1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
254       Subtarget.hasStdExtZbkb()) {
255     if (Subtarget.is64Bit()) {
256       setOperationAction(ISD::ROTL, MVT::i32, Custom);
257       setOperationAction(ISD::ROTR, MVT::i32, Custom);
258     }
259   } else {
260     setOperationAction(ISD::ROTL, XLenVT, Expand);
261     setOperationAction(ISD::ROTR, XLenVT, Expand);
262   }
263 
264   if (Subtarget.hasStdExtZbp()) {
265     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
266     // more combining.
267     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
268     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
269     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
270     // BSWAP i8 doesn't exist.
271     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
272     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
273 
274     if (Subtarget.is64Bit()) {
275       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
276       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
277     }
278   } else {
279     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
280     // pattern match it directly in isel.
281     setOperationAction(ISD::BSWAP, XLenVT,
282                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
283                            ? Legal
284                            : Expand);
285     // Zbkb can use rev8+brev8 to implement bitreverse.
286     setOperationAction(ISD::BITREVERSE, XLenVT,
287                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
288   }
289 
290   if (Subtarget.hasStdExtZbb()) {
291     setOperationAction(ISD::SMIN, XLenVT, Legal);
292     setOperationAction(ISD::SMAX, XLenVT, Legal);
293     setOperationAction(ISD::UMIN, XLenVT, Legal);
294     setOperationAction(ISD::UMAX, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit()) {
297       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
298       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
299       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
300       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
301     }
302   } else {
303     setOperationAction(ISD::CTTZ, XLenVT, Expand);
304     setOperationAction(ISD::CTLZ, XLenVT, Expand);
305     setOperationAction(ISD::CTPOP, XLenVT, Expand);
306   }
307 
308   if (Subtarget.hasStdExtZbt()) {
309     setOperationAction(ISD::FSHL, XLenVT, Custom);
310     setOperationAction(ISD::FSHR, XLenVT, Custom);
311     setOperationAction(ISD::SELECT, XLenVT, Legal);
312 
313     if (Subtarget.is64Bit()) {
314       setOperationAction(ISD::FSHL, MVT::i32, Custom);
315       setOperationAction(ISD::FSHR, MVT::i32, Custom);
316     }
317   } else {
318     setOperationAction(ISD::SELECT, XLenVT, Custom);
319   }
320 
321   static const ISD::CondCode FPCCToExpand[] = {
322       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
323       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
324       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
325 
326   static const ISD::NodeType FPOpToExpand[] = {
327       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
328       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
329 
330   if (Subtarget.hasStdExtZfh())
331     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
332 
333   if (Subtarget.hasStdExtZfh()) {
334     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
335     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
336     setOperationAction(ISD::LRINT, MVT::f16, Legal);
337     setOperationAction(ISD::LLRINT, MVT::f16, Legal);
338     setOperationAction(ISD::LROUND, MVT::f16, Legal);
339     setOperationAction(ISD::LLROUND, MVT::f16, Legal);
340     setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal);
341     setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal);
342     setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal);
343     setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal);
344     setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal);
345     setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal);
346     setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal);
347     setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal);
348     setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal);
349     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
350     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
351     setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal);
352     setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal);
353     setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal);
354     for (auto CC : FPCCToExpand)
355       setCondCodeAction(CC, MVT::f16, Expand);
356     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
357     setOperationAction(ISD::SELECT, MVT::f16, Custom);
358     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
359 
360     setOperationAction(ISD::FREM,       MVT::f16, Promote);
361     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
362     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
363     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
364     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
365     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
366     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
367     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
368     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
369     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
370     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
371     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
372     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
373     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
374     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
375     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
376     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
377     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
378 
379     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
380     // complete support for all operations in LegalizeDAG.
381 
382     // We need to custom promote this.
383     if (Subtarget.is64Bit())
384       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
385   }
386 
387   if (Subtarget.hasStdExtF()) {
388     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
389     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
390     setOperationAction(ISD::LRINT, MVT::f32, Legal);
391     setOperationAction(ISD::LLRINT, MVT::f32, Legal);
392     setOperationAction(ISD::LROUND, MVT::f32, Legal);
393     setOperationAction(ISD::LLROUND, MVT::f32, Legal);
394     setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal);
395     setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal);
396     setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal);
397     setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal);
398     setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
399     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
400     setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
401     setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
402     setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
403     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
404     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
405     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
406     for (auto CC : FPCCToExpand)
407       setCondCodeAction(CC, MVT::f32, Expand);
408     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
409     setOperationAction(ISD::SELECT, MVT::f32, Custom);
410     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
411     for (auto Op : FPOpToExpand)
412       setOperationAction(Op, MVT::f32, Expand);
413     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
414     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
415   }
416 
417   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
418     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
419 
420   if (Subtarget.hasStdExtD()) {
421     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
422     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
423     setOperationAction(ISD::LRINT, MVT::f64, Legal);
424     setOperationAction(ISD::LLRINT, MVT::f64, Legal);
425     setOperationAction(ISD::LROUND, MVT::f64, Legal);
426     setOperationAction(ISD::LLROUND, MVT::f64, Legal);
427     setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal);
428     setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal);
429     setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal);
430     setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal);
431     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
432     setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
433     setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
434     setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
435     setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
436     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
437     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
438     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
439     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
440     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
441     for (auto CC : FPCCToExpand)
442       setCondCodeAction(CC, MVT::f64, Expand);
443     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
444     setOperationAction(ISD::SELECT, MVT::f64, Custom);
445     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
446     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
447     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
448     for (auto Op : FPOpToExpand)
449       setOperationAction(Op, MVT::f64, Expand);
450     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
451     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
452   }
453 
454   if (Subtarget.is64Bit()) {
455     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
456     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
457     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
458     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
459   }
460 
461   if (Subtarget.hasStdExtF()) {
462     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
463     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
464 
465     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
466     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
467     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
468     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
469 
470     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
471     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
472   }
473 
474   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
475   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
476   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
477   setOperationAction(ISD::JumpTable, XLenVT, Custom);
478 
479   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
480 
481   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
482   // Unfortunately this can't be determined just from the ISA naming string.
483   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
484                      Subtarget.is64Bit() ? Legal : Custom);
485 
486   setOperationAction(ISD::TRAP, MVT::Other, Legal);
487   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
488   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
489   if (Subtarget.is64Bit())
490     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
491 
492   if (Subtarget.hasStdExtA()) {
493     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
494     setMinCmpXchgSizeInBits(32);
495   } else {
496     setMaxAtomicSizeInBitsSupported(0);
497   }
498 
499   setBooleanContents(ZeroOrOneBooleanContent);
500 
501   if (Subtarget.hasVInstructions()) {
502     setBooleanVectorContents(ZeroOrOneBooleanContent);
503 
504     setOperationAction(ISD::VSCALE, XLenVT, Custom);
505 
506     // RVV intrinsics may have illegal operands.
507     // We also need to custom legalize vmv.x.s.
508     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
509     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
510     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
511     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
512     if (Subtarget.is64Bit()) {
513       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
514     } else {
515       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
516       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
517     }
518 
519     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
520     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
521 
522     static const unsigned IntegerVPOps[] = {
523         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
524         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
525         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
526         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
527         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
528         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
529         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
530         ISD::VP_MERGE,       ISD::VP_SELECT};
531 
532     static const unsigned FloatingPointVPOps[] = {
533         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
534         ISD::VP_FDIV,        ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
535         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,
536         ISD::VP_SELECT};
537 
538     if (!Subtarget.is64Bit()) {
539       // We must custom-lower certain vXi64 operations on RV32 due to the vector
540       // element type being illegal.
541       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
542       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
543 
544       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
545       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
546       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
547       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
548       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
549       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
550       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
551       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
552 
553       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
554       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
555       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
556       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
557       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
558       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
559       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
560       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
561     }
562 
563     for (MVT VT : BoolVecVTs) {
564       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
565 
566       // Mask VTs are custom-expanded into a series of standard nodes
567       setOperationAction(ISD::TRUNCATE, VT, Custom);
568       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
569       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
570       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
571 
572       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
573       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
574 
575       setOperationAction(ISD::SELECT, VT, Custom);
576       setOperationAction(ISD::SELECT_CC, VT, Expand);
577       setOperationAction(ISD::VSELECT, VT, Expand);
578       setOperationAction(ISD::VP_MERGE, VT, Expand);
579       setOperationAction(ISD::VP_SELECT, VT, Expand);
580 
581       setOperationAction(ISD::VP_AND, VT, Custom);
582       setOperationAction(ISD::VP_OR, VT, Custom);
583       setOperationAction(ISD::VP_XOR, VT, Custom);
584 
585       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
586       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
587       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
588 
589       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
590       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
591       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
592 
593       // RVV has native int->float & float->int conversions where the
594       // element type sizes are within one power-of-two of each other. Any
595       // wider distances between type sizes have to be lowered as sequences
596       // which progressively narrow the gap in stages.
597       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
598       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
599       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
600       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
601 
602       // Expand all extending loads to types larger than this, and truncating
603       // stores from types larger than this.
604       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
605         setTruncStoreAction(OtherVT, VT, Expand);
606         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
607         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
608         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
609       }
610     }
611 
612     for (MVT VT : IntVecVTs) {
613       if (VT.getVectorElementType() == MVT::i64 &&
614           !Subtarget.hasVInstructionsI64())
615         continue;
616 
617       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
618       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
619 
620       // Vectors implement MULHS/MULHU.
621       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
622       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
623 
624       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
625       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) {
626         setOperationAction(ISD::MULHU, VT, Expand);
627         setOperationAction(ISD::MULHS, VT, Expand);
628       }
629 
630       setOperationAction(ISD::SMIN, VT, Legal);
631       setOperationAction(ISD::SMAX, VT, Legal);
632       setOperationAction(ISD::UMIN, VT, Legal);
633       setOperationAction(ISD::UMAX, VT, Legal);
634 
635       setOperationAction(ISD::ROTL, VT, Expand);
636       setOperationAction(ISD::ROTR, VT, Expand);
637 
638       setOperationAction(ISD::CTTZ, VT, Expand);
639       setOperationAction(ISD::CTLZ, VT, Expand);
640       setOperationAction(ISD::CTPOP, VT, Expand);
641 
642       setOperationAction(ISD::BSWAP, VT, Expand);
643 
644       // Custom-lower extensions and truncations from/to mask types.
645       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
646       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
647       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
648 
649       // RVV has native int->float & float->int conversions where the
650       // element type sizes are within one power-of-two of each other. Any
651       // wider distances between type sizes have to be lowered as sequences
652       // which progressively narrow the gap in stages.
653       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
654       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
655       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
656       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
657 
658       setOperationAction(ISD::SADDSAT, VT, Legal);
659       setOperationAction(ISD::UADDSAT, VT, Legal);
660       setOperationAction(ISD::SSUBSAT, VT, Legal);
661       setOperationAction(ISD::USUBSAT, VT, Legal);
662 
663       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
664       // nodes which truncate by one power of two at a time.
665       setOperationAction(ISD::TRUNCATE, VT, Custom);
666 
667       // Custom-lower insert/extract operations to simplify patterns.
668       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
669       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
670 
671       // Custom-lower reduction operations to set up the corresponding custom
672       // nodes' operands.
673       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
674       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
675       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
676       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
677       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
678       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
679       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
680       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
681 
682       for (unsigned VPOpc : IntegerVPOps)
683         setOperationAction(VPOpc, VT, Custom);
684 
685       setOperationAction(ISD::LOAD, VT, Custom);
686       setOperationAction(ISD::STORE, VT, Custom);
687 
688       setOperationAction(ISD::MLOAD, VT, Custom);
689       setOperationAction(ISD::MSTORE, VT, Custom);
690       setOperationAction(ISD::MGATHER, VT, Custom);
691       setOperationAction(ISD::MSCATTER, VT, Custom);
692 
693       setOperationAction(ISD::VP_LOAD, VT, Custom);
694       setOperationAction(ISD::VP_STORE, VT, Custom);
695       setOperationAction(ISD::VP_GATHER, VT, Custom);
696       setOperationAction(ISD::VP_SCATTER, VT, Custom);
697 
698       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
699       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
700       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
701 
702       setOperationAction(ISD::SELECT, VT, Custom);
703       setOperationAction(ISD::SELECT_CC, VT, Expand);
704 
705       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
706       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
707 
708       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
709         setTruncStoreAction(VT, OtherVT, Expand);
710         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
711         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
712         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
713       }
714 
715       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
716       // type that can represent the value exactly.
717       if (VT.getVectorElementType() != MVT::i64) {
718         MVT FloatEltVT =
719             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
720         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
721         if (isTypeLegal(FloatVT)) {
722           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
723           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
724         }
725       }
726     }
727 
728     // Expand various CCs to best match the RVV ISA, which natively supports UNE
729     // but no other unordered comparisons, and supports all ordered comparisons
730     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
731     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
732     // and we pattern-match those back to the "original", swapping operands once
733     // more. This way we catch both operations and both "vf" and "fv" forms with
734     // fewer patterns.
735     static const ISD::CondCode VFPCCToExpand[] = {
736         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
737         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
738         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
739     };
740 
741     // Sets common operation actions on RVV floating-point vector types.
742     const auto SetCommonVFPActions = [&](MVT VT) {
743       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
744       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
745       // sizes are within one power-of-two of each other. Therefore conversions
746       // between vXf16 and vXf64 must be lowered as sequences which convert via
747       // vXf32.
748       setOperationAction(ISD::FP_ROUND, VT, Custom);
749       setOperationAction(ISD::FP_EXTEND, VT, Custom);
750       // Custom-lower insert/extract operations to simplify patterns.
751       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
752       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
753       // Expand various condition codes (explained above).
754       for (auto CC : VFPCCToExpand)
755         setCondCodeAction(CC, VT, Expand);
756 
757       setOperationAction(ISD::FMINNUM, VT, Legal);
758       setOperationAction(ISD::FMAXNUM, VT, Legal);
759 
760       setOperationAction(ISD::FTRUNC, VT, Custom);
761       setOperationAction(ISD::FCEIL, VT, Custom);
762       setOperationAction(ISD::FFLOOR, VT, Custom);
763 
764       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
765       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
766       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
767       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
768 
769       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
770 
771       setOperationAction(ISD::LOAD, VT, Custom);
772       setOperationAction(ISD::STORE, VT, Custom);
773 
774       setOperationAction(ISD::MLOAD, VT, Custom);
775       setOperationAction(ISD::MSTORE, VT, Custom);
776       setOperationAction(ISD::MGATHER, VT, Custom);
777       setOperationAction(ISD::MSCATTER, VT, Custom);
778 
779       setOperationAction(ISD::VP_LOAD, VT, Custom);
780       setOperationAction(ISD::VP_STORE, VT, Custom);
781       setOperationAction(ISD::VP_GATHER, VT, Custom);
782       setOperationAction(ISD::VP_SCATTER, VT, Custom);
783 
784       setOperationAction(ISD::SELECT, VT, Custom);
785       setOperationAction(ISD::SELECT_CC, VT, Expand);
786 
787       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
788       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
789       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
790 
791       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
792 
793       for (unsigned VPOpc : FloatingPointVPOps)
794         setOperationAction(VPOpc, VT, Custom);
795     };
796 
797     // Sets common extload/truncstore actions on RVV floating-point vector
798     // types.
799     const auto SetCommonVFPExtLoadTruncStoreActions =
800         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
801           for (auto SmallVT : SmallerVTs) {
802             setTruncStoreAction(VT, SmallVT, Expand);
803             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
804           }
805         };
806 
807     if (Subtarget.hasVInstructionsF16())
808       for (MVT VT : F16VecVTs)
809         SetCommonVFPActions(VT);
810 
811     for (MVT VT : F32VecVTs) {
812       if (Subtarget.hasVInstructionsF32())
813         SetCommonVFPActions(VT);
814       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
815     }
816 
817     for (MVT VT : F64VecVTs) {
818       if (Subtarget.hasVInstructionsF64())
819         SetCommonVFPActions(VT);
820       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
821       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
822     }
823 
824     if (Subtarget.useRVVForFixedLengthVectors()) {
825       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
826         if (!useRVVForFixedLengthVectorVT(VT))
827           continue;
828 
829         // By default everything must be expanded.
830         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
831           setOperationAction(Op, VT, Expand);
832         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
833           setTruncStoreAction(VT, OtherVT, Expand);
834           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
835           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
836           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
837         }
838 
839         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
840         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
841         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
842 
843         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
844         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
845 
846         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
847         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
848 
849         setOperationAction(ISD::LOAD, VT, Custom);
850         setOperationAction(ISD::STORE, VT, Custom);
851 
852         setOperationAction(ISD::SETCC, VT, Custom);
853 
854         setOperationAction(ISD::SELECT, VT, Custom);
855 
856         setOperationAction(ISD::TRUNCATE, VT, Custom);
857 
858         setOperationAction(ISD::BITCAST, VT, Custom);
859 
860         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
861         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
862         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
863 
864         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
865         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
866         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
867 
868         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
869         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
870         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
871         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
872 
873         // Operations below are different for between masks and other vectors.
874         if (VT.getVectorElementType() == MVT::i1) {
875           setOperationAction(ISD::VP_AND, VT, Custom);
876           setOperationAction(ISD::VP_OR, VT, Custom);
877           setOperationAction(ISD::VP_XOR, VT, Custom);
878           setOperationAction(ISD::AND, VT, Custom);
879           setOperationAction(ISD::OR, VT, Custom);
880           setOperationAction(ISD::XOR, VT, Custom);
881           continue;
882         }
883 
884         // Use SPLAT_VECTOR to prevent type legalization from destroying the
885         // splats when type legalizing i64 scalar on RV32.
886         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
887         // improvements first.
888         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
889           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
890           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
891         }
892 
893         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
894         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
895 
896         setOperationAction(ISD::MLOAD, VT, Custom);
897         setOperationAction(ISD::MSTORE, VT, Custom);
898         setOperationAction(ISD::MGATHER, VT, Custom);
899         setOperationAction(ISD::MSCATTER, VT, Custom);
900 
901         setOperationAction(ISD::VP_LOAD, VT, Custom);
902         setOperationAction(ISD::VP_STORE, VT, Custom);
903         setOperationAction(ISD::VP_GATHER, VT, Custom);
904         setOperationAction(ISD::VP_SCATTER, VT, Custom);
905 
906         setOperationAction(ISD::ADD, VT, Custom);
907         setOperationAction(ISD::MUL, VT, Custom);
908         setOperationAction(ISD::SUB, VT, Custom);
909         setOperationAction(ISD::AND, VT, Custom);
910         setOperationAction(ISD::OR, VT, Custom);
911         setOperationAction(ISD::XOR, VT, Custom);
912         setOperationAction(ISD::SDIV, VT, Custom);
913         setOperationAction(ISD::SREM, VT, Custom);
914         setOperationAction(ISD::UDIV, VT, Custom);
915         setOperationAction(ISD::UREM, VT, Custom);
916         setOperationAction(ISD::SHL, VT, Custom);
917         setOperationAction(ISD::SRA, VT, Custom);
918         setOperationAction(ISD::SRL, VT, Custom);
919 
920         setOperationAction(ISD::SMIN, VT, Custom);
921         setOperationAction(ISD::SMAX, VT, Custom);
922         setOperationAction(ISD::UMIN, VT, Custom);
923         setOperationAction(ISD::UMAX, VT, Custom);
924         setOperationAction(ISD::ABS,  VT, Custom);
925 
926         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
927         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) {
928           setOperationAction(ISD::MULHS, VT, Custom);
929           setOperationAction(ISD::MULHU, VT, Custom);
930         }
931 
932         setOperationAction(ISD::SADDSAT, VT, Custom);
933         setOperationAction(ISD::UADDSAT, VT, Custom);
934         setOperationAction(ISD::SSUBSAT, VT, Custom);
935         setOperationAction(ISD::USUBSAT, VT, Custom);
936 
937         setOperationAction(ISD::VSELECT, VT, Custom);
938         setOperationAction(ISD::SELECT_CC, VT, Expand);
939 
940         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
941         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
942         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
943 
944         // Custom-lower reduction operations to set up the corresponding custom
945         // nodes' operands.
946         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
947         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
948         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
949         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
950         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
951 
952         for (unsigned VPOpc : IntegerVPOps)
953           setOperationAction(VPOpc, VT, Custom);
954 
955         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
956         // type that can represent the value exactly.
957         if (VT.getVectorElementType() != MVT::i64) {
958           MVT FloatEltVT =
959               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
960           EVT FloatVT =
961               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
962           if (isTypeLegal(FloatVT)) {
963             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
964             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
965           }
966         }
967       }
968 
969       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
970         if (!useRVVForFixedLengthVectorVT(VT))
971           continue;
972 
973         // By default everything must be expanded.
974         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
975           setOperationAction(Op, VT, Expand);
976         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
977           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
978           setTruncStoreAction(VT, OtherVT, Expand);
979         }
980 
981         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
982         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
983         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
984 
985         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
986         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
987         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
988         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
989         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
990 
991         setOperationAction(ISD::LOAD, VT, Custom);
992         setOperationAction(ISD::STORE, VT, Custom);
993         setOperationAction(ISD::MLOAD, VT, Custom);
994         setOperationAction(ISD::MSTORE, VT, Custom);
995         setOperationAction(ISD::MGATHER, VT, Custom);
996         setOperationAction(ISD::MSCATTER, VT, Custom);
997 
998         setOperationAction(ISD::VP_LOAD, VT, Custom);
999         setOperationAction(ISD::VP_STORE, VT, Custom);
1000         setOperationAction(ISD::VP_GATHER, VT, Custom);
1001         setOperationAction(ISD::VP_SCATTER, VT, Custom);
1002 
1003         setOperationAction(ISD::FADD, VT, Custom);
1004         setOperationAction(ISD::FSUB, VT, Custom);
1005         setOperationAction(ISD::FMUL, VT, Custom);
1006         setOperationAction(ISD::FDIV, VT, Custom);
1007         setOperationAction(ISD::FNEG, VT, Custom);
1008         setOperationAction(ISD::FABS, VT, Custom);
1009         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
1010         setOperationAction(ISD::FSQRT, VT, Custom);
1011         setOperationAction(ISD::FMA, VT, Custom);
1012         setOperationAction(ISD::FMINNUM, VT, Custom);
1013         setOperationAction(ISD::FMAXNUM, VT, Custom);
1014 
1015         setOperationAction(ISD::FP_ROUND, VT, Custom);
1016         setOperationAction(ISD::FP_EXTEND, VT, Custom);
1017 
1018         setOperationAction(ISD::FTRUNC, VT, Custom);
1019         setOperationAction(ISD::FCEIL, VT, Custom);
1020         setOperationAction(ISD::FFLOOR, VT, Custom);
1021 
1022         for (auto CC : VFPCCToExpand)
1023           setCondCodeAction(CC, VT, Expand);
1024 
1025         setOperationAction(ISD::VSELECT, VT, Custom);
1026         setOperationAction(ISD::SELECT, VT, Custom);
1027         setOperationAction(ISD::SELECT_CC, VT, Expand);
1028 
1029         setOperationAction(ISD::BITCAST, VT, Custom);
1030 
1031         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1032         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1033         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1034         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1035 
1036         for (unsigned VPOpc : FloatingPointVPOps)
1037           setOperationAction(VPOpc, VT, Custom);
1038       }
1039 
1040       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1041       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1042       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1043       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1044       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1045       if (Subtarget.hasStdExtZfh())
1046         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1047       if (Subtarget.hasStdExtF())
1048         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1049       if (Subtarget.hasStdExtD())
1050         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1051     }
1052   }
1053 
1054   // Function alignments.
1055   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1056   setMinFunctionAlignment(FunctionAlignment);
1057   setPrefFunctionAlignment(FunctionAlignment);
1058 
1059   setMinimumJumpTableEntries(5);
1060 
1061   // Jumps are expensive, compared to logic
1062   setJumpIsExpensive();
1063 
1064   setTargetDAGCombine(ISD::ADD);
1065   setTargetDAGCombine(ISD::SUB);
1066   setTargetDAGCombine(ISD::AND);
1067   setTargetDAGCombine(ISD::OR);
1068   setTargetDAGCombine(ISD::XOR);
1069   setTargetDAGCombine(ISD::ANY_EXTEND);
1070   if (Subtarget.hasStdExtF()) {
1071     setTargetDAGCombine(ISD::ZERO_EXTEND);
1072     setTargetDAGCombine(ISD::FP_TO_SINT);
1073     setTargetDAGCombine(ISD::FP_TO_UINT);
1074     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
1075     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
1076   }
1077   if (Subtarget.hasVInstructions()) {
1078     setTargetDAGCombine(ISD::FCOPYSIGN);
1079     setTargetDAGCombine(ISD::MGATHER);
1080     setTargetDAGCombine(ISD::MSCATTER);
1081     setTargetDAGCombine(ISD::VP_GATHER);
1082     setTargetDAGCombine(ISD::VP_SCATTER);
1083     setTargetDAGCombine(ISD::SRA);
1084     setTargetDAGCombine(ISD::SRL);
1085     setTargetDAGCombine(ISD::SHL);
1086     setTargetDAGCombine(ISD::STORE);
1087   }
1088 
1089   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1090   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1091 }
1092 
1093 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1094                                             LLVMContext &Context,
1095                                             EVT VT) const {
1096   if (!VT.isVector())
1097     return getPointerTy(DL);
1098   if (Subtarget.hasVInstructions() &&
1099       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1100     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1101   return VT.changeVectorElementTypeToInteger();
1102 }
1103 
1104 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1105   return Subtarget.getXLenVT();
1106 }
1107 
1108 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1109                                              const CallInst &I,
1110                                              MachineFunction &MF,
1111                                              unsigned Intrinsic) const {
1112   auto &DL = I.getModule()->getDataLayout();
1113   switch (Intrinsic) {
1114   default:
1115     return false;
1116   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1117   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1118   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1119   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1120   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1121   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1122   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1123   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1124   case Intrinsic::riscv_masked_cmpxchg_i32:
1125     Info.opc = ISD::INTRINSIC_W_CHAIN;
1126     Info.memVT = MVT::i32;
1127     Info.ptrVal = I.getArgOperand(0);
1128     Info.offset = 0;
1129     Info.align = Align(4);
1130     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1131                  MachineMemOperand::MOVolatile;
1132     return true;
1133   case Intrinsic::riscv_masked_strided_load:
1134     Info.opc = ISD::INTRINSIC_W_CHAIN;
1135     Info.ptrVal = I.getArgOperand(1);
1136     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1137     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1138     Info.size = MemoryLocation::UnknownSize;
1139     Info.flags |= MachineMemOperand::MOLoad;
1140     return true;
1141   case Intrinsic::riscv_masked_strided_store:
1142     Info.opc = ISD::INTRINSIC_VOID;
1143     Info.ptrVal = I.getArgOperand(1);
1144     Info.memVT =
1145         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1146     Info.align = Align(
1147         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1148         8);
1149     Info.size = MemoryLocation::UnknownSize;
1150     Info.flags |= MachineMemOperand::MOStore;
1151     return true;
1152   }
1153 }
1154 
1155 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1156                                                 const AddrMode &AM, Type *Ty,
1157                                                 unsigned AS,
1158                                                 Instruction *I) const {
1159   // No global is ever allowed as a base.
1160   if (AM.BaseGV)
1161     return false;
1162 
1163   // Require a 12-bit signed offset.
1164   if (!isInt<12>(AM.BaseOffs))
1165     return false;
1166 
1167   switch (AM.Scale) {
1168   case 0: // "r+i" or just "i", depending on HasBaseReg.
1169     break;
1170   case 1:
1171     if (!AM.HasBaseReg) // allow "r+i".
1172       break;
1173     return false; // disallow "r+r" or "r+r+i".
1174   default:
1175     return false;
1176   }
1177 
1178   return true;
1179 }
1180 
1181 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1182   return isInt<12>(Imm);
1183 }
1184 
1185 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1186   return isInt<12>(Imm);
1187 }
1188 
1189 // On RV32, 64-bit integers are split into their high and low parts and held
1190 // in two different registers, so the trunc is free since the low register can
1191 // just be used.
1192 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1193   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1194     return false;
1195   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1196   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1197   return (SrcBits == 64 && DestBits == 32);
1198 }
1199 
1200 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1201   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1202       !SrcVT.isInteger() || !DstVT.isInteger())
1203     return false;
1204   unsigned SrcBits = SrcVT.getSizeInBits();
1205   unsigned DestBits = DstVT.getSizeInBits();
1206   return (SrcBits == 64 && DestBits == 32);
1207 }
1208 
1209 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1210   // Zexts are free if they can be combined with a load.
1211   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1212   // poorly with type legalization of compares preferring sext.
1213   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1214     EVT MemVT = LD->getMemoryVT();
1215     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1216         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1217          LD->getExtensionType() == ISD::ZEXTLOAD))
1218       return true;
1219   }
1220 
1221   return TargetLowering::isZExtFree(Val, VT2);
1222 }
1223 
1224 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1225   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1226 }
1227 
1228 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1229   return Subtarget.hasStdExtZbb();
1230 }
1231 
1232 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1233   return Subtarget.hasStdExtZbb();
1234 }
1235 
1236 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1237   EVT VT = Y.getValueType();
1238 
1239   // FIXME: Support vectors once we have tests.
1240   if (VT.isVector())
1241     return false;
1242 
1243   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1244           Subtarget.hasStdExtZbkb()) &&
1245          !isa<ConstantSDNode>(Y);
1246 }
1247 
1248 /// Check if sinking \p I's operands to I's basic block is profitable, because
1249 /// the operands can be folded into a target instruction, e.g.
1250 /// splats of scalars can fold into vector instructions.
1251 bool RISCVTargetLowering::shouldSinkOperands(
1252     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1253   using namespace llvm::PatternMatch;
1254 
1255   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1256     return false;
1257 
1258   auto IsSinker = [&](Instruction *I, int Operand) {
1259     switch (I->getOpcode()) {
1260     case Instruction::Add:
1261     case Instruction::Sub:
1262     case Instruction::Mul:
1263     case Instruction::And:
1264     case Instruction::Or:
1265     case Instruction::Xor:
1266     case Instruction::FAdd:
1267     case Instruction::FSub:
1268     case Instruction::FMul:
1269     case Instruction::FDiv:
1270     case Instruction::ICmp:
1271     case Instruction::FCmp:
1272       return true;
1273     case Instruction::Shl:
1274     case Instruction::LShr:
1275     case Instruction::AShr:
1276     case Instruction::UDiv:
1277     case Instruction::SDiv:
1278     case Instruction::URem:
1279     case Instruction::SRem:
1280       return Operand == 1;
1281     case Instruction::Call:
1282       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1283         switch (II->getIntrinsicID()) {
1284         case Intrinsic::fma:
1285           return Operand == 0 || Operand == 1;
1286         // FIXME: Our patterns can only match vx/vf instructions when the splat
1287         // it on the RHS, because TableGen doesn't recognize our VP operations
1288         // as commutative.
1289         case Intrinsic::vp_add:
1290         case Intrinsic::vp_mul:
1291         case Intrinsic::vp_and:
1292         case Intrinsic::vp_or:
1293         case Intrinsic::vp_xor:
1294         case Intrinsic::vp_fadd:
1295         case Intrinsic::vp_fmul:
1296         case Intrinsic::vp_shl:
1297         case Intrinsic::vp_lshr:
1298         case Intrinsic::vp_ashr:
1299         case Intrinsic::vp_udiv:
1300         case Intrinsic::vp_sdiv:
1301         case Intrinsic::vp_urem:
1302         case Intrinsic::vp_srem:
1303           return Operand == 1;
1304         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1305         // explicit patterns for both LHS and RHS (as 'vr' versions).
1306         case Intrinsic::vp_sub:
1307         case Intrinsic::vp_fsub:
1308         case Intrinsic::vp_fdiv:
1309           return Operand == 0 || Operand == 1;
1310         default:
1311           return false;
1312         }
1313       }
1314       return false;
1315     default:
1316       return false;
1317     }
1318   };
1319 
1320   for (auto OpIdx : enumerate(I->operands())) {
1321     if (!IsSinker(I, OpIdx.index()))
1322       continue;
1323 
1324     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1325     // Make sure we are not already sinking this operand
1326     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1327       continue;
1328 
1329     // We are looking for a splat that can be sunk.
1330     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1331                              m_Undef(), m_ZeroMask())))
1332       continue;
1333 
1334     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1335     // and vector registers
1336     for (Use &U : Op->uses()) {
1337       Instruction *Insn = cast<Instruction>(U.getUser());
1338       if (!IsSinker(Insn, U.getOperandNo()))
1339         return false;
1340     }
1341 
1342     Ops.push_back(&Op->getOperandUse(0));
1343     Ops.push_back(&OpIdx.value());
1344   }
1345   return true;
1346 }
1347 
1348 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1349                                        bool ForCodeSize) const {
1350   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1351   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1352     return false;
1353   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1354     return false;
1355   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1356     return false;
1357   return Imm.isZero();
1358 }
1359 
1360 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1361   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1362          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1363          (VT == MVT::f64 && Subtarget.hasStdExtD());
1364 }
1365 
1366 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1367                                                       CallingConv::ID CC,
1368                                                       EVT VT) const {
1369   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1370   // We might still end up using a GPR but that will be decided based on ABI.
1371   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1372   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1373     return MVT::f32;
1374 
1375   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1376 }
1377 
1378 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1379                                                            CallingConv::ID CC,
1380                                                            EVT VT) const {
1381   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1382   // We might still end up using a GPR but that will be decided based on ABI.
1383   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1384   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1385     return 1;
1386 
1387   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1388 }
1389 
1390 // Changes the condition code and swaps operands if necessary, so the SetCC
1391 // operation matches one of the comparisons supported directly by branches
1392 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1393 // with 1/-1.
1394 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1395                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1396   // Convert X > -1 to X >= 0.
1397   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1398     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1399     CC = ISD::SETGE;
1400     return;
1401   }
1402   // Convert X < 1 to 0 >= X.
1403   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1404     RHS = LHS;
1405     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1406     CC = ISD::SETGE;
1407     return;
1408   }
1409 
1410   switch (CC) {
1411   default:
1412     break;
1413   case ISD::SETGT:
1414   case ISD::SETLE:
1415   case ISD::SETUGT:
1416   case ISD::SETULE:
1417     CC = ISD::getSetCCSwappedOperands(CC);
1418     std::swap(LHS, RHS);
1419     break;
1420   }
1421 }
1422 
1423 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1424   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1425   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1426   if (VT.getVectorElementType() == MVT::i1)
1427     KnownSize *= 8;
1428 
1429   switch (KnownSize) {
1430   default:
1431     llvm_unreachable("Invalid LMUL.");
1432   case 8:
1433     return RISCVII::VLMUL::LMUL_F8;
1434   case 16:
1435     return RISCVII::VLMUL::LMUL_F4;
1436   case 32:
1437     return RISCVII::VLMUL::LMUL_F2;
1438   case 64:
1439     return RISCVII::VLMUL::LMUL_1;
1440   case 128:
1441     return RISCVII::VLMUL::LMUL_2;
1442   case 256:
1443     return RISCVII::VLMUL::LMUL_4;
1444   case 512:
1445     return RISCVII::VLMUL::LMUL_8;
1446   }
1447 }
1448 
1449 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1450   switch (LMul) {
1451   default:
1452     llvm_unreachable("Invalid LMUL.");
1453   case RISCVII::VLMUL::LMUL_F8:
1454   case RISCVII::VLMUL::LMUL_F4:
1455   case RISCVII::VLMUL::LMUL_F2:
1456   case RISCVII::VLMUL::LMUL_1:
1457     return RISCV::VRRegClassID;
1458   case RISCVII::VLMUL::LMUL_2:
1459     return RISCV::VRM2RegClassID;
1460   case RISCVII::VLMUL::LMUL_4:
1461     return RISCV::VRM4RegClassID;
1462   case RISCVII::VLMUL::LMUL_8:
1463     return RISCV::VRM8RegClassID;
1464   }
1465 }
1466 
1467 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1468   RISCVII::VLMUL LMUL = getLMUL(VT);
1469   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1470       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1471       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1472       LMUL == RISCVII::VLMUL::LMUL_1) {
1473     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1474                   "Unexpected subreg numbering");
1475     return RISCV::sub_vrm1_0 + Index;
1476   }
1477   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1478     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1479                   "Unexpected subreg numbering");
1480     return RISCV::sub_vrm2_0 + Index;
1481   }
1482   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1483     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1484                   "Unexpected subreg numbering");
1485     return RISCV::sub_vrm4_0 + Index;
1486   }
1487   llvm_unreachable("Invalid vector type.");
1488 }
1489 
1490 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1491   if (VT.getVectorElementType() == MVT::i1)
1492     return RISCV::VRRegClassID;
1493   return getRegClassIDForLMUL(getLMUL(VT));
1494 }
1495 
1496 // Attempt to decompose a subvector insert/extract between VecVT and
1497 // SubVecVT via subregister indices. Returns the subregister index that
1498 // can perform the subvector insert/extract with the given element index, as
1499 // well as the index corresponding to any leftover subvectors that must be
1500 // further inserted/extracted within the register class for SubVecVT.
1501 std::pair<unsigned, unsigned>
1502 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1503     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1504     const RISCVRegisterInfo *TRI) {
1505   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1506                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1507                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1508                 "Register classes not ordered");
1509   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1510   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1511   // Try to compose a subregister index that takes us from the incoming
1512   // LMUL>1 register class down to the outgoing one. At each step we half
1513   // the LMUL:
1514   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1515   // Note that this is not guaranteed to find a subregister index, such as
1516   // when we are extracting from one VR type to another.
1517   unsigned SubRegIdx = RISCV::NoSubRegister;
1518   for (const unsigned RCID :
1519        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1520     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1521       VecVT = VecVT.getHalfNumVectorElementsVT();
1522       bool IsHi =
1523           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1524       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1525                                             getSubregIndexByMVT(VecVT, IsHi));
1526       if (IsHi)
1527         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1528     }
1529   return {SubRegIdx, InsertExtractIdx};
1530 }
1531 
1532 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1533 // stores for those types.
1534 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1535   return !Subtarget.useRVVForFixedLengthVectors() ||
1536          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1537 }
1538 
1539 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1540   if (ScalarTy->isPointerTy())
1541     return true;
1542 
1543   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1544       ScalarTy->isIntegerTy(32))
1545     return true;
1546 
1547   if (ScalarTy->isIntegerTy(64))
1548     return Subtarget.hasVInstructionsI64();
1549 
1550   if (ScalarTy->isHalfTy())
1551     return Subtarget.hasVInstructionsF16();
1552   if (ScalarTy->isFloatTy())
1553     return Subtarget.hasVInstructionsF32();
1554   if (ScalarTy->isDoubleTy())
1555     return Subtarget.hasVInstructionsF64();
1556 
1557   return false;
1558 }
1559 
1560 static SDValue getVLOperand(SDValue Op) {
1561   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1562           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1563          "Unexpected opcode");
1564   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1565   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1566   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1567       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1568   if (!II)
1569     return SDValue();
1570   return Op.getOperand(II->VLOperand + 1 + HasChain);
1571 }
1572 
1573 static bool useRVVForFixedLengthVectorVT(MVT VT,
1574                                          const RISCVSubtarget &Subtarget) {
1575   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1576   if (!Subtarget.useRVVForFixedLengthVectors())
1577     return false;
1578 
1579   // We only support a set of vector types with a consistent maximum fixed size
1580   // across all supported vector element types to avoid legalization issues.
1581   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1582   // fixed-length vector type we support is 1024 bytes.
1583   if (VT.getFixedSizeInBits() > 1024 * 8)
1584     return false;
1585 
1586   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1587 
1588   MVT EltVT = VT.getVectorElementType();
1589 
1590   // Don't use RVV for vectors we cannot scalarize if required.
1591   switch (EltVT.SimpleTy) {
1592   // i1 is supported but has different rules.
1593   default:
1594     return false;
1595   case MVT::i1:
1596     // Masks can only use a single register.
1597     if (VT.getVectorNumElements() > MinVLen)
1598       return false;
1599     MinVLen /= 8;
1600     break;
1601   case MVT::i8:
1602   case MVT::i16:
1603   case MVT::i32:
1604     break;
1605   case MVT::i64:
1606     if (!Subtarget.hasVInstructionsI64())
1607       return false;
1608     break;
1609   case MVT::f16:
1610     if (!Subtarget.hasVInstructionsF16())
1611       return false;
1612     break;
1613   case MVT::f32:
1614     if (!Subtarget.hasVInstructionsF32())
1615       return false;
1616     break;
1617   case MVT::f64:
1618     if (!Subtarget.hasVInstructionsF64())
1619       return false;
1620     break;
1621   }
1622 
1623   // Reject elements larger than ELEN.
1624   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1625     return false;
1626 
1627   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1628   // Don't use RVV for types that don't fit.
1629   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1630     return false;
1631 
1632   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1633   // the base fixed length RVV support in place.
1634   if (!VT.isPow2VectorType())
1635     return false;
1636 
1637   return true;
1638 }
1639 
1640 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1641   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1642 }
1643 
1644 // Return the largest legal scalable vector type that matches VT's element type.
1645 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1646                                             const RISCVSubtarget &Subtarget) {
1647   // This may be called before legal types are setup.
1648   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1649           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1650          "Expected legal fixed length vector!");
1651 
1652   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1653   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1654 
1655   MVT EltVT = VT.getVectorElementType();
1656   switch (EltVT.SimpleTy) {
1657   default:
1658     llvm_unreachable("unexpected element type for RVV container");
1659   case MVT::i1:
1660   case MVT::i8:
1661   case MVT::i16:
1662   case MVT::i32:
1663   case MVT::i64:
1664   case MVT::f16:
1665   case MVT::f32:
1666   case MVT::f64: {
1667     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1668     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1669     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1670     unsigned NumElts =
1671         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1672     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1673     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1674     return MVT::getScalableVectorVT(EltVT, NumElts);
1675   }
1676   }
1677 }
1678 
1679 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1680                                             const RISCVSubtarget &Subtarget) {
1681   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1682                                           Subtarget);
1683 }
1684 
1685 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1686   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1687 }
1688 
1689 // Grow V to consume an entire RVV register.
1690 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1691                                        const RISCVSubtarget &Subtarget) {
1692   assert(VT.isScalableVector() &&
1693          "Expected to convert into a scalable vector!");
1694   assert(V.getValueType().isFixedLengthVector() &&
1695          "Expected a fixed length vector operand!");
1696   SDLoc DL(V);
1697   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1698   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1699 }
1700 
1701 // Shrink V so it's just big enough to maintain a VT's worth of data.
1702 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1703                                          const RISCVSubtarget &Subtarget) {
1704   assert(VT.isFixedLengthVector() &&
1705          "Expected to convert into a fixed length vector!");
1706   assert(V.getValueType().isScalableVector() &&
1707          "Expected a scalable vector operand!");
1708   SDLoc DL(V);
1709   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1710   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1711 }
1712 
1713 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1714 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1715 // the vector type that it is contained in.
1716 static std::pair<SDValue, SDValue>
1717 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1718                 const RISCVSubtarget &Subtarget) {
1719   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1720   MVT XLenVT = Subtarget.getXLenVT();
1721   SDValue VL = VecVT.isFixedLengthVector()
1722                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1723                    : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT);
1724   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1725   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1726   return {Mask, VL};
1727 }
1728 
1729 // As above but assuming the given type is a scalable vector type.
1730 static std::pair<SDValue, SDValue>
1731 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1732                         const RISCVSubtarget &Subtarget) {
1733   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1734   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1735 }
1736 
1737 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1738 // of either is (currently) supported. This can get us into an infinite loop
1739 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1740 // as a ..., etc.
1741 // Until either (or both) of these can reliably lower any node, reporting that
1742 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1743 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1744 // which is not desirable.
1745 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1746     EVT VT, unsigned DefinedValues) const {
1747   return false;
1748 }
1749 
1750 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1751   // Only splats are currently supported.
1752   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1753     return true;
1754 
1755   return false;
1756 }
1757 
1758 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1759                                   const RISCVSubtarget &Subtarget) {
1760   // RISCV FP-to-int conversions saturate to the destination register size, but
1761   // don't produce 0 for nan. We can use a conversion instruction and fix the
1762   // nan case with a compare and a select.
1763   SDValue Src = Op.getOperand(0);
1764 
1765   EVT DstVT = Op.getValueType();
1766   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1767 
1768   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1769   unsigned Opc;
1770   if (SatVT == DstVT)
1771     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1772   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1773     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1774   else
1775     return SDValue();
1776   // FIXME: Support other SatVTs by clamping before or after the conversion.
1777 
1778   SDLoc DL(Op);
1779   SDValue FpToInt = DAG.getNode(
1780       Opc, DL, DstVT, Src,
1781       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1782 
1783   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1784   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1785 }
1786 
1787 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1788 // and back. Taking care to avoid converting values that are nan or already
1789 // correct.
1790 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1791 // have FRM dependencies modeled yet.
1792 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1793   MVT VT = Op.getSimpleValueType();
1794   assert(VT.isVector() && "Unexpected type");
1795 
1796   SDLoc DL(Op);
1797 
1798   // Freeze the source since we are increasing the number of uses.
1799   SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0));
1800 
1801   // Truncate to integer and convert back to FP.
1802   MVT IntVT = VT.changeVectorElementTypeToInteger();
1803   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1804   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1805 
1806   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1807 
1808   if (Op.getOpcode() == ISD::FCEIL) {
1809     // If the truncated value is the greater than or equal to the original
1810     // value, we've computed the ceil. Otherwise, we went the wrong way and
1811     // need to increase by 1.
1812     // FIXME: This should use a masked operation. Handle here or in isel?
1813     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1814                                  DAG.getConstantFP(1.0, DL, VT));
1815     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1816     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1817   } else if (Op.getOpcode() == ISD::FFLOOR) {
1818     // If the truncated value is the less than or equal to the original value,
1819     // we've computed the floor. Otherwise, we went the wrong way and need to
1820     // decrease by 1.
1821     // FIXME: This should use a masked operation. Handle here or in isel?
1822     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1823                                  DAG.getConstantFP(1.0, DL, VT));
1824     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1825     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1826   }
1827 
1828   // Restore the original sign so that -0.0 is preserved.
1829   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1830 
1831   // Determine the largest integer that can be represented exactly. This and
1832   // values larger than it don't have any fractional bits so don't need to
1833   // be converted.
1834   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1835   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1836   APFloat MaxVal = APFloat(FltSem);
1837   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1838                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1839   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1840 
1841   // If abs(Src) was larger than MaxVal or nan, keep it.
1842   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1843   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1844   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1845 }
1846 
1847 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1848                                  const RISCVSubtarget &Subtarget) {
1849   MVT VT = Op.getSimpleValueType();
1850   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1851 
1852   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1853 
1854   SDLoc DL(Op);
1855   SDValue Mask, VL;
1856   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1857 
1858   unsigned Opc =
1859       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1860   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1861   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1862 }
1863 
1864 struct VIDSequence {
1865   int64_t StepNumerator;
1866   unsigned StepDenominator;
1867   int64_t Addend;
1868 };
1869 
1870 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1871 // to the (non-zero) step S and start value X. This can be then lowered as the
1872 // RVV sequence (VID * S) + X, for example.
1873 // The step S is represented as an integer numerator divided by a positive
1874 // denominator. Note that the implementation currently only identifies
1875 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1876 // cannot detect 2/3, for example.
1877 // Note that this method will also match potentially unappealing index
1878 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1879 // determine whether this is worth generating code for.
1880 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1881   unsigned NumElts = Op.getNumOperands();
1882   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1883   if (!Op.getValueType().isInteger())
1884     return None;
1885 
1886   Optional<unsigned> SeqStepDenom;
1887   Optional<int64_t> SeqStepNum, SeqAddend;
1888   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1889   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1890   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1891     // Assume undef elements match the sequence; we just have to be careful
1892     // when interpolating across them.
1893     if (Op.getOperand(Idx).isUndef())
1894       continue;
1895     // The BUILD_VECTOR must be all constants.
1896     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1897       return None;
1898 
1899     uint64_t Val = Op.getConstantOperandVal(Idx) &
1900                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1901 
1902     if (PrevElt) {
1903       // Calculate the step since the last non-undef element, and ensure
1904       // it's consistent across the entire sequence.
1905       unsigned IdxDiff = Idx - PrevElt->second;
1906       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1907 
1908       // A zero-value value difference means that we're somewhere in the middle
1909       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1910       // step change before evaluating the sequence.
1911       if (ValDiff != 0) {
1912         int64_t Remainder = ValDiff % IdxDiff;
1913         // Normalize the step if it's greater than 1.
1914         if (Remainder != ValDiff) {
1915           // The difference must cleanly divide the element span.
1916           if (Remainder != 0)
1917             return None;
1918           ValDiff /= IdxDiff;
1919           IdxDiff = 1;
1920         }
1921 
1922         if (!SeqStepNum)
1923           SeqStepNum = ValDiff;
1924         else if (ValDiff != SeqStepNum)
1925           return None;
1926 
1927         if (!SeqStepDenom)
1928           SeqStepDenom = IdxDiff;
1929         else if (IdxDiff != *SeqStepDenom)
1930           return None;
1931       }
1932     }
1933 
1934     // Record and/or check any addend.
1935     if (SeqStepNum && SeqStepDenom) {
1936       uint64_t ExpectedVal =
1937           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1938       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1939       if (!SeqAddend)
1940         SeqAddend = Addend;
1941       else if (SeqAddend != Addend)
1942         return None;
1943     }
1944 
1945     // Record this non-undef element for later.
1946     if (!PrevElt || PrevElt->first != Val)
1947       PrevElt = std::make_pair(Val, Idx);
1948   }
1949   // We need to have logged both a step and an addend for this to count as
1950   // a legal index sequence.
1951   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1952     return None;
1953 
1954   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1955 }
1956 
1957 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1958                                  const RISCVSubtarget &Subtarget) {
1959   MVT VT = Op.getSimpleValueType();
1960   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1961 
1962   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1963 
1964   SDLoc DL(Op);
1965   SDValue Mask, VL;
1966   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1967 
1968   MVT XLenVT = Subtarget.getXLenVT();
1969   unsigned NumElts = Op.getNumOperands();
1970 
1971   if (VT.getVectorElementType() == MVT::i1) {
1972     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1973       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1974       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1975     }
1976 
1977     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1978       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1979       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1980     }
1981 
1982     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1983     // scalar integer chunks whose bit-width depends on the number of mask
1984     // bits and XLEN.
1985     // First, determine the most appropriate scalar integer type to use. This
1986     // is at most XLenVT, but may be shrunk to a smaller vector element type
1987     // according to the size of the final vector - use i8 chunks rather than
1988     // XLenVT if we're producing a v8i1. This results in more consistent
1989     // codegen across RV32 and RV64.
1990     unsigned NumViaIntegerBits =
1991         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1992     NumViaIntegerBits = std::min(NumViaIntegerBits,
1993                                  Subtarget.getMaxELENForFixedLengthVectors());
1994     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1995       // If we have to use more than one INSERT_VECTOR_ELT then this
1996       // optimization is likely to increase code size; avoid peforming it in
1997       // such a case. We can use a load from a constant pool in this case.
1998       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1999         return SDValue();
2000       // Now we can create our integer vector type. Note that it may be larger
2001       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2002       MVT IntegerViaVecVT =
2003           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2004                            divideCeil(NumElts, NumViaIntegerBits));
2005 
2006       uint64_t Bits = 0;
2007       unsigned BitPos = 0, IntegerEltIdx = 0;
2008       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2009 
2010       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2011         // Once we accumulate enough bits to fill our scalar type, insert into
2012         // our vector and clear our accumulated data.
2013         if (I != 0 && I % NumViaIntegerBits == 0) {
2014           if (NumViaIntegerBits <= 32)
2015             Bits = SignExtend64(Bits, 32);
2016           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2017           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2018                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2019           Bits = 0;
2020           BitPos = 0;
2021           IntegerEltIdx++;
2022         }
2023         SDValue V = Op.getOperand(I);
2024         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2025         Bits |= ((uint64_t)BitValue << BitPos);
2026       }
2027 
2028       // Insert the (remaining) scalar value into position in our integer
2029       // vector type.
2030       if (NumViaIntegerBits <= 32)
2031         Bits = SignExtend64(Bits, 32);
2032       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2033       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2034                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2035 
2036       if (NumElts < NumViaIntegerBits) {
2037         // If we're producing a smaller vector than our minimum legal integer
2038         // type, bitcast to the equivalent (known-legal) mask type, and extract
2039         // our final mask.
2040         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2041         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2042         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2043                           DAG.getConstant(0, DL, XLenVT));
2044       } else {
2045         // Else we must have produced an integer type with the same size as the
2046         // mask type; bitcast for the final result.
2047         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2048         Vec = DAG.getBitcast(VT, Vec);
2049       }
2050 
2051       return Vec;
2052     }
2053 
2054     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2055     // vector type, we have a legal equivalently-sized i8 type, so we can use
2056     // that.
2057     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2058     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2059 
2060     SDValue WideVec;
2061     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2062       // For a splat, perform a scalar truncate before creating the wider
2063       // vector.
2064       assert(Splat.getValueType() == XLenVT &&
2065              "Unexpected type for i1 splat value");
2066       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2067                           DAG.getConstant(1, DL, XLenVT));
2068       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2069     } else {
2070       SmallVector<SDValue, 8> Ops(Op->op_values());
2071       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2072       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2073       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2074     }
2075 
2076     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2077   }
2078 
2079   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2080     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2081                                         : RISCVISD::VMV_V_X_VL;
2082     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
2083     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2084   }
2085 
2086   // Try and match index sequences, which we can lower to the vid instruction
2087   // with optional modifications. An all-undef vector is matched by
2088   // getSplatValue, above.
2089   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2090     int64_t StepNumerator = SimpleVID->StepNumerator;
2091     unsigned StepDenominator = SimpleVID->StepDenominator;
2092     int64_t Addend = SimpleVID->Addend;
2093 
2094     assert(StepNumerator != 0 && "Invalid step");
2095     bool Negate = false;
2096     int64_t SplatStepVal = StepNumerator;
2097     unsigned StepOpcode = ISD::MUL;
2098     if (StepNumerator != 1) {
2099       if (isPowerOf2_64(std::abs(StepNumerator))) {
2100         Negate = StepNumerator < 0;
2101         StepOpcode = ISD::SHL;
2102         SplatStepVal = Log2_64(std::abs(StepNumerator));
2103       }
2104     }
2105 
2106     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2107     // threshold since it's the immediate value many RVV instructions accept.
2108     // There is no vmul.vi instruction so ensure multiply constant can fit in
2109     // a single addi instruction.
2110     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2111          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2112         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2113       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2114       // Convert right out of the scalable type so we can use standard ISD
2115       // nodes for the rest of the computation. If we used scalable types with
2116       // these, we'd lose the fixed-length vector info and generate worse
2117       // vsetvli code.
2118       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2119       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2120           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2121         SDValue SplatStep = DAG.getSplatVector(
2122             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2123         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2124       }
2125       if (StepDenominator != 1) {
2126         SDValue SplatStep = DAG.getSplatVector(
2127             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2128         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2129       }
2130       if (Addend != 0 || Negate) {
2131         SDValue SplatAddend =
2132             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2133         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2134       }
2135       return VID;
2136     }
2137   }
2138 
2139   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2140   // when re-interpreted as a vector with a larger element type. For example,
2141   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2142   // could be instead splat as
2143   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2144   // TODO: This optimization could also work on non-constant splats, but it
2145   // would require bit-manipulation instructions to construct the splat value.
2146   SmallVector<SDValue> Sequence;
2147   unsigned EltBitSize = VT.getScalarSizeInBits();
2148   const auto *BV = cast<BuildVectorSDNode>(Op);
2149   if (VT.isInteger() && EltBitSize < 64 &&
2150       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2151       BV->getRepeatedSequence(Sequence) &&
2152       (Sequence.size() * EltBitSize) <= 64) {
2153     unsigned SeqLen = Sequence.size();
2154     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2155     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2156     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2157             ViaIntVT == MVT::i64) &&
2158            "Unexpected sequence type");
2159 
2160     unsigned EltIdx = 0;
2161     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2162     uint64_t SplatValue = 0;
2163     // Construct the amalgamated value which can be splatted as this larger
2164     // vector type.
2165     for (const auto &SeqV : Sequence) {
2166       if (!SeqV.isUndef())
2167         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2168                        << (EltIdx * EltBitSize));
2169       EltIdx++;
2170     }
2171 
2172     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2173     // achieve better constant materializion.
2174     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2175       SplatValue = SignExtend64(SplatValue, 32);
2176 
2177     // Since we can't introduce illegal i64 types at this stage, we can only
2178     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2179     // way we can use RVV instructions to splat.
2180     assert((ViaIntVT.bitsLE(XLenVT) ||
2181             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2182            "Unexpected bitcast sequence");
2183     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2184       SDValue ViaVL =
2185           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2186       MVT ViaContainerVT =
2187           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2188       SDValue Splat =
2189           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2190                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2191       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2192       return DAG.getBitcast(VT, Splat);
2193     }
2194   }
2195 
2196   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2197   // which constitute a large proportion of the elements. In such cases we can
2198   // splat a vector with the dominant element and make up the shortfall with
2199   // INSERT_VECTOR_ELTs.
2200   // Note that this includes vectors of 2 elements by association. The
2201   // upper-most element is the "dominant" one, allowing us to use a splat to
2202   // "insert" the upper element, and an insert of the lower element at position
2203   // 0, which improves codegen.
2204   SDValue DominantValue;
2205   unsigned MostCommonCount = 0;
2206   DenseMap<SDValue, unsigned> ValueCounts;
2207   unsigned NumUndefElts =
2208       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2209 
2210   // Track the number of scalar loads we know we'd be inserting, estimated as
2211   // any non-zero floating-point constant. Other kinds of element are either
2212   // already in registers or are materialized on demand. The threshold at which
2213   // a vector load is more desirable than several scalar materializion and
2214   // vector-insertion instructions is not known.
2215   unsigned NumScalarLoads = 0;
2216 
2217   for (SDValue V : Op->op_values()) {
2218     if (V.isUndef())
2219       continue;
2220 
2221     ValueCounts.insert(std::make_pair(V, 0));
2222     unsigned &Count = ValueCounts[V];
2223 
2224     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2225       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2226 
2227     // Is this value dominant? In case of a tie, prefer the highest element as
2228     // it's cheaper to insert near the beginning of a vector than it is at the
2229     // end.
2230     if (++Count >= MostCommonCount) {
2231       DominantValue = V;
2232       MostCommonCount = Count;
2233     }
2234   }
2235 
2236   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2237   unsigned NumDefElts = NumElts - NumUndefElts;
2238   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2239 
2240   // Don't perform this optimization when optimizing for size, since
2241   // materializing elements and inserting them tends to cause code bloat.
2242   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2243       ((MostCommonCount > DominantValueCountThreshold) ||
2244        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2245     // Start by splatting the most common element.
2246     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2247 
2248     DenseSet<SDValue> Processed{DominantValue};
2249     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2250     for (const auto &OpIdx : enumerate(Op->ops())) {
2251       const SDValue &V = OpIdx.value();
2252       if (V.isUndef() || !Processed.insert(V).second)
2253         continue;
2254       if (ValueCounts[V] == 1) {
2255         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2256                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2257       } else {
2258         // Blend in all instances of this value using a VSELECT, using a
2259         // mask where each bit signals whether that element is the one
2260         // we're after.
2261         SmallVector<SDValue> Ops;
2262         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2263           return DAG.getConstant(V == V1, DL, XLenVT);
2264         });
2265         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2266                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2267                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2268       }
2269     }
2270 
2271     return Vec;
2272   }
2273 
2274   return SDValue();
2275 }
2276 
2277 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
2278                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
2279   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2280     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2281     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2282     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2283     // node in order to try and match RVV vector/scalar instructions.
2284     if ((LoC >> 31) == HiC)
2285       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
2286 
2287     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2288     // vmv.v.x whose EEW = 32 to lower it.
2289     auto *Const = dyn_cast<ConstantSDNode>(VL);
2290     if (LoC == HiC && Const && Const->isAllOnesValue() &&
2291         Const->getOpcode() != ISD::TargetConstant) {
2292       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2293       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2294       // access the subtarget here now.
2295       auto InterVec = DAG.getNode(
2296           RISCVISD::VMV_V_X_VL, DL, InterVT, Lo,
2297           DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i32));
2298       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2299     }
2300   }
2301 
2302   // Fall back to a stack store and stride x0 vector load.
2303   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
2304 }
2305 
2306 // Called by type legalization to handle splat of i64 on RV32.
2307 // FIXME: We can optimize this when the type has sign or zero bits in one
2308 // of the halves.
2309 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
2310                                    SDValue VL, SelectionDAG &DAG) {
2311   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2312   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2313                            DAG.getConstant(0, DL, MVT::i32));
2314   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2315                            DAG.getConstant(1, DL, MVT::i32));
2316   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
2317 }
2318 
2319 // This function lowers a splat of a scalar operand Splat with the vector
2320 // length VL. It ensures the final sequence is type legal, which is useful when
2321 // lowering a splat after type legalization.
2322 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
2323                                 SelectionDAG &DAG,
2324                                 const RISCVSubtarget &Subtarget) {
2325   if (VT.isFloatingPoint()) {
2326     // If VL is 1, we could use vfmv.s.f.
2327     if (isOneConstant(VL))
2328       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT),
2329                          Scalar, VL);
2330     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
2331   }
2332 
2333   MVT XLenVT = Subtarget.getXLenVT();
2334 
2335   // Simplest case is that the operand needs to be promoted to XLenVT.
2336   if (Scalar.getValueType().bitsLE(XLenVT)) {
2337     // If the operand is a constant, sign extend to increase our chances
2338     // of being able to use a .vi instruction. ANY_EXTEND would become a
2339     // a zero extend and the simm5 check in isel would fail.
2340     // FIXME: Should we ignore the upper bits in isel instead?
2341     unsigned ExtOpc =
2342         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2343     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2344     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2345     // If VL is 1 and the scalar value won't benefit from immediate, we could
2346     // use vmv.s.x.
2347     if (isOneConstant(VL) &&
2348         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2349       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar,
2350                          VL);
2351     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
2352   }
2353 
2354   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2355          "Unexpected scalar for splat lowering!");
2356 
2357   if (isOneConstant(VL) && isNullConstant(Scalar))
2358     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT),
2359                        DAG.getConstant(0, DL, XLenVT), VL);
2360 
2361   // Otherwise use the more complicated splatting algorithm.
2362   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
2363 }
2364 
2365 // Is the mask a slidedown that shifts in undefs.
2366 static int matchShuffleAsSlideDown(ArrayRef<int> Mask) {
2367   int Size = Mask.size();
2368 
2369   // Elements shifted in should be undef.
2370   auto CheckUndefs = [&](int Shift) {
2371     for (int i = Size - Shift; i != Size; ++i)
2372       if (Mask[i] >= 0)
2373         return false;
2374     return true;
2375   };
2376 
2377   // Elements should be shifted or undef.
2378   auto MatchShift = [&](int Shift) {
2379     for (int i = 0; i != Size - Shift; ++i)
2380        if (Mask[i] >= 0 && Mask[i] != Shift + i)
2381          return false;
2382     return true;
2383   };
2384 
2385   // Try all possible shifts.
2386   for (int Shift = 1; Shift != Size; ++Shift)
2387     if (CheckUndefs(Shift) && MatchShift(Shift))
2388       return Shift;
2389 
2390   // No match.
2391   return -1;
2392 }
2393 
2394 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2395                                 const RISCVSubtarget &Subtarget) {
2396   // We need to be able to widen elements to the next larger integer type.
2397   if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors())
2398     return false;
2399 
2400   int Size = Mask.size();
2401   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2402 
2403   int Srcs[] = {-1, -1};
2404   for (int i = 0; i != Size; ++i) {
2405     // Ignore undef elements.
2406     if (Mask[i] < 0)
2407       continue;
2408 
2409     // Is this an even or odd element.
2410     int Pol = i % 2;
2411 
2412     // Ensure we consistently use the same source for this element polarity.
2413     int Src = Mask[i] / Size;
2414     if (Srcs[Pol] < 0)
2415       Srcs[Pol] = Src;
2416     if (Srcs[Pol] != Src)
2417       return false;
2418 
2419     // Make sure the element within the source is appropriate for this element
2420     // in the destination.
2421     int Elt = Mask[i] % Size;
2422     if (Elt != i / 2)
2423       return false;
2424   }
2425 
2426   // We need to find a source for each polarity and they can't be the same.
2427   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2428     return false;
2429 
2430   // Swap the sources if the second source was in the even polarity.
2431   SwapSources = Srcs[0] > Srcs[1];
2432 
2433   return true;
2434 }
2435 
2436 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2437                                    const RISCVSubtarget &Subtarget) {
2438   SDValue V1 = Op.getOperand(0);
2439   SDValue V2 = Op.getOperand(1);
2440   SDLoc DL(Op);
2441   MVT XLenVT = Subtarget.getXLenVT();
2442   MVT VT = Op.getSimpleValueType();
2443   unsigned NumElts = VT.getVectorNumElements();
2444   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2445 
2446   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2447 
2448   SDValue TrueMask, VL;
2449   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2450 
2451   if (SVN->isSplat()) {
2452     const int Lane = SVN->getSplatIndex();
2453     if (Lane >= 0) {
2454       MVT SVT = VT.getVectorElementType();
2455 
2456       // Turn splatted vector load into a strided load with an X0 stride.
2457       SDValue V = V1;
2458       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2459       // with undef.
2460       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2461       int Offset = Lane;
2462       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2463         int OpElements =
2464             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2465         V = V.getOperand(Offset / OpElements);
2466         Offset %= OpElements;
2467       }
2468 
2469       // We need to ensure the load isn't atomic or volatile.
2470       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2471         auto *Ld = cast<LoadSDNode>(V);
2472         Offset *= SVT.getStoreSize();
2473         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2474                                                    TypeSize::Fixed(Offset), DL);
2475 
2476         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2477         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2478           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2479           SDValue IntID =
2480               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2481           SDValue Ops[] = {Ld->getChain(),
2482                            IntID,
2483                            DAG.getUNDEF(ContainerVT),
2484                            NewAddr,
2485                            DAG.getRegister(RISCV::X0, XLenVT),
2486                            VL};
2487           SDValue NewLoad = DAG.getMemIntrinsicNode(
2488               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2489               DAG.getMachineFunction().getMachineMemOperand(
2490                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2491           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2492           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2493         }
2494 
2495         // Otherwise use a scalar load and splat. This will give the best
2496         // opportunity to fold a splat into the operation. ISel can turn it into
2497         // the x0 strided load if we aren't able to fold away the select.
2498         if (SVT.isFloatingPoint())
2499           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2500                           Ld->getPointerInfo().getWithOffset(Offset),
2501                           Ld->getOriginalAlign(),
2502                           Ld->getMemOperand()->getFlags());
2503         else
2504           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2505                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2506                              Ld->getOriginalAlign(),
2507                              Ld->getMemOperand()->getFlags());
2508         DAG.makeEquivalentMemoryOrdering(Ld, V);
2509 
2510         unsigned Opc =
2511             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2512         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
2513         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2514       }
2515 
2516       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2517       assert(Lane < (int)NumElts && "Unexpected lane!");
2518       SDValue Gather =
2519           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2520                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2521       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2522     }
2523   }
2524 
2525   ArrayRef<int> Mask = SVN->getMask();
2526 
2527   // Try to match as a slidedown.
2528   int SlideAmt = matchShuffleAsSlideDown(Mask);
2529   if (SlideAmt >= 0) {
2530     // TODO: Should we reduce the VL to account for the upper undef elements?
2531     // Requires additional vsetvlis, but might be faster to execute.
2532     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2533     SDValue SlideDown =
2534         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
2535                     DAG.getUNDEF(ContainerVT), V1,
2536                     DAG.getConstant(SlideAmt, DL, XLenVT),
2537                     TrueMask, VL);
2538     return convertFromScalableVector(VT, SlideDown, DAG, Subtarget);
2539   }
2540 
2541   // Detect an interleave shuffle and lower to
2542   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2543   bool SwapSources;
2544   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2545     // Swap sources if needed.
2546     if (SwapSources)
2547       std::swap(V1, V2);
2548 
2549     // Extract the lower half of the vectors.
2550     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2551     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2552                      DAG.getConstant(0, DL, XLenVT));
2553     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2554                      DAG.getConstant(0, DL, XLenVT));
2555 
2556     // Double the element width and halve the number of elements in an int type.
2557     unsigned EltBits = VT.getScalarSizeInBits();
2558     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2559     MVT WideIntVT =
2560         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2561     // Convert this to a scalable vector. We need to base this on the
2562     // destination size to ensure there's always a type with a smaller LMUL.
2563     MVT WideIntContainerVT =
2564         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2565 
2566     // Convert sources to scalable vectors with the same element count as the
2567     // larger type.
2568     MVT HalfContainerVT = MVT::getVectorVT(
2569         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2570     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2571     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2572 
2573     // Cast sources to integer.
2574     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2575     MVT IntHalfVT =
2576         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2577     V1 = DAG.getBitcast(IntHalfVT, V1);
2578     V2 = DAG.getBitcast(IntHalfVT, V2);
2579 
2580     // Freeze V2 since we use it twice and we need to be sure that the add and
2581     // multiply see the same value.
2582     V2 = DAG.getNode(ISD::FREEZE, DL, IntHalfVT, V2);
2583 
2584     // Recreate TrueMask using the widened type's element count.
2585     MVT MaskVT =
2586         MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount());
2587     TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2588 
2589     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2590     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2591                               V2, TrueMask, VL);
2592     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2593     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2594                                      DAG.getAllOnesConstant(DL, XLenVT));
2595     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2596                                    V2, Multiplier, TrueMask, VL);
2597     // Add the new copies to our previous addition giving us 2^eltbits copies of
2598     // V2. This is equivalent to shifting V2 left by eltbits. This should
2599     // combine with the vwmulu.vv above to form vwmaccu.vv.
2600     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2601                       TrueMask, VL);
2602     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2603     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2604     // vector VT.
2605     ContainerVT =
2606         MVT::getVectorVT(VT.getVectorElementType(),
2607                          WideIntContainerVT.getVectorElementCount() * 2);
2608     Add = DAG.getBitcast(ContainerVT, Add);
2609     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2610   }
2611 
2612   // Detect shuffles which can be re-expressed as vector selects; these are
2613   // shuffles in which each element in the destination is taken from an element
2614   // at the corresponding index in either source vectors.
2615   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2616     int MaskIndex = MaskIdx.value();
2617     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2618   });
2619 
2620   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2621 
2622   SmallVector<SDValue> MaskVals;
2623   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2624   // merged with a second vrgather.
2625   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2626 
2627   // By default we preserve the original operand order, and use a mask to
2628   // select LHS as true and RHS as false. However, since RVV vector selects may
2629   // feature splats but only on the LHS, we may choose to invert our mask and
2630   // instead select between RHS and LHS.
2631   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2632   bool InvertMask = IsSelect == SwapOps;
2633 
2634   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2635   // half.
2636   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2637 
2638   // Now construct the mask that will be used by the vselect or blended
2639   // vrgather operation. For vrgathers, construct the appropriate indices into
2640   // each vector.
2641   for (int MaskIndex : Mask) {
2642     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2643     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2644     if (!IsSelect) {
2645       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2646       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2647                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2648                                      : DAG.getUNDEF(XLenVT));
2649       GatherIndicesRHS.push_back(
2650           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2651                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2652       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2653         ++LHSIndexCounts[MaskIndex];
2654       if (!IsLHSOrUndefIndex)
2655         ++RHSIndexCounts[MaskIndex - NumElts];
2656     }
2657   }
2658 
2659   if (SwapOps) {
2660     std::swap(V1, V2);
2661     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2662   }
2663 
2664   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2665   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2666   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2667 
2668   if (IsSelect)
2669     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2670 
2671   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2672     // On such a large vector we're unable to use i8 as the index type.
2673     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2674     // may involve vector splitting if we're already at LMUL=8, or our
2675     // user-supplied maximum fixed-length LMUL.
2676     return SDValue();
2677   }
2678 
2679   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2680   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2681   MVT IndexVT = VT.changeTypeToInteger();
2682   // Since we can't introduce illegal index types at this stage, use i16 and
2683   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2684   // than XLenVT.
2685   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2686     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2687     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2688   }
2689 
2690   MVT IndexContainerVT =
2691       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2692 
2693   SDValue Gather;
2694   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2695   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2696   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2697     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
2698   } else {
2699     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2700     // If only one index is used, we can use a "splat" vrgather.
2701     // TODO: We can splat the most-common index and fix-up any stragglers, if
2702     // that's beneficial.
2703     if (LHSIndexCounts.size() == 1) {
2704       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2705       Gather =
2706           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2707                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2708     } else {
2709       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2710       LHSIndices =
2711           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2712 
2713       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2714                            TrueMask, VL);
2715     }
2716   }
2717 
2718   // If a second vector operand is used by this shuffle, blend it in with an
2719   // additional vrgather.
2720   if (!V2.isUndef()) {
2721     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2722     // If only one index is used, we can use a "splat" vrgather.
2723     // TODO: We can splat the most-common index and fix-up any stragglers, if
2724     // that's beneficial.
2725     if (RHSIndexCounts.size() == 1) {
2726       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2727       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2728                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2729     } else {
2730       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2731       RHSIndices =
2732           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2733       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2734                        VL);
2735     }
2736 
2737     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2738     SelectMask =
2739         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2740 
2741     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2742                          Gather, VL);
2743   }
2744 
2745   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2746 }
2747 
2748 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2749                                      SDLoc DL, SelectionDAG &DAG,
2750                                      const RISCVSubtarget &Subtarget) {
2751   if (VT.isScalableVector())
2752     return DAG.getFPExtendOrRound(Op, DL, VT);
2753   assert(VT.isFixedLengthVector() &&
2754          "Unexpected value type for RVV FP extend/round lowering");
2755   SDValue Mask, VL;
2756   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2757   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2758                         ? RISCVISD::FP_EXTEND_VL
2759                         : RISCVISD::FP_ROUND_VL;
2760   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2761 }
2762 
2763 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2764 // the exponent.
2765 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2766   MVT VT = Op.getSimpleValueType();
2767   unsigned EltSize = VT.getScalarSizeInBits();
2768   SDValue Src = Op.getOperand(0);
2769   SDLoc DL(Op);
2770 
2771   // We need a FP type that can represent the value.
2772   // TODO: Use f16 for i8 when possible?
2773   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2774   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2775 
2776   // Legal types should have been checked in the RISCVTargetLowering
2777   // constructor.
2778   // TODO: Splitting may make sense in some cases.
2779   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2780          "Expected legal float type!");
2781 
2782   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2783   // The trailing zero count is equal to log2 of this single bit value.
2784   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2785     SDValue Neg =
2786         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2787     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2788   }
2789 
2790   // We have a legal FP type, convert to it.
2791   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2792   // Bitcast to integer and shift the exponent to the LSB.
2793   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2794   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2795   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2796   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2797                               DAG.getConstant(ShiftAmt, DL, IntVT));
2798   // Truncate back to original type to allow vnsrl.
2799   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2800   // The exponent contains log2 of the value in biased form.
2801   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2802 
2803   // For trailing zeros, we just need to subtract the bias.
2804   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2805     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2806                        DAG.getConstant(ExponentBias, DL, VT));
2807 
2808   // For leading zeros, we need to remove the bias and convert from log2 to
2809   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2810   unsigned Adjust = ExponentBias + (EltSize - 1);
2811   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2812 }
2813 
2814 // While RVV has alignment restrictions, we should always be able to load as a
2815 // legal equivalently-sized byte-typed vector instead. This method is
2816 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2817 // the load is already correctly-aligned, it returns SDValue().
2818 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2819                                                     SelectionDAG &DAG) const {
2820   auto *Load = cast<LoadSDNode>(Op);
2821   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2822 
2823   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2824                                      Load->getMemoryVT(),
2825                                      *Load->getMemOperand()))
2826     return SDValue();
2827 
2828   SDLoc DL(Op);
2829   MVT VT = Op.getSimpleValueType();
2830   unsigned EltSizeBits = VT.getScalarSizeInBits();
2831   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2832          "Unexpected unaligned RVV load type");
2833   MVT NewVT =
2834       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2835   assert(NewVT.isValid() &&
2836          "Expecting equally-sized RVV vector types to be legal");
2837   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2838                           Load->getPointerInfo(), Load->getOriginalAlign(),
2839                           Load->getMemOperand()->getFlags());
2840   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2841 }
2842 
2843 // While RVV has alignment restrictions, we should always be able to store as a
2844 // legal equivalently-sized byte-typed vector instead. This method is
2845 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2846 // returns SDValue() if the store is already correctly aligned.
2847 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2848                                                      SelectionDAG &DAG) const {
2849   auto *Store = cast<StoreSDNode>(Op);
2850   assert(Store && Store->getValue().getValueType().isVector() &&
2851          "Expected vector store");
2852 
2853   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2854                                      Store->getMemoryVT(),
2855                                      *Store->getMemOperand()))
2856     return SDValue();
2857 
2858   SDLoc DL(Op);
2859   SDValue StoredVal = Store->getValue();
2860   MVT VT = StoredVal.getSimpleValueType();
2861   unsigned EltSizeBits = VT.getScalarSizeInBits();
2862   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2863          "Unexpected unaligned RVV store type");
2864   MVT NewVT =
2865       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2866   assert(NewVT.isValid() &&
2867          "Expecting equally-sized RVV vector types to be legal");
2868   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2869   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2870                       Store->getPointerInfo(), Store->getOriginalAlign(),
2871                       Store->getMemOperand()->getFlags());
2872 }
2873 
2874 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2875                                             SelectionDAG &DAG) const {
2876   switch (Op.getOpcode()) {
2877   default:
2878     report_fatal_error("unimplemented operand");
2879   case ISD::GlobalAddress:
2880     return lowerGlobalAddress(Op, DAG);
2881   case ISD::BlockAddress:
2882     return lowerBlockAddress(Op, DAG);
2883   case ISD::ConstantPool:
2884     return lowerConstantPool(Op, DAG);
2885   case ISD::JumpTable:
2886     return lowerJumpTable(Op, DAG);
2887   case ISD::GlobalTLSAddress:
2888     return lowerGlobalTLSAddress(Op, DAG);
2889   case ISD::SELECT:
2890     return lowerSELECT(Op, DAG);
2891   case ISD::BRCOND:
2892     return lowerBRCOND(Op, DAG);
2893   case ISD::VASTART:
2894     return lowerVASTART(Op, DAG);
2895   case ISD::FRAMEADDR:
2896     return lowerFRAMEADDR(Op, DAG);
2897   case ISD::RETURNADDR:
2898     return lowerRETURNADDR(Op, DAG);
2899   case ISD::SHL_PARTS:
2900     return lowerShiftLeftParts(Op, DAG);
2901   case ISD::SRA_PARTS:
2902     return lowerShiftRightParts(Op, DAG, true);
2903   case ISD::SRL_PARTS:
2904     return lowerShiftRightParts(Op, DAG, false);
2905   case ISD::BITCAST: {
2906     SDLoc DL(Op);
2907     EVT VT = Op.getValueType();
2908     SDValue Op0 = Op.getOperand(0);
2909     EVT Op0VT = Op0.getValueType();
2910     MVT XLenVT = Subtarget.getXLenVT();
2911     if (VT.isFixedLengthVector()) {
2912       // We can handle fixed length vector bitcasts with a simple replacement
2913       // in isel.
2914       if (Op0VT.isFixedLengthVector())
2915         return Op;
2916       // When bitcasting from scalar to fixed-length vector, insert the scalar
2917       // into a one-element vector of the result type, and perform a vector
2918       // bitcast.
2919       if (!Op0VT.isVector()) {
2920         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2921         if (!isTypeLegal(BVT))
2922           return SDValue();
2923         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2924                                               DAG.getUNDEF(BVT), Op0,
2925                                               DAG.getConstant(0, DL, XLenVT)));
2926       }
2927       return SDValue();
2928     }
2929     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2930     // thus: bitcast the vector to a one-element vector type whose element type
2931     // is the same as the result type, and extract the first element.
2932     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2933       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
2934       if (!isTypeLegal(BVT))
2935         return SDValue();
2936       SDValue BVec = DAG.getBitcast(BVT, Op0);
2937       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2938                          DAG.getConstant(0, DL, XLenVT));
2939     }
2940     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2941       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2942       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2943       return FPConv;
2944     }
2945     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2946         Subtarget.hasStdExtF()) {
2947       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2948       SDValue FPConv =
2949           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2950       return FPConv;
2951     }
2952     return SDValue();
2953   }
2954   case ISD::INTRINSIC_WO_CHAIN:
2955     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2956   case ISD::INTRINSIC_W_CHAIN:
2957     return LowerINTRINSIC_W_CHAIN(Op, DAG);
2958   case ISD::INTRINSIC_VOID:
2959     return LowerINTRINSIC_VOID(Op, DAG);
2960   case ISD::BSWAP:
2961   case ISD::BITREVERSE: {
2962     MVT VT = Op.getSimpleValueType();
2963     SDLoc DL(Op);
2964     if (Subtarget.hasStdExtZbp()) {
2965       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
2966       // Start with the maximum immediate value which is the bitwidth - 1.
2967       unsigned Imm = VT.getSizeInBits() - 1;
2968       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2969       if (Op.getOpcode() == ISD::BSWAP)
2970         Imm &= ~0x7U;
2971       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
2972                          DAG.getConstant(Imm, DL, VT));
2973     }
2974     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
2975     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
2976     // Expand bitreverse to a bswap(rev8) followed by brev8.
2977     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
2978     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
2979     // as brev8 by an isel pattern.
2980     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
2981                        DAG.getConstant(7, DL, VT));
2982   }
2983   case ISD::FSHL:
2984   case ISD::FSHR: {
2985     MVT VT = Op.getSimpleValueType();
2986     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
2987     SDLoc DL(Op);
2988     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2989     // use log(XLen) bits. Mask the shift amount accordingly to prevent
2990     // accidentally setting the extra bit.
2991     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
2992     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
2993                                 DAG.getConstant(ShAmtWidth, DL, VT));
2994     // fshl and fshr concatenate their operands in the same order. fsr and fsl
2995     // instruction use different orders. fshl will return its first operand for
2996     // shift of zero, fshr will return its second operand. fsl and fsr both
2997     // return rs1 so the ISD nodes need to have different operand orders.
2998     // Shift amount is in rs2.
2999     SDValue Op0 = Op.getOperand(0);
3000     SDValue Op1 = Op.getOperand(1);
3001     unsigned Opc = RISCVISD::FSL;
3002     if (Op.getOpcode() == ISD::FSHR) {
3003       std::swap(Op0, Op1);
3004       Opc = RISCVISD::FSR;
3005     }
3006     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3007   }
3008   case ISD::TRUNCATE: {
3009     SDLoc DL(Op);
3010     MVT VT = Op.getSimpleValueType();
3011     // Only custom-lower vector truncates
3012     if (!VT.isVector())
3013       return Op;
3014 
3015     // Truncates to mask types are handled differently
3016     if (VT.getVectorElementType() == MVT::i1)
3017       return lowerVectorMaskTrunc(Op, DAG);
3018 
3019     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
3020     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
3021     // truncate by one power of two at a time.
3022     MVT DstEltVT = VT.getVectorElementType();
3023 
3024     SDValue Src = Op.getOperand(0);
3025     MVT SrcVT = Src.getSimpleValueType();
3026     MVT SrcEltVT = SrcVT.getVectorElementType();
3027 
3028     assert(DstEltVT.bitsLT(SrcEltVT) &&
3029            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
3030            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
3031            "Unexpected vector truncate lowering");
3032 
3033     MVT ContainerVT = SrcVT;
3034     if (SrcVT.isFixedLengthVector()) {
3035       ContainerVT = getContainerForFixedLengthVector(SrcVT);
3036       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3037     }
3038 
3039     SDValue Result = Src;
3040     SDValue Mask, VL;
3041     std::tie(Mask, VL) =
3042         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
3043     LLVMContext &Context = *DAG.getContext();
3044     const ElementCount Count = ContainerVT.getVectorElementCount();
3045     do {
3046       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
3047       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
3048       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
3049                            Mask, VL);
3050     } while (SrcEltVT != DstEltVT);
3051 
3052     if (SrcVT.isFixedLengthVector())
3053       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3054 
3055     return Result;
3056   }
3057   case ISD::ANY_EXTEND:
3058   case ISD::ZERO_EXTEND:
3059     if (Op.getOperand(0).getValueType().isVector() &&
3060         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3061       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3062     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3063   case ISD::SIGN_EXTEND:
3064     if (Op.getOperand(0).getValueType().isVector() &&
3065         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3066       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3067     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3068   case ISD::SPLAT_VECTOR_PARTS:
3069     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3070   case ISD::INSERT_VECTOR_ELT:
3071     return lowerINSERT_VECTOR_ELT(Op, DAG);
3072   case ISD::EXTRACT_VECTOR_ELT:
3073     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3074   case ISD::VSCALE: {
3075     MVT VT = Op.getSimpleValueType();
3076     SDLoc DL(Op);
3077     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3078     // We define our scalable vector types for lmul=1 to use a 64 bit known
3079     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3080     // vscale as VLENB / 8.
3081     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3082     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3083       report_fatal_error("Support for VLEN==32 is incomplete.");
3084     if (isa<ConstantSDNode>(Op.getOperand(0))) {
3085       // We assume VLENB is a multiple of 8. We manually choose the best shift
3086       // here because SimplifyDemandedBits isn't always able to simplify it.
3087       uint64_t Val = Op.getConstantOperandVal(0);
3088       if (isPowerOf2_64(Val)) {
3089         uint64_t Log2 = Log2_64(Val);
3090         if (Log2 < 3)
3091           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3092                              DAG.getConstant(3 - Log2, DL, VT));
3093         if (Log2 > 3)
3094           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3095                              DAG.getConstant(Log2 - 3, DL, VT));
3096         return VLENB;
3097       }
3098       // If the multiplier is a multiple of 8, scale it down to avoid needing
3099       // to shift the VLENB value.
3100       if ((Val % 8) == 0)
3101         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3102                            DAG.getConstant(Val / 8, DL, VT));
3103     }
3104 
3105     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3106                                  DAG.getConstant(3, DL, VT));
3107     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3108   }
3109   case ISD::FPOWI: {
3110     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3111     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3112     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3113         Op.getOperand(1).getValueType() == MVT::i32) {
3114       SDLoc DL(Op);
3115       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3116       SDValue Powi =
3117           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3118       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3119                          DAG.getIntPtrConstant(0, DL));
3120     }
3121     return SDValue();
3122   }
3123   case ISD::FP_EXTEND: {
3124     // RVV can only do fp_extend to types double the size as the source. We
3125     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
3126     // via f32.
3127     SDLoc DL(Op);
3128     MVT VT = Op.getSimpleValueType();
3129     SDValue Src = Op.getOperand(0);
3130     MVT SrcVT = Src.getSimpleValueType();
3131 
3132     // Prepare any fixed-length vector operands.
3133     MVT ContainerVT = VT;
3134     if (SrcVT.isFixedLengthVector()) {
3135       ContainerVT = getContainerForFixedLengthVector(VT);
3136       MVT SrcContainerVT =
3137           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
3138       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3139     }
3140 
3141     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
3142         SrcVT.getVectorElementType() != MVT::f16) {
3143       // For scalable vectors, we only need to close the gap between
3144       // vXf16->vXf64.
3145       if (!VT.isFixedLengthVector())
3146         return Op;
3147       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
3148       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3149       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3150     }
3151 
3152     MVT InterVT = VT.changeVectorElementType(MVT::f32);
3153     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
3154     SDValue IntermediateExtend = getRVVFPExtendOrRound(
3155         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
3156 
3157     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
3158                                            DL, DAG, Subtarget);
3159     if (VT.isFixedLengthVector())
3160       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
3161     return Extend;
3162   }
3163   case ISD::FP_ROUND: {
3164     // RVV can only do fp_round to types half the size as the source. We
3165     // custom-lower f64->f16 rounds via RVV's round-to-odd float
3166     // conversion instruction.
3167     SDLoc DL(Op);
3168     MVT VT = Op.getSimpleValueType();
3169     SDValue Src = Op.getOperand(0);
3170     MVT SrcVT = Src.getSimpleValueType();
3171 
3172     // Prepare any fixed-length vector operands.
3173     MVT ContainerVT = VT;
3174     if (VT.isFixedLengthVector()) {
3175       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3176       ContainerVT =
3177           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3178       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3179     }
3180 
3181     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
3182         SrcVT.getVectorElementType() != MVT::f64) {
3183       // For scalable vectors, we only need to close the gap between
3184       // vXf64<->vXf16.
3185       if (!VT.isFixedLengthVector())
3186         return Op;
3187       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
3188       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3189       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3190     }
3191 
3192     SDValue Mask, VL;
3193     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3194 
3195     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
3196     SDValue IntermediateRound =
3197         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
3198     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
3199                                           DL, DAG, Subtarget);
3200 
3201     if (VT.isFixedLengthVector())
3202       return convertFromScalableVector(VT, Round, DAG, Subtarget);
3203     return Round;
3204   }
3205   case ISD::FP_TO_SINT:
3206   case ISD::FP_TO_UINT:
3207   case ISD::SINT_TO_FP:
3208   case ISD::UINT_TO_FP: {
3209     // RVV can only do fp<->int conversions to types half/double the size as
3210     // the source. We custom-lower any conversions that do two hops into
3211     // sequences.
3212     MVT VT = Op.getSimpleValueType();
3213     if (!VT.isVector())
3214       return Op;
3215     SDLoc DL(Op);
3216     SDValue Src = Op.getOperand(0);
3217     MVT EltVT = VT.getVectorElementType();
3218     MVT SrcVT = Src.getSimpleValueType();
3219     MVT SrcEltVT = SrcVT.getVectorElementType();
3220     unsigned EltSize = EltVT.getSizeInBits();
3221     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3222     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3223            "Unexpected vector element types");
3224 
3225     bool IsInt2FP = SrcEltVT.isInteger();
3226     // Widening conversions
3227     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
3228       if (IsInt2FP) {
3229         // Do a regular integer sign/zero extension then convert to float.
3230         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
3231                                       VT.getVectorElementCount());
3232         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3233                                  ? ISD::ZERO_EXTEND
3234                                  : ISD::SIGN_EXTEND;
3235         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3236         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3237       }
3238       // FP2Int
3239       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3240       // Do one doubling fp_extend then complete the operation by converting
3241       // to int.
3242       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3243       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3244       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3245     }
3246 
3247     // Narrowing conversions
3248     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
3249       if (IsInt2FP) {
3250         // One narrowing int_to_fp, then an fp_round.
3251         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3252         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3253         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3254         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3255       }
3256       // FP2Int
3257       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3258       // representable by the integer, the result is poison.
3259       MVT IVecVT =
3260           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
3261                            VT.getVectorElementCount());
3262       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3263       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3264     }
3265 
3266     // Scalable vectors can exit here. Patterns will handle equally-sized
3267     // conversions halving/doubling ones.
3268     if (!VT.isFixedLengthVector())
3269       return Op;
3270 
3271     // For fixed-length vectors we lower to a custom "VL" node.
3272     unsigned RVVOpc = 0;
3273     switch (Op.getOpcode()) {
3274     default:
3275       llvm_unreachable("Impossible opcode");
3276     case ISD::FP_TO_SINT:
3277       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3278       break;
3279     case ISD::FP_TO_UINT:
3280       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3281       break;
3282     case ISD::SINT_TO_FP:
3283       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3284       break;
3285     case ISD::UINT_TO_FP:
3286       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3287       break;
3288     }
3289 
3290     MVT ContainerVT, SrcContainerVT;
3291     // Derive the reference container type from the larger vector type.
3292     if (SrcEltSize > EltSize) {
3293       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3294       ContainerVT =
3295           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3296     } else {
3297       ContainerVT = getContainerForFixedLengthVector(VT);
3298       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3299     }
3300 
3301     SDValue Mask, VL;
3302     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3303 
3304     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3305     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3306     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3307   }
3308   case ISD::FP_TO_SINT_SAT:
3309   case ISD::FP_TO_UINT_SAT:
3310     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3311   case ISD::FTRUNC:
3312   case ISD::FCEIL:
3313   case ISD::FFLOOR:
3314     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3315   case ISD::VECREDUCE_ADD:
3316   case ISD::VECREDUCE_UMAX:
3317   case ISD::VECREDUCE_SMAX:
3318   case ISD::VECREDUCE_UMIN:
3319   case ISD::VECREDUCE_SMIN:
3320     return lowerVECREDUCE(Op, DAG);
3321   case ISD::VECREDUCE_AND:
3322   case ISD::VECREDUCE_OR:
3323   case ISD::VECREDUCE_XOR:
3324     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3325       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3326     return lowerVECREDUCE(Op, DAG);
3327   case ISD::VECREDUCE_FADD:
3328   case ISD::VECREDUCE_SEQ_FADD:
3329   case ISD::VECREDUCE_FMIN:
3330   case ISD::VECREDUCE_FMAX:
3331     return lowerFPVECREDUCE(Op, DAG);
3332   case ISD::VP_REDUCE_ADD:
3333   case ISD::VP_REDUCE_UMAX:
3334   case ISD::VP_REDUCE_SMAX:
3335   case ISD::VP_REDUCE_UMIN:
3336   case ISD::VP_REDUCE_SMIN:
3337   case ISD::VP_REDUCE_FADD:
3338   case ISD::VP_REDUCE_SEQ_FADD:
3339   case ISD::VP_REDUCE_FMIN:
3340   case ISD::VP_REDUCE_FMAX:
3341     return lowerVPREDUCE(Op, DAG);
3342   case ISD::VP_REDUCE_AND:
3343   case ISD::VP_REDUCE_OR:
3344   case ISD::VP_REDUCE_XOR:
3345     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3346       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3347     return lowerVPREDUCE(Op, DAG);
3348   case ISD::INSERT_SUBVECTOR:
3349     return lowerINSERT_SUBVECTOR(Op, DAG);
3350   case ISD::EXTRACT_SUBVECTOR:
3351     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3352   case ISD::STEP_VECTOR:
3353     return lowerSTEP_VECTOR(Op, DAG);
3354   case ISD::VECTOR_REVERSE:
3355     return lowerVECTOR_REVERSE(Op, DAG);
3356   case ISD::BUILD_VECTOR:
3357     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3358   case ISD::SPLAT_VECTOR:
3359     if (Op.getValueType().getVectorElementType() == MVT::i1)
3360       return lowerVectorMaskSplat(Op, DAG);
3361     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
3362   case ISD::VECTOR_SHUFFLE:
3363     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3364   case ISD::CONCAT_VECTORS: {
3365     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3366     // better than going through the stack, as the default expansion does.
3367     SDLoc DL(Op);
3368     MVT VT = Op.getSimpleValueType();
3369     unsigned NumOpElts =
3370         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3371     SDValue Vec = DAG.getUNDEF(VT);
3372     for (const auto &OpIdx : enumerate(Op->ops())) {
3373       SDValue SubVec = OpIdx.value();
3374       // Don't insert undef subvectors.
3375       if (SubVec.isUndef())
3376         continue;
3377       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3378                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3379     }
3380     return Vec;
3381   }
3382   case ISD::LOAD:
3383     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3384       return V;
3385     if (Op.getValueType().isFixedLengthVector())
3386       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3387     return Op;
3388   case ISD::STORE:
3389     if (auto V = expandUnalignedRVVStore(Op, DAG))
3390       return V;
3391     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3392       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3393     return Op;
3394   case ISD::MLOAD:
3395   case ISD::VP_LOAD:
3396     return lowerMaskedLoad(Op, DAG);
3397   case ISD::MSTORE:
3398   case ISD::VP_STORE:
3399     return lowerMaskedStore(Op, DAG);
3400   case ISD::SETCC:
3401     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3402   case ISD::ADD:
3403     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3404   case ISD::SUB:
3405     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3406   case ISD::MUL:
3407     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3408   case ISD::MULHS:
3409     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3410   case ISD::MULHU:
3411     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3412   case ISD::AND:
3413     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3414                                               RISCVISD::AND_VL);
3415   case ISD::OR:
3416     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3417                                               RISCVISD::OR_VL);
3418   case ISD::XOR:
3419     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3420                                               RISCVISD::XOR_VL);
3421   case ISD::SDIV:
3422     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3423   case ISD::SREM:
3424     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3425   case ISD::UDIV:
3426     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3427   case ISD::UREM:
3428     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3429   case ISD::SHL:
3430   case ISD::SRA:
3431   case ISD::SRL:
3432     if (Op.getSimpleValueType().isFixedLengthVector())
3433       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3434     // This can be called for an i32 shift amount that needs to be promoted.
3435     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3436            "Unexpected custom legalisation");
3437     return SDValue();
3438   case ISD::SADDSAT:
3439     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3440   case ISD::UADDSAT:
3441     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3442   case ISD::SSUBSAT:
3443     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3444   case ISD::USUBSAT:
3445     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3446   case ISD::FADD:
3447     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3448   case ISD::FSUB:
3449     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3450   case ISD::FMUL:
3451     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3452   case ISD::FDIV:
3453     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3454   case ISD::FNEG:
3455     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3456   case ISD::FABS:
3457     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3458   case ISD::FSQRT:
3459     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3460   case ISD::FMA:
3461     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3462   case ISD::SMIN:
3463     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3464   case ISD::SMAX:
3465     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3466   case ISD::UMIN:
3467     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3468   case ISD::UMAX:
3469     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3470   case ISD::FMINNUM:
3471     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3472   case ISD::FMAXNUM:
3473     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3474   case ISD::ABS:
3475     return lowerABS(Op, DAG);
3476   case ISD::CTLZ_ZERO_UNDEF:
3477   case ISD::CTTZ_ZERO_UNDEF:
3478     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3479   case ISD::VSELECT:
3480     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3481   case ISD::FCOPYSIGN:
3482     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3483   case ISD::MGATHER:
3484   case ISD::VP_GATHER:
3485     return lowerMaskedGather(Op, DAG);
3486   case ISD::MSCATTER:
3487   case ISD::VP_SCATTER:
3488     return lowerMaskedScatter(Op, DAG);
3489   case ISD::FLT_ROUNDS_:
3490     return lowerGET_ROUNDING(Op, DAG);
3491   case ISD::SET_ROUNDING:
3492     return lowerSET_ROUNDING(Op, DAG);
3493   case ISD::VP_SELECT:
3494     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3495   case ISD::VP_MERGE:
3496     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3497   case ISD::VP_ADD:
3498     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3499   case ISD::VP_SUB:
3500     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3501   case ISD::VP_MUL:
3502     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3503   case ISD::VP_SDIV:
3504     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3505   case ISD::VP_UDIV:
3506     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3507   case ISD::VP_SREM:
3508     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3509   case ISD::VP_UREM:
3510     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3511   case ISD::VP_AND:
3512     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3513   case ISD::VP_OR:
3514     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3515   case ISD::VP_XOR:
3516     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3517   case ISD::VP_ASHR:
3518     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3519   case ISD::VP_LSHR:
3520     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3521   case ISD::VP_SHL:
3522     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3523   case ISD::VP_FADD:
3524     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3525   case ISD::VP_FSUB:
3526     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3527   case ISD::VP_FMUL:
3528     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3529   case ISD::VP_FDIV:
3530     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3531   }
3532 }
3533 
3534 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3535                              SelectionDAG &DAG, unsigned Flags) {
3536   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3537 }
3538 
3539 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3540                              SelectionDAG &DAG, unsigned Flags) {
3541   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3542                                    Flags);
3543 }
3544 
3545 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3546                              SelectionDAG &DAG, unsigned Flags) {
3547   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3548                                    N->getOffset(), Flags);
3549 }
3550 
3551 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3552                              SelectionDAG &DAG, unsigned Flags) {
3553   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3554 }
3555 
3556 template <class NodeTy>
3557 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3558                                      bool IsLocal) const {
3559   SDLoc DL(N);
3560   EVT Ty = getPointerTy(DAG.getDataLayout());
3561 
3562   if (isPositionIndependent()) {
3563     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3564     if (IsLocal)
3565       // Use PC-relative addressing to access the symbol. This generates the
3566       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3567       // %pcrel_lo(auipc)).
3568       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3569 
3570     // Use PC-relative addressing to access the GOT for this symbol, then load
3571     // the address from the GOT. This generates the pattern (PseudoLA sym),
3572     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3573     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3574   }
3575 
3576   switch (getTargetMachine().getCodeModel()) {
3577   default:
3578     report_fatal_error("Unsupported code model for lowering");
3579   case CodeModel::Small: {
3580     // Generate a sequence for accessing addresses within the first 2 GiB of
3581     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3582     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3583     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3584     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3585     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3586   }
3587   case CodeModel::Medium: {
3588     // Generate a sequence for accessing addresses within any 2GiB range within
3589     // the address space. This generates the pattern (PseudoLLA sym), which
3590     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3591     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3592     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3593   }
3594   }
3595 }
3596 
3597 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3598                                                 SelectionDAG &DAG) const {
3599   SDLoc DL(Op);
3600   EVT Ty = Op.getValueType();
3601   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3602   int64_t Offset = N->getOffset();
3603   MVT XLenVT = Subtarget.getXLenVT();
3604 
3605   const GlobalValue *GV = N->getGlobal();
3606   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3607   SDValue Addr = getAddr(N, DAG, IsLocal);
3608 
3609   // In order to maximise the opportunity for common subexpression elimination,
3610   // emit a separate ADD node for the global address offset instead of folding
3611   // it in the global address node. Later peephole optimisations may choose to
3612   // fold it back in when profitable.
3613   if (Offset != 0)
3614     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3615                        DAG.getConstant(Offset, DL, XLenVT));
3616   return Addr;
3617 }
3618 
3619 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3620                                                SelectionDAG &DAG) const {
3621   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3622 
3623   return getAddr(N, DAG);
3624 }
3625 
3626 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3627                                                SelectionDAG &DAG) const {
3628   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3629 
3630   return getAddr(N, DAG);
3631 }
3632 
3633 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3634                                             SelectionDAG &DAG) const {
3635   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3636 
3637   return getAddr(N, DAG);
3638 }
3639 
3640 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3641                                               SelectionDAG &DAG,
3642                                               bool UseGOT) const {
3643   SDLoc DL(N);
3644   EVT Ty = getPointerTy(DAG.getDataLayout());
3645   const GlobalValue *GV = N->getGlobal();
3646   MVT XLenVT = Subtarget.getXLenVT();
3647 
3648   if (UseGOT) {
3649     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3650     // load the address from the GOT and add the thread pointer. This generates
3651     // the pattern (PseudoLA_TLS_IE sym), which expands to
3652     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3653     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3654     SDValue Load =
3655         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3656 
3657     // Add the thread pointer.
3658     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3659     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3660   }
3661 
3662   // Generate a sequence for accessing the address relative to the thread
3663   // pointer, with the appropriate adjustment for the thread pointer offset.
3664   // This generates the pattern
3665   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3666   SDValue AddrHi =
3667       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3668   SDValue AddrAdd =
3669       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3670   SDValue AddrLo =
3671       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3672 
3673   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3674   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3675   SDValue MNAdd = SDValue(
3676       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3677       0);
3678   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3679 }
3680 
3681 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3682                                                SelectionDAG &DAG) const {
3683   SDLoc DL(N);
3684   EVT Ty = getPointerTy(DAG.getDataLayout());
3685   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3686   const GlobalValue *GV = N->getGlobal();
3687 
3688   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3689   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3690   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3691   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3692   SDValue Load =
3693       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3694 
3695   // Prepare argument list to generate call.
3696   ArgListTy Args;
3697   ArgListEntry Entry;
3698   Entry.Node = Load;
3699   Entry.Ty = CallTy;
3700   Args.push_back(Entry);
3701 
3702   // Setup call to __tls_get_addr.
3703   TargetLowering::CallLoweringInfo CLI(DAG);
3704   CLI.setDebugLoc(DL)
3705       .setChain(DAG.getEntryNode())
3706       .setLibCallee(CallingConv::C, CallTy,
3707                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3708                     std::move(Args));
3709 
3710   return LowerCallTo(CLI).first;
3711 }
3712 
3713 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3714                                                    SelectionDAG &DAG) const {
3715   SDLoc DL(Op);
3716   EVT Ty = Op.getValueType();
3717   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3718   int64_t Offset = N->getOffset();
3719   MVT XLenVT = Subtarget.getXLenVT();
3720 
3721   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3722 
3723   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3724       CallingConv::GHC)
3725     report_fatal_error("In GHC calling convention TLS is not supported");
3726 
3727   SDValue Addr;
3728   switch (Model) {
3729   case TLSModel::LocalExec:
3730     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3731     break;
3732   case TLSModel::InitialExec:
3733     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3734     break;
3735   case TLSModel::LocalDynamic:
3736   case TLSModel::GeneralDynamic:
3737     Addr = getDynamicTLSAddr(N, DAG);
3738     break;
3739   }
3740 
3741   // In order to maximise the opportunity for common subexpression elimination,
3742   // emit a separate ADD node for the global address offset instead of folding
3743   // it in the global address node. Later peephole optimisations may choose to
3744   // fold it back in when profitable.
3745   if (Offset != 0)
3746     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3747                        DAG.getConstant(Offset, DL, XLenVT));
3748   return Addr;
3749 }
3750 
3751 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3752   SDValue CondV = Op.getOperand(0);
3753   SDValue TrueV = Op.getOperand(1);
3754   SDValue FalseV = Op.getOperand(2);
3755   SDLoc DL(Op);
3756   MVT VT = Op.getSimpleValueType();
3757   MVT XLenVT = Subtarget.getXLenVT();
3758 
3759   // Lower vector SELECTs to VSELECTs by splatting the condition.
3760   if (VT.isVector()) {
3761     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3762     SDValue CondSplat = VT.isScalableVector()
3763                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3764                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3765     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3766   }
3767 
3768   // If the result type is XLenVT and CondV is the output of a SETCC node
3769   // which also operated on XLenVT inputs, then merge the SETCC node into the
3770   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3771   // compare+branch instructions. i.e.:
3772   // (select (setcc lhs, rhs, cc), truev, falsev)
3773   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3774   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3775       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3776     SDValue LHS = CondV.getOperand(0);
3777     SDValue RHS = CondV.getOperand(1);
3778     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3779     ISD::CondCode CCVal = CC->get();
3780 
3781     // Special case for a select of 2 constants that have a diffence of 1.
3782     // Normally this is done by DAGCombine, but if the select is introduced by
3783     // type legalization or op legalization, we miss it. Restricting to SETLT
3784     // case for now because that is what signed saturating add/sub need.
3785     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3786     // but we would probably want to swap the true/false values if the condition
3787     // is SETGE/SETLE to avoid an XORI.
3788     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3789         CCVal == ISD::SETLT) {
3790       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3791       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3792       if (TrueVal - 1 == FalseVal)
3793         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3794       if (TrueVal + 1 == FalseVal)
3795         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3796     }
3797 
3798     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3799 
3800     SDValue TargetCC = DAG.getCondCode(CCVal);
3801     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3802     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3803   }
3804 
3805   // Otherwise:
3806   // (select condv, truev, falsev)
3807   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3808   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3809   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3810 
3811   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3812 
3813   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3814 }
3815 
3816 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3817   SDValue CondV = Op.getOperand(1);
3818   SDLoc DL(Op);
3819   MVT XLenVT = Subtarget.getXLenVT();
3820 
3821   if (CondV.getOpcode() == ISD::SETCC &&
3822       CondV.getOperand(0).getValueType() == XLenVT) {
3823     SDValue LHS = CondV.getOperand(0);
3824     SDValue RHS = CondV.getOperand(1);
3825     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3826 
3827     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3828 
3829     SDValue TargetCC = DAG.getCondCode(CCVal);
3830     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3831                        LHS, RHS, TargetCC, Op.getOperand(2));
3832   }
3833 
3834   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3835                      CondV, DAG.getConstant(0, DL, XLenVT),
3836                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3837 }
3838 
3839 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3840   MachineFunction &MF = DAG.getMachineFunction();
3841   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3842 
3843   SDLoc DL(Op);
3844   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3845                                  getPointerTy(MF.getDataLayout()));
3846 
3847   // vastart just stores the address of the VarArgsFrameIndex slot into the
3848   // memory location argument.
3849   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3850   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3851                       MachinePointerInfo(SV));
3852 }
3853 
3854 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3855                                             SelectionDAG &DAG) const {
3856   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3857   MachineFunction &MF = DAG.getMachineFunction();
3858   MachineFrameInfo &MFI = MF.getFrameInfo();
3859   MFI.setFrameAddressIsTaken(true);
3860   Register FrameReg = RI.getFrameRegister(MF);
3861   int XLenInBytes = Subtarget.getXLen() / 8;
3862 
3863   EVT VT = Op.getValueType();
3864   SDLoc DL(Op);
3865   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3866   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3867   while (Depth--) {
3868     int Offset = -(XLenInBytes * 2);
3869     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3870                               DAG.getIntPtrConstant(Offset, DL));
3871     FrameAddr =
3872         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3873   }
3874   return FrameAddr;
3875 }
3876 
3877 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3878                                              SelectionDAG &DAG) const {
3879   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3880   MachineFunction &MF = DAG.getMachineFunction();
3881   MachineFrameInfo &MFI = MF.getFrameInfo();
3882   MFI.setReturnAddressIsTaken(true);
3883   MVT XLenVT = Subtarget.getXLenVT();
3884   int XLenInBytes = Subtarget.getXLen() / 8;
3885 
3886   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3887     return SDValue();
3888 
3889   EVT VT = Op.getValueType();
3890   SDLoc DL(Op);
3891   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3892   if (Depth) {
3893     int Off = -XLenInBytes;
3894     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3895     SDValue Offset = DAG.getConstant(Off, DL, VT);
3896     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3897                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3898                        MachinePointerInfo());
3899   }
3900 
3901   // Return the value of the return address register, marking it an implicit
3902   // live-in.
3903   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3904   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3905 }
3906 
3907 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3908                                                  SelectionDAG &DAG) const {
3909   SDLoc DL(Op);
3910   SDValue Lo = Op.getOperand(0);
3911   SDValue Hi = Op.getOperand(1);
3912   SDValue Shamt = Op.getOperand(2);
3913   EVT VT = Lo.getValueType();
3914 
3915   // if Shamt-XLEN < 0: // Shamt < XLEN
3916   //   Lo = Lo << Shamt
3917   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
3918   // else:
3919   //   Lo = 0
3920   //   Hi = Lo << (Shamt-XLEN)
3921 
3922   SDValue Zero = DAG.getConstant(0, DL, VT);
3923   SDValue One = DAG.getConstant(1, DL, VT);
3924   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3925   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3926   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3927   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3928 
3929   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3930   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3931   SDValue ShiftRightLo =
3932       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3933   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3934   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3935   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3936 
3937   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3938 
3939   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3940   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3941 
3942   SDValue Parts[2] = {Lo, Hi};
3943   return DAG.getMergeValues(Parts, DL);
3944 }
3945 
3946 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3947                                                   bool IsSRA) const {
3948   SDLoc DL(Op);
3949   SDValue Lo = Op.getOperand(0);
3950   SDValue Hi = Op.getOperand(1);
3951   SDValue Shamt = Op.getOperand(2);
3952   EVT VT = Lo.getValueType();
3953 
3954   // SRA expansion:
3955   //   if Shamt-XLEN < 0: // Shamt < XLEN
3956   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3957   //     Hi = Hi >>s Shamt
3958   //   else:
3959   //     Lo = Hi >>s (Shamt-XLEN);
3960   //     Hi = Hi >>s (XLEN-1)
3961   //
3962   // SRL expansion:
3963   //   if Shamt-XLEN < 0: // Shamt < XLEN
3964   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3965   //     Hi = Hi >>u Shamt
3966   //   else:
3967   //     Lo = Hi >>u (Shamt-XLEN);
3968   //     Hi = 0;
3969 
3970   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3971 
3972   SDValue Zero = DAG.getConstant(0, DL, VT);
3973   SDValue One = DAG.getConstant(1, DL, VT);
3974   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3975   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3976   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3977   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3978 
3979   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3980   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3981   SDValue ShiftLeftHi =
3982       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3983   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3984   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3985   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3986   SDValue HiFalse =
3987       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3988 
3989   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3990 
3991   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3992   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3993 
3994   SDValue Parts[2] = {Lo, Hi};
3995   return DAG.getMergeValues(Parts, DL);
3996 }
3997 
3998 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3999 // legal equivalently-sized i8 type, so we can use that as a go-between.
4000 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4001                                                   SelectionDAG &DAG) const {
4002   SDLoc DL(Op);
4003   MVT VT = Op.getSimpleValueType();
4004   SDValue SplatVal = Op.getOperand(0);
4005   // All-zeros or all-ones splats are handled specially.
4006   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4007     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4008     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4009   }
4010   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4011     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4012     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4013   }
4014   MVT XLenVT = Subtarget.getXLenVT();
4015   assert(SplatVal.getValueType() == XLenVT &&
4016          "Unexpected type for i1 splat value");
4017   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4018   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4019                          DAG.getConstant(1, DL, XLenVT));
4020   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4021   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4022   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4023 }
4024 
4025 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4026 // illegal (currently only vXi64 RV32).
4027 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4028 // them to VMV_V_X_VL.
4029 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4030                                                      SelectionDAG &DAG) const {
4031   SDLoc DL(Op);
4032   MVT VecVT = Op.getSimpleValueType();
4033   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4034          "Unexpected SPLAT_VECTOR_PARTS lowering");
4035 
4036   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4037   SDValue Lo = Op.getOperand(0);
4038   SDValue Hi = Op.getOperand(1);
4039 
4040   if (VecVT.isFixedLengthVector()) {
4041     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4042     SDLoc DL(Op);
4043     SDValue Mask, VL;
4044     std::tie(Mask, VL) =
4045         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4046 
4047     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
4048     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4049   }
4050 
4051   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4052     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4053     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4054     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4055     // node in order to try and match RVV vector/scalar instructions.
4056     if ((LoC >> 31) == HiC)
4057       return DAG.getNode(
4058           RISCVISD::VMV_V_X_VL, DL, VecVT, Lo,
4059           DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i32));
4060   }
4061 
4062   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4063   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4064       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4065       Hi.getConstantOperandVal(1) == 31)
4066     return DAG.getNode(
4067         RISCVISD::VMV_V_X_VL, DL, VecVT, Lo,
4068         DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i32));
4069 
4070   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4071   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
4072                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i32));
4073 }
4074 
4075 // Custom-lower extensions from mask vectors by using a vselect either with 1
4076 // for zero/any-extension or -1 for sign-extension:
4077 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4078 // Note that any-extension is lowered identically to zero-extension.
4079 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4080                                                 int64_t ExtTrueVal) const {
4081   SDLoc DL(Op);
4082   MVT VecVT = Op.getSimpleValueType();
4083   SDValue Src = Op.getOperand(0);
4084   // Only custom-lower extensions from mask types
4085   assert(Src.getValueType().isVector() &&
4086          Src.getValueType().getVectorElementType() == MVT::i1);
4087 
4088   MVT XLenVT = Subtarget.getXLenVT();
4089   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4090   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4091 
4092   if (VecVT.isScalableVector()) {
4093     // Be careful not to introduce illegal scalar types at this stage, and be
4094     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
4095     // illegal and must be expanded. Since we know that the constants are
4096     // sign-extended 32-bit values, we use VMV_V_X_VL directly.
4097     bool IsRV32E64 =
4098         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
4099 
4100     if (!IsRV32E64) {
4101       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
4102       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
4103     } else {
4104       SplatZero =
4105           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, SplatZero,
4106                       DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
4107       SplatTrueVal =
4108           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, SplatTrueVal,
4109                       DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
4110     }
4111 
4112     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4113   }
4114 
4115   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4116   MVT I1ContainerVT =
4117       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4118 
4119   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4120 
4121   SDValue Mask, VL;
4122   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4123 
4124   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
4125   SplatTrueVal =
4126       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
4127   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4128                                SplatTrueVal, SplatZero, VL);
4129 
4130   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4131 }
4132 
4133 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4134     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4135   MVT ExtVT = Op.getSimpleValueType();
4136   // Only custom-lower extensions from fixed-length vector types.
4137   if (!ExtVT.isFixedLengthVector())
4138     return Op;
4139   MVT VT = Op.getOperand(0).getSimpleValueType();
4140   // Grab the canonical container type for the extended type. Infer the smaller
4141   // type from that to ensure the same number of vector elements, as we know
4142   // the LMUL will be sufficient to hold the smaller type.
4143   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4144   // Get the extended container type manually to ensure the same number of
4145   // vector elements between source and dest.
4146   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4147                                      ContainerExtVT.getVectorElementCount());
4148 
4149   SDValue Op1 =
4150       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4151 
4152   SDLoc DL(Op);
4153   SDValue Mask, VL;
4154   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4155 
4156   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4157 
4158   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4159 }
4160 
4161 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4162 // setcc operation:
4163 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4164 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
4165                                                   SelectionDAG &DAG) const {
4166   SDLoc DL(Op);
4167   EVT MaskVT = Op.getValueType();
4168   // Only expect to custom-lower truncations to mask types
4169   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4170          "Unexpected type for vector mask lowering");
4171   SDValue Src = Op.getOperand(0);
4172   MVT VecVT = Src.getSimpleValueType();
4173 
4174   // If this is a fixed vector, we need to convert it to a scalable vector.
4175   MVT ContainerVT = VecVT;
4176   if (VecVT.isFixedLengthVector()) {
4177     ContainerVT = getContainerForFixedLengthVector(VecVT);
4178     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4179   }
4180 
4181   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4182   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4183 
4184   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
4185   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
4186 
4187   if (VecVT.isScalableVector()) {
4188     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
4189     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
4190   }
4191 
4192   SDValue Mask, VL;
4193   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4194 
4195   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4196   SDValue Trunc =
4197       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4198   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4199                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4200   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4201 }
4202 
4203 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4204 // first position of a vector, and that vector is slid up to the insert index.
4205 // By limiting the active vector length to index+1 and merging with the
4206 // original vector (with an undisturbed tail policy for elements >= VL), we
4207 // achieve the desired result of leaving all elements untouched except the one
4208 // at VL-1, which is replaced with the desired value.
4209 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4210                                                     SelectionDAG &DAG) const {
4211   SDLoc DL(Op);
4212   MVT VecVT = Op.getSimpleValueType();
4213   SDValue Vec = Op.getOperand(0);
4214   SDValue Val = Op.getOperand(1);
4215   SDValue Idx = Op.getOperand(2);
4216 
4217   if (VecVT.getVectorElementType() == MVT::i1) {
4218     // FIXME: For now we just promote to an i8 vector and insert into that,
4219     // but this is probably not optimal.
4220     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4221     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4222     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4223     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4224   }
4225 
4226   MVT ContainerVT = VecVT;
4227   // If the operand is a fixed-length vector, convert to a scalable one.
4228   if (VecVT.isFixedLengthVector()) {
4229     ContainerVT = getContainerForFixedLengthVector(VecVT);
4230     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4231   }
4232 
4233   MVT XLenVT = Subtarget.getXLenVT();
4234 
4235   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4236   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4237   // Even i64-element vectors on RV32 can be lowered without scalar
4238   // legalization if the most-significant 32 bits of the value are not affected
4239   // by the sign-extension of the lower 32 bits.
4240   // TODO: We could also catch sign extensions of a 32-bit value.
4241   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4242     const auto *CVal = cast<ConstantSDNode>(Val);
4243     if (isInt<32>(CVal->getSExtValue())) {
4244       IsLegalInsert = true;
4245       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4246     }
4247   }
4248 
4249   SDValue Mask, VL;
4250   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4251 
4252   SDValue ValInVec;
4253 
4254   if (IsLegalInsert) {
4255     unsigned Opc =
4256         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4257     if (isNullConstant(Idx)) {
4258       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4259       if (!VecVT.isFixedLengthVector())
4260         return Vec;
4261       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4262     }
4263     ValInVec =
4264         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4265   } else {
4266     // On RV32, i64-element vectors must be specially handled to place the
4267     // value at element 0, by using two vslide1up instructions in sequence on
4268     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4269     // this.
4270     SDValue One = DAG.getConstant(1, DL, XLenVT);
4271     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4272     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4273     MVT I32ContainerVT =
4274         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4275     SDValue I32Mask =
4276         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4277     // Limit the active VL to two.
4278     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4279     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4280     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4281     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
4282                            InsertI64VL);
4283     // First slide in the hi value, then the lo in underneath it.
4284     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
4285                            ValHi, I32Mask, InsertI64VL);
4286     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
4287                            ValLo, I32Mask, InsertI64VL);
4288     // Bitcast back to the right container type.
4289     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4290   }
4291 
4292   // Now that the value is in a vector, slide it into position.
4293   SDValue InsertVL =
4294       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4295   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4296                                 ValInVec, Idx, Mask, InsertVL);
4297   if (!VecVT.isFixedLengthVector())
4298     return Slideup;
4299   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4300 }
4301 
4302 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4303 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4304 // types this is done using VMV_X_S to allow us to glean information about the
4305 // sign bits of the result.
4306 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4307                                                      SelectionDAG &DAG) const {
4308   SDLoc DL(Op);
4309   SDValue Idx = Op.getOperand(1);
4310   SDValue Vec = Op.getOperand(0);
4311   EVT EltVT = Op.getValueType();
4312   MVT VecVT = Vec.getSimpleValueType();
4313   MVT XLenVT = Subtarget.getXLenVT();
4314 
4315   if (VecVT.getVectorElementType() == MVT::i1) {
4316     if (VecVT.isFixedLengthVector()) {
4317       unsigned NumElts = VecVT.getVectorNumElements();
4318       if (NumElts >= 8) {
4319         MVT WideEltVT;
4320         unsigned WidenVecLen;
4321         SDValue ExtractElementIdx;
4322         SDValue ExtractBitIdx;
4323         unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors();
4324         MVT LargestEltVT = MVT::getIntegerVT(
4325             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4326         if (NumElts <= LargestEltVT.getSizeInBits()) {
4327           assert(isPowerOf2_32(NumElts) &&
4328                  "the number of elements should be power of 2");
4329           WideEltVT = MVT::getIntegerVT(NumElts);
4330           WidenVecLen = 1;
4331           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4332           ExtractBitIdx = Idx;
4333         } else {
4334           WideEltVT = LargestEltVT;
4335           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4336           // extract element index = index / element width
4337           ExtractElementIdx = DAG.getNode(
4338               ISD::SRL, DL, XLenVT, Idx,
4339               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4340           // mask bit index = index % element width
4341           ExtractBitIdx = DAG.getNode(
4342               ISD::AND, DL, XLenVT, Idx,
4343               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4344         }
4345         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4346         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4347         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4348                                          Vec, ExtractElementIdx);
4349         // Extract the bit from GPR.
4350         SDValue ShiftRight =
4351             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4352         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4353                            DAG.getConstant(1, DL, XLenVT));
4354       }
4355     }
4356     // Otherwise, promote to an i8 vector and extract from that.
4357     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4358     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4359     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4360   }
4361 
4362   // If this is a fixed vector, we need to convert it to a scalable vector.
4363   MVT ContainerVT = VecVT;
4364   if (VecVT.isFixedLengthVector()) {
4365     ContainerVT = getContainerForFixedLengthVector(VecVT);
4366     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4367   }
4368 
4369   // If the index is 0, the vector is already in the right position.
4370   if (!isNullConstant(Idx)) {
4371     // Use a VL of 1 to avoid processing more elements than we need.
4372     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4373     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4374     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4375     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4376                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4377   }
4378 
4379   if (!EltVT.isInteger()) {
4380     // Floating-point extracts are handled in TableGen.
4381     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4382                        DAG.getConstant(0, DL, XLenVT));
4383   }
4384 
4385   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4386   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4387 }
4388 
4389 // Some RVV intrinsics may claim that they want an integer operand to be
4390 // promoted or expanded.
4391 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
4392                                           const RISCVSubtarget &Subtarget) {
4393   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4394           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4395          "Unexpected opcode");
4396 
4397   if (!Subtarget.hasVInstructions())
4398     return SDValue();
4399 
4400   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4401   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4402   SDLoc DL(Op);
4403 
4404   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4405       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4406   if (!II || !II->hasSplatOperand())
4407     return SDValue();
4408 
4409   unsigned SplatOp = II->SplatOperand + 1 + HasChain;
4410   assert(SplatOp < Op.getNumOperands());
4411 
4412   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4413   SDValue &ScalarOp = Operands[SplatOp];
4414   MVT OpVT = ScalarOp.getSimpleValueType();
4415   MVT XLenVT = Subtarget.getXLenVT();
4416 
4417   // If this isn't a scalar, or its type is XLenVT we're done.
4418   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4419     return SDValue();
4420 
4421   // Simplest case is that the operand needs to be promoted to XLenVT.
4422   if (OpVT.bitsLT(XLenVT)) {
4423     // If the operand is a constant, sign extend to increase our chances
4424     // of being able to use a .vi instruction. ANY_EXTEND would become a
4425     // a zero extend and the simm5 check in isel would fail.
4426     // FIXME: Should we ignore the upper bits in isel instead?
4427     unsigned ExtOpc =
4428         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4429     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4430     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4431   }
4432 
4433   // Use the previous operand to get the vXi64 VT. The result might be a mask
4434   // VT for compares. Using the previous operand assumes that the previous
4435   // operand will never have a smaller element size than a scalar operand and
4436   // that a widening operation never uses SEW=64.
4437   // NOTE: If this fails the below assert, we can probably just find the
4438   // element count from any operand or result and use it to construct the VT.
4439   assert(II->SplatOperand > 0 && "Unexpected splat operand!");
4440   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4441 
4442   // The more complex case is when the scalar is larger than XLenVT.
4443   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4444          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4445 
4446   // If this is a sign-extended 32-bit constant, we can truncate it and rely
4447   // on the instruction to sign-extend since SEW>XLEN.
4448   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
4449     if (isInt<32>(CVal->getSExtValue())) {
4450       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4451       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4452     }
4453   }
4454 
4455   // We need to convert the scalar to a splat vector.
4456   // FIXME: Can we implicitly truncate the scalar if it is known to
4457   // be sign extended?
4458   SDValue VL = getVLOperand(Op);
4459   assert(VL.getValueType() == XLenVT);
4460   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
4461   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4462 }
4463 
4464 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4465                                                      SelectionDAG &DAG) const {
4466   unsigned IntNo = Op.getConstantOperandVal(0);
4467   SDLoc DL(Op);
4468   MVT XLenVT = Subtarget.getXLenVT();
4469 
4470   switch (IntNo) {
4471   default:
4472     break; // Don't custom lower most intrinsics.
4473   case Intrinsic::thread_pointer: {
4474     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4475     return DAG.getRegister(RISCV::X4, PtrVT);
4476   }
4477   case Intrinsic::riscv_orc_b:
4478   case Intrinsic::riscv_brev8: {
4479     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4480     unsigned Opc =
4481         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4482     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4483                        DAG.getConstant(7, DL, XLenVT));
4484   }
4485   case Intrinsic::riscv_grev:
4486   case Intrinsic::riscv_gorc: {
4487     unsigned Opc =
4488         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4489     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4490   }
4491   case Intrinsic::riscv_zip:
4492   case Intrinsic::riscv_unzip: {
4493     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4494     // For i32 the immdiate is 15. For i64 the immediate is 31.
4495     unsigned Opc =
4496         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4497     unsigned BitWidth = Op.getValueSizeInBits();
4498     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4499     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4500                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4501   }
4502   case Intrinsic::riscv_shfl:
4503   case Intrinsic::riscv_unshfl: {
4504     unsigned Opc =
4505         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4506     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4507   }
4508   case Intrinsic::riscv_bcompress:
4509   case Intrinsic::riscv_bdecompress: {
4510     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4511                                                        : RISCVISD::BDECOMPRESS;
4512     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4513   }
4514   case Intrinsic::riscv_bfp:
4515     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4516                        Op.getOperand(2));
4517   case Intrinsic::riscv_fsl:
4518     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4519                        Op.getOperand(2), Op.getOperand(3));
4520   case Intrinsic::riscv_fsr:
4521     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4522                        Op.getOperand(2), Op.getOperand(3));
4523   case Intrinsic::riscv_vmv_x_s:
4524     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4525     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4526                        Op.getOperand(1));
4527   case Intrinsic::riscv_vmv_v_x:
4528     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4529                             Op.getSimpleValueType(), DL, DAG, Subtarget);
4530   case Intrinsic::riscv_vfmv_v_f:
4531     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4532                        Op.getOperand(1), Op.getOperand(2));
4533   case Intrinsic::riscv_vmv_s_x: {
4534     SDValue Scalar = Op.getOperand(2);
4535 
4536     if (Scalar.getValueType().bitsLE(XLenVT)) {
4537       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4538       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4539                          Op.getOperand(1), Scalar, Op.getOperand(3));
4540     }
4541 
4542     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4543 
4544     // This is an i64 value that lives in two scalar registers. We have to
4545     // insert this in a convoluted way. First we build vXi64 splat containing
4546     // the/ two values that we assemble using some bit math. Next we'll use
4547     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4548     // to merge element 0 from our splat into the source vector.
4549     // FIXME: This is probably not the best way to do this, but it is
4550     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4551     // point.
4552     //   sw lo, (a0)
4553     //   sw hi, 4(a0)
4554     //   vlse vX, (a0)
4555     //
4556     //   vid.v      vVid
4557     //   vmseq.vx   mMask, vVid, 0
4558     //   vmerge.vvm vDest, vSrc, vVal, mMask
4559     MVT VT = Op.getSimpleValueType();
4560     SDValue Vec = Op.getOperand(1);
4561     SDValue VL = getVLOperand(Op);
4562 
4563     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
4564     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4565                                       DAG.getConstant(0, DL, MVT::i32), VL);
4566 
4567     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4568     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4569     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4570     SDValue SelectCond =
4571         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4572                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4573     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4574                        Vec, VL);
4575   }
4576   case Intrinsic::riscv_vslide1up:
4577   case Intrinsic::riscv_vslide1down:
4578   case Intrinsic::riscv_vslide1up_mask:
4579   case Intrinsic::riscv_vslide1down_mask: {
4580     // We need to special case these when the scalar is larger than XLen.
4581     unsigned NumOps = Op.getNumOperands();
4582     bool IsMasked = NumOps == 7;
4583     unsigned OpOffset = IsMasked ? 1 : 0;
4584     SDValue Scalar = Op.getOperand(2 + OpOffset);
4585     if (Scalar.getValueType().bitsLE(XLenVT))
4586       break;
4587 
4588     // Splatting a sign extended constant is fine.
4589     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
4590       if (isInt<32>(CVal->getSExtValue()))
4591         break;
4592 
4593     MVT VT = Op.getSimpleValueType();
4594     assert(VT.getVectorElementType() == MVT::i64 &&
4595            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
4596 
4597     // Convert the vector source to the equivalent nxvXi32 vector.
4598     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4599     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
4600 
4601     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4602                                    DAG.getConstant(0, DL, XLenVT));
4603     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4604                                    DAG.getConstant(1, DL, XLenVT));
4605 
4606     // Double the VL since we halved SEW.
4607     SDValue VL = getVLOperand(Op);
4608     SDValue I32VL =
4609         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4610 
4611     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4612     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
4613 
4614     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4615     // instructions.
4616     if (IntNo == Intrinsic::riscv_vslide1up ||
4617         IntNo == Intrinsic::riscv_vslide1up_mask) {
4618       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
4619                         I32Mask, I32VL);
4620       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
4621                         I32Mask, I32VL);
4622     } else {
4623       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
4624                         I32Mask, I32VL);
4625       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
4626                         I32Mask, I32VL);
4627     }
4628 
4629     // Convert back to nxvXi64.
4630     Vec = DAG.getBitcast(VT, Vec);
4631 
4632     if (!IsMasked)
4633       return Vec;
4634 
4635     // Apply mask after the operation.
4636     SDValue Mask = Op.getOperand(NumOps - 3);
4637     SDValue MaskedOff = Op.getOperand(1);
4638     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
4639   }
4640   }
4641 
4642   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4643 }
4644 
4645 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4646                                                     SelectionDAG &DAG) const {
4647   unsigned IntNo = Op.getConstantOperandVal(1);
4648   switch (IntNo) {
4649   default:
4650     break;
4651   case Intrinsic::riscv_masked_strided_load: {
4652     SDLoc DL(Op);
4653     MVT XLenVT = Subtarget.getXLenVT();
4654 
4655     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4656     // the selection of the masked intrinsics doesn't do this for us.
4657     SDValue Mask = Op.getOperand(5);
4658     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4659 
4660     MVT VT = Op->getSimpleValueType(0);
4661     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4662 
4663     SDValue PassThru = Op.getOperand(2);
4664     if (!IsUnmasked) {
4665       MVT MaskVT =
4666           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4667       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4668       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4669     }
4670 
4671     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4672 
4673     SDValue IntID = DAG.getTargetConstant(
4674         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4675         XLenVT);
4676 
4677     auto *Load = cast<MemIntrinsicSDNode>(Op);
4678     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4679     if (IsUnmasked)
4680       Ops.push_back(DAG.getUNDEF(ContainerVT));
4681     else
4682       Ops.push_back(PassThru);
4683     Ops.push_back(Op.getOperand(3)); // Ptr
4684     Ops.push_back(Op.getOperand(4)); // Stride
4685     if (!IsUnmasked)
4686       Ops.push_back(Mask);
4687     Ops.push_back(VL);
4688     if (!IsUnmasked) {
4689       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4690       Ops.push_back(Policy);
4691     }
4692 
4693     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4694     SDValue Result =
4695         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4696                                 Load->getMemoryVT(), Load->getMemOperand());
4697     SDValue Chain = Result.getValue(1);
4698     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4699     return DAG.getMergeValues({Result, Chain}, DL);
4700   }
4701   }
4702 
4703   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4704 }
4705 
4706 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4707                                                  SelectionDAG &DAG) const {
4708   unsigned IntNo = Op.getConstantOperandVal(1);
4709   switch (IntNo) {
4710   default:
4711     break;
4712   case Intrinsic::riscv_masked_strided_store: {
4713     SDLoc DL(Op);
4714     MVT XLenVT = Subtarget.getXLenVT();
4715 
4716     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4717     // the selection of the masked intrinsics doesn't do this for us.
4718     SDValue Mask = Op.getOperand(5);
4719     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4720 
4721     SDValue Val = Op.getOperand(2);
4722     MVT VT = Val.getSimpleValueType();
4723     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4724 
4725     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4726     if (!IsUnmasked) {
4727       MVT MaskVT =
4728           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4729       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4730     }
4731 
4732     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4733 
4734     SDValue IntID = DAG.getTargetConstant(
4735         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4736         XLenVT);
4737 
4738     auto *Store = cast<MemIntrinsicSDNode>(Op);
4739     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4740     Ops.push_back(Val);
4741     Ops.push_back(Op.getOperand(3)); // Ptr
4742     Ops.push_back(Op.getOperand(4)); // Stride
4743     if (!IsUnmasked)
4744       Ops.push_back(Mask);
4745     Ops.push_back(VL);
4746 
4747     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4748                                    Ops, Store->getMemoryVT(),
4749                                    Store->getMemOperand());
4750   }
4751   }
4752 
4753   return SDValue();
4754 }
4755 
4756 static MVT getLMUL1VT(MVT VT) {
4757   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4758          "Unexpected vector MVT");
4759   return MVT::getScalableVectorVT(
4760       VT.getVectorElementType(),
4761       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4762 }
4763 
4764 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4765   switch (ISDOpcode) {
4766   default:
4767     llvm_unreachable("Unhandled reduction");
4768   case ISD::VECREDUCE_ADD:
4769     return RISCVISD::VECREDUCE_ADD_VL;
4770   case ISD::VECREDUCE_UMAX:
4771     return RISCVISD::VECREDUCE_UMAX_VL;
4772   case ISD::VECREDUCE_SMAX:
4773     return RISCVISD::VECREDUCE_SMAX_VL;
4774   case ISD::VECREDUCE_UMIN:
4775     return RISCVISD::VECREDUCE_UMIN_VL;
4776   case ISD::VECREDUCE_SMIN:
4777     return RISCVISD::VECREDUCE_SMIN_VL;
4778   case ISD::VECREDUCE_AND:
4779     return RISCVISD::VECREDUCE_AND_VL;
4780   case ISD::VECREDUCE_OR:
4781     return RISCVISD::VECREDUCE_OR_VL;
4782   case ISD::VECREDUCE_XOR:
4783     return RISCVISD::VECREDUCE_XOR_VL;
4784   }
4785 }
4786 
4787 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
4788                                                          SelectionDAG &DAG,
4789                                                          bool IsVP) const {
4790   SDLoc DL(Op);
4791   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
4792   MVT VecVT = Vec.getSimpleValueType();
4793   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
4794           Op.getOpcode() == ISD::VECREDUCE_OR ||
4795           Op.getOpcode() == ISD::VECREDUCE_XOR ||
4796           Op.getOpcode() == ISD::VP_REDUCE_AND ||
4797           Op.getOpcode() == ISD::VP_REDUCE_OR ||
4798           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
4799          "Unexpected reduction lowering");
4800 
4801   MVT XLenVT = Subtarget.getXLenVT();
4802   assert(Op.getValueType() == XLenVT &&
4803          "Expected reduction output to be legalized to XLenVT");
4804 
4805   MVT ContainerVT = VecVT;
4806   if (VecVT.isFixedLengthVector()) {
4807     ContainerVT = getContainerForFixedLengthVector(VecVT);
4808     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4809   }
4810 
4811   SDValue Mask, VL;
4812   if (IsVP) {
4813     Mask = Op.getOperand(2);
4814     VL = Op.getOperand(3);
4815   } else {
4816     std::tie(Mask, VL) =
4817         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4818   }
4819 
4820   unsigned BaseOpc;
4821   ISD::CondCode CC;
4822   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4823 
4824   switch (Op.getOpcode()) {
4825   default:
4826     llvm_unreachable("Unhandled reduction");
4827   case ISD::VECREDUCE_AND:
4828   case ISD::VP_REDUCE_AND: {
4829     // vcpop ~x == 0
4830     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
4831     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
4832     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4833     CC = ISD::SETEQ;
4834     BaseOpc = ISD::AND;
4835     break;
4836   }
4837   case ISD::VECREDUCE_OR:
4838   case ISD::VP_REDUCE_OR:
4839     // vcpop x != 0
4840     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4841     CC = ISD::SETNE;
4842     BaseOpc = ISD::OR;
4843     break;
4844   case ISD::VECREDUCE_XOR:
4845   case ISD::VP_REDUCE_XOR: {
4846     // ((vcpop x) & 1) != 0
4847     SDValue One = DAG.getConstant(1, DL, XLenVT);
4848     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4849     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
4850     CC = ISD::SETNE;
4851     BaseOpc = ISD::XOR;
4852     break;
4853   }
4854   }
4855 
4856   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
4857 
4858   if (!IsVP)
4859     return SetCC;
4860 
4861   // Now include the start value in the operation.
4862   // Note that we must return the start value when no elements are operated
4863   // upon. The vcpop instructions we've emitted in each case above will return
4864   // 0 for an inactive vector, and so we've already received the neutral value:
4865   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
4866   // can simply include the start value.
4867   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
4868 }
4869 
4870 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
4871                                             SelectionDAG &DAG) const {
4872   SDLoc DL(Op);
4873   SDValue Vec = Op.getOperand(0);
4874   EVT VecEVT = Vec.getValueType();
4875 
4876   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
4877 
4878   // Due to ordering in legalize types we may have a vector type that needs to
4879   // be split. Do that manually so we can get down to a legal type.
4880   while (getTypeAction(*DAG.getContext(), VecEVT) ==
4881          TargetLowering::TypeSplitVector) {
4882     SDValue Lo, Hi;
4883     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
4884     VecEVT = Lo.getValueType();
4885     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
4886   }
4887 
4888   // TODO: The type may need to be widened rather than split. Or widened before
4889   // it can be split.
4890   if (!isTypeLegal(VecEVT))
4891     return SDValue();
4892 
4893   MVT VecVT = VecEVT.getSimpleVT();
4894   MVT VecEltVT = VecVT.getVectorElementType();
4895   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
4896 
4897   MVT ContainerVT = VecVT;
4898   if (VecVT.isFixedLengthVector()) {
4899     ContainerVT = getContainerForFixedLengthVector(VecVT);
4900     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4901   }
4902 
4903   MVT M1VT = getLMUL1VT(ContainerVT);
4904   MVT XLenVT = Subtarget.getXLenVT();
4905 
4906   SDValue Mask, VL;
4907   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4908 
4909   SDValue NeutralElem =
4910       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
4911   SDValue IdentitySplat = lowerScalarSplat(
4912       NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget);
4913   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
4914                                   IdentitySplat, Mask, VL);
4915   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4916                              DAG.getConstant(0, DL, XLenVT));
4917   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4918 }
4919 
4920 // Given a reduction op, this function returns the matching reduction opcode,
4921 // the vector SDValue and the scalar SDValue required to lower this to a
4922 // RISCVISD node.
4923 static std::tuple<unsigned, SDValue, SDValue>
4924 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
4925   SDLoc DL(Op);
4926   auto Flags = Op->getFlags();
4927   unsigned Opcode = Op.getOpcode();
4928   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
4929   switch (Opcode) {
4930   default:
4931     llvm_unreachable("Unhandled reduction");
4932   case ISD::VECREDUCE_FADD: {
4933     // Use positive zero if we can. It is cheaper to materialize.
4934     SDValue Zero =
4935         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
4936     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
4937   }
4938   case ISD::VECREDUCE_SEQ_FADD:
4939     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
4940                            Op.getOperand(0));
4941   case ISD::VECREDUCE_FMIN:
4942     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
4943                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4944   case ISD::VECREDUCE_FMAX:
4945     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
4946                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4947   }
4948 }
4949 
4950 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
4951                                               SelectionDAG &DAG) const {
4952   SDLoc DL(Op);
4953   MVT VecEltVT = Op.getSimpleValueType();
4954 
4955   unsigned RVVOpcode;
4956   SDValue VectorVal, ScalarVal;
4957   std::tie(RVVOpcode, VectorVal, ScalarVal) =
4958       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
4959   MVT VecVT = VectorVal.getSimpleValueType();
4960 
4961   MVT ContainerVT = VecVT;
4962   if (VecVT.isFixedLengthVector()) {
4963     ContainerVT = getContainerForFixedLengthVector(VecVT);
4964     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
4965   }
4966 
4967   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
4968   MVT XLenVT = Subtarget.getXLenVT();
4969 
4970   SDValue Mask, VL;
4971   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4972 
4973   SDValue ScalarSplat = lowerScalarSplat(
4974       ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget);
4975   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
4976                                   VectorVal, ScalarSplat, Mask, VL);
4977   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4978                      DAG.getConstant(0, DL, XLenVT));
4979 }
4980 
4981 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
4982   switch (ISDOpcode) {
4983   default:
4984     llvm_unreachable("Unhandled reduction");
4985   case ISD::VP_REDUCE_ADD:
4986     return RISCVISD::VECREDUCE_ADD_VL;
4987   case ISD::VP_REDUCE_UMAX:
4988     return RISCVISD::VECREDUCE_UMAX_VL;
4989   case ISD::VP_REDUCE_SMAX:
4990     return RISCVISD::VECREDUCE_SMAX_VL;
4991   case ISD::VP_REDUCE_UMIN:
4992     return RISCVISD::VECREDUCE_UMIN_VL;
4993   case ISD::VP_REDUCE_SMIN:
4994     return RISCVISD::VECREDUCE_SMIN_VL;
4995   case ISD::VP_REDUCE_AND:
4996     return RISCVISD::VECREDUCE_AND_VL;
4997   case ISD::VP_REDUCE_OR:
4998     return RISCVISD::VECREDUCE_OR_VL;
4999   case ISD::VP_REDUCE_XOR:
5000     return RISCVISD::VECREDUCE_XOR_VL;
5001   case ISD::VP_REDUCE_FADD:
5002     return RISCVISD::VECREDUCE_FADD_VL;
5003   case ISD::VP_REDUCE_SEQ_FADD:
5004     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5005   case ISD::VP_REDUCE_FMAX:
5006     return RISCVISD::VECREDUCE_FMAX_VL;
5007   case ISD::VP_REDUCE_FMIN:
5008     return RISCVISD::VECREDUCE_FMIN_VL;
5009   }
5010 }
5011 
5012 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5013                                            SelectionDAG &DAG) const {
5014   SDLoc DL(Op);
5015   SDValue Vec = Op.getOperand(1);
5016   EVT VecEVT = Vec.getValueType();
5017 
5018   // TODO: The type may need to be widened rather than split. Or widened before
5019   // it can be split.
5020   if (!isTypeLegal(VecEVT))
5021     return SDValue();
5022 
5023   MVT VecVT = VecEVT.getSimpleVT();
5024   MVT VecEltVT = VecVT.getVectorElementType();
5025   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5026 
5027   MVT ContainerVT = VecVT;
5028   if (VecVT.isFixedLengthVector()) {
5029     ContainerVT = getContainerForFixedLengthVector(VecVT);
5030     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5031   }
5032 
5033   SDValue VL = Op.getOperand(3);
5034   SDValue Mask = Op.getOperand(2);
5035 
5036   MVT M1VT = getLMUL1VT(ContainerVT);
5037   MVT XLenVT = Subtarget.getXLenVT();
5038   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5039 
5040   SDValue StartSplat =
5041       lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT,
5042                        DL, DAG, Subtarget);
5043   SDValue Reduction =
5044       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5045   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5046                              DAG.getConstant(0, DL, XLenVT));
5047   if (!VecVT.isInteger())
5048     return Elt0;
5049   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5050 }
5051 
5052 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5053                                                    SelectionDAG &DAG) const {
5054   SDValue Vec = Op.getOperand(0);
5055   SDValue SubVec = Op.getOperand(1);
5056   MVT VecVT = Vec.getSimpleValueType();
5057   MVT SubVecVT = SubVec.getSimpleValueType();
5058 
5059   SDLoc DL(Op);
5060   MVT XLenVT = Subtarget.getXLenVT();
5061   unsigned OrigIdx = Op.getConstantOperandVal(2);
5062   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5063 
5064   // We don't have the ability to slide mask vectors up indexed by their i1
5065   // elements; the smallest we can do is i8. Often we are able to bitcast to
5066   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5067   // into a scalable one, we might not necessarily have enough scalable
5068   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5069   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5070       (OrigIdx != 0 || !Vec.isUndef())) {
5071     if (VecVT.getVectorMinNumElements() >= 8 &&
5072         SubVecVT.getVectorMinNumElements() >= 8) {
5073       assert(OrigIdx % 8 == 0 && "Invalid index");
5074       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5075              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5076              "Unexpected mask vector lowering");
5077       OrigIdx /= 8;
5078       SubVecVT =
5079           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5080                            SubVecVT.isScalableVector());
5081       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5082                                VecVT.isScalableVector());
5083       Vec = DAG.getBitcast(VecVT, Vec);
5084       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5085     } else {
5086       // We can't slide this mask vector up indexed by its i1 elements.
5087       // This poses a problem when we wish to insert a scalable vector which
5088       // can't be re-expressed as a larger type. Just choose the slow path and
5089       // extend to a larger type, then truncate back down.
5090       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5091       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5092       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5093       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5094       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5095                         Op.getOperand(2));
5096       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5097       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5098     }
5099   }
5100 
5101   // If the subvector vector is a fixed-length type, we cannot use subregister
5102   // manipulation to simplify the codegen; we don't know which register of a
5103   // LMUL group contains the specific subvector as we only know the minimum
5104   // register size. Therefore we must slide the vector group up the full
5105   // amount.
5106   if (SubVecVT.isFixedLengthVector()) {
5107     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5108       return Op;
5109     MVT ContainerVT = VecVT;
5110     if (VecVT.isFixedLengthVector()) {
5111       ContainerVT = getContainerForFixedLengthVector(VecVT);
5112       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5113     }
5114     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5115                          DAG.getUNDEF(ContainerVT), SubVec,
5116                          DAG.getConstant(0, DL, XLenVT));
5117     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5118       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5119       return DAG.getBitcast(Op.getValueType(), SubVec);
5120     }
5121     SDValue Mask =
5122         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5123     // Set the vector length to only the number of elements we care about. Note
5124     // that for slideup this includes the offset.
5125     SDValue VL =
5126         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5127     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5128     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5129                                   SubVec, SlideupAmt, Mask, VL);
5130     if (VecVT.isFixedLengthVector())
5131       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5132     return DAG.getBitcast(Op.getValueType(), Slideup);
5133   }
5134 
5135   unsigned SubRegIdx, RemIdx;
5136   std::tie(SubRegIdx, RemIdx) =
5137       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5138           VecVT, SubVecVT, OrigIdx, TRI);
5139 
5140   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5141   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5142                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5143                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5144 
5145   // 1. If the Idx has been completely eliminated and this subvector's size is
5146   // a vector register or a multiple thereof, or the surrounding elements are
5147   // undef, then this is a subvector insert which naturally aligns to a vector
5148   // register. These can easily be handled using subregister manipulation.
5149   // 2. If the subvector is smaller than a vector register, then the insertion
5150   // must preserve the undisturbed elements of the register. We do this by
5151   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5152   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5153   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5154   // LMUL=1 type back into the larger vector (resolving to another subregister
5155   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5156   // to avoid allocating a large register group to hold our subvector.
5157   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5158     return Op;
5159 
5160   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5161   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5162   // (in our case undisturbed). This means we can set up a subvector insertion
5163   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5164   // size of the subvector.
5165   MVT InterSubVT = VecVT;
5166   SDValue AlignedExtract = Vec;
5167   unsigned AlignedIdx = OrigIdx - RemIdx;
5168   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5169     InterSubVT = getLMUL1VT(VecVT);
5170     // Extract a subvector equal to the nearest full vector register type. This
5171     // should resolve to a EXTRACT_SUBREG instruction.
5172     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5173                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5174   }
5175 
5176   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5177   // For scalable vectors this must be further multiplied by vscale.
5178   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5179 
5180   SDValue Mask, VL;
5181   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5182 
5183   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5184   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5185   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5186   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5187 
5188   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5189                        DAG.getUNDEF(InterSubVT), SubVec,
5190                        DAG.getConstant(0, DL, XLenVT));
5191 
5192   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5193                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5194 
5195   // If required, insert this subvector back into the correct vector register.
5196   // This should resolve to an INSERT_SUBREG instruction.
5197   if (VecVT.bitsGT(InterSubVT))
5198     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5199                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5200 
5201   // We might have bitcast from a mask type: cast back to the original type if
5202   // required.
5203   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5204 }
5205 
5206 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5207                                                     SelectionDAG &DAG) const {
5208   SDValue Vec = Op.getOperand(0);
5209   MVT SubVecVT = Op.getSimpleValueType();
5210   MVT VecVT = Vec.getSimpleValueType();
5211 
5212   SDLoc DL(Op);
5213   MVT XLenVT = Subtarget.getXLenVT();
5214   unsigned OrigIdx = Op.getConstantOperandVal(1);
5215   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5216 
5217   // We don't have the ability to slide mask vectors down indexed by their i1
5218   // elements; the smallest we can do is i8. Often we are able to bitcast to
5219   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5220   // from a scalable one, we might not necessarily have enough scalable
5221   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5222   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5223     if (VecVT.getVectorMinNumElements() >= 8 &&
5224         SubVecVT.getVectorMinNumElements() >= 8) {
5225       assert(OrigIdx % 8 == 0 && "Invalid index");
5226       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5227              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5228              "Unexpected mask vector lowering");
5229       OrigIdx /= 8;
5230       SubVecVT =
5231           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5232                            SubVecVT.isScalableVector());
5233       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5234                                VecVT.isScalableVector());
5235       Vec = DAG.getBitcast(VecVT, Vec);
5236     } else {
5237       // We can't slide this mask vector down, indexed by its i1 elements.
5238       // This poses a problem when we wish to extract a scalable vector which
5239       // can't be re-expressed as a larger type. Just choose the slow path and
5240       // extend to a larger type, then truncate back down.
5241       // TODO: We could probably improve this when extracting certain fixed
5242       // from fixed, where we can extract as i8 and shift the correct element
5243       // right to reach the desired subvector?
5244       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5245       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5246       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5247       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5248                         Op.getOperand(1));
5249       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5250       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5251     }
5252   }
5253 
5254   // If the subvector vector is a fixed-length type, we cannot use subregister
5255   // manipulation to simplify the codegen; we don't know which register of a
5256   // LMUL group contains the specific subvector as we only know the minimum
5257   // register size. Therefore we must slide the vector group down the full
5258   // amount.
5259   if (SubVecVT.isFixedLengthVector()) {
5260     // With an index of 0 this is a cast-like subvector, which can be performed
5261     // with subregister operations.
5262     if (OrigIdx == 0)
5263       return Op;
5264     MVT ContainerVT = VecVT;
5265     if (VecVT.isFixedLengthVector()) {
5266       ContainerVT = getContainerForFixedLengthVector(VecVT);
5267       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5268     }
5269     SDValue Mask =
5270         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5271     // Set the vector length to only the number of elements we care about. This
5272     // avoids sliding down elements we're going to discard straight away.
5273     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5274     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5275     SDValue Slidedown =
5276         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5277                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5278     // Now we can use a cast-like subvector extract to get the result.
5279     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5280                             DAG.getConstant(0, DL, XLenVT));
5281     return DAG.getBitcast(Op.getValueType(), Slidedown);
5282   }
5283 
5284   unsigned SubRegIdx, RemIdx;
5285   std::tie(SubRegIdx, RemIdx) =
5286       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5287           VecVT, SubVecVT, OrigIdx, TRI);
5288 
5289   // If the Idx has been completely eliminated then this is a subvector extract
5290   // which naturally aligns to a vector register. These can easily be handled
5291   // using subregister manipulation.
5292   if (RemIdx == 0)
5293     return Op;
5294 
5295   // Else we must shift our vector register directly to extract the subvector.
5296   // Do this using VSLIDEDOWN.
5297 
5298   // If the vector type is an LMUL-group type, extract a subvector equal to the
5299   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5300   // instruction.
5301   MVT InterSubVT = VecVT;
5302   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5303     InterSubVT = getLMUL1VT(VecVT);
5304     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5305                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5306   }
5307 
5308   // Slide this vector register down by the desired number of elements in order
5309   // to place the desired subvector starting at element 0.
5310   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5311   // For scalable vectors this must be further multiplied by vscale.
5312   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5313 
5314   SDValue Mask, VL;
5315   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5316   SDValue Slidedown =
5317       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5318                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5319 
5320   // Now the vector is in the right position, extract our final subvector. This
5321   // should resolve to a COPY.
5322   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5323                           DAG.getConstant(0, DL, XLenVT));
5324 
5325   // We might have bitcast from a mask type: cast back to the original type if
5326   // required.
5327   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5328 }
5329 
5330 // Lower step_vector to the vid instruction. Any non-identity step value must
5331 // be accounted for my manual expansion.
5332 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5333                                               SelectionDAG &DAG) const {
5334   SDLoc DL(Op);
5335   MVT VT = Op.getSimpleValueType();
5336   MVT XLenVT = Subtarget.getXLenVT();
5337   SDValue Mask, VL;
5338   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5339   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5340   uint64_t StepValImm = Op.getConstantOperandVal(0);
5341   if (StepValImm != 1) {
5342     if (isPowerOf2_64(StepValImm)) {
5343       SDValue StepVal =
5344           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
5345                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5346       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5347     } else {
5348       SDValue StepVal = lowerScalarSplat(
5349           DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT,
5350           DL, DAG, Subtarget);
5351       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5352     }
5353   }
5354   return StepVec;
5355 }
5356 
5357 // Implement vector_reverse using vrgather.vv with indices determined by
5358 // subtracting the id of each element from (VLMAX-1). This will convert
5359 // the indices like so:
5360 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5361 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5362 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5363                                                  SelectionDAG &DAG) const {
5364   SDLoc DL(Op);
5365   MVT VecVT = Op.getSimpleValueType();
5366   unsigned EltSize = VecVT.getScalarSizeInBits();
5367   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5368 
5369   unsigned MaxVLMAX = 0;
5370   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5371   if (VectorBitsMax != 0)
5372     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
5373 
5374   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5375   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5376 
5377   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5378   // to use vrgatherei16.vv.
5379   // TODO: It's also possible to use vrgatherei16.vv for other types to
5380   // decrease register width for the index calculation.
5381   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5382     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5383     // Reverse each half, then reassemble them in reverse order.
5384     // NOTE: It's also possible that after splitting that VLMAX no longer
5385     // requires vrgatherei16.vv.
5386     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5387       SDValue Lo, Hi;
5388       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5389       EVT LoVT, HiVT;
5390       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5391       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5392       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5393       // Reassemble the low and high pieces reversed.
5394       // FIXME: This is a CONCAT_VECTORS.
5395       SDValue Res =
5396           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5397                       DAG.getIntPtrConstant(0, DL));
5398       return DAG.getNode(
5399           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5400           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5401     }
5402 
5403     // Just promote the int type to i16 which will double the LMUL.
5404     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5405     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5406   }
5407 
5408   MVT XLenVT = Subtarget.getXLenVT();
5409   SDValue Mask, VL;
5410   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5411 
5412   // Calculate VLMAX-1 for the desired SEW.
5413   unsigned MinElts = VecVT.getVectorMinNumElements();
5414   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5415                               DAG.getConstant(MinElts, DL, XLenVT));
5416   SDValue VLMinus1 =
5417       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5418 
5419   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5420   bool IsRV32E64 =
5421       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5422   SDValue SplatVL;
5423   if (!IsRV32E64)
5424     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5425   else
5426     SplatVL =
5427         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, VLMinus1,
5428                     DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5429 
5430   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5431   SDValue Indices =
5432       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5433 
5434   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5435 }
5436 
5437 SDValue
5438 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5439                                                      SelectionDAG &DAG) const {
5440   SDLoc DL(Op);
5441   auto *Load = cast<LoadSDNode>(Op);
5442 
5443   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5444                                         Load->getMemoryVT(),
5445                                         *Load->getMemOperand()) &&
5446          "Expecting a correctly-aligned load");
5447 
5448   MVT VT = Op.getSimpleValueType();
5449   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5450 
5451   SDValue VL =
5452       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5453 
5454   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5455   SDValue NewLoad = DAG.getMemIntrinsicNode(
5456       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
5457       Load->getMemoryVT(), Load->getMemOperand());
5458 
5459   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5460   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5461 }
5462 
5463 SDValue
5464 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5465                                                       SelectionDAG &DAG) const {
5466   SDLoc DL(Op);
5467   auto *Store = cast<StoreSDNode>(Op);
5468 
5469   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5470                                         Store->getMemoryVT(),
5471                                         *Store->getMemOperand()) &&
5472          "Expecting a correctly-aligned store");
5473 
5474   SDValue StoreVal = Store->getValue();
5475   MVT VT = StoreVal.getSimpleValueType();
5476 
5477   // If the size less than a byte, we need to pad with zeros to make a byte.
5478   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5479     VT = MVT::v8i1;
5480     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5481                            DAG.getConstant(0, DL, VT), StoreVal,
5482                            DAG.getIntPtrConstant(0, DL));
5483   }
5484 
5485   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5486 
5487   SDValue VL =
5488       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5489 
5490   SDValue NewValue =
5491       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5492   return DAG.getMemIntrinsicNode(
5493       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
5494       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
5495       Store->getMemoryVT(), Store->getMemOperand());
5496 }
5497 
5498 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5499                                              SelectionDAG &DAG) const {
5500   SDLoc DL(Op);
5501   MVT VT = Op.getSimpleValueType();
5502 
5503   const auto *MemSD = cast<MemSDNode>(Op);
5504   EVT MemVT = MemSD->getMemoryVT();
5505   MachineMemOperand *MMO = MemSD->getMemOperand();
5506   SDValue Chain = MemSD->getChain();
5507   SDValue BasePtr = MemSD->getBasePtr();
5508 
5509   SDValue Mask, PassThru, VL;
5510   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5511     Mask = VPLoad->getMask();
5512     PassThru = DAG.getUNDEF(VT);
5513     VL = VPLoad->getVectorLength();
5514   } else {
5515     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5516     Mask = MLoad->getMask();
5517     PassThru = MLoad->getPassThru();
5518   }
5519 
5520   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5521 
5522   MVT XLenVT = Subtarget.getXLenVT();
5523 
5524   MVT ContainerVT = VT;
5525   if (VT.isFixedLengthVector()) {
5526     ContainerVT = getContainerForFixedLengthVector(VT);
5527     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5528     if (!IsUnmasked) {
5529       MVT MaskVT =
5530           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5531       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5532     }
5533   }
5534 
5535   if (!VL)
5536     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5537 
5538   unsigned IntID =
5539       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5540   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5541   if (IsUnmasked)
5542     Ops.push_back(DAG.getUNDEF(ContainerVT));
5543   else
5544     Ops.push_back(PassThru);
5545   Ops.push_back(BasePtr);
5546   if (!IsUnmasked)
5547     Ops.push_back(Mask);
5548   Ops.push_back(VL);
5549   if (!IsUnmasked)
5550     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5551 
5552   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5553 
5554   SDValue Result =
5555       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5556   Chain = Result.getValue(1);
5557 
5558   if (VT.isFixedLengthVector())
5559     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5560 
5561   return DAG.getMergeValues({Result, Chain}, DL);
5562 }
5563 
5564 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5565                                               SelectionDAG &DAG) const {
5566   SDLoc DL(Op);
5567 
5568   const auto *MemSD = cast<MemSDNode>(Op);
5569   EVT MemVT = MemSD->getMemoryVT();
5570   MachineMemOperand *MMO = MemSD->getMemOperand();
5571   SDValue Chain = MemSD->getChain();
5572   SDValue BasePtr = MemSD->getBasePtr();
5573   SDValue Val, Mask, VL;
5574 
5575   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5576     Val = VPStore->getValue();
5577     Mask = VPStore->getMask();
5578     VL = VPStore->getVectorLength();
5579   } else {
5580     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5581     Val = MStore->getValue();
5582     Mask = MStore->getMask();
5583   }
5584 
5585   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5586 
5587   MVT VT = Val.getSimpleValueType();
5588   MVT XLenVT = Subtarget.getXLenVT();
5589 
5590   MVT ContainerVT = VT;
5591   if (VT.isFixedLengthVector()) {
5592     ContainerVT = getContainerForFixedLengthVector(VT);
5593 
5594     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5595     if (!IsUnmasked) {
5596       MVT MaskVT =
5597           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5598       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5599     }
5600   }
5601 
5602   if (!VL)
5603     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5604 
5605   unsigned IntID =
5606       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5607   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5608   Ops.push_back(Val);
5609   Ops.push_back(BasePtr);
5610   if (!IsUnmasked)
5611     Ops.push_back(Mask);
5612   Ops.push_back(VL);
5613 
5614   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5615                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5616 }
5617 
5618 SDValue
5619 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5620                                                       SelectionDAG &DAG) const {
5621   MVT InVT = Op.getOperand(0).getSimpleValueType();
5622   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5623 
5624   MVT VT = Op.getSimpleValueType();
5625 
5626   SDValue Op1 =
5627       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5628   SDValue Op2 =
5629       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5630 
5631   SDLoc DL(Op);
5632   SDValue VL =
5633       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5634 
5635   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5636   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5637 
5638   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5639                             Op.getOperand(2), Mask, VL);
5640 
5641   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5642 }
5643 
5644 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5645     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5646   MVT VT = Op.getSimpleValueType();
5647 
5648   if (VT.getVectorElementType() == MVT::i1)
5649     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5650 
5651   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5652 }
5653 
5654 SDValue
5655 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5656                                                       SelectionDAG &DAG) const {
5657   unsigned Opc;
5658   switch (Op.getOpcode()) {
5659   default: llvm_unreachable("Unexpected opcode!");
5660   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5661   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5662   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5663   }
5664 
5665   return lowerToScalableOp(Op, DAG, Opc);
5666 }
5667 
5668 // Lower vector ABS to smax(X, sub(0, X)).
5669 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5670   SDLoc DL(Op);
5671   MVT VT = Op.getSimpleValueType();
5672   SDValue X = Op.getOperand(0);
5673 
5674   assert(VT.isFixedLengthVector() && "Unexpected type");
5675 
5676   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5677   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5678 
5679   SDValue Mask, VL;
5680   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5681 
5682   SDValue SplatZero =
5683       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5684                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5685   SDValue NegX =
5686       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5687   SDValue Max =
5688       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5689 
5690   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5691 }
5692 
5693 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5694     SDValue Op, SelectionDAG &DAG) const {
5695   SDLoc DL(Op);
5696   MVT VT = Op.getSimpleValueType();
5697   SDValue Mag = Op.getOperand(0);
5698   SDValue Sign = Op.getOperand(1);
5699   assert(Mag.getValueType() == Sign.getValueType() &&
5700          "Can only handle COPYSIGN with matching types.");
5701 
5702   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5703   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5704   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5705 
5706   SDValue Mask, VL;
5707   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5708 
5709   SDValue CopySign =
5710       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5711 
5712   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5713 }
5714 
5715 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5716     SDValue Op, SelectionDAG &DAG) const {
5717   MVT VT = Op.getSimpleValueType();
5718   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5719 
5720   MVT I1ContainerVT =
5721       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5722 
5723   SDValue CC =
5724       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5725   SDValue Op1 =
5726       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5727   SDValue Op2 =
5728       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5729 
5730   SDLoc DL(Op);
5731   SDValue Mask, VL;
5732   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5733 
5734   SDValue Select =
5735       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5736 
5737   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5738 }
5739 
5740 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5741                                                unsigned NewOpc,
5742                                                bool HasMask) const {
5743   MVT VT = Op.getSimpleValueType();
5744   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5745 
5746   // Create list of operands by converting existing ones to scalable types.
5747   SmallVector<SDValue, 6> Ops;
5748   for (const SDValue &V : Op->op_values()) {
5749     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5750 
5751     // Pass through non-vector operands.
5752     if (!V.getValueType().isVector()) {
5753       Ops.push_back(V);
5754       continue;
5755     }
5756 
5757     // "cast" fixed length vector to a scalable vector.
5758     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
5759            "Only fixed length vectors are supported!");
5760     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5761   }
5762 
5763   SDLoc DL(Op);
5764   SDValue Mask, VL;
5765   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5766   if (HasMask)
5767     Ops.push_back(Mask);
5768   Ops.push_back(VL);
5769 
5770   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
5771   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
5772 }
5773 
5774 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
5775 // * Operands of each node are assumed to be in the same order.
5776 // * The EVL operand is promoted from i32 to i64 on RV64.
5777 // * Fixed-length vectors are converted to their scalable-vector container
5778 //   types.
5779 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
5780                                        unsigned RISCVISDOpc) const {
5781   SDLoc DL(Op);
5782   MVT VT = Op.getSimpleValueType();
5783   SmallVector<SDValue, 4> Ops;
5784 
5785   for (const auto &OpIdx : enumerate(Op->ops())) {
5786     SDValue V = OpIdx.value();
5787     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5788     // Pass through operands which aren't fixed-length vectors.
5789     if (!V.getValueType().isFixedLengthVector()) {
5790       Ops.push_back(V);
5791       continue;
5792     }
5793     // "cast" fixed length vector to a scalable vector.
5794     MVT OpVT = V.getSimpleValueType();
5795     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
5796     assert(useRVVForFixedLengthVectorVT(OpVT) &&
5797            "Only fixed length vectors are supported!");
5798     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5799   }
5800 
5801   if (!VT.isFixedLengthVector())
5802     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
5803 
5804   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5805 
5806   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
5807 
5808   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
5809 }
5810 
5811 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
5812                                             unsigned MaskOpc,
5813                                             unsigned VecOpc) const {
5814   MVT VT = Op.getSimpleValueType();
5815   if (VT.getVectorElementType() != MVT::i1)
5816     return lowerVPOp(Op, DAG, VecOpc);
5817 
5818   // It is safe to drop mask parameter as masked-off elements are undef.
5819   SDValue Op1 = Op->getOperand(0);
5820   SDValue Op2 = Op->getOperand(1);
5821   SDValue VL = Op->getOperand(3);
5822 
5823   MVT ContainerVT = VT;
5824   const bool IsFixed = VT.isFixedLengthVector();
5825   if (IsFixed) {
5826     ContainerVT = getContainerForFixedLengthVector(VT);
5827     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
5828     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
5829   }
5830 
5831   SDLoc DL(Op);
5832   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
5833   if (!IsFixed)
5834     return Val;
5835   return convertFromScalableVector(VT, Val, DAG, Subtarget);
5836 }
5837 
5838 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
5839 // matched to a RVV indexed load. The RVV indexed load instructions only
5840 // support the "unsigned unscaled" addressing mode; indices are implicitly
5841 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5842 // signed or scaled indexing is extended to the XLEN value type and scaled
5843 // accordingly.
5844 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
5845                                                SelectionDAG &DAG) const {
5846   SDLoc DL(Op);
5847   MVT VT = Op.getSimpleValueType();
5848 
5849   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5850   EVT MemVT = MemSD->getMemoryVT();
5851   MachineMemOperand *MMO = MemSD->getMemOperand();
5852   SDValue Chain = MemSD->getChain();
5853   SDValue BasePtr = MemSD->getBasePtr();
5854 
5855   ISD::LoadExtType LoadExtType;
5856   SDValue Index, Mask, PassThru, VL;
5857 
5858   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
5859     Index = VPGN->getIndex();
5860     Mask = VPGN->getMask();
5861     PassThru = DAG.getUNDEF(VT);
5862     VL = VPGN->getVectorLength();
5863     // VP doesn't support extending loads.
5864     LoadExtType = ISD::NON_EXTLOAD;
5865   } else {
5866     // Else it must be a MGATHER.
5867     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
5868     Index = MGN->getIndex();
5869     Mask = MGN->getMask();
5870     PassThru = MGN->getPassThru();
5871     LoadExtType = MGN->getExtensionType();
5872   }
5873 
5874   MVT IndexVT = Index.getSimpleValueType();
5875   MVT XLenVT = Subtarget.getXLenVT();
5876 
5877   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5878          "Unexpected VTs!");
5879   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5880   // Targets have to explicitly opt-in for extending vector loads.
5881   assert(LoadExtType == ISD::NON_EXTLOAD &&
5882          "Unexpected extending MGATHER/VP_GATHER");
5883   (void)LoadExtType;
5884 
5885   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5886   // the selection of the masked intrinsics doesn't do this for us.
5887   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5888 
5889   MVT ContainerVT = VT;
5890   if (VT.isFixedLengthVector()) {
5891     // We need to use the larger of the result and index type to determine the
5892     // scalable type to use so we don't increase LMUL for any operand/result.
5893     if (VT.bitsGE(IndexVT)) {
5894       ContainerVT = getContainerForFixedLengthVector(VT);
5895       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5896                                  ContainerVT.getVectorElementCount());
5897     } else {
5898       IndexVT = getContainerForFixedLengthVector(IndexVT);
5899       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
5900                                      IndexVT.getVectorElementCount());
5901     }
5902 
5903     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5904 
5905     if (!IsUnmasked) {
5906       MVT MaskVT =
5907           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5908       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5909       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5910     }
5911   }
5912 
5913   if (!VL)
5914     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5915 
5916   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
5917     IndexVT = IndexVT.changeVectorElementType(XLenVT);
5918     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
5919                                    VL);
5920     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
5921                         TrueMask, VL);
5922   }
5923 
5924   unsigned IntID =
5925       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
5926   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5927   if (IsUnmasked)
5928     Ops.push_back(DAG.getUNDEF(ContainerVT));
5929   else
5930     Ops.push_back(PassThru);
5931   Ops.push_back(BasePtr);
5932   Ops.push_back(Index);
5933   if (!IsUnmasked)
5934     Ops.push_back(Mask);
5935   Ops.push_back(VL);
5936   if (!IsUnmasked)
5937     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5938 
5939   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5940   SDValue Result =
5941       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5942   Chain = Result.getValue(1);
5943 
5944   if (VT.isFixedLengthVector())
5945     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5946 
5947   return DAG.getMergeValues({Result, Chain}, DL);
5948 }
5949 
5950 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
5951 // matched to a RVV indexed store. The RVV indexed store instructions only
5952 // support the "unsigned unscaled" addressing mode; indices are implicitly
5953 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5954 // signed or scaled indexing is extended to the XLEN value type and scaled
5955 // accordingly.
5956 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
5957                                                 SelectionDAG &DAG) const {
5958   SDLoc DL(Op);
5959   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5960   EVT MemVT = MemSD->getMemoryVT();
5961   MachineMemOperand *MMO = MemSD->getMemOperand();
5962   SDValue Chain = MemSD->getChain();
5963   SDValue BasePtr = MemSD->getBasePtr();
5964 
5965   bool IsTruncatingStore = false;
5966   SDValue Index, Mask, Val, VL;
5967 
5968   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
5969     Index = VPSN->getIndex();
5970     Mask = VPSN->getMask();
5971     Val = VPSN->getValue();
5972     VL = VPSN->getVectorLength();
5973     // VP doesn't support truncating stores.
5974     IsTruncatingStore = false;
5975   } else {
5976     // Else it must be a MSCATTER.
5977     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
5978     Index = MSN->getIndex();
5979     Mask = MSN->getMask();
5980     Val = MSN->getValue();
5981     IsTruncatingStore = MSN->isTruncatingStore();
5982   }
5983 
5984   MVT VT = Val.getSimpleValueType();
5985   MVT IndexVT = Index.getSimpleValueType();
5986   MVT XLenVT = Subtarget.getXLenVT();
5987 
5988   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5989          "Unexpected VTs!");
5990   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5991   // Targets have to explicitly opt-in for extending vector loads and
5992   // truncating vector stores.
5993   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
5994   (void)IsTruncatingStore;
5995 
5996   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5997   // the selection of the masked intrinsics doesn't do this for us.
5998   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5999 
6000   MVT ContainerVT = VT;
6001   if (VT.isFixedLengthVector()) {
6002     // We need to use the larger of the value and index type to determine the
6003     // scalable type to use so we don't increase LMUL for any operand/result.
6004     if (VT.bitsGE(IndexVT)) {
6005       ContainerVT = getContainerForFixedLengthVector(VT);
6006       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6007                                  ContainerVT.getVectorElementCount());
6008     } else {
6009       IndexVT = getContainerForFixedLengthVector(IndexVT);
6010       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
6011                                      IndexVT.getVectorElementCount());
6012     }
6013 
6014     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6015     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6016 
6017     if (!IsUnmasked) {
6018       MVT MaskVT =
6019           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6020       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6021     }
6022   }
6023 
6024   if (!VL)
6025     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6026 
6027   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6028     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6029     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6030                                    VL);
6031     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6032                         TrueMask, VL);
6033   }
6034 
6035   unsigned IntID =
6036       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6037   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6038   Ops.push_back(Val);
6039   Ops.push_back(BasePtr);
6040   Ops.push_back(Index);
6041   if (!IsUnmasked)
6042     Ops.push_back(Mask);
6043   Ops.push_back(VL);
6044 
6045   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6046                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6047 }
6048 
6049 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6050                                                SelectionDAG &DAG) const {
6051   const MVT XLenVT = Subtarget.getXLenVT();
6052   SDLoc DL(Op);
6053   SDValue Chain = Op->getOperand(0);
6054   SDValue SysRegNo = DAG.getTargetConstant(
6055       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6056   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6057   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6058 
6059   // Encoding used for rounding mode in RISCV differs from that used in
6060   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6061   // table, which consists of a sequence of 4-bit fields, each representing
6062   // corresponding FLT_ROUNDS mode.
6063   static const int Table =
6064       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6065       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6066       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6067       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6068       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6069 
6070   SDValue Shift =
6071       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6072   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6073                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6074   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6075                                DAG.getConstant(7, DL, XLenVT));
6076 
6077   return DAG.getMergeValues({Masked, Chain}, DL);
6078 }
6079 
6080 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6081                                                SelectionDAG &DAG) const {
6082   const MVT XLenVT = Subtarget.getXLenVT();
6083   SDLoc DL(Op);
6084   SDValue Chain = Op->getOperand(0);
6085   SDValue RMValue = Op->getOperand(1);
6086   SDValue SysRegNo = DAG.getTargetConstant(
6087       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6088 
6089   // Encoding used for rounding mode in RISCV differs from that used in
6090   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6091   // a table, which consists of a sequence of 4-bit fields, each representing
6092   // corresponding RISCV mode.
6093   static const unsigned Table =
6094       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6095       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6096       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6097       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6098       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6099 
6100   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6101                               DAG.getConstant(2, DL, XLenVT));
6102   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6103                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6104   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6105                         DAG.getConstant(0x7, DL, XLenVT));
6106   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6107                      RMValue);
6108 }
6109 
6110 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6111   switch (IntNo) {
6112   default:
6113     llvm_unreachable("Unexpected Intrinsic");
6114   case Intrinsic::riscv_grev:
6115     return RISCVISD::GREVW;
6116   case Intrinsic::riscv_gorc:
6117     return RISCVISD::GORCW;
6118   case Intrinsic::riscv_bcompress:
6119     return RISCVISD::BCOMPRESSW;
6120   case Intrinsic::riscv_bdecompress:
6121     return RISCVISD::BDECOMPRESSW;
6122   case Intrinsic::riscv_bfp:
6123     return RISCVISD::BFPW;
6124   case Intrinsic::riscv_fsl:
6125     return RISCVISD::FSLW;
6126   case Intrinsic::riscv_fsr:
6127     return RISCVISD::FSRW;
6128   }
6129 }
6130 
6131 // Converts the given intrinsic to a i64 operation with any extension.
6132 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6133                                          unsigned IntNo) {
6134   SDLoc DL(N);
6135   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6136   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6137   SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6138   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2);
6139   // ReplaceNodeResults requires we maintain the same type for the return value.
6140   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6141 }
6142 
6143 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6144 // form of the given Opcode.
6145 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6146   switch (Opcode) {
6147   default:
6148     llvm_unreachable("Unexpected opcode");
6149   case ISD::SHL:
6150     return RISCVISD::SLLW;
6151   case ISD::SRA:
6152     return RISCVISD::SRAW;
6153   case ISD::SRL:
6154     return RISCVISD::SRLW;
6155   case ISD::SDIV:
6156     return RISCVISD::DIVW;
6157   case ISD::UDIV:
6158     return RISCVISD::DIVUW;
6159   case ISD::UREM:
6160     return RISCVISD::REMUW;
6161   case ISD::ROTL:
6162     return RISCVISD::ROLW;
6163   case ISD::ROTR:
6164     return RISCVISD::RORW;
6165   case RISCVISD::GREV:
6166     return RISCVISD::GREVW;
6167   case RISCVISD::GORC:
6168     return RISCVISD::GORCW;
6169   }
6170 }
6171 
6172 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6173 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6174 // otherwise be promoted to i64, making it difficult to select the
6175 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6176 // type i8/i16/i32 is lost.
6177 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6178                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6179   SDLoc DL(N);
6180   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6181   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6182   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6183   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6184   // ReplaceNodeResults requires we maintain the same type for the return value.
6185   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6186 }
6187 
6188 // Converts the given 32-bit operation to a i64 operation with signed extension
6189 // semantic to reduce the signed extension instructions.
6190 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6191   SDLoc DL(N);
6192   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6193   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6194   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6195   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6196                                DAG.getValueType(MVT::i32));
6197   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6198 }
6199 
6200 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6201                                              SmallVectorImpl<SDValue> &Results,
6202                                              SelectionDAG &DAG) const {
6203   SDLoc DL(N);
6204   switch (N->getOpcode()) {
6205   default:
6206     llvm_unreachable("Don't know how to custom type legalize this operation!");
6207   case ISD::STRICT_FP_TO_SINT:
6208   case ISD::STRICT_FP_TO_UINT:
6209   case ISD::FP_TO_SINT:
6210   case ISD::FP_TO_UINT: {
6211     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6212            "Unexpected custom legalisation");
6213     bool IsStrict = N->isStrictFPOpcode();
6214     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6215                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6216     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6217     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6218         TargetLowering::TypeSoftenFloat) {
6219       if (!isTypeLegal(Op0.getValueType()))
6220         return;
6221       if (IsStrict) {
6222         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6223                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6224         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6225         SDValue Res = DAG.getNode(
6226             Opc, DL, VTs, N->getOperand(0), Op0,
6227             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6228         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6229         Results.push_back(Res.getValue(1));
6230         return;
6231       }
6232       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6233       SDValue Res =
6234           DAG.getNode(Opc, DL, MVT::i64, Op0,
6235                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6236       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6237       return;
6238     }
6239     // If the FP type needs to be softened, emit a library call using the 'si'
6240     // version. If we left it to default legalization we'd end up with 'di'. If
6241     // the FP type doesn't need to be softened just let generic type
6242     // legalization promote the result type.
6243     RTLIB::Libcall LC;
6244     if (IsSigned)
6245       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6246     else
6247       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6248     MakeLibCallOptions CallOptions;
6249     EVT OpVT = Op0.getValueType();
6250     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6251     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6252     SDValue Result;
6253     std::tie(Result, Chain) =
6254         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6255     Results.push_back(Result);
6256     if (IsStrict)
6257       Results.push_back(Chain);
6258     break;
6259   }
6260   case ISD::READCYCLECOUNTER: {
6261     assert(!Subtarget.is64Bit() &&
6262            "READCYCLECOUNTER only has custom type legalization on riscv32");
6263 
6264     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6265     SDValue RCW =
6266         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6267 
6268     Results.push_back(
6269         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6270     Results.push_back(RCW.getValue(2));
6271     break;
6272   }
6273   case ISD::MUL: {
6274     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6275     unsigned XLen = Subtarget.getXLen();
6276     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6277     if (Size > XLen) {
6278       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6279       SDValue LHS = N->getOperand(0);
6280       SDValue RHS = N->getOperand(1);
6281       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6282 
6283       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6284       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6285       // We need exactly one side to be unsigned.
6286       if (LHSIsU == RHSIsU)
6287         return;
6288 
6289       auto MakeMULPair = [&](SDValue S, SDValue U) {
6290         MVT XLenVT = Subtarget.getXLenVT();
6291         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6292         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6293         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6294         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6295         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6296       };
6297 
6298       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6299       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6300 
6301       // The other operand should be signed, but still prefer MULH when
6302       // possible.
6303       if (RHSIsU && LHSIsS && !RHSIsS)
6304         Results.push_back(MakeMULPair(LHS, RHS));
6305       else if (LHSIsU && RHSIsS && !LHSIsS)
6306         Results.push_back(MakeMULPair(RHS, LHS));
6307 
6308       return;
6309     }
6310     LLVM_FALLTHROUGH;
6311   }
6312   case ISD::ADD:
6313   case ISD::SUB:
6314     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6315            "Unexpected custom legalisation");
6316     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6317     break;
6318   case ISD::SHL:
6319   case ISD::SRA:
6320   case ISD::SRL:
6321     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6322            "Unexpected custom legalisation");
6323     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6324       Results.push_back(customLegalizeToWOp(N, DAG));
6325       break;
6326     }
6327 
6328     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6329     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6330     // shift amount.
6331     if (N->getOpcode() == ISD::SHL) {
6332       SDLoc DL(N);
6333       SDValue NewOp0 =
6334           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6335       SDValue NewOp1 =
6336           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6337       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6338       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6339                                    DAG.getValueType(MVT::i32));
6340       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6341     }
6342 
6343     break;
6344   case ISD::ROTL:
6345   case ISD::ROTR:
6346     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6347            "Unexpected custom legalisation");
6348     Results.push_back(customLegalizeToWOp(N, DAG));
6349     break;
6350   case ISD::CTTZ:
6351   case ISD::CTTZ_ZERO_UNDEF:
6352   case ISD::CTLZ:
6353   case ISD::CTLZ_ZERO_UNDEF: {
6354     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6355            "Unexpected custom legalisation");
6356 
6357     SDValue NewOp0 =
6358         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6359     bool IsCTZ =
6360         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6361     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6362     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6363     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6364     return;
6365   }
6366   case ISD::SDIV:
6367   case ISD::UDIV:
6368   case ISD::UREM: {
6369     MVT VT = N->getSimpleValueType(0);
6370     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6371            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6372            "Unexpected custom legalisation");
6373     // Don't promote division/remainder by constant since we should expand those
6374     // to multiply by magic constant.
6375     // FIXME: What if the expansion is disabled for minsize.
6376     if (N->getOperand(1).getOpcode() == ISD::Constant)
6377       return;
6378 
6379     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6380     // the upper 32 bits. For other types we need to sign or zero extend
6381     // based on the opcode.
6382     unsigned ExtOpc = ISD::ANY_EXTEND;
6383     if (VT != MVT::i32)
6384       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6385                                            : ISD::ZERO_EXTEND;
6386 
6387     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6388     break;
6389   }
6390   case ISD::UADDO:
6391   case ISD::USUBO: {
6392     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6393            "Unexpected custom legalisation");
6394     bool IsAdd = N->getOpcode() == ISD::UADDO;
6395     // Create an ADDW or SUBW.
6396     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6397     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6398     SDValue Res =
6399         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6400     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6401                       DAG.getValueType(MVT::i32));
6402 
6403     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
6404     // Since the inputs are sign extended from i32, this is equivalent to
6405     // comparing the lower 32 bits.
6406     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6407     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6408                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
6409 
6410     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6411     Results.push_back(Overflow);
6412     return;
6413   }
6414   case ISD::UADDSAT:
6415   case ISD::USUBSAT: {
6416     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6417            "Unexpected custom legalisation");
6418     if (Subtarget.hasStdExtZbb()) {
6419       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6420       // sign extend allows overflow of the lower 32 bits to be detected on
6421       // the promoted size.
6422       SDValue LHS =
6423           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6424       SDValue RHS =
6425           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6426       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6427       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6428       return;
6429     }
6430 
6431     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6432     // promotion for UADDO/USUBO.
6433     Results.push_back(expandAddSubSat(N, DAG));
6434     return;
6435   }
6436   case ISD::BITCAST: {
6437     EVT VT = N->getValueType(0);
6438     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6439     SDValue Op0 = N->getOperand(0);
6440     EVT Op0VT = Op0.getValueType();
6441     MVT XLenVT = Subtarget.getXLenVT();
6442     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6443       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6444       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6445     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6446                Subtarget.hasStdExtF()) {
6447       SDValue FPConv =
6448           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6449       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6450     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6451                isTypeLegal(Op0VT)) {
6452       // Custom-legalize bitcasts from fixed-length vector types to illegal
6453       // scalar types in order to improve codegen. Bitcast the vector to a
6454       // one-element vector type whose element type is the same as the result
6455       // type, and extract the first element.
6456       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6457       if (isTypeLegal(BVT)) {
6458         SDValue BVec = DAG.getBitcast(BVT, Op0);
6459         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6460                                       DAG.getConstant(0, DL, XLenVT)));
6461       }
6462     }
6463     break;
6464   }
6465   case RISCVISD::GREV:
6466   case RISCVISD::GORC: {
6467     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6468            "Unexpected custom legalisation");
6469     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6470     // This is similar to customLegalizeToWOp, except that we pass the second
6471     // operand (a TargetConstant) straight through: it is already of type
6472     // XLenVT.
6473     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6474     SDValue NewOp0 =
6475         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6476     SDValue NewOp1 =
6477         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6478     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6479     // ReplaceNodeResults requires we maintain the same type for the return
6480     // value.
6481     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6482     break;
6483   }
6484   case RISCVISD::SHFL: {
6485     // There is no SHFLIW instruction, but we can just promote the operation.
6486     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6487            "Unexpected custom legalisation");
6488     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6489     SDValue NewOp0 =
6490         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6491     SDValue NewOp1 =
6492         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6493     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
6494     // ReplaceNodeResults requires we maintain the same type for the return
6495     // value.
6496     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6497     break;
6498   }
6499   case ISD::BSWAP:
6500   case ISD::BITREVERSE: {
6501     MVT VT = N->getSimpleValueType(0);
6502     MVT XLenVT = Subtarget.getXLenVT();
6503     assert((VT == MVT::i8 || VT == MVT::i16 ||
6504             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6505            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6506     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6507     unsigned Imm = VT.getSizeInBits() - 1;
6508     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6509     if (N->getOpcode() == ISD::BSWAP)
6510       Imm &= ~0x7U;
6511     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
6512     SDValue GREVI =
6513         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
6514     // ReplaceNodeResults requires we maintain the same type for the return
6515     // value.
6516     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6517     break;
6518   }
6519   case ISD::FSHL:
6520   case ISD::FSHR: {
6521     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6522            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6523     SDValue NewOp0 =
6524         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6525     SDValue NewOp1 =
6526         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6527     SDValue NewShAmt =
6528         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6529     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6530     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
6531     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
6532                            DAG.getConstant(0x1f, DL, MVT::i64));
6533     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
6534     // instruction use different orders. fshl will return its first operand for
6535     // shift of zero, fshr will return its second operand. fsl and fsr both
6536     // return rs1 so the ISD nodes need to have different operand orders.
6537     // Shift amount is in rs2.
6538     unsigned Opc = RISCVISD::FSLW;
6539     if (N->getOpcode() == ISD::FSHR) {
6540       std::swap(NewOp0, NewOp1);
6541       Opc = RISCVISD::FSRW;
6542     }
6543     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
6544     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6545     break;
6546   }
6547   case ISD::EXTRACT_VECTOR_ELT: {
6548     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
6549     // type is illegal (currently only vXi64 RV32).
6550     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
6551     // transferred to the destination register. We issue two of these from the
6552     // upper- and lower- halves of the SEW-bit vector element, slid down to the
6553     // first element.
6554     SDValue Vec = N->getOperand(0);
6555     SDValue Idx = N->getOperand(1);
6556 
6557     // The vector type hasn't been legalized yet so we can't issue target
6558     // specific nodes if it needs legalization.
6559     // FIXME: We would manually legalize if it's important.
6560     if (!isTypeLegal(Vec.getValueType()))
6561       return;
6562 
6563     MVT VecVT = Vec.getSimpleValueType();
6564 
6565     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
6566            VecVT.getVectorElementType() == MVT::i64 &&
6567            "Unexpected EXTRACT_VECTOR_ELT legalization");
6568 
6569     // If this is a fixed vector, we need to convert it to a scalable vector.
6570     MVT ContainerVT = VecVT;
6571     if (VecVT.isFixedLengthVector()) {
6572       ContainerVT = getContainerForFixedLengthVector(VecVT);
6573       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6574     }
6575 
6576     MVT XLenVT = Subtarget.getXLenVT();
6577 
6578     // Use a VL of 1 to avoid processing more elements than we need.
6579     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6580     SDValue VL = DAG.getConstant(1, DL, XLenVT);
6581     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6582 
6583     // Unless the index is known to be 0, we must slide the vector down to get
6584     // the desired element into index 0.
6585     if (!isNullConstant(Idx)) {
6586       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
6587                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
6588     }
6589 
6590     // Extract the lower XLEN bits of the correct vector element.
6591     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6592 
6593     // To extract the upper XLEN bits of the vector element, shift the first
6594     // element right by 32 bits and re-extract the lower XLEN bits.
6595     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6596                                      DAG.getConstant(32, DL, XLenVT), VL);
6597     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
6598                                  ThirtyTwoV, Mask, VL);
6599 
6600     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6601 
6602     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6603     break;
6604   }
6605   case ISD::INTRINSIC_WO_CHAIN: {
6606     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6607     switch (IntNo) {
6608     default:
6609       llvm_unreachable(
6610           "Don't know how to custom type legalize this intrinsic!");
6611     case Intrinsic::riscv_grev:
6612     case Intrinsic::riscv_gorc:
6613     case Intrinsic::riscv_bcompress:
6614     case Intrinsic::riscv_bdecompress:
6615     case Intrinsic::riscv_bfp: {
6616       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6617              "Unexpected custom legalisation");
6618       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
6619       break;
6620     }
6621     case Intrinsic::riscv_fsl:
6622     case Intrinsic::riscv_fsr: {
6623       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6624              "Unexpected custom legalisation");
6625       SDValue NewOp1 =
6626           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6627       SDValue NewOp2 =
6628           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6629       SDValue NewOp3 =
6630           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3));
6631       unsigned Opc = getRISCVWOpcodeByIntr(IntNo);
6632       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3);
6633       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6634       break;
6635     }
6636     case Intrinsic::riscv_orc_b: {
6637       // Lower to the GORCI encoding for orc.b with the operand extended.
6638       SDValue NewOp =
6639           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6640       // If Zbp is enabled, use GORCIW which will sign extend the result.
6641       unsigned Opc =
6642           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
6643       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
6644                                 DAG.getConstant(7, DL, MVT::i64));
6645       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6646       return;
6647     }
6648     case Intrinsic::riscv_shfl:
6649     case Intrinsic::riscv_unshfl: {
6650       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6651              "Unexpected custom legalisation");
6652       SDValue NewOp1 =
6653           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6654       SDValue NewOp2 =
6655           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6656       unsigned Opc =
6657           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
6658       // There is no (UN)SHFLIW. If the control word is a constant, we can use
6659       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
6660       // will be shuffled the same way as the lower 32 bit half, but the two
6661       // halves won't cross.
6662       if (isa<ConstantSDNode>(NewOp2)) {
6663         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6664                              DAG.getConstant(0xf, DL, MVT::i64));
6665         Opc =
6666             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
6667       }
6668       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6669       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6670       break;
6671     }
6672     case Intrinsic::riscv_vmv_x_s: {
6673       EVT VT = N->getValueType(0);
6674       MVT XLenVT = Subtarget.getXLenVT();
6675       if (VT.bitsLT(XLenVT)) {
6676         // Simple case just extract using vmv.x.s and truncate.
6677         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
6678                                       Subtarget.getXLenVT(), N->getOperand(1));
6679         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
6680         return;
6681       }
6682 
6683       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
6684              "Unexpected custom legalization");
6685 
6686       // We need to do the move in two steps.
6687       SDValue Vec = N->getOperand(1);
6688       MVT VecVT = Vec.getSimpleValueType();
6689 
6690       // First extract the lower XLEN bits of the element.
6691       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6692 
6693       // To extract the upper XLEN bits of the vector element, shift the first
6694       // element right by 32 bits and re-extract the lower XLEN bits.
6695       SDValue VL = DAG.getConstant(1, DL, XLenVT);
6696       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
6697       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6698       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
6699                                        DAG.getConstant(32, DL, XLenVT), VL);
6700       SDValue LShr32 =
6701           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
6702       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6703 
6704       Results.push_back(
6705           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6706       break;
6707     }
6708     }
6709     break;
6710   }
6711   case ISD::VECREDUCE_ADD:
6712   case ISD::VECREDUCE_AND:
6713   case ISD::VECREDUCE_OR:
6714   case ISD::VECREDUCE_XOR:
6715   case ISD::VECREDUCE_SMAX:
6716   case ISD::VECREDUCE_UMAX:
6717   case ISD::VECREDUCE_SMIN:
6718   case ISD::VECREDUCE_UMIN:
6719     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
6720       Results.push_back(V);
6721     break;
6722   case ISD::VP_REDUCE_ADD:
6723   case ISD::VP_REDUCE_AND:
6724   case ISD::VP_REDUCE_OR:
6725   case ISD::VP_REDUCE_XOR:
6726   case ISD::VP_REDUCE_SMAX:
6727   case ISD::VP_REDUCE_UMAX:
6728   case ISD::VP_REDUCE_SMIN:
6729   case ISD::VP_REDUCE_UMIN:
6730     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
6731       Results.push_back(V);
6732     break;
6733   case ISD::FLT_ROUNDS_: {
6734     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
6735     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
6736     Results.push_back(Res.getValue(0));
6737     Results.push_back(Res.getValue(1));
6738     break;
6739   }
6740   }
6741 }
6742 
6743 // A structure to hold one of the bit-manipulation patterns below. Together, a
6744 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
6745 //   (or (and (shl x, 1), 0xAAAAAAAA),
6746 //       (and (srl x, 1), 0x55555555))
6747 struct RISCVBitmanipPat {
6748   SDValue Op;
6749   unsigned ShAmt;
6750   bool IsSHL;
6751 
6752   bool formsPairWith(const RISCVBitmanipPat &Other) const {
6753     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
6754   }
6755 };
6756 
6757 // Matches patterns of the form
6758 //   (and (shl x, C2), (C1 << C2))
6759 //   (and (srl x, C2), C1)
6760 //   (shl (and x, C1), C2)
6761 //   (srl (and x, (C1 << C2)), C2)
6762 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
6763 // The expected masks for each shift amount are specified in BitmanipMasks where
6764 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
6765 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
6766 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
6767 // XLen is 64.
6768 static Optional<RISCVBitmanipPat>
6769 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
6770   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
6771          "Unexpected number of masks");
6772   Optional<uint64_t> Mask;
6773   // Optionally consume a mask around the shift operation.
6774   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
6775     Mask = Op.getConstantOperandVal(1);
6776     Op = Op.getOperand(0);
6777   }
6778   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
6779     return None;
6780   bool IsSHL = Op.getOpcode() == ISD::SHL;
6781 
6782   if (!isa<ConstantSDNode>(Op.getOperand(1)))
6783     return None;
6784   uint64_t ShAmt = Op.getConstantOperandVal(1);
6785 
6786   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6787   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
6788     return None;
6789   // If we don't have enough masks for 64 bit, then we must be trying to
6790   // match SHFL so we're only allowed to shift 1/4 of the width.
6791   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
6792     return None;
6793 
6794   SDValue Src = Op.getOperand(0);
6795 
6796   // The expected mask is shifted left when the AND is found around SHL
6797   // patterns.
6798   //   ((x >> 1) & 0x55555555)
6799   //   ((x << 1) & 0xAAAAAAAA)
6800   bool SHLExpMask = IsSHL;
6801 
6802   if (!Mask) {
6803     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
6804     // the mask is all ones: consume that now.
6805     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
6806       Mask = Src.getConstantOperandVal(1);
6807       Src = Src.getOperand(0);
6808       // The expected mask is now in fact shifted left for SRL, so reverse the
6809       // decision.
6810       //   ((x & 0xAAAAAAAA) >> 1)
6811       //   ((x & 0x55555555) << 1)
6812       SHLExpMask = !SHLExpMask;
6813     } else {
6814       // Use a default shifted mask of all-ones if there's no AND, truncated
6815       // down to the expected width. This simplifies the logic later on.
6816       Mask = maskTrailingOnes<uint64_t>(Width);
6817       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
6818     }
6819   }
6820 
6821   unsigned MaskIdx = Log2_32(ShAmt);
6822   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6823 
6824   if (SHLExpMask)
6825     ExpMask <<= ShAmt;
6826 
6827   if (Mask != ExpMask)
6828     return None;
6829 
6830   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
6831 }
6832 
6833 // Matches any of the following bit-manipulation patterns:
6834 //   (and (shl x, 1), (0x55555555 << 1))
6835 //   (and (srl x, 1), 0x55555555)
6836 //   (shl (and x, 0x55555555), 1)
6837 //   (srl (and x, (0x55555555 << 1)), 1)
6838 // where the shift amount and mask may vary thus:
6839 //   [1]  = 0x55555555 / 0xAAAAAAAA
6840 //   [2]  = 0x33333333 / 0xCCCCCCCC
6841 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
6842 //   [8]  = 0x00FF00FF / 0xFF00FF00
6843 //   [16] = 0x0000FFFF / 0xFFFFFFFF
6844 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
6845 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
6846   // These are the unshifted masks which we use to match bit-manipulation
6847   // patterns. They may be shifted left in certain circumstances.
6848   static const uint64_t BitmanipMasks[] = {
6849       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
6850       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
6851 
6852   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6853 }
6854 
6855 // Match the following pattern as a GREVI(W) operation
6856 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
6857 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
6858                                const RISCVSubtarget &Subtarget) {
6859   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6860   EVT VT = Op.getValueType();
6861 
6862   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6863     auto LHS = matchGREVIPat(Op.getOperand(0));
6864     auto RHS = matchGREVIPat(Op.getOperand(1));
6865     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
6866       SDLoc DL(Op);
6867       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
6868                          DAG.getConstant(LHS->ShAmt, DL, VT));
6869     }
6870   }
6871   return SDValue();
6872 }
6873 
6874 // Matches any the following pattern as a GORCI(W) operation
6875 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
6876 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
6877 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
6878 // Note that with the variant of 3.,
6879 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
6880 // the inner pattern will first be matched as GREVI and then the outer
6881 // pattern will be matched to GORC via the first rule above.
6882 // 4.  (or (rotl/rotr x, bitwidth/2), x)
6883 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
6884                                const RISCVSubtarget &Subtarget) {
6885   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6886   EVT VT = Op.getValueType();
6887 
6888   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6889     SDLoc DL(Op);
6890     SDValue Op0 = Op.getOperand(0);
6891     SDValue Op1 = Op.getOperand(1);
6892 
6893     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
6894       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
6895           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
6896           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
6897         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
6898       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
6899       if ((Reverse.getOpcode() == ISD::ROTL ||
6900            Reverse.getOpcode() == ISD::ROTR) &&
6901           Reverse.getOperand(0) == X &&
6902           isa<ConstantSDNode>(Reverse.getOperand(1))) {
6903         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
6904         if (RotAmt == (VT.getSizeInBits() / 2))
6905           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
6906                              DAG.getConstant(RotAmt, DL, VT));
6907       }
6908       return SDValue();
6909     };
6910 
6911     // Check for either commutable permutation of (or (GREVI x, shamt), x)
6912     if (SDValue V = MatchOROfReverse(Op0, Op1))
6913       return V;
6914     if (SDValue V = MatchOROfReverse(Op1, Op0))
6915       return V;
6916 
6917     // OR is commutable so canonicalize its OR operand to the left
6918     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
6919       std::swap(Op0, Op1);
6920     if (Op0.getOpcode() != ISD::OR)
6921       return SDValue();
6922     SDValue OrOp0 = Op0.getOperand(0);
6923     SDValue OrOp1 = Op0.getOperand(1);
6924     auto LHS = matchGREVIPat(OrOp0);
6925     // OR is commutable so swap the operands and try again: x might have been
6926     // on the left
6927     if (!LHS) {
6928       std::swap(OrOp0, OrOp1);
6929       LHS = matchGREVIPat(OrOp0);
6930     }
6931     auto RHS = matchGREVIPat(Op1);
6932     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
6933       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
6934                          DAG.getConstant(LHS->ShAmt, DL, VT));
6935     }
6936   }
6937   return SDValue();
6938 }
6939 
6940 // Matches any of the following bit-manipulation patterns:
6941 //   (and (shl x, 1), (0x22222222 << 1))
6942 //   (and (srl x, 1), 0x22222222)
6943 //   (shl (and x, 0x22222222), 1)
6944 //   (srl (and x, (0x22222222 << 1)), 1)
6945 // where the shift amount and mask may vary thus:
6946 //   [1]  = 0x22222222 / 0x44444444
6947 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
6948 //   [4]  = 0x00F000F0 / 0x0F000F00
6949 //   [8]  = 0x0000FF00 / 0x00FF0000
6950 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
6951 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
6952   // These are the unshifted masks which we use to match bit-manipulation
6953   // patterns. They may be shifted left in certain circumstances.
6954   static const uint64_t BitmanipMasks[] = {
6955       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
6956       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
6957 
6958   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6959 }
6960 
6961 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
6962 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
6963                                const RISCVSubtarget &Subtarget) {
6964   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6965   EVT VT = Op.getValueType();
6966 
6967   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
6968     return SDValue();
6969 
6970   SDValue Op0 = Op.getOperand(0);
6971   SDValue Op1 = Op.getOperand(1);
6972 
6973   // Or is commutable so canonicalize the second OR to the LHS.
6974   if (Op0.getOpcode() != ISD::OR)
6975     std::swap(Op0, Op1);
6976   if (Op0.getOpcode() != ISD::OR)
6977     return SDValue();
6978 
6979   // We found an inner OR, so our operands are the operands of the inner OR
6980   // and the other operand of the outer OR.
6981   SDValue A = Op0.getOperand(0);
6982   SDValue B = Op0.getOperand(1);
6983   SDValue C = Op1;
6984 
6985   auto Match1 = matchSHFLPat(A);
6986   auto Match2 = matchSHFLPat(B);
6987 
6988   // If neither matched, we failed.
6989   if (!Match1 && !Match2)
6990     return SDValue();
6991 
6992   // We had at least one match. if one failed, try the remaining C operand.
6993   if (!Match1) {
6994     std::swap(A, C);
6995     Match1 = matchSHFLPat(A);
6996     if (!Match1)
6997       return SDValue();
6998   } else if (!Match2) {
6999     std::swap(B, C);
7000     Match2 = matchSHFLPat(B);
7001     if (!Match2)
7002       return SDValue();
7003   }
7004   assert(Match1 && Match2);
7005 
7006   // Make sure our matches pair up.
7007   if (!Match1->formsPairWith(*Match2))
7008     return SDValue();
7009 
7010   // All the remains is to make sure C is an AND with the same input, that masks
7011   // out the bits that are being shuffled.
7012   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7013       C.getOperand(0) != Match1->Op)
7014     return SDValue();
7015 
7016   uint64_t Mask = C.getConstantOperandVal(1);
7017 
7018   static const uint64_t BitmanipMasks[] = {
7019       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7020       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7021   };
7022 
7023   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7024   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7025   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7026 
7027   if (Mask != ExpMask)
7028     return SDValue();
7029 
7030   SDLoc DL(Op);
7031   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7032                      DAG.getConstant(Match1->ShAmt, DL, VT));
7033 }
7034 
7035 // Optimize (add (shl x, c0), (shl y, c1)) ->
7036 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7037 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7038                                   const RISCVSubtarget &Subtarget) {
7039   // Perform this optimization only in the zba extension.
7040   if (!Subtarget.hasStdExtZba())
7041     return SDValue();
7042 
7043   // Skip for vector types and larger types.
7044   EVT VT = N->getValueType(0);
7045   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7046     return SDValue();
7047 
7048   // The two operand nodes must be SHL and have no other use.
7049   SDValue N0 = N->getOperand(0);
7050   SDValue N1 = N->getOperand(1);
7051   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7052       !N0->hasOneUse() || !N1->hasOneUse())
7053     return SDValue();
7054 
7055   // Check c0 and c1.
7056   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7057   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7058   if (!N0C || !N1C)
7059     return SDValue();
7060   int64_t C0 = N0C->getSExtValue();
7061   int64_t C1 = N1C->getSExtValue();
7062   if (C0 <= 0 || C1 <= 0)
7063     return SDValue();
7064 
7065   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7066   int64_t Bits = std::min(C0, C1);
7067   int64_t Diff = std::abs(C0 - C1);
7068   if (Diff != 1 && Diff != 2 && Diff != 3)
7069     return SDValue();
7070 
7071   // Build nodes.
7072   SDLoc DL(N);
7073   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7074   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7075   SDValue NA0 =
7076       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7077   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7078   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7079 }
7080 
7081 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7082 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7083 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7084 // not undo itself, but they are redundant.
7085 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7086   SDValue Src = N->getOperand(0);
7087 
7088   if (Src.getOpcode() != N->getOpcode())
7089     return SDValue();
7090 
7091   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7092       !isa<ConstantSDNode>(Src.getOperand(1)))
7093     return SDValue();
7094 
7095   unsigned ShAmt1 = N->getConstantOperandVal(1);
7096   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7097   Src = Src.getOperand(0);
7098 
7099   unsigned CombinedShAmt;
7100   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
7101     CombinedShAmt = ShAmt1 | ShAmt2;
7102   else
7103     CombinedShAmt = ShAmt1 ^ ShAmt2;
7104 
7105   if (CombinedShAmt == 0)
7106     return Src;
7107 
7108   SDLoc DL(N);
7109   return DAG.getNode(
7110       N->getOpcode(), DL, N->getValueType(0), Src,
7111       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7112 }
7113 
7114 // Combine a constant select operand into its use:
7115 //
7116 // (and (select cond, -1, c), x)
7117 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7118 // (or  (select cond, 0, c), x)
7119 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7120 // (xor (select cond, 0, c), x)
7121 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7122 // (add (select cond, 0, c), x)
7123 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7124 // (sub x, (select cond, 0, c))
7125 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7126 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7127                                    SelectionDAG &DAG, bool AllOnes) {
7128   EVT VT = N->getValueType(0);
7129 
7130   // Skip vectors.
7131   if (VT.isVector())
7132     return SDValue();
7133 
7134   if ((Slct.getOpcode() != ISD::SELECT &&
7135        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7136       !Slct.hasOneUse())
7137     return SDValue();
7138 
7139   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7140     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7141   };
7142 
7143   bool SwapSelectOps;
7144   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7145   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7146   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7147   SDValue NonConstantVal;
7148   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7149     SwapSelectOps = false;
7150     NonConstantVal = FalseVal;
7151   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7152     SwapSelectOps = true;
7153     NonConstantVal = TrueVal;
7154   } else
7155     return SDValue();
7156 
7157   // Slct is now know to be the desired identity constant when CC is true.
7158   TrueVal = OtherOp;
7159   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7160   // Unless SwapSelectOps says the condition should be false.
7161   if (SwapSelectOps)
7162     std::swap(TrueVal, FalseVal);
7163 
7164   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7165     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7166                        {Slct.getOperand(0), Slct.getOperand(1),
7167                         Slct.getOperand(2), TrueVal, FalseVal});
7168 
7169   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7170                      {Slct.getOperand(0), TrueVal, FalseVal});
7171 }
7172 
7173 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7174 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7175                                               bool AllOnes) {
7176   SDValue N0 = N->getOperand(0);
7177   SDValue N1 = N->getOperand(1);
7178   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7179     return Result;
7180   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7181     return Result;
7182   return SDValue();
7183 }
7184 
7185 // Transform (add (mul x, c0), c1) ->
7186 //           (add (mul (add x, c1/c0), c0), c1%c0).
7187 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7188 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7189 // to an infinite loop in DAGCombine if transformed.
7190 // Or transform (add (mul x, c0), c1) ->
7191 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7192 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7193 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7194 // lead to an infinite loop in DAGCombine if transformed.
7195 // Or transform (add (mul x, c0), c1) ->
7196 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7197 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7198 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7199 // lead to an infinite loop in DAGCombine if transformed.
7200 // Or transform (add (mul x, c0), c1) ->
7201 //              (mul (add x, c1/c0), c0).
7202 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7203 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7204                                      const RISCVSubtarget &Subtarget) {
7205   // Skip for vector types and larger types.
7206   EVT VT = N->getValueType(0);
7207   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7208     return SDValue();
7209   // The first operand node must be a MUL and has no other use.
7210   SDValue N0 = N->getOperand(0);
7211   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7212     return SDValue();
7213   // Check if c0 and c1 match above conditions.
7214   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7215   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7216   if (!N0C || !N1C)
7217     return SDValue();
7218   int64_t C0 = N0C->getSExtValue();
7219   int64_t C1 = N1C->getSExtValue();
7220   int64_t CA, CB;
7221   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7222     return SDValue();
7223   // Search for proper CA (non-zero) and CB that both are simm12.
7224   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7225       !isInt<12>(C0 * (C1 / C0))) {
7226     CA = C1 / C0;
7227     CB = C1 % C0;
7228   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7229              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7230     CA = C1 / C0 + 1;
7231     CB = C1 % C0 - C0;
7232   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7233              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7234     CA = C1 / C0 - 1;
7235     CB = C1 % C0 + C0;
7236   } else
7237     return SDValue();
7238   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7239   SDLoc DL(N);
7240   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7241                              DAG.getConstant(CA, DL, VT));
7242   SDValue New1 =
7243       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7244   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7245 }
7246 
7247 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7248                                  const RISCVSubtarget &Subtarget) {
7249   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7250     return V;
7251   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7252     return V;
7253   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7254   //      (select lhs, rhs, cc, x, (add x, y))
7255   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7256 }
7257 
7258 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7259   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7260   //      (select lhs, rhs, cc, x, (sub x, y))
7261   SDValue N0 = N->getOperand(0);
7262   SDValue N1 = N->getOperand(1);
7263   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7264 }
7265 
7266 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
7267   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7268   //      (select lhs, rhs, cc, x, (and x, y))
7269   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7270 }
7271 
7272 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7273                                 const RISCVSubtarget &Subtarget) {
7274   if (Subtarget.hasStdExtZbp()) {
7275     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7276       return GREV;
7277     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7278       return GORC;
7279     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
7280       return SHFL;
7281   }
7282 
7283   // fold (or (select cond, 0, y), x) ->
7284   //      (select cond, x, (or x, y))
7285   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7286 }
7287 
7288 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
7289   // fold (xor (select cond, 0, y), x) ->
7290   //      (select cond, x, (xor x, y))
7291   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7292 }
7293 
7294 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
7295 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
7296 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
7297 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
7298 // ADDW/SUBW/MULW.
7299 static SDValue performANY_EXTENDCombine(SDNode *N,
7300                                         TargetLowering::DAGCombinerInfo &DCI,
7301                                         const RISCVSubtarget &Subtarget) {
7302   if (!Subtarget.is64Bit())
7303     return SDValue();
7304 
7305   SelectionDAG &DAG = DCI.DAG;
7306 
7307   SDValue Src = N->getOperand(0);
7308   EVT VT = N->getValueType(0);
7309   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
7310     return SDValue();
7311 
7312   // The opcode must be one that can implicitly sign_extend.
7313   // FIXME: Additional opcodes.
7314   switch (Src.getOpcode()) {
7315   default:
7316     return SDValue();
7317   case ISD::MUL:
7318     if (!Subtarget.hasStdExtM())
7319       return SDValue();
7320     LLVM_FALLTHROUGH;
7321   case ISD::ADD:
7322   case ISD::SUB:
7323     break;
7324   }
7325 
7326   // Only handle cases where the result is used by a CopyToReg. That likely
7327   // means the value is a liveout of the basic block. This helps prevent
7328   // infinite combine loops like PR51206.
7329   if (none_of(N->uses(),
7330               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
7331     return SDValue();
7332 
7333   SmallVector<SDNode *, 4> SetCCs;
7334   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
7335                             UE = Src.getNode()->use_end();
7336        UI != UE; ++UI) {
7337     SDNode *User = *UI;
7338     if (User == N)
7339       continue;
7340     if (UI.getUse().getResNo() != Src.getResNo())
7341       continue;
7342     // All i32 setccs are legalized by sign extending operands.
7343     if (User->getOpcode() == ISD::SETCC) {
7344       SetCCs.push_back(User);
7345       continue;
7346     }
7347     // We don't know if we can extend this user.
7348     break;
7349   }
7350 
7351   // If we don't have any SetCCs, this isn't worthwhile.
7352   if (SetCCs.empty())
7353     return SDValue();
7354 
7355   SDLoc DL(N);
7356   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
7357   DCI.CombineTo(N, SExt);
7358 
7359   // Promote all the setccs.
7360   for (SDNode *SetCC : SetCCs) {
7361     SmallVector<SDValue, 4> Ops;
7362 
7363     for (unsigned j = 0; j != 2; ++j) {
7364       SDValue SOp = SetCC->getOperand(j);
7365       if (SOp == Src)
7366         Ops.push_back(SExt);
7367       else
7368         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
7369     }
7370 
7371     Ops.push_back(SetCC->getOperand(2));
7372     DCI.CombineTo(SetCC,
7373                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
7374   }
7375   return SDValue(N, 0);
7376 }
7377 
7378 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
7379 // vwadd(u).vv/vx or vwsub(u).vv/vx.
7380 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
7381                                              bool Commute = false) {
7382   assert((N->getOpcode() == RISCVISD::ADD_VL ||
7383           N->getOpcode() == RISCVISD::SUB_VL) &&
7384          "Unexpected opcode");
7385   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
7386   SDValue Op0 = N->getOperand(0);
7387   SDValue Op1 = N->getOperand(1);
7388   if (Commute)
7389     std::swap(Op0, Op1);
7390 
7391   MVT VT = N->getSimpleValueType(0);
7392 
7393   // Determine the narrow size for a widening add/sub.
7394   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7395   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7396                                   VT.getVectorElementCount());
7397 
7398   SDValue Mask = N->getOperand(2);
7399   SDValue VL = N->getOperand(3);
7400 
7401   SDLoc DL(N);
7402 
7403   // If the RHS is a sext or zext, we can form a widening op.
7404   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
7405        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
7406       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
7407     unsigned ExtOpc = Op1.getOpcode();
7408     Op1 = Op1.getOperand(0);
7409     // Re-introduce narrower extends if needed.
7410     if (Op1.getValueType() != NarrowVT)
7411       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7412 
7413     unsigned WOpc;
7414     if (ExtOpc == RISCVISD::VSEXT_VL)
7415       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
7416     else
7417       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
7418 
7419     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
7420   }
7421 
7422   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
7423   // sext/zext?
7424 
7425   return SDValue();
7426 }
7427 
7428 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
7429 // vwsub(u).vv/vx.
7430 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
7431   SDValue Op0 = N->getOperand(0);
7432   SDValue Op1 = N->getOperand(1);
7433   SDValue Mask = N->getOperand(2);
7434   SDValue VL = N->getOperand(3);
7435 
7436   MVT VT = N->getSimpleValueType(0);
7437   MVT NarrowVT = Op1.getSimpleValueType();
7438   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
7439 
7440   unsigned VOpc;
7441   switch (N->getOpcode()) {
7442   default: llvm_unreachable("Unexpected opcode");
7443   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
7444   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
7445   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
7446   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
7447   }
7448 
7449   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7450                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
7451 
7452   SDLoc DL(N);
7453 
7454   // If the LHS is a sext or zext, we can narrow this op to the same size as
7455   // the RHS.
7456   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
7457        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
7458       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
7459     unsigned ExtOpc = Op0.getOpcode();
7460     Op0 = Op0.getOperand(0);
7461     // Re-introduce narrower extends if needed.
7462     if (Op0.getValueType() != NarrowVT)
7463       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7464     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
7465   }
7466 
7467   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7468                N->getOpcode() == RISCVISD::VWADDU_W_VL;
7469 
7470   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
7471   // to commute and use a vwadd(u).vx instead.
7472   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
7473       Op0.getOperand(1) == VL) {
7474     Op0 = Op0.getOperand(0);
7475 
7476     // See if have enough sign bits or zero bits in the scalar to use a
7477     // widening add/sub by splatting to smaller element size.
7478     unsigned EltBits = VT.getScalarSizeInBits();
7479     unsigned ScalarBits = Op0.getValueSizeInBits();
7480     // Make sure we're getting all element bits from the scalar register.
7481     // FIXME: Support implicit sign extension of vmv.v.x?
7482     if (ScalarBits < EltBits)
7483       return SDValue();
7484 
7485     if (IsSigned) {
7486       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
7487         return SDValue();
7488     } else {
7489       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7490       if (!DAG.MaskedValueIsZero(Op0, Mask))
7491         return SDValue();
7492     }
7493 
7494     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op0, VL);
7495     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
7496   }
7497 
7498   return SDValue();
7499 }
7500 
7501 // Try to form VWMUL, VWMULU or VWMULSU.
7502 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
7503 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
7504                                        bool Commute) {
7505   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
7506   SDValue Op0 = N->getOperand(0);
7507   SDValue Op1 = N->getOperand(1);
7508   if (Commute)
7509     std::swap(Op0, Op1);
7510 
7511   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
7512   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
7513   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
7514   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
7515     return SDValue();
7516 
7517   SDValue Mask = N->getOperand(2);
7518   SDValue VL = N->getOperand(3);
7519 
7520   // Make sure the mask and VL match.
7521   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
7522     return SDValue();
7523 
7524   MVT VT = N->getSimpleValueType(0);
7525 
7526   // Determine the narrow size for a widening multiply.
7527   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7528   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7529                                   VT.getVectorElementCount());
7530 
7531   SDLoc DL(N);
7532 
7533   // See if the other operand is the same opcode.
7534   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
7535     if (!Op1.hasOneUse())
7536       return SDValue();
7537 
7538     // Make sure the mask and VL match.
7539     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
7540       return SDValue();
7541 
7542     Op1 = Op1.getOperand(0);
7543   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
7544     // The operand is a splat of a scalar.
7545 
7546     // The VL must be the same.
7547     if (Op1.getOperand(1) != VL)
7548       return SDValue();
7549 
7550     // Get the scalar value.
7551     Op1 = Op1.getOperand(0);
7552 
7553     // See if have enough sign bits or zero bits in the scalar to use a
7554     // widening multiply by splatting to smaller element size.
7555     unsigned EltBits = VT.getScalarSizeInBits();
7556     unsigned ScalarBits = Op1.getValueSizeInBits();
7557     // Make sure we're getting all element bits from the scalar register.
7558     // FIXME: Support implicit sign extension of vmv.v.x?
7559     if (ScalarBits < EltBits)
7560       return SDValue();
7561 
7562     if (IsSignExt) {
7563       if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize))
7564         return SDValue();
7565     } else {
7566       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7567       if (!DAG.MaskedValueIsZero(Op1, Mask))
7568         return SDValue();
7569     }
7570 
7571     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL);
7572   } else
7573     return SDValue();
7574 
7575   Op0 = Op0.getOperand(0);
7576 
7577   // Re-introduce narrower extends if needed.
7578   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
7579   if (Op0.getValueType() != NarrowVT)
7580     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7581   if (Op1.getValueType() != NarrowVT)
7582     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7583 
7584   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
7585   if (!IsVWMULSU)
7586     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
7587   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
7588 }
7589 
7590 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
7591   switch (Op.getOpcode()) {
7592   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
7593   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
7594   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
7595   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
7596   case ISD::FROUND:     return RISCVFPRndMode::RMM;
7597   }
7598 
7599   return RISCVFPRndMode::Invalid;
7600 }
7601 
7602 // Fold
7603 //   (fp_to_int (froundeven X)) -> fcvt X, rne
7604 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
7605 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
7606 //   (fp_to_int (fceil X))      -> fcvt X, rup
7607 //   (fp_to_int (fround X))     -> fcvt X, rmm
7608 static SDValue performFP_TO_INTCombine(SDNode *N,
7609                                        TargetLowering::DAGCombinerInfo &DCI,
7610                                        const RISCVSubtarget &Subtarget) {
7611   SelectionDAG &DAG = DCI.DAG;
7612   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7613   MVT XLenVT = Subtarget.getXLenVT();
7614 
7615   // Only handle XLen or i32 types. Other types narrower than XLen will
7616   // eventually be legalized to XLenVT.
7617   EVT VT = N->getValueType(0);
7618   if (VT != MVT::i32 && VT != XLenVT)
7619     return SDValue();
7620 
7621   SDValue Src = N->getOperand(0);
7622 
7623   // Ensure the FP type is also legal.
7624   if (!TLI.isTypeLegal(Src.getValueType()))
7625     return SDValue();
7626 
7627   // Don't do this for f16 with Zfhmin and not Zfh.
7628   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
7629     return SDValue();
7630 
7631   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
7632   if (FRM == RISCVFPRndMode::Invalid)
7633     return SDValue();
7634 
7635   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
7636 
7637   unsigned Opc;
7638   if (VT == XLenVT)
7639     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
7640   else
7641     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
7642 
7643   SDLoc DL(N);
7644   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
7645                                 DAG.getTargetConstant(FRM, DL, XLenVT));
7646   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
7647 }
7648 
7649 // Fold
7650 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
7651 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
7652 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
7653 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
7654 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
7655 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
7656                                        TargetLowering::DAGCombinerInfo &DCI,
7657                                        const RISCVSubtarget &Subtarget) {
7658   SelectionDAG &DAG = DCI.DAG;
7659   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7660   MVT XLenVT = Subtarget.getXLenVT();
7661 
7662   // Only handle XLen types. Other types narrower than XLen will eventually be
7663   // legalized to XLenVT.
7664   EVT DstVT = N->getValueType(0);
7665   if (DstVT != XLenVT)
7666     return SDValue();
7667 
7668   SDValue Src = N->getOperand(0);
7669 
7670   // Ensure the FP type is also legal.
7671   if (!TLI.isTypeLegal(Src.getValueType()))
7672     return SDValue();
7673 
7674   // Don't do this for f16 with Zfhmin and not Zfh.
7675   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
7676     return SDValue();
7677 
7678   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
7679 
7680   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
7681   if (FRM == RISCVFPRndMode::Invalid)
7682     return SDValue();
7683 
7684   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
7685 
7686   unsigned Opc;
7687   if (SatVT == DstVT)
7688     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
7689   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
7690     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
7691   else
7692     return SDValue();
7693   // FIXME: Support other SatVTs by clamping before or after the conversion.
7694 
7695   Src = Src.getOperand(0);
7696 
7697   SDLoc DL(N);
7698   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
7699                                 DAG.getTargetConstant(FRM, DL, XLenVT));
7700 
7701   // RISCV FP-to-int conversions saturate to the destination register size, but
7702   // don't produce 0 for nan.
7703   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
7704   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
7705 }
7706 
7707 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
7708                                                DAGCombinerInfo &DCI) const {
7709   SelectionDAG &DAG = DCI.DAG;
7710 
7711   // Helper to call SimplifyDemandedBits on an operand of N where only some low
7712   // bits are demanded. N will be added to the Worklist if it was not deleted.
7713   // Caller should return SDValue(N, 0) if this returns true.
7714   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
7715     SDValue Op = N->getOperand(OpNo);
7716     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
7717     if (!SimplifyDemandedBits(Op, Mask, DCI))
7718       return false;
7719 
7720     if (N->getOpcode() != ISD::DELETED_NODE)
7721       DCI.AddToWorklist(N);
7722     return true;
7723   };
7724 
7725   switch (N->getOpcode()) {
7726   default:
7727     break;
7728   case RISCVISD::SplitF64: {
7729     SDValue Op0 = N->getOperand(0);
7730     // If the input to SplitF64 is just BuildPairF64 then the operation is
7731     // redundant. Instead, use BuildPairF64's operands directly.
7732     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
7733       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
7734 
7735     SDLoc DL(N);
7736 
7737     // It's cheaper to materialise two 32-bit integers than to load a double
7738     // from the constant pool and transfer it to integer registers through the
7739     // stack.
7740     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
7741       APInt V = C->getValueAPF().bitcastToAPInt();
7742       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
7743       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
7744       return DCI.CombineTo(N, Lo, Hi);
7745     }
7746 
7747     // This is a target-specific version of a DAGCombine performed in
7748     // DAGCombiner::visitBITCAST. It performs the equivalent of:
7749     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
7750     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
7751     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
7752         !Op0.getNode()->hasOneUse())
7753       break;
7754     SDValue NewSplitF64 =
7755         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
7756                     Op0.getOperand(0));
7757     SDValue Lo = NewSplitF64.getValue(0);
7758     SDValue Hi = NewSplitF64.getValue(1);
7759     APInt SignBit = APInt::getSignMask(32);
7760     if (Op0.getOpcode() == ISD::FNEG) {
7761       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
7762                                   DAG.getConstant(SignBit, DL, MVT::i32));
7763       return DCI.CombineTo(N, Lo, NewHi);
7764     }
7765     assert(Op0.getOpcode() == ISD::FABS);
7766     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
7767                                 DAG.getConstant(~SignBit, DL, MVT::i32));
7768     return DCI.CombineTo(N, Lo, NewHi);
7769   }
7770   case RISCVISD::SLLW:
7771   case RISCVISD::SRAW:
7772   case RISCVISD::SRLW:
7773   case RISCVISD::ROLW:
7774   case RISCVISD::RORW: {
7775     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
7776     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7777         SimplifyDemandedLowBitsHelper(1, 5))
7778       return SDValue(N, 0);
7779     break;
7780   }
7781   case RISCVISD::CLZW:
7782   case RISCVISD::CTZW: {
7783     // Only the lower 32 bits of the first operand are read
7784     if (SimplifyDemandedLowBitsHelper(0, 32))
7785       return SDValue(N, 0);
7786     break;
7787   }
7788   case RISCVISD::GREV:
7789   case RISCVISD::GORC: {
7790     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
7791     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
7792     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7793     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
7794       return SDValue(N, 0);
7795 
7796     return combineGREVI_GORCI(N, DAG);
7797   }
7798   case RISCVISD::GREVW:
7799   case RISCVISD::GORCW: {
7800     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
7801     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7802         SimplifyDemandedLowBitsHelper(1, 5))
7803       return SDValue(N, 0);
7804 
7805     return combineGREVI_GORCI(N, DAG);
7806   }
7807   case RISCVISD::SHFL:
7808   case RISCVISD::UNSHFL: {
7809     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
7810     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
7811     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7812     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
7813       return SDValue(N, 0);
7814 
7815     break;
7816   }
7817   case RISCVISD::SHFLW:
7818   case RISCVISD::UNSHFLW: {
7819     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
7820     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7821         SimplifyDemandedLowBitsHelper(1, 4))
7822       return SDValue(N, 0);
7823 
7824     break;
7825   }
7826   case RISCVISD::BCOMPRESSW:
7827   case RISCVISD::BDECOMPRESSW: {
7828     // Only the lower 32 bits of LHS and RHS are read.
7829     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7830         SimplifyDemandedLowBitsHelper(1, 32))
7831       return SDValue(N, 0);
7832 
7833     break;
7834   }
7835   case RISCVISD::FMV_X_ANYEXTH:
7836   case RISCVISD::FMV_X_ANYEXTW_RV64: {
7837     SDLoc DL(N);
7838     SDValue Op0 = N->getOperand(0);
7839     MVT VT = N->getSimpleValueType(0);
7840     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
7841     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
7842     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
7843     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
7844          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
7845         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7846          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
7847       assert(Op0.getOperand(0).getValueType() == VT &&
7848              "Unexpected value type!");
7849       return Op0.getOperand(0);
7850     }
7851 
7852     // This is a target-specific version of a DAGCombine performed in
7853     // DAGCombiner::visitBITCAST. It performs the equivalent of:
7854     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
7855     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
7856     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
7857         !Op0.getNode()->hasOneUse())
7858       break;
7859     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
7860     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
7861     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
7862     if (Op0.getOpcode() == ISD::FNEG)
7863       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
7864                          DAG.getConstant(SignBit, DL, VT));
7865 
7866     assert(Op0.getOpcode() == ISD::FABS);
7867     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
7868                        DAG.getConstant(~SignBit, DL, VT));
7869   }
7870   case ISD::ADD:
7871     return performADDCombine(N, DAG, Subtarget);
7872   case ISD::SUB:
7873     return performSUBCombine(N, DAG);
7874   case ISD::AND:
7875     return performANDCombine(N, DAG);
7876   case ISD::OR:
7877     return performORCombine(N, DAG, Subtarget);
7878   case ISD::XOR:
7879     return performXORCombine(N, DAG);
7880   case ISD::ANY_EXTEND:
7881     return performANY_EXTENDCombine(N, DCI, Subtarget);
7882   case ISD::ZERO_EXTEND:
7883     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
7884     // type legalization. This is safe because fp_to_uint produces poison if
7885     // it overflows.
7886     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
7887       SDValue Src = N->getOperand(0);
7888       if (Src.getOpcode() == ISD::FP_TO_UINT &&
7889           isTypeLegal(Src.getOperand(0).getValueType()))
7890         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
7891                            Src.getOperand(0));
7892       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
7893           isTypeLegal(Src.getOperand(1).getValueType())) {
7894         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
7895         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
7896                                   Src.getOperand(0), Src.getOperand(1));
7897         DCI.CombineTo(N, Res);
7898         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
7899         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
7900         return SDValue(N, 0); // Return N so it doesn't get rechecked.
7901       }
7902     }
7903     return SDValue();
7904   case RISCVISD::SELECT_CC: {
7905     // Transform
7906     SDValue LHS = N->getOperand(0);
7907     SDValue RHS = N->getOperand(1);
7908     SDValue TrueV = N->getOperand(3);
7909     SDValue FalseV = N->getOperand(4);
7910 
7911     // If the True and False values are the same, we don't need a select_cc.
7912     if (TrueV == FalseV)
7913       return TrueV;
7914 
7915     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
7916     if (!ISD::isIntEqualitySetCC(CCVal))
7917       break;
7918 
7919     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
7920     //      (select_cc X, Y, lt, trueV, falseV)
7921     // Sometimes the setcc is introduced after select_cc has been formed.
7922     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7923         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7924       // If we're looking for eq 0 instead of ne 0, we need to invert the
7925       // condition.
7926       bool Invert = CCVal == ISD::SETEQ;
7927       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7928       if (Invert)
7929         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7930 
7931       SDLoc DL(N);
7932       RHS = LHS.getOperand(1);
7933       LHS = LHS.getOperand(0);
7934       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7935 
7936       SDValue TargetCC = DAG.getCondCode(CCVal);
7937       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7938                          {LHS, RHS, TargetCC, TrueV, FalseV});
7939     }
7940 
7941     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
7942     //      (select_cc X, Y, eq/ne, trueV, falseV)
7943     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7944       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
7945                          {LHS.getOperand(0), LHS.getOperand(1),
7946                           N->getOperand(2), TrueV, FalseV});
7947     // (select_cc X, 1, setne, trueV, falseV) ->
7948     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
7949     // This can occur when legalizing some floating point comparisons.
7950     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7951     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7952       SDLoc DL(N);
7953       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7954       SDValue TargetCC = DAG.getCondCode(CCVal);
7955       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7956       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7957                          {LHS, RHS, TargetCC, TrueV, FalseV});
7958     }
7959 
7960     break;
7961   }
7962   case RISCVISD::BR_CC: {
7963     SDValue LHS = N->getOperand(1);
7964     SDValue RHS = N->getOperand(2);
7965     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
7966     if (!ISD::isIntEqualitySetCC(CCVal))
7967       break;
7968 
7969     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
7970     //      (br_cc X, Y, lt, dest)
7971     // Sometimes the setcc is introduced after br_cc has been formed.
7972     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7973         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7974       // If we're looking for eq 0 instead of ne 0, we need to invert the
7975       // condition.
7976       bool Invert = CCVal == ISD::SETEQ;
7977       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7978       if (Invert)
7979         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7980 
7981       SDLoc DL(N);
7982       RHS = LHS.getOperand(1);
7983       LHS = LHS.getOperand(0);
7984       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7985 
7986       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7987                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
7988                          N->getOperand(4));
7989     }
7990 
7991     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
7992     //      (br_cc X, Y, eq/ne, trueV, falseV)
7993     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7994       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
7995                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
7996                          N->getOperand(3), N->getOperand(4));
7997 
7998     // (br_cc X, 1, setne, br_cc) ->
7999     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8000     // This can occur when legalizing some floating point comparisons.
8001     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8002     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8003       SDLoc DL(N);
8004       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8005       SDValue TargetCC = DAG.getCondCode(CCVal);
8006       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8007       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8008                          N->getOperand(0), LHS, RHS, TargetCC,
8009                          N->getOperand(4));
8010     }
8011     break;
8012   }
8013   case ISD::FP_TO_SINT:
8014   case ISD::FP_TO_UINT:
8015     return performFP_TO_INTCombine(N, DCI, Subtarget);
8016   case ISD::FP_TO_SINT_SAT:
8017   case ISD::FP_TO_UINT_SAT:
8018     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8019   case ISD::FCOPYSIGN: {
8020     EVT VT = N->getValueType(0);
8021     if (!VT.isVector())
8022       break;
8023     // There is a form of VFSGNJ which injects the negated sign of its second
8024     // operand. Try and bubble any FNEG up after the extend/round to produce
8025     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8026     // TRUNC=1.
8027     SDValue In2 = N->getOperand(1);
8028     // Avoid cases where the extend/round has multiple uses, as duplicating
8029     // those is typically more expensive than removing a fneg.
8030     if (!In2.hasOneUse())
8031       break;
8032     if (In2.getOpcode() != ISD::FP_EXTEND &&
8033         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8034       break;
8035     In2 = In2.getOperand(0);
8036     if (In2.getOpcode() != ISD::FNEG)
8037       break;
8038     SDLoc DL(N);
8039     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8040     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8041                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8042   }
8043   case ISD::MGATHER:
8044   case ISD::MSCATTER:
8045   case ISD::VP_GATHER:
8046   case ISD::VP_SCATTER: {
8047     if (!DCI.isBeforeLegalize())
8048       break;
8049     SDValue Index, ScaleOp;
8050     bool IsIndexScaled = false;
8051     bool IsIndexSigned = false;
8052     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8053       Index = VPGSN->getIndex();
8054       ScaleOp = VPGSN->getScale();
8055       IsIndexScaled = VPGSN->isIndexScaled();
8056       IsIndexSigned = VPGSN->isIndexSigned();
8057     } else {
8058       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8059       Index = MGSN->getIndex();
8060       ScaleOp = MGSN->getScale();
8061       IsIndexScaled = MGSN->isIndexScaled();
8062       IsIndexSigned = MGSN->isIndexSigned();
8063     }
8064     EVT IndexVT = Index.getValueType();
8065     MVT XLenVT = Subtarget.getXLenVT();
8066     // RISCV indexed loads only support the "unsigned unscaled" addressing
8067     // mode, so anything else must be manually legalized.
8068     bool NeedsIdxLegalization =
8069         IsIndexScaled ||
8070         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8071     if (!NeedsIdxLegalization)
8072       break;
8073 
8074     SDLoc DL(N);
8075 
8076     // Any index legalization should first promote to XLenVT, so we don't lose
8077     // bits when scaling. This may create an illegal index type so we let
8078     // LLVM's legalization take care of the splitting.
8079     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8080     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8081       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8082       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8083                           DL, IndexVT, Index);
8084     }
8085 
8086     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8087     if (IsIndexScaled && Scale != 1) {
8088       // Manually scale the indices by the element size.
8089       // TODO: Sanitize the scale operand here?
8090       // TODO: For VP nodes, should we use VP_SHL here?
8091       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8092       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8093       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8094     }
8095 
8096     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
8097     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8098       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8099                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8100                               VPGN->getScale(), VPGN->getMask(),
8101                               VPGN->getVectorLength()},
8102                              VPGN->getMemOperand(), NewIndexTy);
8103     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8104       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8105                               {VPSN->getChain(), VPSN->getValue(),
8106                                VPSN->getBasePtr(), Index, VPSN->getScale(),
8107                                VPSN->getMask(), VPSN->getVectorLength()},
8108                               VPSN->getMemOperand(), NewIndexTy);
8109     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8110       return DAG.getMaskedGather(
8111           N->getVTList(), MGN->getMemoryVT(), DL,
8112           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8113            MGN->getBasePtr(), Index, MGN->getScale()},
8114           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8115     const auto *MSN = cast<MaskedScatterSDNode>(N);
8116     return DAG.getMaskedScatter(
8117         N->getVTList(), MSN->getMemoryVT(), DL,
8118         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8119          Index, MSN->getScale()},
8120         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8121   }
8122   case RISCVISD::SRA_VL:
8123   case RISCVISD::SRL_VL:
8124   case RISCVISD::SHL_VL: {
8125     SDValue ShAmt = N->getOperand(1);
8126     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8127       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8128       SDLoc DL(N);
8129       SDValue VL = N->getOperand(3);
8130       EVT VT = N->getValueType(0);
8131       ShAmt =
8132           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
8133       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8134                          N->getOperand(2), N->getOperand(3));
8135     }
8136     break;
8137   }
8138   case ISD::SRA:
8139   case ISD::SRL:
8140   case ISD::SHL: {
8141     SDValue ShAmt = N->getOperand(1);
8142     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8143       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8144       SDLoc DL(N);
8145       EVT VT = N->getValueType(0);
8146       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0),
8147                           DAG.getTargetConstant(RISCV::VLMaxSentinel, DL,
8148                                                 Subtarget.getXLenVT()));
8149       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8150     }
8151     break;
8152   }
8153   case RISCVISD::ADD_VL:
8154     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8155       return V;
8156     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8157   case RISCVISD::SUB_VL:
8158     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8159   case RISCVISD::VWADD_W_VL:
8160   case RISCVISD::VWADDU_W_VL:
8161   case RISCVISD::VWSUB_W_VL:
8162   case RISCVISD::VWSUBU_W_VL:
8163     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8164   case RISCVISD::MUL_VL:
8165     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8166       return V;
8167     // Mul is commutative.
8168     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8169   case ISD::STORE: {
8170     auto *Store = cast<StoreSDNode>(N);
8171     SDValue Val = Store->getValue();
8172     // Combine store of vmv.x.s to vse with VL of 1.
8173     // FIXME: Support FP.
8174     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8175       SDValue Src = Val.getOperand(0);
8176       EVT VecVT = Src.getValueType();
8177       EVT MemVT = Store->getMemoryVT();
8178       // The memory VT and the element type must match.
8179       if (VecVT.getVectorElementType() == MemVT) {
8180         SDLoc DL(N);
8181         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
8182         return DAG.getStoreVP(
8183             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8184             DAG.getConstant(1, DL, MaskVT),
8185             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8186             Store->getMemOperand(), Store->getAddressingMode(),
8187             Store->isTruncatingStore(), /*IsCompress*/ false);
8188       }
8189     }
8190 
8191     break;
8192   }
8193   }
8194 
8195   return SDValue();
8196 }
8197 
8198 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
8199     const SDNode *N, CombineLevel Level) const {
8200   // The following folds are only desirable if `(OP _, c1 << c2)` can be
8201   // materialised in fewer instructions than `(OP _, c1)`:
8202   //
8203   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8204   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8205   SDValue N0 = N->getOperand(0);
8206   EVT Ty = N0.getValueType();
8207   if (Ty.isScalarInteger() &&
8208       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
8209     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8210     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
8211     if (C1 && C2) {
8212       const APInt &C1Int = C1->getAPIntValue();
8213       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
8214 
8215       // We can materialise `c1 << c2` into an add immediate, so it's "free",
8216       // and the combine should happen, to potentially allow further combines
8217       // later.
8218       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
8219           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
8220         return true;
8221 
8222       // We can materialise `c1` in an add immediate, so it's "free", and the
8223       // combine should be prevented.
8224       if (C1Int.getMinSignedBits() <= 64 &&
8225           isLegalAddImmediate(C1Int.getSExtValue()))
8226         return false;
8227 
8228       // Neither constant will fit into an immediate, so find materialisation
8229       // costs.
8230       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
8231                                               Subtarget.getFeatureBits(),
8232                                               /*CompressionCost*/true);
8233       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
8234           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
8235           /*CompressionCost*/true);
8236 
8237       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
8238       // combine should be prevented.
8239       if (C1Cost < ShiftedC1Cost)
8240         return false;
8241     }
8242   }
8243   return true;
8244 }
8245 
8246 bool RISCVTargetLowering::targetShrinkDemandedConstant(
8247     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
8248     TargetLoweringOpt &TLO) const {
8249   // Delay this optimization as late as possible.
8250   if (!TLO.LegalOps)
8251     return false;
8252 
8253   EVT VT = Op.getValueType();
8254   if (VT.isVector())
8255     return false;
8256 
8257   // Only handle AND for now.
8258   if (Op.getOpcode() != ISD::AND)
8259     return false;
8260 
8261   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8262   if (!C)
8263     return false;
8264 
8265   const APInt &Mask = C->getAPIntValue();
8266 
8267   // Clear all non-demanded bits initially.
8268   APInt ShrunkMask = Mask & DemandedBits;
8269 
8270   // Try to make a smaller immediate by setting undemanded bits.
8271 
8272   APInt ExpandedMask = Mask | ~DemandedBits;
8273 
8274   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
8275     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
8276   };
8277   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
8278     if (NewMask == Mask)
8279       return true;
8280     SDLoc DL(Op);
8281     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
8282     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
8283     return TLO.CombineTo(Op, NewOp);
8284   };
8285 
8286   // If the shrunk mask fits in sign extended 12 bits, let the target
8287   // independent code apply it.
8288   if (ShrunkMask.isSignedIntN(12))
8289     return false;
8290 
8291   // Preserve (and X, 0xffff) when zext.h is supported.
8292   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
8293     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
8294     if (IsLegalMask(NewMask))
8295       return UseMask(NewMask);
8296   }
8297 
8298   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
8299   if (VT == MVT::i64) {
8300     APInt NewMask = APInt(64, 0xffffffff);
8301     if (IsLegalMask(NewMask))
8302       return UseMask(NewMask);
8303   }
8304 
8305   // For the remaining optimizations, we need to be able to make a negative
8306   // number through a combination of mask and undemanded bits.
8307   if (!ExpandedMask.isNegative())
8308     return false;
8309 
8310   // What is the fewest number of bits we need to represent the negative number.
8311   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
8312 
8313   // Try to make a 12 bit negative immediate. If that fails try to make a 32
8314   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
8315   APInt NewMask = ShrunkMask;
8316   if (MinSignedBits <= 12)
8317     NewMask.setBitsFrom(11);
8318   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
8319     NewMask.setBitsFrom(31);
8320   else
8321     return false;
8322 
8323   // Check that our new mask is a subset of the demanded mask.
8324   assert(IsLegalMask(NewMask));
8325   return UseMask(NewMask);
8326 }
8327 
8328 static void computeGREV(APInt &Src, unsigned ShAmt) {
8329   ShAmt &= Src.getBitWidth() - 1;
8330   uint64_t x = Src.getZExtValue();
8331   if (ShAmt & 1)
8332     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
8333   if (ShAmt & 2)
8334     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
8335   if (ShAmt & 4)
8336     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
8337   if (ShAmt & 8)
8338     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
8339   if (ShAmt & 16)
8340     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
8341   if (ShAmt & 32)
8342     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
8343   Src = x;
8344 }
8345 
8346 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8347                                                         KnownBits &Known,
8348                                                         const APInt &DemandedElts,
8349                                                         const SelectionDAG &DAG,
8350                                                         unsigned Depth) const {
8351   unsigned BitWidth = Known.getBitWidth();
8352   unsigned Opc = Op.getOpcode();
8353   assert((Opc >= ISD::BUILTIN_OP_END ||
8354           Opc == ISD::INTRINSIC_WO_CHAIN ||
8355           Opc == ISD::INTRINSIC_W_CHAIN ||
8356           Opc == ISD::INTRINSIC_VOID) &&
8357          "Should use MaskedValueIsZero if you don't know whether Op"
8358          " is a target node!");
8359 
8360   Known.resetAll();
8361   switch (Opc) {
8362   default: break;
8363   case RISCVISD::SELECT_CC: {
8364     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
8365     // If we don't know any bits, early out.
8366     if (Known.isUnknown())
8367       break;
8368     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
8369 
8370     // Only known if known in both the LHS and RHS.
8371     Known = KnownBits::commonBits(Known, Known2);
8372     break;
8373   }
8374   case RISCVISD::REMUW: {
8375     KnownBits Known2;
8376     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8377     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8378     // We only care about the lower 32 bits.
8379     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
8380     // Restore the original width by sign extending.
8381     Known = Known.sext(BitWidth);
8382     break;
8383   }
8384   case RISCVISD::DIVUW: {
8385     KnownBits Known2;
8386     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8387     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8388     // We only care about the lower 32 bits.
8389     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
8390     // Restore the original width by sign extending.
8391     Known = Known.sext(BitWidth);
8392     break;
8393   }
8394   case RISCVISD::CTZW: {
8395     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8396     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
8397     unsigned LowBits = Log2_32(PossibleTZ) + 1;
8398     Known.Zero.setBitsFrom(LowBits);
8399     break;
8400   }
8401   case RISCVISD::CLZW: {
8402     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8403     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
8404     unsigned LowBits = Log2_32(PossibleLZ) + 1;
8405     Known.Zero.setBitsFrom(LowBits);
8406     break;
8407   }
8408   case RISCVISD::GREV:
8409   case RISCVISD::GREVW: {
8410     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8411       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8412       if (Opc == RISCVISD::GREVW)
8413         Known = Known.trunc(32);
8414       unsigned ShAmt = C->getZExtValue();
8415       computeGREV(Known.Zero, ShAmt);
8416       computeGREV(Known.One, ShAmt);
8417       if (Opc == RISCVISD::GREVW)
8418         Known = Known.sext(BitWidth);
8419     }
8420     break;
8421   }
8422   case RISCVISD::READ_VLENB: {
8423     // If we know the minimum VLen from Zvl extensions, we can use that to
8424     // determine the trailing zeros of VLENB.
8425     // FIXME: Limit to 128 bit vectors until we have more testing.
8426     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
8427     if (MinVLenB > 0)
8428       Known.Zero.setLowBits(Log2_32(MinVLenB));
8429     // We assume VLENB is no more than 65536 / 8 bytes.
8430     Known.Zero.setBitsFrom(14);
8431     break;
8432   }
8433   case ISD::INTRINSIC_W_CHAIN:
8434   case ISD::INTRINSIC_WO_CHAIN: {
8435     unsigned IntNo =
8436         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
8437     switch (IntNo) {
8438     default:
8439       // We can't do anything for most intrinsics.
8440       break;
8441     case Intrinsic::riscv_vsetvli:
8442     case Intrinsic::riscv_vsetvlimax:
8443     case Intrinsic::riscv_vsetvli_opt:
8444     case Intrinsic::riscv_vsetvlimax_opt:
8445       // Assume that VL output is positive and would fit in an int32_t.
8446       // TODO: VLEN might be capped at 16 bits in a future V spec update.
8447       if (BitWidth >= 32)
8448         Known.Zero.setBitsFrom(31);
8449       break;
8450     }
8451     break;
8452   }
8453   }
8454 }
8455 
8456 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
8457     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
8458     unsigned Depth) const {
8459   switch (Op.getOpcode()) {
8460   default:
8461     break;
8462   case RISCVISD::SELECT_CC: {
8463     unsigned Tmp =
8464         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
8465     if (Tmp == 1) return 1;  // Early out.
8466     unsigned Tmp2 =
8467         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
8468     return std::min(Tmp, Tmp2);
8469   }
8470   case RISCVISD::SLLW:
8471   case RISCVISD::SRAW:
8472   case RISCVISD::SRLW:
8473   case RISCVISD::DIVW:
8474   case RISCVISD::DIVUW:
8475   case RISCVISD::REMUW:
8476   case RISCVISD::ROLW:
8477   case RISCVISD::RORW:
8478   case RISCVISD::GREVW:
8479   case RISCVISD::GORCW:
8480   case RISCVISD::FSLW:
8481   case RISCVISD::FSRW:
8482   case RISCVISD::SHFLW:
8483   case RISCVISD::UNSHFLW:
8484   case RISCVISD::BCOMPRESSW:
8485   case RISCVISD::BDECOMPRESSW:
8486   case RISCVISD::BFPW:
8487   case RISCVISD::FCVT_W_RV64:
8488   case RISCVISD::FCVT_WU_RV64:
8489   case RISCVISD::STRICT_FCVT_W_RV64:
8490   case RISCVISD::STRICT_FCVT_WU_RV64:
8491     // TODO: As the result is sign-extended, this is conservatively correct. A
8492     // more precise answer could be calculated for SRAW depending on known
8493     // bits in the shift amount.
8494     return 33;
8495   case RISCVISD::SHFL:
8496   case RISCVISD::UNSHFL: {
8497     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
8498     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
8499     // will stay within the upper 32 bits. If there were more than 32 sign bits
8500     // before there will be at least 33 sign bits after.
8501     if (Op.getValueType() == MVT::i64 &&
8502         isa<ConstantSDNode>(Op.getOperand(1)) &&
8503         (Op.getConstantOperandVal(1) & 0x10) == 0) {
8504       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
8505       if (Tmp > 32)
8506         return 33;
8507     }
8508     break;
8509   }
8510   case RISCVISD::VMV_X_S: {
8511     // The number of sign bits of the scalar result is computed by obtaining the
8512     // element type of the input vector operand, subtracting its width from the
8513     // XLEN, and then adding one (sign bit within the element type). If the
8514     // element type is wider than XLen, the least-significant XLEN bits are
8515     // taken.
8516     unsigned XLen = Subtarget.getXLen();
8517     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
8518     if (EltBits <= XLen)
8519       return XLen - EltBits + 1;
8520     break;
8521   }
8522   }
8523 
8524   return 1;
8525 }
8526 
8527 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
8528                                                   MachineBasicBlock *BB) {
8529   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
8530 
8531   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
8532   // Should the count have wrapped while it was being read, we need to try
8533   // again.
8534   // ...
8535   // read:
8536   // rdcycleh x3 # load high word of cycle
8537   // rdcycle  x2 # load low word of cycle
8538   // rdcycleh x4 # load high word of cycle
8539   // bne x3, x4, read # check if high word reads match, otherwise try again
8540   // ...
8541 
8542   MachineFunction &MF = *BB->getParent();
8543   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8544   MachineFunction::iterator It = ++BB->getIterator();
8545 
8546   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
8547   MF.insert(It, LoopMBB);
8548 
8549   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
8550   MF.insert(It, DoneMBB);
8551 
8552   // Transfer the remainder of BB and its successor edges to DoneMBB.
8553   DoneMBB->splice(DoneMBB->begin(), BB,
8554                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8555   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
8556 
8557   BB->addSuccessor(LoopMBB);
8558 
8559   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8560   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8561   Register LoReg = MI.getOperand(0).getReg();
8562   Register HiReg = MI.getOperand(1).getReg();
8563   DebugLoc DL = MI.getDebugLoc();
8564 
8565   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
8566   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
8567       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
8568       .addReg(RISCV::X0);
8569   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
8570       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
8571       .addReg(RISCV::X0);
8572   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
8573       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
8574       .addReg(RISCV::X0);
8575 
8576   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
8577       .addReg(HiReg)
8578       .addReg(ReadAgainReg)
8579       .addMBB(LoopMBB);
8580 
8581   LoopMBB->addSuccessor(LoopMBB);
8582   LoopMBB->addSuccessor(DoneMBB);
8583 
8584   MI.eraseFromParent();
8585 
8586   return DoneMBB;
8587 }
8588 
8589 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
8590                                              MachineBasicBlock *BB) {
8591   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
8592 
8593   MachineFunction &MF = *BB->getParent();
8594   DebugLoc DL = MI.getDebugLoc();
8595   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8596   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8597   Register LoReg = MI.getOperand(0).getReg();
8598   Register HiReg = MI.getOperand(1).getReg();
8599   Register SrcReg = MI.getOperand(2).getReg();
8600   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
8601   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8602 
8603   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
8604                           RI);
8605   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8606   MachineMemOperand *MMOLo =
8607       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
8608   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
8609       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
8610   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
8611       .addFrameIndex(FI)
8612       .addImm(0)
8613       .addMemOperand(MMOLo);
8614   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
8615       .addFrameIndex(FI)
8616       .addImm(4)
8617       .addMemOperand(MMOHi);
8618   MI.eraseFromParent(); // The pseudo instruction is gone now.
8619   return BB;
8620 }
8621 
8622 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
8623                                                  MachineBasicBlock *BB) {
8624   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
8625          "Unexpected instruction");
8626 
8627   MachineFunction &MF = *BB->getParent();
8628   DebugLoc DL = MI.getDebugLoc();
8629   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8630   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8631   Register DstReg = MI.getOperand(0).getReg();
8632   Register LoReg = MI.getOperand(1).getReg();
8633   Register HiReg = MI.getOperand(2).getReg();
8634   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
8635   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8636 
8637   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8638   MachineMemOperand *MMOLo =
8639       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
8640   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
8641       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
8642   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
8643       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
8644       .addFrameIndex(FI)
8645       .addImm(0)
8646       .addMemOperand(MMOLo);
8647   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
8648       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
8649       .addFrameIndex(FI)
8650       .addImm(4)
8651       .addMemOperand(MMOHi);
8652   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
8653   MI.eraseFromParent(); // The pseudo instruction is gone now.
8654   return BB;
8655 }
8656 
8657 static bool isSelectPseudo(MachineInstr &MI) {
8658   switch (MI.getOpcode()) {
8659   default:
8660     return false;
8661   case RISCV::Select_GPR_Using_CC_GPR:
8662   case RISCV::Select_FPR16_Using_CC_GPR:
8663   case RISCV::Select_FPR32_Using_CC_GPR:
8664   case RISCV::Select_FPR64_Using_CC_GPR:
8665     return true;
8666   }
8667 }
8668 
8669 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
8670                                         unsigned RelOpcode, unsigned EqOpcode,
8671                                         const RISCVSubtarget &Subtarget) {
8672   DebugLoc DL = MI.getDebugLoc();
8673   Register DstReg = MI.getOperand(0).getReg();
8674   Register Src1Reg = MI.getOperand(1).getReg();
8675   Register Src2Reg = MI.getOperand(2).getReg();
8676   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
8677   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
8678   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
8679 
8680   // Save the current FFLAGS.
8681   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
8682 
8683   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
8684                  .addReg(Src1Reg)
8685                  .addReg(Src2Reg);
8686   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
8687     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
8688 
8689   // Restore the FFLAGS.
8690   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
8691       .addReg(SavedFFlags, RegState::Kill);
8692 
8693   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
8694   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
8695                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
8696                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
8697   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
8698     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
8699 
8700   // Erase the pseudoinstruction.
8701   MI.eraseFromParent();
8702   return BB;
8703 }
8704 
8705 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
8706                                            MachineBasicBlock *BB,
8707                                            const RISCVSubtarget &Subtarget) {
8708   // To "insert" Select_* instructions, we actually have to insert the triangle
8709   // control-flow pattern.  The incoming instructions know the destination vreg
8710   // to set, the condition code register to branch on, the true/false values to
8711   // select between, and the condcode to use to select the appropriate branch.
8712   //
8713   // We produce the following control flow:
8714   //     HeadMBB
8715   //     |  \
8716   //     |  IfFalseMBB
8717   //     | /
8718   //    TailMBB
8719   //
8720   // When we find a sequence of selects we attempt to optimize their emission
8721   // by sharing the control flow. Currently we only handle cases where we have
8722   // multiple selects with the exact same condition (same LHS, RHS and CC).
8723   // The selects may be interleaved with other instructions if the other
8724   // instructions meet some requirements we deem safe:
8725   // - They are debug instructions. Otherwise,
8726   // - They do not have side-effects, do not access memory and their inputs do
8727   //   not depend on the results of the select pseudo-instructions.
8728   // The TrueV/FalseV operands of the selects cannot depend on the result of
8729   // previous selects in the sequence.
8730   // These conditions could be further relaxed. See the X86 target for a
8731   // related approach and more information.
8732   Register LHS = MI.getOperand(1).getReg();
8733   Register RHS = MI.getOperand(2).getReg();
8734   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
8735 
8736   SmallVector<MachineInstr *, 4> SelectDebugValues;
8737   SmallSet<Register, 4> SelectDests;
8738   SelectDests.insert(MI.getOperand(0).getReg());
8739 
8740   MachineInstr *LastSelectPseudo = &MI;
8741 
8742   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
8743        SequenceMBBI != E; ++SequenceMBBI) {
8744     if (SequenceMBBI->isDebugInstr())
8745       continue;
8746     else if (isSelectPseudo(*SequenceMBBI)) {
8747       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
8748           SequenceMBBI->getOperand(2).getReg() != RHS ||
8749           SequenceMBBI->getOperand(3).getImm() != CC ||
8750           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
8751           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
8752         break;
8753       LastSelectPseudo = &*SequenceMBBI;
8754       SequenceMBBI->collectDebugValues(SelectDebugValues);
8755       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
8756     } else {
8757       if (SequenceMBBI->hasUnmodeledSideEffects() ||
8758           SequenceMBBI->mayLoadOrStore())
8759         break;
8760       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
8761             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
8762           }))
8763         break;
8764     }
8765   }
8766 
8767   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
8768   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8769   DebugLoc DL = MI.getDebugLoc();
8770   MachineFunction::iterator I = ++BB->getIterator();
8771 
8772   MachineBasicBlock *HeadMBB = BB;
8773   MachineFunction *F = BB->getParent();
8774   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
8775   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
8776 
8777   F->insert(I, IfFalseMBB);
8778   F->insert(I, TailMBB);
8779 
8780   // Transfer debug instructions associated with the selects to TailMBB.
8781   for (MachineInstr *DebugInstr : SelectDebugValues) {
8782     TailMBB->push_back(DebugInstr->removeFromParent());
8783   }
8784 
8785   // Move all instructions after the sequence to TailMBB.
8786   TailMBB->splice(TailMBB->end(), HeadMBB,
8787                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
8788   // Update machine-CFG edges by transferring all successors of the current
8789   // block to the new block which will contain the Phi nodes for the selects.
8790   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
8791   // Set the successors for HeadMBB.
8792   HeadMBB->addSuccessor(IfFalseMBB);
8793   HeadMBB->addSuccessor(TailMBB);
8794 
8795   // Insert appropriate branch.
8796   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
8797     .addReg(LHS)
8798     .addReg(RHS)
8799     .addMBB(TailMBB);
8800 
8801   // IfFalseMBB just falls through to TailMBB.
8802   IfFalseMBB->addSuccessor(TailMBB);
8803 
8804   // Create PHIs for all of the select pseudo-instructions.
8805   auto SelectMBBI = MI.getIterator();
8806   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
8807   auto InsertionPoint = TailMBB->begin();
8808   while (SelectMBBI != SelectEnd) {
8809     auto Next = std::next(SelectMBBI);
8810     if (isSelectPseudo(*SelectMBBI)) {
8811       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
8812       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
8813               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
8814           .addReg(SelectMBBI->getOperand(4).getReg())
8815           .addMBB(HeadMBB)
8816           .addReg(SelectMBBI->getOperand(5).getReg())
8817           .addMBB(IfFalseMBB);
8818       SelectMBBI->eraseFromParent();
8819     }
8820     SelectMBBI = Next;
8821   }
8822 
8823   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
8824   return TailMBB;
8825 }
8826 
8827 MachineBasicBlock *
8828 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
8829                                                  MachineBasicBlock *BB) const {
8830   switch (MI.getOpcode()) {
8831   default:
8832     llvm_unreachable("Unexpected instr type to insert");
8833   case RISCV::ReadCycleWide:
8834     assert(!Subtarget.is64Bit() &&
8835            "ReadCycleWrite is only to be used on riscv32");
8836     return emitReadCycleWidePseudo(MI, BB);
8837   case RISCV::Select_GPR_Using_CC_GPR:
8838   case RISCV::Select_FPR16_Using_CC_GPR:
8839   case RISCV::Select_FPR32_Using_CC_GPR:
8840   case RISCV::Select_FPR64_Using_CC_GPR:
8841     return emitSelectPseudo(MI, BB, Subtarget);
8842   case RISCV::BuildPairF64Pseudo:
8843     return emitBuildPairF64Pseudo(MI, BB);
8844   case RISCV::SplitF64Pseudo:
8845     return emitSplitF64Pseudo(MI, BB);
8846   case RISCV::PseudoQuietFLE_H:
8847     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
8848   case RISCV::PseudoQuietFLT_H:
8849     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
8850   case RISCV::PseudoQuietFLE_S:
8851     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
8852   case RISCV::PseudoQuietFLT_S:
8853     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
8854   case RISCV::PseudoQuietFLE_D:
8855     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
8856   case RISCV::PseudoQuietFLT_D:
8857     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
8858   }
8859 }
8860 
8861 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
8862                                                         SDNode *Node) const {
8863   // Add FRM dependency to any instructions with dynamic rounding mode.
8864   unsigned Opc = MI.getOpcode();
8865   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
8866   if (Idx < 0)
8867     return;
8868   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
8869     return;
8870   // If the instruction already reads FRM, don't add another read.
8871   if (MI.readsRegister(RISCV::FRM))
8872     return;
8873   MI.addOperand(
8874       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
8875 }
8876 
8877 // Calling Convention Implementation.
8878 // The expectations for frontend ABI lowering vary from target to target.
8879 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
8880 // details, but this is a longer term goal. For now, we simply try to keep the
8881 // role of the frontend as simple and well-defined as possible. The rules can
8882 // be summarised as:
8883 // * Never split up large scalar arguments. We handle them here.
8884 // * If a hardfloat calling convention is being used, and the struct may be
8885 // passed in a pair of registers (fp+fp, int+fp), and both registers are
8886 // available, then pass as two separate arguments. If either the GPRs or FPRs
8887 // are exhausted, then pass according to the rule below.
8888 // * If a struct could never be passed in registers or directly in a stack
8889 // slot (as it is larger than 2*XLEN and the floating point rules don't
8890 // apply), then pass it using a pointer with the byval attribute.
8891 // * If a struct is less than 2*XLEN, then coerce to either a two-element
8892 // word-sized array or a 2*XLEN scalar (depending on alignment).
8893 // * The frontend can determine whether a struct is returned by reference or
8894 // not based on its size and fields. If it will be returned by reference, the
8895 // frontend must modify the prototype so a pointer with the sret annotation is
8896 // passed as the first argument. This is not necessary for large scalar
8897 // returns.
8898 // * Struct return values and varargs should be coerced to structs containing
8899 // register-size fields in the same situations they would be for fixed
8900 // arguments.
8901 
8902 static const MCPhysReg ArgGPRs[] = {
8903   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
8904   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
8905 };
8906 static const MCPhysReg ArgFPR16s[] = {
8907   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
8908   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
8909 };
8910 static const MCPhysReg ArgFPR32s[] = {
8911   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
8912   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
8913 };
8914 static const MCPhysReg ArgFPR64s[] = {
8915   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
8916   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
8917 };
8918 // This is an interim calling convention and it may be changed in the future.
8919 static const MCPhysReg ArgVRs[] = {
8920     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
8921     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
8922     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
8923 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
8924                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
8925                                      RISCV::V20M2, RISCV::V22M2};
8926 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
8927                                      RISCV::V20M4};
8928 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
8929 
8930 // Pass a 2*XLEN argument that has been split into two XLEN values through
8931 // registers or the stack as necessary.
8932 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
8933                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
8934                                 MVT ValVT2, MVT LocVT2,
8935                                 ISD::ArgFlagsTy ArgFlags2) {
8936   unsigned XLenInBytes = XLen / 8;
8937   if (Register Reg = State.AllocateReg(ArgGPRs)) {
8938     // At least one half can be passed via register.
8939     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
8940                                      VA1.getLocVT(), CCValAssign::Full));
8941   } else {
8942     // Both halves must be passed on the stack, with proper alignment.
8943     Align StackAlign =
8944         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
8945     State.addLoc(
8946         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
8947                             State.AllocateStack(XLenInBytes, StackAlign),
8948                             VA1.getLocVT(), CCValAssign::Full));
8949     State.addLoc(CCValAssign::getMem(
8950         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
8951         LocVT2, CCValAssign::Full));
8952     return false;
8953   }
8954 
8955   if (Register Reg = State.AllocateReg(ArgGPRs)) {
8956     // The second half can also be passed via register.
8957     State.addLoc(
8958         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
8959   } else {
8960     // The second half is passed via the stack, without additional alignment.
8961     State.addLoc(CCValAssign::getMem(
8962         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
8963         LocVT2, CCValAssign::Full));
8964   }
8965 
8966   return false;
8967 }
8968 
8969 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
8970                                Optional<unsigned> FirstMaskArgument,
8971                                CCState &State, const RISCVTargetLowering &TLI) {
8972   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
8973   if (RC == &RISCV::VRRegClass) {
8974     // Assign the first mask argument to V0.
8975     // This is an interim calling convention and it may be changed in the
8976     // future.
8977     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
8978       return State.AllocateReg(RISCV::V0);
8979     return State.AllocateReg(ArgVRs);
8980   }
8981   if (RC == &RISCV::VRM2RegClass)
8982     return State.AllocateReg(ArgVRM2s);
8983   if (RC == &RISCV::VRM4RegClass)
8984     return State.AllocateReg(ArgVRM4s);
8985   if (RC == &RISCV::VRM8RegClass)
8986     return State.AllocateReg(ArgVRM8s);
8987   llvm_unreachable("Unhandled register class for ValueType");
8988 }
8989 
8990 // Implements the RISC-V calling convention. Returns true upon failure.
8991 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
8992                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
8993                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
8994                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
8995                      Optional<unsigned> FirstMaskArgument) {
8996   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
8997   assert(XLen == 32 || XLen == 64);
8998   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
8999 
9000   // Any return value split in to more than two values can't be returned
9001   // directly. Vectors are returned via the available vector registers.
9002   if (!LocVT.isVector() && IsRet && ValNo > 1)
9003     return true;
9004 
9005   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9006   // variadic argument, or if no F16/F32 argument registers are available.
9007   bool UseGPRForF16_F32 = true;
9008   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9009   // variadic argument, or if no F64 argument registers are available.
9010   bool UseGPRForF64 = true;
9011 
9012   switch (ABI) {
9013   default:
9014     llvm_unreachable("Unexpected ABI");
9015   case RISCVABI::ABI_ILP32:
9016   case RISCVABI::ABI_LP64:
9017     break;
9018   case RISCVABI::ABI_ILP32F:
9019   case RISCVABI::ABI_LP64F:
9020     UseGPRForF16_F32 = !IsFixed;
9021     break;
9022   case RISCVABI::ABI_ILP32D:
9023   case RISCVABI::ABI_LP64D:
9024     UseGPRForF16_F32 = !IsFixed;
9025     UseGPRForF64 = !IsFixed;
9026     break;
9027   }
9028 
9029   // FPR16, FPR32, and FPR64 alias each other.
9030   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9031     UseGPRForF16_F32 = true;
9032     UseGPRForF64 = true;
9033   }
9034 
9035   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9036   // similar local variables rather than directly checking against the target
9037   // ABI.
9038 
9039   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9040     LocVT = XLenVT;
9041     LocInfo = CCValAssign::BCvt;
9042   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9043     LocVT = MVT::i64;
9044     LocInfo = CCValAssign::BCvt;
9045   }
9046 
9047   // If this is a variadic argument, the RISC-V calling convention requires
9048   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9049   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9050   // be used regardless of whether the original argument was split during
9051   // legalisation or not. The argument will not be passed by registers if the
9052   // original type is larger than 2*XLEN, so the register alignment rule does
9053   // not apply.
9054   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9055   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9056       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9057     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9058     // Skip 'odd' register if necessary.
9059     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9060       State.AllocateReg(ArgGPRs);
9061   }
9062 
9063   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9064   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9065       State.getPendingArgFlags();
9066 
9067   assert(PendingLocs.size() == PendingArgFlags.size() &&
9068          "PendingLocs and PendingArgFlags out of sync");
9069 
9070   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9071   // registers are exhausted.
9072   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9073     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9074            "Can't lower f64 if it is split");
9075     // Depending on available argument GPRS, f64 may be passed in a pair of
9076     // GPRs, split between a GPR and the stack, or passed completely on the
9077     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9078     // cases.
9079     Register Reg = State.AllocateReg(ArgGPRs);
9080     LocVT = MVT::i32;
9081     if (!Reg) {
9082       unsigned StackOffset = State.AllocateStack(8, Align(8));
9083       State.addLoc(
9084           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9085       return false;
9086     }
9087     if (!State.AllocateReg(ArgGPRs))
9088       State.AllocateStack(4, Align(4));
9089     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9090     return false;
9091   }
9092 
9093   // Fixed-length vectors are located in the corresponding scalable-vector
9094   // container types.
9095   if (ValVT.isFixedLengthVector())
9096     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9097 
9098   // Split arguments might be passed indirectly, so keep track of the pending
9099   // values. Split vectors are passed via a mix of registers and indirectly, so
9100   // treat them as we would any other argument.
9101   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9102     LocVT = XLenVT;
9103     LocInfo = CCValAssign::Indirect;
9104     PendingLocs.push_back(
9105         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9106     PendingArgFlags.push_back(ArgFlags);
9107     if (!ArgFlags.isSplitEnd()) {
9108       return false;
9109     }
9110   }
9111 
9112   // If the split argument only had two elements, it should be passed directly
9113   // in registers or on the stack.
9114   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9115       PendingLocs.size() <= 2) {
9116     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9117     // Apply the normal calling convention rules to the first half of the
9118     // split argument.
9119     CCValAssign VA = PendingLocs[0];
9120     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9121     PendingLocs.clear();
9122     PendingArgFlags.clear();
9123     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9124                                ArgFlags);
9125   }
9126 
9127   // Allocate to a register if possible, or else a stack slot.
9128   Register Reg;
9129   unsigned StoreSizeBytes = XLen / 8;
9130   Align StackAlign = Align(XLen / 8);
9131 
9132   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9133     Reg = State.AllocateReg(ArgFPR16s);
9134   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9135     Reg = State.AllocateReg(ArgFPR32s);
9136   else if (ValVT == MVT::f64 && !UseGPRForF64)
9137     Reg = State.AllocateReg(ArgFPR64s);
9138   else if (ValVT.isVector()) {
9139     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9140     if (!Reg) {
9141       // For return values, the vector must be passed fully via registers or
9142       // via the stack.
9143       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9144       // but we're using all of them.
9145       if (IsRet)
9146         return true;
9147       // Try using a GPR to pass the address
9148       if ((Reg = State.AllocateReg(ArgGPRs))) {
9149         LocVT = XLenVT;
9150         LocInfo = CCValAssign::Indirect;
9151       } else if (ValVT.isScalableVector()) {
9152         LocVT = XLenVT;
9153         LocInfo = CCValAssign::Indirect;
9154       } else {
9155         // Pass fixed-length vectors on the stack.
9156         LocVT = ValVT;
9157         StoreSizeBytes = ValVT.getStoreSize();
9158         // Align vectors to their element sizes, being careful for vXi1
9159         // vectors.
9160         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9161       }
9162     }
9163   } else {
9164     Reg = State.AllocateReg(ArgGPRs);
9165   }
9166 
9167   unsigned StackOffset =
9168       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9169 
9170   // If we reach this point and PendingLocs is non-empty, we must be at the
9171   // end of a split argument that must be passed indirectly.
9172   if (!PendingLocs.empty()) {
9173     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9174     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9175 
9176     for (auto &It : PendingLocs) {
9177       if (Reg)
9178         It.convertToReg(Reg);
9179       else
9180         It.convertToMem(StackOffset);
9181       State.addLoc(It);
9182     }
9183     PendingLocs.clear();
9184     PendingArgFlags.clear();
9185     return false;
9186   }
9187 
9188   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
9189           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
9190          "Expected an XLenVT or vector types at this stage");
9191 
9192   if (Reg) {
9193     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9194     return false;
9195   }
9196 
9197   // When a floating-point value is passed on the stack, no bit-conversion is
9198   // needed.
9199   if (ValVT.isFloatingPoint()) {
9200     LocVT = ValVT;
9201     LocInfo = CCValAssign::Full;
9202   }
9203   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9204   return false;
9205 }
9206 
9207 template <typename ArgTy>
9208 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
9209   for (const auto &ArgIdx : enumerate(Args)) {
9210     MVT ArgVT = ArgIdx.value().VT;
9211     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
9212       return ArgIdx.index();
9213   }
9214   return None;
9215 }
9216 
9217 void RISCVTargetLowering::analyzeInputArgs(
9218     MachineFunction &MF, CCState &CCInfo,
9219     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
9220     RISCVCCAssignFn Fn) const {
9221   unsigned NumArgs = Ins.size();
9222   FunctionType *FType = MF.getFunction().getFunctionType();
9223 
9224   Optional<unsigned> FirstMaskArgument;
9225   if (Subtarget.hasVInstructions())
9226     FirstMaskArgument = preAssignMask(Ins);
9227 
9228   for (unsigned i = 0; i != NumArgs; ++i) {
9229     MVT ArgVT = Ins[i].VT;
9230     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
9231 
9232     Type *ArgTy = nullptr;
9233     if (IsRet)
9234       ArgTy = FType->getReturnType();
9235     else if (Ins[i].isOrigArg())
9236       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
9237 
9238     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9239     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9240            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
9241            FirstMaskArgument)) {
9242       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
9243                         << EVT(ArgVT).getEVTString() << '\n');
9244       llvm_unreachable(nullptr);
9245     }
9246   }
9247 }
9248 
9249 void RISCVTargetLowering::analyzeOutputArgs(
9250     MachineFunction &MF, CCState &CCInfo,
9251     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
9252     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
9253   unsigned NumArgs = Outs.size();
9254 
9255   Optional<unsigned> FirstMaskArgument;
9256   if (Subtarget.hasVInstructions())
9257     FirstMaskArgument = preAssignMask(Outs);
9258 
9259   for (unsigned i = 0; i != NumArgs; i++) {
9260     MVT ArgVT = Outs[i].VT;
9261     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9262     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
9263 
9264     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9265     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9266            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
9267            FirstMaskArgument)) {
9268       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
9269                         << EVT(ArgVT).getEVTString() << "\n");
9270       llvm_unreachable(nullptr);
9271     }
9272   }
9273 }
9274 
9275 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
9276 // values.
9277 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
9278                                    const CCValAssign &VA, const SDLoc &DL,
9279                                    const RISCVSubtarget &Subtarget) {
9280   switch (VA.getLocInfo()) {
9281   default:
9282     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9283   case CCValAssign::Full:
9284     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
9285       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
9286     break;
9287   case CCValAssign::BCvt:
9288     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9289       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
9290     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9291       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
9292     else
9293       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
9294     break;
9295   }
9296   return Val;
9297 }
9298 
9299 // The caller is responsible for loading the full value if the argument is
9300 // passed with CCValAssign::Indirect.
9301 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
9302                                 const CCValAssign &VA, const SDLoc &DL,
9303                                 const RISCVTargetLowering &TLI) {
9304   MachineFunction &MF = DAG.getMachineFunction();
9305   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9306   EVT LocVT = VA.getLocVT();
9307   SDValue Val;
9308   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
9309   Register VReg = RegInfo.createVirtualRegister(RC);
9310   RegInfo.addLiveIn(VA.getLocReg(), VReg);
9311   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
9312 
9313   if (VA.getLocInfo() == CCValAssign::Indirect)
9314     return Val;
9315 
9316   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
9317 }
9318 
9319 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
9320                                    const CCValAssign &VA, const SDLoc &DL,
9321                                    const RISCVSubtarget &Subtarget) {
9322   EVT LocVT = VA.getLocVT();
9323 
9324   switch (VA.getLocInfo()) {
9325   default:
9326     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9327   case CCValAssign::Full:
9328     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
9329       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
9330     break;
9331   case CCValAssign::BCvt:
9332     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9333       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
9334     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9335       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
9336     else
9337       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
9338     break;
9339   }
9340   return Val;
9341 }
9342 
9343 // The caller is responsible for loading the full value if the argument is
9344 // passed with CCValAssign::Indirect.
9345 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
9346                                 const CCValAssign &VA, const SDLoc &DL) {
9347   MachineFunction &MF = DAG.getMachineFunction();
9348   MachineFrameInfo &MFI = MF.getFrameInfo();
9349   EVT LocVT = VA.getLocVT();
9350   EVT ValVT = VA.getValVT();
9351   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
9352   if (ValVT.isScalableVector()) {
9353     // When the value is a scalable vector, we save the pointer which points to
9354     // the scalable vector value in the stack. The ValVT will be the pointer
9355     // type, instead of the scalable vector type.
9356     ValVT = LocVT;
9357   }
9358   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
9359                                  /*IsImmutable=*/true);
9360   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
9361   SDValue Val;
9362 
9363   ISD::LoadExtType ExtType;
9364   switch (VA.getLocInfo()) {
9365   default:
9366     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9367   case CCValAssign::Full:
9368   case CCValAssign::Indirect:
9369   case CCValAssign::BCvt:
9370     ExtType = ISD::NON_EXTLOAD;
9371     break;
9372   }
9373   Val = DAG.getExtLoad(
9374       ExtType, DL, LocVT, Chain, FIN,
9375       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
9376   return Val;
9377 }
9378 
9379 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
9380                                        const CCValAssign &VA, const SDLoc &DL) {
9381   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
9382          "Unexpected VA");
9383   MachineFunction &MF = DAG.getMachineFunction();
9384   MachineFrameInfo &MFI = MF.getFrameInfo();
9385   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9386 
9387   if (VA.isMemLoc()) {
9388     // f64 is passed on the stack.
9389     int FI =
9390         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
9391     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9392     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
9393                        MachinePointerInfo::getFixedStack(MF, FI));
9394   }
9395 
9396   assert(VA.isRegLoc() && "Expected register VA assignment");
9397 
9398   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9399   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
9400   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
9401   SDValue Hi;
9402   if (VA.getLocReg() == RISCV::X17) {
9403     // Second half of f64 is passed on the stack.
9404     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
9405     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9406     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
9407                      MachinePointerInfo::getFixedStack(MF, FI));
9408   } else {
9409     // Second half of f64 is passed in another GPR.
9410     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9411     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
9412     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
9413   }
9414   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
9415 }
9416 
9417 // FastCC has less than 1% performance improvement for some particular
9418 // benchmark. But theoretically, it may has benenfit for some cases.
9419 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
9420                             unsigned ValNo, MVT ValVT, MVT LocVT,
9421                             CCValAssign::LocInfo LocInfo,
9422                             ISD::ArgFlagsTy ArgFlags, CCState &State,
9423                             bool IsFixed, bool IsRet, Type *OrigTy,
9424                             const RISCVTargetLowering &TLI,
9425                             Optional<unsigned> FirstMaskArgument) {
9426 
9427   // X5 and X6 might be used for save-restore libcall.
9428   static const MCPhysReg GPRList[] = {
9429       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
9430       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
9431       RISCV::X29, RISCV::X30, RISCV::X31};
9432 
9433   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9434     if (unsigned Reg = State.AllocateReg(GPRList)) {
9435       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9436       return false;
9437     }
9438   }
9439 
9440   if (LocVT == MVT::f16) {
9441     static const MCPhysReg FPR16List[] = {
9442         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
9443         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
9444         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
9445         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
9446     if (unsigned Reg = State.AllocateReg(FPR16List)) {
9447       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9448       return false;
9449     }
9450   }
9451 
9452   if (LocVT == MVT::f32) {
9453     static const MCPhysReg FPR32List[] = {
9454         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
9455         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
9456         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
9457         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
9458     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9459       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9460       return false;
9461     }
9462   }
9463 
9464   if (LocVT == MVT::f64) {
9465     static const MCPhysReg FPR64List[] = {
9466         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
9467         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
9468         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
9469         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
9470     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9471       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9472       return false;
9473     }
9474   }
9475 
9476   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
9477     unsigned Offset4 = State.AllocateStack(4, Align(4));
9478     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
9479     return false;
9480   }
9481 
9482   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
9483     unsigned Offset5 = State.AllocateStack(8, Align(8));
9484     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
9485     return false;
9486   }
9487 
9488   if (LocVT.isVector()) {
9489     if (unsigned Reg =
9490             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
9491       // Fixed-length vectors are located in the corresponding scalable-vector
9492       // container types.
9493       if (ValVT.isFixedLengthVector())
9494         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9495       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9496     } else {
9497       // Try and pass the address via a "fast" GPR.
9498       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
9499         LocInfo = CCValAssign::Indirect;
9500         LocVT = TLI.getSubtarget().getXLenVT();
9501         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
9502       } else if (ValVT.isFixedLengthVector()) {
9503         auto StackAlign =
9504             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9505         unsigned StackOffset =
9506             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
9507         State.addLoc(
9508             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9509       } else {
9510         // Can't pass scalable vectors on the stack.
9511         return true;
9512       }
9513     }
9514 
9515     return false;
9516   }
9517 
9518   return true; // CC didn't match.
9519 }
9520 
9521 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
9522                          CCValAssign::LocInfo LocInfo,
9523                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
9524 
9525   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9526     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
9527     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
9528     static const MCPhysReg GPRList[] = {
9529         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
9530         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
9531     if (unsigned Reg = State.AllocateReg(GPRList)) {
9532       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9533       return false;
9534     }
9535   }
9536 
9537   if (LocVT == MVT::f32) {
9538     // Pass in STG registers: F1, ..., F6
9539     //                        fs0 ... fs5
9540     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
9541                                           RISCV::F18_F, RISCV::F19_F,
9542                                           RISCV::F20_F, RISCV::F21_F};
9543     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9544       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9545       return false;
9546     }
9547   }
9548 
9549   if (LocVT == MVT::f64) {
9550     // Pass in STG registers: D1, ..., D6
9551     //                        fs6 ... fs11
9552     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
9553                                           RISCV::F24_D, RISCV::F25_D,
9554                                           RISCV::F26_D, RISCV::F27_D};
9555     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9556       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9557       return false;
9558     }
9559   }
9560 
9561   report_fatal_error("No registers left in GHC calling convention");
9562   return true;
9563 }
9564 
9565 // Transform physical registers into virtual registers.
9566 SDValue RISCVTargetLowering::LowerFormalArguments(
9567     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
9568     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
9569     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
9570 
9571   MachineFunction &MF = DAG.getMachineFunction();
9572 
9573   switch (CallConv) {
9574   default:
9575     report_fatal_error("Unsupported calling convention");
9576   case CallingConv::C:
9577   case CallingConv::Fast:
9578     break;
9579   case CallingConv::GHC:
9580     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
9581         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
9582       report_fatal_error(
9583         "GHC calling convention requires the F and D instruction set extensions");
9584   }
9585 
9586   const Function &Func = MF.getFunction();
9587   if (Func.hasFnAttribute("interrupt")) {
9588     if (!Func.arg_empty())
9589       report_fatal_error(
9590         "Functions with the interrupt attribute cannot have arguments!");
9591 
9592     StringRef Kind =
9593       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9594 
9595     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
9596       report_fatal_error(
9597         "Function interrupt attribute argument not supported!");
9598   }
9599 
9600   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9601   MVT XLenVT = Subtarget.getXLenVT();
9602   unsigned XLenInBytes = Subtarget.getXLen() / 8;
9603   // Used with vargs to acumulate store chains.
9604   std::vector<SDValue> OutChains;
9605 
9606   // Assign locations to all of the incoming arguments.
9607   SmallVector<CCValAssign, 16> ArgLocs;
9608   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
9609 
9610   if (CallConv == CallingConv::GHC)
9611     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
9612   else
9613     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
9614                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
9615                                                    : CC_RISCV);
9616 
9617   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
9618     CCValAssign &VA = ArgLocs[i];
9619     SDValue ArgValue;
9620     // Passing f64 on RV32D with a soft float ABI must be handled as a special
9621     // case.
9622     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
9623       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
9624     else if (VA.isRegLoc())
9625       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
9626     else
9627       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
9628 
9629     if (VA.getLocInfo() == CCValAssign::Indirect) {
9630       // If the original argument was split and passed by reference (e.g. i128
9631       // on RV32), we need to load all parts of it here (using the same
9632       // address). Vectors may be partly split to registers and partly to the
9633       // stack, in which case the base address is partly offset and subsequent
9634       // stores are relative to that.
9635       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
9636                                    MachinePointerInfo()));
9637       unsigned ArgIndex = Ins[i].OrigArgIndex;
9638       unsigned ArgPartOffset = Ins[i].PartOffset;
9639       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
9640       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
9641         CCValAssign &PartVA = ArgLocs[i + 1];
9642         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
9643         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
9644         if (PartVA.getValVT().isScalableVector())
9645           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
9646         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
9647         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
9648                                      MachinePointerInfo()));
9649         ++i;
9650       }
9651       continue;
9652     }
9653     InVals.push_back(ArgValue);
9654   }
9655 
9656   if (IsVarArg) {
9657     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
9658     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
9659     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
9660     MachineFrameInfo &MFI = MF.getFrameInfo();
9661     MachineRegisterInfo &RegInfo = MF.getRegInfo();
9662     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
9663 
9664     // Offset of the first variable argument from stack pointer, and size of
9665     // the vararg save area. For now, the varargs save area is either zero or
9666     // large enough to hold a0-a7.
9667     int VaArgOffset, VarArgsSaveSize;
9668 
9669     // If all registers are allocated, then all varargs must be passed on the
9670     // stack and we don't need to save any argregs.
9671     if (ArgRegs.size() == Idx) {
9672       VaArgOffset = CCInfo.getNextStackOffset();
9673       VarArgsSaveSize = 0;
9674     } else {
9675       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
9676       VaArgOffset = -VarArgsSaveSize;
9677     }
9678 
9679     // Record the frame index of the first variable argument
9680     // which is a value necessary to VASTART.
9681     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
9682     RVFI->setVarArgsFrameIndex(FI);
9683 
9684     // If saving an odd number of registers then create an extra stack slot to
9685     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
9686     // offsets to even-numbered registered remain 2*XLEN-aligned.
9687     if (Idx % 2) {
9688       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
9689       VarArgsSaveSize += XLenInBytes;
9690     }
9691 
9692     // Copy the integer registers that may have been used for passing varargs
9693     // to the vararg save area.
9694     for (unsigned I = Idx; I < ArgRegs.size();
9695          ++I, VaArgOffset += XLenInBytes) {
9696       const Register Reg = RegInfo.createVirtualRegister(RC);
9697       RegInfo.addLiveIn(ArgRegs[I], Reg);
9698       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
9699       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
9700       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
9701       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
9702                                    MachinePointerInfo::getFixedStack(MF, FI));
9703       cast<StoreSDNode>(Store.getNode())
9704           ->getMemOperand()
9705           ->setValue((Value *)nullptr);
9706       OutChains.push_back(Store);
9707     }
9708     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
9709   }
9710 
9711   // All stores are grouped in one node to allow the matching between
9712   // the size of Ins and InVals. This only happens for vararg functions.
9713   if (!OutChains.empty()) {
9714     OutChains.push_back(Chain);
9715     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
9716   }
9717 
9718   return Chain;
9719 }
9720 
9721 /// isEligibleForTailCallOptimization - Check whether the call is eligible
9722 /// for tail call optimization.
9723 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
9724 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
9725     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
9726     const SmallVector<CCValAssign, 16> &ArgLocs) const {
9727 
9728   auto &Callee = CLI.Callee;
9729   auto CalleeCC = CLI.CallConv;
9730   auto &Outs = CLI.Outs;
9731   auto &Caller = MF.getFunction();
9732   auto CallerCC = Caller.getCallingConv();
9733 
9734   // Exception-handling functions need a special set of instructions to
9735   // indicate a return to the hardware. Tail-calling another function would
9736   // probably break this.
9737   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
9738   // should be expanded as new function attributes are introduced.
9739   if (Caller.hasFnAttribute("interrupt"))
9740     return false;
9741 
9742   // Do not tail call opt if the stack is used to pass parameters.
9743   if (CCInfo.getNextStackOffset() != 0)
9744     return false;
9745 
9746   // Do not tail call opt if any parameters need to be passed indirectly.
9747   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
9748   // passed indirectly. So the address of the value will be passed in a
9749   // register, or if not available, then the address is put on the stack. In
9750   // order to pass indirectly, space on the stack often needs to be allocated
9751   // in order to store the value. In this case the CCInfo.getNextStackOffset()
9752   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
9753   // are passed CCValAssign::Indirect.
9754   for (auto &VA : ArgLocs)
9755     if (VA.getLocInfo() == CCValAssign::Indirect)
9756       return false;
9757 
9758   // Do not tail call opt if either caller or callee uses struct return
9759   // semantics.
9760   auto IsCallerStructRet = Caller.hasStructRetAttr();
9761   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
9762   if (IsCallerStructRet || IsCalleeStructRet)
9763     return false;
9764 
9765   // Externally-defined functions with weak linkage should not be
9766   // tail-called. The behaviour of branch instructions in this situation (as
9767   // used for tail calls) is implementation-defined, so we cannot rely on the
9768   // linker replacing the tail call with a return.
9769   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
9770     const GlobalValue *GV = G->getGlobal();
9771     if (GV->hasExternalWeakLinkage())
9772       return false;
9773   }
9774 
9775   // The callee has to preserve all registers the caller needs to preserve.
9776   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
9777   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
9778   if (CalleeCC != CallerCC) {
9779     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
9780     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
9781       return false;
9782   }
9783 
9784   // Byval parameters hand the function a pointer directly into the stack area
9785   // we want to reuse during a tail call. Working around this *is* possible
9786   // but less efficient and uglier in LowerCall.
9787   for (auto &Arg : Outs)
9788     if (Arg.Flags.isByVal())
9789       return false;
9790 
9791   return true;
9792 }
9793 
9794 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
9795   return DAG.getDataLayout().getPrefTypeAlign(
9796       VT.getTypeForEVT(*DAG.getContext()));
9797 }
9798 
9799 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
9800 // and output parameter nodes.
9801 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
9802                                        SmallVectorImpl<SDValue> &InVals) const {
9803   SelectionDAG &DAG = CLI.DAG;
9804   SDLoc &DL = CLI.DL;
9805   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
9806   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
9807   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
9808   SDValue Chain = CLI.Chain;
9809   SDValue Callee = CLI.Callee;
9810   bool &IsTailCall = CLI.IsTailCall;
9811   CallingConv::ID CallConv = CLI.CallConv;
9812   bool IsVarArg = CLI.IsVarArg;
9813   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9814   MVT XLenVT = Subtarget.getXLenVT();
9815 
9816   MachineFunction &MF = DAG.getMachineFunction();
9817 
9818   // Analyze the operands of the call, assigning locations to each operand.
9819   SmallVector<CCValAssign, 16> ArgLocs;
9820   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
9821 
9822   if (CallConv == CallingConv::GHC)
9823     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
9824   else
9825     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
9826                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
9827                                                     : CC_RISCV);
9828 
9829   // Check if it's really possible to do a tail call.
9830   if (IsTailCall)
9831     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
9832 
9833   if (IsTailCall)
9834     ++NumTailCalls;
9835   else if (CLI.CB && CLI.CB->isMustTailCall())
9836     report_fatal_error("failed to perform tail call elimination on a call "
9837                        "site marked musttail");
9838 
9839   // Get a count of how many bytes are to be pushed on the stack.
9840   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
9841 
9842   // Create local copies for byval args
9843   SmallVector<SDValue, 8> ByValArgs;
9844   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
9845     ISD::ArgFlagsTy Flags = Outs[i].Flags;
9846     if (!Flags.isByVal())
9847       continue;
9848 
9849     SDValue Arg = OutVals[i];
9850     unsigned Size = Flags.getByValSize();
9851     Align Alignment = Flags.getNonZeroByValAlign();
9852 
9853     int FI =
9854         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
9855     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
9856     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
9857 
9858     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
9859                           /*IsVolatile=*/false,
9860                           /*AlwaysInline=*/false, IsTailCall,
9861                           MachinePointerInfo(), MachinePointerInfo());
9862     ByValArgs.push_back(FIPtr);
9863   }
9864 
9865   if (!IsTailCall)
9866     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
9867 
9868   // Copy argument values to their designated locations.
9869   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
9870   SmallVector<SDValue, 8> MemOpChains;
9871   SDValue StackPtr;
9872   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
9873     CCValAssign &VA = ArgLocs[i];
9874     SDValue ArgValue = OutVals[i];
9875     ISD::ArgFlagsTy Flags = Outs[i].Flags;
9876 
9877     // Handle passing f64 on RV32D with a soft float ABI as a special case.
9878     bool IsF64OnRV32DSoftABI =
9879         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
9880     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
9881       SDValue SplitF64 = DAG.getNode(
9882           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
9883       SDValue Lo = SplitF64.getValue(0);
9884       SDValue Hi = SplitF64.getValue(1);
9885 
9886       Register RegLo = VA.getLocReg();
9887       RegsToPass.push_back(std::make_pair(RegLo, Lo));
9888 
9889       if (RegLo == RISCV::X17) {
9890         // Second half of f64 is passed on the stack.
9891         // Work out the address of the stack slot.
9892         if (!StackPtr.getNode())
9893           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
9894         // Emit the store.
9895         MemOpChains.push_back(
9896             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
9897       } else {
9898         // Second half of f64 is passed in another GPR.
9899         assert(RegLo < RISCV::X31 && "Invalid register pair");
9900         Register RegHigh = RegLo + 1;
9901         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
9902       }
9903       continue;
9904     }
9905 
9906     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
9907     // as any other MemLoc.
9908 
9909     // Promote the value if needed.
9910     // For now, only handle fully promoted and indirect arguments.
9911     if (VA.getLocInfo() == CCValAssign::Indirect) {
9912       // Store the argument in a stack slot and pass its address.
9913       Align StackAlign =
9914           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
9915                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
9916       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
9917       // If the original argument was split (e.g. i128), we need
9918       // to store the required parts of it here (and pass just one address).
9919       // Vectors may be partly split to registers and partly to the stack, in
9920       // which case the base address is partly offset and subsequent stores are
9921       // relative to that.
9922       unsigned ArgIndex = Outs[i].OrigArgIndex;
9923       unsigned ArgPartOffset = Outs[i].PartOffset;
9924       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
9925       // Calculate the total size to store. We don't have access to what we're
9926       // actually storing other than performing the loop and collecting the
9927       // info.
9928       SmallVector<std::pair<SDValue, SDValue>> Parts;
9929       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
9930         SDValue PartValue = OutVals[i + 1];
9931         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
9932         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
9933         EVT PartVT = PartValue.getValueType();
9934         if (PartVT.isScalableVector())
9935           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
9936         StoredSize += PartVT.getStoreSize();
9937         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
9938         Parts.push_back(std::make_pair(PartValue, Offset));
9939         ++i;
9940       }
9941       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
9942       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
9943       MemOpChains.push_back(
9944           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
9945                        MachinePointerInfo::getFixedStack(MF, FI)));
9946       for (const auto &Part : Parts) {
9947         SDValue PartValue = Part.first;
9948         SDValue PartOffset = Part.second;
9949         SDValue Address =
9950             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
9951         MemOpChains.push_back(
9952             DAG.getStore(Chain, DL, PartValue, Address,
9953                          MachinePointerInfo::getFixedStack(MF, FI)));
9954       }
9955       ArgValue = SpillSlot;
9956     } else {
9957       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
9958     }
9959 
9960     // Use local copy if it is a byval arg.
9961     if (Flags.isByVal())
9962       ArgValue = ByValArgs[j++];
9963 
9964     if (VA.isRegLoc()) {
9965       // Queue up the argument copies and emit them at the end.
9966       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
9967     } else {
9968       assert(VA.isMemLoc() && "Argument not register or memory");
9969       assert(!IsTailCall && "Tail call not allowed if stack is used "
9970                             "for passing parameters");
9971 
9972       // Work out the address of the stack slot.
9973       if (!StackPtr.getNode())
9974         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
9975       SDValue Address =
9976           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
9977                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
9978 
9979       // Emit the store.
9980       MemOpChains.push_back(
9981           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
9982     }
9983   }
9984 
9985   // Join the stores, which are independent of one another.
9986   if (!MemOpChains.empty())
9987     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
9988 
9989   SDValue Glue;
9990 
9991   // Build a sequence of copy-to-reg nodes, chained and glued together.
9992   for (auto &Reg : RegsToPass) {
9993     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
9994     Glue = Chain.getValue(1);
9995   }
9996 
9997   // Validate that none of the argument registers have been marked as
9998   // reserved, if so report an error. Do the same for the return address if this
9999   // is not a tailcall.
10000   validateCCReservedRegs(RegsToPass, MF);
10001   if (!IsTailCall &&
10002       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10003     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10004         MF.getFunction(),
10005         "Return address register required, but has been reserved."});
10006 
10007   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10008   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10009   // split it and then direct call can be matched by PseudoCALL.
10010   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10011     const GlobalValue *GV = S->getGlobal();
10012 
10013     unsigned OpFlags = RISCVII::MO_CALL;
10014     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10015       OpFlags = RISCVII::MO_PLT;
10016 
10017     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10018   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10019     unsigned OpFlags = RISCVII::MO_CALL;
10020 
10021     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10022                                                  nullptr))
10023       OpFlags = RISCVII::MO_PLT;
10024 
10025     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10026   }
10027 
10028   // The first call operand is the chain and the second is the target address.
10029   SmallVector<SDValue, 8> Ops;
10030   Ops.push_back(Chain);
10031   Ops.push_back(Callee);
10032 
10033   // Add argument registers to the end of the list so that they are
10034   // known live into the call.
10035   for (auto &Reg : RegsToPass)
10036     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10037 
10038   if (!IsTailCall) {
10039     // Add a register mask operand representing the call-preserved registers.
10040     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10041     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10042     assert(Mask && "Missing call preserved mask for calling convention");
10043     Ops.push_back(DAG.getRegisterMask(Mask));
10044   }
10045 
10046   // Glue the call to the argument copies, if any.
10047   if (Glue.getNode())
10048     Ops.push_back(Glue);
10049 
10050   // Emit the call.
10051   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10052 
10053   if (IsTailCall) {
10054     MF.getFrameInfo().setHasTailCall();
10055     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10056   }
10057 
10058   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10059   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10060   Glue = Chain.getValue(1);
10061 
10062   // Mark the end of the call, which is glued to the call itself.
10063   Chain = DAG.getCALLSEQ_END(Chain,
10064                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10065                              DAG.getConstant(0, DL, PtrVT, true),
10066                              Glue, DL);
10067   Glue = Chain.getValue(1);
10068 
10069   // Assign locations to each value returned by this call.
10070   SmallVector<CCValAssign, 16> RVLocs;
10071   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10072   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10073 
10074   // Copy all of the result registers out of their specified physreg.
10075   for (auto &VA : RVLocs) {
10076     // Copy the value out
10077     SDValue RetValue =
10078         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10079     // Glue the RetValue to the end of the call sequence
10080     Chain = RetValue.getValue(1);
10081     Glue = RetValue.getValue(2);
10082 
10083     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10084       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10085       SDValue RetValue2 =
10086           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10087       Chain = RetValue2.getValue(1);
10088       Glue = RetValue2.getValue(2);
10089       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10090                              RetValue2);
10091     }
10092 
10093     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10094 
10095     InVals.push_back(RetValue);
10096   }
10097 
10098   return Chain;
10099 }
10100 
10101 bool RISCVTargetLowering::CanLowerReturn(
10102     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10103     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10104   SmallVector<CCValAssign, 16> RVLocs;
10105   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10106 
10107   Optional<unsigned> FirstMaskArgument;
10108   if (Subtarget.hasVInstructions())
10109     FirstMaskArgument = preAssignMask(Outs);
10110 
10111   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10112     MVT VT = Outs[i].VT;
10113     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10114     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10115     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10116                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10117                  *this, FirstMaskArgument))
10118       return false;
10119   }
10120   return true;
10121 }
10122 
10123 SDValue
10124 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10125                                  bool IsVarArg,
10126                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10127                                  const SmallVectorImpl<SDValue> &OutVals,
10128                                  const SDLoc &DL, SelectionDAG &DAG) const {
10129   const MachineFunction &MF = DAG.getMachineFunction();
10130   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10131 
10132   // Stores the assignment of the return value to a location.
10133   SmallVector<CCValAssign, 16> RVLocs;
10134 
10135   // Info about the registers and stack slot.
10136   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10137                  *DAG.getContext());
10138 
10139   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10140                     nullptr, CC_RISCV);
10141 
10142   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10143     report_fatal_error("GHC functions return void only");
10144 
10145   SDValue Glue;
10146   SmallVector<SDValue, 4> RetOps(1, Chain);
10147 
10148   // Copy the result values into the output registers.
10149   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10150     SDValue Val = OutVals[i];
10151     CCValAssign &VA = RVLocs[i];
10152     assert(VA.isRegLoc() && "Can only return in registers!");
10153 
10154     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10155       // Handle returning f64 on RV32D with a soft float ABI.
10156       assert(VA.isRegLoc() && "Expected return via registers");
10157       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10158                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10159       SDValue Lo = SplitF64.getValue(0);
10160       SDValue Hi = SplitF64.getValue(1);
10161       Register RegLo = VA.getLocReg();
10162       assert(RegLo < RISCV::X31 && "Invalid register pair");
10163       Register RegHi = RegLo + 1;
10164 
10165       if (STI.isRegisterReservedByUser(RegLo) ||
10166           STI.isRegisterReservedByUser(RegHi))
10167         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10168             MF.getFunction(),
10169             "Return value register required, but has been reserved."});
10170 
10171       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10172       Glue = Chain.getValue(1);
10173       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10174       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10175       Glue = Chain.getValue(1);
10176       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10177     } else {
10178       // Handle a 'normal' return.
10179       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10180       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10181 
10182       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10183         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10184             MF.getFunction(),
10185             "Return value register required, but has been reserved."});
10186 
10187       // Guarantee that all emitted copies are stuck together.
10188       Glue = Chain.getValue(1);
10189       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
10190     }
10191   }
10192 
10193   RetOps[0] = Chain; // Update chain.
10194 
10195   // Add the glue node if we have it.
10196   if (Glue.getNode()) {
10197     RetOps.push_back(Glue);
10198   }
10199 
10200   unsigned RetOpc = RISCVISD::RET_FLAG;
10201   // Interrupt service routines use different return instructions.
10202   const Function &Func = DAG.getMachineFunction().getFunction();
10203   if (Func.hasFnAttribute("interrupt")) {
10204     if (!Func.getReturnType()->isVoidTy())
10205       report_fatal_error(
10206           "Functions with the interrupt attribute must have void return type!");
10207 
10208     MachineFunction &MF = DAG.getMachineFunction();
10209     StringRef Kind =
10210       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10211 
10212     if (Kind == "user")
10213       RetOpc = RISCVISD::URET_FLAG;
10214     else if (Kind == "supervisor")
10215       RetOpc = RISCVISD::SRET_FLAG;
10216     else
10217       RetOpc = RISCVISD::MRET_FLAG;
10218   }
10219 
10220   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
10221 }
10222 
10223 void RISCVTargetLowering::validateCCReservedRegs(
10224     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
10225     MachineFunction &MF) const {
10226   const Function &F = MF.getFunction();
10227   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10228 
10229   if (llvm::any_of(Regs, [&STI](auto Reg) {
10230         return STI.isRegisterReservedByUser(Reg.first);
10231       }))
10232     F.getContext().diagnose(DiagnosticInfoUnsupported{
10233         F, "Argument register required, but has been reserved."});
10234 }
10235 
10236 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
10237   return CI->isTailCall();
10238 }
10239 
10240 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
10241 #define NODE_NAME_CASE(NODE)                                                   \
10242   case RISCVISD::NODE:                                                         \
10243     return "RISCVISD::" #NODE;
10244   // clang-format off
10245   switch ((RISCVISD::NodeType)Opcode) {
10246   case RISCVISD::FIRST_NUMBER:
10247     break;
10248   NODE_NAME_CASE(RET_FLAG)
10249   NODE_NAME_CASE(URET_FLAG)
10250   NODE_NAME_CASE(SRET_FLAG)
10251   NODE_NAME_CASE(MRET_FLAG)
10252   NODE_NAME_CASE(CALL)
10253   NODE_NAME_CASE(SELECT_CC)
10254   NODE_NAME_CASE(BR_CC)
10255   NODE_NAME_CASE(BuildPairF64)
10256   NODE_NAME_CASE(SplitF64)
10257   NODE_NAME_CASE(TAIL)
10258   NODE_NAME_CASE(MULHSU)
10259   NODE_NAME_CASE(SLLW)
10260   NODE_NAME_CASE(SRAW)
10261   NODE_NAME_CASE(SRLW)
10262   NODE_NAME_CASE(DIVW)
10263   NODE_NAME_CASE(DIVUW)
10264   NODE_NAME_CASE(REMUW)
10265   NODE_NAME_CASE(ROLW)
10266   NODE_NAME_CASE(RORW)
10267   NODE_NAME_CASE(CLZW)
10268   NODE_NAME_CASE(CTZW)
10269   NODE_NAME_CASE(FSLW)
10270   NODE_NAME_CASE(FSRW)
10271   NODE_NAME_CASE(FSL)
10272   NODE_NAME_CASE(FSR)
10273   NODE_NAME_CASE(FMV_H_X)
10274   NODE_NAME_CASE(FMV_X_ANYEXTH)
10275   NODE_NAME_CASE(FMV_W_X_RV64)
10276   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
10277   NODE_NAME_CASE(FCVT_X)
10278   NODE_NAME_CASE(FCVT_XU)
10279   NODE_NAME_CASE(FCVT_W_RV64)
10280   NODE_NAME_CASE(FCVT_WU_RV64)
10281   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
10282   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
10283   NODE_NAME_CASE(READ_CYCLE_WIDE)
10284   NODE_NAME_CASE(GREV)
10285   NODE_NAME_CASE(GREVW)
10286   NODE_NAME_CASE(GORC)
10287   NODE_NAME_CASE(GORCW)
10288   NODE_NAME_CASE(SHFL)
10289   NODE_NAME_CASE(SHFLW)
10290   NODE_NAME_CASE(UNSHFL)
10291   NODE_NAME_CASE(UNSHFLW)
10292   NODE_NAME_CASE(BFP)
10293   NODE_NAME_CASE(BFPW)
10294   NODE_NAME_CASE(BCOMPRESS)
10295   NODE_NAME_CASE(BCOMPRESSW)
10296   NODE_NAME_CASE(BDECOMPRESS)
10297   NODE_NAME_CASE(BDECOMPRESSW)
10298   NODE_NAME_CASE(VMV_V_X_VL)
10299   NODE_NAME_CASE(VFMV_V_F_VL)
10300   NODE_NAME_CASE(VMV_X_S)
10301   NODE_NAME_CASE(VMV_S_X_VL)
10302   NODE_NAME_CASE(VFMV_S_F_VL)
10303   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
10304   NODE_NAME_CASE(READ_VLENB)
10305   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
10306   NODE_NAME_CASE(VSLIDEUP_VL)
10307   NODE_NAME_CASE(VSLIDE1UP_VL)
10308   NODE_NAME_CASE(VSLIDEDOWN_VL)
10309   NODE_NAME_CASE(VSLIDE1DOWN_VL)
10310   NODE_NAME_CASE(VID_VL)
10311   NODE_NAME_CASE(VFNCVT_ROD_VL)
10312   NODE_NAME_CASE(VECREDUCE_ADD_VL)
10313   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
10314   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
10315   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
10316   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
10317   NODE_NAME_CASE(VECREDUCE_AND_VL)
10318   NODE_NAME_CASE(VECREDUCE_OR_VL)
10319   NODE_NAME_CASE(VECREDUCE_XOR_VL)
10320   NODE_NAME_CASE(VECREDUCE_FADD_VL)
10321   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
10322   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
10323   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
10324   NODE_NAME_CASE(ADD_VL)
10325   NODE_NAME_CASE(AND_VL)
10326   NODE_NAME_CASE(MUL_VL)
10327   NODE_NAME_CASE(OR_VL)
10328   NODE_NAME_CASE(SDIV_VL)
10329   NODE_NAME_CASE(SHL_VL)
10330   NODE_NAME_CASE(SREM_VL)
10331   NODE_NAME_CASE(SRA_VL)
10332   NODE_NAME_CASE(SRL_VL)
10333   NODE_NAME_CASE(SUB_VL)
10334   NODE_NAME_CASE(UDIV_VL)
10335   NODE_NAME_CASE(UREM_VL)
10336   NODE_NAME_CASE(XOR_VL)
10337   NODE_NAME_CASE(SADDSAT_VL)
10338   NODE_NAME_CASE(UADDSAT_VL)
10339   NODE_NAME_CASE(SSUBSAT_VL)
10340   NODE_NAME_CASE(USUBSAT_VL)
10341   NODE_NAME_CASE(FADD_VL)
10342   NODE_NAME_CASE(FSUB_VL)
10343   NODE_NAME_CASE(FMUL_VL)
10344   NODE_NAME_CASE(FDIV_VL)
10345   NODE_NAME_CASE(FNEG_VL)
10346   NODE_NAME_CASE(FABS_VL)
10347   NODE_NAME_CASE(FSQRT_VL)
10348   NODE_NAME_CASE(FMA_VL)
10349   NODE_NAME_CASE(FCOPYSIGN_VL)
10350   NODE_NAME_CASE(SMIN_VL)
10351   NODE_NAME_CASE(SMAX_VL)
10352   NODE_NAME_CASE(UMIN_VL)
10353   NODE_NAME_CASE(UMAX_VL)
10354   NODE_NAME_CASE(FMINNUM_VL)
10355   NODE_NAME_CASE(FMAXNUM_VL)
10356   NODE_NAME_CASE(MULHS_VL)
10357   NODE_NAME_CASE(MULHU_VL)
10358   NODE_NAME_CASE(FP_TO_SINT_VL)
10359   NODE_NAME_CASE(FP_TO_UINT_VL)
10360   NODE_NAME_CASE(SINT_TO_FP_VL)
10361   NODE_NAME_CASE(UINT_TO_FP_VL)
10362   NODE_NAME_CASE(FP_EXTEND_VL)
10363   NODE_NAME_CASE(FP_ROUND_VL)
10364   NODE_NAME_CASE(VWMUL_VL)
10365   NODE_NAME_CASE(VWMULU_VL)
10366   NODE_NAME_CASE(VWMULSU_VL)
10367   NODE_NAME_CASE(VWADD_VL)
10368   NODE_NAME_CASE(VWADDU_VL)
10369   NODE_NAME_CASE(VWSUB_VL)
10370   NODE_NAME_CASE(VWSUBU_VL)
10371   NODE_NAME_CASE(VWADD_W_VL)
10372   NODE_NAME_CASE(VWADDU_W_VL)
10373   NODE_NAME_CASE(VWSUB_W_VL)
10374   NODE_NAME_CASE(VWSUBU_W_VL)
10375   NODE_NAME_CASE(SETCC_VL)
10376   NODE_NAME_CASE(VSELECT_VL)
10377   NODE_NAME_CASE(VP_MERGE_VL)
10378   NODE_NAME_CASE(VMAND_VL)
10379   NODE_NAME_CASE(VMOR_VL)
10380   NODE_NAME_CASE(VMXOR_VL)
10381   NODE_NAME_CASE(VMCLR_VL)
10382   NODE_NAME_CASE(VMSET_VL)
10383   NODE_NAME_CASE(VRGATHER_VX_VL)
10384   NODE_NAME_CASE(VRGATHER_VV_VL)
10385   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
10386   NODE_NAME_CASE(VSEXT_VL)
10387   NODE_NAME_CASE(VZEXT_VL)
10388   NODE_NAME_CASE(VCPOP_VL)
10389   NODE_NAME_CASE(VLE_VL)
10390   NODE_NAME_CASE(VSE_VL)
10391   NODE_NAME_CASE(READ_CSR)
10392   NODE_NAME_CASE(WRITE_CSR)
10393   NODE_NAME_CASE(SWAP_CSR)
10394   }
10395   // clang-format on
10396   return nullptr;
10397 #undef NODE_NAME_CASE
10398 }
10399 
10400 /// getConstraintType - Given a constraint letter, return the type of
10401 /// constraint it is for this target.
10402 RISCVTargetLowering::ConstraintType
10403 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
10404   if (Constraint.size() == 1) {
10405     switch (Constraint[0]) {
10406     default:
10407       break;
10408     case 'f':
10409       return C_RegisterClass;
10410     case 'I':
10411     case 'J':
10412     case 'K':
10413       return C_Immediate;
10414     case 'A':
10415       return C_Memory;
10416     case 'S': // A symbolic address
10417       return C_Other;
10418     }
10419   } else {
10420     if (Constraint == "vr" || Constraint == "vm")
10421       return C_RegisterClass;
10422   }
10423   return TargetLowering::getConstraintType(Constraint);
10424 }
10425 
10426 std::pair<unsigned, const TargetRegisterClass *>
10427 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10428                                                   StringRef Constraint,
10429                                                   MVT VT) const {
10430   // First, see if this is a constraint that directly corresponds to a
10431   // RISCV register class.
10432   if (Constraint.size() == 1) {
10433     switch (Constraint[0]) {
10434     case 'r':
10435       // TODO: Support fixed vectors up to XLen for P extension?
10436       if (VT.isVector())
10437         break;
10438       return std::make_pair(0U, &RISCV::GPRRegClass);
10439     case 'f':
10440       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
10441         return std::make_pair(0U, &RISCV::FPR16RegClass);
10442       if (Subtarget.hasStdExtF() && VT == MVT::f32)
10443         return std::make_pair(0U, &RISCV::FPR32RegClass);
10444       if (Subtarget.hasStdExtD() && VT == MVT::f64)
10445         return std::make_pair(0U, &RISCV::FPR64RegClass);
10446       break;
10447     default:
10448       break;
10449     }
10450   } else if (Constraint == "vr") {
10451     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
10452                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10453       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
10454         return std::make_pair(0U, RC);
10455     }
10456   } else if (Constraint == "vm") {
10457     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
10458       return std::make_pair(0U, &RISCV::VMV0RegClass);
10459   }
10460 
10461   // Clang will correctly decode the usage of register name aliases into their
10462   // official names. However, other frontends like `rustc` do not. This allows
10463   // users of these frontends to use the ABI names for registers in LLVM-style
10464   // register constraints.
10465   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
10466                                .Case("{zero}", RISCV::X0)
10467                                .Case("{ra}", RISCV::X1)
10468                                .Case("{sp}", RISCV::X2)
10469                                .Case("{gp}", RISCV::X3)
10470                                .Case("{tp}", RISCV::X4)
10471                                .Case("{t0}", RISCV::X5)
10472                                .Case("{t1}", RISCV::X6)
10473                                .Case("{t2}", RISCV::X7)
10474                                .Cases("{s0}", "{fp}", RISCV::X8)
10475                                .Case("{s1}", RISCV::X9)
10476                                .Case("{a0}", RISCV::X10)
10477                                .Case("{a1}", RISCV::X11)
10478                                .Case("{a2}", RISCV::X12)
10479                                .Case("{a3}", RISCV::X13)
10480                                .Case("{a4}", RISCV::X14)
10481                                .Case("{a5}", RISCV::X15)
10482                                .Case("{a6}", RISCV::X16)
10483                                .Case("{a7}", RISCV::X17)
10484                                .Case("{s2}", RISCV::X18)
10485                                .Case("{s3}", RISCV::X19)
10486                                .Case("{s4}", RISCV::X20)
10487                                .Case("{s5}", RISCV::X21)
10488                                .Case("{s6}", RISCV::X22)
10489                                .Case("{s7}", RISCV::X23)
10490                                .Case("{s8}", RISCV::X24)
10491                                .Case("{s9}", RISCV::X25)
10492                                .Case("{s10}", RISCV::X26)
10493                                .Case("{s11}", RISCV::X27)
10494                                .Case("{t3}", RISCV::X28)
10495                                .Case("{t4}", RISCV::X29)
10496                                .Case("{t5}", RISCV::X30)
10497                                .Case("{t6}", RISCV::X31)
10498                                .Default(RISCV::NoRegister);
10499   if (XRegFromAlias != RISCV::NoRegister)
10500     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
10501 
10502   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
10503   // TableGen record rather than the AsmName to choose registers for InlineAsm
10504   // constraints, plus we want to match those names to the widest floating point
10505   // register type available, manually select floating point registers here.
10506   //
10507   // The second case is the ABI name of the register, so that frontends can also
10508   // use the ABI names in register constraint lists.
10509   if (Subtarget.hasStdExtF()) {
10510     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
10511                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
10512                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
10513                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
10514                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
10515                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
10516                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
10517                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
10518                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
10519                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
10520                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
10521                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
10522                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
10523                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
10524                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
10525                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
10526                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
10527                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
10528                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
10529                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
10530                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
10531                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
10532                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
10533                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
10534                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
10535                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
10536                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
10537                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
10538                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
10539                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
10540                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
10541                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
10542                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
10543                         .Default(RISCV::NoRegister);
10544     if (FReg != RISCV::NoRegister) {
10545       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
10546       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
10547         unsigned RegNo = FReg - RISCV::F0_F;
10548         unsigned DReg = RISCV::F0_D + RegNo;
10549         return std::make_pair(DReg, &RISCV::FPR64RegClass);
10550       }
10551       if (VT == MVT::f32 || VT == MVT::Other)
10552         return std::make_pair(FReg, &RISCV::FPR32RegClass);
10553       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
10554         unsigned RegNo = FReg - RISCV::F0_F;
10555         unsigned HReg = RISCV::F0_H + RegNo;
10556         return std::make_pair(HReg, &RISCV::FPR16RegClass);
10557       }
10558     }
10559   }
10560 
10561   if (Subtarget.hasVInstructions()) {
10562     Register VReg = StringSwitch<Register>(Constraint.lower())
10563                         .Case("{v0}", RISCV::V0)
10564                         .Case("{v1}", RISCV::V1)
10565                         .Case("{v2}", RISCV::V2)
10566                         .Case("{v3}", RISCV::V3)
10567                         .Case("{v4}", RISCV::V4)
10568                         .Case("{v5}", RISCV::V5)
10569                         .Case("{v6}", RISCV::V6)
10570                         .Case("{v7}", RISCV::V7)
10571                         .Case("{v8}", RISCV::V8)
10572                         .Case("{v9}", RISCV::V9)
10573                         .Case("{v10}", RISCV::V10)
10574                         .Case("{v11}", RISCV::V11)
10575                         .Case("{v12}", RISCV::V12)
10576                         .Case("{v13}", RISCV::V13)
10577                         .Case("{v14}", RISCV::V14)
10578                         .Case("{v15}", RISCV::V15)
10579                         .Case("{v16}", RISCV::V16)
10580                         .Case("{v17}", RISCV::V17)
10581                         .Case("{v18}", RISCV::V18)
10582                         .Case("{v19}", RISCV::V19)
10583                         .Case("{v20}", RISCV::V20)
10584                         .Case("{v21}", RISCV::V21)
10585                         .Case("{v22}", RISCV::V22)
10586                         .Case("{v23}", RISCV::V23)
10587                         .Case("{v24}", RISCV::V24)
10588                         .Case("{v25}", RISCV::V25)
10589                         .Case("{v26}", RISCV::V26)
10590                         .Case("{v27}", RISCV::V27)
10591                         .Case("{v28}", RISCV::V28)
10592                         .Case("{v29}", RISCV::V29)
10593                         .Case("{v30}", RISCV::V30)
10594                         .Case("{v31}", RISCV::V31)
10595                         .Default(RISCV::NoRegister);
10596     if (VReg != RISCV::NoRegister) {
10597       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
10598         return std::make_pair(VReg, &RISCV::VMRegClass);
10599       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
10600         return std::make_pair(VReg, &RISCV::VRRegClass);
10601       for (const auto *RC :
10602            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10603         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
10604           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
10605           return std::make_pair(VReg, RC);
10606         }
10607       }
10608     }
10609   }
10610 
10611   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10612 }
10613 
10614 unsigned
10615 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
10616   // Currently only support length 1 constraints.
10617   if (ConstraintCode.size() == 1) {
10618     switch (ConstraintCode[0]) {
10619     case 'A':
10620       return InlineAsm::Constraint_A;
10621     default:
10622       break;
10623     }
10624   }
10625 
10626   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
10627 }
10628 
10629 void RISCVTargetLowering::LowerAsmOperandForConstraint(
10630     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
10631     SelectionDAG &DAG) const {
10632   // Currently only support length 1 constraints.
10633   if (Constraint.length() == 1) {
10634     switch (Constraint[0]) {
10635     case 'I':
10636       // Validate & create a 12-bit signed immediate operand.
10637       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
10638         uint64_t CVal = C->getSExtValue();
10639         if (isInt<12>(CVal))
10640           Ops.push_back(
10641               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
10642       }
10643       return;
10644     case 'J':
10645       // Validate & create an integer zero operand.
10646       if (auto *C = dyn_cast<ConstantSDNode>(Op))
10647         if (C->getZExtValue() == 0)
10648           Ops.push_back(
10649               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
10650       return;
10651     case 'K':
10652       // Validate & create a 5-bit unsigned immediate operand.
10653       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
10654         uint64_t CVal = C->getZExtValue();
10655         if (isUInt<5>(CVal))
10656           Ops.push_back(
10657               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
10658       }
10659       return;
10660     case 'S':
10661       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
10662         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
10663                                                  GA->getValueType(0)));
10664       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
10665         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
10666                                                 BA->getValueType(0)));
10667       }
10668       return;
10669     default:
10670       break;
10671     }
10672   }
10673   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10674 }
10675 
10676 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
10677                                                    Instruction *Inst,
10678                                                    AtomicOrdering Ord) const {
10679   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
10680     return Builder.CreateFence(Ord);
10681   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
10682     return Builder.CreateFence(AtomicOrdering::Release);
10683   return nullptr;
10684 }
10685 
10686 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
10687                                                     Instruction *Inst,
10688                                                     AtomicOrdering Ord) const {
10689   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
10690     return Builder.CreateFence(AtomicOrdering::Acquire);
10691   return nullptr;
10692 }
10693 
10694 TargetLowering::AtomicExpansionKind
10695 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
10696   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
10697   // point operations can't be used in an lr/sc sequence without breaking the
10698   // forward-progress guarantee.
10699   if (AI->isFloatingPointOperation())
10700     return AtomicExpansionKind::CmpXChg;
10701 
10702   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
10703   if (Size == 8 || Size == 16)
10704     return AtomicExpansionKind::MaskedIntrinsic;
10705   return AtomicExpansionKind::None;
10706 }
10707 
10708 static Intrinsic::ID
10709 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
10710   if (XLen == 32) {
10711     switch (BinOp) {
10712     default:
10713       llvm_unreachable("Unexpected AtomicRMW BinOp");
10714     case AtomicRMWInst::Xchg:
10715       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
10716     case AtomicRMWInst::Add:
10717       return Intrinsic::riscv_masked_atomicrmw_add_i32;
10718     case AtomicRMWInst::Sub:
10719       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
10720     case AtomicRMWInst::Nand:
10721       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
10722     case AtomicRMWInst::Max:
10723       return Intrinsic::riscv_masked_atomicrmw_max_i32;
10724     case AtomicRMWInst::Min:
10725       return Intrinsic::riscv_masked_atomicrmw_min_i32;
10726     case AtomicRMWInst::UMax:
10727       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
10728     case AtomicRMWInst::UMin:
10729       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
10730     }
10731   }
10732 
10733   if (XLen == 64) {
10734     switch (BinOp) {
10735     default:
10736       llvm_unreachable("Unexpected AtomicRMW BinOp");
10737     case AtomicRMWInst::Xchg:
10738       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
10739     case AtomicRMWInst::Add:
10740       return Intrinsic::riscv_masked_atomicrmw_add_i64;
10741     case AtomicRMWInst::Sub:
10742       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
10743     case AtomicRMWInst::Nand:
10744       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
10745     case AtomicRMWInst::Max:
10746       return Intrinsic::riscv_masked_atomicrmw_max_i64;
10747     case AtomicRMWInst::Min:
10748       return Intrinsic::riscv_masked_atomicrmw_min_i64;
10749     case AtomicRMWInst::UMax:
10750       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
10751     case AtomicRMWInst::UMin:
10752       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
10753     }
10754   }
10755 
10756   llvm_unreachable("Unexpected XLen\n");
10757 }
10758 
10759 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
10760     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
10761     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
10762   unsigned XLen = Subtarget.getXLen();
10763   Value *Ordering =
10764       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
10765   Type *Tys[] = {AlignedAddr->getType()};
10766   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
10767       AI->getModule(),
10768       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
10769 
10770   if (XLen == 64) {
10771     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
10772     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
10773     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
10774   }
10775 
10776   Value *Result;
10777 
10778   // Must pass the shift amount needed to sign extend the loaded value prior
10779   // to performing a signed comparison for min/max. ShiftAmt is the number of
10780   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
10781   // is the number of bits to left+right shift the value in order to
10782   // sign-extend.
10783   if (AI->getOperation() == AtomicRMWInst::Min ||
10784       AI->getOperation() == AtomicRMWInst::Max) {
10785     const DataLayout &DL = AI->getModule()->getDataLayout();
10786     unsigned ValWidth =
10787         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
10788     Value *SextShamt =
10789         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
10790     Result = Builder.CreateCall(LrwOpScwLoop,
10791                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
10792   } else {
10793     Result =
10794         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
10795   }
10796 
10797   if (XLen == 64)
10798     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
10799   return Result;
10800 }
10801 
10802 TargetLowering::AtomicExpansionKind
10803 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
10804     AtomicCmpXchgInst *CI) const {
10805   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
10806   if (Size == 8 || Size == 16)
10807     return AtomicExpansionKind::MaskedIntrinsic;
10808   return AtomicExpansionKind::None;
10809 }
10810 
10811 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
10812     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
10813     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
10814   unsigned XLen = Subtarget.getXLen();
10815   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
10816   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
10817   if (XLen == 64) {
10818     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
10819     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
10820     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
10821     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
10822   }
10823   Type *Tys[] = {AlignedAddr->getType()};
10824   Function *MaskedCmpXchg =
10825       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
10826   Value *Result = Builder.CreateCall(
10827       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
10828   if (XLen == 64)
10829     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
10830   return Result;
10831 }
10832 
10833 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
10834   return false;
10835 }
10836 
10837 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
10838                                                EVT VT) const {
10839   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
10840     return false;
10841 
10842   switch (FPVT.getSimpleVT().SimpleTy) {
10843   case MVT::f16:
10844     return Subtarget.hasStdExtZfh();
10845   case MVT::f32:
10846     return Subtarget.hasStdExtF();
10847   case MVT::f64:
10848     return Subtarget.hasStdExtD();
10849   default:
10850     return false;
10851   }
10852 }
10853 
10854 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
10855   // If we are using the small code model, we can reduce size of jump table
10856   // entry to 4 bytes.
10857   if (Subtarget.is64Bit() && !isPositionIndependent() &&
10858       getTargetMachine().getCodeModel() == CodeModel::Small) {
10859     return MachineJumpTableInfo::EK_Custom32;
10860   }
10861   return TargetLowering::getJumpTableEncoding();
10862 }
10863 
10864 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
10865     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
10866     unsigned uid, MCContext &Ctx) const {
10867   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
10868          getTargetMachine().getCodeModel() == CodeModel::Small);
10869   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
10870 }
10871 
10872 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
10873                                                      EVT VT) const {
10874   VT = VT.getScalarType();
10875 
10876   if (!VT.isSimple())
10877     return false;
10878 
10879   switch (VT.getSimpleVT().SimpleTy) {
10880   case MVT::f16:
10881     return Subtarget.hasStdExtZfh();
10882   case MVT::f32:
10883     return Subtarget.hasStdExtF();
10884   case MVT::f64:
10885     return Subtarget.hasStdExtD();
10886   default:
10887     break;
10888   }
10889 
10890   return false;
10891 }
10892 
10893 Register RISCVTargetLowering::getExceptionPointerRegister(
10894     const Constant *PersonalityFn) const {
10895   return RISCV::X10;
10896 }
10897 
10898 Register RISCVTargetLowering::getExceptionSelectorRegister(
10899     const Constant *PersonalityFn) const {
10900   return RISCV::X11;
10901 }
10902 
10903 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
10904   // Return false to suppress the unnecessary extensions if the LibCall
10905   // arguments or return value is f32 type for LP64 ABI.
10906   RISCVABI::ABI ABI = Subtarget.getTargetABI();
10907   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
10908     return false;
10909 
10910   return true;
10911 }
10912 
10913 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
10914   if (Subtarget.is64Bit() && Type == MVT::i32)
10915     return true;
10916 
10917   return IsSigned;
10918 }
10919 
10920 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
10921                                                  SDValue C) const {
10922   // Check integral scalar types.
10923   if (VT.isScalarInteger()) {
10924     // Omit the optimization if the sub target has the M extension and the data
10925     // size exceeds XLen.
10926     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
10927       return false;
10928     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
10929       // Break the MUL to a SLLI and an ADD/SUB.
10930       const APInt &Imm = ConstNode->getAPIntValue();
10931       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
10932           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
10933         return true;
10934       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
10935       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
10936           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
10937            (Imm - 8).isPowerOf2()))
10938         return true;
10939       // Omit the following optimization if the sub target has the M extension
10940       // and the data size >= XLen.
10941       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
10942         return false;
10943       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
10944       // a pair of LUI/ADDI.
10945       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
10946         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
10947         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
10948             (1 - ImmS).isPowerOf2())
10949         return true;
10950       }
10951     }
10952   }
10953 
10954   return false;
10955 }
10956 
10957 bool RISCVTargetLowering::isMulAddWithConstProfitable(
10958     const SDValue &AddNode, const SDValue &ConstNode) const {
10959   // Let the DAGCombiner decide for vectors.
10960   EVT VT = AddNode.getValueType();
10961   if (VT.isVector())
10962     return true;
10963 
10964   // Let the DAGCombiner decide for larger types.
10965   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
10966     return true;
10967 
10968   // It is worse if c1 is simm12 while c1*c2 is not.
10969   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
10970   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
10971   const APInt &C1 = C1Node->getAPIntValue();
10972   const APInt &C2 = C2Node->getAPIntValue();
10973   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
10974     return false;
10975 
10976   // Default to true and let the DAGCombiner decide.
10977   return true;
10978 }
10979 
10980 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
10981     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
10982     bool *Fast) const {
10983   if (!VT.isVector())
10984     return false;
10985 
10986   EVT ElemVT = VT.getVectorElementType();
10987   if (Alignment >= ElemVT.getStoreSize()) {
10988     if (Fast)
10989       *Fast = true;
10990     return true;
10991   }
10992 
10993   return false;
10994 }
10995 
10996 bool RISCVTargetLowering::splitValueIntoRegisterParts(
10997     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
10998     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
10999   bool IsABIRegCopy = CC.hasValue();
11000   EVT ValueVT = Val.getValueType();
11001   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11002     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11003     // and cast to f32.
11004     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11005     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11006     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11007                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11008     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11009     Parts[0] = Val;
11010     return true;
11011   }
11012 
11013   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11014     LLVMContext &Context = *DAG.getContext();
11015     EVT ValueEltVT = ValueVT.getVectorElementType();
11016     EVT PartEltVT = PartVT.getVectorElementType();
11017     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11018     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11019     if (PartVTBitSize % ValueVTBitSize == 0) {
11020       assert(PartVTBitSize >= ValueVTBitSize);
11021       // If the element types are different, bitcast to the same element type of
11022       // PartVT first.
11023       // Give an example here, we want copy a <vscale x 1 x i8> value to
11024       // <vscale x 4 x i16>.
11025       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11026       // subvector, then we can bitcast to <vscale x 4 x i16>.
11027       if (ValueEltVT != PartEltVT) {
11028         if (PartVTBitSize > ValueVTBitSize) {
11029           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11030           assert(Count != 0 && "The number of element should not be zero.");
11031           EVT SameEltTypeVT =
11032               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11033           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11034                             DAG.getUNDEF(SameEltTypeVT), Val,
11035                             DAG.getVectorIdxConstant(0, DL));
11036         }
11037         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11038       } else {
11039         Val =
11040             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11041                         Val, DAG.getVectorIdxConstant(0, DL));
11042       }
11043       Parts[0] = Val;
11044       return true;
11045     }
11046   }
11047   return false;
11048 }
11049 
11050 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11051     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11052     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11053   bool IsABIRegCopy = CC.hasValue();
11054   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11055     SDValue Val = Parts[0];
11056 
11057     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11058     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11059     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11060     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11061     return Val;
11062   }
11063 
11064   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11065     LLVMContext &Context = *DAG.getContext();
11066     SDValue Val = Parts[0];
11067     EVT ValueEltVT = ValueVT.getVectorElementType();
11068     EVT PartEltVT = PartVT.getVectorElementType();
11069     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11070     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11071     if (PartVTBitSize % ValueVTBitSize == 0) {
11072       assert(PartVTBitSize >= ValueVTBitSize);
11073       EVT SameEltTypeVT = ValueVT;
11074       // If the element types are different, convert it to the same element type
11075       // of PartVT.
11076       // Give an example here, we want copy a <vscale x 1 x i8> value from
11077       // <vscale x 4 x i16>.
11078       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11079       // then we can extract <vscale x 1 x i8>.
11080       if (ValueEltVT != PartEltVT) {
11081         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11082         assert(Count != 0 && "The number of element should not be zero.");
11083         SameEltTypeVT =
11084             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11085         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11086       }
11087       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11088                         DAG.getVectorIdxConstant(0, DL));
11089       return Val;
11090     }
11091   }
11092   return SDValue();
11093 }
11094 
11095 SDValue
11096 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11097                                    SelectionDAG &DAG,
11098                                    SmallVectorImpl<SDNode *> &Created) const {
11099   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11100   if (isIntDivCheap(N->getValueType(0), Attr))
11101     return SDValue(N, 0); // Lower SDIV as SDIV
11102 
11103   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11104          "Unexpected divisor!");
11105 
11106   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11107   if (!Subtarget.hasStdExtZbt())
11108     return SDValue();
11109 
11110   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11111   // Besides, more critical path instructions will be generated when dividing
11112   // by 2. So we keep using the original DAGs for these cases.
11113   unsigned Lg2 = Divisor.countTrailingZeros();
11114   if (Lg2 == 1 || Lg2 >= 12)
11115     return SDValue();
11116 
11117   // fold (sdiv X, pow2)
11118   EVT VT = N->getValueType(0);
11119   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11120     return SDValue();
11121 
11122   SDLoc DL(N);
11123   SDValue N0 = N->getOperand(0);
11124   SDValue Zero = DAG.getConstant(0, DL, VT);
11125   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11126 
11127   // Add (N0 < 0) ? Pow2 - 1 : 0;
11128   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11129   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11130   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11131 
11132   Created.push_back(Cmp.getNode());
11133   Created.push_back(Add.getNode());
11134   Created.push_back(Sel.getNode());
11135 
11136   // Divide by pow2.
11137   SDValue SRA =
11138       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11139 
11140   // If we're dividing by a positive value, we're done.  Otherwise, we must
11141   // negate the result.
11142   if (Divisor.isNonNegative())
11143     return SRA;
11144 
11145   Created.push_back(SRA.getNode());
11146   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11147 }
11148 
11149 #define GET_REGISTER_MATCHER
11150 #include "RISCVGenAsmMatcher.inc"
11151 
11152 Register
11153 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11154                                        const MachineFunction &MF) const {
11155   Register Reg = MatchRegisterAltName(RegName);
11156   if (Reg == RISCV::NoRegister)
11157     Reg = MatchRegisterName(RegName);
11158   if (Reg == RISCV::NoRegister)
11159     report_fatal_error(
11160         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11161   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11162   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11163     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11164                              StringRef(RegName) + "\"."));
11165   return Reg;
11166 }
11167 
11168 namespace llvm {
11169 namespace RISCVVIntrinsicsTable {
11170 
11171 #define GET_RISCVVIntrinsicsTable_IMPL
11172 #include "RISCVGenSearchableTables.inc"
11173 
11174 } // namespace RISCVVIntrinsicsTable
11175 
11176 } // namespace llvm
11177