy-to-reg nodes, chained and glued together. 7893 for (auto &Reg : RegsToPass) { 7894 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 7895 Glue = Chain.getValue(1); 7896 } 7897 7898 // Validate that none of the argument registers have been marked as 7899 // reserved, if so report an error. Do the same for the return address if this 7900 // is not a tailcall. 7901 validateCCReservedRegs(RegsToPass, MF); 7902 if (!IsTailCall && 7903 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 7904 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7905 MF.getFunction(), 7906 "Return address register required, but has been reserved."}); 7907 7908 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 7909 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 7910 // split it and then direct call can be matched by PseudoCALL. 7911 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 7912 const GlobalValue *GV = S->getGlobal(); 7913 7914 unsigned OpFlags = RISCVII::MO_CALL; 7915 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 7916 OpFlags = RISCVII::MO_PLT; 7917 7918 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 7919 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 7920 unsigned OpFlags = RISCVII::MO_CALL; 7921 7922 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 7923 nullptr)) 7924 OpFlags = RISCVII::MO_PLT; 7925 7926 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 7927 } 7928 7929 // The first call operand is the chain and the second is the target address. 7930 SmallVector<SDValue, 8> Ops; 7931 Ops.push_back(Chain); 7932 Ops.push_back(Callee); 7933 7934 // Add argument registers to the end of the list so that they are 7935 // known live into the call. 7936 for (auto &Reg : RegsToPass) 7937 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 7938 7939 if (!IsTailCall) { 7940 // Add a register mask operand representing the call-preserved registers. 7941 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7942 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 7943 assert(Mask && "Missing call preserved mask for calling convention"); 7944 Ops.push_back(DAG.getRegisterMask(Mask)); 7945 } 7946 7947 // Glue the call to the argument copies, if any. 7948 if (Glue.getNode()) 7949 Ops.push_back(Glue); 7950 7951 // Emit the call. 7952 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7953 7954 if (IsTailCall) { 7955 MF.getFrameInfo().setHasTailCall(); 7956 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 7957 } 7958 7959 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 7960 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 7961 Glue = Chain.getValue(1); 7962 7963 // Mark the end of the call, which is glued to the call itself. 7964 Chain = DAG.getCALLSEQ_END(Chain, 7965 DAG.getConstant(NumBytes, DL, PtrVT, true), 7966 DAG.getConstant(0, DL, PtrVT, true), 7967 Glue, DL); 7968 Glue = Chain.getValue(1); 7969 7970 // Assign locations to each value returned by this call. 7971 SmallVector<CCValAssign, 16> RVLocs; 7972 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 7973 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 7974 7975 // Copy all of the result registers out of their specified physreg. 7976 for (auto &VA : RVLocs) { 7977 // Copy the value out 7978 SDValue RetValue = 7979 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 7980 // Glue the RetValue to the end of the call sequence 7981 Chain = RetValue.getValue(1); 7982 Glue = RetValue.getValue(2); 7983 7984 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 7985 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 7986 SDValue RetValue2 = 7987 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 7988 Chain = RetValue2.getValue(1); 7989 Glue = RetValue2.getValue(2); 7990 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 7991 RetValue2); 7992 } 7993 7994 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 7995 7996 InVals.push_back(RetValue); 7997 } 7998 7999 return Chain; 8000 } 8001 8002 bool RISCVTargetLowering::CanLowerReturn( 8003 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 8004 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 8005 SmallVector<CCValAssign, 16> RVLocs; 8006 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 8007 8008 Optional<unsigned> FirstMaskArgument; 8009 if (Subtarget.hasStdExtV()) 8010 FirstMaskArgument = preAssignMask(Outs); 8011 8012 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8013 MVT VT = Outs[i].VT; 8014 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8015 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8016 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 8017 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 8018 *this, FirstMaskArgument)) 8019 return false; 8020 } 8021 return true; 8022 } 8023 8024 SDValue 8025 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 8026 bool IsVarArg, 8027 const SmallVectorImpl<ISD::OutputArg> &Outs, 8028 const SmallVectorImpl<SDValue> &OutVals, 8029 const SDLoc &DL, SelectionDAG &DAG) const { 8030 const MachineFunction &MF = DAG.getMachineFunction(); 8031 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8032 8033 // Stores the assignment of the return value to a location. 8034 SmallVector<CCValAssign, 16> RVLocs; 8035 8036 // Info about the registers and stack slot. 8037 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 8038 *DAG.getContext()); 8039 8040 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 8041 nullptr, CC_RISCV); 8042 8043 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 8044 report_fatal_error("GHC functions return void only"); 8045 8046 SDValue Glue; 8047 SmallVector<SDValue, 4> RetOps(1, Chain); 8048 8049 // Copy the result values into the output registers. 8050 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 8051 SDValue Val = OutVals[i]; 8052 CCValAssign &VA = RVLocs[i]; 8053 assert(VA.isRegLoc() && "Can only return in registers!"); 8054 8055 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8056 // Handle returning f64 on RV32D with a soft float ABI. 8057 assert(VA.isRegLoc() && "Expected return via registers"); 8058 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 8059 DAG.getVTList(MVT::i32, MVT::i32), Val); 8060 SDValue Lo = SplitF64.getValue(0); 8061 SDValue Hi = SplitF64.getValue(1); 8062 Register RegLo = VA.getLocReg(); 8063 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8064 Register RegHi = RegLo + 1; 8065 8066 if (STI.isRegisterReservedByUser(RegLo) || 8067 STI.isRegisterReservedByUser(RegHi)) 8068 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8069 MF.getFunction(), 8070 "Return value register required, but has been reserved."}); 8071 8072 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 8073 Glue = Chain.getValue(1); 8074 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 8075 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 8076 Glue = Chain.getValue(1); 8077 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 8078 } else { 8079 // Handle a 'normal' return. 8080 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 8081 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 8082 8083 if (STI.isRegisterReservedByUser(VA.getLocReg())) 8084 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8085 MF.getFunction(), 8086 "Return value register required, but has been reserved."}); 8087 8088 // Guarantee that all emitted copies are stuck together. 8089 Glue = Chain.getValue(1); 8090 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 8091 } 8092 } 8093 8094 RetOps[0] = Chain; // Update chain. 8095 8096 // Add the glue node if we have it. 8097 if (Glue.getNode()) { 8098 RetOps.push_back(Glue); 8099 } 8100 8101 unsigned RetOpc = RISCVISD::RET_FLAG; 8102 // Interrupt service routines use different return instructions. 8103 const Function &Func = DAG.getMachineFunction().getFunction(); 8104 if (Func.hasFnAttribute("interrupt")) { 8105 if (!Func.getReturnType()->isVoidTy()) 8106 report_fatal_error( 8107 "Functions with the interrupt attribute must have void return type!"); 8108 8109 MachineFunction &MF = DAG.getMachineFunction(); 8110 StringRef Kind = 8111 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8112 8113 if (Kind == "user") 8114 RetOpc = RISCVISD::URET_FLAG; 8115 else if (Kind == "supervisor") 8116 RetOpc = RISCVISD::SRET_FLAG; 8117 else 8118 RetOpc = RISCVISD::MRET_FLAG; 8119 } 8120 8121 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 8122 } 8123 8124 void RISCVTargetLowering::validateCCReservedRegs( 8125 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 8126 MachineFunction &MF) const { 8127 const Function &F = MF.getFunction(); 8128 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8129 8130 if (llvm::any_of(Regs, [&STI](auto Reg) { 8131 return STI.isRegisterReservedByUser(Reg.first); 8132 })) 8133 F.getContext().diagnose(DiagnosticInfoUnsupported{ 8134 F, "Argument register required, but has been reserved."}); 8135 } 8136 8137 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 8138 return CI->isTailCall(); 8139 } 8140 8141 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 8142 #define NODE_NAME_CASE(NODE) \ 8143 case RISCVISD::NODE: \ 8144 return "RISCVISD::" #NODE; 8145 // clang-format off 8146 switch ((RISCVISD::NodeType)Opcode) { 8147 case RISCVISD::FIRST_NUMBER: 8148 break; 8149 NODE_NAME_CASE(RET_FLAG) 8150 NODE_NAME_CASE(URET_FLAG) 8151 NODE_NAME_CASE(SRET_FLAG) 8152 NODE_NAME_CASE(MRET_FLAG) 8153 NODE_NAME_CASE(CALL) 8154 NODE_NAME_CASE(SELECT_CC) 8155 NODE_NAME_CASE(BR_CC) 8156 NODE_NAME_CASE(BuildPairF64) 8157 NODE_NAME_CASE(SplitF64) 8158 NODE_NAME_CASE(TAIL) 8159 NODE_NAME_CASE(MULHSU) 8160 NODE_NAME_CASE(SLLW) 8161 NODE_NAME_CASE(SRAW) 8162 NODE_NAME_CASE(SRLW) 8163 NODE_NAME_CASE(DIVW) 8164 NODE_NAME_CASE(DIVUW) 8165 NODE_NAME_CASE(REMUW) 8166 NODE_NAME_CASE(ROLW) 8167 NODE_NAME_CASE(RORW) 8168 NODE_NAME_CASE(CLZW) 8169 NODE_NAME_CASE(CTZW) 8170 NODE_NAME_CASE(FSLW) 8171 NODE_NAME_CASE(FSRW) 8172 NODE_NAME_CASE(FSL) 8173 NODE_NAME_CASE(FSR) 8174 NODE_NAME_CASE(FMV_H_X) 8175 NODE_NAME_CASE(FMV_X_ANYEXTH) 8176 NODE_NAME_CASE(FMV_W_X_RV64) 8177 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 8178 NODE_NAME_CASE(READ_CYCLE_WIDE) 8179 NODE_NAME_CASE(GREV) 8180 NODE_NAME_CASE(GREVW) 8181 NODE_NAME_CASE(GORC) 8182 NODE_NAME_CASE(GORCW) 8183 NODE_NAME_CASE(SHFL) 8184 NODE_NAME_CASE(SHFLW) 8185 NODE_NAME_CASE(UNSHFL) 8186 NODE_NAME_CASE(UNSHFLW) 8187 NODE_NAME_CASE(BCOMPRESS) 8188 NODE_NAME_CASE(BCOMPRESSW) 8189 NODE_NAME_CASE(BDECOMPRESS) 8190 NODE_NAME_CASE(BDECOMPRESSW) 8191 NODE_NAME_CASE(VMV_V_X_VL) 8192 NODE_NAME_CASE(VFMV_V_F_VL) 8193 NODE_NAME_CASE(VMV_X_S) 8194 NODE_NAME_CASE(VMV_S_X_VL) 8195 NODE_NAME_CASE(VFMV_S_F_VL) 8196 NODE_NAME_CASE(SPLAT_VECTOR_I64) 8197 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 8198 NODE_NAME_CASE(READ_VLENB) 8199 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 8200 NODE_NAME_CASE(VSLIDEUP_VL) 8201 NODE_NAME_CASE(VSLIDE1UP_VL) 8202 NODE_NAME_CASE(VSLIDEDOWN_VL) 8203 NODE_NAME_CASE(VSLIDE1DOWN_VL) 8204 NODE_NAME_CASE(VID_VL) 8205 NODE_NAME_CASE(VFNCVT_ROD_VL) 8206 NODE_NAME_CASE(VECREDUCE_ADD_VL) 8207 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 8208 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 8209 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 8210 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 8211 NODE_NAME_CASE(VECREDUCE_AND_VL) 8212 NODE_NAME_CASE(VECREDUCE_OR_VL) 8213 NODE_NAME_CASE(VECREDUCE_XOR_VL) 8214 NODE_NAME_CASE(VECREDUCE_FADD_VL) 8215 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 8216 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 8217 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 8218 NODE_NAME_CASE(ADD_VL) 8219 NODE_NAME_CASE(AND_VL) 8220 NODE_NAME_CASE(MUL_VL) 8221 NODE_NAME_CASE(OR_VL) 8222 NODE_NAME_CASE(SDIV_VL) 8223 NODE_NAME_CASE(SHL_VL) 8224 NODE_NAME_CASE(SREM_VL) 8225 NODE_NAME_CASE(SRA_VL) 8226 NODE_NAME_CASE(SRL_VL) 8227 NODE_NAME_CASE(SUB_VL) 8228 NODE_NAME_CASE(UDIV_VL) 8229 NODE_NAME_CASE(UREM_VL) 8230 NODE_NAME_CASE(XOR_VL) 8231 NODE_NAME_CASE(FADD_VL) 8232 NODE_NAME_CASE(FSUB_VL) 8233 NODE_NAME_CASE(FMUL_VL) 8234 NODE_NAME_CASE(FDIV_VL) 8235 NODE_NAME_CASE(FNEG_VL) 8236 NODE_NAME_CASE(FABS_VL) 8237 NODE_NAME_CASE(FSQRT_VL) 8238 NODE_NAME_CASE(FMA_VL) 8239 NODE_NAME_CASE(FCOPYSIGN_VL) 8240 NODE_NAME_CASE(SMIN_VL) 8241 NODE_NAME_CASE(SMAX_VL) 8242 NODE_NAME_CASE(UMIN_VL) 8243 NODE_NAME_CASE(UMAX_VL) 8244 NODE_NAME_CASE(FMINNUM_VL) 8245 NODE_NAME_CASE(FMAXNUM_VL) 8246 NODE_NAME_CASE(MULHS_VL) 8247 NODE_NAME_CASE(MULHU_VL) 8248 NODE_NAME_CASE(FP_TO_SINT_VL) 8249 NODE_NAME_CASE(FP_TO_UINT_VL) 8250 NODE_NAME_CASE(SINT_TO_FP_VL) 8251 NODE_NAME_CASE(UINT_TO_FP_VL) 8252 NODE_NAME_CASE(FP_EXTEND_VL) 8253 NODE_NAME_CASE(FP_ROUND_VL) 8254 NODE_NAME_CASE(VWMUL_VL) 8255 NODE_NAME_CASE(VWMULU_VL) 8256 NODE_NAME_CASE(SETCC_VL) 8257 NODE_NAME_CASE(VSELECT_VL) 8258 NODE_NAME_CASE(VMAND_VL) 8259 NODE_NAME_CASE(VMOR_VL) 8260 NODE_NAME_CASE(VMXOR_VL) 8261 NODE_NAME_CASE(VMCLR_VL) 8262 NODE_NAME_CASE(VMSET_VL) 8263 NODE_NAME_CASE(VRGATHER_VX_VL) 8264 NODE_NAME_CASE(VRGATHER_VV_VL) 8265 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 8266 NODE_NAME_CASE(VSEXT_VL) 8267 NODE_NAME_CASE(VZEXT_VL) 8268 NODE_NAME_CASE(VPOPC_VL) 8269 NODE_NAME_CASE(VLE_VL) 8270 NODE_NAME_CASE(VSE_VL) 8271 NODE_NAME_CASE(READ_CSR) 8272 NODE_NAME_CASE(WRITE_CSR) 8273 NODE_NAME_CASE(SWAP_CSR) 8274 } 8275 // clang-format on 8276 return nullptr; 8277 #undef NODE_NAME_CASE 8278 } 8279 8280 /// getConstraintType - Given a constraint letter, return the type of 8281 /// constraint it is for this target. 8282 RISCVTargetLowering::ConstraintType 8283 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 8284 if (Constraint.size() == 1) { 8285 switch (Constraint[0]) { 8286 default: 8287 break; 8288 case 'f': 8289 case 'v': 8290 return C_RegisterClass; 8291 case 'I': 8292 case 'J': 8293 case 'K': 8294 return C_Immediate; 8295 case 'A': 8296 return C_Memory; 8297 } 8298 } 8299 return TargetLowering::getConstraintType(Constraint); 8300 } 8301 8302 std::pair<unsigned, const TargetRegisterClass *> 8303 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 8304 StringRef Constraint, 8305 MVT VT) const { 8306 // First, see if this is a constraint that directly corresponds to a 8307 // RISCV register class. 8308 if (Constraint.size() == 1) { 8309 switch (Constraint[0]) { 8310 case 'r': 8311 return std::make_pair(0U, &RISCV::GPRRegClass); 8312 case 'f': 8313 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 8314 return std::make_pair(0U, &RISCV::FPR16RegClass); 8315 if (Subtarget.hasStdExtF() && VT == MVT::f32) 8316 return std::make_pair(0U, &RISCV::FPR32RegClass); 8317 if (Subtarget.hasStdExtD() && VT == MVT::f64) 8318 return std::make_pair(0U, &RISCV::FPR64RegClass); 8319 break; 8320 case 'v': 8321 for (const auto *RC : 8322 {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass, 8323 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8324 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 8325 return std::make_pair(0U, RC); 8326 } 8327 break; 8328 default: 8329 break; 8330 } 8331 } 8332 8333 // Clang will correctly decode the usage of register name aliases into their 8334 // official names. However, other frontends like `rustc` do not. This allows 8335 // users of these frontends to use the ABI names for registers in LLVM-style 8336 // register constraints. 8337 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 8338 .Case("{zero}", RISCV::X0) 8339 .Case("{ra}", RISCV::X1) 8340 .Case("{sp}", RISCV::X2) 8341 .Case("{gp}", RISCV::X3) 8342 .Case("{tp}", RISCV::X4) 8343 .Case("{t0}", RISCV::X5) 8344 .Case("{t1}", RISCV::X6) 8345 .Case("{t2}", RISCV::X7) 8346 .Cases("{s0}", "{fp}", RISCV::X8) 8347 .Case("{s1}", RISCV::X9) 8348 .Case("{a0}", RISCV::X10) 8349 .Case("{a1}", RISCV::X11) 8350 .Case("{a2}", RISCV::X12) 8351 .Case("{a3}", RISCV::X13) 8352 .Case("{a4}", RISCV::X14) 8353 .Case("{a5}", RISCV::X15) 8354 .Case("{a6}", RISCV::X16) 8355 .Case("{a7}", RISCV::X17) 8356 .Case("{s2}", RISCV::X18) 8357 .Case("{s3}", RISCV::X19) 8358 .Case("{s4}", RISCV::X20) 8359 .Case("{s5}", RISCV::X21) 8360 .Case("{s6}", RISCV::X22) 8361 .Case("{s7}", RISCV::X23) 8362 .Case("{s8}", RISCV::X24) 8363 .Case("{s9}", RISCV::X25) 8364 .Case("{s10}", RISCV::X26) 8365 .Case("{s11}", RISCV::X27) 8366 .Case("{t3}", RISCV::X28) 8367 .Case("{t4}", RISCV::X29) 8368 .Case("{t5}", RISCV::X30) 8369 .Case("{t6}", RISCV::X31) 8370 .Default(RISCV::NoRegister); 8371 if (XRegFromAlias != RISCV::NoRegister) 8372 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 8373 8374 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 8375 // TableGen record rather than the AsmName to choose registers for InlineAsm 8376 // constraints, plus we want to match those names to the widest floating point 8377 // register type available, manually select floating point registers here. 8378 // 8379 // The second case is the ABI name of the register, so that frontends can also 8380 // use the ABI names in register constraint lists. 8381 if (Subtarget.hasStdExtF()) { 8382 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 8383 .Cases("{f0}", "{ft0}", RISCV::F0_F) 8384 .Cases("{f1}", "{ft1}", RISCV::F1_F) 8385 .Cases("{f2}", "{ft2}", RISCV::F2_F) 8386 .Cases("{f3}", "{ft3}", RISCV::F3_F) 8387 .Cases("{f4}", "{ft4}", RISCV::F4_F) 8388 .Cases("{f5}", "{ft5}", RISCV::F5_F) 8389 .Cases("{f6}", "{ft6}", RISCV::F6_F) 8390 .Cases("{f7}", "{ft7}", RISCV::F7_F) 8391 .Cases("{f8}", "{fs0}", RISCV::F8_F) 8392 .Cases("{f9}", "{fs1}", RISCV::F9_F) 8393 .Cases("{f10}", "{fa0}", RISCV::F10_F) 8394 .Cases("{f11}", "{fa1}", RISCV::F11_F) 8395 .Cases("{f12}", "{fa2}", RISCV::F12_F) 8396 .Cases("{f13}", "{fa3}", RISCV::F13_F) 8397 .Cases("{f14}", "{fa4}", RISCV::F14_F) 8398 .Cases("{f15}", "{fa5}", RISCV::F15_F) 8399 .Cases("{f16}", "{fa6}", RISCV::F16_F) 8400 .Cases("{f17}", "{fa7}", RISCV::F17_F) 8401 .Cases("{f18}", "{fs2}", RISCV::F18_F) 8402 .Cases("{f19}", "{fs3}", RISCV::F19_F) 8403 .Cases("{f20}", "{fs4}", RISCV::F20_F) 8404 .Cases("{f21}", "{fs5}", RISCV::F21_F) 8405 .Cases("{f22}", "{fs6}", RISCV::F22_F) 8406 .Cases("{f23}", "{fs7}", RISCV::F23_F) 8407 .Cases("{f24}", "{fs8}", RISCV::F24_F) 8408 .Cases("{f25}", "{fs9}", RISCV::F25_F) 8409 .Cases("{f26}", "{fs10}", RISCV::F26_F) 8410 .Cases("{f27}", "{fs11}", RISCV::F27_F) 8411 .Cases("{f28}", "{ft8}", RISCV::F28_F) 8412 .Cases("{f29}", "{ft9}", RISCV::F29_F) 8413 .Cases("{f30}", "{ft10}", RISCV::F30_F) 8414 .Cases("{f31}", "{ft11}", RISCV::F31_F) 8415 .Default(RISCV::NoRegister); 8416 if (FReg != RISCV::NoRegister) { 8417 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 8418 if (Subtarget.hasStdExtD()) { 8419 unsigned RegNo = FReg - RISCV::F0_F; 8420 unsigned DReg = RISCV::F0_D + RegNo; 8421 return std::make_pair(DReg, &RISCV::FPR64RegClass); 8422 } 8423 return std::make_pair(FReg, &RISCV::FPR32RegClass); 8424 } 8425 } 8426 8427 if (Subtarget.hasStdExtV()) { 8428 Register VReg = StringSwitch<Register>(Constraint.lower()) 8429 .Case("{v0}", RISCV::V0) 8430 .Case("{v1}", RISCV::V1) 8431 .Case("{v2}", RISCV::V2) 8432 .Case("{v3}", RISCV::V3) 8433 .Case("{v4}", RISCV::V4) 8434 .Case("{v5}", RISCV::V5) 8435 .Case("{v6}", RISCV::V6) 8436 .Case("{v7}", RISCV::V7) 8437 .Case("{v8}", RISCV::V8) 8438 .Case("{v9}", RISCV::V9) 8439 .Case("{v10}", RISCV::V10) 8440 .Case("{v11}", RISCV::V11) 8441 .Case("{v12}", RISCV::V12) 8442 .Case("{v13}", RISCV::V13) 8443 .Case("{v14}", RISCV::V14) 8444 .Case("{v15}", RISCV::V15) 8445 .Case("{v16}", RISCV::V16) 8446 .Case("{v17}", RISCV::V17) 8447 .Case("{v18}", RISCV::V18) 8448 .Case("{v19}", RISCV::V19) 8449 .Case("{v20}", RISCV::V20) 8450 .Case("{v21}", RISCV::V21) 8451 .Case("{v22}", RISCV::V22) 8452 .Case("{v23}", RISCV::V23) 8453 .Case("{v24}", RISCV::V24) 8454 .Case("{v25}", RISCV::V25) 8455 .Case("{v26}", RISCV::V26) 8456 .Case("{v27}", RISCV::V27) 8457 .Case("{v28}", RISCV::V28) 8458 .Case("{v29}", RISCV::V29) 8459 .Case("{v30}", RISCV::V30) 8460 .Case("{v31}", RISCV::V31) 8461 .Default(RISCV::NoRegister); 8462 if (VReg != RISCV::NoRegister) { 8463 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8464 return std::make_pair(VReg, &RISCV::VMRegClass); 8465 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 8466 return std::make_pair(VReg, &RISCV::VRRegClass); 8467 for (const auto *RC : 8468 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8469 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 8470 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 8471 return std::make_pair(VReg, RC); 8472 } 8473 } 8474 } 8475 } 8476 8477 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 8478 } 8479 8480 unsigned 8481 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 8482 // Currently only support length 1 constraints. 8483 if (ConstraintCode.size() == 1) { 8484 switch (ConstraintCode[0]) { 8485 case 'A': 8486 return InlineAsm::Constraint_A; 8487 default: 8488 break; 8489 } 8490 } 8491 8492 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 8493 } 8494 8495 void RISCVTargetLowering::LowerAsmOperandForConstraint( 8496 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 8497 SelectionDAG &DAG) const { 8498 // Currently only support length 1 constraints. 8499 if (Constraint.length() == 1) { 8500 switch (Constraint[0]) { 8501 case 'I': 8502 // Validate & create a 12-bit signed immediate operand. 8503 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8504 uint64_t CVal = C->getSExtValue(); 8505 if (isInt<12>(CVal)) 8506 Ops.push_back( 8507 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8508 } 8509 return; 8510 case 'J': 8511 // Validate & create an integer zero operand. 8512 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 8513 if (C->getZExtValue() == 0) 8514 Ops.push_back( 8515 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 8516 return; 8517 case 'K': 8518 // Validate & create a 5-bit unsigned immediate operand. 8519 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8520 uint64_t CVal = C->getZExtValue(); 8521 if (isUInt<5>(CVal)) 8522 Ops.push_back( 8523 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8524 } 8525 return; 8526 default: 8527 break; 8528 } 8529 } 8530 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 8531 } 8532 8533 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 8534 Instruction *Inst, 8535 AtomicOrdering Ord) const { 8536 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 8537 return Builder.CreateFence(Ord); 8538 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 8539 return Builder.CreateFence(AtomicOrdering::Release); 8540 return nullptr; 8541 } 8542 8543 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 8544 Instruction *Inst, 8545 AtomicOrdering Ord) const { 8546 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 8547 return Builder.CreateFence(AtomicOrdering::Acquire); 8548 return nullptr; 8549 } 8550 8551 TargetLowering::AtomicExpansionKind 8552 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 8553 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 8554 // point operations can't be used in an lr/sc sequence without breaking the 8555 // forward-progress guarantee. 8556 if (AI->isFloatingPointOperation()) 8557 return AtomicExpansionKind::CmpXChg; 8558 8559 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 8560 if (Size == 8 || Size == 16) 8561 return AtomicExpansionKind::MaskedIntrinsic; 8562 return AtomicExpansionKind::None; 8563 } 8564 8565 static Intrinsic::ID 8566 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 8567 if (XLen == 32) { 8568 switch (BinOp) { 8569 default: 8570 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8571 case AtomicRMWInst::Xchg: 8572 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 8573 case AtomicRMWInst::Add: 8574 return Intrinsic::riscv_masked_atomicrmw_add_i32; 8575 case AtomicRMWInst::Sub: 8576 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 8577 case AtomicRMWInst::Nand: 8578 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 8579 case AtomicRMWInst::Max: 8580 return Intrinsic::riscv_masked_atomicrmw_max_i32; 8581 case AtomicRMWInst::Min: 8582 return Intrinsic::riscv_masked_atomicrmw_min_i32; 8583 case AtomicRMWInst::UMax: 8584 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 8585 case AtomicRMWInst::UMin: 8586 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 8587 } 8588 } 8589 8590 if (XLen == 64) { 8591 switch (BinOp) { 8592 default: 8593 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8594 case AtomicRMWInst::Xchg: 8595 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 8596 case AtomicRMWInst::Add: 8597 return Intrinsic::riscv_masked_atomicrmw_add_i64; 8598 case AtomicRMWInst::Sub: 8599 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 8600 case AtomicRMWInst::Nand: 8601 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 8602 case AtomicRMWInst::Max: 8603 return Intrinsic::riscv_masked_atomicrmw_max_i64; 8604 case AtomicRMWInst::Min: 8605 return Intrinsic::riscv_masked_atomicrmw_min_i64; 8606 case AtomicRMWInst::UMax: 8607 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 8608 case AtomicRMWInst::UMin: 8609 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 8610 } 8611 } 8612 8613 llvm_unreachable("Unexpected XLen\n"); 8614 } 8615 8616 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 8617 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 8618 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 8619 unsigned XLen = Subtarget.getXLen(); 8620 Value *Ordering = 8621 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 8622 Type *Tys[] = {AlignedAddr->getType()}; 8623 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 8624 AI->getModule(), 8625 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 8626 8627 if (XLen == 64) { 8628 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 8629 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8630 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 8631 } 8632 8633 Value *Result; 8634 8635 // Must pass the shift amount needed to sign extend the loaded value prior 8636 // to performing a signed comparison for min/max. ShiftAmt is the number of 8637 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 8638 // is the number of bits to left+right shift the value in order to 8639 // sign-extend. 8640 if (AI->getOperation() == AtomicRMWInst::Min || 8641 AI->getOperation() == AtomicRMWInst::Max) { 8642 const DataLayout &DL = AI->getModule()->getDataLayout(); 8643 unsigned ValWidth = 8644 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 8645 Value *SextShamt = 8646 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 8647 Result = Builder.CreateCall(LrwOpScwLoop, 8648 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 8649 } else { 8650 Result = 8651 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 8652 } 8653 8654 if (XLen == 64) 8655 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8656 return Result; 8657 } 8658 8659 TargetLowering::AtomicExpansionKind 8660 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 8661 AtomicCmpXchgInst *CI) const { 8662 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 8663 if (Size == 8 || Size == 16) 8664 return AtomicExpansionKind::MaskedIntrinsic; 8665 return AtomicExpansionKind::None; 8666 } 8667 8668 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 8669 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 8670 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 8671 unsigned XLen = Subtarget.getXLen(); 8672 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 8673 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 8674 if (XLen == 64) { 8675 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 8676 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 8677 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8678 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 8679 } 8680 Type *Tys[] = {AlignedAddr->getType()}; 8681 Function *MaskedCmpXchg = 8682 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 8683 Value *Result = Builder.CreateCall( 8684 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 8685 if (XLen == 64) 8686 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8687 return Result; 8688 } 8689 8690 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 8691 return false; 8692 } 8693 8694 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 8695 EVT VT) const { 8696 VT = VT.getScalarType(); 8697 8698 if (!VT.isSimple()) 8699 return false; 8700 8701 switch (VT.getSimpleVT().SimpleTy) { 8702 case MVT::f16: 8703 return Subtarget.hasStdExtZfh(); 8704 case MVT::f32: 8705 return Subtarget.hasStdExtF(); 8706 case MVT::f64: 8707 return Subtarget.hasStdExtD(); 8708 default: 8709 break; 8710 } 8711 8712 return false; 8713 } 8714 8715 Register RISCVTargetLowering::getExceptionPointerRegister( 8716 const Constant *PersonalityFn) const { 8717 return RISCV::X10; 8718 } 8719 8720 Register RISCVTargetLowering::getExceptionSelectorRegister( 8721 const Constant *PersonalityFn) const { 8722 return RISCV::X11; 8723 } 8724 8725 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 8726 // Return false to suppress the unnecessary extensions if the LibCall 8727 // arguments or return value is f32 type for LP64 ABI. 8728 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 8729 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 8730 return false; 8731 8732 return true; 8733 } 8734 8735 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 8736 if (Subtarget.is64Bit() && Type == MVT::i32) 8737 return true; 8738 8739 return IsSigned; 8740 } 8741 8742 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 8743 SDValue C) const { 8744 // Check integral scalar types. 8745 if (VT.isScalarInteger()) { 8746 // Omit the optimization if the sub target has the M extension and the data 8747 // size exceeds XLen. 8748 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 8749 return false; 8750 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 8751 // Break the MUL to a SLLI and an ADD/SUB. 8752 const APInt &Imm = ConstNode->getAPIntValue(); 8753 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 8754 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 8755 return true; 8756 // Omit the following optimization if the sub target has the M extension 8757 // and the data size >= XLen. 8758 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 8759 return false; 8760 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 8761 // a pair of LUI/ADDI. 8762 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 8763 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 8764 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 8765 (1 - ImmS).isPowerOf2()) 8766 return true; 8767 } 8768 } 8769 } 8770 8771 return false; 8772 } 8773 8774 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 8775 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 8776 bool *Fast) const { 8777 if (!VT.isVector()) 8778 return false; 8779 8780 EVT ElemVT = VT.getVectorElementType(); 8781 if (Alignment >= ElemVT.getStoreSize()) { 8782 if (Fast) 8783 *Fast = true; 8784 return true; 8785 } 8786 8787 return false; 8788 } 8789 8790 bool RISCVTargetLowering::splitValueIntoRegisterParts( 8791 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 8792 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 8793 bool IsABIRegCopy = CC.hasValue(); 8794 EVT ValueVT = Val.getValueType(); 8795 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8796 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 8797 // and cast to f32. 8798 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 8799 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 8800 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 8801 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 8802 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 8803 Parts[0] = Val; 8804 return true; 8805 } 8806 8807 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8808 LLVMContext &Context = *DAG.getContext(); 8809 EVT ValueEltVT = ValueVT.getVectorElementType(); 8810 EVT PartEltVT = PartVT.getVectorElementType(); 8811 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8812 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8813 if (PartVTBitSize % ValueVTBitSize == 0) { 8814 // If the element types are different, bitcast to the same element type of 8815 // PartVT first. 8816 if (ValueEltVT != PartEltVT) { 8817 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8818 assert(Count != 0 && "The number of element should not be zero."); 8819 EVT SameEltTypeVT = 8820 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8821 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 8822 } 8823 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 8824 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8825 Parts[0] = Val; 8826 return true; 8827 } 8828 } 8829 return false; 8830 } 8831 8832 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 8833 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 8834 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 8835 bool IsABIRegCopy = CC.hasValue(); 8836 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8837 SDValue Val = Parts[0]; 8838 8839 // Cast the f32 to i32, truncate to i16, and cast back to f16. 8840 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 8841 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 8842 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 8843 return Val; 8844 } 8845 8846 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8847 LLVMContext &Context = *DAG.getContext(); 8848 SDValue Val = Parts[0]; 8849 EVT ValueEltVT = ValueVT.getVectorElementType(); 8850 EVT PartEltVT = PartVT.getVectorElementType(); 8851 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8852 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8853 if (PartVTBitSize % ValueVTBitSize == 0) { 8854 EVT SameEltTypeVT = ValueVT; 8855 // If the element types are different, convert it to the same element type 8856 // of PartVT. 8857 if (ValueEltVT != PartEltVT) { 8858 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8859 assert(Count != 0 && "The number of element should not be zero."); 8860 SameEltTypeVT = 8861 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8862 } 8863 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 8864 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8865 if (ValueEltVT != PartEltVT) 8866 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 8867 return Val; 8868 } 8869 } 8870 return SDValue(); 8871 } 8872 8873 #define GET_REGISTER_MATCHER 8874 #include "RISCVGenAsmMatcher.inc" 8875 8876 Register 8877 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 8878 const MachineFunction &MF) const { 8879 Register Reg = MatchRegisterAltName(RegName); 8880 if (Reg == RISCV::NoRegister) 8881 Reg = MatchRegisterName(RegName); 8882 if (Reg == RISCV::NoRegister) 8883 report_fatal_error( 8884 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 8885 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 8886 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 8887 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 8888 StringRef(RegName) + "\".")); 8889 return Reg; 8890 } 8891 8892 namespace llvm { 8893 namespace RISCVVIntrinsicsTable { 8894 8895 #define GET_RISCVVIntrinsicsTable_IMPL 8896 #include "RISCVGenSearchableTables.inc" 8897 8898 } // namespace RISCVVIntrinsicsTable 8899 8900 } // namespace llvm 8901