1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 // Disable the smallest fractional LMUL types if ELEN is less than 116 // RVVBitsPerBlock. 117 unsigned MinElts = RISCV::RVVBitsPerBlock / Subtarget.getELEN(); 118 if (VT.getVectorMinNumElements() < MinElts) 119 return; 120 121 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 122 const TargetRegisterClass *RC; 123 if (Size <= RISCV::RVVBitsPerBlock) 124 RC = &RISCV::VRRegClass; 125 else if (Size == 2 * RISCV::RVVBitsPerBlock) 126 RC = &RISCV::VRM2RegClass; 127 else if (Size == 4 * RISCV::RVVBitsPerBlock) 128 RC = &RISCV::VRM4RegClass; 129 else if (Size == 8 * RISCV::RVVBitsPerBlock) 130 RC = &RISCV::VRM8RegClass; 131 else 132 llvm_unreachable("Unexpected size"); 133 134 addRegisterClass(VT, RC); 135 }; 136 137 for (MVT VT : BoolVecVTs) 138 addRegClassForRVV(VT); 139 for (MVT VT : IntVecVTs) { 140 if (VT.getVectorElementType() == MVT::i64 && 141 !Subtarget.hasVInstructionsI64()) 142 continue; 143 addRegClassForRVV(VT); 144 } 145 146 if (Subtarget.hasVInstructionsF16()) 147 for (MVT VT : F16VecVTs) 148 addRegClassForRVV(VT); 149 150 if (Subtarget.hasVInstructionsF32()) 151 for (MVT VT : F32VecVTs) 152 addRegClassForRVV(VT); 153 154 if (Subtarget.hasVInstructionsF64()) 155 for (MVT VT : F64VecVTs) 156 addRegClassForRVV(VT); 157 158 if (Subtarget.useRVVForFixedLengthVectors()) { 159 auto addRegClassForFixedVectors = [this](MVT VT) { 160 MVT ContainerVT = getContainerForFixedLengthVector(VT); 161 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 162 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 163 addRegisterClass(VT, TRI.getRegClass(RCID)); 164 }; 165 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 166 if (useRVVForFixedLengthVectorVT(VT)) 167 addRegClassForFixedVectors(VT); 168 169 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 170 if (useRVVForFixedLengthVectorVT(VT)) 171 addRegClassForFixedVectors(VT); 172 } 173 } 174 175 // Compute derived properties from the register classes. 176 computeRegisterProperties(STI.getRegisterInfo()); 177 178 setStackPointerRegisterToSaveRestore(RISCV::X2); 179 180 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT, 181 MVT::i1, Promote); 182 183 // TODO: add all necessary setOperationAction calls. 184 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 185 186 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 187 setOperationAction(ISD::BR_CC, XLenVT, Expand); 188 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 189 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 190 191 setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand); 192 193 setOperationAction(ISD::VASTART, MVT::Other, Custom); 194 setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand); 195 196 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 197 198 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 199 200 if (!Subtarget.hasStdExtZbb()) 201 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand); 202 203 if (Subtarget.is64Bit()) { 204 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 205 206 setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL}, 207 MVT::i32, Custom); 208 209 setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT}, 210 MVT::i32, Custom); 211 } else { 212 setLibcallName( 213 {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128}, 214 nullptr); 215 setLibcallName(RTLIB::MULO_I64, nullptr); 216 } 217 218 if (!Subtarget.hasStdExtM()) { 219 setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU, ISD::SDIV, ISD::UDIV, 220 ISD::SREM, ISD::UREM}, 221 XLenVT, Expand); 222 } else { 223 if (Subtarget.is64Bit()) { 224 setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom); 225 226 setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM}, 227 {MVT::i8, MVT::i16, MVT::i32}, Custom); 228 } else { 229 setOperationAction(ISD::MUL, MVT::i64, Custom); 230 } 231 } 232 233 setOperationAction( 234 {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT, 235 Expand); 236 237 setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT, 238 Custom); 239 240 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 241 Subtarget.hasStdExtZbkb()) { 242 if (Subtarget.is64Bit()) 243 setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom); 244 } else { 245 setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand); 246 } 247 248 if (Subtarget.hasStdExtZbp()) { 249 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 250 // more combining. 251 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, XLenVT, Custom); 252 253 // BSWAP i8 doesn't exist. 254 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 255 256 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i16, Custom); 257 258 if (Subtarget.is64Bit()) 259 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i32, Custom); 260 } else { 261 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 262 // pattern match it directly in isel. 263 setOperationAction(ISD::BSWAP, XLenVT, 264 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 265 ? Legal 266 : Expand); 267 // Zbkb can use rev8+brev8 to implement bitreverse. 268 setOperationAction(ISD::BITREVERSE, XLenVT, 269 Subtarget.hasStdExtZbkb() ? Custom : Expand); 270 } 271 272 if (Subtarget.hasStdExtZbb()) { 273 setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT, 274 Legal); 275 276 if (Subtarget.is64Bit()) 277 setOperationAction( 278 {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, 279 MVT::i32, Custom); 280 } else { 281 setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand); 282 283 if (Subtarget.is64Bit()) 284 setOperationAction(ISD::ABS, MVT::i32, Custom); 285 } 286 287 if (Subtarget.hasStdExtZbt()) { 288 setOperationAction({ISD::FSHL, ISD::FSHR}, XLenVT, Custom); 289 setOperationAction(ISD::SELECT, XLenVT, Legal); 290 291 if (Subtarget.is64Bit()) 292 setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Custom); 293 } else { 294 setOperationAction(ISD::SELECT, XLenVT, Custom); 295 } 296 297 static constexpr ISD::NodeType FPLegalNodeTypes[] = { 298 ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT, 299 ISD::LLRINT, ISD::LROUND, ISD::LLROUND, 300 ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND, 301 ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD, 302 ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, 303 ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS}; 304 305 static const ISD::CondCode FPCCToExpand[] = { 306 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 307 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 308 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 309 310 static const ISD::NodeType FPOpToExpand[] = { 311 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 312 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 313 314 if (Subtarget.hasStdExtZfh()) 315 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 316 317 if (Subtarget.hasStdExtZfh()) { 318 for (auto NT : FPLegalNodeTypes) 319 setOperationAction(NT, MVT::f16, Legal); 320 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 321 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 322 setCondCodeAction(FPCCToExpand, MVT::f16, Expand); 323 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 324 setOperationAction(ISD::SELECT, MVT::f16, Custom); 325 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 326 327 setOperationAction({ISD::FREM, ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, 328 ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC, 329 ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN, 330 ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FLOG, 331 ISD::FLOG2, ISD::FLOG10}, 332 MVT::f16, Promote); 333 334 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 335 // complete support for all operations in LegalizeDAG. 336 337 // We need to custom promote this. 338 if (Subtarget.is64Bit()) 339 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 340 } 341 342 if (Subtarget.hasStdExtF()) { 343 for (auto NT : FPLegalNodeTypes) 344 setOperationAction(NT, MVT::f32, Legal); 345 setCondCodeAction(FPCCToExpand, MVT::f32, Expand); 346 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 347 setOperationAction(ISD::SELECT, MVT::f32, Custom); 348 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 349 for (auto Op : FPOpToExpand) 350 setOperationAction(Op, MVT::f32, Expand); 351 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 352 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 353 } 354 355 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 356 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 357 358 if (Subtarget.hasStdExtD()) { 359 for (auto NT : FPLegalNodeTypes) 360 setOperationAction(NT, MVT::f64, Legal); 361 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 362 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 363 setCondCodeAction(FPCCToExpand, MVT::f64, Expand); 364 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 365 setOperationAction(ISD::SELECT, MVT::f64, Custom); 366 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 367 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 368 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 369 for (auto Op : FPOpToExpand) 370 setOperationAction(Op, MVT::f64, Expand); 371 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 372 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 373 } 374 375 if (Subtarget.is64Bit()) 376 setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT, 377 ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT}, 378 MVT::i32, Custom); 379 380 if (Subtarget.hasStdExtF()) { 381 setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT, 382 Custom); 383 384 setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT, 385 ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP}, 386 XLenVT, Legal); 387 388 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 389 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 390 } 391 392 setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool, 393 ISD::JumpTable}, 394 XLenVT, Custom); 395 396 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 397 398 if (Subtarget.is64Bit()) 399 setOperationAction(ISD::Constant, MVT::i64, Custom); 400 401 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 402 // Unfortunately this can't be determined just from the ISA naming string. 403 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 404 Subtarget.is64Bit() ? Legal : Custom); 405 406 setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal); 407 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 408 if (Subtarget.is64Bit()) 409 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 410 411 if (Subtarget.hasStdExtA()) { 412 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 413 setMinCmpXchgSizeInBits(32); 414 } else { 415 setMaxAtomicSizeInBitsSupported(0); 416 } 417 418 setBooleanContents(ZeroOrOneBooleanContent); 419 420 if (Subtarget.hasVInstructions()) { 421 setBooleanVectorContents(ZeroOrOneBooleanContent); 422 423 setOperationAction(ISD::VSCALE, XLenVT, Custom); 424 425 // RVV intrinsics may have illegal operands. 426 // We also need to custom legalize vmv.x.s. 427 setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN}, 428 {MVT::i8, MVT::i16}, Custom); 429 if (Subtarget.is64Bit()) 430 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 431 else 432 setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN}, 433 MVT::i64, Custom); 434 435 setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}, 436 MVT::Other, Custom); 437 438 static const unsigned IntegerVPOps[] = { 439 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 440 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 441 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 442 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 443 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 444 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 445 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 446 ISD::VP_MERGE, ISD::VP_SELECT, ISD::VP_FPTOSI, 447 ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_SIGN_EXTEND, 448 ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE}; 449 450 static const unsigned FloatingPointVPOps[] = { 451 ISD::VP_FADD, ISD::VP_FSUB, 452 ISD::VP_FMUL, ISD::VP_FDIV, 453 ISD::VP_FNEG, ISD::VP_FMA, 454 ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 455 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, 456 ISD::VP_MERGE, ISD::VP_SELECT, 457 ISD::VP_SITOFP, ISD::VP_UITOFP, 458 ISD::VP_SETCC, ISD::VP_FP_ROUND, 459 ISD::VP_FP_EXTEND}; 460 461 if (!Subtarget.is64Bit()) { 462 // We must custom-lower certain vXi64 operations on RV32 due to the vector 463 // element type being illegal. 464 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, 465 MVT::i64, Custom); 466 467 setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND, 468 ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR, 469 ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, 470 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN}, 471 MVT::i64, Custom); 472 473 setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 474 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, 475 ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN, 476 ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN}, 477 MVT::i64, Custom); 478 } 479 480 for (MVT VT : BoolVecVTs) { 481 if (!isTypeLegal(VT)) 482 continue; 483 484 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 485 486 // Mask VTs are custom-expanded into a series of standard nodes 487 setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS, 488 ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, 489 VT, Custom); 490 491 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 492 Custom); 493 494 setOperationAction(ISD::SELECT, VT, Custom); 495 setOperationAction( 496 {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT, 497 Expand); 498 499 setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom); 500 501 setOperationAction( 502 {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT, 503 Custom); 504 505 setOperationAction( 506 {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT, 507 Custom); 508 509 // RVV has native int->float & float->int conversions where the 510 // element type sizes are within one power-of-two of each other. Any 511 // wider distances between type sizes have to be lowered as sequences 512 // which progressively narrow the gap in stages. 513 setOperationAction( 514 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, 515 VT, Custom); 516 517 // Expand all extending loads to types larger than this, and truncating 518 // stores from types larger than this. 519 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 520 setTruncStoreAction(OtherVT, VT, Expand); 521 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT, 522 VT, Expand); 523 } 524 525 setOperationAction( 526 {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_TRUNCATE, ISD::VP_SETCC}, VT, 527 Custom); 528 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 529 } 530 531 for (MVT VT : IntVecVTs) { 532 if (!isTypeLegal(VT)) 533 continue; 534 535 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 536 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 537 538 // Vectors implement MULHS/MULHU. 539 setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand); 540 541 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 542 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) 543 setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand); 544 545 setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT, 546 Legal); 547 548 setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand); 549 550 setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP, ISD::BSWAP}, VT, 551 Expand); 552 553 setOperationAction(ISD::BSWAP, VT, Expand); 554 555 // Custom-lower extensions and truncations from/to mask types. 556 setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, 557 VT, Custom); 558 559 // RVV has native int->float & float->int conversions where the 560 // element type sizes are within one power-of-two of each other. Any 561 // wider distances between type sizes have to be lowered as sequences 562 // which progressively narrow the gap in stages. 563 setOperationAction( 564 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, 565 VT, Custom); 566 567 setOperationAction( 568 {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal); 569 570 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 571 // nodes which truncate by one power of two at a time. 572 setOperationAction(ISD::TRUNCATE, VT, Custom); 573 574 // Custom-lower insert/extract operations to simplify patterns. 575 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 576 Custom); 577 578 // Custom-lower reduction operations to set up the corresponding custom 579 // nodes' operands. 580 setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND, 581 ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR, 582 ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, 583 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN}, 584 VT, Custom); 585 586 setOperationAction(IntegerVPOps, VT, Custom); 587 588 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 589 590 setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, 591 VT, Custom); 592 593 setOperationAction( 594 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 595 Custom); 596 597 setOperationAction( 598 {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, 599 VT, Custom); 600 601 setOperationAction(ISD::SELECT, VT, Custom); 602 setOperationAction(ISD::SELECT_CC, VT, Expand); 603 604 setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom); 605 606 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 607 setTruncStoreAction(VT, OtherVT, Expand); 608 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT, 609 VT, Expand); 610 } 611 612 // Splice 613 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 614 615 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 616 // type that can represent the value exactly. 617 if (VT.getVectorElementType() != MVT::i64) { 618 MVT FloatEltVT = 619 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 620 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 621 if (isTypeLegal(FloatVT)) { 622 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, 623 Custom); 624 } 625 } 626 } 627 628 // Expand various CCs to best match the RVV ISA, which natively supports UNE 629 // but no other unordered comparisons, and supports all ordered comparisons 630 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 631 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 632 // and we pattern-match those back to the "original", swapping operands once 633 // more. This way we catch both operations and both "vf" and "fv" forms with 634 // fewer patterns. 635 static const ISD::CondCode VFPCCToExpand[] = { 636 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 637 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 638 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 639 }; 640 641 // Sets common operation actions on RVV floating-point vector types. 642 const auto SetCommonVFPActions = [&](MVT VT) { 643 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 644 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 645 // sizes are within one power-of-two of each other. Therefore conversions 646 // between vXf16 and vXf64 must be lowered as sequences which convert via 647 // vXf32. 648 setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); 649 // Custom-lower insert/extract operations to simplify patterns. 650 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 651 Custom); 652 // Expand various condition codes (explained above). 653 setCondCodeAction(VFPCCToExpand, VT, Expand); 654 655 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal); 656 657 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND}, 658 VT, Custom); 659 660 setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, 661 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX}, 662 VT, Custom); 663 664 // Expand FP operations that need libcalls. 665 setOperationAction(ISD::FREM, VT, Expand); 666 setOperationAction(ISD::FPOW, VT, Expand); 667 setOperationAction(ISD::FCOS, VT, Expand); 668 setOperationAction(ISD::FSIN, VT, Expand); 669 setOperationAction(ISD::FSINCOS, VT, Expand); 670 setOperationAction(ISD::FEXP, VT, Expand); 671 setOperationAction(ISD::FEXP2, VT, Expand); 672 setOperationAction(ISD::FLOG, VT, Expand); 673 setOperationAction(ISD::FLOG2, VT, Expand); 674 setOperationAction(ISD::FLOG10, VT, Expand); 675 setOperationAction(ISD::FRINT, VT, Expand); 676 setOperationAction(ISD::FNEARBYINT, VT, Expand); 677 678 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 679 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 680 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 681 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 682 683 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 684 685 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 686 687 setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, 688 VT, Custom); 689 690 setOperationAction( 691 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 692 Custom); 693 694 setOperationAction(ISD::SELECT, VT, Custom); 695 setOperationAction(ISD::SELECT_CC, VT, Expand); 696 697 setOperationAction( 698 {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, 699 VT, Custom); 700 701 setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom); 702 703 setOperationAction(FloatingPointVPOps, VT, Custom); 704 }; 705 706 // Sets common extload/truncstore actions on RVV floating-point vector 707 // types. 708 const auto SetCommonVFPExtLoadTruncStoreActions = 709 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 710 for (auto SmallVT : SmallerVTs) { 711 setTruncStoreAction(VT, SmallVT, Expand); 712 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 713 } 714 }; 715 716 if (Subtarget.hasVInstructionsF16()) { 717 for (MVT VT : F16VecVTs) { 718 if (!isTypeLegal(VT)) 719 continue; 720 SetCommonVFPActions(VT); 721 } 722 } 723 724 if (Subtarget.hasVInstructionsF32()) { 725 for (MVT VT : F32VecVTs) { 726 if (!isTypeLegal(VT)) 727 continue; 728 SetCommonVFPActions(VT); 729 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 730 } 731 } 732 733 if (Subtarget.hasVInstructionsF64()) { 734 for (MVT VT : F64VecVTs) { 735 if (!isTypeLegal(VT)) 736 continue; 737 SetCommonVFPActions(VT); 738 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 739 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 740 } 741 } 742 743 if (Subtarget.useRVVForFixedLengthVectors()) { 744 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 745 if (!useRVVForFixedLengthVectorVT(VT)) 746 continue; 747 748 // By default everything must be expanded. 749 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 750 setOperationAction(Op, VT, Expand); 751 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 752 setTruncStoreAction(VT, OtherVT, Expand); 753 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, 754 OtherVT, VT, Expand); 755 } 756 757 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 758 setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT, 759 Custom); 760 761 setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT, 762 Custom); 763 764 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, 765 VT, Custom); 766 767 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 768 769 setOperationAction(ISD::SETCC, VT, Custom); 770 771 setOperationAction(ISD::SELECT, VT, Custom); 772 773 setOperationAction(ISD::TRUNCATE, VT, Custom); 774 775 setOperationAction(ISD::BITCAST, VT, Custom); 776 777 setOperationAction( 778 {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT, 779 Custom); 780 781 setOperationAction( 782 {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT, 783 Custom); 784 785 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, 786 ISD::FP_TO_UINT}, 787 VT, Custom); 788 789 // Operations below are different for between masks and other vectors. 790 if (VT.getVectorElementType() == MVT::i1) { 791 setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND, 792 ISD::OR, ISD::XOR}, 793 VT, Custom); 794 795 setOperationAction( 796 {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_TRUNCATE}, 797 VT, Custom); 798 continue; 799 } 800 801 // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to 802 // it before type legalization for i64 vectors on RV32. It will then be 803 // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle. 804 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 805 // improvements first. 806 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 807 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 808 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 809 } 810 811 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 812 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 813 814 setOperationAction( 815 {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom); 816 817 setOperationAction( 818 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 819 Custom); 820 821 setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR, 822 ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV, 823 ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL}, 824 VT, Custom); 825 826 setOperationAction( 827 {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom); 828 829 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 830 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) 831 setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom); 832 833 setOperationAction( 834 {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, 835 Custom); 836 837 setOperationAction(ISD::VSELECT, VT, Custom); 838 setOperationAction(ISD::SELECT_CC, VT, Expand); 839 840 setOperationAction( 841 {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom); 842 843 // Custom-lower reduction operations to set up the corresponding custom 844 // nodes' operands. 845 setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX, 846 ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX, 847 ISD::VECREDUCE_UMIN}, 848 VT, Custom); 849 850 setOperationAction(IntegerVPOps, VT, Custom); 851 852 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 853 // type that can represent the value exactly. 854 if (VT.getVectorElementType() != MVT::i64) { 855 MVT FloatEltVT = 856 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 857 EVT FloatVT = 858 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 859 if (isTypeLegal(FloatVT)) 860 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, 861 Custom); 862 } 863 } 864 865 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 866 if (!useRVVForFixedLengthVectorVT(VT)) 867 continue; 868 869 // By default everything must be expanded. 870 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 871 setOperationAction(Op, VT, Expand); 872 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 873 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 874 setTruncStoreAction(VT, OtherVT, Expand); 875 } 876 877 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 878 setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT, 879 Custom); 880 881 setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS, 882 ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT, 883 ISD::EXTRACT_VECTOR_ELT}, 884 VT, Custom); 885 886 setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE, 887 ISD::MGATHER, ISD::MSCATTER}, 888 VT, Custom); 889 890 setOperationAction( 891 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 892 Custom); 893 894 setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV, 895 ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT, 896 ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM}, 897 VT, Custom); 898 899 setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); 900 901 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND}, 902 VT, Custom); 903 904 for (auto CC : VFPCCToExpand) 905 setCondCodeAction(CC, VT, Expand); 906 907 setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom); 908 setOperationAction(ISD::SELECT_CC, VT, Expand); 909 910 setOperationAction(ISD::BITCAST, VT, Custom); 911 912 setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, 913 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX}, 914 VT, Custom); 915 916 setOperationAction(FloatingPointVPOps, VT, Custom); 917 } 918 919 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 920 setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64}, 921 Custom); 922 if (Subtarget.hasStdExtZfh()) 923 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 924 if (Subtarget.hasStdExtF()) 925 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 926 if (Subtarget.hasStdExtD()) 927 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 928 } 929 } 930 931 // Function alignments. 932 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 933 setMinFunctionAlignment(FunctionAlignment); 934 setPrefFunctionAlignment(FunctionAlignment); 935 936 setMinimumJumpTableEntries(5); 937 938 // Jumps are expensive, compared to logic 939 setJumpIsExpensive(); 940 941 setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND, 942 ISD::OR, ISD::XOR}); 943 944 if (Subtarget.hasStdExtF()) 945 setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM}); 946 947 if (Subtarget.hasStdExtZbp()) 948 setTargetDAGCombine({ISD::ROTL, ISD::ROTR}); 949 950 if (Subtarget.hasStdExtZbb()) 951 setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN}); 952 953 if (Subtarget.hasStdExtZbkb()) 954 setTargetDAGCombine(ISD::BITREVERSE); 955 if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb()) 956 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 957 if (Subtarget.hasStdExtF()) 958 setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT, 959 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}); 960 if (Subtarget.hasVInstructions()) 961 setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER, 962 ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL, 963 ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR}); 964 if (Subtarget.useRVVForFixedLengthVectors()) 965 setTargetDAGCombine(ISD::BITCAST); 966 967 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 968 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 969 } 970 971 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 972 LLVMContext &Context, 973 EVT VT) const { 974 if (!VT.isVector()) 975 return getPointerTy(DL); 976 if (Subtarget.hasVInstructions() && 977 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 978 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 979 return VT.changeVectorElementTypeToInteger(); 980 } 981 982 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 983 return Subtarget.getXLenVT(); 984 } 985 986 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 987 const CallInst &I, 988 MachineFunction &MF, 989 unsigned Intrinsic) const { 990 auto &DL = I.getModule()->getDataLayout(); 991 switch (Intrinsic) { 992 default: 993 return false; 994 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 995 case Intrinsic::riscv_masked_atomicrmw_add_i32: 996 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 997 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 998 case Intrinsic::riscv_masked_atomicrmw_max_i32: 999 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1000 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1001 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1002 case Intrinsic::riscv_masked_cmpxchg_i32: 1003 Info.opc = ISD::INTRINSIC_W_CHAIN; 1004 Info.memVT = MVT::i32; 1005 Info.ptrVal = I.getArgOperand(0); 1006 Info.offset = 0; 1007 Info.align = Align(4); 1008 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1009 MachineMemOperand::MOVolatile; 1010 return true; 1011 case Intrinsic::riscv_masked_strided_load: 1012 Info.opc = ISD::INTRINSIC_W_CHAIN; 1013 Info.ptrVal = I.getArgOperand(1); 1014 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1015 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1016 Info.size = MemoryLocation::UnknownSize; 1017 Info.flags |= MachineMemOperand::MOLoad; 1018 return true; 1019 case Intrinsic::riscv_masked_strided_store: 1020 Info.opc = ISD::INTRINSIC_VOID; 1021 Info.ptrVal = I.getArgOperand(1); 1022 Info.memVT = 1023 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1024 Info.align = Align( 1025 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1026 8); 1027 Info.size = MemoryLocation::UnknownSize; 1028 Info.flags |= MachineMemOperand::MOStore; 1029 return true; 1030 case Intrinsic::riscv_seg2_load: 1031 case Intrinsic::riscv_seg3_load: 1032 case Intrinsic::riscv_seg4_load: 1033 case Intrinsic::riscv_seg5_load: 1034 case Intrinsic::riscv_seg6_load: 1035 case Intrinsic::riscv_seg7_load: 1036 case Intrinsic::riscv_seg8_load: 1037 Info.opc = ISD::INTRINSIC_W_CHAIN; 1038 Info.ptrVal = I.getArgOperand(0); 1039 Info.memVT = 1040 getValueType(DL, I.getType()->getStructElementType(0)->getScalarType()); 1041 Info.align = 1042 Align(DL.getTypeSizeInBits( 1043 I.getType()->getStructElementType(0)->getScalarType()) / 1044 8); 1045 Info.size = MemoryLocation::UnknownSize; 1046 Info.flags |= MachineMemOperand::MOLoad; 1047 return true; 1048 } 1049 } 1050 1051 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1052 const AddrMode &AM, Type *Ty, 1053 unsigned AS, 1054 Instruction *I) const { 1055 // No global is ever allowed as a base. 1056 if (AM.BaseGV) 1057 return false; 1058 1059 // RVV instructions only support register addressing. 1060 if (Subtarget.hasVInstructions() && isa<VectorType>(Ty)) 1061 return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs; 1062 1063 // Require a 12-bit signed offset. 1064 if (!isInt<12>(AM.BaseOffs)) 1065 return false; 1066 1067 switch (AM.Scale) { 1068 case 0: // "r+i" or just "i", depending on HasBaseReg. 1069 break; 1070 case 1: 1071 if (!AM.HasBaseReg) // allow "r+i". 1072 break; 1073 return false; // disallow "r+r" or "r+r+i". 1074 default: 1075 return false; 1076 } 1077 1078 return true; 1079 } 1080 1081 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1082 return isInt<12>(Imm); 1083 } 1084 1085 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1086 return isInt<12>(Imm); 1087 } 1088 1089 // On RV32, 64-bit integers are split into their high and low parts and held 1090 // in two different registers, so the trunc is free since the low register can 1091 // just be used. 1092 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1093 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1094 return false; 1095 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1096 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1097 return (SrcBits == 64 && DestBits == 32); 1098 } 1099 1100 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1101 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1102 !SrcVT.isInteger() || !DstVT.isInteger()) 1103 return false; 1104 unsigned SrcBits = SrcVT.getSizeInBits(); 1105 unsigned DestBits = DstVT.getSizeInBits(); 1106 return (SrcBits == 64 && DestBits == 32); 1107 } 1108 1109 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1110 // Zexts are free if they can be combined with a load. 1111 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1112 // poorly with type legalization of compares preferring sext. 1113 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1114 EVT MemVT = LD->getMemoryVT(); 1115 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1116 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1117 LD->getExtensionType() == ISD::ZEXTLOAD)) 1118 return true; 1119 } 1120 1121 return TargetLowering::isZExtFree(Val, VT2); 1122 } 1123 1124 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1125 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1126 } 1127 1128 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const { 1129 return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32); 1130 } 1131 1132 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1133 return Subtarget.hasStdExtZbb(); 1134 } 1135 1136 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1137 return Subtarget.hasStdExtZbb(); 1138 } 1139 1140 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1141 EVT VT = Y.getValueType(); 1142 1143 // FIXME: Support vectors once we have tests. 1144 if (VT.isVector()) 1145 return false; 1146 1147 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1148 Subtarget.hasStdExtZbkb()) && 1149 !isa<ConstantSDNode>(Y); 1150 } 1151 1152 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const { 1153 // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position. 1154 auto *C = dyn_cast<ConstantSDNode>(Y); 1155 return C && C->getAPIntValue().ule(10); 1156 } 1157 1158 bool RISCVTargetLowering:: 1159 shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 1160 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, 1161 unsigned OldShiftOpcode, unsigned NewShiftOpcode, 1162 SelectionDAG &DAG) const { 1163 // One interesting pattern that we'd want to form is 'bit extract': 1164 // ((1 >> Y) & 1) ==/!= 0 1165 // But we also need to be careful not to try to reverse that fold. 1166 1167 // Is this '((1 >> Y) & 1)'? 1168 if (XC && OldShiftOpcode == ISD::SRL && XC->isOne()) 1169 return false; // Keep the 'bit extract' pattern. 1170 1171 // Will this be '((1 >> Y) & 1)' after the transform? 1172 if (NewShiftOpcode == ISD::SRL && CC->isOne()) 1173 return true; // Do form the 'bit extract' pattern. 1174 1175 // If 'X' is a constant, and we transform, then we will immediately 1176 // try to undo the fold, thus causing endless combine loop. 1177 // So only do the transform if X is not a constant. This matches the default 1178 // implementation of this function. 1179 return !XC; 1180 } 1181 1182 /// Check if sinking \p I's operands to I's basic block is profitable, because 1183 /// the operands can be folded into a target instruction, e.g. 1184 /// splats of scalars can fold into vector instructions. 1185 bool RISCVTargetLowering::shouldSinkOperands( 1186 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1187 using namespace llvm::PatternMatch; 1188 1189 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1190 return false; 1191 1192 auto IsSinker = [&](Instruction *I, int Operand) { 1193 switch (I->getOpcode()) { 1194 case Instruction::Add: 1195 case Instruction::Sub: 1196 case Instruction::Mul: 1197 case Instruction::And: 1198 case Instruction::Or: 1199 case Instruction::Xor: 1200 case Instruction::FAdd: 1201 case Instruction::FSub: 1202 case Instruction::FMul: 1203 case Instruction::FDiv: 1204 case Instruction::ICmp: 1205 case Instruction::FCmp: 1206 return true; 1207 case Instruction::Shl: 1208 case Instruction::LShr: 1209 case Instruction::AShr: 1210 case Instruction::UDiv: 1211 case Instruction::SDiv: 1212 case Instruction::URem: 1213 case Instruction::SRem: 1214 return Operand == 1; 1215 case Instruction::Call: 1216 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1217 switch (II->getIntrinsicID()) { 1218 case Intrinsic::fma: 1219 case Intrinsic::vp_fma: 1220 return Operand == 0 || Operand == 1; 1221 // FIXME: Our patterns can only match vx/vf instructions when the splat 1222 // it on the RHS, because TableGen doesn't recognize our VP operations 1223 // as commutative. 1224 case Intrinsic::vp_add: 1225 case Intrinsic::vp_mul: 1226 case Intrinsic::vp_and: 1227 case Intrinsic::vp_or: 1228 case Intrinsic::vp_xor: 1229 case Intrinsic::vp_fadd: 1230 case Intrinsic::vp_fmul: 1231 case Intrinsic::vp_shl: 1232 case Intrinsic::vp_lshr: 1233 case Intrinsic::vp_ashr: 1234 case Intrinsic::vp_udiv: 1235 case Intrinsic::vp_sdiv: 1236 case Intrinsic::vp_urem: 1237 case Intrinsic::vp_srem: 1238 return Operand == 1; 1239 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1240 // explicit patterns for both LHS and RHS (as 'vr' versions). 1241 case Intrinsic::vp_sub: 1242 case Intrinsic::vp_fsub: 1243 case Intrinsic::vp_fdiv: 1244 return Operand == 0 || Operand == 1; 1245 default: 1246 return false; 1247 } 1248 } 1249 return false; 1250 default: 1251 return false; 1252 } 1253 }; 1254 1255 for (auto OpIdx : enumerate(I->operands())) { 1256 if (!IsSinker(I, OpIdx.index())) 1257 continue; 1258 1259 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1260 // Make sure we are not already sinking this operand 1261 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1262 continue; 1263 1264 // We are looking for a splat that can be sunk. 1265 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1266 m_Undef(), m_ZeroMask()))) 1267 continue; 1268 1269 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1270 // and vector registers 1271 for (Use &U : Op->uses()) { 1272 Instruction *Insn = cast<Instruction>(U.getUser()); 1273 if (!IsSinker(Insn, U.getOperandNo())) 1274 return false; 1275 } 1276 1277 Ops.push_back(&Op->getOperandUse(0)); 1278 Ops.push_back(&OpIdx.value()); 1279 } 1280 return true; 1281 } 1282 1283 bool RISCVTargetLowering::isOffsetFoldingLegal( 1284 const GlobalAddressSDNode *GA) const { 1285 // In order to maximise the opportunity for common subexpression elimination, 1286 // keep a separate ADD node for the global address offset instead of folding 1287 // it in the global address node. Later peephole optimisations may choose to 1288 // fold it back in when profitable. 1289 return false; 1290 } 1291 1292 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1293 bool ForCodeSize) const { 1294 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1295 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1296 return false; 1297 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1298 return false; 1299 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1300 return false; 1301 return Imm.isZero(); 1302 } 1303 1304 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1305 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1306 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1307 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1308 } 1309 1310 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1311 CallingConv::ID CC, 1312 EVT VT) const { 1313 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1314 // We might still end up using a GPR but that will be decided based on ABI. 1315 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1316 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1317 return MVT::f32; 1318 1319 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1320 } 1321 1322 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1323 CallingConv::ID CC, 1324 EVT VT) const { 1325 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1326 // We might still end up using a GPR but that will be decided based on ABI. 1327 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1328 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1329 return 1; 1330 1331 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1332 } 1333 1334 // Changes the condition code and swaps operands if necessary, so the SetCC 1335 // operation matches one of the comparisons supported directly by branches 1336 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1337 // with 1/-1. 1338 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1339 ISD::CondCode &CC, SelectionDAG &DAG) { 1340 // Convert X > -1 to X >= 0. 1341 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1342 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1343 CC = ISD::SETGE; 1344 return; 1345 } 1346 // Convert X < 1 to 0 >= X. 1347 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1348 RHS = LHS; 1349 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1350 CC = ISD::SETGE; 1351 return; 1352 } 1353 1354 switch (CC) { 1355 default: 1356 break; 1357 case ISD::SETGT: 1358 case ISD::SETLE: 1359 case ISD::SETUGT: 1360 case ISD::SETULE: 1361 CC = ISD::getSetCCSwappedOperands(CC); 1362 std::swap(LHS, RHS); 1363 break; 1364 } 1365 } 1366 1367 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1368 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1369 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1370 if (VT.getVectorElementType() == MVT::i1) 1371 KnownSize *= 8; 1372 1373 switch (KnownSize) { 1374 default: 1375 llvm_unreachable("Invalid LMUL."); 1376 case 8: 1377 return RISCVII::VLMUL::LMUL_F8; 1378 case 16: 1379 return RISCVII::VLMUL::LMUL_F4; 1380 case 32: 1381 return RISCVII::VLMUL::LMUL_F2; 1382 case 64: 1383 return RISCVII::VLMUL::LMUL_1; 1384 case 128: 1385 return RISCVII::VLMUL::LMUL_2; 1386 case 256: 1387 return RISCVII::VLMUL::LMUL_4; 1388 case 512: 1389 return RISCVII::VLMUL::LMUL_8; 1390 } 1391 } 1392 1393 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1394 switch (LMul) { 1395 default: 1396 llvm_unreachable("Invalid LMUL."); 1397 case RISCVII::VLMUL::LMUL_F8: 1398 case RISCVII::VLMUL::LMUL_F4: 1399 case RISCVII::VLMUL::LMUL_F2: 1400 case RISCVII::VLMUL::LMUL_1: 1401 return RISCV::VRRegClassID; 1402 case RISCVII::VLMUL::LMUL_2: 1403 return RISCV::VRM2RegClassID; 1404 case RISCVII::VLMUL::LMUL_4: 1405 return RISCV::VRM4RegClassID; 1406 case RISCVII::VLMUL::LMUL_8: 1407 return RISCV::VRM8RegClassID; 1408 } 1409 } 1410 1411 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1412 RISCVII::VLMUL LMUL = getLMUL(VT); 1413 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1414 LMUL == RISCVII::VLMUL::LMUL_F4 || 1415 LMUL == RISCVII::VLMUL::LMUL_F2 || 1416 LMUL == RISCVII::VLMUL::LMUL_1) { 1417 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1418 "Unexpected subreg numbering"); 1419 return RISCV::sub_vrm1_0 + Index; 1420 } 1421 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1422 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1423 "Unexpected subreg numbering"); 1424 return RISCV::sub_vrm2_0 + Index; 1425 } 1426 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1427 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1428 "Unexpected subreg numbering"); 1429 return RISCV::sub_vrm4_0 + Index; 1430 } 1431 llvm_unreachable("Invalid vector type."); 1432 } 1433 1434 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1435 if (VT.getVectorElementType() == MVT::i1) 1436 return RISCV::VRRegClassID; 1437 return getRegClassIDForLMUL(getLMUL(VT)); 1438 } 1439 1440 // Attempt to decompose a subvector insert/extract between VecVT and 1441 // SubVecVT via subregister indices. Returns the subregister index that 1442 // can perform the subvector insert/extract with the given element index, as 1443 // well as the index corresponding to any leftover subvectors that must be 1444 // further inserted/extracted within the register class for SubVecVT. 1445 std::pair<unsigned, unsigned> 1446 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1447 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1448 const RISCVRegisterInfo *TRI) { 1449 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1450 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1451 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1452 "Register classes not ordered"); 1453 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1454 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1455 // Try to compose a subregister index that takes us from the incoming 1456 // LMUL>1 register class down to the outgoing one. At each step we half 1457 // the LMUL: 1458 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1459 // Note that this is not guaranteed to find a subregister index, such as 1460 // when we are extracting from one VR type to another. 1461 unsigned SubRegIdx = RISCV::NoSubRegister; 1462 for (const unsigned RCID : 1463 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1464 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1465 VecVT = VecVT.getHalfNumVectorElementsVT(); 1466 bool IsHi = 1467 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1468 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1469 getSubregIndexByMVT(VecVT, IsHi)); 1470 if (IsHi) 1471 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1472 } 1473 return {SubRegIdx, InsertExtractIdx}; 1474 } 1475 1476 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1477 // stores for those types. 1478 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1479 return !Subtarget.useRVVForFixedLengthVectors() || 1480 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1481 } 1482 1483 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1484 if (ScalarTy->isPointerTy()) 1485 return true; 1486 1487 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1488 ScalarTy->isIntegerTy(32)) 1489 return true; 1490 1491 if (ScalarTy->isIntegerTy(64)) 1492 return Subtarget.hasVInstructionsI64(); 1493 1494 if (ScalarTy->isHalfTy()) 1495 return Subtarget.hasVInstructionsF16(); 1496 if (ScalarTy->isFloatTy()) 1497 return Subtarget.hasVInstructionsF32(); 1498 if (ScalarTy->isDoubleTy()) 1499 return Subtarget.hasVInstructionsF64(); 1500 1501 return false; 1502 } 1503 1504 static SDValue getVLOperand(SDValue Op) { 1505 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1506 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1507 "Unexpected opcode"); 1508 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1509 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1510 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1511 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1512 if (!II) 1513 return SDValue(); 1514 return Op.getOperand(II->VLOperand + 1 + HasChain); 1515 } 1516 1517 static bool useRVVForFixedLengthVectorVT(MVT VT, 1518 const RISCVSubtarget &Subtarget) { 1519 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1520 if (!Subtarget.useRVVForFixedLengthVectors()) 1521 return false; 1522 1523 // We only support a set of vector types with a consistent maximum fixed size 1524 // across all supported vector element types to avoid legalization issues. 1525 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1526 // fixed-length vector type we support is 1024 bytes. 1527 if (VT.getFixedSizeInBits() > 1024 * 8) 1528 return false; 1529 1530 unsigned MinVLen = Subtarget.getRealMinVLen(); 1531 1532 MVT EltVT = VT.getVectorElementType(); 1533 1534 // Don't use RVV for vectors we cannot scalarize if required. 1535 switch (EltVT.SimpleTy) { 1536 // i1 is supported but has different rules. 1537 default: 1538 return false; 1539 case MVT::i1: 1540 // Masks can only use a single register. 1541 if (VT.getVectorNumElements() > MinVLen) 1542 return false; 1543 MinVLen /= 8; 1544 break; 1545 case MVT::i8: 1546 case MVT::i16: 1547 case MVT::i32: 1548 break; 1549 case MVT::i64: 1550 if (!Subtarget.hasVInstructionsI64()) 1551 return false; 1552 break; 1553 case MVT::f16: 1554 if (!Subtarget.hasVInstructionsF16()) 1555 return false; 1556 break; 1557 case MVT::f32: 1558 if (!Subtarget.hasVInstructionsF32()) 1559 return false; 1560 break; 1561 case MVT::f64: 1562 if (!Subtarget.hasVInstructionsF64()) 1563 return false; 1564 break; 1565 } 1566 1567 // Reject elements larger than ELEN. 1568 if (EltVT.getSizeInBits() > Subtarget.getELEN()) 1569 return false; 1570 1571 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1572 // Don't use RVV for types that don't fit. 1573 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1574 return false; 1575 1576 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1577 // the base fixed length RVV support in place. 1578 if (!VT.isPow2VectorType()) 1579 return false; 1580 1581 return true; 1582 } 1583 1584 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1585 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1586 } 1587 1588 // Return the largest legal scalable vector type that matches VT's element type. 1589 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1590 const RISCVSubtarget &Subtarget) { 1591 // This may be called before legal types are setup. 1592 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1593 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1594 "Expected legal fixed length vector!"); 1595 1596 unsigned MinVLen = Subtarget.getRealMinVLen(); 1597 unsigned MaxELen = Subtarget.getELEN(); 1598 1599 MVT EltVT = VT.getVectorElementType(); 1600 switch (EltVT.SimpleTy) { 1601 default: 1602 llvm_unreachable("unexpected element type for RVV container"); 1603 case MVT::i1: 1604 case MVT::i8: 1605 case MVT::i16: 1606 case MVT::i32: 1607 case MVT::i64: 1608 case MVT::f16: 1609 case MVT::f32: 1610 case MVT::f64: { 1611 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1612 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1613 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1614 unsigned NumElts = 1615 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1616 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1617 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1618 return MVT::getScalableVectorVT(EltVT, NumElts); 1619 } 1620 } 1621 } 1622 1623 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1624 const RISCVSubtarget &Subtarget) { 1625 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1626 Subtarget); 1627 } 1628 1629 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1630 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1631 } 1632 1633 // Grow V to consume an entire RVV register. 1634 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1635 const RISCVSubtarget &Subtarget) { 1636 assert(VT.isScalableVector() && 1637 "Expected to convert into a scalable vector!"); 1638 assert(V.getValueType().isFixedLengthVector() && 1639 "Expected a fixed length vector operand!"); 1640 SDLoc DL(V); 1641 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1642 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1643 } 1644 1645 // Shrink V so it's just big enough to maintain a VT's worth of data. 1646 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1647 const RISCVSubtarget &Subtarget) { 1648 assert(VT.isFixedLengthVector() && 1649 "Expected to convert into a fixed length vector!"); 1650 assert(V.getValueType().isScalableVector() && 1651 "Expected a scalable vector operand!"); 1652 SDLoc DL(V); 1653 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1654 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1655 } 1656 1657 /// Return the type of the mask type suitable for masking the provided 1658 /// vector type. This is simply an i1 element type vector of the same 1659 /// (possibly scalable) length. 1660 static MVT getMaskTypeFor(EVT VecVT) { 1661 assert(VecVT.isVector()); 1662 ElementCount EC = VecVT.getVectorElementCount(); 1663 return MVT::getVectorVT(MVT::i1, EC); 1664 } 1665 1666 /// Creates an all ones mask suitable for masking a vector of type VecTy with 1667 /// vector length VL. . 1668 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL, 1669 SelectionDAG &DAG) { 1670 MVT MaskVT = getMaskTypeFor(VecVT); 1671 return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1672 } 1673 1674 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1675 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1676 // the vector type that it is contained in. 1677 static std::pair<SDValue, SDValue> 1678 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1679 const RISCVSubtarget &Subtarget) { 1680 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1681 MVT XLenVT = Subtarget.getXLenVT(); 1682 SDValue VL = VecVT.isFixedLengthVector() 1683 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1684 : DAG.getRegister(RISCV::X0, XLenVT); 1685 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 1686 return {Mask, VL}; 1687 } 1688 1689 // As above but assuming the given type is a scalable vector type. 1690 static std::pair<SDValue, SDValue> 1691 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1692 const RISCVSubtarget &Subtarget) { 1693 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1694 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1695 } 1696 1697 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1698 // of either is (currently) supported. This can get us into an infinite loop 1699 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1700 // as a ..., etc. 1701 // Until either (or both) of these can reliably lower any node, reporting that 1702 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1703 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1704 // which is not desirable. 1705 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1706 EVT VT, unsigned DefinedValues) const { 1707 return false; 1708 } 1709 1710 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1711 const RISCVSubtarget &Subtarget) { 1712 // RISCV FP-to-int conversions saturate to the destination register size, but 1713 // don't produce 0 for nan. We can use a conversion instruction and fix the 1714 // nan case with a compare and a select. 1715 SDValue Src = Op.getOperand(0); 1716 1717 EVT DstVT = Op.getValueType(); 1718 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1719 1720 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1721 unsigned Opc; 1722 if (SatVT == DstVT) 1723 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1724 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1725 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1726 else 1727 return SDValue(); 1728 // FIXME: Support other SatVTs by clamping before or after the conversion. 1729 1730 SDLoc DL(Op); 1731 SDValue FpToInt = DAG.getNode( 1732 Opc, DL, DstVT, Src, 1733 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1734 1735 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1736 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1737 } 1738 1739 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1740 // and back. Taking care to avoid converting values that are nan or already 1741 // correct. 1742 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1743 // have FRM dependencies modeled yet. 1744 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1745 MVT VT = Op.getSimpleValueType(); 1746 assert(VT.isVector() && "Unexpected type"); 1747 1748 SDLoc DL(Op); 1749 1750 // Freeze the source since we are increasing the number of uses. 1751 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1752 1753 // Truncate to integer and convert back to FP. 1754 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1755 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1756 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1757 1758 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1759 1760 if (Op.getOpcode() == ISD::FCEIL) { 1761 // If the truncated value is the greater than or equal to the original 1762 // value, we've computed the ceil. Otherwise, we went the wrong way and 1763 // need to increase by 1. 1764 // FIXME: This should use a masked operation. Handle here or in isel? 1765 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1766 DAG.getConstantFP(1.0, DL, VT)); 1767 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1768 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1769 } else if (Op.getOpcode() == ISD::FFLOOR) { 1770 // If the truncated value is the less than or equal to the original value, 1771 // we've computed the floor. Otherwise, we went the wrong way and need to 1772 // decrease by 1. 1773 // FIXME: This should use a masked operation. Handle here or in isel? 1774 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1775 DAG.getConstantFP(1.0, DL, VT)); 1776 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1777 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1778 } 1779 1780 // Restore the original sign so that -0.0 is preserved. 1781 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1782 1783 // Determine the largest integer that can be represented exactly. This and 1784 // values larger than it don't have any fractional bits so don't need to 1785 // be converted. 1786 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1787 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1788 APFloat MaxVal = APFloat(FltSem); 1789 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1790 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1791 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1792 1793 // If abs(Src) was larger than MaxVal or nan, keep it. 1794 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1795 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1796 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1797 } 1798 1799 // ISD::FROUND is defined to round to nearest with ties rounding away from 0. 1800 // This mode isn't supported in vector hardware on RISCV. But as long as we 1801 // aren't compiling with trapping math, we can emulate this with 1802 // floor(X + copysign(nextafter(0.5, 0.0), X)). 1803 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM 1804 // dependencies modeled yet. 1805 // FIXME: Use masked operations to avoid final merge. 1806 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) { 1807 MVT VT = Op.getSimpleValueType(); 1808 assert(VT.isVector() && "Unexpected type"); 1809 1810 SDLoc DL(Op); 1811 1812 // Freeze the source since we are increasing the number of uses. 1813 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1814 1815 // We do the conversion on the absolute value and fix the sign at the end. 1816 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1817 1818 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1819 bool Ignored; 1820 APFloat Point5Pred = APFloat(0.5f); 1821 Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored); 1822 Point5Pred.next(/*nextDown*/ true); 1823 1824 // Add the adjustment. 1825 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs, 1826 DAG.getConstantFP(Point5Pred, DL, VT)); 1827 1828 // Truncate to integer and convert back to fp. 1829 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1830 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust); 1831 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1832 1833 // Restore the original sign. 1834 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1835 1836 // Determine the largest integer that can be represented exactly. This and 1837 // values larger than it don't have any fractional bits so don't need to 1838 // be converted. 1839 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1840 APFloat MaxVal = APFloat(FltSem); 1841 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1842 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1843 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1844 1845 // If abs(Src) was larger than MaxVal or nan, keep it. 1846 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1847 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1848 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1849 } 1850 1851 struct VIDSequence { 1852 int64_t StepNumerator; 1853 unsigned StepDenominator; 1854 int64_t Addend; 1855 }; 1856 1857 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1858 // to the (non-zero) step S and start value X. This can be then lowered as the 1859 // RVV sequence (VID * S) + X, for example. 1860 // The step S is represented as an integer numerator divided by a positive 1861 // denominator. Note that the implementation currently only identifies 1862 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1863 // cannot detect 2/3, for example. 1864 // Note that this method will also match potentially unappealing index 1865 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1866 // determine whether this is worth generating code for. 1867 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1868 unsigned NumElts = Op.getNumOperands(); 1869 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1870 if (!Op.getValueType().isInteger()) 1871 return None; 1872 1873 Optional<unsigned> SeqStepDenom; 1874 Optional<int64_t> SeqStepNum, SeqAddend; 1875 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1876 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1877 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1878 // Assume undef elements match the sequence; we just have to be careful 1879 // when interpolating across them. 1880 if (Op.getOperand(Idx).isUndef()) 1881 continue; 1882 // The BUILD_VECTOR must be all constants. 1883 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1884 return None; 1885 1886 uint64_t Val = Op.getConstantOperandVal(Idx) & 1887 maskTrailingOnes<uint64_t>(EltSizeInBits); 1888 1889 if (PrevElt) { 1890 // Calculate the step since the last non-undef element, and ensure 1891 // it's consistent across the entire sequence. 1892 unsigned IdxDiff = Idx - PrevElt->second; 1893 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1894 1895 // A zero-value value difference means that we're somewhere in the middle 1896 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1897 // step change before evaluating the sequence. 1898 if (ValDiff == 0) 1899 continue; 1900 1901 int64_t Remainder = ValDiff % IdxDiff; 1902 // Normalize the step if it's greater than 1. 1903 if (Remainder != ValDiff) { 1904 // The difference must cleanly divide the element span. 1905 if (Remainder != 0) 1906 return None; 1907 ValDiff /= IdxDiff; 1908 IdxDiff = 1; 1909 } 1910 1911 if (!SeqStepNum) 1912 SeqStepNum = ValDiff; 1913 else if (ValDiff != SeqStepNum) 1914 return None; 1915 1916 if (!SeqStepDenom) 1917 SeqStepDenom = IdxDiff; 1918 else if (IdxDiff != *SeqStepDenom) 1919 return None; 1920 } 1921 1922 // Record this non-undef element for later. 1923 if (!PrevElt || PrevElt->first != Val) 1924 PrevElt = std::make_pair(Val, Idx); 1925 } 1926 1927 // We need to have logged a step for this to count as a legal index sequence. 1928 if (!SeqStepNum || !SeqStepDenom) 1929 return None; 1930 1931 // Loop back through the sequence and validate elements we might have skipped 1932 // while waiting for a valid step. While doing this, log any sequence addend. 1933 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1934 if (Op.getOperand(Idx).isUndef()) 1935 continue; 1936 uint64_t Val = Op.getConstantOperandVal(Idx) & 1937 maskTrailingOnes<uint64_t>(EltSizeInBits); 1938 uint64_t ExpectedVal = 1939 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1940 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1941 if (!SeqAddend) 1942 SeqAddend = Addend; 1943 else if (Addend != SeqAddend) 1944 return None; 1945 } 1946 1947 assert(SeqAddend && "Must have an addend if we have a step"); 1948 1949 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1950 } 1951 1952 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT 1953 // and lower it as a VRGATHER_VX_VL from the source vector. 1954 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, 1955 SelectionDAG &DAG, 1956 const RISCVSubtarget &Subtarget) { 1957 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1958 return SDValue(); 1959 SDValue Vec = SplatVal.getOperand(0); 1960 // Only perform this optimization on vectors of the same size for simplicity. 1961 // Don't perform this optimization for i1 vectors. 1962 // FIXME: Support i1 vectors, maybe by promoting to i8? 1963 if (Vec.getValueType() != VT || VT.getVectorElementType() == MVT::i1) 1964 return SDValue(); 1965 SDValue Idx = SplatVal.getOperand(1); 1966 // The index must be a legal type. 1967 if (Idx.getValueType() != Subtarget.getXLenVT()) 1968 return SDValue(); 1969 1970 MVT ContainerVT = VT; 1971 if (VT.isFixedLengthVector()) { 1972 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1973 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 1974 } 1975 1976 SDValue Mask, VL; 1977 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1978 1979 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, 1980 Idx, Mask, DAG.getUNDEF(ContainerVT), VL); 1981 1982 if (!VT.isFixedLengthVector()) 1983 return Gather; 1984 1985 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1986 } 1987 1988 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1989 const RISCVSubtarget &Subtarget) { 1990 MVT VT = Op.getSimpleValueType(); 1991 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1992 1993 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1994 1995 SDLoc DL(Op); 1996 SDValue Mask, VL; 1997 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1998 1999 MVT XLenVT = Subtarget.getXLenVT(); 2000 unsigned NumElts = Op.getNumOperands(); 2001 2002 if (VT.getVectorElementType() == MVT::i1) { 2003 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 2004 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 2005 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 2006 } 2007 2008 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 2009 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 2010 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 2011 } 2012 2013 // Lower constant mask BUILD_VECTORs via an integer vector type, in 2014 // scalar integer chunks whose bit-width depends on the number of mask 2015 // bits and XLEN. 2016 // First, determine the most appropriate scalar integer type to use. This 2017 // is at most XLenVT, but may be shrunk to a smaller vector element type 2018 // according to the size of the final vector - use i8 chunks rather than 2019 // XLenVT if we're producing a v8i1. This results in more consistent 2020 // codegen across RV32 and RV64. 2021 unsigned NumViaIntegerBits = 2022 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 2023 NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN()); 2024 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 2025 // If we have to use more than one INSERT_VECTOR_ELT then this 2026 // optimization is likely to increase code size; avoid peforming it in 2027 // such a case. We can use a load from a constant pool in this case. 2028 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 2029 return SDValue(); 2030 // Now we can create our integer vector type. Note that it may be larger 2031 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2032 MVT IntegerViaVecVT = 2033 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2034 divideCeil(NumElts, NumViaIntegerBits)); 2035 2036 uint64_t Bits = 0; 2037 unsigned BitPos = 0, IntegerEltIdx = 0; 2038 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2039 2040 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2041 // Once we accumulate enough bits to fill our scalar type, insert into 2042 // our vector and clear our accumulated data. 2043 if (I != 0 && I % NumViaIntegerBits == 0) { 2044 if (NumViaIntegerBits <= 32) 2045 Bits = SignExtend64<32>(Bits); 2046 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2047 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2048 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2049 Bits = 0; 2050 BitPos = 0; 2051 IntegerEltIdx++; 2052 } 2053 SDValue V = Op.getOperand(I); 2054 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2055 Bits |= ((uint64_t)BitValue << BitPos); 2056 } 2057 2058 // Insert the (remaining) scalar value into position in our integer 2059 // vector type. 2060 if (NumViaIntegerBits <= 32) 2061 Bits = SignExtend64<32>(Bits); 2062 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2063 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2064 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2065 2066 if (NumElts < NumViaIntegerBits) { 2067 // If we're producing a smaller vector than our minimum legal integer 2068 // type, bitcast to the equivalent (known-legal) mask type, and extract 2069 // our final mask. 2070 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2071 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2072 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2073 DAG.getConstant(0, DL, XLenVT)); 2074 } else { 2075 // Else we must have produced an integer type with the same size as the 2076 // mask type; bitcast for the final result. 2077 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2078 Vec = DAG.getBitcast(VT, Vec); 2079 } 2080 2081 return Vec; 2082 } 2083 2084 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2085 // vector type, we have a legal equivalently-sized i8 type, so we can use 2086 // that. 2087 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2088 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2089 2090 SDValue WideVec; 2091 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2092 // For a splat, perform a scalar truncate before creating the wider 2093 // vector. 2094 assert(Splat.getValueType() == XLenVT && 2095 "Unexpected type for i1 splat value"); 2096 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2097 DAG.getConstant(1, DL, XLenVT)); 2098 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2099 } else { 2100 SmallVector<SDValue, 8> Ops(Op->op_values()); 2101 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2102 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2103 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2104 } 2105 2106 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2107 } 2108 2109 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2110 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) 2111 return Gather; 2112 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2113 : RISCVISD::VMV_V_X_VL; 2114 Splat = 2115 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); 2116 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2117 } 2118 2119 // Try and match index sequences, which we can lower to the vid instruction 2120 // with optional modifications. An all-undef vector is matched by 2121 // getSplatValue, above. 2122 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2123 int64_t StepNumerator = SimpleVID->StepNumerator; 2124 unsigned StepDenominator = SimpleVID->StepDenominator; 2125 int64_t Addend = SimpleVID->Addend; 2126 2127 assert(StepNumerator != 0 && "Invalid step"); 2128 bool Negate = false; 2129 int64_t SplatStepVal = StepNumerator; 2130 unsigned StepOpcode = ISD::MUL; 2131 if (StepNumerator != 1) { 2132 if (isPowerOf2_64(std::abs(StepNumerator))) { 2133 Negate = StepNumerator < 0; 2134 StepOpcode = ISD::SHL; 2135 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2136 } 2137 } 2138 2139 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2140 // threshold since it's the immediate value many RVV instructions accept. 2141 // There is no vmul.vi instruction so ensure multiply constant can fit in 2142 // a single addi instruction. 2143 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2144 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2145 isPowerOf2_32(StepDenominator) && 2146 (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) { 2147 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2148 // Convert right out of the scalable type so we can use standard ISD 2149 // nodes for the rest of the computation. If we used scalable types with 2150 // these, we'd lose the fixed-length vector info and generate worse 2151 // vsetvli code. 2152 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2153 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2154 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2155 SDValue SplatStep = DAG.getSplatBuildVector( 2156 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2157 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2158 } 2159 if (StepDenominator != 1) { 2160 SDValue SplatStep = DAG.getSplatBuildVector( 2161 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2162 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2163 } 2164 if (Addend != 0 || Negate) { 2165 SDValue SplatAddend = DAG.getSplatBuildVector( 2166 VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2167 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2168 } 2169 return VID; 2170 } 2171 } 2172 2173 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2174 // when re-interpreted as a vector with a larger element type. For example, 2175 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2176 // could be instead splat as 2177 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2178 // TODO: This optimization could also work on non-constant splats, but it 2179 // would require bit-manipulation instructions to construct the splat value. 2180 SmallVector<SDValue> Sequence; 2181 unsigned EltBitSize = VT.getScalarSizeInBits(); 2182 const auto *BV = cast<BuildVectorSDNode>(Op); 2183 if (VT.isInteger() && EltBitSize < 64 && 2184 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2185 BV->getRepeatedSequence(Sequence) && 2186 (Sequence.size() * EltBitSize) <= 64) { 2187 unsigned SeqLen = Sequence.size(); 2188 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2189 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2190 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2191 ViaIntVT == MVT::i64) && 2192 "Unexpected sequence type"); 2193 2194 unsigned EltIdx = 0; 2195 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2196 uint64_t SplatValue = 0; 2197 // Construct the amalgamated value which can be splatted as this larger 2198 // vector type. 2199 for (const auto &SeqV : Sequence) { 2200 if (!SeqV.isUndef()) 2201 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2202 << (EltIdx * EltBitSize)); 2203 EltIdx++; 2204 } 2205 2206 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2207 // achieve better constant materializion. 2208 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2209 SplatValue = SignExtend64<32>(SplatValue); 2210 2211 // Since we can't introduce illegal i64 types at this stage, we can only 2212 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2213 // way we can use RVV instructions to splat. 2214 assert((ViaIntVT.bitsLE(XLenVT) || 2215 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2216 "Unexpected bitcast sequence"); 2217 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2218 SDValue ViaVL = 2219 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2220 MVT ViaContainerVT = 2221 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2222 SDValue Splat = 2223 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2224 DAG.getUNDEF(ViaContainerVT), 2225 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2226 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2227 return DAG.getBitcast(VT, Splat); 2228 } 2229 } 2230 2231 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2232 // which constitute a large proportion of the elements. In such cases we can 2233 // splat a vector with the dominant element and make up the shortfall with 2234 // INSERT_VECTOR_ELTs. 2235 // Note that this includes vectors of 2 elements by association. The 2236 // upper-most element is the "dominant" one, allowing us to use a splat to 2237 // "insert" the upper element, and an insert of the lower element at position 2238 // 0, which improves codegen. 2239 SDValue DominantValue; 2240 unsigned MostCommonCount = 0; 2241 DenseMap<SDValue, unsigned> ValueCounts; 2242 unsigned NumUndefElts = 2243 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2244 2245 // Track the number of scalar loads we know we'd be inserting, estimated as 2246 // any non-zero floating-point constant. Other kinds of element are either 2247 // already in registers or are materialized on demand. The threshold at which 2248 // a vector load is more desirable than several scalar materializion and 2249 // vector-insertion instructions is not known. 2250 unsigned NumScalarLoads = 0; 2251 2252 for (SDValue V : Op->op_values()) { 2253 if (V.isUndef()) 2254 continue; 2255 2256 ValueCounts.insert(std::make_pair(V, 0)); 2257 unsigned &Count = ValueCounts[V]; 2258 2259 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2260 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2261 2262 // Is this value dominant? In case of a tie, prefer the highest element as 2263 // it's cheaper to insert near the beginning of a vector than it is at the 2264 // end. 2265 if (++Count >= MostCommonCount) { 2266 DominantValue = V; 2267 MostCommonCount = Count; 2268 } 2269 } 2270 2271 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2272 unsigned NumDefElts = NumElts - NumUndefElts; 2273 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2274 2275 // Don't perform this optimization when optimizing for size, since 2276 // materializing elements and inserting them tends to cause code bloat. 2277 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2278 ((MostCommonCount > DominantValueCountThreshold) || 2279 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2280 // Start by splatting the most common element. 2281 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2282 2283 DenseSet<SDValue> Processed{DominantValue}; 2284 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2285 for (const auto &OpIdx : enumerate(Op->ops())) { 2286 const SDValue &V = OpIdx.value(); 2287 if (V.isUndef() || !Processed.insert(V).second) 2288 continue; 2289 if (ValueCounts[V] == 1) { 2290 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2291 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2292 } else { 2293 // Blend in all instances of this value using a VSELECT, using a 2294 // mask where each bit signals whether that element is the one 2295 // we're after. 2296 SmallVector<SDValue> Ops; 2297 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2298 return DAG.getConstant(V == V1, DL, XLenVT); 2299 }); 2300 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2301 DAG.getBuildVector(SelMaskTy, DL, Ops), 2302 DAG.getSplatBuildVector(VT, DL, V), Vec); 2303 } 2304 } 2305 2306 return Vec; 2307 } 2308 2309 return SDValue(); 2310 } 2311 2312 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2313 SDValue Lo, SDValue Hi, SDValue VL, 2314 SelectionDAG &DAG) { 2315 if (!Passthru) 2316 Passthru = DAG.getUNDEF(VT); 2317 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2318 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2319 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2320 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2321 // node in order to try and match RVV vector/scalar instructions. 2322 if ((LoC >> 31) == HiC) 2323 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); 2324 2325 // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use 2326 // vmv.v.x whose EEW = 32 to lower it. 2327 auto *Const = dyn_cast<ConstantSDNode>(VL); 2328 if (LoC == HiC && Const && Const->isAllOnesValue()) { 2329 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2330 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2331 // access the subtarget here now. 2332 auto InterVec = DAG.getNode( 2333 RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo, 2334 DAG.getRegister(RISCV::X0, MVT::i32)); 2335 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2336 } 2337 } 2338 2339 // Fall back to a stack store and stride x0 vector load. 2340 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo, 2341 Hi, VL); 2342 } 2343 2344 // Called by type legalization to handle splat of i64 on RV32. 2345 // FIXME: We can optimize this when the type has sign or zero bits in one 2346 // of the halves. 2347 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2348 SDValue Scalar, SDValue VL, 2349 SelectionDAG &DAG) { 2350 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2351 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2352 DAG.getConstant(0, DL, MVT::i32)); 2353 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2354 DAG.getConstant(1, DL, MVT::i32)); 2355 return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG); 2356 } 2357 2358 // This function lowers a splat of a scalar operand Splat with the vector 2359 // length VL. It ensures the final sequence is type legal, which is useful when 2360 // lowering a splat after type legalization. 2361 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL, 2362 MVT VT, SDLoc DL, SelectionDAG &DAG, 2363 const RISCVSubtarget &Subtarget) { 2364 bool HasPassthru = Passthru && !Passthru.isUndef(); 2365 if (!HasPassthru && !Passthru) 2366 Passthru = DAG.getUNDEF(VT); 2367 if (VT.isFloatingPoint()) { 2368 // If VL is 1, we could use vfmv.s.f. 2369 if (isOneConstant(VL)) 2370 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL); 2371 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL); 2372 } 2373 2374 MVT XLenVT = Subtarget.getXLenVT(); 2375 2376 // Simplest case is that the operand needs to be promoted to XLenVT. 2377 if (Scalar.getValueType().bitsLE(XLenVT)) { 2378 // If the operand is a constant, sign extend to increase our chances 2379 // of being able to use a .vi instruction. ANY_EXTEND would become a 2380 // a zero extend and the simm5 check in isel would fail. 2381 // FIXME: Should we ignore the upper bits in isel instead? 2382 unsigned ExtOpc = 2383 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2384 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2385 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2386 // If VL is 1 and the scalar value won't benefit from immediate, we could 2387 // use vmv.s.x. 2388 if (isOneConstant(VL) && 2389 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2390 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL); 2391 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); 2392 } 2393 2394 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2395 "Unexpected scalar for splat lowering!"); 2396 2397 if (isOneConstant(VL) && isNullConstant(Scalar)) 2398 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, 2399 DAG.getConstant(0, DL, XLenVT), VL); 2400 2401 // Otherwise use the more complicated splatting algorithm. 2402 return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG); 2403 } 2404 2405 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2406 const RISCVSubtarget &Subtarget) { 2407 // We need to be able to widen elements to the next larger integer type. 2408 if (VT.getScalarSizeInBits() >= Subtarget.getELEN()) 2409 return false; 2410 2411 int Size = Mask.size(); 2412 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2413 2414 int Srcs[] = {-1, -1}; 2415 for (int i = 0; i != Size; ++i) { 2416 // Ignore undef elements. 2417 if (Mask[i] < 0) 2418 continue; 2419 2420 // Is this an even or odd element. 2421 int Pol = i % 2; 2422 2423 // Ensure we consistently use the same source for this element polarity. 2424 int Src = Mask[i] / Size; 2425 if (Srcs[Pol] < 0) 2426 Srcs[Pol] = Src; 2427 if (Srcs[Pol] != Src) 2428 return false; 2429 2430 // Make sure the element within the source is appropriate for this element 2431 // in the destination. 2432 int Elt = Mask[i] % Size; 2433 if (Elt != i / 2) 2434 return false; 2435 } 2436 2437 // We need to find a source for each polarity and they can't be the same. 2438 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2439 return false; 2440 2441 // Swap the sources if the second source was in the even polarity. 2442 SwapSources = Srcs[0] > Srcs[1]; 2443 2444 return true; 2445 } 2446 2447 /// Match shuffles that concatenate two vectors, rotate the concatenation, 2448 /// and then extract the original number of elements from the rotated result. 2449 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The 2450 /// returned rotation amount is for a rotate right, where elements move from 2451 /// higher elements to lower elements. \p LoSrc indicates the first source 2452 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector 2453 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be 2454 /// 0 or 1 if a rotation is found. 2455 /// 2456 /// NOTE: We talk about rotate to the right which matches how bit shift and 2457 /// rotate instructions are described where LSBs are on the right, but LLVM IR 2458 /// and the table below write vectors with the lowest elements on the left. 2459 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) { 2460 int Size = Mask.size(); 2461 2462 // We need to detect various ways of spelling a rotation: 2463 // [11, 12, 13, 14, 15, 0, 1, 2] 2464 // [-1, 12, 13, 14, -1, -1, 1, -1] 2465 // [-1, -1, -1, -1, -1, -1, 1, 2] 2466 // [ 3, 4, 5, 6, 7, 8, 9, 10] 2467 // [-1, 4, 5, 6, -1, -1, 9, -1] 2468 // [-1, 4, 5, 6, -1, -1, -1, -1] 2469 int Rotation = 0; 2470 LoSrc = -1; 2471 HiSrc = -1; 2472 for (int i = 0; i != Size; ++i) { 2473 int M = Mask[i]; 2474 if (M < 0) 2475 continue; 2476 2477 // Determine where a rotate vector would have started. 2478 int StartIdx = i - (M % Size); 2479 // The identity rotation isn't interesting, stop. 2480 if (StartIdx == 0) 2481 return -1; 2482 2483 // If we found the tail of a vector the rotation must be the missing 2484 // front. If we found the head of a vector, it must be how much of the 2485 // head. 2486 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; 2487 2488 if (Rotation == 0) 2489 Rotation = CandidateRotation; 2490 else if (Rotation != CandidateRotation) 2491 // The rotations don't match, so we can't match this mask. 2492 return -1; 2493 2494 // Compute which value this mask is pointing at. 2495 int MaskSrc = M < Size ? 0 : 1; 2496 2497 // Compute which of the two target values this index should be assigned to. 2498 // This reflects whether the high elements are remaining or the low elemnts 2499 // are remaining. 2500 int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc; 2501 2502 // Either set up this value if we've not encountered it before, or check 2503 // that it remains consistent. 2504 if (TargetSrc < 0) 2505 TargetSrc = MaskSrc; 2506 else if (TargetSrc != MaskSrc) 2507 // This may be a rotation, but it pulls from the inputs in some 2508 // unsupported interleaving. 2509 return -1; 2510 } 2511 2512 // Check that we successfully analyzed the mask, and normalize the results. 2513 assert(Rotation != 0 && "Failed to locate a viable rotation!"); 2514 assert((LoSrc >= 0 || HiSrc >= 0) && 2515 "Failed to find a rotated input vector!"); 2516 2517 return Rotation; 2518 } 2519 2520 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2521 const RISCVSubtarget &Subtarget) { 2522 SDValue V1 = Op.getOperand(0); 2523 SDValue V2 = Op.getOperand(1); 2524 SDLoc DL(Op); 2525 MVT XLenVT = Subtarget.getXLenVT(); 2526 MVT VT = Op.getSimpleValueType(); 2527 unsigned NumElts = VT.getVectorNumElements(); 2528 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2529 2530 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2531 2532 SDValue TrueMask, VL; 2533 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2534 2535 if (SVN->isSplat()) { 2536 const int Lane = SVN->getSplatIndex(); 2537 if (Lane >= 0) { 2538 MVT SVT = VT.getVectorElementType(); 2539 2540 // Turn splatted vector load into a strided load with an X0 stride. 2541 SDValue V = V1; 2542 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2543 // with undef. 2544 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2545 int Offset = Lane; 2546 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2547 int OpElements = 2548 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2549 V = V.getOperand(Offset / OpElements); 2550 Offset %= OpElements; 2551 } 2552 2553 // We need to ensure the load isn't atomic or volatile. 2554 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2555 auto *Ld = cast<LoadSDNode>(V); 2556 Offset *= SVT.getStoreSize(); 2557 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2558 TypeSize::Fixed(Offset), DL); 2559 2560 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2561 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2562 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2563 SDValue IntID = 2564 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2565 SDValue Ops[] = {Ld->getChain(), 2566 IntID, 2567 DAG.getUNDEF(ContainerVT), 2568 NewAddr, 2569 DAG.getRegister(RISCV::X0, XLenVT), 2570 VL}; 2571 SDValue NewLoad = DAG.getMemIntrinsicNode( 2572 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2573 DAG.getMachineFunction().getMachineMemOperand( 2574 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2575 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2576 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2577 } 2578 2579 // Otherwise use a scalar load and splat. This will give the best 2580 // opportunity to fold a splat into the operation. ISel can turn it into 2581 // the x0 strided load if we aren't able to fold away the select. 2582 if (SVT.isFloatingPoint()) 2583 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2584 Ld->getPointerInfo().getWithOffset(Offset), 2585 Ld->getOriginalAlign(), 2586 Ld->getMemOperand()->getFlags()); 2587 else 2588 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2589 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2590 Ld->getOriginalAlign(), 2591 Ld->getMemOperand()->getFlags()); 2592 DAG.makeEquivalentMemoryOrdering(Ld, V); 2593 2594 unsigned Opc = 2595 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2596 SDValue Splat = 2597 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL); 2598 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2599 } 2600 2601 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2602 assert(Lane < (int)NumElts && "Unexpected lane!"); 2603 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, 2604 V1, DAG.getConstant(Lane, DL, XLenVT), 2605 TrueMask, DAG.getUNDEF(ContainerVT), VL); 2606 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2607 } 2608 } 2609 2610 ArrayRef<int> Mask = SVN->getMask(); 2611 2612 // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may 2613 // be undef which can be handled with a single SLIDEDOWN/UP. 2614 int LoSrc, HiSrc; 2615 int Rotation = isElementRotate(LoSrc, HiSrc, Mask); 2616 if (Rotation > 0) { 2617 SDValue LoV, HiV; 2618 if (LoSrc >= 0) { 2619 LoV = LoSrc == 0 ? V1 : V2; 2620 LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget); 2621 } 2622 if (HiSrc >= 0) { 2623 HiV = HiSrc == 0 ? V1 : V2; 2624 HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget); 2625 } 2626 2627 // We found a rotation. We need to slide HiV down by Rotation. Then we need 2628 // to slide LoV up by (NumElts - Rotation). 2629 unsigned InvRotate = NumElts - Rotation; 2630 2631 SDValue Res = DAG.getUNDEF(ContainerVT); 2632 if (HiV) { 2633 // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN. 2634 // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it 2635 // causes multiple vsetvlis in some test cases such as lowering 2636 // reduce.mul 2637 SDValue DownVL = VL; 2638 if (LoV) 2639 DownVL = DAG.getConstant(InvRotate, DL, XLenVT); 2640 Res = 2641 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV, 2642 DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL); 2643 } 2644 if (LoV) 2645 Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV, 2646 DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL); 2647 2648 return convertFromScalableVector(VT, Res, DAG, Subtarget); 2649 } 2650 2651 // Detect an interleave shuffle and lower to 2652 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2653 bool SwapSources; 2654 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2655 // Swap sources if needed. 2656 if (SwapSources) 2657 std::swap(V1, V2); 2658 2659 // Extract the lower half of the vectors. 2660 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2661 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2662 DAG.getConstant(0, DL, XLenVT)); 2663 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2664 DAG.getConstant(0, DL, XLenVT)); 2665 2666 // Double the element width and halve the number of elements in an int type. 2667 unsigned EltBits = VT.getScalarSizeInBits(); 2668 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2669 MVT WideIntVT = 2670 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2671 // Convert this to a scalable vector. We need to base this on the 2672 // destination size to ensure there's always a type with a smaller LMUL. 2673 MVT WideIntContainerVT = 2674 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2675 2676 // Convert sources to scalable vectors with the same element count as the 2677 // larger type. 2678 MVT HalfContainerVT = MVT::getVectorVT( 2679 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2680 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2681 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2682 2683 // Cast sources to integer. 2684 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2685 MVT IntHalfVT = 2686 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2687 V1 = DAG.getBitcast(IntHalfVT, V1); 2688 V2 = DAG.getBitcast(IntHalfVT, V2); 2689 2690 // Freeze V2 since we use it twice and we need to be sure that the add and 2691 // multiply see the same value. 2692 V2 = DAG.getFreeze(V2); 2693 2694 // Recreate TrueMask using the widened type's element count. 2695 TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG); 2696 2697 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2698 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2699 V2, TrueMask, VL); 2700 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2701 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2702 DAG.getUNDEF(IntHalfVT), 2703 DAG.getAllOnesConstant(DL, XLenVT)); 2704 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2705 V2, Multiplier, TrueMask, VL); 2706 // Add the new copies to our previous addition giving us 2^eltbits copies of 2707 // V2. This is equivalent to shifting V2 left by eltbits. This should 2708 // combine with the vwmulu.vv above to form vwmaccu.vv. 2709 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2710 TrueMask, VL); 2711 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2712 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2713 // vector VT. 2714 ContainerVT = 2715 MVT::getVectorVT(VT.getVectorElementType(), 2716 WideIntContainerVT.getVectorElementCount() * 2); 2717 Add = DAG.getBitcast(ContainerVT, Add); 2718 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2719 } 2720 2721 // Detect shuffles which can be re-expressed as vector selects; these are 2722 // shuffles in which each element in the destination is taken from an element 2723 // at the corresponding index in either source vectors. 2724 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2725 int MaskIndex = MaskIdx.value(); 2726 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2727 }); 2728 2729 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2730 2731 SmallVector<SDValue> MaskVals; 2732 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2733 // merged with a second vrgather. 2734 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2735 2736 // By default we preserve the original operand order, and use a mask to 2737 // select LHS as true and RHS as false. However, since RVV vector selects may 2738 // feature splats but only on the LHS, we may choose to invert our mask and 2739 // instead select between RHS and LHS. 2740 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2741 bool InvertMask = IsSelect == SwapOps; 2742 2743 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2744 // half. 2745 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2746 2747 // Now construct the mask that will be used by the vselect or blended 2748 // vrgather operation. For vrgathers, construct the appropriate indices into 2749 // each vector. 2750 for (int MaskIndex : Mask) { 2751 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2752 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2753 if (!IsSelect) { 2754 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2755 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2756 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2757 : DAG.getUNDEF(XLenVT)); 2758 GatherIndicesRHS.push_back( 2759 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2760 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2761 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2762 ++LHSIndexCounts[MaskIndex]; 2763 if (!IsLHSOrUndefIndex) 2764 ++RHSIndexCounts[MaskIndex - NumElts]; 2765 } 2766 } 2767 2768 if (SwapOps) { 2769 std::swap(V1, V2); 2770 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2771 } 2772 2773 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2774 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2775 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2776 2777 if (IsSelect) 2778 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2779 2780 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2781 // On such a large vector we're unable to use i8 as the index type. 2782 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2783 // may involve vector splitting if we're already at LMUL=8, or our 2784 // user-supplied maximum fixed-length LMUL. 2785 return SDValue(); 2786 } 2787 2788 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2789 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2790 MVT IndexVT = VT.changeTypeToInteger(); 2791 // Since we can't introduce illegal index types at this stage, use i16 and 2792 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2793 // than XLenVT. 2794 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2795 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2796 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2797 } 2798 2799 MVT IndexContainerVT = 2800 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2801 2802 SDValue Gather; 2803 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2804 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2805 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2806 Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG, 2807 Subtarget); 2808 } else { 2809 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2810 // If only one index is used, we can use a "splat" vrgather. 2811 // TODO: We can splat the most-common index and fix-up any stragglers, if 2812 // that's beneficial. 2813 if (LHSIndexCounts.size() == 1) { 2814 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2815 Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2816 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, 2817 DAG.getUNDEF(ContainerVT), VL); 2818 } else { 2819 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2820 LHSIndices = 2821 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2822 2823 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2824 TrueMask, DAG.getUNDEF(ContainerVT), VL); 2825 } 2826 } 2827 2828 // If a second vector operand is used by this shuffle, blend it in with an 2829 // additional vrgather. 2830 if (!V2.isUndef()) { 2831 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2832 2833 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2834 SelectMask = 2835 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2836 2837 // If only one index is used, we can use a "splat" vrgather. 2838 // TODO: We can splat the most-common index and fix-up any stragglers, if 2839 // that's beneficial. 2840 if (RHSIndexCounts.size() == 1) { 2841 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2842 Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2843 DAG.getConstant(SplatIndex, DL, XLenVT), SelectMask, 2844 Gather, VL); 2845 } else { 2846 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2847 RHSIndices = 2848 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2849 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, 2850 SelectMask, Gather, VL); 2851 } 2852 } 2853 2854 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2855 } 2856 2857 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 2858 // Support splats for any type. These should type legalize well. 2859 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 2860 return true; 2861 2862 // Only support legal VTs for other shuffles for now. 2863 if (!isTypeLegal(VT)) 2864 return false; 2865 2866 MVT SVT = VT.getSimpleVT(); 2867 2868 bool SwapSources; 2869 int LoSrc, HiSrc; 2870 return (isElementRotate(LoSrc, HiSrc, M) > 0) || 2871 isInterleaveShuffle(M, SVT, SwapSources, Subtarget); 2872 } 2873 2874 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2875 // the exponent. 2876 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2877 MVT VT = Op.getSimpleValueType(); 2878 unsigned EltSize = VT.getScalarSizeInBits(); 2879 SDValue Src = Op.getOperand(0); 2880 SDLoc DL(Op); 2881 2882 // We need a FP type that can represent the value. 2883 // TODO: Use f16 for i8 when possible? 2884 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2885 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2886 2887 // Legal types should have been checked in the RISCVTargetLowering 2888 // constructor. 2889 // TODO: Splitting may make sense in some cases. 2890 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2891 "Expected legal float type!"); 2892 2893 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2894 // The trailing zero count is equal to log2 of this single bit value. 2895 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2896 SDValue Neg = 2897 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2898 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2899 } 2900 2901 // We have a legal FP type, convert to it. 2902 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2903 // Bitcast to integer and shift the exponent to the LSB. 2904 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2905 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2906 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2907 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2908 DAG.getConstant(ShiftAmt, DL, IntVT)); 2909 // Truncate back to original type to allow vnsrl. 2910 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2911 // The exponent contains log2 of the value in biased form. 2912 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2913 2914 // For trailing zeros, we just need to subtract the bias. 2915 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2916 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2917 DAG.getConstant(ExponentBias, DL, VT)); 2918 2919 // For leading zeros, we need to remove the bias and convert from log2 to 2920 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2921 unsigned Adjust = ExponentBias + (EltSize - 1); 2922 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2923 } 2924 2925 // While RVV has alignment restrictions, we should always be able to load as a 2926 // legal equivalently-sized byte-typed vector instead. This method is 2927 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2928 // the load is already correctly-aligned, it returns SDValue(). 2929 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2930 SelectionDAG &DAG) const { 2931 auto *Load = cast<LoadSDNode>(Op); 2932 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2933 2934 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2935 Load->getMemoryVT(), 2936 *Load->getMemOperand())) 2937 return SDValue(); 2938 2939 SDLoc DL(Op); 2940 MVT VT = Op.getSimpleValueType(); 2941 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2942 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2943 "Unexpected unaligned RVV load type"); 2944 MVT NewVT = 2945 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2946 assert(NewVT.isValid() && 2947 "Expecting equally-sized RVV vector types to be legal"); 2948 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2949 Load->getPointerInfo(), Load->getOriginalAlign(), 2950 Load->getMemOperand()->getFlags()); 2951 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2952 } 2953 2954 // While RVV has alignment restrictions, we should always be able to store as a 2955 // legal equivalently-sized byte-typed vector instead. This method is 2956 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2957 // returns SDValue() if the store is already correctly aligned. 2958 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2959 SelectionDAG &DAG) const { 2960 auto *Store = cast<StoreSDNode>(Op); 2961 assert(Store && Store->getValue().getValueType().isVector() && 2962 "Expected vector store"); 2963 2964 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2965 Store->getMemoryVT(), 2966 *Store->getMemOperand())) 2967 return SDValue(); 2968 2969 SDLoc DL(Op); 2970 SDValue StoredVal = Store->getValue(); 2971 MVT VT = StoredVal.getSimpleValueType(); 2972 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2973 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2974 "Unexpected unaligned RVV store type"); 2975 MVT NewVT = 2976 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2977 assert(NewVT.isValid() && 2978 "Expecting equally-sized RVV vector types to be legal"); 2979 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2980 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2981 Store->getPointerInfo(), Store->getOriginalAlign(), 2982 Store->getMemOperand()->getFlags()); 2983 } 2984 2985 static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG, 2986 const RISCVSubtarget &Subtarget) { 2987 assert(Op.getValueType() == MVT::i64 && "Unexpected VT"); 2988 2989 int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue(); 2990 2991 // All simm32 constants should be handled by isel. 2992 // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making 2993 // this check redundant, but small immediates are common so this check 2994 // should have better compile time. 2995 if (isInt<32>(Imm)) 2996 return Op; 2997 2998 // We only need to cost the immediate, if constant pool lowering is enabled. 2999 if (!Subtarget.useConstantPoolForLargeInts()) 3000 return Op; 3001 3002 RISCVMatInt::InstSeq Seq = 3003 RISCVMatInt::generateInstSeq(Imm, Subtarget.getFeatureBits()); 3004 if (Seq.size() <= Subtarget.getMaxBuildIntsCost()) 3005 return Op; 3006 3007 // Expand to a constant pool using the default expansion code. 3008 return SDValue(); 3009 } 3010 3011 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 3012 SelectionDAG &DAG) const { 3013 switch (Op.getOpcode()) { 3014 default: 3015 report_fatal_error("unimplemented operand"); 3016 case ISD::GlobalAddress: 3017 return lowerGlobalAddress(Op, DAG); 3018 case ISD::BlockAddress: 3019 return lowerBlockAddress(Op, DAG); 3020 case ISD::ConstantPool: 3021 return lowerConstantPool(Op, DAG); 3022 case ISD::JumpTable: 3023 return lowerJumpTable(Op, DAG); 3024 case ISD::GlobalTLSAddress: 3025 return lowerGlobalTLSAddress(Op, DAG); 3026 case ISD::Constant: 3027 return lowerConstant(Op, DAG, Subtarget); 3028 case ISD::SELECT: 3029 return lowerSELECT(Op, DAG); 3030 case ISD::BRCOND: 3031 return lowerBRCOND(Op, DAG); 3032 case ISD::VASTART: 3033 return lowerVASTART(Op, DAG); 3034 case ISD::FRAMEADDR: 3035 return lowerFRAMEADDR(Op, DAG); 3036 case ISD::RETURNADDR: 3037 return lowerRETURNADDR(Op, DAG); 3038 case ISD::SHL_PARTS: 3039 return lowerShiftLeftParts(Op, DAG); 3040 case ISD::SRA_PARTS: 3041 return lowerShiftRightParts(Op, DAG, true); 3042 case ISD::SRL_PARTS: 3043 return lowerShiftRightParts(Op, DAG, false); 3044 case ISD::BITCAST: { 3045 SDLoc DL(Op); 3046 EVT VT = Op.getValueType(); 3047 SDValue Op0 = Op.getOperand(0); 3048 EVT Op0VT = Op0.getValueType(); 3049 MVT XLenVT = Subtarget.getXLenVT(); 3050 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 3051 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 3052 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 3053 return FPConv; 3054 } 3055 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 3056 Subtarget.hasStdExtF()) { 3057 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3058 SDValue FPConv = 3059 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 3060 return FPConv; 3061 } 3062 3063 // Consider other scalar<->scalar casts as legal if the types are legal. 3064 // Otherwise expand them. 3065 if (!VT.isVector() && !Op0VT.isVector()) { 3066 if (isTypeLegal(VT) && isTypeLegal(Op0VT)) 3067 return Op; 3068 return SDValue(); 3069 } 3070 3071 assert(!VT.isScalableVector() && !Op0VT.isScalableVector() && 3072 "Unexpected types"); 3073 3074 if (VT.isFixedLengthVector()) { 3075 // We can handle fixed length vector bitcasts with a simple replacement 3076 // in isel. 3077 if (Op0VT.isFixedLengthVector()) 3078 return Op; 3079 // When bitcasting from scalar to fixed-length vector, insert the scalar 3080 // into a one-element vector of the result type, and perform a vector 3081 // bitcast. 3082 if (!Op0VT.isVector()) { 3083 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 3084 if (!isTypeLegal(BVT)) 3085 return SDValue(); 3086 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 3087 DAG.getUNDEF(BVT), Op0, 3088 DAG.getConstant(0, DL, XLenVT))); 3089 } 3090 return SDValue(); 3091 } 3092 // Custom-legalize bitcasts from fixed-length vector types to scalar types 3093 // thus: bitcast the vector to a one-element vector type whose element type 3094 // is the same as the result type, and extract the first element. 3095 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 3096 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 3097 if (!isTypeLegal(BVT)) 3098 return SDValue(); 3099 SDValue BVec = DAG.getBitcast(BVT, Op0); 3100 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 3101 DAG.getConstant(0, DL, XLenVT)); 3102 } 3103 return SDValue(); 3104 } 3105 case ISD::INTRINSIC_WO_CHAIN: 3106 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3107 case ISD::INTRINSIC_W_CHAIN: 3108 return LowerINTRINSIC_W_CHAIN(Op, DAG); 3109 case ISD::INTRINSIC_VOID: 3110 return LowerINTRINSIC_VOID(Op, DAG); 3111 case ISD::BSWAP: 3112 case ISD::BITREVERSE: { 3113 MVT VT = Op.getSimpleValueType(); 3114 SDLoc DL(Op); 3115 if (Subtarget.hasStdExtZbp()) { 3116 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 3117 // Start with the maximum immediate value which is the bitwidth - 1. 3118 unsigned Imm = VT.getSizeInBits() - 1; 3119 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 3120 if (Op.getOpcode() == ISD::BSWAP) 3121 Imm &= ~0x7U; 3122 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 3123 DAG.getConstant(Imm, DL, VT)); 3124 } 3125 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 3126 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 3127 // Expand bitreverse to a bswap(rev8) followed by brev8. 3128 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 3129 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 3130 // as brev8 by an isel pattern. 3131 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 3132 DAG.getConstant(7, DL, VT)); 3133 } 3134 case ISD::FSHL: 3135 case ISD::FSHR: { 3136 MVT VT = Op.getSimpleValueType(); 3137 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 3138 SDLoc DL(Op); 3139 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 3140 // use log(XLen) bits. Mask the shift amount accordingly to prevent 3141 // accidentally setting the extra bit. 3142 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 3143 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 3144 DAG.getConstant(ShAmtWidth, DL, VT)); 3145 // fshl and fshr concatenate their operands in the same order. fsr and fsl 3146 // instruction use different orders. fshl will return its first operand for 3147 // shift of zero, fshr will return its second operand. fsl and fsr both 3148 // return rs1 so the ISD nodes need to have different operand orders. 3149 // Shift amount is in rs2. 3150 SDValue Op0 = Op.getOperand(0); 3151 SDValue Op1 = Op.getOperand(1); 3152 unsigned Opc = RISCVISD::FSL; 3153 if (Op.getOpcode() == ISD::FSHR) { 3154 std::swap(Op0, Op1); 3155 Opc = RISCVISD::FSR; 3156 } 3157 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3158 } 3159 case ISD::TRUNCATE: 3160 // Only custom-lower vector truncates 3161 if (!Op.getSimpleValueType().isVector()) 3162 return Op; 3163 return lowerVectorTruncLike(Op, DAG); 3164 case ISD::ANY_EXTEND: 3165 case ISD::ZERO_EXTEND: 3166 if (Op.getOperand(0).getValueType().isVector() && 3167 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3168 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3169 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3170 case ISD::SIGN_EXTEND: 3171 if (Op.getOperand(0).getValueType().isVector() && 3172 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3173 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3174 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3175 case ISD::SPLAT_VECTOR_PARTS: 3176 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3177 case ISD::INSERT_VECTOR_ELT: 3178 return lowerINSERT_VECTOR_ELT(Op, DAG); 3179 case ISD::EXTRACT_VECTOR_ELT: 3180 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3181 case ISD::VSCALE: { 3182 MVT VT = Op.getSimpleValueType(); 3183 SDLoc DL(Op); 3184 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3185 // We define our scalable vector types for lmul=1 to use a 64 bit known 3186 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3187 // vscale as VLENB / 8. 3188 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3189 if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock) 3190 report_fatal_error("Support for VLEN==32 is incomplete."); 3191 // We assume VLENB is a multiple of 8. We manually choose the best shift 3192 // here because SimplifyDemandedBits isn't always able to simplify it. 3193 uint64_t Val = Op.getConstantOperandVal(0); 3194 if (isPowerOf2_64(Val)) { 3195 uint64_t Log2 = Log2_64(Val); 3196 if (Log2 < 3) 3197 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3198 DAG.getConstant(3 - Log2, DL, VT)); 3199 if (Log2 > 3) 3200 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3201 DAG.getConstant(Log2 - 3, DL, VT)); 3202 return VLENB; 3203 } 3204 // If the multiplier is a multiple of 8, scale it down to avoid needing 3205 // to shift the VLENB value. 3206 if ((Val % 8) == 0) 3207 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3208 DAG.getConstant(Val / 8, DL, VT)); 3209 3210 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3211 DAG.getConstant(3, DL, VT)); 3212 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3213 } 3214 case ISD::FPOWI: { 3215 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3216 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3217 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3218 Op.getOperand(1).getValueType() == MVT::i32) { 3219 SDLoc DL(Op); 3220 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3221 SDValue Powi = 3222 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3223 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3224 DAG.getIntPtrConstant(0, DL)); 3225 } 3226 return SDValue(); 3227 } 3228 case ISD::FP_EXTEND: 3229 case ISD::FP_ROUND: 3230 if (!Op.getValueType().isVector()) 3231 return Op; 3232 return lowerVectorFPExtendOrRoundLike(Op, DAG); 3233 case ISD::FP_TO_SINT: 3234 case ISD::FP_TO_UINT: 3235 case ISD::SINT_TO_FP: 3236 case ISD::UINT_TO_FP: { 3237 // RVV can only do fp<->int conversions to types half/double the size as 3238 // the source. We custom-lower any conversions that do two hops into 3239 // sequences. 3240 MVT VT = Op.getSimpleValueType(); 3241 if (!VT.isVector()) 3242 return Op; 3243 SDLoc DL(Op); 3244 SDValue Src = Op.getOperand(0); 3245 MVT EltVT = VT.getVectorElementType(); 3246 MVT SrcVT = Src.getSimpleValueType(); 3247 MVT SrcEltVT = SrcVT.getVectorElementType(); 3248 unsigned EltSize = EltVT.getSizeInBits(); 3249 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3250 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3251 "Unexpected vector element types"); 3252 3253 bool IsInt2FP = SrcEltVT.isInteger(); 3254 // Widening conversions 3255 if (EltSize > (2 * SrcEltSize)) { 3256 if (IsInt2FP) { 3257 // Do a regular integer sign/zero extension then convert to float. 3258 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), 3259 VT.getVectorElementCount()); 3260 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3261 ? ISD::ZERO_EXTEND 3262 : ISD::SIGN_EXTEND; 3263 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3264 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3265 } 3266 // FP2Int 3267 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3268 // Do one doubling fp_extend then complete the operation by converting 3269 // to int. 3270 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3271 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3272 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3273 } 3274 3275 // Narrowing conversions 3276 if (SrcEltSize > (2 * EltSize)) { 3277 if (IsInt2FP) { 3278 // One narrowing int_to_fp, then an fp_round. 3279 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3280 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3281 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3282 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3283 } 3284 // FP2Int 3285 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3286 // representable by the integer, the result is poison. 3287 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 3288 VT.getVectorElementCount()); 3289 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3290 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3291 } 3292 3293 // Scalable vectors can exit here. Patterns will handle equally-sized 3294 // conversions halving/doubling ones. 3295 if (!VT.isFixedLengthVector()) 3296 return Op; 3297 3298 // For fixed-length vectors we lower to a custom "VL" node. 3299 unsigned RVVOpc = 0; 3300 switch (Op.getOpcode()) { 3301 default: 3302 llvm_unreachable("Impossible opcode"); 3303 case ISD::FP_TO_SINT: 3304 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3305 break; 3306 case ISD::FP_TO_UINT: 3307 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3308 break; 3309 case ISD::SINT_TO_FP: 3310 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3311 break; 3312 case ISD::UINT_TO_FP: 3313 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3314 break; 3315 } 3316 3317 MVT ContainerVT, SrcContainerVT; 3318 // Derive the reference container type from the larger vector type. 3319 if (SrcEltSize > EltSize) { 3320 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3321 ContainerVT = 3322 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3323 } else { 3324 ContainerVT = getContainerForFixedLengthVector(VT); 3325 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3326 } 3327 3328 SDValue Mask, VL; 3329 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3330 3331 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3332 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3333 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3334 } 3335 case ISD::FP_TO_SINT_SAT: 3336 case ISD::FP_TO_UINT_SAT: 3337 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3338 case ISD::FTRUNC: 3339 case ISD::FCEIL: 3340 case ISD::FFLOOR: 3341 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3342 case ISD::FROUND: 3343 return lowerFROUND(Op, DAG); 3344 case ISD::VECREDUCE_ADD: 3345 case ISD::VECREDUCE_UMAX: 3346 case ISD::VECREDUCE_SMAX: 3347 case ISD::VECREDUCE_UMIN: 3348 case ISD::VECREDUCE_SMIN: 3349 return lowerVECREDUCE(Op, DAG); 3350 case ISD::VECREDUCE_AND: 3351 case ISD::VECREDUCE_OR: 3352 case ISD::VECREDUCE_XOR: 3353 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3354 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3355 return lowerVECREDUCE(Op, DAG); 3356 case ISD::VECREDUCE_FADD: 3357 case ISD::VECREDUCE_SEQ_FADD: 3358 case ISD::VECREDUCE_FMIN: 3359 case ISD::VECREDUCE_FMAX: 3360 return lowerFPVECREDUCE(Op, DAG); 3361 case ISD::VP_REDUCE_ADD: 3362 case ISD::VP_REDUCE_UMAX: 3363 case ISD::VP_REDUCE_SMAX: 3364 case ISD::VP_REDUCE_UMIN: 3365 case ISD::VP_REDUCE_SMIN: 3366 case ISD::VP_REDUCE_FADD: 3367 case ISD::VP_REDUCE_SEQ_FADD: 3368 case ISD::VP_REDUCE_FMIN: 3369 case ISD::VP_REDUCE_FMAX: 3370 return lowerVPREDUCE(Op, DAG); 3371 case ISD::VP_REDUCE_AND: 3372 case ISD::VP_REDUCE_OR: 3373 case ISD::VP_REDUCE_XOR: 3374 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3375 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3376 return lowerVPREDUCE(Op, DAG); 3377 case ISD::INSERT_SUBVECTOR: 3378 return lowerINSERT_SUBVECTOR(Op, DAG); 3379 case ISD::EXTRACT_SUBVECTOR: 3380 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3381 case ISD::STEP_VECTOR: 3382 return lowerSTEP_VECTOR(Op, DAG); 3383 case ISD::VECTOR_REVERSE: 3384 return lowerVECTOR_REVERSE(Op, DAG); 3385 case ISD::VECTOR_SPLICE: 3386 return lowerVECTOR_SPLICE(Op, DAG); 3387 case ISD::BUILD_VECTOR: 3388 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3389 case ISD::SPLAT_VECTOR: 3390 if (Op.getValueType().getVectorElementType() == MVT::i1) 3391 return lowerVectorMaskSplat(Op, DAG); 3392 return SDValue(); 3393 case ISD::VECTOR_SHUFFLE: 3394 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3395 case ISD::CONCAT_VECTORS: { 3396 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3397 // better than going through the stack, as the default expansion does. 3398 SDLoc DL(Op); 3399 MVT VT = Op.getSimpleValueType(); 3400 unsigned NumOpElts = 3401 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3402 SDValue Vec = DAG.getUNDEF(VT); 3403 for (const auto &OpIdx : enumerate(Op->ops())) { 3404 SDValue SubVec = OpIdx.value(); 3405 // Don't insert undef subvectors. 3406 if (SubVec.isUndef()) 3407 continue; 3408 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3409 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3410 } 3411 return Vec; 3412 } 3413 case ISD::LOAD: 3414 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3415 return V; 3416 if (Op.getValueType().isFixedLengthVector()) 3417 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3418 return Op; 3419 case ISD::STORE: 3420 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3421 return V; 3422 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3423 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3424 return Op; 3425 case ISD::MLOAD: 3426 case ISD::VP_LOAD: 3427 return lowerMaskedLoad(Op, DAG); 3428 case ISD::MSTORE: 3429 case ISD::VP_STORE: 3430 return lowerMaskedStore(Op, DAG); 3431 case ISD::SETCC: 3432 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3433 case ISD::ADD: 3434 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3435 case ISD::SUB: 3436 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3437 case ISD::MUL: 3438 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3439 case ISD::MULHS: 3440 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3441 case ISD::MULHU: 3442 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3443 case ISD::AND: 3444 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3445 RISCVISD::AND_VL); 3446 case ISD::OR: 3447 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3448 RISCVISD::OR_VL); 3449 case ISD::XOR: 3450 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3451 RISCVISD::XOR_VL); 3452 case ISD::SDIV: 3453 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3454 case ISD::SREM: 3455 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3456 case ISD::UDIV: 3457 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3458 case ISD::UREM: 3459 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3460 case ISD::SHL: 3461 case ISD::SRA: 3462 case ISD::SRL: 3463 if (Op.getSimpleValueType().isFixedLengthVector()) 3464 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3465 // This can be called for an i32 shift amount that needs to be promoted. 3466 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3467 "Unexpected custom legalisation"); 3468 return SDValue(); 3469 case ISD::SADDSAT: 3470 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3471 case ISD::UADDSAT: 3472 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3473 case ISD::SSUBSAT: 3474 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3475 case ISD::USUBSAT: 3476 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3477 case ISD::FADD: 3478 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3479 case ISD::FSUB: 3480 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3481 case ISD::FMUL: 3482 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3483 case ISD::FDIV: 3484 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3485 case ISD::FNEG: 3486 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3487 case ISD::FABS: 3488 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3489 case ISD::FSQRT: 3490 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3491 case ISD::FMA: 3492 return lowerToScalableOp(Op, DAG, RISCVISD::VFMADD_VL); 3493 case ISD::SMIN: 3494 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3495 case ISD::SMAX: 3496 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3497 case ISD::UMIN: 3498 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3499 case ISD::UMAX: 3500 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3501 case ISD::FMINNUM: 3502 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3503 case ISD::FMAXNUM: 3504 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3505 case ISD::ABS: 3506 return lowerABS(Op, DAG); 3507 case ISD::CTLZ_ZERO_UNDEF: 3508 case ISD::CTTZ_ZERO_UNDEF: 3509 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3510 case ISD::VSELECT: 3511 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3512 case ISD::FCOPYSIGN: 3513 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3514 case ISD::MGATHER: 3515 case ISD::VP_GATHER: 3516 return lowerMaskedGather(Op, DAG); 3517 case ISD::MSCATTER: 3518 case ISD::VP_SCATTER: 3519 return lowerMaskedScatter(Op, DAG); 3520 case ISD::FLT_ROUNDS_: 3521 return lowerGET_ROUNDING(Op, DAG); 3522 case ISD::SET_ROUNDING: 3523 return lowerSET_ROUNDING(Op, DAG); 3524 case ISD::EH_DWARF_CFA: 3525 return lowerEH_DWARF_CFA(Op, DAG); 3526 case ISD::VP_SELECT: 3527 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3528 case ISD::VP_MERGE: 3529 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3530 case ISD::VP_ADD: 3531 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3532 case ISD::VP_SUB: 3533 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3534 case ISD::VP_MUL: 3535 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3536 case ISD::VP_SDIV: 3537 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3538 case ISD::VP_UDIV: 3539 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3540 case ISD::VP_SREM: 3541 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3542 case ISD::VP_UREM: 3543 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3544 case ISD::VP_AND: 3545 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3546 case ISD::VP_OR: 3547 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3548 case ISD::VP_XOR: 3549 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3550 case ISD::VP_ASHR: 3551 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3552 case ISD::VP_LSHR: 3553 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3554 case ISD::VP_SHL: 3555 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3556 case ISD::VP_FADD: 3557 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3558 case ISD::VP_FSUB: 3559 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3560 case ISD::VP_FMUL: 3561 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3562 case ISD::VP_FDIV: 3563 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3564 case ISD::VP_FNEG: 3565 return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL); 3566 case ISD::VP_FMA: 3567 return lowerVPOp(Op, DAG, RISCVISD::VFMADD_VL); 3568 case ISD::VP_SIGN_EXTEND: 3569 case ISD::VP_ZERO_EXTEND: 3570 if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) 3571 return lowerVPExtMaskOp(Op, DAG); 3572 return lowerVPOp(Op, DAG, 3573 Op.getOpcode() == ISD::VP_SIGN_EXTEND 3574 ? RISCVISD::VSEXT_VL 3575 : RISCVISD::VZEXT_VL); 3576 case ISD::VP_TRUNCATE: 3577 return lowerVectorTruncLike(Op, DAG); 3578 case ISD::VP_FP_EXTEND: 3579 case ISD::VP_FP_ROUND: 3580 return lowerVectorFPExtendOrRoundLike(Op, DAG); 3581 case ISD::VP_FPTOSI: 3582 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL); 3583 case ISD::VP_FPTOUI: 3584 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL); 3585 case ISD::VP_SITOFP: 3586 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL); 3587 case ISD::VP_UITOFP: 3588 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL); 3589 case ISD::VP_SETCC: 3590 if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) 3591 return lowerVPSetCCMaskOp(Op, DAG); 3592 return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL); 3593 } 3594 } 3595 3596 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3597 SelectionDAG &DAG, unsigned Flags) { 3598 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3599 } 3600 3601 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3602 SelectionDAG &DAG, unsigned Flags) { 3603 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3604 Flags); 3605 } 3606 3607 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3608 SelectionDAG &DAG, unsigned Flags) { 3609 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3610 N->getOffset(), Flags); 3611 } 3612 3613 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3614 SelectionDAG &DAG, unsigned Flags) { 3615 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3616 } 3617 3618 template <class NodeTy> 3619 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3620 bool IsLocal) const { 3621 SDLoc DL(N); 3622 EVT Ty = getPointerTy(DAG.getDataLayout()); 3623 3624 if (isPositionIndependent()) { 3625 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3626 if (IsLocal) 3627 // Use PC-relative addressing to access the symbol. This generates the 3628 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3629 // %pcrel_lo(auipc)). 3630 return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr); 3631 3632 // Use PC-relative addressing to access the GOT for this symbol, then load 3633 // the address from the GOT. This generates the pattern (PseudoLA sym), 3634 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3635 MachineFunction &MF = DAG.getMachineFunction(); 3636 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3637 MachinePointerInfo::getGOT(MF), 3638 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3639 MachineMemOperand::MOInvariant, 3640 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3641 SDValue Load = 3642 DAG.getMemIntrinsicNode(RISCVISD::LA, DL, DAG.getVTList(Ty, MVT::Other), 3643 {DAG.getEntryNode(), Addr}, Ty, MemOp); 3644 return Load; 3645 } 3646 3647 switch (getTargetMachine().getCodeModel()) { 3648 default: 3649 report_fatal_error("Unsupported code model for lowering"); 3650 case CodeModel::Small: { 3651 // Generate a sequence for accessing addresses within the first 2 GiB of 3652 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3653 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3654 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3655 SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi); 3656 return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNHi, AddrLo); 3657 } 3658 case CodeModel::Medium: { 3659 // Generate a sequence for accessing addresses within any 2GiB range within 3660 // the address space. This generates the pattern (PseudoLLA sym), which 3661 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3662 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3663 return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr); 3664 } 3665 } 3666 } 3667 3668 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3669 SelectionDAG &DAG) const { 3670 SDLoc DL(Op); 3671 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3672 assert(N->getOffset() == 0 && "unexpected offset in global node"); 3673 3674 const GlobalValue *GV = N->getGlobal(); 3675 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3676 return getAddr(N, DAG, IsLocal); 3677 } 3678 3679 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3680 SelectionDAG &DAG) const { 3681 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3682 3683 return getAddr(N, DAG); 3684 } 3685 3686 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3687 SelectionDAG &DAG) const { 3688 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3689 3690 return getAddr(N, DAG); 3691 } 3692 3693 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3694 SelectionDAG &DAG) const { 3695 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3696 3697 return getAddr(N, DAG); 3698 } 3699 3700 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3701 SelectionDAG &DAG, 3702 bool UseGOT) const { 3703 SDLoc DL(N); 3704 EVT Ty = getPointerTy(DAG.getDataLayout()); 3705 const GlobalValue *GV = N->getGlobal(); 3706 MVT XLenVT = Subtarget.getXLenVT(); 3707 3708 if (UseGOT) { 3709 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3710 // load the address from the GOT and add the thread pointer. This generates 3711 // the pattern (PseudoLA_TLS_IE sym), which expands to 3712 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3713 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3714 MachineFunction &MF = DAG.getMachineFunction(); 3715 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3716 MachinePointerInfo::getGOT(MF), 3717 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3718 MachineMemOperand::MOInvariant, 3719 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3720 SDValue Load = DAG.getMemIntrinsicNode( 3721 RISCVISD::LA_TLS_IE, DL, DAG.getVTList(Ty, MVT::Other), 3722 {DAG.getEntryNode(), Addr}, Ty, MemOp); 3723 3724 // Add the thread pointer. 3725 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3726 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3727 } 3728 3729 // Generate a sequence for accessing the address relative to the thread 3730 // pointer, with the appropriate adjustment for the thread pointer offset. 3731 // This generates the pattern 3732 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3733 SDValue AddrHi = 3734 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3735 SDValue AddrAdd = 3736 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3737 SDValue AddrLo = 3738 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3739 3740 SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi); 3741 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3742 SDValue MNAdd = 3743 DAG.getNode(RISCVISD::ADD_TPREL, DL, Ty, MNHi, TPReg, AddrAdd); 3744 return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNAdd, AddrLo); 3745 } 3746 3747 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3748 SelectionDAG &DAG) const { 3749 SDLoc DL(N); 3750 EVT Ty = getPointerTy(DAG.getDataLayout()); 3751 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3752 const GlobalValue *GV = N->getGlobal(); 3753 3754 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3755 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3756 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3757 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3758 SDValue Load = DAG.getNode(RISCVISD::LA_TLS_GD, DL, Ty, Addr); 3759 3760 // Prepare argument list to generate call. 3761 ArgListTy Args; 3762 ArgListEntry Entry; 3763 Entry.Node = Load; 3764 Entry.Ty = CallTy; 3765 Args.push_back(Entry); 3766 3767 // Setup call to __tls_get_addr. 3768 TargetLowering::CallLoweringInfo CLI(DAG); 3769 CLI.setDebugLoc(DL) 3770 .setChain(DAG.getEntryNode()) 3771 .setLibCallee(CallingConv::C, CallTy, 3772 DAG.getExternalSymbol("__tls_get_addr", Ty), 3773 std::move(Args)); 3774 3775 return LowerCallTo(CLI).first; 3776 } 3777 3778 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3779 SelectionDAG &DAG) const { 3780 SDLoc DL(Op); 3781 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3782 assert(N->getOffset() == 0 && "unexpected offset in global node"); 3783 3784 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3785 3786 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3787 CallingConv::GHC) 3788 report_fatal_error("In GHC calling convention TLS is not supported"); 3789 3790 SDValue Addr; 3791 switch (Model) { 3792 case TLSModel::LocalExec: 3793 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3794 break; 3795 case TLSModel::InitialExec: 3796 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3797 break; 3798 case TLSModel::LocalDynamic: 3799 case TLSModel::GeneralDynamic: 3800 Addr = getDynamicTLSAddr(N, DAG); 3801 break; 3802 } 3803 3804 return Addr; 3805 } 3806 3807 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3808 SDValue CondV = Op.getOperand(0); 3809 SDValue TrueV = Op.getOperand(1); 3810 SDValue FalseV = Op.getOperand(2); 3811 SDLoc DL(Op); 3812 MVT VT = Op.getSimpleValueType(); 3813 MVT XLenVT = Subtarget.getXLenVT(); 3814 3815 // Lower vector SELECTs to VSELECTs by splatting the condition. 3816 if (VT.isVector()) { 3817 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3818 SDValue CondSplat = VT.isScalableVector() 3819 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3820 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3821 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3822 } 3823 3824 // If the result type is XLenVT and CondV is the output of a SETCC node 3825 // which also operated on XLenVT inputs, then merge the SETCC node into the 3826 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3827 // compare+branch instructions. i.e.: 3828 // (select (setcc lhs, rhs, cc), truev, falsev) 3829 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3830 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3831 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3832 SDValue LHS = CondV.getOperand(0); 3833 SDValue RHS = CondV.getOperand(1); 3834 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3835 ISD::CondCode CCVal = CC->get(); 3836 3837 // Special case for a select of 2 constants that have a diffence of 1. 3838 // Normally this is done by DAGCombine, but if the select is introduced by 3839 // type legalization or op legalization, we miss it. Restricting to SETLT 3840 // case for now because that is what signed saturating add/sub need. 3841 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3842 // but we would probably want to swap the true/false values if the condition 3843 // is SETGE/SETLE to avoid an XORI. 3844 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3845 CCVal == ISD::SETLT) { 3846 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3847 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3848 if (TrueVal - 1 == FalseVal) 3849 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3850 if (TrueVal + 1 == FalseVal) 3851 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3852 } 3853 3854 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3855 3856 SDValue TargetCC = DAG.getCondCode(CCVal); 3857 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3858 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3859 } 3860 3861 // Otherwise: 3862 // (select condv, truev, falsev) 3863 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3864 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3865 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3866 3867 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3868 3869 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3870 } 3871 3872 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3873 SDValue CondV = Op.getOperand(1); 3874 SDLoc DL(Op); 3875 MVT XLenVT = Subtarget.getXLenVT(); 3876 3877 if (CondV.getOpcode() == ISD::SETCC && 3878 CondV.getOperand(0).getValueType() == XLenVT) { 3879 SDValue LHS = CondV.getOperand(0); 3880 SDValue RHS = CondV.getOperand(1); 3881 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3882 3883 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3884 3885 SDValue TargetCC = DAG.getCondCode(CCVal); 3886 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3887 LHS, RHS, TargetCC, Op.getOperand(2)); 3888 } 3889 3890 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3891 CondV, DAG.getConstant(0, DL, XLenVT), 3892 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3893 } 3894 3895 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3896 MachineFunction &MF = DAG.getMachineFunction(); 3897 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3898 3899 SDLoc DL(Op); 3900 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3901 getPointerTy(MF.getDataLayout())); 3902 3903 // vastart just stores the address of the VarArgsFrameIndex slot into the 3904 // memory location argument. 3905 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3906 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3907 MachinePointerInfo(SV)); 3908 } 3909 3910 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3911 SelectionDAG &DAG) const { 3912 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3913 MachineFunction &MF = DAG.getMachineFunction(); 3914 MachineFrameInfo &MFI = MF.getFrameInfo(); 3915 MFI.setFrameAddressIsTaken(true); 3916 Register FrameReg = RI.getFrameRegister(MF); 3917 int XLenInBytes = Subtarget.getXLen() / 8; 3918 3919 EVT VT = Op.getValueType(); 3920 SDLoc DL(Op); 3921 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3922 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3923 while (Depth--) { 3924 int Offset = -(XLenInBytes * 2); 3925 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3926 DAG.getIntPtrConstant(Offset, DL)); 3927 FrameAddr = 3928 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3929 } 3930 return FrameAddr; 3931 } 3932 3933 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3934 SelectionDAG &DAG) const { 3935 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3936 MachineFunction &MF = DAG.getMachineFunction(); 3937 MachineFrameInfo &MFI = MF.getFrameInfo(); 3938 MFI.setReturnAddressIsTaken(true); 3939 MVT XLenVT = Subtarget.getXLenVT(); 3940 int XLenInBytes = Subtarget.getXLen() / 8; 3941 3942 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3943 return SDValue(); 3944 3945 EVT VT = Op.getValueType(); 3946 SDLoc DL(Op); 3947 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3948 if (Depth) { 3949 int Off = -XLenInBytes; 3950 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3951 SDValue Offset = DAG.getConstant(Off, DL, VT); 3952 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3953 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3954 MachinePointerInfo()); 3955 } 3956 3957 // Return the value of the return address register, marking it an implicit 3958 // live-in. 3959 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3960 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3961 } 3962 3963 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3964 SelectionDAG &DAG) const { 3965 SDLoc DL(Op); 3966 SDValue Lo = Op.getOperand(0); 3967 SDValue Hi = Op.getOperand(1); 3968 SDValue Shamt = Op.getOperand(2); 3969 EVT VT = Lo.getValueType(); 3970 3971 // if Shamt-XLEN < 0: // Shamt < XLEN 3972 // Lo = Lo << Shamt 3973 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt)) 3974 // else: 3975 // Lo = 0 3976 // Hi = Lo << (Shamt-XLEN) 3977 3978 SDValue Zero = DAG.getConstant(0, DL, VT); 3979 SDValue One = DAG.getConstant(1, DL, VT); 3980 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3981 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3982 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3983 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 3984 3985 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3986 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3987 SDValue ShiftRightLo = 3988 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3989 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3990 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3991 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3992 3993 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3994 3995 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3996 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3997 3998 SDValue Parts[2] = {Lo, Hi}; 3999 return DAG.getMergeValues(Parts, DL); 4000 } 4001 4002 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 4003 bool IsSRA) const { 4004 SDLoc DL(Op); 4005 SDValue Lo = Op.getOperand(0); 4006 SDValue Hi = Op.getOperand(1); 4007 SDValue Shamt = Op.getOperand(2); 4008 EVT VT = Lo.getValueType(); 4009 4010 // SRA expansion: 4011 // if Shamt-XLEN < 0: // Shamt < XLEN 4012 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4013 // Hi = Hi >>s Shamt 4014 // else: 4015 // Lo = Hi >>s (Shamt-XLEN); 4016 // Hi = Hi >>s (XLEN-1) 4017 // 4018 // SRL expansion: 4019 // if Shamt-XLEN < 0: // Shamt < XLEN 4020 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4021 // Hi = Hi >>u Shamt 4022 // else: 4023 // Lo = Hi >>u (Shamt-XLEN); 4024 // Hi = 0; 4025 4026 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 4027 4028 SDValue Zero = DAG.getConstant(0, DL, VT); 4029 SDValue One = DAG.getConstant(1, DL, VT); 4030 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4031 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4032 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4033 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4034 4035 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 4036 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 4037 SDValue ShiftLeftHi = 4038 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 4039 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 4040 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 4041 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 4042 SDValue HiFalse = 4043 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 4044 4045 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4046 4047 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 4048 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4049 4050 SDValue Parts[2] = {Lo, Hi}; 4051 return DAG.getMergeValues(Parts, DL); 4052 } 4053 4054 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 4055 // legal equivalently-sized i8 type, so we can use that as a go-between. 4056 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 4057 SelectionDAG &DAG) const { 4058 SDLoc DL(Op); 4059 MVT VT = Op.getSimpleValueType(); 4060 SDValue SplatVal = Op.getOperand(0); 4061 // All-zeros or all-ones splats are handled specially. 4062 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4063 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4064 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4065 } 4066 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4067 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4068 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4069 } 4070 MVT XLenVT = Subtarget.getXLenVT(); 4071 assert(SplatVal.getValueType() == XLenVT && 4072 "Unexpected type for i1 splat value"); 4073 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4074 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4075 DAG.getConstant(1, DL, XLenVT)); 4076 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4077 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4078 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4079 } 4080 4081 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4082 // illegal (currently only vXi64 RV32). 4083 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4084 // them to VMV_V_X_VL. 4085 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4086 SelectionDAG &DAG) const { 4087 SDLoc DL(Op); 4088 MVT VecVT = Op.getSimpleValueType(); 4089 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4090 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4091 4092 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4093 SDValue Lo = Op.getOperand(0); 4094 SDValue Hi = Op.getOperand(1); 4095 4096 if (VecVT.isFixedLengthVector()) { 4097 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4098 SDLoc DL(Op); 4099 SDValue Mask, VL; 4100 std::tie(Mask, VL) = 4101 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4102 4103 SDValue Res = 4104 splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG); 4105 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4106 } 4107 4108 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4109 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4110 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4111 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4112 // node in order to try and match RVV vector/scalar instructions. 4113 if ((LoC >> 31) == HiC) 4114 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4115 Lo, DAG.getRegister(RISCV::X0, MVT::i32)); 4116 } 4117 4118 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4119 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4120 isa<ConstantSDNode>(Hi.getOperand(1)) && 4121 Hi.getConstantOperandVal(1) == 31) 4122 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo, 4123 DAG.getRegister(RISCV::X0, MVT::i32)); 4124 4125 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4126 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, 4127 DAG.getUNDEF(VecVT), Lo, Hi, 4128 DAG.getRegister(RISCV::X0, MVT::i32)); 4129 } 4130 4131 // Custom-lower extensions from mask vectors by using a vselect either with 1 4132 // for zero/any-extension or -1 for sign-extension: 4133 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4134 // Note that any-extension is lowered identically to zero-extension. 4135 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4136 int64_t ExtTrueVal) const { 4137 SDLoc DL(Op); 4138 MVT VecVT = Op.getSimpleValueType(); 4139 SDValue Src = Op.getOperand(0); 4140 // Only custom-lower extensions from mask types 4141 assert(Src.getValueType().isVector() && 4142 Src.getValueType().getVectorElementType() == MVT::i1); 4143 4144 if (VecVT.isScalableVector()) { 4145 SDValue SplatZero = DAG.getConstant(0, DL, VecVT); 4146 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT); 4147 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4148 } 4149 4150 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4151 MVT I1ContainerVT = 4152 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4153 4154 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4155 4156 SDValue Mask, VL; 4157 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4158 4159 MVT XLenVT = Subtarget.getXLenVT(); 4160 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4161 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4162 4163 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4164 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4165 SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4166 DAG.getUNDEF(ContainerVT), SplatTrueVal, VL); 4167 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4168 SplatTrueVal, SplatZero, VL); 4169 4170 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4171 } 4172 4173 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4174 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4175 MVT ExtVT = Op.getSimpleValueType(); 4176 // Only custom-lower extensions from fixed-length vector types. 4177 if (!ExtVT.isFixedLengthVector()) 4178 return Op; 4179 MVT VT = Op.getOperand(0).getSimpleValueType(); 4180 // Grab the canonical container type for the extended type. Infer the smaller 4181 // type from that to ensure the same number of vector elements, as we know 4182 // the LMUL will be sufficient to hold the smaller type. 4183 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4184 // Get the extended container type manually to ensure the same number of 4185 // vector elements between source and dest. 4186 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4187 ContainerExtVT.getVectorElementCount()); 4188 4189 SDValue Op1 = 4190 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4191 4192 SDLoc DL(Op); 4193 SDValue Mask, VL; 4194 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4195 4196 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4197 4198 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4199 } 4200 4201 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4202 // setcc operation: 4203 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4204 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op, 4205 SelectionDAG &DAG) const { 4206 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE; 4207 SDLoc DL(Op); 4208 EVT MaskVT = Op.getValueType(); 4209 // Only expect to custom-lower truncations to mask types 4210 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4211 "Unexpected type for vector mask lowering"); 4212 SDValue Src = Op.getOperand(0); 4213 MVT VecVT = Src.getSimpleValueType(); 4214 SDValue Mask, VL; 4215 if (IsVPTrunc) { 4216 Mask = Op.getOperand(1); 4217 VL = Op.getOperand(2); 4218 } 4219 // If this is a fixed vector, we need to convert it to a scalable vector. 4220 MVT ContainerVT = VecVT; 4221 4222 if (VecVT.isFixedLengthVector()) { 4223 ContainerVT = getContainerForFixedLengthVector(VecVT); 4224 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4225 if (IsVPTrunc) { 4226 MVT MaskContainerVT = 4227 getContainerForFixedLengthVector(Mask.getSimpleValueType()); 4228 Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget); 4229 } 4230 } 4231 4232 if (!IsVPTrunc) { 4233 std::tie(Mask, VL) = 4234 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4235 } 4236 4237 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4238 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4239 4240 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4241 DAG.getUNDEF(ContainerVT), SplatOne, VL); 4242 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4243 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4244 4245 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4246 SDValue Trunc = 4247 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4248 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4249 DAG.getCondCode(ISD::SETNE), Mask, VL); 4250 if (MaskVT.isFixedLengthVector()) 4251 Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4252 return Trunc; 4253 } 4254 4255 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op, 4256 SelectionDAG &DAG) const { 4257 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE; 4258 SDLoc DL(Op); 4259 4260 MVT VT = Op.getSimpleValueType(); 4261 // Only custom-lower vector truncates 4262 assert(VT.isVector() && "Unexpected type for vector truncate lowering"); 4263 4264 // Truncates to mask types are handled differently 4265 if (VT.getVectorElementType() == MVT::i1) 4266 return lowerVectorMaskTruncLike(Op, DAG); 4267 4268 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 4269 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 4270 // truncate by one power of two at a time. 4271 MVT DstEltVT = VT.getVectorElementType(); 4272 4273 SDValue Src = Op.getOperand(0); 4274 MVT SrcVT = Src.getSimpleValueType(); 4275 MVT SrcEltVT = SrcVT.getVectorElementType(); 4276 4277 assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) && 4278 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 4279 "Unexpected vector truncate lowering"); 4280 4281 MVT ContainerVT = SrcVT; 4282 SDValue Mask, VL; 4283 if (IsVPTrunc) { 4284 Mask = Op.getOperand(1); 4285 VL = Op.getOperand(2); 4286 } 4287 if (SrcVT.isFixedLengthVector()) { 4288 ContainerVT = getContainerForFixedLengthVector(SrcVT); 4289 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4290 if (IsVPTrunc) { 4291 MVT MaskVT = getMaskTypeFor(ContainerVT); 4292 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4293 } 4294 } 4295 4296 SDValue Result = Src; 4297 if (!IsVPTrunc) { 4298 std::tie(Mask, VL) = 4299 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 4300 } 4301 4302 LLVMContext &Context = *DAG.getContext(); 4303 const ElementCount Count = ContainerVT.getVectorElementCount(); 4304 do { 4305 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 4306 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 4307 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 4308 Mask, VL); 4309 } while (SrcEltVT != DstEltVT); 4310 4311 if (SrcVT.isFixedLengthVector()) 4312 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4313 4314 return Result; 4315 } 4316 4317 SDValue 4318 RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op, 4319 SelectionDAG &DAG) const { 4320 bool IsVP = 4321 Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND; 4322 bool IsExtend = 4323 Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND; 4324 // RVV can only do truncate fp to types half the size as the source. We 4325 // custom-lower f64->f16 rounds via RVV's round-to-odd float 4326 // conversion instruction. 4327 SDLoc DL(Op); 4328 MVT VT = Op.getSimpleValueType(); 4329 4330 assert(VT.isVector() && "Unexpected type for vector truncate lowering"); 4331 4332 SDValue Src = Op.getOperand(0); 4333 MVT SrcVT = Src.getSimpleValueType(); 4334 4335 bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 || 4336 SrcVT.getVectorElementType() != MVT::f16); 4337 bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 || 4338 SrcVT.getVectorElementType() != MVT::f64); 4339 4340 bool IsDirectConv = IsDirectExtend || IsDirectTrunc; 4341 4342 // Prepare any fixed-length vector operands. 4343 MVT ContainerVT = VT; 4344 SDValue Mask, VL; 4345 if (IsVP) { 4346 Mask = Op.getOperand(1); 4347 VL = Op.getOperand(2); 4348 } 4349 if (VT.isFixedLengthVector()) { 4350 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 4351 ContainerVT = 4352 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 4353 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 4354 if (IsVP) { 4355 MVT MaskVT = getMaskTypeFor(ContainerVT); 4356 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4357 } 4358 } 4359 4360 if (!IsVP) 4361 std::tie(Mask, VL) = 4362 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 4363 4364 unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL; 4365 4366 if (IsDirectConv) { 4367 Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL); 4368 if (VT.isFixedLengthVector()) 4369 Src = convertFromScalableVector(VT, Src, DAG, Subtarget); 4370 return Src; 4371 } 4372 4373 unsigned InterConvOpc = 4374 IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL; 4375 4376 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 4377 SDValue IntermediateConv = 4378 DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL); 4379 SDValue Result = 4380 DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL); 4381 if (VT.isFixedLengthVector()) 4382 return convertFromScalableVector(VT, Result, DAG, Subtarget); 4383 return Result; 4384 } 4385 4386 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4387 // first position of a vector, and that vector is slid up to the insert index. 4388 // By limiting the active vector length to index+1 and merging with the 4389 // original vector (with an undisturbed tail policy for elements >= VL), we 4390 // achieve the desired result of leaving all elements untouched except the one 4391 // at VL-1, which is replaced with the desired value. 4392 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4393 SelectionDAG &DAG) const { 4394 SDLoc DL(Op); 4395 MVT VecVT = Op.getSimpleValueType(); 4396 SDValue Vec = Op.getOperand(0); 4397 SDValue Val = Op.getOperand(1); 4398 SDValue Idx = Op.getOperand(2); 4399 4400 if (VecVT.getVectorElementType() == MVT::i1) { 4401 // FIXME: For now we just promote to an i8 vector and insert into that, 4402 // but this is probably not optimal. 4403 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4404 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4405 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4406 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4407 } 4408 4409 MVT ContainerVT = VecVT; 4410 // If the operand is a fixed-length vector, convert to a scalable one. 4411 if (VecVT.isFixedLengthVector()) { 4412 ContainerVT = getContainerForFixedLengthVector(VecVT); 4413 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4414 } 4415 4416 MVT XLenVT = Subtarget.getXLenVT(); 4417 4418 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4419 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4420 // Even i64-element vectors on RV32 can be lowered without scalar 4421 // legalization if the most-significant 32 bits of the value are not affected 4422 // by the sign-extension of the lower 32 bits. 4423 // TODO: We could also catch sign extensions of a 32-bit value. 4424 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4425 const auto *CVal = cast<ConstantSDNode>(Val); 4426 if (isInt<32>(CVal->getSExtValue())) { 4427 IsLegalInsert = true; 4428 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4429 } 4430 } 4431 4432 SDValue Mask, VL; 4433 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4434 4435 SDValue ValInVec; 4436 4437 if (IsLegalInsert) { 4438 unsigned Opc = 4439 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4440 if (isNullConstant(Idx)) { 4441 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4442 if (!VecVT.isFixedLengthVector()) 4443 return Vec; 4444 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4445 } 4446 ValInVec = 4447 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4448 } else { 4449 // On RV32, i64-element vectors must be specially handled to place the 4450 // value at element 0, by using two vslide1up instructions in sequence on 4451 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4452 // this. 4453 SDValue One = DAG.getConstant(1, DL, XLenVT); 4454 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4455 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4456 MVT I32ContainerVT = 4457 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4458 SDValue I32Mask = 4459 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4460 // Limit the active VL to two. 4461 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4462 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4463 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4464 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, 4465 DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL); 4466 // First slide in the hi value, then the lo in underneath it. 4467 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4468 DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi, 4469 I32Mask, InsertI64VL); 4470 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4471 DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo, 4472 I32Mask, InsertI64VL); 4473 // Bitcast back to the right container type. 4474 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4475 } 4476 4477 // Now that the value is in a vector, slide it into position. 4478 SDValue InsertVL = 4479 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4480 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4481 ValInVec, Idx, Mask, InsertVL); 4482 if (!VecVT.isFixedLengthVector()) 4483 return Slideup; 4484 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4485 } 4486 4487 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4488 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4489 // types this is done using VMV_X_S to allow us to glean information about the 4490 // sign bits of the result. 4491 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4492 SelectionDAG &DAG) const { 4493 SDLoc DL(Op); 4494 SDValue Idx = Op.getOperand(1); 4495 SDValue Vec = Op.getOperand(0); 4496 EVT EltVT = Op.getValueType(); 4497 MVT VecVT = Vec.getSimpleValueType(); 4498 MVT XLenVT = Subtarget.getXLenVT(); 4499 4500 if (VecVT.getVectorElementType() == MVT::i1) { 4501 if (VecVT.isFixedLengthVector()) { 4502 unsigned NumElts = VecVT.getVectorNumElements(); 4503 if (NumElts >= 8) { 4504 MVT WideEltVT; 4505 unsigned WidenVecLen; 4506 SDValue ExtractElementIdx; 4507 SDValue ExtractBitIdx; 4508 unsigned MaxEEW = Subtarget.getELEN(); 4509 MVT LargestEltVT = MVT::getIntegerVT( 4510 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4511 if (NumElts <= LargestEltVT.getSizeInBits()) { 4512 assert(isPowerOf2_32(NumElts) && 4513 "the number of elements should be power of 2"); 4514 WideEltVT = MVT::getIntegerVT(NumElts); 4515 WidenVecLen = 1; 4516 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4517 ExtractBitIdx = Idx; 4518 } else { 4519 WideEltVT = LargestEltVT; 4520 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4521 // extract element index = index / element width 4522 ExtractElementIdx = DAG.getNode( 4523 ISD::SRL, DL, XLenVT, Idx, 4524 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4525 // mask bit index = index % element width 4526 ExtractBitIdx = DAG.getNode( 4527 ISD::AND, DL, XLenVT, Idx, 4528 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4529 } 4530 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4531 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4532 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4533 Vec, ExtractElementIdx); 4534 // Extract the bit from GPR. 4535 SDValue ShiftRight = 4536 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4537 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4538 DAG.getConstant(1, DL, XLenVT)); 4539 } 4540 } 4541 // Otherwise, promote to an i8 vector and extract from that. 4542 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4543 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4544 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4545 } 4546 4547 // If this is a fixed vector, we need to convert it to a scalable vector. 4548 MVT ContainerVT = VecVT; 4549 if (VecVT.isFixedLengthVector()) { 4550 ContainerVT = getContainerForFixedLengthVector(VecVT); 4551 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4552 } 4553 4554 // If the index is 0, the vector is already in the right position. 4555 if (!isNullConstant(Idx)) { 4556 // Use a VL of 1 to avoid processing more elements than we need. 4557 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4558 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 4559 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4560 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4561 } 4562 4563 if (!EltVT.isInteger()) { 4564 // Floating-point extracts are handled in TableGen. 4565 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4566 DAG.getConstant(0, DL, XLenVT)); 4567 } 4568 4569 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4570 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4571 } 4572 4573 // Some RVV intrinsics may claim that they want an integer operand to be 4574 // promoted or expanded. 4575 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG, 4576 const RISCVSubtarget &Subtarget) { 4577 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4578 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4579 "Unexpected opcode"); 4580 4581 if (!Subtarget.hasVInstructions()) 4582 return SDValue(); 4583 4584 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4585 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4586 SDLoc DL(Op); 4587 4588 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4589 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4590 if (!II || !II->hasScalarOperand()) 4591 return SDValue(); 4592 4593 unsigned SplatOp = II->ScalarOperand + 1 + HasChain; 4594 assert(SplatOp < Op.getNumOperands()); 4595 4596 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4597 SDValue &ScalarOp = Operands[SplatOp]; 4598 MVT OpVT = ScalarOp.getSimpleValueType(); 4599 MVT XLenVT = Subtarget.getXLenVT(); 4600 4601 // If this isn't a scalar, or its type is XLenVT we're done. 4602 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4603 return SDValue(); 4604 4605 // Simplest case is that the operand needs to be promoted to XLenVT. 4606 if (OpVT.bitsLT(XLenVT)) { 4607 // If the operand is a constant, sign extend to increase our chances 4608 // of being able to use a .vi instruction. ANY_EXTEND would become a 4609 // a zero extend and the simm5 check in isel would fail. 4610 // FIXME: Should we ignore the upper bits in isel instead? 4611 unsigned ExtOpc = 4612 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4613 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4614 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4615 } 4616 4617 // Use the previous operand to get the vXi64 VT. The result might be a mask 4618 // VT for compares. Using the previous operand assumes that the previous 4619 // operand will never have a smaller element size than a scalar operand and 4620 // that a widening operation never uses SEW=64. 4621 // NOTE: If this fails the below assert, we can probably just find the 4622 // element count from any operand or result and use it to construct the VT. 4623 assert(II->ScalarOperand > 0 && "Unexpected splat operand!"); 4624 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4625 4626 // The more complex case is when the scalar is larger than XLenVT. 4627 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4628 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4629 4630 // If this is a sign-extended 32-bit value, we can truncate it and rely on the 4631 // instruction to sign-extend since SEW>XLEN. 4632 if (DAG.ComputeNumSignBits(ScalarOp) > 32) { 4633 ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp); 4634 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4635 } 4636 4637 switch (IntNo) { 4638 case Intrinsic::riscv_vslide1up: 4639 case Intrinsic::riscv_vslide1down: 4640 case Intrinsic::riscv_vslide1up_mask: 4641 case Intrinsic::riscv_vslide1down_mask: { 4642 // We need to special case these when the scalar is larger than XLen. 4643 unsigned NumOps = Op.getNumOperands(); 4644 bool IsMasked = NumOps == 7; 4645 4646 // Convert the vector source to the equivalent nxvXi32 vector. 4647 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4648 SDValue Vec = DAG.getBitcast(I32VT, Operands[2]); 4649 4650 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4651 DAG.getConstant(0, DL, XLenVT)); 4652 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4653 DAG.getConstant(1, DL, XLenVT)); 4654 4655 // Double the VL since we halved SEW. 4656 SDValue AVL = getVLOperand(Op); 4657 SDValue I32VL; 4658 4659 // Optimize for constant AVL 4660 if (isa<ConstantSDNode>(AVL)) { 4661 unsigned EltSize = VT.getScalarSizeInBits(); 4662 unsigned MinSize = VT.getSizeInBits().getKnownMinValue(); 4663 4664 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 4665 unsigned MaxVLMAX = 4666 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 4667 4668 unsigned VectorBitsMin = Subtarget.getRealMinVLen(); 4669 unsigned MinVLMAX = 4670 RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize); 4671 4672 uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue(); 4673 if (AVLInt <= MinVLMAX) { 4674 I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT); 4675 } else if (AVLInt >= 2 * MaxVLMAX) { 4676 // Just set vl to VLMAX in this situation 4677 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT); 4678 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4679 unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits()); 4680 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4681 SDValue SETVLMAX = DAG.getTargetConstant( 4682 Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32); 4683 I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW, 4684 LMUL); 4685 } else { 4686 // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl 4687 // is related to the hardware implementation. 4688 // So let the following code handle 4689 } 4690 } 4691 if (!I32VL) { 4692 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT); 4693 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4694 unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits()); 4695 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4696 SDValue SETVL = 4697 DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32); 4698 // Using vsetvli instruction to get actually used length which related to 4699 // the hardware implementation 4700 SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL, 4701 SEW, LMUL); 4702 I32VL = 4703 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4704 } 4705 4706 SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG); 4707 4708 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4709 // instructions. 4710 SDValue Passthru; 4711 if (IsMasked) 4712 Passthru = DAG.getUNDEF(I32VT); 4713 else 4714 Passthru = DAG.getBitcast(I32VT, Operands[1]); 4715 4716 if (IntNo == Intrinsic::riscv_vslide1up || 4717 IntNo == Intrinsic::riscv_vslide1up_mask) { 4718 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4719 ScalarHi, I32Mask, I32VL); 4720 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4721 ScalarLo, I32Mask, I32VL); 4722 } else { 4723 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4724 ScalarLo, I32Mask, I32VL); 4725 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4726 ScalarHi, I32Mask, I32VL); 4727 } 4728 4729 // Convert back to nxvXi64. 4730 Vec = DAG.getBitcast(VT, Vec); 4731 4732 if (!IsMasked) 4733 return Vec; 4734 // Apply mask after the operation. 4735 SDValue Mask = Operands[NumOps - 3]; 4736 SDValue MaskedOff = Operands[1]; 4737 // Assume Policy operand is the last operand. 4738 uint64_t Policy = 4739 cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue(); 4740 // We don't need to select maskedoff if it's undef. 4741 if (MaskedOff.isUndef()) 4742 return Vec; 4743 // TAMU 4744 if (Policy == RISCVII::TAIL_AGNOSTIC) 4745 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, 4746 AVL); 4747 // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma. 4748 // It's fine because vmerge does not care mask policy. 4749 return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, 4750 AVL); 4751 } 4752 } 4753 4754 // We need to convert the scalar to a splat vector. 4755 SDValue VL = getVLOperand(Op); 4756 assert(VL.getValueType() == XLenVT); 4757 ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG); 4758 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4759 } 4760 4761 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4762 SelectionDAG &DAG) const { 4763 unsigned IntNo = Op.getConstantOperandVal(0); 4764 SDLoc DL(Op); 4765 MVT XLenVT = Subtarget.getXLenVT(); 4766 4767 switch (IntNo) { 4768 default: 4769 break; // Don't custom lower most intrinsics. 4770 case Intrinsic::thread_pointer: { 4771 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4772 return DAG.getRegister(RISCV::X4, PtrVT); 4773 } 4774 case Intrinsic::riscv_orc_b: 4775 case Intrinsic::riscv_brev8: { 4776 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4777 unsigned Opc = 4778 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4779 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4780 DAG.getConstant(7, DL, XLenVT)); 4781 } 4782 case Intrinsic::riscv_grev: 4783 case Intrinsic::riscv_gorc: { 4784 unsigned Opc = 4785 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4786 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4787 } 4788 case Intrinsic::riscv_zip: 4789 case Intrinsic::riscv_unzip: { 4790 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4791 // For i32 the immediate is 15. For i64 the immediate is 31. 4792 unsigned Opc = 4793 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4794 unsigned BitWidth = Op.getValueSizeInBits(); 4795 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4796 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4797 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4798 } 4799 case Intrinsic::riscv_shfl: 4800 case Intrinsic::riscv_unshfl: { 4801 unsigned Opc = 4802 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4803 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4804 } 4805 case Intrinsic::riscv_bcompress: 4806 case Intrinsic::riscv_bdecompress: { 4807 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4808 : RISCVISD::BDECOMPRESS; 4809 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4810 } 4811 case Intrinsic::riscv_bfp: 4812 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4813 Op.getOperand(2)); 4814 case Intrinsic::riscv_fsl: 4815 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4816 Op.getOperand(2), Op.getOperand(3)); 4817 case Intrinsic::riscv_fsr: 4818 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4819 Op.getOperand(2), Op.getOperand(3)); 4820 case Intrinsic::riscv_vmv_x_s: 4821 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4822 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4823 Op.getOperand(1)); 4824 case Intrinsic::riscv_vmv_v_x: 4825 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4826 Op.getOperand(3), Op.getSimpleValueType(), DL, DAG, 4827 Subtarget); 4828 case Intrinsic::riscv_vfmv_v_f: 4829 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4830 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4831 case Intrinsic::riscv_vmv_s_x: { 4832 SDValue Scalar = Op.getOperand(2); 4833 4834 if (Scalar.getValueType().bitsLE(XLenVT)) { 4835 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4836 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4837 Op.getOperand(1), Scalar, Op.getOperand(3)); 4838 } 4839 4840 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4841 4842 // This is an i64 value that lives in two scalar registers. We have to 4843 // insert this in a convoluted way. First we build vXi64 splat containing 4844 // the two values that we assemble using some bit math. Next we'll use 4845 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4846 // to merge element 0 from our splat into the source vector. 4847 // FIXME: This is probably not the best way to do this, but it is 4848 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4849 // point. 4850 // sw lo, (a0) 4851 // sw hi, 4(a0) 4852 // vlse vX, (a0) 4853 // 4854 // vid.v vVid 4855 // vmseq.vx mMask, vVid, 0 4856 // vmerge.vvm vDest, vSrc, vVal, mMask 4857 MVT VT = Op.getSimpleValueType(); 4858 SDValue Vec = Op.getOperand(1); 4859 SDValue VL = getVLOperand(Op); 4860 4861 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG); 4862 if (Op.getOperand(1).isUndef()) 4863 return SplattedVal; 4864 SDValue SplattedIdx = 4865 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 4866 DAG.getConstant(0, DL, MVT::i32), VL); 4867 4868 MVT MaskVT = getMaskTypeFor(VT); 4869 SDValue Mask = getAllOnesMask(VT, VL, DL, DAG); 4870 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4871 SDValue SelectCond = 4872 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4873 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4874 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4875 Vec, VL); 4876 } 4877 } 4878 4879 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4880 } 4881 4882 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4883 SelectionDAG &DAG) const { 4884 unsigned IntNo = Op.getConstantOperandVal(1); 4885 switch (IntNo) { 4886 default: 4887 break; 4888 case Intrinsic::riscv_masked_strided_load: { 4889 SDLoc DL(Op); 4890 MVT XLenVT = Subtarget.getXLenVT(); 4891 4892 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4893 // the selection of the masked intrinsics doesn't do this for us. 4894 SDValue Mask = Op.getOperand(5); 4895 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4896 4897 MVT VT = Op->getSimpleValueType(0); 4898 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4899 4900 SDValue PassThru = Op.getOperand(2); 4901 if (!IsUnmasked) { 4902 MVT MaskVT = getMaskTypeFor(ContainerVT); 4903 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4904 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4905 } 4906 4907 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4908 4909 SDValue IntID = DAG.getTargetConstant( 4910 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4911 XLenVT); 4912 4913 auto *Load = cast<MemIntrinsicSDNode>(Op); 4914 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4915 if (IsUnmasked) 4916 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4917 else 4918 Ops.push_back(PassThru); 4919 Ops.push_back(Op.getOperand(3)); // Ptr 4920 Ops.push_back(Op.getOperand(4)); // Stride 4921 if (!IsUnmasked) 4922 Ops.push_back(Mask); 4923 Ops.push_back(VL); 4924 if (!IsUnmasked) { 4925 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4926 Ops.push_back(Policy); 4927 } 4928 4929 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4930 SDValue Result = 4931 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4932 Load->getMemoryVT(), Load->getMemOperand()); 4933 SDValue Chain = Result.getValue(1); 4934 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4935 return DAG.getMergeValues({Result, Chain}, DL); 4936 } 4937 case Intrinsic::riscv_seg2_load: 4938 case Intrinsic::riscv_seg3_load: 4939 case Intrinsic::riscv_seg4_load: 4940 case Intrinsic::riscv_seg5_load: 4941 case Intrinsic::riscv_seg6_load: 4942 case Intrinsic::riscv_seg7_load: 4943 case Intrinsic::riscv_seg8_load: { 4944 SDLoc DL(Op); 4945 static const Intrinsic::ID VlsegInts[7] = { 4946 Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, 4947 Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, 4948 Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, 4949 Intrinsic::riscv_vlseg8}; 4950 unsigned NF = Op->getNumValues() - 1; 4951 assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); 4952 MVT XLenVT = Subtarget.getXLenVT(); 4953 MVT VT = Op->getSimpleValueType(0); 4954 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4955 4956 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4957 SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT); 4958 auto *Load = cast<MemIntrinsicSDNode>(Op); 4959 SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT); 4960 ContainerVTs.push_back(MVT::Other); 4961 SDVTList VTs = DAG.getVTList(ContainerVTs); 4962 SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID}; 4963 Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT)); 4964 Ops.push_back(Op.getOperand(2)); 4965 Ops.push_back(VL); 4966 SDValue Result = 4967 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4968 Load->getMemoryVT(), Load->getMemOperand()); 4969 SmallVector<SDValue, 9> Results; 4970 for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++) 4971 Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx), 4972 DAG, Subtarget)); 4973 Results.push_back(Result.getValue(NF)); 4974 return DAG.getMergeValues(Results, DL); 4975 } 4976 } 4977 4978 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4979 } 4980 4981 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4982 SelectionDAG &DAG) const { 4983 unsigned IntNo = Op.getConstantOperandVal(1); 4984 switch (IntNo) { 4985 default: 4986 break; 4987 case Intrinsic::riscv_masked_strided_store: { 4988 SDLoc DL(Op); 4989 MVT XLenVT = Subtarget.getXLenVT(); 4990 4991 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4992 // the selection of the masked intrinsics doesn't do this for us. 4993 SDValue Mask = Op.getOperand(5); 4994 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4995 4996 SDValue Val = Op.getOperand(2); 4997 MVT VT = Val.getSimpleValueType(); 4998 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4999 5000 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5001 if (!IsUnmasked) { 5002 MVT MaskVT = getMaskTypeFor(ContainerVT); 5003 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5004 } 5005 5006 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5007 5008 SDValue IntID = DAG.getTargetConstant( 5009 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 5010 XLenVT); 5011 5012 auto *Store = cast<MemIntrinsicSDNode>(Op); 5013 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 5014 Ops.push_back(Val); 5015 Ops.push_back(Op.getOperand(3)); // Ptr 5016 Ops.push_back(Op.getOperand(4)); // Stride 5017 if (!IsUnmasked) 5018 Ops.push_back(Mask); 5019 Ops.push_back(VL); 5020 5021 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 5022 Ops, Store->getMemoryVT(), 5023 Store->getMemOperand()); 5024 } 5025 } 5026 5027 return SDValue(); 5028 } 5029 5030 static MVT getLMUL1VT(MVT VT) { 5031 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 5032 "Unexpected vector MVT"); 5033 return MVT::getScalableVectorVT( 5034 VT.getVectorElementType(), 5035 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 5036 } 5037 5038 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 5039 switch (ISDOpcode) { 5040 default: 5041 llvm_unreachable("Unhandled reduction"); 5042 case ISD::VECREDUCE_ADD: 5043 return RISCVISD::VECREDUCE_ADD_VL; 5044 case ISD::VECREDUCE_UMAX: 5045 return RISCVISD::VECREDUCE_UMAX_VL; 5046 case ISD::VECREDUCE_SMAX: 5047 return RISCVISD::VECREDUCE_SMAX_VL; 5048 case ISD::VECREDUCE_UMIN: 5049 return RISCVISD::VECREDUCE_UMIN_VL; 5050 case ISD::VECREDUCE_SMIN: 5051 return RISCVISD::VECREDUCE_SMIN_VL; 5052 case ISD::VECREDUCE_AND: 5053 return RISCVISD::VECREDUCE_AND_VL; 5054 case ISD::VECREDUCE_OR: 5055 return RISCVISD::VECREDUCE_OR_VL; 5056 case ISD::VECREDUCE_XOR: 5057 return RISCVISD::VECREDUCE_XOR_VL; 5058 } 5059 } 5060 5061 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 5062 SelectionDAG &DAG, 5063 bool IsVP) const { 5064 SDLoc DL(Op); 5065 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 5066 MVT VecVT = Vec.getSimpleValueType(); 5067 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 5068 Op.getOpcode() == ISD::VECREDUCE_OR || 5069 Op.getOpcode() == ISD::VECREDUCE_XOR || 5070 Op.getOpcode() == ISD::VP_REDUCE_AND || 5071 Op.getOpcode() == ISD::VP_REDUCE_OR || 5072 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 5073 "Unexpected reduction lowering"); 5074 5075 MVT XLenVT = Subtarget.getXLenVT(); 5076 assert(Op.getValueType() == XLenVT && 5077 "Expected reduction output to be legalized to XLenVT"); 5078 5079 MVT ContainerVT = VecVT; 5080 if (VecVT.isFixedLengthVector()) { 5081 ContainerVT = getContainerForFixedLengthVector(VecVT); 5082 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5083 } 5084 5085 SDValue Mask, VL; 5086 if (IsVP) { 5087 Mask = Op.getOperand(2); 5088 VL = Op.getOperand(3); 5089 } else { 5090 std::tie(Mask, VL) = 5091 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5092 } 5093 5094 unsigned BaseOpc; 5095 ISD::CondCode CC; 5096 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 5097 5098 switch (Op.getOpcode()) { 5099 default: 5100 llvm_unreachable("Unhandled reduction"); 5101 case ISD::VECREDUCE_AND: 5102 case ISD::VP_REDUCE_AND: { 5103 // vcpop ~x == 0 5104 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 5105 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 5106 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5107 CC = ISD::SETEQ; 5108 BaseOpc = ISD::AND; 5109 break; 5110 } 5111 case ISD::VECREDUCE_OR: 5112 case ISD::VP_REDUCE_OR: 5113 // vcpop x != 0 5114 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5115 CC = ISD::SETNE; 5116 BaseOpc = ISD::OR; 5117 break; 5118 case ISD::VECREDUCE_XOR: 5119 case ISD::VP_REDUCE_XOR: { 5120 // ((vcpop x) & 1) != 0 5121 SDValue One = DAG.getConstant(1, DL, XLenVT); 5122 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5123 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 5124 CC = ISD::SETNE; 5125 BaseOpc = ISD::XOR; 5126 break; 5127 } 5128 } 5129 5130 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 5131 5132 if (!IsVP) 5133 return SetCC; 5134 5135 // Now include the start value in the operation. 5136 // Note that we must return the start value when no elements are operated 5137 // upon. The vcpop instructions we've emitted in each case above will return 5138 // 0 for an inactive vector, and so we've already received the neutral value: 5139 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 5140 // can simply include the start value. 5141 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 5142 } 5143 5144 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 5145 SelectionDAG &DAG) const { 5146 SDLoc DL(Op); 5147 SDValue Vec = Op.getOperand(0); 5148 EVT VecEVT = Vec.getValueType(); 5149 5150 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 5151 5152 // Due to ordering in legalize types we may have a vector type that needs to 5153 // be split. Do that manually so we can get down to a legal type. 5154 while (getTypeAction(*DAG.getContext(), VecEVT) == 5155 TargetLowering::TypeSplitVector) { 5156 SDValue Lo, Hi; 5157 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 5158 VecEVT = Lo.getValueType(); 5159 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 5160 } 5161 5162 // TODO: The type may need to be widened rather than split. Or widened before 5163 // it can be split. 5164 if (!isTypeLegal(VecEVT)) 5165 return SDValue(); 5166 5167 MVT VecVT = VecEVT.getSimpleVT(); 5168 MVT VecEltVT = VecVT.getVectorElementType(); 5169 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 5170 5171 MVT ContainerVT = VecVT; 5172 if (VecVT.isFixedLengthVector()) { 5173 ContainerVT = getContainerForFixedLengthVector(VecVT); 5174 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5175 } 5176 5177 MVT M1VT = getLMUL1VT(ContainerVT); 5178 MVT XLenVT = Subtarget.getXLenVT(); 5179 5180 SDValue Mask, VL; 5181 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5182 5183 SDValue NeutralElem = 5184 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 5185 SDValue IdentitySplat = 5186 lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT), 5187 M1VT, DL, DAG, Subtarget); 5188 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 5189 IdentitySplat, Mask, VL); 5190 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5191 DAG.getConstant(0, DL, XLenVT)); 5192 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5193 } 5194 5195 // Given a reduction op, this function returns the matching reduction opcode, 5196 // the vector SDValue and the scalar SDValue required to lower this to a 5197 // RISCVISD node. 5198 static std::tuple<unsigned, SDValue, SDValue> 5199 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 5200 SDLoc DL(Op); 5201 auto Flags = Op->getFlags(); 5202 unsigned Opcode = Op.getOpcode(); 5203 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 5204 switch (Opcode) { 5205 default: 5206 llvm_unreachable("Unhandled reduction"); 5207 case ISD::VECREDUCE_FADD: { 5208 // Use positive zero if we can. It is cheaper to materialize. 5209 SDValue Zero = 5210 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 5211 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 5212 } 5213 case ISD::VECREDUCE_SEQ_FADD: 5214 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 5215 Op.getOperand(0)); 5216 case ISD::VECREDUCE_FMIN: 5217 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 5218 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5219 case ISD::VECREDUCE_FMAX: 5220 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 5221 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5222 } 5223 } 5224 5225 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 5226 SelectionDAG &DAG) const { 5227 SDLoc DL(Op); 5228 MVT VecEltVT = Op.getSimpleValueType(); 5229 5230 unsigned RVVOpcode; 5231 SDValue VectorVal, ScalarVal; 5232 std::tie(RVVOpcode, VectorVal, ScalarVal) = 5233 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 5234 MVT VecVT = VectorVal.getSimpleValueType(); 5235 5236 MVT ContainerVT = VecVT; 5237 if (VecVT.isFixedLengthVector()) { 5238 ContainerVT = getContainerForFixedLengthVector(VecVT); 5239 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 5240 } 5241 5242 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 5243 MVT XLenVT = Subtarget.getXLenVT(); 5244 5245 SDValue Mask, VL; 5246 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5247 5248 SDValue ScalarSplat = 5249 lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT), 5250 M1VT, DL, DAG, Subtarget); 5251 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 5252 VectorVal, ScalarSplat, Mask, VL); 5253 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5254 DAG.getConstant(0, DL, XLenVT)); 5255 } 5256 5257 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 5258 switch (ISDOpcode) { 5259 default: 5260 llvm_unreachable("Unhandled reduction"); 5261 case ISD::VP_REDUCE_ADD: 5262 return RISCVISD::VECREDUCE_ADD_VL; 5263 case ISD::VP_REDUCE_UMAX: 5264 return RISCVISD::VECREDUCE_UMAX_VL; 5265 case ISD::VP_REDUCE_SMAX: 5266 return RISCVISD::VECREDUCE_SMAX_VL; 5267 case ISD::VP_REDUCE_UMIN: 5268 return RISCVISD::VECREDUCE_UMIN_VL; 5269 case ISD::VP_REDUCE_SMIN: 5270 return RISCVISD::VECREDUCE_SMIN_VL; 5271 case ISD::VP_REDUCE_AND: 5272 return RISCVISD::VECREDUCE_AND_VL; 5273 case ISD::VP_REDUCE_OR: 5274 return RISCVISD::VECREDUCE_OR_VL; 5275 case ISD::VP_REDUCE_XOR: 5276 return RISCVISD::VECREDUCE_XOR_VL; 5277 case ISD::VP_REDUCE_FADD: 5278 return RISCVISD::VECREDUCE_FADD_VL; 5279 case ISD::VP_REDUCE_SEQ_FADD: 5280 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 5281 case ISD::VP_REDUCE_FMAX: 5282 return RISCVISD::VECREDUCE_FMAX_VL; 5283 case ISD::VP_REDUCE_FMIN: 5284 return RISCVISD::VECREDUCE_FMIN_VL; 5285 } 5286 } 5287 5288 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5289 SelectionDAG &DAG) const { 5290 SDLoc DL(Op); 5291 SDValue Vec = Op.getOperand(1); 5292 EVT VecEVT = Vec.getValueType(); 5293 5294 // TODO: The type may need to be widened rather than split. Or widened before 5295 // it can be split. 5296 if (!isTypeLegal(VecEVT)) 5297 return SDValue(); 5298 5299 MVT VecVT = VecEVT.getSimpleVT(); 5300 MVT VecEltVT = VecVT.getVectorElementType(); 5301 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5302 5303 MVT ContainerVT = VecVT; 5304 if (VecVT.isFixedLengthVector()) { 5305 ContainerVT = getContainerForFixedLengthVector(VecVT); 5306 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5307 } 5308 5309 SDValue VL = Op.getOperand(3); 5310 SDValue Mask = Op.getOperand(2); 5311 5312 MVT M1VT = getLMUL1VT(ContainerVT); 5313 MVT XLenVT = Subtarget.getXLenVT(); 5314 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5315 5316 SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0), 5317 DAG.getConstant(1, DL, XLenVT), M1VT, 5318 DL, DAG, Subtarget); 5319 SDValue Reduction = 5320 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5321 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5322 DAG.getConstant(0, DL, XLenVT)); 5323 if (!VecVT.isInteger()) 5324 return Elt0; 5325 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5326 } 5327 5328 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5329 SelectionDAG &DAG) const { 5330 SDValue Vec = Op.getOperand(0); 5331 SDValue SubVec = Op.getOperand(1); 5332 MVT VecVT = Vec.getSimpleValueType(); 5333 MVT SubVecVT = SubVec.getSimpleValueType(); 5334 5335 SDLoc DL(Op); 5336 MVT XLenVT = Subtarget.getXLenVT(); 5337 unsigned OrigIdx = Op.getConstantOperandVal(2); 5338 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5339 5340 // We don't have the ability to slide mask vectors up indexed by their i1 5341 // elements; the smallest we can do is i8. Often we are able to bitcast to 5342 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5343 // into a scalable one, we might not necessarily have enough scalable 5344 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5345 if (SubVecVT.getVectorElementType() == MVT::i1 && 5346 (OrigIdx != 0 || !Vec.isUndef())) { 5347 if (VecVT.getVectorMinNumElements() >= 8 && 5348 SubVecVT.getVectorMinNumElements() >= 8) { 5349 assert(OrigIdx % 8 == 0 && "Invalid index"); 5350 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5351 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5352 "Unexpected mask vector lowering"); 5353 OrigIdx /= 8; 5354 SubVecVT = 5355 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5356 SubVecVT.isScalableVector()); 5357 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5358 VecVT.isScalableVector()); 5359 Vec = DAG.getBitcast(VecVT, Vec); 5360 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5361 } else { 5362 // We can't slide this mask vector up indexed by its i1 elements. 5363 // This poses a problem when we wish to insert a scalable vector which 5364 // can't be re-expressed as a larger type. Just choose the slow path and 5365 // extend to a larger type, then truncate back down. 5366 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5367 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5368 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5369 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5370 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5371 Op.getOperand(2)); 5372 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5373 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5374 } 5375 } 5376 5377 // If the subvector vector is a fixed-length type, we cannot use subregister 5378 // manipulation to simplify the codegen; we don't know which register of a 5379 // LMUL group contains the specific subvector as we only know the minimum 5380 // register size. Therefore we must slide the vector group up the full 5381 // amount. 5382 if (SubVecVT.isFixedLengthVector()) { 5383 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5384 return Op; 5385 MVT ContainerVT = VecVT; 5386 if (VecVT.isFixedLengthVector()) { 5387 ContainerVT = getContainerForFixedLengthVector(VecVT); 5388 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5389 } 5390 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5391 DAG.getUNDEF(ContainerVT), SubVec, 5392 DAG.getConstant(0, DL, XLenVT)); 5393 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5394 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5395 return DAG.getBitcast(Op.getValueType(), SubVec); 5396 } 5397 SDValue Mask = 5398 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5399 // Set the vector length to only the number of elements we care about. Note 5400 // that for slideup this includes the offset. 5401 SDValue VL = 5402 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5403 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5404 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5405 SubVec, SlideupAmt, Mask, VL); 5406 if (VecVT.isFixedLengthVector()) 5407 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5408 return DAG.getBitcast(Op.getValueType(), Slideup); 5409 } 5410 5411 unsigned SubRegIdx, RemIdx; 5412 std::tie(SubRegIdx, RemIdx) = 5413 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5414 VecVT, SubVecVT, OrigIdx, TRI); 5415 5416 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5417 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5418 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5419 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5420 5421 // 1. If the Idx has been completely eliminated and this subvector's size is 5422 // a vector register or a multiple thereof, or the surrounding elements are 5423 // undef, then this is a subvector insert which naturally aligns to a vector 5424 // register. These can easily be handled using subregister manipulation. 5425 // 2. If the subvector is smaller than a vector register, then the insertion 5426 // must preserve the undisturbed elements of the register. We do this by 5427 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5428 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5429 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5430 // LMUL=1 type back into the larger vector (resolving to another subregister 5431 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5432 // to avoid allocating a large register group to hold our subvector. 5433 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5434 return Op; 5435 5436 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5437 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5438 // (in our case undisturbed). This means we can set up a subvector insertion 5439 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5440 // size of the subvector. 5441 MVT InterSubVT = VecVT; 5442 SDValue AlignedExtract = Vec; 5443 unsigned AlignedIdx = OrigIdx - RemIdx; 5444 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5445 InterSubVT = getLMUL1VT(VecVT); 5446 // Extract a subvector equal to the nearest full vector register type. This 5447 // should resolve to a EXTRACT_SUBREG instruction. 5448 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5449 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5450 } 5451 5452 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5453 // For scalable vectors this must be further multiplied by vscale. 5454 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5455 5456 SDValue Mask, VL; 5457 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5458 5459 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5460 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5461 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5462 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5463 5464 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5465 DAG.getUNDEF(InterSubVT), SubVec, 5466 DAG.getConstant(0, DL, XLenVT)); 5467 5468 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5469 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5470 5471 // If required, insert this subvector back into the correct vector register. 5472 // This should resolve to an INSERT_SUBREG instruction. 5473 if (VecVT.bitsGT(InterSubVT)) 5474 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5475 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5476 5477 // We might have bitcast from a mask type: cast back to the original type if 5478 // required. 5479 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5480 } 5481 5482 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5483 SelectionDAG &DAG) const { 5484 SDValue Vec = Op.getOperand(0); 5485 MVT SubVecVT = Op.getSimpleValueType(); 5486 MVT VecVT = Vec.getSimpleValueType(); 5487 5488 SDLoc DL(Op); 5489 MVT XLenVT = Subtarget.getXLenVT(); 5490 unsigned OrigIdx = Op.getConstantOperandVal(1); 5491 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5492 5493 // We don't have the ability to slide mask vectors down indexed by their i1 5494 // elements; the smallest we can do is i8. Often we are able to bitcast to 5495 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5496 // from a scalable one, we might not necessarily have enough scalable 5497 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5498 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5499 if (VecVT.getVectorMinNumElements() >= 8 && 5500 SubVecVT.getVectorMinNumElements() >= 8) { 5501 assert(OrigIdx % 8 == 0 && "Invalid index"); 5502 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5503 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5504 "Unexpected mask vector lowering"); 5505 OrigIdx /= 8; 5506 SubVecVT = 5507 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5508 SubVecVT.isScalableVector()); 5509 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5510 VecVT.isScalableVector()); 5511 Vec = DAG.getBitcast(VecVT, Vec); 5512 } else { 5513 // We can't slide this mask vector down, indexed by its i1 elements. 5514 // This poses a problem when we wish to extract a scalable vector which 5515 // can't be re-expressed as a larger type. Just choose the slow path and 5516 // extend to a larger type, then truncate back down. 5517 // TODO: We could probably improve this when extracting certain fixed 5518 // from fixed, where we can extract as i8 and shift the correct element 5519 // right to reach the desired subvector? 5520 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5521 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5522 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5523 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5524 Op.getOperand(1)); 5525 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5526 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5527 } 5528 } 5529 5530 // If the subvector vector is a fixed-length type, we cannot use subregister 5531 // manipulation to simplify the codegen; we don't know which register of a 5532 // LMUL group contains the specific subvector as we only know the minimum 5533 // register size. Therefore we must slide the vector group down the full 5534 // amount. 5535 if (SubVecVT.isFixedLengthVector()) { 5536 // With an index of 0 this is a cast-like subvector, which can be performed 5537 // with subregister operations. 5538 if (OrigIdx == 0) 5539 return Op; 5540 MVT ContainerVT = VecVT; 5541 if (VecVT.isFixedLengthVector()) { 5542 ContainerVT = getContainerForFixedLengthVector(VecVT); 5543 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5544 } 5545 SDValue Mask = 5546 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5547 // Set the vector length to only the number of elements we care about. This 5548 // avoids sliding down elements we're going to discard straight away. 5549 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5550 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5551 SDValue Slidedown = 5552 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5553 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5554 // Now we can use a cast-like subvector extract to get the result. 5555 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5556 DAG.getConstant(0, DL, XLenVT)); 5557 return DAG.getBitcast(Op.getValueType(), Slidedown); 5558 } 5559 5560 unsigned SubRegIdx, RemIdx; 5561 std::tie(SubRegIdx, RemIdx) = 5562 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5563 VecVT, SubVecVT, OrigIdx, TRI); 5564 5565 // If the Idx has been completely eliminated then this is a subvector extract 5566 // which naturally aligns to a vector register. These can easily be handled 5567 // using subregister manipulation. 5568 if (RemIdx == 0) 5569 return Op; 5570 5571 // Else we must shift our vector register directly to extract the subvector. 5572 // Do this using VSLIDEDOWN. 5573 5574 // If the vector type is an LMUL-group type, extract a subvector equal to the 5575 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5576 // instruction. 5577 MVT InterSubVT = VecVT; 5578 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5579 InterSubVT = getLMUL1VT(VecVT); 5580 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5581 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5582 } 5583 5584 // Slide this vector register down by the desired number of elements in order 5585 // to place the desired subvector starting at element 0. 5586 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5587 // For scalable vectors this must be further multiplied by vscale. 5588 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5589 5590 SDValue Mask, VL; 5591 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5592 SDValue Slidedown = 5593 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5594 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5595 5596 // Now the vector is in the right position, extract our final subvector. This 5597 // should resolve to a COPY. 5598 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5599 DAG.getConstant(0, DL, XLenVT)); 5600 5601 // We might have bitcast from a mask type: cast back to the original type if 5602 // required. 5603 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5604 } 5605 5606 // Lower step_vector to the vid instruction. Any non-identity step value must 5607 // be accounted for my manual expansion. 5608 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5609 SelectionDAG &DAG) const { 5610 SDLoc DL(Op); 5611 MVT VT = Op.getSimpleValueType(); 5612 MVT XLenVT = Subtarget.getXLenVT(); 5613 SDValue Mask, VL; 5614 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5615 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5616 uint64_t StepValImm = Op.getConstantOperandVal(0); 5617 if (StepValImm != 1) { 5618 if (isPowerOf2_64(StepValImm)) { 5619 SDValue StepVal = 5620 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 5621 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5622 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5623 } else { 5624 SDValue StepVal = lowerScalarSplat( 5625 SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), 5626 VL, VT, DL, DAG, Subtarget); 5627 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5628 } 5629 } 5630 return StepVec; 5631 } 5632 5633 // Implement vector_reverse using vrgather.vv with indices determined by 5634 // subtracting the id of each element from (VLMAX-1). This will convert 5635 // the indices like so: 5636 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5637 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5638 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5639 SelectionDAG &DAG) const { 5640 SDLoc DL(Op); 5641 MVT VecVT = Op.getSimpleValueType(); 5642 if (VecVT.getVectorElementType() == MVT::i1) { 5643 MVT WidenVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 5644 SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, Op.getOperand(0)); 5645 SDValue Op2 = DAG.getNode(ISD::VECTOR_REVERSE, DL, WidenVT, Op1); 5646 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Op2); 5647 } 5648 unsigned EltSize = VecVT.getScalarSizeInBits(); 5649 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5650 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 5651 unsigned MaxVLMAX = 5652 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 5653 5654 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5655 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5656 5657 // If this is SEW=8 and VLMAX is potentially more than 256, we need 5658 // to use vrgatherei16.vv. 5659 // TODO: It's also possible to use vrgatherei16.vv for other types to 5660 // decrease register width for the index calculation. 5661 if (MaxVLMAX > 256 && EltSize == 8) { 5662 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5663 // Reverse each half, then reassemble them in reverse order. 5664 // NOTE: It's also possible that after splitting that VLMAX no longer 5665 // requires vrgatherei16.vv. 5666 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5667 SDValue Lo, Hi; 5668 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5669 EVT LoVT, HiVT; 5670 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5671 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5672 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5673 // Reassemble the low and high pieces reversed. 5674 // FIXME: This is a CONCAT_VECTORS. 5675 SDValue Res = 5676 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5677 DAG.getIntPtrConstant(0, DL)); 5678 return DAG.getNode( 5679 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5680 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5681 } 5682 5683 // Just promote the int type to i16 which will double the LMUL. 5684 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5685 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5686 } 5687 5688 MVT XLenVT = Subtarget.getXLenVT(); 5689 SDValue Mask, VL; 5690 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5691 5692 // Calculate VLMAX-1 for the desired SEW. 5693 unsigned MinElts = VecVT.getVectorMinNumElements(); 5694 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5695 DAG.getConstant(MinElts, DL, XLenVT)); 5696 SDValue VLMinus1 = 5697 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5698 5699 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5700 bool IsRV32E64 = 5701 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5702 SDValue SplatVL; 5703 if (!IsRV32E64) 5704 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5705 else 5706 SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), 5707 VLMinus1, DAG.getRegister(RISCV::X0, XLenVT)); 5708 5709 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5710 SDValue Indices = 5711 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5712 5713 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, 5714 DAG.getUNDEF(VecVT), VL); 5715 } 5716 5717 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op, 5718 SelectionDAG &DAG) const { 5719 SDLoc DL(Op); 5720 SDValue V1 = Op.getOperand(0); 5721 SDValue V2 = Op.getOperand(1); 5722 MVT XLenVT = Subtarget.getXLenVT(); 5723 MVT VecVT = Op.getSimpleValueType(); 5724 5725 unsigned MinElts = VecVT.getVectorMinNumElements(); 5726 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5727 DAG.getConstant(MinElts, DL, XLenVT)); 5728 5729 int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue(); 5730 SDValue DownOffset, UpOffset; 5731 if (ImmValue >= 0) { 5732 // The operand is a TargetConstant, we need to rebuild it as a regular 5733 // constant. 5734 DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); 5735 UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset); 5736 } else { 5737 // The operand is a TargetConstant, we need to rebuild it as a regular 5738 // constant rather than negating the original operand. 5739 UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); 5740 DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset); 5741 } 5742 5743 SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG); 5744 5745 SDValue SlideDown = 5746 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1, 5747 DownOffset, TrueMask, UpOffset); 5748 return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset, 5749 TrueMask, 5750 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT)); 5751 } 5752 5753 SDValue 5754 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5755 SelectionDAG &DAG) const { 5756 SDLoc DL(Op); 5757 auto *Load = cast<LoadSDNode>(Op); 5758 5759 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5760 Load->getMemoryVT(), 5761 *Load->getMemOperand()) && 5762 "Expecting a correctly-aligned load"); 5763 5764 MVT VT = Op.getSimpleValueType(); 5765 MVT XLenVT = Subtarget.getXLenVT(); 5766 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5767 5768 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5769 5770 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5771 SDValue IntID = DAG.getTargetConstant( 5772 IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT); 5773 SmallVector<SDValue, 4> Ops{Load->getChain(), IntID}; 5774 if (!IsMaskOp) 5775 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5776 Ops.push_back(Load->getBasePtr()); 5777 Ops.push_back(VL); 5778 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5779 SDValue NewLoad = 5780 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 5781 Load->getMemoryVT(), Load->getMemOperand()); 5782 5783 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5784 return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL); 5785 } 5786 5787 SDValue 5788 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5789 SelectionDAG &DAG) const { 5790 SDLoc DL(Op); 5791 auto *Store = cast<StoreSDNode>(Op); 5792 5793 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5794 Store->getMemoryVT(), 5795 *Store->getMemOperand()) && 5796 "Expecting a correctly-aligned store"); 5797 5798 SDValue StoreVal = Store->getValue(); 5799 MVT VT = StoreVal.getSimpleValueType(); 5800 MVT XLenVT = Subtarget.getXLenVT(); 5801 5802 // If the size less than a byte, we need to pad with zeros to make a byte. 5803 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5804 VT = MVT::v8i1; 5805 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5806 DAG.getConstant(0, DL, VT), StoreVal, 5807 DAG.getIntPtrConstant(0, DL)); 5808 } 5809 5810 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5811 5812 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5813 5814 SDValue NewValue = 5815 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5816 5817 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5818 SDValue IntID = DAG.getTargetConstant( 5819 IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT); 5820 return DAG.getMemIntrinsicNode( 5821 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 5822 {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL}, 5823 Store->getMemoryVT(), Store->getMemOperand()); 5824 } 5825 5826 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5827 SelectionDAG &DAG) const { 5828 SDLoc DL(Op); 5829 MVT VT = Op.getSimpleValueType(); 5830 5831 const auto *MemSD = cast<MemSDNode>(Op); 5832 EVT MemVT = MemSD->getMemoryVT(); 5833 MachineMemOperand *MMO = MemSD->getMemOperand(); 5834 SDValue Chain = MemSD->getChain(); 5835 SDValue BasePtr = MemSD->getBasePtr(); 5836 5837 SDValue Mask, PassThru, VL; 5838 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5839 Mask = VPLoad->getMask(); 5840 PassThru = DAG.getUNDEF(VT); 5841 VL = VPLoad->getVectorLength(); 5842 } else { 5843 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5844 Mask = MLoad->getMask(); 5845 PassThru = MLoad->getPassThru(); 5846 } 5847 5848 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5849 5850 MVT XLenVT = Subtarget.getXLenVT(); 5851 5852 MVT ContainerVT = VT; 5853 if (VT.isFixedLengthVector()) { 5854 ContainerVT = getContainerForFixedLengthVector(VT); 5855 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5856 if (!IsUnmasked) { 5857 MVT MaskVT = getMaskTypeFor(ContainerVT); 5858 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5859 } 5860 } 5861 5862 if (!VL) 5863 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5864 5865 unsigned IntID = 5866 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5867 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5868 if (IsUnmasked) 5869 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5870 else 5871 Ops.push_back(PassThru); 5872 Ops.push_back(BasePtr); 5873 if (!IsUnmasked) 5874 Ops.push_back(Mask); 5875 Ops.push_back(VL); 5876 if (!IsUnmasked) 5877 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5878 5879 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5880 5881 SDValue Result = 5882 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5883 Chain = Result.getValue(1); 5884 5885 if (VT.isFixedLengthVector()) 5886 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5887 5888 return DAG.getMergeValues({Result, Chain}, DL); 5889 } 5890 5891 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5892 SelectionDAG &DAG) const { 5893 SDLoc DL(Op); 5894 5895 const auto *MemSD = cast<MemSDNode>(Op); 5896 EVT MemVT = MemSD->getMemoryVT(); 5897 MachineMemOperand *MMO = MemSD->getMemOperand(); 5898 SDValue Chain = MemSD->getChain(); 5899 SDValue BasePtr = MemSD->getBasePtr(); 5900 SDValue Val, Mask, VL; 5901 5902 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5903 Val = VPStore->getValue(); 5904 Mask = VPStore->getMask(); 5905 VL = VPStore->getVectorLength(); 5906 } else { 5907 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5908 Val = MStore->getValue(); 5909 Mask = MStore->getMask(); 5910 } 5911 5912 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5913 5914 MVT VT = Val.getSimpleValueType(); 5915 MVT XLenVT = Subtarget.getXLenVT(); 5916 5917 MVT ContainerVT = VT; 5918 if (VT.isFixedLengthVector()) { 5919 ContainerVT = getContainerForFixedLengthVector(VT); 5920 5921 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5922 if (!IsUnmasked) { 5923 MVT MaskVT = getMaskTypeFor(ContainerVT); 5924 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5925 } 5926 } 5927 5928 if (!VL) 5929 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5930 5931 unsigned IntID = 5932 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5933 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5934 Ops.push_back(Val); 5935 Ops.push_back(BasePtr); 5936 if (!IsUnmasked) 5937 Ops.push_back(Mask); 5938 Ops.push_back(VL); 5939 5940 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5941 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5942 } 5943 5944 SDValue 5945 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5946 SelectionDAG &DAG) const { 5947 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5948 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5949 5950 MVT VT = Op.getSimpleValueType(); 5951 5952 SDValue Op1 = 5953 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5954 SDValue Op2 = 5955 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5956 5957 SDLoc DL(Op); 5958 SDValue VL = 5959 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5960 5961 MVT MaskVT = getMaskTypeFor(ContainerVT); 5962 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 5963 5964 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5965 Op.getOperand(2), Mask, VL); 5966 5967 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5968 } 5969 5970 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5971 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5972 MVT VT = Op.getSimpleValueType(); 5973 5974 if (VT.getVectorElementType() == MVT::i1) 5975 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5976 5977 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5978 } 5979 5980 SDValue 5981 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5982 SelectionDAG &DAG) const { 5983 unsigned Opc; 5984 switch (Op.getOpcode()) { 5985 default: llvm_unreachable("Unexpected opcode!"); 5986 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5987 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5988 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5989 } 5990 5991 return lowerToScalableOp(Op, DAG, Opc); 5992 } 5993 5994 // Lower vector ABS to smax(X, sub(0, X)). 5995 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5996 SDLoc DL(Op); 5997 MVT VT = Op.getSimpleValueType(); 5998 SDValue X = Op.getOperand(0); 5999 6000 assert(VT.isFixedLengthVector() && "Unexpected type"); 6001 6002 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6003 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 6004 6005 SDValue Mask, VL; 6006 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6007 6008 SDValue SplatZero = DAG.getNode( 6009 RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 6010 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 6011 SDValue NegX = 6012 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 6013 SDValue Max = 6014 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 6015 6016 return convertFromScalableVector(VT, Max, DAG, Subtarget); 6017 } 6018 6019 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 6020 SDValue Op, SelectionDAG &DAG) const { 6021 SDLoc DL(Op); 6022 MVT VT = Op.getSimpleValueType(); 6023 SDValue Mag = Op.getOperand(0); 6024 SDValue Sign = Op.getOperand(1); 6025 assert(Mag.getValueType() == Sign.getValueType() && 6026 "Can only handle COPYSIGN with matching types."); 6027 6028 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6029 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 6030 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 6031 6032 SDValue Mask, VL; 6033 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6034 6035 SDValue CopySign = 6036 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 6037 6038 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 6039 } 6040 6041 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 6042 SDValue Op, SelectionDAG &DAG) const { 6043 MVT VT = Op.getSimpleValueType(); 6044 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6045 6046 MVT I1ContainerVT = 6047 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6048 6049 SDValue CC = 6050 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 6051 SDValue Op1 = 6052 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 6053 SDValue Op2 = 6054 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 6055 6056 SDLoc DL(Op); 6057 SDValue Mask, VL; 6058 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6059 6060 SDValue Select = 6061 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 6062 6063 return convertFromScalableVector(VT, Select, DAG, Subtarget); 6064 } 6065 6066 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 6067 unsigned NewOpc, 6068 bool HasMask) const { 6069 MVT VT = Op.getSimpleValueType(); 6070 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6071 6072 // Create list of operands by converting existing ones to scalable types. 6073 SmallVector<SDValue, 6> Ops; 6074 for (const SDValue &V : Op->op_values()) { 6075 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6076 6077 // Pass through non-vector operands. 6078 if (!V.getValueType().isVector()) { 6079 Ops.push_back(V); 6080 continue; 6081 } 6082 6083 // "cast" fixed length vector to a scalable vector. 6084 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 6085 "Only fixed length vectors are supported!"); 6086 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6087 } 6088 6089 SDLoc DL(Op); 6090 SDValue Mask, VL; 6091 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6092 if (HasMask) 6093 Ops.push_back(Mask); 6094 Ops.push_back(VL); 6095 6096 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 6097 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 6098 } 6099 6100 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 6101 // * Operands of each node are assumed to be in the same order. 6102 // * The EVL operand is promoted from i32 to i64 on RV64. 6103 // * Fixed-length vectors are converted to their scalable-vector container 6104 // types. 6105 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 6106 unsigned RISCVISDOpc) const { 6107 SDLoc DL(Op); 6108 MVT VT = Op.getSimpleValueType(); 6109 SmallVector<SDValue, 4> Ops; 6110 6111 for (const auto &OpIdx : enumerate(Op->ops())) { 6112 SDValue V = OpIdx.value(); 6113 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6114 // Pass through operands which aren't fixed-length vectors. 6115 if (!V.getValueType().isFixedLengthVector()) { 6116 Ops.push_back(V); 6117 continue; 6118 } 6119 // "cast" fixed length vector to a scalable vector. 6120 MVT OpVT = V.getSimpleValueType(); 6121 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 6122 assert(useRVVForFixedLengthVectorVT(OpVT) && 6123 "Only fixed length vectors are supported!"); 6124 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6125 } 6126 6127 if (!VT.isFixedLengthVector()) 6128 return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags()); 6129 6130 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6131 6132 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags()); 6133 6134 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 6135 } 6136 6137 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op, 6138 SelectionDAG &DAG) const { 6139 SDLoc DL(Op); 6140 MVT VT = Op.getSimpleValueType(); 6141 6142 SDValue Src = Op.getOperand(0); 6143 // NOTE: Mask is dropped. 6144 SDValue VL = Op.getOperand(2); 6145 6146 MVT ContainerVT = VT; 6147 if (VT.isFixedLengthVector()) { 6148 ContainerVT = getContainerForFixedLengthVector(VT); 6149 MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6150 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 6151 } 6152 6153 MVT XLenVT = Subtarget.getXLenVT(); 6154 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 6155 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6156 DAG.getUNDEF(ContainerVT), Zero, VL); 6157 6158 SDValue SplatValue = DAG.getConstant( 6159 Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT); 6160 SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6161 DAG.getUNDEF(ContainerVT), SplatValue, VL); 6162 6163 SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src, 6164 Splat, ZeroSplat, VL); 6165 if (!VT.isFixedLengthVector()) 6166 return Result; 6167 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6168 } 6169 6170 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op, 6171 SelectionDAG &DAG) const { 6172 SDLoc DL(Op); 6173 MVT VT = Op.getSimpleValueType(); 6174 6175 SDValue Op1 = Op.getOperand(0); 6176 SDValue Op2 = Op.getOperand(1); 6177 ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 6178 // NOTE: Mask is dropped. 6179 SDValue VL = Op.getOperand(4); 6180 6181 MVT ContainerVT = VT; 6182 if (VT.isFixedLengthVector()) { 6183 ContainerVT = getContainerForFixedLengthVector(VT); 6184 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6185 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6186 } 6187 6188 SDValue Result; 6189 SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 6190 6191 switch (Condition) { 6192 default: 6193 break; 6194 // X != Y --> (X^Y) 6195 case ISD::SETNE: 6196 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL); 6197 break; 6198 // X == Y --> ~(X^Y) 6199 case ISD::SETEQ: { 6200 SDValue Temp = 6201 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL); 6202 Result = 6203 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL); 6204 break; 6205 } 6206 // X >s Y --> X == 0 & Y == 1 --> ~X & Y 6207 // X <u Y --> X == 0 & Y == 1 --> ~X & Y 6208 case ISD::SETGT: 6209 case ISD::SETULT: { 6210 SDValue Temp = 6211 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL); 6212 Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL); 6213 break; 6214 } 6215 // X <s Y --> X == 1 & Y == 0 --> ~Y & X 6216 // X >u Y --> X == 1 & Y == 0 --> ~Y & X 6217 case ISD::SETLT: 6218 case ISD::SETUGT: { 6219 SDValue Temp = 6220 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL); 6221 Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL); 6222 break; 6223 } 6224 // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 6225 // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 6226 case ISD::SETGE: 6227 case ISD::SETULE: { 6228 SDValue Temp = 6229 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL); 6230 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL); 6231 break; 6232 } 6233 // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 6234 // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 6235 case ISD::SETLE: 6236 case ISD::SETUGE: { 6237 SDValue Temp = 6238 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL); 6239 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL); 6240 break; 6241 } 6242 } 6243 6244 if (!VT.isFixedLengthVector()) 6245 return Result; 6246 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6247 } 6248 6249 // Lower Floating-Point/Integer Type-Convert VP SDNodes 6250 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG, 6251 unsigned RISCVISDOpc) const { 6252 SDLoc DL(Op); 6253 6254 SDValue Src = Op.getOperand(0); 6255 SDValue Mask = Op.getOperand(1); 6256 SDValue VL = Op.getOperand(2); 6257 6258 MVT DstVT = Op.getSimpleValueType(); 6259 MVT SrcVT = Src.getSimpleValueType(); 6260 if (DstVT.isFixedLengthVector()) { 6261 DstVT = getContainerForFixedLengthVector(DstVT); 6262 SrcVT = getContainerForFixedLengthVector(SrcVT); 6263 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 6264 MVT MaskVT = getMaskTypeFor(DstVT); 6265 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6266 } 6267 6268 unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL || 6269 RISCVISDOpc == RISCVISD::FP_TO_SINT_VL) 6270 ? RISCVISD::VSEXT_VL 6271 : RISCVISD::VZEXT_VL; 6272 6273 unsigned DstEltSize = DstVT.getScalarSizeInBits(); 6274 unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); 6275 6276 SDValue Result; 6277 if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion. 6278 if (SrcVT.isInteger()) { 6279 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6280 6281 // Do we need to do any pre-widening before converting? 6282 if (SrcEltSize == 1) { 6283 MVT IntVT = DstVT.changeVectorElementTypeToInteger(); 6284 MVT XLenVT = Subtarget.getXLenVT(); 6285 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 6286 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6287 DAG.getUNDEF(IntVT), Zero, VL); 6288 SDValue One = DAG.getConstant( 6289 RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT); 6290 SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6291 DAG.getUNDEF(IntVT), One, VL); 6292 Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat, 6293 ZeroSplat, VL); 6294 } else if (DstEltSize > (2 * SrcEltSize)) { 6295 // Widen before converting. 6296 MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2), 6297 DstVT.getVectorElementCount()); 6298 Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL); 6299 } 6300 6301 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 6302 } else { 6303 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6304 "Wrong input/output vector types"); 6305 6306 // Convert f16 to f32 then convert f32 to i64. 6307 if (DstEltSize > (2 * SrcEltSize)) { 6308 assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6309 MVT InterimFVT = 6310 MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6311 Src = 6312 DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL); 6313 } 6314 6315 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 6316 } 6317 } else { // Narrowing + Conversion 6318 if (SrcVT.isInteger()) { 6319 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6320 // First do a narrowing convert to an FP type half the size, then round 6321 // the FP type to a small FP type if needed. 6322 6323 MVT InterimFVT = DstVT; 6324 if (SrcEltSize > (2 * DstEltSize)) { 6325 assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!"); 6326 assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6327 InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6328 } 6329 6330 Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL); 6331 6332 if (InterimFVT != DstVT) { 6333 Src = Result; 6334 Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL); 6335 } 6336 } else { 6337 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6338 "Wrong input/output vector types"); 6339 // First do a narrowing conversion to an integer half the size, then 6340 // truncate if needed. 6341 6342 if (DstEltSize == 1) { 6343 // First convert to the same size integer, then convert to mask using 6344 // setcc. 6345 assert(SrcEltSize >= 16 && "Unexpected FP type!"); 6346 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize), 6347 DstVT.getVectorElementCount()); 6348 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 6349 6350 // Compare the integer result to 0. The integer should be 0 or 1/-1, 6351 // otherwise the conversion was undefined. 6352 MVT XLenVT = Subtarget.getXLenVT(); 6353 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 6354 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT, 6355 DAG.getUNDEF(InterimIVT), SplatZero); 6356 Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero, 6357 DAG.getCondCode(ISD::SETNE), Mask, VL); 6358 } else { 6359 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6360 DstVT.getVectorElementCount()); 6361 6362 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 6363 6364 while (InterimIVT != DstVT) { 6365 SrcEltSize /= 2; 6366 Src = Result; 6367 InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6368 DstVT.getVectorElementCount()); 6369 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT, 6370 Src, Mask, VL); 6371 } 6372 } 6373 } 6374 } 6375 6376 MVT VT = Op.getSimpleValueType(); 6377 if (!VT.isFixedLengthVector()) 6378 return Result; 6379 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6380 } 6381 6382 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 6383 unsigned MaskOpc, 6384 unsigned VecOpc) const { 6385 MVT VT = Op.getSimpleValueType(); 6386 if (VT.getVectorElementType() != MVT::i1) 6387 return lowerVPOp(Op, DAG, VecOpc); 6388 6389 // It is safe to drop mask parameter as masked-off elements are undef. 6390 SDValue Op1 = Op->getOperand(0); 6391 SDValue Op2 = Op->getOperand(1); 6392 SDValue VL = Op->getOperand(3); 6393 6394 MVT ContainerVT = VT; 6395 const bool IsFixed = VT.isFixedLengthVector(); 6396 if (IsFixed) { 6397 ContainerVT = getContainerForFixedLengthVector(VT); 6398 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6399 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6400 } 6401 6402 SDLoc DL(Op); 6403 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 6404 if (!IsFixed) 6405 return Val; 6406 return convertFromScalableVector(VT, Val, DAG, Subtarget); 6407 } 6408 6409 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 6410 // matched to a RVV indexed load. The RVV indexed load instructions only 6411 // support the "unsigned unscaled" addressing mode; indices are implicitly 6412 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6413 // signed or scaled indexing is extended to the XLEN value type and scaled 6414 // accordingly. 6415 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 6416 SelectionDAG &DAG) const { 6417 SDLoc DL(Op); 6418 MVT VT = Op.getSimpleValueType(); 6419 6420 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6421 EVT MemVT = MemSD->getMemoryVT(); 6422 MachineMemOperand *MMO = MemSD->getMemOperand(); 6423 SDValue Chain = MemSD->getChain(); 6424 SDValue BasePtr = MemSD->getBasePtr(); 6425 6426 ISD::LoadExtType LoadExtType; 6427 SDValue Index, Mask, PassThru, VL; 6428 6429 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 6430 Index = VPGN->getIndex(); 6431 Mask = VPGN->getMask(); 6432 PassThru = DAG.getUNDEF(VT); 6433 VL = VPGN->getVectorLength(); 6434 // VP doesn't support extending loads. 6435 LoadExtType = ISD::NON_EXTLOAD; 6436 } else { 6437 // Else it must be a MGATHER. 6438 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 6439 Index = MGN->getIndex(); 6440 Mask = MGN->getMask(); 6441 PassThru = MGN->getPassThru(); 6442 LoadExtType = MGN->getExtensionType(); 6443 } 6444 6445 MVT IndexVT = Index.getSimpleValueType(); 6446 MVT XLenVT = Subtarget.getXLenVT(); 6447 6448 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6449 "Unexpected VTs!"); 6450 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6451 // Targets have to explicitly opt-in for extending vector loads. 6452 assert(LoadExtType == ISD::NON_EXTLOAD && 6453 "Unexpected extending MGATHER/VP_GATHER"); 6454 (void)LoadExtType; 6455 6456 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6457 // the selection of the masked intrinsics doesn't do this for us. 6458 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6459 6460 MVT ContainerVT = VT; 6461 if (VT.isFixedLengthVector()) { 6462 ContainerVT = getContainerForFixedLengthVector(VT); 6463 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6464 ContainerVT.getVectorElementCount()); 6465 6466 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6467 6468 if (!IsUnmasked) { 6469 MVT MaskVT = getMaskTypeFor(ContainerVT); 6470 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6471 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 6472 } 6473 } 6474 6475 if (!VL) 6476 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6477 6478 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6479 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6480 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6481 VL); 6482 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6483 TrueMask, VL); 6484 } 6485 6486 unsigned IntID = 6487 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 6488 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6489 if (IsUnmasked) 6490 Ops.push_back(DAG.getUNDEF(ContainerVT)); 6491 else 6492 Ops.push_back(PassThru); 6493 Ops.push_back(BasePtr); 6494 Ops.push_back(Index); 6495 if (!IsUnmasked) 6496 Ops.push_back(Mask); 6497 Ops.push_back(VL); 6498 if (!IsUnmasked) 6499 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 6500 6501 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 6502 SDValue Result = 6503 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 6504 Chain = Result.getValue(1); 6505 6506 if (VT.isFixedLengthVector()) 6507 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 6508 6509 return DAG.getMergeValues({Result, Chain}, DL); 6510 } 6511 6512 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 6513 // matched to a RVV indexed store. The RVV indexed store instructions only 6514 // support the "unsigned unscaled" addressing mode; indices are implicitly 6515 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6516 // signed or scaled indexing is extended to the XLEN value type and scaled 6517 // accordingly. 6518 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 6519 SelectionDAG &DAG) const { 6520 SDLoc DL(Op); 6521 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6522 EVT MemVT = MemSD->getMemoryVT(); 6523 MachineMemOperand *MMO = MemSD->getMemOperand(); 6524 SDValue Chain = MemSD->getChain(); 6525 SDValue BasePtr = MemSD->getBasePtr(); 6526 6527 bool IsTruncatingStore = false; 6528 SDValue Index, Mask, Val, VL; 6529 6530 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 6531 Index = VPSN->getIndex(); 6532 Mask = VPSN->getMask(); 6533 Val = VPSN->getValue(); 6534 VL = VPSN->getVectorLength(); 6535 // VP doesn't support truncating stores. 6536 IsTruncatingStore = false; 6537 } else { 6538 // Else it must be a MSCATTER. 6539 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 6540 Index = MSN->getIndex(); 6541 Mask = MSN->getMask(); 6542 Val = MSN->getValue(); 6543 IsTruncatingStore = MSN->isTruncatingStore(); 6544 } 6545 6546 MVT VT = Val.getSimpleValueType(); 6547 MVT IndexVT = Index.getSimpleValueType(); 6548 MVT XLenVT = Subtarget.getXLenVT(); 6549 6550 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6551 "Unexpected VTs!"); 6552 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6553 // Targets have to explicitly opt-in for extending vector loads and 6554 // truncating vector stores. 6555 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 6556 (void)IsTruncatingStore; 6557 6558 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6559 // the selection of the masked intrinsics doesn't do this for us. 6560 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6561 6562 MVT ContainerVT = VT; 6563 if (VT.isFixedLengthVector()) { 6564 ContainerVT = getContainerForFixedLengthVector(VT); 6565 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6566 ContainerVT.getVectorElementCount()); 6567 6568 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6569 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6570 6571 if (!IsUnmasked) { 6572 MVT MaskVT = getMaskTypeFor(ContainerVT); 6573 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6574 } 6575 } 6576 6577 if (!VL) 6578 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6579 6580 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6581 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6582 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6583 VL); 6584 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6585 TrueMask, VL); 6586 } 6587 6588 unsigned IntID = 6589 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6590 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6591 Ops.push_back(Val); 6592 Ops.push_back(BasePtr); 6593 Ops.push_back(Index); 6594 if (!IsUnmasked) 6595 Ops.push_back(Mask); 6596 Ops.push_back(VL); 6597 6598 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6599 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6600 } 6601 6602 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6603 SelectionDAG &DAG) const { 6604 const MVT XLenVT = Subtarget.getXLenVT(); 6605 SDLoc DL(Op); 6606 SDValue Chain = Op->getOperand(0); 6607 SDValue SysRegNo = DAG.getTargetConstant( 6608 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6609 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6610 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6611 6612 // Encoding used for rounding mode in RISCV differs from that used in 6613 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6614 // table, which consists of a sequence of 4-bit fields, each representing 6615 // corresponding FLT_ROUNDS mode. 6616 static const int Table = 6617 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6618 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6619 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6620 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6621 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6622 6623 SDValue Shift = 6624 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6625 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6626 DAG.getConstant(Table, DL, XLenVT), Shift); 6627 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6628 DAG.getConstant(7, DL, XLenVT)); 6629 6630 return DAG.getMergeValues({Masked, Chain}, DL); 6631 } 6632 6633 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6634 SelectionDAG &DAG) const { 6635 const MVT XLenVT = Subtarget.getXLenVT(); 6636 SDLoc DL(Op); 6637 SDValue Chain = Op->getOperand(0); 6638 SDValue RMValue = Op->getOperand(1); 6639 SDValue SysRegNo = DAG.getTargetConstant( 6640 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6641 6642 // Encoding used for rounding mode in RISCV differs from that used in 6643 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6644 // a table, which consists of a sequence of 4-bit fields, each representing 6645 // corresponding RISCV mode. 6646 static const unsigned Table = 6647 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6648 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6649 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6650 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6651 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6652 6653 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6654 DAG.getConstant(2, DL, XLenVT)); 6655 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6656 DAG.getConstant(Table, DL, XLenVT), Shift); 6657 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6658 DAG.getConstant(0x7, DL, XLenVT)); 6659 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6660 RMValue); 6661 } 6662 6663 SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op, 6664 SelectionDAG &DAG) const { 6665 MachineFunction &MF = DAG.getMachineFunction(); 6666 6667 bool isRISCV64 = Subtarget.is64Bit(); 6668 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6669 6670 int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false); 6671 return DAG.getFrameIndex(FI, PtrVT); 6672 } 6673 6674 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6675 switch (IntNo) { 6676 default: 6677 llvm_unreachable("Unexpected Intrinsic"); 6678 case Intrinsic::riscv_bcompress: 6679 return RISCVISD::BCOMPRESSW; 6680 case Intrinsic::riscv_bdecompress: 6681 return RISCVISD::BDECOMPRESSW; 6682 case Intrinsic::riscv_bfp: 6683 return RISCVISD::BFPW; 6684 case Intrinsic::riscv_fsl: 6685 return RISCVISD::FSLW; 6686 case Intrinsic::riscv_fsr: 6687 return RISCVISD::FSRW; 6688 } 6689 } 6690 6691 // Converts the given intrinsic to a i64 operation with any extension. 6692 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6693 unsigned IntNo) { 6694 SDLoc DL(N); 6695 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6696 // Deal with the Instruction Operands 6697 SmallVector<SDValue, 3> NewOps; 6698 for (SDValue Op : drop_begin(N->ops())) 6699 // Promote the operand to i64 type 6700 NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op)); 6701 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps); 6702 // ReplaceNodeResults requires we maintain the same type for the return value. 6703 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6704 } 6705 6706 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6707 // form of the given Opcode. 6708 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6709 switch (Opcode) { 6710 default: 6711 llvm_unreachable("Unexpected opcode"); 6712 case ISD::SHL: 6713 return RISCVISD::SLLW; 6714 case ISD::SRA: 6715 return RISCVISD::SRAW; 6716 case ISD::SRL: 6717 return RISCVISD::SRLW; 6718 case ISD::SDIV: 6719 return RISCVISD::DIVW; 6720 case ISD::UDIV: 6721 return RISCVISD::DIVUW; 6722 case ISD::UREM: 6723 return RISCVISD::REMUW; 6724 case ISD::ROTL: 6725 return RISCVISD::ROLW; 6726 case ISD::ROTR: 6727 return RISCVISD::RORW; 6728 } 6729 } 6730 6731 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6732 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6733 // otherwise be promoted to i64, making it difficult to select the 6734 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6735 // type i8/i16/i32 is lost. 6736 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6737 unsigned ExtOpc = ISD::ANY_EXTEND) { 6738 SDLoc DL(N); 6739 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6740 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6741 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6742 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6743 // ReplaceNodeResults requires we maintain the same type for the return value. 6744 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6745 } 6746 6747 // Converts the given 32-bit operation to a i64 operation with signed extension 6748 // semantic to reduce the signed extension instructions. 6749 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6750 SDLoc DL(N); 6751 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6752 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6753 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6754 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6755 DAG.getValueType(MVT::i32)); 6756 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6757 } 6758 6759 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6760 SmallVectorImpl<SDValue> &Results, 6761 SelectionDAG &DAG) const { 6762 SDLoc DL(N); 6763 switch (N->getOpcode()) { 6764 default: 6765 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6766 case ISD::STRICT_FP_TO_SINT: 6767 case ISD::STRICT_FP_TO_UINT: 6768 case ISD::FP_TO_SINT: 6769 case ISD::FP_TO_UINT: { 6770 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6771 "Unexpected custom legalisation"); 6772 bool IsStrict = N->isStrictFPOpcode(); 6773 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6774 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6775 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6776 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6777 TargetLowering::TypeSoftenFloat) { 6778 if (!isTypeLegal(Op0.getValueType())) 6779 return; 6780 if (IsStrict) { 6781 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6782 : RISCVISD::STRICT_FCVT_WU_RV64; 6783 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6784 SDValue Res = DAG.getNode( 6785 Opc, DL, VTs, N->getOperand(0), Op0, 6786 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6787 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6788 Results.push_back(Res.getValue(1)); 6789 return; 6790 } 6791 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6792 SDValue Res = 6793 DAG.getNode(Opc, DL, MVT::i64, Op0, 6794 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6795 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6796 return; 6797 } 6798 // If the FP type needs to be softened, emit a library call using the 'si' 6799 // version. If we left it to default legalization we'd end up with 'di'. If 6800 // the FP type doesn't need to be softened just let generic type 6801 // legalization promote the result type. 6802 RTLIB::Libcall LC; 6803 if (IsSigned) 6804 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6805 else 6806 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6807 MakeLibCallOptions CallOptions; 6808 EVT OpVT = Op0.getValueType(); 6809 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6810 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6811 SDValue Result; 6812 std::tie(Result, Chain) = 6813 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6814 Results.push_back(Result); 6815 if (IsStrict) 6816 Results.push_back(Chain); 6817 break; 6818 } 6819 case ISD::READCYCLECOUNTER: { 6820 assert(!Subtarget.is64Bit() && 6821 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6822 6823 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6824 SDValue RCW = 6825 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6826 6827 Results.push_back( 6828 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6829 Results.push_back(RCW.getValue(2)); 6830 break; 6831 } 6832 case ISD::MUL: { 6833 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6834 unsigned XLen = Subtarget.getXLen(); 6835 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6836 if (Size > XLen) { 6837 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6838 SDValue LHS = N->getOperand(0); 6839 SDValue RHS = N->getOperand(1); 6840 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6841 6842 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6843 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6844 // We need exactly one side to be unsigned. 6845 if (LHSIsU == RHSIsU) 6846 return; 6847 6848 auto MakeMULPair = [&](SDValue S, SDValue U) { 6849 MVT XLenVT = Subtarget.getXLenVT(); 6850 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6851 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6852 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6853 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6854 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6855 }; 6856 6857 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6858 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6859 6860 // The other operand should be signed, but still prefer MULH when 6861 // possible. 6862 if (RHSIsU && LHSIsS && !RHSIsS) 6863 Results.push_back(MakeMULPair(LHS, RHS)); 6864 else if (LHSIsU && RHSIsS && !LHSIsS) 6865 Results.push_back(MakeMULPair(RHS, LHS)); 6866 6867 return; 6868 } 6869 LLVM_FALLTHROUGH; 6870 } 6871 case ISD::ADD: 6872 case ISD::SUB: 6873 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6874 "Unexpected custom legalisation"); 6875 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6876 break; 6877 case ISD::SHL: 6878 case ISD::SRA: 6879 case ISD::SRL: 6880 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6881 "Unexpected custom legalisation"); 6882 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6883 // If we can use a BSET instruction, allow default promotion to apply. 6884 if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() && 6885 isOneConstant(N->getOperand(0))) 6886 break; 6887 Results.push_back(customLegalizeToWOp(N, DAG)); 6888 break; 6889 } 6890 6891 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6892 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6893 // shift amount. 6894 if (N->getOpcode() == ISD::SHL) { 6895 SDLoc DL(N); 6896 SDValue NewOp0 = 6897 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6898 SDValue NewOp1 = 6899 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6900 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6901 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6902 DAG.getValueType(MVT::i32)); 6903 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6904 } 6905 6906 break; 6907 case ISD::ROTL: 6908 case ISD::ROTR: 6909 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6910 "Unexpected custom legalisation"); 6911 Results.push_back(customLegalizeToWOp(N, DAG)); 6912 break; 6913 case ISD::CTTZ: 6914 case ISD::CTTZ_ZERO_UNDEF: 6915 case ISD::CTLZ: 6916 case ISD::CTLZ_ZERO_UNDEF: { 6917 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6918 "Unexpected custom legalisation"); 6919 6920 SDValue NewOp0 = 6921 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6922 bool IsCTZ = 6923 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6924 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6925 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6926 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6927 return; 6928 } 6929 case ISD::SDIV: 6930 case ISD::UDIV: 6931 case ISD::UREM: { 6932 MVT VT = N->getSimpleValueType(0); 6933 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6934 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6935 "Unexpected custom legalisation"); 6936 // Don't promote division/remainder by constant since we should expand those 6937 // to multiply by magic constant. 6938 // FIXME: What if the expansion is disabled for minsize. 6939 if (N->getOperand(1).getOpcode() == ISD::Constant) 6940 return; 6941 6942 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6943 // the upper 32 bits. For other types we need to sign or zero extend 6944 // based on the opcode. 6945 unsigned ExtOpc = ISD::ANY_EXTEND; 6946 if (VT != MVT::i32) 6947 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6948 : ISD::ZERO_EXTEND; 6949 6950 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6951 break; 6952 } 6953 case ISD::UADDO: 6954 case ISD::USUBO: { 6955 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6956 "Unexpected custom legalisation"); 6957 bool IsAdd = N->getOpcode() == ISD::UADDO; 6958 // Create an ADDW or SUBW. 6959 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6960 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6961 SDValue Res = 6962 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6963 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6964 DAG.getValueType(MVT::i32)); 6965 6966 SDValue Overflow; 6967 if (IsAdd && isOneConstant(RHS)) { 6968 // Special case uaddo X, 1 overflowed if the addition result is 0. 6969 // The general case (X + C) < C is not necessarily beneficial. Although we 6970 // reduce the live range of X, we may introduce the materialization of 6971 // constant C, especially when the setcc result is used by branch. We have 6972 // no compare with constant and branch instructions. 6973 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, 6974 DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ); 6975 } else { 6976 // Sign extend the LHS and perform an unsigned compare with the ADDW 6977 // result. Since the inputs are sign extended from i32, this is equivalent 6978 // to comparing the lower 32 bits. 6979 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6980 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6981 IsAdd ? ISD::SETULT : ISD::SETUGT); 6982 } 6983 6984 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6985 Results.push_back(Overflow); 6986 return; 6987 } 6988 case ISD::UADDSAT: 6989 case ISD::USUBSAT: { 6990 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6991 "Unexpected custom legalisation"); 6992 if (Subtarget.hasStdExtZbb()) { 6993 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6994 // sign extend allows overflow of the lower 32 bits to be detected on 6995 // the promoted size. 6996 SDValue LHS = 6997 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6998 SDValue RHS = 6999 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 7000 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 7001 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7002 return; 7003 } 7004 7005 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 7006 // promotion for UADDO/USUBO. 7007 Results.push_back(expandAddSubSat(N, DAG)); 7008 return; 7009 } 7010 case ISD::ABS: { 7011 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7012 "Unexpected custom legalisation"); 7013 7014 // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y) 7015 7016 SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 7017 7018 // Freeze the source so we can increase it's use count. 7019 Src = DAG.getFreeze(Src); 7020 7021 // Copy sign bit to all bits using the sraiw pattern. 7022 SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src, 7023 DAG.getValueType(MVT::i32)); 7024 SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill, 7025 DAG.getConstant(31, DL, MVT::i64)); 7026 7027 SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill); 7028 NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill); 7029 7030 // NOTE: The result is only required to be anyextended, but sext is 7031 // consistent with type legalization of sub. 7032 NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes, 7033 DAG.getValueType(MVT::i32)); 7034 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 7035 return; 7036 } 7037 case ISD::BITCAST: { 7038 EVT VT = N->getValueType(0); 7039 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 7040 SDValue Op0 = N->getOperand(0); 7041 EVT Op0VT = Op0.getValueType(); 7042 MVT XLenVT = Subtarget.getXLenVT(); 7043 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 7044 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 7045 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 7046 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 7047 Subtarget.hasStdExtF()) { 7048 SDValue FPConv = 7049 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 7050 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 7051 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 7052 isTypeLegal(Op0VT)) { 7053 // Custom-legalize bitcasts from fixed-length vector types to illegal 7054 // scalar types in order to improve codegen. Bitcast the vector to a 7055 // one-element vector type whose element type is the same as the result 7056 // type, and extract the first element. 7057 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 7058 if (isTypeLegal(BVT)) { 7059 SDValue BVec = DAG.getBitcast(BVT, Op0); 7060 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 7061 DAG.getConstant(0, DL, XLenVT))); 7062 } 7063 } 7064 break; 7065 } 7066 case RISCVISD::GREV: 7067 case RISCVISD::GORC: 7068 case RISCVISD::SHFL: { 7069 MVT VT = N->getSimpleValueType(0); 7070 MVT XLenVT = Subtarget.getXLenVT(); 7071 assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) && 7072 "Unexpected custom legalisation"); 7073 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 7074 assert((Subtarget.hasStdExtZbp() || 7075 (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV && 7076 N->getConstantOperandVal(1) == 7)) && 7077 "Unexpected extension"); 7078 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 7079 SDValue NewOp1 = 7080 DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1)); 7081 SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1); 7082 // ReplaceNodeResults requires we maintain the same type for the return 7083 // value. 7084 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes)); 7085 break; 7086 } 7087 case ISD::BSWAP: 7088 case ISD::BITREVERSE: { 7089 MVT VT = N->getSimpleValueType(0); 7090 MVT XLenVT = Subtarget.getXLenVT(); 7091 assert((VT == MVT::i8 || VT == MVT::i16 || 7092 (VT == MVT::i32 && Subtarget.is64Bit())) && 7093 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 7094 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 7095 unsigned Imm = VT.getSizeInBits() - 1; 7096 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 7097 if (N->getOpcode() == ISD::BSWAP) 7098 Imm &= ~0x7U; 7099 SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0, 7100 DAG.getConstant(Imm, DL, XLenVT)); 7101 // ReplaceNodeResults requires we maintain the same type for the return 7102 // value. 7103 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 7104 break; 7105 } 7106 case ISD::FSHL: 7107 case ISD::FSHR: { 7108 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7109 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 7110 SDValue NewOp0 = 7111 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 7112 SDValue NewOp1 = 7113 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7114 SDValue NewShAmt = 7115 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7116 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 7117 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 7118 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 7119 DAG.getConstant(0x1f, DL, MVT::i64)); 7120 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 7121 // instruction use different orders. fshl will return its first operand for 7122 // shift of zero, fshr will return its second operand. fsl and fsr both 7123 // return rs1 so the ISD nodes need to have different operand orders. 7124 // Shift amount is in rs2. 7125 unsigned Opc = RISCVISD::FSLW; 7126 if (N->getOpcode() == ISD::FSHR) { 7127 std::swap(NewOp0, NewOp1); 7128 Opc = RISCVISD::FSRW; 7129 } 7130 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 7131 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 7132 break; 7133 } 7134 case ISD::EXTRACT_VECTOR_ELT: { 7135 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 7136 // type is illegal (currently only vXi64 RV32). 7137 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 7138 // transferred to the destination register. We issue two of these from the 7139 // upper- and lower- halves of the SEW-bit vector element, slid down to the 7140 // first element. 7141 SDValue Vec = N->getOperand(0); 7142 SDValue Idx = N->getOperand(1); 7143 7144 // The vector type hasn't been legalized yet so we can't issue target 7145 // specific nodes if it needs legalization. 7146 // FIXME: We would manually legalize if it's important. 7147 if (!isTypeLegal(Vec.getValueType())) 7148 return; 7149 7150 MVT VecVT = Vec.getSimpleValueType(); 7151 7152 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 7153 VecVT.getVectorElementType() == MVT::i64 && 7154 "Unexpected EXTRACT_VECTOR_ELT legalization"); 7155 7156 // If this is a fixed vector, we need to convert it to a scalable vector. 7157 MVT ContainerVT = VecVT; 7158 if (VecVT.isFixedLengthVector()) { 7159 ContainerVT = getContainerForFixedLengthVector(VecVT); 7160 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 7161 } 7162 7163 MVT XLenVT = Subtarget.getXLenVT(); 7164 7165 // Use a VL of 1 to avoid processing more elements than we need. 7166 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7167 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 7168 7169 // Unless the index is known to be 0, we must slide the vector down to get 7170 // the desired element into index 0. 7171 if (!isNullConstant(Idx)) { 7172 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 7173 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 7174 } 7175 7176 // Extract the lower XLEN bits of the correct vector element. 7177 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7178 7179 // To extract the upper XLEN bits of the vector element, shift the first 7180 // element right by 32 bits and re-extract the lower XLEN bits. 7181 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 7182 DAG.getUNDEF(ContainerVT), 7183 DAG.getConstant(32, DL, XLenVT), VL); 7184 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 7185 ThirtyTwoV, Mask, VL); 7186 7187 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7188 7189 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7190 break; 7191 } 7192 case ISD::INTRINSIC_WO_CHAIN: { 7193 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 7194 switch (IntNo) { 7195 default: 7196 llvm_unreachable( 7197 "Don't know how to custom type legalize this intrinsic!"); 7198 case Intrinsic::riscv_grev: 7199 case Intrinsic::riscv_gorc: { 7200 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7201 "Unexpected custom legalisation"); 7202 SDValue NewOp1 = 7203 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7204 SDValue NewOp2 = 7205 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7206 unsigned Opc = 7207 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 7208 // If the control is a constant, promote the node by clearing any extra 7209 // bits bits in the control. isel will form greviw/gorciw if the result is 7210 // sign extended. 7211 if (isa<ConstantSDNode>(NewOp2)) { 7212 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7213 DAG.getConstant(0x1f, DL, MVT::i64)); 7214 Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 7215 } 7216 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7217 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7218 break; 7219 } 7220 case Intrinsic::riscv_bcompress: 7221 case Intrinsic::riscv_bdecompress: 7222 case Intrinsic::riscv_bfp: 7223 case Intrinsic::riscv_fsl: 7224 case Intrinsic::riscv_fsr: { 7225 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7226 "Unexpected custom legalisation"); 7227 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 7228 break; 7229 } 7230 case Intrinsic::riscv_orc_b: { 7231 // Lower to the GORCI encoding for orc.b with the operand extended. 7232 SDValue NewOp = 7233 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7234 SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp, 7235 DAG.getConstant(7, DL, MVT::i64)); 7236 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7237 return; 7238 } 7239 case Intrinsic::riscv_shfl: 7240 case Intrinsic::riscv_unshfl: { 7241 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7242 "Unexpected custom legalisation"); 7243 SDValue NewOp1 = 7244 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7245 SDValue NewOp2 = 7246 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7247 unsigned Opc = 7248 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 7249 // There is no (UN)SHFLIW. If the control word is a constant, we can use 7250 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 7251 // will be shuffled the same way as the lower 32 bit half, but the two 7252 // halves won't cross. 7253 if (isa<ConstantSDNode>(NewOp2)) { 7254 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7255 DAG.getConstant(0xf, DL, MVT::i64)); 7256 Opc = 7257 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 7258 } 7259 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7260 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7261 break; 7262 } 7263 case Intrinsic::riscv_vmv_x_s: { 7264 EVT VT = N->getValueType(0); 7265 MVT XLenVT = Subtarget.getXLenVT(); 7266 if (VT.bitsLT(XLenVT)) { 7267 // Simple case just extract using vmv.x.s and truncate. 7268 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 7269 Subtarget.getXLenVT(), N->getOperand(1)); 7270 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 7271 return; 7272 } 7273 7274 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 7275 "Unexpected custom legalization"); 7276 7277 // We need to do the move in two steps. 7278 SDValue Vec = N->getOperand(1); 7279 MVT VecVT = Vec.getSimpleValueType(); 7280 7281 // First extract the lower XLEN bits of the element. 7282 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7283 7284 // To extract the upper XLEN bits of the vector element, shift the first 7285 // element right by 32 bits and re-extract the lower XLEN bits. 7286 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7287 SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG); 7288 7289 SDValue ThirtyTwoV = 7290 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 7291 DAG.getConstant(32, DL, XLenVT), VL); 7292 SDValue LShr32 = 7293 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 7294 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7295 7296 Results.push_back( 7297 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7298 break; 7299 } 7300 } 7301 break; 7302 } 7303 case ISD::VECREDUCE_ADD: 7304 case ISD::VECREDUCE_AND: 7305 case ISD::VECREDUCE_OR: 7306 case ISD::VECREDUCE_XOR: 7307 case ISD::VECREDUCE_SMAX: 7308 case ISD::VECREDUCE_UMAX: 7309 case ISD::VECREDUCE_SMIN: 7310 case ISD::VECREDUCE_UMIN: 7311 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 7312 Results.push_back(V); 7313 break; 7314 case ISD::VP_REDUCE_ADD: 7315 case ISD::VP_REDUCE_AND: 7316 case ISD::VP_REDUCE_OR: 7317 case ISD::VP_REDUCE_XOR: 7318 case ISD::VP_REDUCE_SMAX: 7319 case ISD::VP_REDUCE_UMAX: 7320 case ISD::VP_REDUCE_SMIN: 7321 case ISD::VP_REDUCE_UMIN: 7322 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 7323 Results.push_back(V); 7324 break; 7325 case ISD::FLT_ROUNDS_: { 7326 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 7327 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 7328 Results.push_back(Res.getValue(0)); 7329 Results.push_back(Res.getValue(1)); 7330 break; 7331 } 7332 } 7333 } 7334 7335 // A structure to hold one of the bit-manipulation patterns below. Together, a 7336 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 7337 // (or (and (shl x, 1), 0xAAAAAAAA), 7338 // (and (srl x, 1), 0x55555555)) 7339 struct RISCVBitmanipPat { 7340 SDValue Op; 7341 unsigned ShAmt; 7342 bool IsSHL; 7343 7344 bool formsPairWith(const RISCVBitmanipPat &Other) const { 7345 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 7346 } 7347 }; 7348 7349 // Matches patterns of the form 7350 // (and (shl x, C2), (C1 << C2)) 7351 // (and (srl x, C2), C1) 7352 // (shl (and x, C1), C2) 7353 // (srl (and x, (C1 << C2)), C2) 7354 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 7355 // The expected masks for each shift amount are specified in BitmanipMasks where 7356 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 7357 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 7358 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 7359 // XLen is 64. 7360 static Optional<RISCVBitmanipPat> 7361 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 7362 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 7363 "Unexpected number of masks"); 7364 Optional<uint64_t> Mask; 7365 // Optionally consume a mask around the shift operation. 7366 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 7367 Mask = Op.getConstantOperandVal(1); 7368 Op = Op.getOperand(0); 7369 } 7370 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 7371 return None; 7372 bool IsSHL = Op.getOpcode() == ISD::SHL; 7373 7374 if (!isa<ConstantSDNode>(Op.getOperand(1))) 7375 return None; 7376 uint64_t ShAmt = Op.getConstantOperandVal(1); 7377 7378 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7379 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 7380 return None; 7381 // If we don't have enough masks for 64 bit, then we must be trying to 7382 // match SHFL so we're only allowed to shift 1/4 of the width. 7383 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 7384 return None; 7385 7386 SDValue Src = Op.getOperand(0); 7387 7388 // The expected mask is shifted left when the AND is found around SHL 7389 // patterns. 7390 // ((x >> 1) & 0x55555555) 7391 // ((x << 1) & 0xAAAAAAAA) 7392 bool SHLExpMask = IsSHL; 7393 7394 if (!Mask) { 7395 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 7396 // the mask is all ones: consume that now. 7397 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 7398 Mask = Src.getConstantOperandVal(1); 7399 Src = Src.getOperand(0); 7400 // The expected mask is now in fact shifted left for SRL, so reverse the 7401 // decision. 7402 // ((x & 0xAAAAAAAA) >> 1) 7403 // ((x & 0x55555555) << 1) 7404 SHLExpMask = !SHLExpMask; 7405 } else { 7406 // Use a default shifted mask of all-ones if there's no AND, truncated 7407 // down to the expected width. This simplifies the logic later on. 7408 Mask = maskTrailingOnes<uint64_t>(Width); 7409 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 7410 } 7411 } 7412 7413 unsigned MaskIdx = Log2_32(ShAmt); 7414 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7415 7416 if (SHLExpMask) 7417 ExpMask <<= ShAmt; 7418 7419 if (Mask != ExpMask) 7420 return None; 7421 7422 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 7423 } 7424 7425 // Matches any of the following bit-manipulation patterns: 7426 // (and (shl x, 1), (0x55555555 << 1)) 7427 // (and (srl x, 1), 0x55555555) 7428 // (shl (and x, 0x55555555), 1) 7429 // (srl (and x, (0x55555555 << 1)), 1) 7430 // where the shift amount and mask may vary thus: 7431 // [1] = 0x55555555 / 0xAAAAAAAA 7432 // [2] = 0x33333333 / 0xCCCCCCCC 7433 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 7434 // [8] = 0x00FF00FF / 0xFF00FF00 7435 // [16] = 0x0000FFFF / 0xFFFFFFFF 7436 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 7437 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 7438 // These are the unshifted masks which we use to match bit-manipulation 7439 // patterns. They may be shifted left in certain circumstances. 7440 static const uint64_t BitmanipMasks[] = { 7441 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 7442 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 7443 7444 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7445 } 7446 7447 // Try to fold (<bop> x, (reduction.<bop> vec, start)) 7448 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG) { 7449 auto BinOpToRVVReduce = [](unsigned Opc) { 7450 switch (Opc) { 7451 default: 7452 llvm_unreachable("Unhandled binary to transfrom reduction"); 7453 case ISD::ADD: 7454 return RISCVISD::VECREDUCE_ADD_VL; 7455 case ISD::UMAX: 7456 return RISCVISD::VECREDUCE_UMAX_VL; 7457 case ISD::SMAX: 7458 return RISCVISD::VECREDUCE_SMAX_VL; 7459 case ISD::UMIN: 7460 return RISCVISD::VECREDUCE_UMIN_VL; 7461 case ISD::SMIN: 7462 return RISCVISD::VECREDUCE_SMIN_VL; 7463 case ISD::AND: 7464 return RISCVISD::VECREDUCE_AND_VL; 7465 case ISD::OR: 7466 return RISCVISD::VECREDUCE_OR_VL; 7467 case ISD::XOR: 7468 return RISCVISD::VECREDUCE_XOR_VL; 7469 case ISD::FADD: 7470 return RISCVISD::VECREDUCE_FADD_VL; 7471 case ISD::FMAXNUM: 7472 return RISCVISD::VECREDUCE_FMAX_VL; 7473 case ISD::FMINNUM: 7474 return RISCVISD::VECREDUCE_FMIN_VL; 7475 } 7476 }; 7477 7478 auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) { 7479 return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7480 isNullConstant(V.getOperand(1)) && 7481 V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc); 7482 }; 7483 7484 unsigned Opc = N->getOpcode(); 7485 unsigned ReduceIdx; 7486 if (IsReduction(N->getOperand(0), Opc)) 7487 ReduceIdx = 0; 7488 else if (IsReduction(N->getOperand(1), Opc)) 7489 ReduceIdx = 1; 7490 else 7491 return SDValue(); 7492 7493 // Skip if FADD disallows reassociation but the combiner needs. 7494 if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation()) 7495 return SDValue(); 7496 7497 SDValue Extract = N->getOperand(ReduceIdx); 7498 SDValue Reduce = Extract.getOperand(0); 7499 if (!Reduce.hasOneUse()) 7500 return SDValue(); 7501 7502 SDValue ScalarV = Reduce.getOperand(2); 7503 7504 // Make sure that ScalarV is a splat with VL=1. 7505 if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL && 7506 ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL && 7507 ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL) 7508 return SDValue(); 7509 7510 if (!isOneConstant(ScalarV.getOperand(2))) 7511 return SDValue(); 7512 7513 // TODO: Deal with value other than neutral element. 7514 auto IsRVVNeutralElement = [Opc, &DAG](SDNode *N, SDValue V) { 7515 if (Opc == ISD::FADD && N->getFlags().hasNoSignedZeros() && 7516 isNullFPConstant(V)) 7517 return true; 7518 return DAG.getNeutralElement(Opc, SDLoc(V), V.getSimpleValueType(), 7519 N->getFlags()) == V; 7520 }; 7521 7522 // Check the scalar of ScalarV is neutral element 7523 if (!IsRVVNeutralElement(N, ScalarV.getOperand(1))) 7524 return SDValue(); 7525 7526 if (!ScalarV.hasOneUse()) 7527 return SDValue(); 7528 7529 EVT SplatVT = ScalarV.getValueType(); 7530 SDValue NewStart = N->getOperand(1 - ReduceIdx); 7531 unsigned SplatOpc = RISCVISD::VFMV_S_F_VL; 7532 if (SplatVT.isInteger()) { 7533 auto *C = dyn_cast<ConstantSDNode>(NewStart.getNode()); 7534 if (!C || C->isZero() || !isInt<5>(C->getSExtValue())) 7535 SplatOpc = RISCVISD::VMV_S_X_VL; 7536 else 7537 SplatOpc = RISCVISD::VMV_V_X_VL; 7538 } 7539 7540 SDValue NewScalarV = 7541 DAG.getNode(SplatOpc, SDLoc(N), SplatVT, ScalarV.getOperand(0), NewStart, 7542 ScalarV.getOperand(2)); 7543 SDValue NewReduce = 7544 DAG.getNode(Reduce.getOpcode(), SDLoc(Reduce), Reduce.getValueType(), 7545 Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV, 7546 Reduce.getOperand(3), Reduce.getOperand(4)); 7547 return DAG.getNode(Extract.getOpcode(), SDLoc(Extract), 7548 Extract.getValueType(), NewReduce, Extract.getOperand(1)); 7549 } 7550 7551 // Match the following pattern as a GREVI(W) operation 7552 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 7553 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 7554 const RISCVSubtarget &Subtarget) { 7555 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7556 EVT VT = Op.getValueType(); 7557 7558 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7559 auto LHS = matchGREVIPat(Op.getOperand(0)); 7560 auto RHS = matchGREVIPat(Op.getOperand(1)); 7561 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 7562 SDLoc DL(Op); 7563 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 7564 DAG.getConstant(LHS->ShAmt, DL, VT)); 7565 } 7566 } 7567 return SDValue(); 7568 } 7569 7570 // Matches any the following pattern as a GORCI(W) operation 7571 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 7572 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 7573 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 7574 // Note that with the variant of 3., 7575 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 7576 // the inner pattern will first be matched as GREVI and then the outer 7577 // pattern will be matched to GORC via the first rule above. 7578 // 4. (or (rotl/rotr x, bitwidth/2), x) 7579 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 7580 const RISCVSubtarget &Subtarget) { 7581 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7582 EVT VT = Op.getValueType(); 7583 7584 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7585 SDLoc DL(Op); 7586 SDValue Op0 = Op.getOperand(0); 7587 SDValue Op1 = Op.getOperand(1); 7588 7589 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 7590 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 7591 isa<ConstantSDNode>(Reverse.getOperand(1)) && 7592 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 7593 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 7594 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 7595 if ((Reverse.getOpcode() == ISD::ROTL || 7596 Reverse.getOpcode() == ISD::ROTR) && 7597 Reverse.getOperand(0) == X && 7598 isa<ConstantSDNode>(Reverse.getOperand(1))) { 7599 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 7600 if (RotAmt == (VT.getSizeInBits() / 2)) 7601 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 7602 DAG.getConstant(RotAmt, DL, VT)); 7603 } 7604 return SDValue(); 7605 }; 7606 7607 // Check for either commutable permutation of (or (GREVI x, shamt), x) 7608 if (SDValue V = MatchOROfReverse(Op0, Op1)) 7609 return V; 7610 if (SDValue V = MatchOROfReverse(Op1, Op0)) 7611 return V; 7612 7613 // OR is commutable so canonicalize its OR operand to the left 7614 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 7615 std::swap(Op0, Op1); 7616 if (Op0.getOpcode() != ISD::OR) 7617 return SDValue(); 7618 SDValue OrOp0 = Op0.getOperand(0); 7619 SDValue OrOp1 = Op0.getOperand(1); 7620 auto LHS = matchGREVIPat(OrOp0); 7621 // OR is commutable so swap the operands and try again: x might have been 7622 // on the left 7623 if (!LHS) { 7624 std::swap(OrOp0, OrOp1); 7625 LHS = matchGREVIPat(OrOp0); 7626 } 7627 auto RHS = matchGREVIPat(Op1); 7628 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 7629 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 7630 DAG.getConstant(LHS->ShAmt, DL, VT)); 7631 } 7632 } 7633 return SDValue(); 7634 } 7635 7636 // Matches any of the following bit-manipulation patterns: 7637 // (and (shl x, 1), (0x22222222 << 1)) 7638 // (and (srl x, 1), 0x22222222) 7639 // (shl (and x, 0x22222222), 1) 7640 // (srl (and x, (0x22222222 << 1)), 1) 7641 // where the shift amount and mask may vary thus: 7642 // [1] = 0x22222222 / 0x44444444 7643 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 7644 // [4] = 0x00F000F0 / 0x0F000F00 7645 // [8] = 0x0000FF00 / 0x00FF0000 7646 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 7647 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 7648 // These are the unshifted masks which we use to match bit-manipulation 7649 // patterns. They may be shifted left in certain circumstances. 7650 static const uint64_t BitmanipMasks[] = { 7651 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 7652 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 7653 7654 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7655 } 7656 7657 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 7658 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 7659 const RISCVSubtarget &Subtarget) { 7660 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7661 EVT VT = Op.getValueType(); 7662 7663 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 7664 return SDValue(); 7665 7666 SDValue Op0 = Op.getOperand(0); 7667 SDValue Op1 = Op.getOperand(1); 7668 7669 // Or is commutable so canonicalize the second OR to the LHS. 7670 if (Op0.getOpcode() != ISD::OR) 7671 std::swap(Op0, Op1); 7672 if (Op0.getOpcode() != ISD::OR) 7673 return SDValue(); 7674 7675 // We found an inner OR, so our operands are the operands of the inner OR 7676 // and the other operand of the outer OR. 7677 SDValue A = Op0.getOperand(0); 7678 SDValue B = Op0.getOperand(1); 7679 SDValue C = Op1; 7680 7681 auto Match1 = matchSHFLPat(A); 7682 auto Match2 = matchSHFLPat(B); 7683 7684 // If neither matched, we failed. 7685 if (!Match1 && !Match2) 7686 return SDValue(); 7687 7688 // We had at least one match. if one failed, try the remaining C operand. 7689 if (!Match1) { 7690 std::swap(A, C); 7691 Match1 = matchSHFLPat(A); 7692 if (!Match1) 7693 return SDValue(); 7694 } else if (!Match2) { 7695 std::swap(B, C); 7696 Match2 = matchSHFLPat(B); 7697 if (!Match2) 7698 return SDValue(); 7699 } 7700 assert(Match1 && Match2); 7701 7702 // Make sure our matches pair up. 7703 if (!Match1->formsPairWith(*Match2)) 7704 return SDValue(); 7705 7706 // All the remains is to make sure C is an AND with the same input, that masks 7707 // out the bits that are being shuffled. 7708 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7709 C.getOperand(0) != Match1->Op) 7710 return SDValue(); 7711 7712 uint64_t Mask = C.getConstantOperandVal(1); 7713 7714 static const uint64_t BitmanipMasks[] = { 7715 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7716 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7717 }; 7718 7719 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7720 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7721 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7722 7723 if (Mask != ExpMask) 7724 return SDValue(); 7725 7726 SDLoc DL(Op); 7727 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7728 DAG.getConstant(Match1->ShAmt, DL, VT)); 7729 } 7730 7731 // Optimize (add (shl x, c0), (shl y, c1)) -> 7732 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7733 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7734 const RISCVSubtarget &Subtarget) { 7735 // Perform this optimization only in the zba extension. 7736 if (!Subtarget.hasStdExtZba()) 7737 return SDValue(); 7738 7739 // Skip for vector types and larger types. 7740 EVT VT = N->getValueType(0); 7741 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7742 return SDValue(); 7743 7744 // The two operand nodes must be SHL and have no other use. 7745 SDValue N0 = N->getOperand(0); 7746 SDValue N1 = N->getOperand(1); 7747 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7748 !N0->hasOneUse() || !N1->hasOneUse()) 7749 return SDValue(); 7750 7751 // Check c0 and c1. 7752 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7753 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7754 if (!N0C || !N1C) 7755 return SDValue(); 7756 int64_t C0 = N0C->getSExtValue(); 7757 int64_t C1 = N1C->getSExtValue(); 7758 if (C0 <= 0 || C1 <= 0) 7759 return SDValue(); 7760 7761 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7762 int64_t Bits = std::min(C0, C1); 7763 int64_t Diff = std::abs(C0 - C1); 7764 if (Diff != 1 && Diff != 2 && Diff != 3) 7765 return SDValue(); 7766 7767 // Build nodes. 7768 SDLoc DL(N); 7769 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7770 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7771 SDValue NA0 = 7772 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7773 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7774 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7775 } 7776 7777 // Combine 7778 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7779 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7780 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7781 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7782 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7783 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7784 // The grev patterns represents BSWAP. 7785 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB 7786 // off the grev. 7787 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG, 7788 const RISCVSubtarget &Subtarget) { 7789 bool IsWInstruction = 7790 N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW; 7791 assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL || 7792 IsWInstruction) && 7793 "Unexpected opcode!"); 7794 SDValue Src = N->getOperand(0); 7795 EVT VT = N->getValueType(0); 7796 SDLoc DL(N); 7797 7798 if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV) 7799 return SDValue(); 7800 7801 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7802 !isa<ConstantSDNode>(Src.getOperand(1))) 7803 return SDValue(); 7804 7805 unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits(); 7806 assert(isPowerOf2_32(BitWidth) && "Expected a power of 2"); 7807 7808 // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for 7809 // RORW/ROLW. And the grev should be the encoding for bswap for this width. 7810 unsigned ShAmt1 = N->getConstantOperandVal(1); 7811 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7812 if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8)) 7813 return SDValue(); 7814 7815 Src = Src.getOperand(0); 7816 7817 // Toggle bit the MSB of the shift. 7818 unsigned CombinedShAmt = ShAmt1 ^ ShAmt2; 7819 if (CombinedShAmt == 0) 7820 return Src; 7821 7822 SDValue Res = DAG.getNode( 7823 RISCVISD::GREV, DL, VT, Src, 7824 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7825 if (!IsWInstruction) 7826 return Res; 7827 7828 // Sign extend the result to match the behavior of the rotate. This will be 7829 // selected to GREVIW in isel. 7830 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res, 7831 DAG.getValueType(MVT::i32)); 7832 } 7833 7834 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7835 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7836 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7837 // not undo itself, but they are redundant. 7838 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7839 bool IsGORC = N->getOpcode() == RISCVISD::GORC; 7840 assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode"); 7841 SDValue Src = N->getOperand(0); 7842 7843 if (Src.getOpcode() != N->getOpcode()) 7844 return SDValue(); 7845 7846 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7847 !isa<ConstantSDNode>(Src.getOperand(1))) 7848 return SDValue(); 7849 7850 unsigned ShAmt1 = N->getConstantOperandVal(1); 7851 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7852 Src = Src.getOperand(0); 7853 7854 unsigned CombinedShAmt; 7855 if (IsGORC) 7856 CombinedShAmt = ShAmt1 | ShAmt2; 7857 else 7858 CombinedShAmt = ShAmt1 ^ ShAmt2; 7859 7860 if (CombinedShAmt == 0) 7861 return Src; 7862 7863 SDLoc DL(N); 7864 return DAG.getNode( 7865 N->getOpcode(), DL, N->getValueType(0), Src, 7866 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7867 } 7868 7869 // Combine a constant select operand into its use: 7870 // 7871 // (and (select cond, -1, c), x) 7872 // -> (select cond, x, (and x, c)) [AllOnes=1] 7873 // (or (select cond, 0, c), x) 7874 // -> (select cond, x, (or x, c)) [AllOnes=0] 7875 // (xor (select cond, 0, c), x) 7876 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7877 // (add (select cond, 0, c), x) 7878 // -> (select cond, x, (add x, c)) [AllOnes=0] 7879 // (sub x, (select cond, 0, c)) 7880 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7881 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7882 SelectionDAG &DAG, bool AllOnes) { 7883 EVT VT = N->getValueType(0); 7884 7885 // Skip vectors. 7886 if (VT.isVector()) 7887 return SDValue(); 7888 7889 if ((Slct.getOpcode() != ISD::SELECT && 7890 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7891 !Slct.hasOneUse()) 7892 return SDValue(); 7893 7894 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7895 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7896 }; 7897 7898 bool SwapSelectOps; 7899 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7900 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7901 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7902 SDValue NonConstantVal; 7903 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7904 SwapSelectOps = false; 7905 NonConstantVal = FalseVal; 7906 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7907 SwapSelectOps = true; 7908 NonConstantVal = TrueVal; 7909 } else 7910 return SDValue(); 7911 7912 // Slct is now know to be the desired identity constant when CC is true. 7913 TrueVal = OtherOp; 7914 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7915 // Unless SwapSelectOps says the condition should be false. 7916 if (SwapSelectOps) 7917 std::swap(TrueVal, FalseVal); 7918 7919 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7920 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7921 {Slct.getOperand(0), Slct.getOperand(1), 7922 Slct.getOperand(2), TrueVal, FalseVal}); 7923 7924 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7925 {Slct.getOperand(0), TrueVal, FalseVal}); 7926 } 7927 7928 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7929 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7930 bool AllOnes) { 7931 SDValue N0 = N->getOperand(0); 7932 SDValue N1 = N->getOperand(1); 7933 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7934 return Result; 7935 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7936 return Result; 7937 return SDValue(); 7938 } 7939 7940 // Transform (add (mul x, c0), c1) -> 7941 // (add (mul (add x, c1/c0), c0), c1%c0). 7942 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7943 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7944 // to an infinite loop in DAGCombine if transformed. 7945 // Or transform (add (mul x, c0), c1) -> 7946 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7947 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7948 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7949 // lead to an infinite loop in DAGCombine if transformed. 7950 // Or transform (add (mul x, c0), c1) -> 7951 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7952 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7953 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7954 // lead to an infinite loop in DAGCombine if transformed. 7955 // Or transform (add (mul x, c0), c1) -> 7956 // (mul (add x, c1/c0), c0). 7957 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7958 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7959 const RISCVSubtarget &Subtarget) { 7960 // Skip for vector types and larger types. 7961 EVT VT = N->getValueType(0); 7962 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7963 return SDValue(); 7964 // The first operand node must be a MUL and has no other use. 7965 SDValue N0 = N->getOperand(0); 7966 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7967 return SDValue(); 7968 // Check if c0 and c1 match above conditions. 7969 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7970 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7971 if (!N0C || !N1C) 7972 return SDValue(); 7973 // If N0C has multiple uses it's possible one of the cases in 7974 // DAGCombiner::isMulAddWithConstProfitable will be true, which would result 7975 // in an infinite loop. 7976 if (!N0C->hasOneUse()) 7977 return SDValue(); 7978 int64_t C0 = N0C->getSExtValue(); 7979 int64_t C1 = N1C->getSExtValue(); 7980 int64_t CA, CB; 7981 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7982 return SDValue(); 7983 // Search for proper CA (non-zero) and CB that both are simm12. 7984 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7985 !isInt<12>(C0 * (C1 / C0))) { 7986 CA = C1 / C0; 7987 CB = C1 % C0; 7988 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7989 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7990 CA = C1 / C0 + 1; 7991 CB = C1 % C0 - C0; 7992 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7993 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7994 CA = C1 / C0 - 1; 7995 CB = C1 % C0 + C0; 7996 } else 7997 return SDValue(); 7998 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7999 SDLoc DL(N); 8000 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 8001 DAG.getConstant(CA, DL, VT)); 8002 SDValue New1 = 8003 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 8004 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 8005 } 8006 8007 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 8008 const RISCVSubtarget &Subtarget) { 8009 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 8010 return V; 8011 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 8012 return V; 8013 if (SDValue V = combineBinOpToReduce(N, DAG)) 8014 return V; 8015 // fold (add (select lhs, rhs, cc, 0, y), x) -> 8016 // (select lhs, rhs, cc, x, (add x, y)) 8017 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 8018 } 8019 8020 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 8021 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 8022 // (select lhs, rhs, cc, x, (sub x, y)) 8023 SDValue N0 = N->getOperand(0); 8024 SDValue N1 = N->getOperand(1); 8025 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 8026 } 8027 8028 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, 8029 const RISCVSubtarget &Subtarget) { 8030 SDValue N0 = N->getOperand(0); 8031 // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero 8032 // extending X. This is safe since we only need the LSB after the shift and 8033 // shift amounts larger than 31 would produce poison. If we wait until 8034 // type legalization, we'll create RISCVISD::SRLW and we can't recover it 8035 // to use a BEXT instruction. 8036 if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() && 8037 N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) && 8038 N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) && 8039 N0.hasOneUse()) { 8040 SDLoc DL(N); 8041 SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0)); 8042 SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1)); 8043 SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1); 8044 SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl, 8045 DAG.getConstant(1, DL, MVT::i64)); 8046 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And); 8047 } 8048 8049 if (SDValue V = combineBinOpToReduce(N, DAG)) 8050 return V; 8051 8052 // fold (and (select lhs, rhs, cc, -1, y), x) -> 8053 // (select lhs, rhs, cc, x, (and x, y)) 8054 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 8055 } 8056 8057 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 8058 const RISCVSubtarget &Subtarget) { 8059 if (Subtarget.hasStdExtZbp()) { 8060 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 8061 return GREV; 8062 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 8063 return GORC; 8064 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 8065 return SHFL; 8066 } 8067 8068 if (SDValue V = combineBinOpToReduce(N, DAG)) 8069 return V; 8070 // fold (or (select cond, 0, y), x) -> 8071 // (select cond, x, (or x, y)) 8072 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 8073 } 8074 8075 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 8076 SDValue N0 = N->getOperand(0); 8077 SDValue N1 = N->getOperand(1); 8078 8079 // fold (xor (sllw 1, x), -1) -> (rolw ~1, x) 8080 // NOTE: Assumes ROL being legal means ROLW is legal. 8081 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8082 if (N0.getOpcode() == RISCVISD::SLLW && 8083 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) && 8084 TLI.isOperationLegal(ISD::ROTL, MVT::i64)) { 8085 SDLoc DL(N); 8086 return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64, 8087 DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1)); 8088 } 8089 8090 if (SDValue V = combineBinOpToReduce(N, DAG)) 8091 return V; 8092 // fold (xor (select cond, 0, y), x) -> 8093 // (select cond, x, (xor x, y)) 8094 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 8095 } 8096 8097 static SDValue 8098 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, 8099 const RISCVSubtarget &Subtarget) { 8100 SDValue Src = N->getOperand(0); 8101 EVT VT = N->getValueType(0); 8102 8103 // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X) 8104 if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8105 cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16)) 8106 return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT, 8107 Src.getOperand(0)); 8108 8109 // Fold (i64 (sext_inreg (abs X), i32)) -> 8110 // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits. 8111 // The (sext_inreg (neg X), i32) will be selected to negw by isel. This 8112 // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user 8113 // of the (i32 (abs X)) is a sext or setcc or something else that causes type 8114 // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have 8115 // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg 8116 // may get combined into an earlier operation so we need to use 8117 // ComputeNumSignBits. 8118 // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for 8119 // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so 8120 // we can't assume that X has 33 sign bits. We must check. 8121 if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() && 8122 Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 && 8123 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 && 8124 DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) { 8125 SDLoc DL(N); 8126 SDValue Freeze = DAG.getFreeze(Src.getOperand(0)); 8127 SDValue Neg = 8128 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze); 8129 Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg, 8130 DAG.getValueType(MVT::i32)); 8131 return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg); 8132 } 8133 8134 return SDValue(); 8135 } 8136 8137 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to 8138 // vwadd(u).vv/vx or vwsub(u).vv/vx. 8139 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG, 8140 bool Commute = false) { 8141 assert((N->getOpcode() == RISCVISD::ADD_VL || 8142 N->getOpcode() == RISCVISD::SUB_VL) && 8143 "Unexpected opcode"); 8144 bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL; 8145 SDValue Op0 = N->getOperand(0); 8146 SDValue Op1 = N->getOperand(1); 8147 if (Commute) 8148 std::swap(Op0, Op1); 8149 8150 MVT VT = N->getSimpleValueType(0); 8151 8152 // Determine the narrow size for a widening add/sub. 8153 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 8154 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 8155 VT.getVectorElementCount()); 8156 8157 SDValue Mask = N->getOperand(2); 8158 SDValue VL = N->getOperand(3); 8159 8160 SDLoc DL(N); 8161 8162 // If the RHS is a sext or zext, we can form a widening op. 8163 if ((Op1.getOpcode() == RISCVISD::VZEXT_VL || 8164 Op1.getOpcode() == RISCVISD::VSEXT_VL) && 8165 Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) { 8166 unsigned ExtOpc = Op1.getOpcode(); 8167 Op1 = Op1.getOperand(0); 8168 // Re-introduce narrower extends if needed. 8169 if (Op1.getValueType() != NarrowVT) 8170 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 8171 8172 unsigned WOpc; 8173 if (ExtOpc == RISCVISD::VSEXT_VL) 8174 WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL; 8175 else 8176 WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL; 8177 8178 return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL); 8179 } 8180 8181 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar 8182 // sext/zext? 8183 8184 return SDValue(); 8185 } 8186 8187 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or 8188 // vwsub(u).vv/vx. 8189 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) { 8190 SDValue Op0 = N->getOperand(0); 8191 SDValue Op1 = N->getOperand(1); 8192 SDValue Mask = N->getOperand(2); 8193 SDValue VL = N->getOperand(3); 8194 8195 MVT VT = N->getSimpleValueType(0); 8196 MVT NarrowVT = Op1.getSimpleValueType(); 8197 unsigned NarrowSize = NarrowVT.getScalarSizeInBits(); 8198 8199 unsigned VOpc; 8200 switch (N->getOpcode()) { 8201 default: llvm_unreachable("Unexpected opcode"); 8202 case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break; 8203 case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break; 8204 case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break; 8205 case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break; 8206 } 8207 8208 bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL || 8209 N->getOpcode() == RISCVISD::VWSUB_W_VL; 8210 8211 SDLoc DL(N); 8212 8213 // If the LHS is a sext or zext, we can narrow this op to the same size as 8214 // the RHS. 8215 if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) || 8216 (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) && 8217 Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) { 8218 unsigned ExtOpc = Op0.getOpcode(); 8219 Op0 = Op0.getOperand(0); 8220 // Re-introduce narrower extends if needed. 8221 if (Op0.getValueType() != NarrowVT) 8222 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 8223 return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL); 8224 } 8225 8226 bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL || 8227 N->getOpcode() == RISCVISD::VWADDU_W_VL; 8228 8229 // Look for splats on the left hand side of a vwadd(u).wv. We might be able 8230 // to commute and use a vwadd(u).vx instead. 8231 if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL && 8232 Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) { 8233 Op0 = Op0.getOperand(1); 8234 8235 // See if have enough sign bits or zero bits in the scalar to use a 8236 // widening add/sub by splatting to smaller element size. 8237 unsigned EltBits = VT.getScalarSizeInBits(); 8238 unsigned ScalarBits = Op0.getValueSizeInBits(); 8239 // Make sure we're getting all element bits from the scalar register. 8240 // FIXME: Support implicit sign extension of vmv.v.x? 8241 if (ScalarBits < EltBits) 8242 return SDValue(); 8243 8244 if (IsSigned) { 8245 if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize)) 8246 return SDValue(); 8247 } else { 8248 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 8249 if (!DAG.MaskedValueIsZero(Op0, Mask)) 8250 return SDValue(); 8251 } 8252 8253 Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 8254 DAG.getUNDEF(NarrowVT), Op0, VL); 8255 return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL); 8256 } 8257 8258 return SDValue(); 8259 } 8260 8261 // Try to form VWMUL, VWMULU or VWMULSU. 8262 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 8263 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 8264 bool Commute) { 8265 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 8266 SDValue Op0 = N->getOperand(0); 8267 SDValue Op1 = N->getOperand(1); 8268 if (Commute) 8269 std::swap(Op0, Op1); 8270 8271 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 8272 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 8273 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 8274 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 8275 return SDValue(); 8276 8277 SDValue Mask = N->getOperand(2); 8278 SDValue VL = N->getOperand(3); 8279 8280 // Make sure the mask and VL match. 8281 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 8282 return SDValue(); 8283 8284 MVT VT = N->getSimpleValueType(0); 8285 8286 // Determine the narrow size for a widening multiply. 8287 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 8288 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 8289 VT.getVectorElementCount()); 8290 8291 SDLoc DL(N); 8292 8293 // See if the other operand is the same opcode. 8294 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 8295 if (!Op1.hasOneUse()) 8296 return SDValue(); 8297 8298 // Make sure the mask and VL match. 8299 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 8300 return SDValue(); 8301 8302 Op1 = Op1.getOperand(0); 8303 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 8304 // The operand is a splat of a scalar. 8305 8306 // The pasthru must be undef for tail agnostic 8307 if (!Op1.getOperand(0).isUndef()) 8308 return SDValue(); 8309 // The VL must be the same. 8310 if (Op1.getOperand(2) != VL) 8311 return SDValue(); 8312 8313 // Get the scalar value. 8314 Op1 = Op1.getOperand(1); 8315 8316 // See if have enough sign bits or zero bits in the scalar to use a 8317 // widening multiply by splatting to smaller element size. 8318 unsigned EltBits = VT.getScalarSizeInBits(); 8319 unsigned ScalarBits = Op1.getValueSizeInBits(); 8320 // Make sure we're getting all element bits from the scalar register. 8321 // FIXME: Support implicit sign extension of vmv.v.x? 8322 if (ScalarBits < EltBits) 8323 return SDValue(); 8324 8325 // If the LHS is a sign extend, try to use vwmul. 8326 if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) { 8327 // Can use vwmul. 8328 } else { 8329 // Otherwise try to use vwmulu or vwmulsu. 8330 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 8331 if (DAG.MaskedValueIsZero(Op1, Mask)) 8332 IsVWMULSU = IsSignExt; 8333 else 8334 return SDValue(); 8335 } 8336 8337 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 8338 DAG.getUNDEF(NarrowVT), Op1, VL); 8339 } else 8340 return SDValue(); 8341 8342 Op0 = Op0.getOperand(0); 8343 8344 // Re-introduce narrower extends if needed. 8345 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 8346 if (Op0.getValueType() != NarrowVT) 8347 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 8348 // vwmulsu requires second operand to be zero extended. 8349 ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc; 8350 if (Op1.getValueType() != NarrowVT) 8351 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 8352 8353 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 8354 if (!IsVWMULSU) 8355 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 8356 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 8357 } 8358 8359 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 8360 switch (Op.getOpcode()) { 8361 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 8362 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 8363 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 8364 case ISD::FCEIL: return RISCVFPRndMode::RUP; 8365 case ISD::FROUND: return RISCVFPRndMode::RMM; 8366 } 8367 8368 return RISCVFPRndMode::Invalid; 8369 } 8370 8371 // Fold 8372 // (fp_to_int (froundeven X)) -> fcvt X, rne 8373 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 8374 // (fp_to_int (ffloor X)) -> fcvt X, rdn 8375 // (fp_to_int (fceil X)) -> fcvt X, rup 8376 // (fp_to_int (fround X)) -> fcvt X, rmm 8377 static SDValue performFP_TO_INTCombine(SDNode *N, 8378 TargetLowering::DAGCombinerInfo &DCI, 8379 const RISCVSubtarget &Subtarget) { 8380 SelectionDAG &DAG = DCI.DAG; 8381 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8382 MVT XLenVT = Subtarget.getXLenVT(); 8383 8384 // Only handle XLen or i32 types. Other types narrower than XLen will 8385 // eventually be legalized to XLenVT. 8386 EVT VT = N->getValueType(0); 8387 if (VT != MVT::i32 && VT != XLenVT) 8388 return SDValue(); 8389 8390 SDValue Src = N->getOperand(0); 8391 8392 // Ensure the FP type is also legal. 8393 if (!TLI.isTypeLegal(Src.getValueType())) 8394 return SDValue(); 8395 8396 // Don't do this for f16 with Zfhmin and not Zfh. 8397 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8398 return SDValue(); 8399 8400 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8401 if (FRM == RISCVFPRndMode::Invalid) 8402 return SDValue(); 8403 8404 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 8405 8406 unsigned Opc; 8407 if (VT == XLenVT) 8408 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8409 else 8410 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8411 8412 SDLoc DL(N); 8413 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 8414 DAG.getTargetConstant(FRM, DL, XLenVT)); 8415 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 8416 } 8417 8418 // Fold 8419 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 8420 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 8421 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 8422 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 8423 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 8424 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 8425 TargetLowering::DAGCombinerInfo &DCI, 8426 const RISCVSubtarget &Subtarget) { 8427 SelectionDAG &DAG = DCI.DAG; 8428 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8429 MVT XLenVT = Subtarget.getXLenVT(); 8430 8431 // Only handle XLen types. Other types narrower than XLen will eventually be 8432 // legalized to XLenVT. 8433 EVT DstVT = N->getValueType(0); 8434 if (DstVT != XLenVT) 8435 return SDValue(); 8436 8437 SDValue Src = N->getOperand(0); 8438 8439 // Ensure the FP type is also legal. 8440 if (!TLI.isTypeLegal(Src.getValueType())) 8441 return SDValue(); 8442 8443 // Don't do this for f16 with Zfhmin and not Zfh. 8444 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8445 return SDValue(); 8446 8447 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 8448 8449 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8450 if (FRM == RISCVFPRndMode::Invalid) 8451 return SDValue(); 8452 8453 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 8454 8455 unsigned Opc; 8456 if (SatVT == DstVT) 8457 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8458 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 8459 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8460 else 8461 return SDValue(); 8462 // FIXME: Support other SatVTs by clamping before or after the conversion. 8463 8464 Src = Src.getOperand(0); 8465 8466 SDLoc DL(N); 8467 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 8468 DAG.getTargetConstant(FRM, DL, XLenVT)); 8469 8470 // RISCV FP-to-int conversions saturate to the destination register size, but 8471 // don't produce 0 for nan. 8472 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 8473 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 8474 } 8475 8476 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is 8477 // smaller than XLenVT. 8478 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG, 8479 const RISCVSubtarget &Subtarget) { 8480 assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); 8481 8482 SDValue Src = N->getOperand(0); 8483 if (Src.getOpcode() != ISD::BSWAP) 8484 return SDValue(); 8485 8486 EVT VT = N->getValueType(0); 8487 if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() || 8488 !isPowerOf2_32(VT.getSizeInBits())) 8489 return SDValue(); 8490 8491 SDLoc DL(N); 8492 return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0), 8493 DAG.getConstant(7, DL, VT)); 8494 } 8495 8496 // Convert from one FMA opcode to another based on whether we are negating the 8497 // multiply result and/or the accumulator. 8498 // NOTE: Only supports RVV operations with VL. 8499 static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc) { 8500 assert((NegMul || NegAcc) && "Not negating anything?"); 8501 8502 // Negating the multiply result changes ADD<->SUB and toggles 'N'. 8503 if (NegMul) { 8504 // clang-format off 8505 switch (Opcode) { 8506 default: llvm_unreachable("Unexpected opcode"); 8507 case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break; 8508 case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break; 8509 case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break; 8510 case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break; 8511 } 8512 // clang-format on 8513 } 8514 8515 // Negating the accumulator changes ADD<->SUB. 8516 if (NegAcc) { 8517 // clang-format off 8518 switch (Opcode) { 8519 default: llvm_unreachable("Unexpected opcode"); 8520 case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break; 8521 case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break; 8522 case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break; 8523 case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break; 8524 } 8525 // clang-format on 8526 } 8527 8528 return Opcode; 8529 } 8530 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 8531 DAGCombinerInfo &DCI) const { 8532 SelectionDAG &DAG = DCI.DAG; 8533 8534 // Helper to call SimplifyDemandedBits on an operand of N where only some low 8535 // bits are demanded. N will be added to the Worklist if it was not deleted. 8536 // Caller should return SDValue(N, 0) if this returns true. 8537 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 8538 SDValue Op = N->getOperand(OpNo); 8539 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 8540 if (!SimplifyDemandedBits(Op, Mask, DCI)) 8541 return false; 8542 8543 if (N->getOpcode() != ISD::DELETED_NODE) 8544 DCI.AddToWorklist(N); 8545 return true; 8546 }; 8547 8548 switch (N->getOpcode()) { 8549 default: 8550 break; 8551 case RISCVISD::SplitF64: { 8552 SDValue Op0 = N->getOperand(0); 8553 // If the input to SplitF64 is just BuildPairF64 then the operation is 8554 // redundant. Instead, use BuildPairF64's operands directly. 8555 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 8556 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 8557 8558 if (Op0->isUndef()) { 8559 SDValue Lo = DAG.getUNDEF(MVT::i32); 8560 SDValue Hi = DAG.getUNDEF(MVT::i32); 8561 return DCI.CombineTo(N, Lo, Hi); 8562 } 8563 8564 SDLoc DL(N); 8565 8566 // It's cheaper to materialise two 32-bit integers than to load a double 8567 // from the constant pool and transfer it to integer registers through the 8568 // stack. 8569 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 8570 APInt V = C->getValueAPF().bitcastToAPInt(); 8571 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 8572 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 8573 return DCI.CombineTo(N, Lo, Hi); 8574 } 8575 8576 // This is a target-specific version of a DAGCombine performed in 8577 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8578 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8579 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8580 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8581 !Op0.getNode()->hasOneUse()) 8582 break; 8583 SDValue NewSplitF64 = 8584 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 8585 Op0.getOperand(0)); 8586 SDValue Lo = NewSplitF64.getValue(0); 8587 SDValue Hi = NewSplitF64.getValue(1); 8588 APInt SignBit = APInt::getSignMask(32); 8589 if (Op0.getOpcode() == ISD::FNEG) { 8590 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 8591 DAG.getConstant(SignBit, DL, MVT::i32)); 8592 return DCI.CombineTo(N, Lo, NewHi); 8593 } 8594 assert(Op0.getOpcode() == ISD::FABS); 8595 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 8596 DAG.getConstant(~SignBit, DL, MVT::i32)); 8597 return DCI.CombineTo(N, Lo, NewHi); 8598 } 8599 case RISCVISD::SLLW: 8600 case RISCVISD::SRAW: 8601 case RISCVISD::SRLW: { 8602 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8603 if (SimplifyDemandedLowBitsHelper(0, 32) || 8604 SimplifyDemandedLowBitsHelper(1, 5)) 8605 return SDValue(N, 0); 8606 8607 break; 8608 } 8609 case ISD::ROTR: 8610 case ISD::ROTL: 8611 case RISCVISD::RORW: 8612 case RISCVISD::ROLW: { 8613 if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) { 8614 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8615 if (SimplifyDemandedLowBitsHelper(0, 32) || 8616 SimplifyDemandedLowBitsHelper(1, 5)) 8617 return SDValue(N, 0); 8618 } 8619 8620 return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget); 8621 } 8622 case RISCVISD::CLZW: 8623 case RISCVISD::CTZW: { 8624 // Only the lower 32 bits of the first operand are read 8625 if (SimplifyDemandedLowBitsHelper(0, 32)) 8626 return SDValue(N, 0); 8627 break; 8628 } 8629 case RISCVISD::GREV: 8630 case RISCVISD::GORC: { 8631 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 8632 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8633 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8634 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 8635 return SDValue(N, 0); 8636 8637 return combineGREVI_GORCI(N, DAG); 8638 } 8639 case RISCVISD::GREVW: 8640 case RISCVISD::GORCW: { 8641 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8642 if (SimplifyDemandedLowBitsHelper(0, 32) || 8643 SimplifyDemandedLowBitsHelper(1, 5)) 8644 return SDValue(N, 0); 8645 8646 break; 8647 } 8648 case RISCVISD::SHFL: 8649 case RISCVISD::UNSHFL: { 8650 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 8651 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8652 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8653 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 8654 return SDValue(N, 0); 8655 8656 break; 8657 } 8658 case RISCVISD::SHFLW: 8659 case RISCVISD::UNSHFLW: { 8660 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 8661 if (SimplifyDemandedLowBitsHelper(0, 32) || 8662 SimplifyDemandedLowBitsHelper(1, 4)) 8663 return SDValue(N, 0); 8664 8665 break; 8666 } 8667 case RISCVISD::BCOMPRESSW: 8668 case RISCVISD::BDECOMPRESSW: { 8669 // Only the lower 32 bits of LHS and RHS are read. 8670 if (SimplifyDemandedLowBitsHelper(0, 32) || 8671 SimplifyDemandedLowBitsHelper(1, 32)) 8672 return SDValue(N, 0); 8673 8674 break; 8675 } 8676 case RISCVISD::FSR: 8677 case RISCVISD::FSL: 8678 case RISCVISD::FSRW: 8679 case RISCVISD::FSLW: { 8680 bool IsWInstruction = 8681 N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW; 8682 unsigned BitWidth = 8683 IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits(); 8684 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8685 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 8686 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1)) 8687 return SDValue(N, 0); 8688 8689 break; 8690 } 8691 case RISCVISD::FMV_X_ANYEXTH: 8692 case RISCVISD::FMV_X_ANYEXTW_RV64: { 8693 SDLoc DL(N); 8694 SDValue Op0 = N->getOperand(0); 8695 MVT VT = N->getSimpleValueType(0); 8696 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 8697 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 8698 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 8699 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 8700 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 8701 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8702 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 8703 assert(Op0.getOperand(0).getValueType() == VT && 8704 "Unexpected value type!"); 8705 return Op0.getOperand(0); 8706 } 8707 8708 // This is a target-specific version of a DAGCombine performed in 8709 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8710 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8711 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8712 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8713 !Op0.getNode()->hasOneUse()) 8714 break; 8715 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 8716 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 8717 APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits()); 8718 if (Op0.getOpcode() == ISD::FNEG) 8719 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 8720 DAG.getConstant(SignBit, DL, VT)); 8721 8722 assert(Op0.getOpcode() == ISD::FABS); 8723 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 8724 DAG.getConstant(~SignBit, DL, VT)); 8725 } 8726 case ISD::ADD: 8727 return performADDCombine(N, DAG, Subtarget); 8728 case ISD::SUB: 8729 return performSUBCombine(N, DAG); 8730 case ISD::AND: 8731 return performANDCombine(N, DAG, Subtarget); 8732 case ISD::OR: 8733 return performORCombine(N, DAG, Subtarget); 8734 case ISD::XOR: 8735 return performXORCombine(N, DAG); 8736 case ISD::FADD: 8737 case ISD::UMAX: 8738 case ISD::UMIN: 8739 case ISD::SMAX: 8740 case ISD::SMIN: 8741 case ISD::FMAXNUM: 8742 case ISD::FMINNUM: 8743 return combineBinOpToReduce(N, DAG); 8744 case ISD::SIGN_EXTEND_INREG: 8745 return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); 8746 case ISD::ZERO_EXTEND: 8747 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 8748 // type legalization. This is safe because fp_to_uint produces poison if 8749 // it overflows. 8750 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 8751 SDValue Src = N->getOperand(0); 8752 if (Src.getOpcode() == ISD::FP_TO_UINT && 8753 isTypeLegal(Src.getOperand(0).getValueType())) 8754 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 8755 Src.getOperand(0)); 8756 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 8757 isTypeLegal(Src.getOperand(1).getValueType())) { 8758 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 8759 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 8760 Src.getOperand(0), Src.getOperand(1)); 8761 DCI.CombineTo(N, Res); 8762 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 8763 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 8764 return SDValue(N, 0); // Return N so it doesn't get rechecked. 8765 } 8766 } 8767 return SDValue(); 8768 case RISCVISD::SELECT_CC: { 8769 // Transform 8770 SDValue LHS = N->getOperand(0); 8771 SDValue RHS = N->getOperand(1); 8772 SDValue TrueV = N->getOperand(3); 8773 SDValue FalseV = N->getOperand(4); 8774 8775 // If the True and False values are the same, we don't need a select_cc. 8776 if (TrueV == FalseV) 8777 return TrueV; 8778 8779 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 8780 if (!ISD::isIntEqualitySetCC(CCVal)) 8781 break; 8782 8783 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 8784 // (select_cc X, Y, lt, trueV, falseV) 8785 // Sometimes the setcc is introduced after select_cc has been formed. 8786 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8787 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8788 // If we're looking for eq 0 instead of ne 0, we need to invert the 8789 // condition. 8790 bool Invert = CCVal == ISD::SETEQ; 8791 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8792 if (Invert) 8793 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8794 8795 SDLoc DL(N); 8796 RHS = LHS.getOperand(1); 8797 LHS = LHS.getOperand(0); 8798 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8799 8800 SDValue TargetCC = DAG.getCondCode(CCVal); 8801 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8802 {LHS, RHS, TargetCC, TrueV, FalseV}); 8803 } 8804 8805 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 8806 // (select_cc X, Y, eq/ne, trueV, falseV) 8807 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8808 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 8809 {LHS.getOperand(0), LHS.getOperand(1), 8810 N->getOperand(2), TrueV, FalseV}); 8811 // (select_cc X, 1, setne, trueV, falseV) -> 8812 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 8813 // This can occur when legalizing some floating point comparisons. 8814 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8815 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8816 SDLoc DL(N); 8817 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8818 SDValue TargetCC = DAG.getCondCode(CCVal); 8819 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8820 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8821 {LHS, RHS, TargetCC, TrueV, FalseV}); 8822 } 8823 8824 break; 8825 } 8826 case RISCVISD::BR_CC: { 8827 SDValue LHS = N->getOperand(1); 8828 SDValue RHS = N->getOperand(2); 8829 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 8830 if (!ISD::isIntEqualitySetCC(CCVal)) 8831 break; 8832 8833 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 8834 // (br_cc X, Y, lt, dest) 8835 // Sometimes the setcc is introduced after br_cc has been formed. 8836 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8837 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8838 // If we're looking for eq 0 instead of ne 0, we need to invert the 8839 // condition. 8840 bool Invert = CCVal == ISD::SETEQ; 8841 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8842 if (Invert) 8843 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8844 8845 SDLoc DL(N); 8846 RHS = LHS.getOperand(1); 8847 LHS = LHS.getOperand(0); 8848 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8849 8850 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8851 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 8852 N->getOperand(4)); 8853 } 8854 8855 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 8856 // (br_cc X, Y, eq/ne, trueV, falseV) 8857 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8858 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 8859 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 8860 N->getOperand(3), N->getOperand(4)); 8861 8862 // (br_cc X, 1, setne, br_cc) -> 8863 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 8864 // This can occur when legalizing some floating point comparisons. 8865 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8866 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8867 SDLoc DL(N); 8868 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8869 SDValue TargetCC = DAG.getCondCode(CCVal); 8870 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8871 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8872 N->getOperand(0), LHS, RHS, TargetCC, 8873 N->getOperand(4)); 8874 } 8875 break; 8876 } 8877 case ISD::BITREVERSE: 8878 return performBITREVERSECombine(N, DAG, Subtarget); 8879 case ISD::FP_TO_SINT: 8880 case ISD::FP_TO_UINT: 8881 return performFP_TO_INTCombine(N, DCI, Subtarget); 8882 case ISD::FP_TO_SINT_SAT: 8883 case ISD::FP_TO_UINT_SAT: 8884 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 8885 case ISD::FCOPYSIGN: { 8886 EVT VT = N->getValueType(0); 8887 if (!VT.isVector()) 8888 break; 8889 // There is a form of VFSGNJ which injects the negated sign of its second 8890 // operand. Try and bubble any FNEG up after the extend/round to produce 8891 // this optimized pattern. Avoid modifying cases where FP_ROUND and 8892 // TRUNC=1. 8893 SDValue In2 = N->getOperand(1); 8894 // Avoid cases where the extend/round has multiple uses, as duplicating 8895 // those is typically more expensive than removing a fneg. 8896 if (!In2.hasOneUse()) 8897 break; 8898 if (In2.getOpcode() != ISD::FP_EXTEND && 8899 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 8900 break; 8901 In2 = In2.getOperand(0); 8902 if (In2.getOpcode() != ISD::FNEG) 8903 break; 8904 SDLoc DL(N); 8905 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 8906 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 8907 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 8908 } 8909 case ISD::MGATHER: 8910 case ISD::MSCATTER: 8911 case ISD::VP_GATHER: 8912 case ISD::VP_SCATTER: { 8913 if (!DCI.isBeforeLegalize()) 8914 break; 8915 SDValue Index, ScaleOp; 8916 bool IsIndexScaled = false; 8917 bool IsIndexSigned = false; 8918 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 8919 Index = VPGSN->getIndex(); 8920 ScaleOp = VPGSN->getScale(); 8921 IsIndexScaled = VPGSN->isIndexScaled(); 8922 IsIndexSigned = VPGSN->isIndexSigned(); 8923 } else { 8924 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 8925 Index = MGSN->getIndex(); 8926 ScaleOp = MGSN->getScale(); 8927 IsIndexScaled = MGSN->isIndexScaled(); 8928 IsIndexSigned = MGSN->isIndexSigned(); 8929 } 8930 EVT IndexVT = Index.getValueType(); 8931 MVT XLenVT = Subtarget.getXLenVT(); 8932 // RISCV indexed loads only support the "unsigned unscaled" addressing 8933 // mode, so anything else must be manually legalized. 8934 bool NeedsIdxLegalization = 8935 IsIndexScaled || 8936 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 8937 if (!NeedsIdxLegalization) 8938 break; 8939 8940 SDLoc DL(N); 8941 8942 // Any index legalization should first promote to XLenVT, so we don't lose 8943 // bits when scaling. This may create an illegal index type so we let 8944 // LLVM's legalization take care of the splitting. 8945 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 8946 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 8947 IndexVT = IndexVT.changeVectorElementType(XLenVT); 8948 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 8949 DL, IndexVT, Index); 8950 } 8951 8952 if (IsIndexScaled) { 8953 // Manually scale the indices. 8954 // TODO: Sanitize the scale operand here? 8955 // TODO: For VP nodes, should we use VP_SHL here? 8956 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 8957 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 8958 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 8959 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 8960 ScaleOp = DAG.getTargetConstant(1, DL, ScaleOp.getValueType()); 8961 } 8962 8963 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_SCALED; 8964 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 8965 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 8966 {VPGN->getChain(), VPGN->getBasePtr(), Index, 8967 ScaleOp, VPGN->getMask(), 8968 VPGN->getVectorLength()}, 8969 VPGN->getMemOperand(), NewIndexTy); 8970 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 8971 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 8972 {VPSN->getChain(), VPSN->getValue(), 8973 VPSN->getBasePtr(), Index, ScaleOp, 8974 VPSN->getMask(), VPSN->getVectorLength()}, 8975 VPSN->getMemOperand(), NewIndexTy); 8976 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 8977 return DAG.getMaskedGather( 8978 N->getVTList(), MGN->getMemoryVT(), DL, 8979 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 8980 MGN->getBasePtr(), Index, ScaleOp}, 8981 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 8982 const auto *MSN = cast<MaskedScatterSDNode>(N); 8983 return DAG.getMaskedScatter( 8984 N->getVTList(), MSN->getMemoryVT(), DL, 8985 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 8986 Index, ScaleOp}, 8987 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 8988 } 8989 case RISCVISD::SRA_VL: 8990 case RISCVISD::SRL_VL: 8991 case RISCVISD::SHL_VL: { 8992 SDValue ShAmt = N->getOperand(1); 8993 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8994 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8995 SDLoc DL(N); 8996 SDValue VL = N->getOperand(3); 8997 EVT VT = N->getValueType(0); 8998 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8999 ShAmt.getOperand(1), VL); 9000 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 9001 N->getOperand(2), N->getOperand(3)); 9002 } 9003 break; 9004 } 9005 case ISD::SRA: 9006 case ISD::SRL: 9007 case ISD::SHL: { 9008 SDValue ShAmt = N->getOperand(1); 9009 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 9010 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 9011 SDLoc DL(N); 9012 EVT VT = N->getValueType(0); 9013 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 9014 ShAmt.getOperand(1), 9015 DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); 9016 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 9017 } 9018 break; 9019 } 9020 case RISCVISD::ADD_VL: 9021 if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false)) 9022 return V; 9023 return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true); 9024 case RISCVISD::SUB_VL: 9025 return combineADDSUB_VLToVWADDSUB_VL(N, DAG); 9026 case RISCVISD::VWADD_W_VL: 9027 case RISCVISD::VWADDU_W_VL: 9028 case RISCVISD::VWSUB_W_VL: 9029 case RISCVISD::VWSUBU_W_VL: 9030 return combineVWADD_W_VL_VWSUB_W_VL(N, DAG); 9031 case RISCVISD::MUL_VL: 9032 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 9033 return V; 9034 // Mul is commutative. 9035 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 9036 case RISCVISD::VFMADD_VL: 9037 case RISCVISD::VFNMADD_VL: 9038 case RISCVISD::VFMSUB_VL: 9039 case RISCVISD::VFNMSUB_VL: { 9040 // Fold FNEG_VL into FMA opcodes. 9041 SDValue A = N->getOperand(0); 9042 SDValue B = N->getOperand(1); 9043 SDValue C = N->getOperand(2); 9044 SDValue Mask = N->getOperand(3); 9045 SDValue VL = N->getOperand(4); 9046 9047 auto invertIfNegative = [&Mask, &VL](SDValue &V) { 9048 if (V.getOpcode() == RISCVISD::FNEG_VL && V.getOperand(1) == Mask && 9049 V.getOperand(2) == VL) { 9050 // Return the negated input. 9051 V = V.getOperand(0); 9052 return true; 9053 } 9054 9055 return false; 9056 }; 9057 9058 bool NegA = invertIfNegative(A); 9059 bool NegB = invertIfNegative(B); 9060 bool NegC = invertIfNegative(C); 9061 9062 // If no operands are negated, we're done. 9063 if (!NegA && !NegB && !NegC) 9064 return SDValue(); 9065 9066 unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC); 9067 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), A, B, C, Mask, 9068 VL); 9069 } 9070 case ISD::STORE: { 9071 auto *Store = cast<StoreSDNode>(N); 9072 SDValue Val = Store->getValue(); 9073 // Combine store of vmv.x.s to vse with VL of 1. 9074 // FIXME: Support FP. 9075 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 9076 SDValue Src = Val.getOperand(0); 9077 EVT VecVT = Src.getValueType(); 9078 EVT MemVT = Store->getMemoryVT(); 9079 // The memory VT and the element type must match. 9080 if (VecVT.getVectorElementType() == MemVT) { 9081 SDLoc DL(N); 9082 MVT MaskVT = getMaskTypeFor(VecVT); 9083 return DAG.getStoreVP( 9084 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 9085 DAG.getConstant(1, DL, MaskVT), 9086 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 9087 Store->getMemOperand(), Store->getAddressingMode(), 9088 Store->isTruncatingStore(), /*IsCompress*/ false); 9089 } 9090 } 9091 9092 break; 9093 } 9094 case ISD::SPLAT_VECTOR: { 9095 EVT VT = N->getValueType(0); 9096 // Only perform this combine on legal MVT types. 9097 if (!isTypeLegal(VT)) 9098 break; 9099 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, 9100 DAG, Subtarget)) 9101 return Gather; 9102 break; 9103 } 9104 case RISCVISD::VMV_V_X_VL: { 9105 // Tail agnostic VMV.V.X only demands the vector element bitwidth from the 9106 // scalar input. 9107 unsigned ScalarSize = N->getOperand(1).getValueSizeInBits(); 9108 unsigned EltWidth = N->getValueType(0).getScalarSizeInBits(); 9109 if (ScalarSize > EltWidth && N->getOperand(0).isUndef()) 9110 if (SimplifyDemandedLowBitsHelper(1, EltWidth)) 9111 return SDValue(N, 0); 9112 9113 break; 9114 } 9115 case ISD::INTRINSIC_WO_CHAIN: { 9116 unsigned IntNo = N->getConstantOperandVal(0); 9117 switch (IntNo) { 9118 // By default we do not combine any intrinsic. 9119 default: 9120 return SDValue(); 9121 case Intrinsic::riscv_vcpop: 9122 case Intrinsic::riscv_vcpop_mask: 9123 case Intrinsic::riscv_vfirst: 9124 case Intrinsic::riscv_vfirst_mask: { 9125 SDValue VL = N->getOperand(2); 9126 if (IntNo == Intrinsic::riscv_vcpop_mask || 9127 IntNo == Intrinsic::riscv_vfirst_mask) 9128 VL = N->getOperand(3); 9129 if (!isNullConstant(VL)) 9130 return SDValue(); 9131 // If VL is 0, vcpop -> li 0, vfirst -> li -1. 9132 SDLoc DL(N); 9133 EVT VT = N->getValueType(0); 9134 if (IntNo == Intrinsic::riscv_vfirst || 9135 IntNo == Intrinsic::riscv_vfirst_mask) 9136 return DAG.getConstant(-1, DL, VT); 9137 return DAG.getConstant(0, DL, VT); 9138 } 9139 } 9140 } 9141 case ISD::BITCAST: { 9142 assert(Subtarget.useRVVForFixedLengthVectors()); 9143 SDValue N0 = N->getOperand(0); 9144 EVT VT = N->getValueType(0); 9145 EVT SrcVT = N0.getValueType(); 9146 // If this is a bitcast between a MVT::v4i1/v2i1/v1i1 and an illegal integer 9147 // type, widen both sides to avoid a trip through memory. 9148 if ((SrcVT == MVT::v1i1 || SrcVT == MVT::v2i1 || SrcVT == MVT::v4i1) && 9149 VT.isScalarInteger()) { 9150 unsigned NumConcats = 8 / SrcVT.getVectorNumElements(); 9151 SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT)); 9152 Ops[0] = N0; 9153 SDLoc DL(N); 9154 N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i1, Ops); 9155 N0 = DAG.getBitcast(MVT::i8, N0); 9156 return DAG.getNode(ISD::TRUNCATE, DL, VT, N0); 9157 } 9158 9159 return SDValue(); 9160 } 9161 } 9162 9163 return SDValue(); 9164 } 9165 9166 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 9167 const SDNode *N, CombineLevel Level) const { 9168 // The following folds are only desirable if `(OP _, c1 << c2)` can be 9169 // materialised in fewer instructions than `(OP _, c1)`: 9170 // 9171 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 9172 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 9173 SDValue N0 = N->getOperand(0); 9174 EVT Ty = N0.getValueType(); 9175 if (Ty.isScalarInteger() && 9176 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 9177 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 9178 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9179 if (C1 && C2) { 9180 const APInt &C1Int = C1->getAPIntValue(); 9181 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 9182 9183 // We can materialise `c1 << c2` into an add immediate, so it's "free", 9184 // and the combine should happen, to potentially allow further combines 9185 // later. 9186 if (ShiftedC1Int.getMinSignedBits() <= 64 && 9187 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 9188 return true; 9189 9190 // We can materialise `c1` in an add immediate, so it's "free", and the 9191 // combine should be prevented. 9192 if (C1Int.getMinSignedBits() <= 64 && 9193 isLegalAddImmediate(C1Int.getSExtValue())) 9194 return false; 9195 9196 // Neither constant will fit into an immediate, so find materialisation 9197 // costs. 9198 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 9199 Subtarget.getFeatureBits(), 9200 /*CompressionCost*/true); 9201 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 9202 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 9203 /*CompressionCost*/true); 9204 9205 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 9206 // combine should be prevented. 9207 if (C1Cost < ShiftedC1Cost) 9208 return false; 9209 } 9210 } 9211 return true; 9212 } 9213 9214 bool RISCVTargetLowering::targetShrinkDemandedConstant( 9215 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 9216 TargetLoweringOpt &TLO) const { 9217 // Delay this optimization as late as possible. 9218 if (!TLO.LegalOps) 9219 return false; 9220 9221 EVT VT = Op.getValueType(); 9222 if (VT.isVector()) 9223 return false; 9224 9225 // Only handle AND for now. 9226 if (Op.getOpcode() != ISD::AND) 9227 return false; 9228 9229 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 9230 if (!C) 9231 return false; 9232 9233 const APInt &Mask = C->getAPIntValue(); 9234 9235 // Clear all non-demanded bits initially. 9236 APInt ShrunkMask = Mask & DemandedBits; 9237 9238 // Try to make a smaller immediate by setting undemanded bits. 9239 9240 APInt ExpandedMask = Mask | ~DemandedBits; 9241 9242 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 9243 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 9244 }; 9245 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 9246 if (NewMask == Mask) 9247 return true; 9248 SDLoc DL(Op); 9249 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 9250 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 9251 return TLO.CombineTo(Op, NewOp); 9252 }; 9253 9254 // If the shrunk mask fits in sign extended 12 bits, let the target 9255 // independent code apply it. 9256 if (ShrunkMask.isSignedIntN(12)) 9257 return false; 9258 9259 // Preserve (and X, 0xffff) when zext.h is supported. 9260 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 9261 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 9262 if (IsLegalMask(NewMask)) 9263 return UseMask(NewMask); 9264 } 9265 9266 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 9267 if (VT == MVT::i64) { 9268 APInt NewMask = APInt(64, 0xffffffff); 9269 if (IsLegalMask(NewMask)) 9270 return UseMask(NewMask); 9271 } 9272 9273 // For the remaining optimizations, we need to be able to make a negative 9274 // number through a combination of mask and undemanded bits. 9275 if (!ExpandedMask.isNegative()) 9276 return false; 9277 9278 // What is the fewest number of bits we need to represent the negative number. 9279 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 9280 9281 // Try to make a 12 bit negative immediate. If that fails try to make a 32 9282 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 9283 APInt NewMask = ShrunkMask; 9284 if (MinSignedBits <= 12) 9285 NewMask.setBitsFrom(11); 9286 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 9287 NewMask.setBitsFrom(31); 9288 else 9289 return false; 9290 9291 // Check that our new mask is a subset of the demanded mask. 9292 assert(IsLegalMask(NewMask)); 9293 return UseMask(NewMask); 9294 } 9295 9296 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) { 9297 static const uint64_t GREVMasks[] = { 9298 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 9299 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 9300 9301 for (unsigned Stage = 0; Stage != 6; ++Stage) { 9302 unsigned Shift = 1 << Stage; 9303 if (ShAmt & Shift) { 9304 uint64_t Mask = GREVMasks[Stage]; 9305 uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask); 9306 if (IsGORC) 9307 Res |= x; 9308 x = Res; 9309 } 9310 } 9311 9312 return x; 9313 } 9314 9315 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 9316 KnownBits &Known, 9317 const APInt &DemandedElts, 9318 const SelectionDAG &DAG, 9319 unsigned Depth) const { 9320 unsigned BitWidth = Known.getBitWidth(); 9321 unsigned Opc = Op.getOpcode(); 9322 assert((Opc >= ISD::BUILTIN_OP_END || 9323 Opc == ISD::INTRINSIC_WO_CHAIN || 9324 Opc == ISD::INTRINSIC_W_CHAIN || 9325 Opc == ISD::INTRINSIC_VOID) && 9326 "Should use MaskedValueIsZero if you don't know whether Op" 9327 " is a target node!"); 9328 9329 Known.resetAll(); 9330 switch (Opc) { 9331 default: break; 9332 case RISCVISD::SELECT_CC: { 9333 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 9334 // If we don't know any bits, early out. 9335 if (Known.isUnknown()) 9336 break; 9337 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 9338 9339 // Only known if known in both the LHS and RHS. 9340 Known = KnownBits::commonBits(Known, Known2); 9341 break; 9342 } 9343 case RISCVISD::REMUW: { 9344 KnownBits Known2; 9345 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 9346 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 9347 // We only care about the lower 32 bits. 9348 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 9349 // Restore the original width by sign extending. 9350 Known = Known.sext(BitWidth); 9351 break; 9352 } 9353 case RISCVISD::DIVUW: { 9354 KnownBits Known2; 9355 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 9356 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 9357 // We only care about the lower 32 bits. 9358 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 9359 // Restore the original width by sign extending. 9360 Known = Known.sext(BitWidth); 9361 break; 9362 } 9363 case RISCVISD::CTZW: { 9364 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9365 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 9366 unsigned LowBits = Log2_32(PossibleTZ) + 1; 9367 Known.Zero.setBitsFrom(LowBits); 9368 break; 9369 } 9370 case RISCVISD::CLZW: { 9371 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9372 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 9373 unsigned LowBits = Log2_32(PossibleLZ) + 1; 9374 Known.Zero.setBitsFrom(LowBits); 9375 break; 9376 } 9377 case RISCVISD::GREV: 9378 case RISCVISD::GORC: { 9379 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 9380 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9381 unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1); 9382 bool IsGORC = Op.getOpcode() == RISCVISD::GORC; 9383 // To compute zeros, we need to invert the value and invert it back after. 9384 Known.Zero = 9385 ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC); 9386 Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC); 9387 } 9388 break; 9389 } 9390 case RISCVISD::READ_VLENB: { 9391 // We can use the minimum and maximum VLEN values to bound VLENB. We 9392 // know VLEN must be a power of two. 9393 const unsigned MinVLenB = Subtarget.getRealMinVLen() / 8; 9394 const unsigned MaxVLenB = Subtarget.getRealMaxVLen() / 8; 9395 assert(MinVLenB > 0 && "READ_VLENB without vector extension enabled?"); 9396 Known.Zero.setLowBits(Log2_32(MinVLenB)); 9397 Known.Zero.setBitsFrom(Log2_32(MaxVLenB)+1); 9398 if (MaxVLenB == MinVLenB) 9399 Known.One.setBit(Log2_32(MinVLenB)); 9400 break; 9401 } 9402 case ISD::INTRINSIC_W_CHAIN: 9403 case ISD::INTRINSIC_WO_CHAIN: { 9404 unsigned IntNo = 9405 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 9406 switch (IntNo) { 9407 default: 9408 // We can't do anything for most intrinsics. 9409 break; 9410 case Intrinsic::riscv_vsetvli: 9411 case Intrinsic::riscv_vsetvlimax: 9412 case Intrinsic::riscv_vsetvli_opt: 9413 case Intrinsic::riscv_vsetvlimax_opt: 9414 // Assume that VL output is positive and would fit in an int32_t. 9415 // TODO: VLEN might be capped at 16 bits in a future V spec update. 9416 if (BitWidth >= 32) 9417 Known.Zero.setBitsFrom(31); 9418 break; 9419 } 9420 break; 9421 } 9422 } 9423 } 9424 9425 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 9426 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 9427 unsigned Depth) const { 9428 switch (Op.getOpcode()) { 9429 default: 9430 break; 9431 case RISCVISD::SELECT_CC: { 9432 unsigned Tmp = 9433 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 9434 if (Tmp == 1) return 1; // Early out. 9435 unsigned Tmp2 = 9436 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 9437 return std::min(Tmp, Tmp2); 9438 } 9439 case RISCVISD::SLLW: 9440 case RISCVISD::SRAW: 9441 case RISCVISD::SRLW: 9442 case RISCVISD::DIVW: 9443 case RISCVISD::DIVUW: 9444 case RISCVISD::REMUW: 9445 case RISCVISD::ROLW: 9446 case RISCVISD::RORW: 9447 case RISCVISD::GREVW: 9448 case RISCVISD::GORCW: 9449 case RISCVISD::FSLW: 9450 case RISCVISD::FSRW: 9451 case RISCVISD::SHFLW: 9452 case RISCVISD::UNSHFLW: 9453 case RISCVISD::BCOMPRESSW: 9454 case RISCVISD::BDECOMPRESSW: 9455 case RISCVISD::BFPW: 9456 case RISCVISD::FCVT_W_RV64: 9457 case RISCVISD::FCVT_WU_RV64: 9458 case RISCVISD::STRICT_FCVT_W_RV64: 9459 case RISCVISD::STRICT_FCVT_WU_RV64: 9460 // TODO: As the result is sign-extended, this is conservatively correct. A 9461 // more precise answer could be calculated for SRAW depending on known 9462 // bits in the shift amount. 9463 return 33; 9464 case RISCVISD::SHFL: 9465 case RISCVISD::UNSHFL: { 9466 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 9467 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 9468 // will stay within the upper 32 bits. If there were more than 32 sign bits 9469 // before there will be at least 33 sign bits after. 9470 if (Op.getValueType() == MVT::i64 && 9471 isa<ConstantSDNode>(Op.getOperand(1)) && 9472 (Op.getConstantOperandVal(1) & 0x10) == 0) { 9473 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 9474 if (Tmp > 32) 9475 return 33; 9476 } 9477 break; 9478 } 9479 case RISCVISD::VMV_X_S: { 9480 // The number of sign bits of the scalar result is computed by obtaining the 9481 // element type of the input vector operand, subtracting its width from the 9482 // XLEN, and then adding one (sign bit within the element type). If the 9483 // element type is wider than XLen, the least-significant XLEN bits are 9484 // taken. 9485 unsigned XLen = Subtarget.getXLen(); 9486 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 9487 if (EltBits <= XLen) 9488 return XLen - EltBits + 1; 9489 break; 9490 } 9491 } 9492 9493 return 1; 9494 } 9495 9496 const Constant * 9497 RISCVTargetLowering::getTargetConstantFromLoad(LoadSDNode *Ld) const { 9498 assert(Ld && "Unexpected null LoadSDNode"); 9499 if (!ISD::isNormalLoad(Ld)) 9500 return nullptr; 9501 9502 SDValue Ptr = Ld->getBasePtr(); 9503 9504 // Only constant pools with no offset are supported. 9505 auto GetSupportedConstantPool = [](SDValue Ptr) -> ConstantPoolSDNode * { 9506 auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr); 9507 if (!CNode || CNode->isMachineConstantPoolEntry() || 9508 CNode->getOffset() != 0) 9509 return nullptr; 9510 9511 return CNode; 9512 }; 9513 9514 // Simple case, LLA. 9515 if (Ptr.getOpcode() == RISCVISD::LLA) { 9516 auto *CNode = GetSupportedConstantPool(Ptr); 9517 if (!CNode || CNode->getTargetFlags() != 0) 9518 return nullptr; 9519 9520 return CNode->getConstVal(); 9521 } 9522 9523 // Look for a HI and ADD_LO pair. 9524 if (Ptr.getOpcode() != RISCVISD::ADD_LO || 9525 Ptr.getOperand(0).getOpcode() != RISCVISD::HI) 9526 return nullptr; 9527 9528 auto *CNodeLo = GetSupportedConstantPool(Ptr.getOperand(1)); 9529 auto *CNodeHi = GetSupportedConstantPool(Ptr.getOperand(0).getOperand(0)); 9530 9531 if (!CNodeLo || CNodeLo->getTargetFlags() != RISCVII::MO_LO || 9532 !CNodeHi || CNodeHi->getTargetFlags() != RISCVII::MO_HI) 9533 return nullptr; 9534 9535 if (CNodeLo->getConstVal() != CNodeHi->getConstVal()) 9536 return nullptr; 9537 9538 return CNodeLo->getConstVal(); 9539 } 9540 9541 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 9542 MachineBasicBlock *BB) { 9543 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 9544 9545 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 9546 // Should the count have wrapped while it was being read, we need to try 9547 // again. 9548 // ... 9549 // read: 9550 // rdcycleh x3 # load high word of cycle 9551 // rdcycle x2 # load low word of cycle 9552 // rdcycleh x4 # load high word of cycle 9553 // bne x3, x4, read # check if high word reads match, otherwise try again 9554 // ... 9555 9556 MachineFunction &MF = *BB->getParent(); 9557 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9558 MachineFunction::iterator It = ++BB->getIterator(); 9559 9560 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9561 MF.insert(It, LoopMBB); 9562 9563 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9564 MF.insert(It, DoneMBB); 9565 9566 // Transfer the remainder of BB and its successor edges to DoneMBB. 9567 DoneMBB->splice(DoneMBB->begin(), BB, 9568 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9569 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 9570 9571 BB->addSuccessor(LoopMBB); 9572 9573 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9574 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9575 Register LoReg = MI.getOperand(0).getReg(); 9576 Register HiReg = MI.getOperand(1).getReg(); 9577 DebugLoc DL = MI.getDebugLoc(); 9578 9579 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 9580 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 9581 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9582 .addReg(RISCV::X0); 9583 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 9584 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 9585 .addReg(RISCV::X0); 9586 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 9587 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9588 .addReg(RISCV::X0); 9589 9590 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 9591 .addReg(HiReg) 9592 .addReg(ReadAgainReg) 9593 .addMBB(LoopMBB); 9594 9595 LoopMBB->addSuccessor(LoopMBB); 9596 LoopMBB->addSuccessor(DoneMBB); 9597 9598 MI.eraseFromParent(); 9599 9600 return DoneMBB; 9601 } 9602 9603 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 9604 MachineBasicBlock *BB) { 9605 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 9606 9607 MachineFunction &MF = *BB->getParent(); 9608 DebugLoc DL = MI.getDebugLoc(); 9609 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9610 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9611 Register LoReg = MI.getOperand(0).getReg(); 9612 Register HiReg = MI.getOperand(1).getReg(); 9613 Register SrcReg = MI.getOperand(2).getReg(); 9614 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 9615 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9616 9617 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 9618 RI); 9619 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9620 MachineMemOperand *MMOLo = 9621 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 9622 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9623 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 9624 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 9625 .addFrameIndex(FI) 9626 .addImm(0) 9627 .addMemOperand(MMOLo); 9628 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 9629 .addFrameIndex(FI) 9630 .addImm(4) 9631 .addMemOperand(MMOHi); 9632 MI.eraseFromParent(); // The pseudo instruction is gone now. 9633 return BB; 9634 } 9635 9636 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 9637 MachineBasicBlock *BB) { 9638 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 9639 "Unexpected instruction"); 9640 9641 MachineFunction &MF = *BB->getParent(); 9642 DebugLoc DL = MI.getDebugLoc(); 9643 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9644 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9645 Register DstReg = MI.getOperand(0).getReg(); 9646 Register LoReg = MI.getOperand(1).getReg(); 9647 Register HiReg = MI.getOperand(2).getReg(); 9648 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 9649 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9650 9651 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9652 MachineMemOperand *MMOLo = 9653 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 9654 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9655 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 9656 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9657 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 9658 .addFrameIndex(FI) 9659 .addImm(0) 9660 .addMemOperand(MMOLo); 9661 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9662 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 9663 .addFrameIndex(FI) 9664 .addImm(4) 9665 .addMemOperand(MMOHi); 9666 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 9667 MI.eraseFromParent(); // The pseudo instruction is gone now. 9668 return BB; 9669 } 9670 9671 static bool isSelectPseudo(MachineInstr &MI) { 9672 switch (MI.getOpcode()) { 9673 default: 9674 return false; 9675 case RISCV::Select_GPR_Using_CC_GPR: 9676 case RISCV::Select_FPR16_Using_CC_GPR: 9677 case RISCV::Select_FPR32_Using_CC_GPR: 9678 case RISCV::Select_FPR64_Using_CC_GPR: 9679 return true; 9680 } 9681 } 9682 9683 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 9684 unsigned RelOpcode, unsigned EqOpcode, 9685 const RISCVSubtarget &Subtarget) { 9686 DebugLoc DL = MI.getDebugLoc(); 9687 Register DstReg = MI.getOperand(0).getReg(); 9688 Register Src1Reg = MI.getOperand(1).getReg(); 9689 Register Src2Reg = MI.getOperand(2).getReg(); 9690 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 9691 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 9692 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 9693 9694 // Save the current FFLAGS. 9695 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 9696 9697 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 9698 .addReg(Src1Reg) 9699 .addReg(Src2Reg); 9700 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9701 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 9702 9703 // Restore the FFLAGS. 9704 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 9705 .addReg(SavedFFlags, RegState::Kill); 9706 9707 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 9708 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 9709 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 9710 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 9711 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9712 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 9713 9714 // Erase the pseudoinstruction. 9715 MI.eraseFromParent(); 9716 return BB; 9717 } 9718 9719 static MachineBasicBlock * 9720 EmitLoweredCascadedSelect(MachineInstr &First, MachineInstr &Second, 9721 MachineBasicBlock *ThisMBB, 9722 const RISCVSubtarget &Subtarget) { 9723 // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5) 9724 // Without this, custom-inserter would have generated: 9725 // 9726 // A 9727 // | \ 9728 // | B 9729 // | / 9730 // C 9731 // | \ 9732 // | D 9733 // | / 9734 // E 9735 // 9736 // A: X = ...; Y = ... 9737 // B: empty 9738 // C: Z = PHI [X, A], [Y, B] 9739 // D: empty 9740 // E: PHI [X, C], [Z, D] 9741 // 9742 // If we lower both Select_FPRX_ in a single step, we can instead generate: 9743 // 9744 // A 9745 // | \ 9746 // | C 9747 // | /| 9748 // |/ | 9749 // | | 9750 // | D 9751 // | / 9752 // E 9753 // 9754 // A: X = ...; Y = ... 9755 // D: empty 9756 // E: PHI [X, A], [X, C], [Y, D] 9757 9758 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 9759 const DebugLoc &DL = First.getDebugLoc(); 9760 const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock(); 9761 MachineFunction *F = ThisMBB->getParent(); 9762 MachineBasicBlock *FirstMBB = F->CreateMachineBasicBlock(LLVM_BB); 9763 MachineBasicBlock *SecondMBB = F->CreateMachineBasicBlock(LLVM_BB); 9764 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 9765 MachineFunction::iterator It = ++ThisMBB->getIterator(); 9766 F->insert(It, FirstMBB); 9767 F->insert(It, SecondMBB); 9768 F->insert(It, SinkMBB); 9769 9770 // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. 9771 SinkMBB->splice(SinkMBB->begin(), ThisMBB, 9772 std::next(MachineBasicBlock::iterator(First)), 9773 ThisMBB->end()); 9774 SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); 9775 9776 // Fallthrough block for ThisMBB. 9777 ThisMBB->addSuccessor(FirstMBB); 9778 // Fallthrough block for FirstMBB. 9779 FirstMBB->addSuccessor(SecondMBB); 9780 ThisMBB->addSuccessor(SinkMBB); 9781 FirstMBB->addSuccessor(SinkMBB); 9782 // This is fallthrough. 9783 SecondMBB->addSuccessor(SinkMBB); 9784 9785 auto FirstCC = static_cast<RISCVCC::CondCode>(First.getOperand(3).getImm()); 9786 Register FLHS = First.getOperand(1).getReg(); 9787 Register FRHS = First.getOperand(2).getReg(); 9788 // Insert appropriate branch. 9789 BuildMI(ThisMBB, DL, TII.getBrCond(FirstCC)) 9790 .addReg(FLHS) 9791 .addReg(FRHS) 9792 .addMBB(SinkMBB); 9793 9794 Register SLHS = Second.getOperand(1).getReg(); 9795 Register SRHS = Second.getOperand(2).getReg(); 9796 Register Op1Reg4 = First.getOperand(4).getReg(); 9797 Register Op1Reg5 = First.getOperand(5).getReg(); 9798 9799 auto SecondCC = static_cast<RISCVCC::CondCode>(Second.getOperand(3).getImm()); 9800 // Insert appropriate branch. 9801 BuildMI(FirstMBB, DL, TII.getBrCond(SecondCC)) 9802 .addReg(SLHS) 9803 .addReg(SRHS) 9804 .addMBB(SinkMBB); 9805 9806 Register DestReg = Second.getOperand(0).getReg(); 9807 Register Op2Reg4 = Second.getOperand(4).getReg(); 9808 BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII.get(RISCV::PHI), DestReg) 9809 .addReg(Op1Reg4) 9810 .addMBB(ThisMBB) 9811 .addReg(Op2Reg4) 9812 .addMBB(FirstMBB) 9813 .addReg(Op1Reg5) 9814 .addMBB(SecondMBB); 9815 9816 // Now remove the Select_FPRX_s. 9817 First.eraseFromParent(); 9818 Second.eraseFromParent(); 9819 return SinkMBB; 9820 } 9821 9822 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 9823 MachineBasicBlock *BB, 9824 const RISCVSubtarget &Subtarget) { 9825 // To "insert" Select_* instructions, we actually have to insert the triangle 9826 // control-flow pattern. The incoming instructions know the destination vreg 9827 // to set, the condition code register to branch on, the true/false values to 9828 // select between, and the condcode to use to select the appropriate branch. 9829 // 9830 // We produce the following control flow: 9831 // HeadMBB 9832 // | \ 9833 // | IfFalseMBB 9834 // | / 9835 // TailMBB 9836 // 9837 // When we find a sequence of selects we attempt to optimize their emission 9838 // by sharing the control flow. Currently we only handle cases where we have 9839 // multiple selects with the exact same condition (same LHS, RHS and CC). 9840 // The selects may be interleaved with other instructions if the other 9841 // instructions meet some requirements we deem safe: 9842 // - They are debug instructions. Otherwise, 9843 // - They do not have side-effects, do not access memory and their inputs do 9844 // not depend on the results of the select pseudo-instructions. 9845 // The TrueV/FalseV operands of the selects cannot depend on the result of 9846 // previous selects in the sequence. 9847 // These conditions could be further relaxed. See the X86 target for a 9848 // related approach and more information. 9849 // 9850 // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5)) 9851 // is checked here and handled by a separate function - 9852 // EmitLoweredCascadedSelect. 9853 Register LHS = MI.getOperand(1).getReg(); 9854 Register RHS = MI.getOperand(2).getReg(); 9855 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 9856 9857 SmallVector<MachineInstr *, 4> SelectDebugValues; 9858 SmallSet<Register, 4> SelectDests; 9859 SelectDests.insert(MI.getOperand(0).getReg()); 9860 9861 MachineInstr *LastSelectPseudo = &MI; 9862 auto Next = next_nodbg(MI.getIterator(), BB->instr_end()); 9863 if (MI.getOpcode() != RISCV::Select_GPR_Using_CC_GPR && Next != BB->end() && 9864 Next->getOpcode() == MI.getOpcode() && 9865 Next->getOperand(5).getReg() == MI.getOperand(0).getReg() && 9866 Next->getOperand(5).isKill()) { 9867 return EmitLoweredCascadedSelect(MI, *Next, BB, Subtarget); 9868 } 9869 9870 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 9871 SequenceMBBI != E; ++SequenceMBBI) { 9872 if (SequenceMBBI->isDebugInstr()) 9873 continue; 9874 if (isSelectPseudo(*SequenceMBBI)) { 9875 if (SequenceMBBI->getOperand(1).getReg() != LHS || 9876 SequenceMBBI->getOperand(2).getReg() != RHS || 9877 SequenceMBBI->getOperand(3).getImm() != CC || 9878 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 9879 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 9880 break; 9881 LastSelectPseudo = &*SequenceMBBI; 9882 SequenceMBBI->collectDebugValues(SelectDebugValues); 9883 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 9884 } else { 9885 if (SequenceMBBI->hasUnmodeledSideEffects() || 9886 SequenceMBBI->mayLoadOrStore()) 9887 break; 9888 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 9889 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 9890 })) 9891 break; 9892 } 9893 } 9894 9895 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 9896 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9897 DebugLoc DL = MI.getDebugLoc(); 9898 MachineFunction::iterator I = ++BB->getIterator(); 9899 9900 MachineBasicBlock *HeadMBB = BB; 9901 MachineFunction *F = BB->getParent(); 9902 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 9903 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 9904 9905 F->insert(I, IfFalseMBB); 9906 F->insert(I, TailMBB); 9907 9908 // Transfer debug instructions associated with the selects to TailMBB. 9909 for (MachineInstr *DebugInstr : SelectDebugValues) { 9910 TailMBB->push_back(DebugInstr->removeFromParent()); 9911 } 9912 9913 // Move all instructions after the sequence to TailMBB. 9914 TailMBB->splice(TailMBB->end(), HeadMBB, 9915 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 9916 // Update machine-CFG edges by transferring all successors of the current 9917 // block to the new block which will contain the Phi nodes for the selects. 9918 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 9919 // Set the successors for HeadMBB. 9920 HeadMBB->addSuccessor(IfFalseMBB); 9921 HeadMBB->addSuccessor(TailMBB); 9922 9923 // Insert appropriate branch. 9924 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 9925 .addReg(LHS) 9926 .addReg(RHS) 9927 .addMBB(TailMBB); 9928 9929 // IfFalseMBB just falls through to TailMBB. 9930 IfFalseMBB->addSuccessor(TailMBB); 9931 9932 // Create PHIs for all of the select pseudo-instructions. 9933 auto SelectMBBI = MI.getIterator(); 9934 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 9935 auto InsertionPoint = TailMBB->begin(); 9936 while (SelectMBBI != SelectEnd) { 9937 auto Next = std::next(SelectMBBI); 9938 if (isSelectPseudo(*SelectMBBI)) { 9939 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 9940 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 9941 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 9942 .addReg(SelectMBBI->getOperand(4).getReg()) 9943 .addMBB(HeadMBB) 9944 .addReg(SelectMBBI->getOperand(5).getReg()) 9945 .addMBB(IfFalseMBB); 9946 SelectMBBI->eraseFromParent(); 9947 } 9948 SelectMBBI = Next; 9949 } 9950 9951 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 9952 return TailMBB; 9953 } 9954 9955 MachineBasicBlock * 9956 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9957 MachineBasicBlock *BB) const { 9958 switch (MI.getOpcode()) { 9959 default: 9960 llvm_unreachable("Unexpected instr type to insert"); 9961 case RISCV::ReadCycleWide: 9962 assert(!Subtarget.is64Bit() && 9963 "ReadCycleWrite is only to be used on riscv32"); 9964 return emitReadCycleWidePseudo(MI, BB); 9965 case RISCV::Select_GPR_Using_CC_GPR: 9966 case RISCV::Select_FPR16_Using_CC_GPR: 9967 case RISCV::Select_FPR32_Using_CC_GPR: 9968 case RISCV::Select_FPR64_Using_CC_GPR: 9969 return emitSelectPseudo(MI, BB, Subtarget); 9970 case RISCV::BuildPairF64Pseudo: 9971 return emitBuildPairF64Pseudo(MI, BB); 9972 case RISCV::SplitF64Pseudo: 9973 return emitSplitF64Pseudo(MI, BB); 9974 case RISCV::PseudoQuietFLE_H: 9975 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 9976 case RISCV::PseudoQuietFLT_H: 9977 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 9978 case RISCV::PseudoQuietFLE_S: 9979 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 9980 case RISCV::PseudoQuietFLT_S: 9981 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 9982 case RISCV::PseudoQuietFLE_D: 9983 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 9984 case RISCV::PseudoQuietFLT_D: 9985 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 9986 } 9987 } 9988 9989 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 9990 SDNode *Node) const { 9991 // Add FRM dependency to any instructions with dynamic rounding mode. 9992 unsigned Opc = MI.getOpcode(); 9993 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 9994 if (Idx < 0) 9995 return; 9996 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 9997 return; 9998 // If the instruction already reads FRM, don't add another read. 9999 if (MI.readsRegister(RISCV::FRM)) 10000 return; 10001 MI.addOperand( 10002 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 10003 } 10004 10005 // Calling Convention Implementation. 10006 // The expectations for frontend ABI lowering vary from target to target. 10007 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 10008 // details, but this is a longer term goal. For now, we simply try to keep the 10009 // role of the frontend as simple and well-defined as possible. The rules can 10010 // be summarised as: 10011 // * Never split up large scalar arguments. We handle them here. 10012 // * If a hardfloat calling convention is being used, and the struct may be 10013 // passed in a pair of registers (fp+fp, int+fp), and both registers are 10014 // available, then pass as two separate arguments. If either the GPRs or FPRs 10015 // are exhausted, then pass according to the rule below. 10016 // * If a struct could never be passed in registers or directly in a stack 10017 // slot (as it is larger than 2*XLEN and the floating point rules don't 10018 // apply), then pass it using a pointer with the byval attribute. 10019 // * If a struct is less than 2*XLEN, then coerce to either a two-element 10020 // word-sized array or a 2*XLEN scalar (depending on alignment). 10021 // * The frontend can determine whether a struct is returned by reference or 10022 // not based on its size and fields. If it will be returned by reference, the 10023 // frontend must modify the prototype so a pointer with the sret annotation is 10024 // passed as the first argument. This is not necessary for large scalar 10025 // returns. 10026 // * Struct return values and varargs should be coerced to structs containing 10027 // register-size fields in the same situations they would be for fixed 10028 // arguments. 10029 10030 static const MCPhysReg ArgGPRs[] = { 10031 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 10032 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 10033 }; 10034 static const MCPhysReg ArgFPR16s[] = { 10035 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 10036 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 10037 }; 10038 static const MCPhysReg ArgFPR32s[] = { 10039 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 10040 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 10041 }; 10042 static const MCPhysReg ArgFPR64s[] = { 10043 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 10044 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 10045 }; 10046 // This is an interim calling convention and it may be changed in the future. 10047 static const MCPhysReg ArgVRs[] = { 10048 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 10049 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 10050 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 10051 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 10052 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 10053 RISCV::V20M2, RISCV::V22M2}; 10054 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 10055 RISCV::V20M4}; 10056 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 10057 10058 // Pass a 2*XLEN argument that has been split into two XLEN values through 10059 // registers or the stack as necessary. 10060 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 10061 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 10062 MVT ValVT2, MVT LocVT2, 10063 ISD::ArgFlagsTy ArgFlags2) { 10064 unsigned XLenInBytes = XLen / 8; 10065 if (Register Reg = State.AllocateReg(ArgGPRs)) { 10066 // At least one half can be passed via register. 10067 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 10068 VA1.getLocVT(), CCValAssign::Full)); 10069 } else { 10070 // Both halves must be passed on the stack, with proper alignment. 10071 Align StackAlign = 10072 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 10073 State.addLoc( 10074 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 10075 State.AllocateStack(XLenInBytes, StackAlign), 10076 VA1.getLocVT(), CCValAssign::Full)); 10077 State.addLoc(CCValAssign::getMem( 10078 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 10079 LocVT2, CCValAssign::Full)); 10080 return false; 10081 } 10082 10083 if (Register Reg = State.AllocateReg(ArgGPRs)) { 10084 // The second half can also be passed via register. 10085 State.addLoc( 10086 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 10087 } else { 10088 // The second half is passed via the stack, without additional alignment. 10089 State.addLoc(CCValAssign::getMem( 10090 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 10091 LocVT2, CCValAssign::Full)); 10092 } 10093 10094 return false; 10095 } 10096 10097 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 10098 Optional<unsigned> FirstMaskArgument, 10099 CCState &State, const RISCVTargetLowering &TLI) { 10100 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 10101 if (RC == &RISCV::VRRegClass) { 10102 // Assign the first mask argument to V0. 10103 // This is an interim calling convention and it may be changed in the 10104 // future. 10105 if (FirstMaskArgument && ValNo == *FirstMaskArgument) 10106 return State.AllocateReg(RISCV::V0); 10107 return State.AllocateReg(ArgVRs); 10108 } 10109 if (RC == &RISCV::VRM2RegClass) 10110 return State.AllocateReg(ArgVRM2s); 10111 if (RC == &RISCV::VRM4RegClass) 10112 return State.AllocateReg(ArgVRM4s); 10113 if (RC == &RISCV::VRM8RegClass) 10114 return State.AllocateReg(ArgVRM8s); 10115 llvm_unreachable("Unhandled register class for ValueType"); 10116 } 10117 10118 // Implements the RISC-V calling convention. Returns true upon failure. 10119 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 10120 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 10121 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 10122 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 10123 Optional<unsigned> FirstMaskArgument) { 10124 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 10125 assert(XLen == 32 || XLen == 64); 10126 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 10127 10128 // Any return value split in to more than two values can't be returned 10129 // directly. Vectors are returned via the available vector registers. 10130 if (!LocVT.isVector() && IsRet && ValNo > 1) 10131 return true; 10132 10133 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 10134 // variadic argument, or if no F16/F32 argument registers are available. 10135 bool UseGPRForF16_F32 = true; 10136 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 10137 // variadic argument, or if no F64 argument registers are available. 10138 bool UseGPRForF64 = true; 10139 10140 switch (ABI) { 10141 default: 10142 llvm_unreachable("Unexpected ABI"); 10143 case RISCVABI::ABI_ILP32: 10144 case RISCVABI::ABI_LP64: 10145 break; 10146 case RISCVABI::ABI_ILP32F: 10147 case RISCVABI::ABI_LP64F: 10148 UseGPRForF16_F32 = !IsFixed; 10149 break; 10150 case RISCVABI::ABI_ILP32D: 10151 case RISCVABI::ABI_LP64D: 10152 UseGPRForF16_F32 = !IsFixed; 10153 UseGPRForF64 = !IsFixed; 10154 break; 10155 } 10156 10157 // FPR16, FPR32, and FPR64 alias each other. 10158 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 10159 UseGPRForF16_F32 = true; 10160 UseGPRForF64 = true; 10161 } 10162 10163 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 10164 // similar local variables rather than directly checking against the target 10165 // ABI. 10166 10167 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 10168 LocVT = XLenVT; 10169 LocInfo = CCValAssign::BCvt; 10170 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 10171 LocVT = MVT::i64; 10172 LocInfo = CCValAssign::BCvt; 10173 } 10174 10175 // If this is a variadic argument, the RISC-V calling convention requires 10176 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 10177 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 10178 // be used regardless of whether the original argument was split during 10179 // legalisation or not. The argument will not be passed by registers if the 10180 // original type is larger than 2*XLEN, so the register alignment rule does 10181 // not apply. 10182 unsigned TwoXLenInBytes = (2 * XLen) / 8; 10183 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 10184 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 10185 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 10186 // Skip 'odd' register if necessary. 10187 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 10188 State.AllocateReg(ArgGPRs); 10189 } 10190 10191 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 10192 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 10193 State.getPendingArgFlags(); 10194 10195 assert(PendingLocs.size() == PendingArgFlags.size() && 10196 "PendingLocs and PendingArgFlags out of sync"); 10197 10198 // Handle passing f64 on RV32D with a soft float ABI or when floating point 10199 // registers are exhausted. 10200 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 10201 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 10202 "Can't lower f64 if it is split"); 10203 // Depending on available argument GPRS, f64 may be passed in a pair of 10204 // GPRs, split between a GPR and the stack, or passed completely on the 10205 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 10206 // cases. 10207 Register Reg = State.AllocateReg(ArgGPRs); 10208 LocVT = MVT::i32; 10209 if (!Reg) { 10210 unsigned StackOffset = State.AllocateStack(8, Align(8)); 10211 State.addLoc( 10212 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10213 return false; 10214 } 10215 if (!State.AllocateReg(ArgGPRs)) 10216 State.AllocateStack(4, Align(4)); 10217 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10218 return false; 10219 } 10220 10221 // Fixed-length vectors are located in the corresponding scalable-vector 10222 // container types. 10223 if (ValVT.isFixedLengthVector()) 10224 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 10225 10226 // Split arguments might be passed indirectly, so keep track of the pending 10227 // values. Split vectors are passed via a mix of registers and indirectly, so 10228 // treat them as we would any other argument. 10229 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 10230 LocVT = XLenVT; 10231 LocInfo = CCValAssign::Indirect; 10232 PendingLocs.push_back( 10233 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 10234 PendingArgFlags.push_back(ArgFlags); 10235 if (!ArgFlags.isSplitEnd()) { 10236 return false; 10237 } 10238 } 10239 10240 // If the split argument only had two elements, it should be passed directly 10241 // in registers or on the stack. 10242 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 10243 PendingLocs.size() <= 2) { 10244 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 10245 // Apply the normal calling convention rules to the first half of the 10246 // split argument. 10247 CCValAssign VA = PendingLocs[0]; 10248 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 10249 PendingLocs.clear(); 10250 PendingArgFlags.clear(); 10251 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 10252 ArgFlags); 10253 } 10254 10255 // Allocate to a register if possible, or else a stack slot. 10256 Register Reg; 10257 unsigned StoreSizeBytes = XLen / 8; 10258 Align StackAlign = Align(XLen / 8); 10259 10260 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 10261 Reg = State.AllocateReg(ArgFPR16s); 10262 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 10263 Reg = State.AllocateReg(ArgFPR32s); 10264 else if (ValVT == MVT::f64 && !UseGPRForF64) 10265 Reg = State.AllocateReg(ArgFPR64s); 10266 else if (ValVT.isVector()) { 10267 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 10268 if (!Reg) { 10269 // For return values, the vector must be passed fully via registers or 10270 // via the stack. 10271 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 10272 // but we're using all of them. 10273 if (IsRet) 10274 return true; 10275 // Try using a GPR to pass the address 10276 if ((Reg = State.AllocateReg(ArgGPRs))) { 10277 LocVT = XLenVT; 10278 LocInfo = CCValAssign::Indirect; 10279 } else if (ValVT.isScalableVector()) { 10280 LocVT = XLenVT; 10281 LocInfo = CCValAssign::Indirect; 10282 } else { 10283 // Pass fixed-length vectors on the stack. 10284 LocVT = ValVT; 10285 StoreSizeBytes = ValVT.getStoreSize(); 10286 // Align vectors to their element sizes, being careful for vXi1 10287 // vectors. 10288 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 10289 } 10290 } 10291 } else { 10292 Reg = State.AllocateReg(ArgGPRs); 10293 } 10294 10295 unsigned StackOffset = 10296 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 10297 10298 // If we reach this point and PendingLocs is non-empty, we must be at the 10299 // end of a split argument that must be passed indirectly. 10300 if (!PendingLocs.empty()) { 10301 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 10302 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 10303 10304 for (auto &It : PendingLocs) { 10305 if (Reg) 10306 It.convertToReg(Reg); 10307 else 10308 It.convertToMem(StackOffset); 10309 State.addLoc(It); 10310 } 10311 PendingLocs.clear(); 10312 PendingArgFlags.clear(); 10313 return false; 10314 } 10315 10316 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 10317 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 10318 "Expected an XLenVT or vector types at this stage"); 10319 10320 if (Reg) { 10321 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10322 return false; 10323 } 10324 10325 // When a floating-point value is passed on the stack, no bit-conversion is 10326 // needed. 10327 if (ValVT.isFloatingPoint()) { 10328 LocVT = ValVT; 10329 LocInfo = CCValAssign::Full; 10330 } 10331 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10332 return false; 10333 } 10334 10335 template <typename ArgTy> 10336 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 10337 for (const auto &ArgIdx : enumerate(Args)) { 10338 MVT ArgVT = ArgIdx.value().VT; 10339 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 10340 return ArgIdx.index(); 10341 } 10342 return None; 10343 } 10344 10345 void RISCVTargetLowering::analyzeInputArgs( 10346 MachineFunction &MF, CCState &CCInfo, 10347 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 10348 RISCVCCAssignFn Fn) const { 10349 unsigned NumArgs = Ins.size(); 10350 FunctionType *FType = MF.getFunction().getFunctionType(); 10351 10352 Optional<unsigned> FirstMaskArgument; 10353 if (Subtarget.hasVInstructions()) 10354 FirstMaskArgument = preAssignMask(Ins); 10355 10356 for (unsigned i = 0; i != NumArgs; ++i) { 10357 MVT ArgVT = Ins[i].VT; 10358 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 10359 10360 Type *ArgTy = nullptr; 10361 if (IsRet) 10362 ArgTy = FType->getReturnType(); 10363 else if (Ins[i].isOrigArg()) 10364 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 10365 10366 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10367 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 10368 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 10369 FirstMaskArgument)) { 10370 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 10371 << EVT(ArgVT).getEVTString() << '\n'); 10372 llvm_unreachable(nullptr); 10373 } 10374 } 10375 } 10376 10377 void RISCVTargetLowering::analyzeOutputArgs( 10378 MachineFunction &MF, CCState &CCInfo, 10379 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 10380 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 10381 unsigned NumArgs = Outs.size(); 10382 10383 Optional<unsigned> FirstMaskArgument; 10384 if (Subtarget.hasVInstructions()) 10385 FirstMaskArgument = preAssignMask(Outs); 10386 10387 for (unsigned i = 0; i != NumArgs; i++) { 10388 MVT ArgVT = Outs[i].VT; 10389 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10390 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 10391 10392 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10393 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 10394 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 10395 FirstMaskArgument)) { 10396 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 10397 << EVT(ArgVT).getEVTString() << "\n"); 10398 llvm_unreachable(nullptr); 10399 } 10400 } 10401 } 10402 10403 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 10404 // values. 10405 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 10406 const CCValAssign &VA, const SDLoc &DL, 10407 const RISCVSubtarget &Subtarget) { 10408 switch (VA.getLocInfo()) { 10409 default: 10410 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10411 case CCValAssign::Full: 10412 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 10413 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 10414 break; 10415 case CCValAssign::BCvt: 10416 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 10417 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 10418 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 10419 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 10420 else 10421 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 10422 break; 10423 } 10424 return Val; 10425 } 10426 10427 // The caller is responsible for loading the full value if the argument is 10428 // passed with CCValAssign::Indirect. 10429 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 10430 const CCValAssign &VA, const SDLoc &DL, 10431 const RISCVTargetLowering &TLI) { 10432 MachineFunction &MF = DAG.getMachineFunction(); 10433 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10434 EVT LocVT = VA.getLocVT(); 10435 SDValue Val; 10436 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 10437 Register VReg = RegInfo.createVirtualRegister(RC); 10438 RegInfo.addLiveIn(VA.getLocReg(), VReg); 10439 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 10440 10441 if (VA.getLocInfo() == CCValAssign::Indirect) 10442 return Val; 10443 10444 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 10445 } 10446 10447 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 10448 const CCValAssign &VA, const SDLoc &DL, 10449 const RISCVSubtarget &Subtarget) { 10450 EVT LocVT = VA.getLocVT(); 10451 10452 switch (VA.getLocInfo()) { 10453 default: 10454 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10455 case CCValAssign::Full: 10456 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 10457 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 10458 break; 10459 case CCValAssign::BCvt: 10460 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 10461 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 10462 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 10463 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 10464 else 10465 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 10466 break; 10467 } 10468 return Val; 10469 } 10470 10471 // The caller is responsible for loading the full value if the argument is 10472 // passed with CCValAssign::Indirect. 10473 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 10474 const CCValAssign &VA, const SDLoc &DL) { 10475 MachineFunction &MF = DAG.getMachineFunction(); 10476 MachineFrameInfo &MFI = MF.getFrameInfo(); 10477 EVT LocVT = VA.getLocVT(); 10478 EVT ValVT = VA.getValVT(); 10479 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 10480 if (ValVT.isScalableVector()) { 10481 // When the value is a scalable vector, we save the pointer which points to 10482 // the scalable vector value in the stack. The ValVT will be the pointer 10483 // type, instead of the scalable vector type. 10484 ValVT = LocVT; 10485 } 10486 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 10487 /*IsImmutable=*/true); 10488 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 10489 SDValue Val; 10490 10491 ISD::LoadExtType ExtType; 10492 switch (VA.getLocInfo()) { 10493 default: 10494 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10495 case CCValAssign::Full: 10496 case CCValAssign::Indirect: 10497 case CCValAssign::BCvt: 10498 ExtType = ISD::NON_EXTLOAD; 10499 break; 10500 } 10501 Val = DAG.getExtLoad( 10502 ExtType, DL, LocVT, Chain, FIN, 10503 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 10504 return Val; 10505 } 10506 10507 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 10508 const CCValAssign &VA, const SDLoc &DL) { 10509 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 10510 "Unexpected VA"); 10511 MachineFunction &MF = DAG.getMachineFunction(); 10512 MachineFrameInfo &MFI = MF.getFrameInfo(); 10513 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10514 10515 if (VA.isMemLoc()) { 10516 // f64 is passed on the stack. 10517 int FI = 10518 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 10519 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 10520 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 10521 MachinePointerInfo::getFixedStack(MF, FI)); 10522 } 10523 10524 assert(VA.isRegLoc() && "Expected register VA assignment"); 10525 10526 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 10527 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 10528 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 10529 SDValue Hi; 10530 if (VA.getLocReg() == RISCV::X17) { 10531 // Second half of f64 is passed on the stack. 10532 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 10533 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 10534 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 10535 MachinePointerInfo::getFixedStack(MF, FI)); 10536 } else { 10537 // Second half of f64 is passed in another GPR. 10538 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 10539 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 10540 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 10541 } 10542 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 10543 } 10544 10545 // FastCC has less than 1% performance improvement for some particular 10546 // benchmark. But theoretically, it may has benenfit for some cases. 10547 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 10548 unsigned ValNo, MVT ValVT, MVT LocVT, 10549 CCValAssign::LocInfo LocInfo, 10550 ISD::ArgFlagsTy ArgFlags, CCState &State, 10551 bool IsFixed, bool IsRet, Type *OrigTy, 10552 const RISCVTargetLowering &TLI, 10553 Optional<unsigned> FirstMaskArgument) { 10554 10555 // X5 and X6 might be used for save-restore libcall. 10556 static const MCPhysReg GPRList[] = { 10557 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 10558 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 10559 RISCV::X29, RISCV::X30, RISCV::X31}; 10560 10561 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10562 if (unsigned Reg = State.AllocateReg(GPRList)) { 10563 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10564 return false; 10565 } 10566 } 10567 10568 if (LocVT == MVT::f16) { 10569 static const MCPhysReg FPR16List[] = { 10570 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 10571 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 10572 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 10573 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 10574 if (unsigned Reg = State.AllocateReg(FPR16List)) { 10575 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10576 return false; 10577 } 10578 } 10579 10580 if (LocVT == MVT::f32) { 10581 static const MCPhysReg FPR32List[] = { 10582 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 10583 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 10584 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 10585 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 10586 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10587 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10588 return false; 10589 } 10590 } 10591 10592 if (LocVT == MVT::f64) { 10593 static const MCPhysReg FPR64List[] = { 10594 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 10595 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 10596 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 10597 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 10598 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10599 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10600 return false; 10601 } 10602 } 10603 10604 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 10605 unsigned Offset4 = State.AllocateStack(4, Align(4)); 10606 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 10607 return false; 10608 } 10609 10610 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 10611 unsigned Offset5 = State.AllocateStack(8, Align(8)); 10612 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 10613 return false; 10614 } 10615 10616 if (LocVT.isVector()) { 10617 if (unsigned Reg = 10618 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 10619 // Fixed-length vectors are located in the corresponding scalable-vector 10620 // container types. 10621 if (ValVT.isFixedLengthVector()) 10622 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 10623 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10624 } else { 10625 // Try and pass the address via a "fast" GPR. 10626 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 10627 LocInfo = CCValAssign::Indirect; 10628 LocVT = TLI.getSubtarget().getXLenVT(); 10629 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 10630 } else if (ValVT.isFixedLengthVector()) { 10631 auto StackAlign = 10632 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 10633 unsigned StackOffset = 10634 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 10635 State.addLoc( 10636 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10637 } else { 10638 // Can't pass scalable vectors on the stack. 10639 return true; 10640 } 10641 } 10642 10643 return false; 10644 } 10645 10646 return true; // CC didn't match. 10647 } 10648 10649 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 10650 CCValAssign::LocInfo LocInfo, 10651 ISD::ArgFlagsTy ArgFlags, CCState &State) { 10652 10653 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10654 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 10655 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 10656 static const MCPhysReg GPRList[] = { 10657 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 10658 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 10659 if (unsigned Reg = State.AllocateReg(GPRList)) { 10660 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10661 return false; 10662 } 10663 } 10664 10665 if (LocVT == MVT::f32) { 10666 // Pass in STG registers: F1, ..., F6 10667 // fs0 ... fs5 10668 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 10669 RISCV::F18_F, RISCV::F19_F, 10670 RISCV::F20_F, RISCV::F21_F}; 10671 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10672 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10673 return false; 10674 } 10675 } 10676 10677 if (LocVT == MVT::f64) { 10678 // Pass in STG registers: D1, ..., D6 10679 // fs6 ... fs11 10680 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 10681 RISCV::F24_D, RISCV::F25_D, 10682 RISCV::F26_D, RISCV::F27_D}; 10683 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10684 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10685 return false; 10686 } 10687 } 10688 10689 report_fatal_error("No registers left in GHC calling convention"); 10690 return true; 10691 } 10692 10693 // Transform physical registers into virtual registers. 10694 SDValue RISCVTargetLowering::LowerFormalArguments( 10695 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 10696 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 10697 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 10698 10699 MachineFunction &MF = DAG.getMachineFunction(); 10700 10701 switch (CallConv) { 10702 default: 10703 report_fatal_error("Unsupported calling convention"); 10704 case CallingConv::C: 10705 case CallingConv::Fast: 10706 break; 10707 case CallingConv::GHC: 10708 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 10709 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 10710 report_fatal_error( 10711 "GHC calling convention requires the F and D instruction set extensions"); 10712 } 10713 10714 const Function &Func = MF.getFunction(); 10715 if (Func.hasFnAttribute("interrupt")) { 10716 if (!Func.arg_empty()) 10717 report_fatal_error( 10718 "Functions with the interrupt attribute cannot have arguments!"); 10719 10720 StringRef Kind = 10721 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10722 10723 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 10724 report_fatal_error( 10725 "Function interrupt attribute argument not supported!"); 10726 } 10727 10728 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10729 MVT XLenVT = Subtarget.getXLenVT(); 10730 unsigned XLenInBytes = Subtarget.getXLen() / 8; 10731 // Used with vargs to acumulate store chains. 10732 std::vector<SDValue> OutChains; 10733 10734 // Assign locations to all of the incoming arguments. 10735 SmallVector<CCValAssign, 16> ArgLocs; 10736 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10737 10738 if (CallConv == CallingConv::GHC) 10739 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 10740 else 10741 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 10742 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10743 : CC_RISCV); 10744 10745 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 10746 CCValAssign &VA = ArgLocs[i]; 10747 SDValue ArgValue; 10748 // Passing f64 on RV32D with a soft float ABI must be handled as a special 10749 // case. 10750 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 10751 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 10752 else if (VA.isRegLoc()) 10753 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 10754 else 10755 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 10756 10757 if (VA.getLocInfo() == CCValAssign::Indirect) { 10758 // If the original argument was split and passed by reference (e.g. i128 10759 // on RV32), we need to load all parts of it here (using the same 10760 // address). Vectors may be partly split to registers and partly to the 10761 // stack, in which case the base address is partly offset and subsequent 10762 // stores are relative to that. 10763 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 10764 MachinePointerInfo())); 10765 unsigned ArgIndex = Ins[i].OrigArgIndex; 10766 unsigned ArgPartOffset = Ins[i].PartOffset; 10767 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10768 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 10769 CCValAssign &PartVA = ArgLocs[i + 1]; 10770 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 10771 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10772 if (PartVA.getValVT().isScalableVector()) 10773 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10774 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 10775 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 10776 MachinePointerInfo())); 10777 ++i; 10778 } 10779 continue; 10780 } 10781 InVals.push_back(ArgValue); 10782 } 10783 10784 if (IsVarArg) { 10785 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 10786 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 10787 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 10788 MachineFrameInfo &MFI = MF.getFrameInfo(); 10789 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10790 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 10791 10792 // Offset of the first variable argument from stack pointer, and size of 10793 // the vararg save area. For now, the varargs save area is either zero or 10794 // large enough to hold a0-a7. 10795 int VaArgOffset, VarArgsSaveSize; 10796 10797 // If all registers are allocated, then all varargs must be passed on the 10798 // stack and we don't need to save any argregs. 10799 if (ArgRegs.size() == Idx) { 10800 VaArgOffset = CCInfo.getNextStackOffset(); 10801 VarArgsSaveSize = 0; 10802 } else { 10803 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 10804 VaArgOffset = -VarArgsSaveSize; 10805 } 10806 10807 // Record the frame index of the first variable argument 10808 // which is a value necessary to VASTART. 10809 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10810 RVFI->setVarArgsFrameIndex(FI); 10811 10812 // If saving an odd number of registers then create an extra stack slot to 10813 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 10814 // offsets to even-numbered registered remain 2*XLEN-aligned. 10815 if (Idx % 2) { 10816 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 10817 VarArgsSaveSize += XLenInBytes; 10818 } 10819 10820 // Copy the integer registers that may have been used for passing varargs 10821 // to the vararg save area. 10822 for (unsigned I = Idx; I < ArgRegs.size(); 10823 ++I, VaArgOffset += XLenInBytes) { 10824 const Register Reg = RegInfo.createVirtualRegister(RC); 10825 RegInfo.addLiveIn(ArgRegs[I], Reg); 10826 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 10827 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10828 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10829 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 10830 MachinePointerInfo::getFixedStack(MF, FI)); 10831 cast<StoreSDNode>(Store.getNode()) 10832 ->getMemOperand() 10833 ->setValue((Value *)nullptr); 10834 OutChains.push_back(Store); 10835 } 10836 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 10837 } 10838 10839 // All stores are grouped in one node to allow the matching between 10840 // the size of Ins and InVals. This only happens for vararg functions. 10841 if (!OutChains.empty()) { 10842 OutChains.push_back(Chain); 10843 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 10844 } 10845 10846 return Chain; 10847 } 10848 10849 /// isEligibleForTailCallOptimization - Check whether the call is eligible 10850 /// for tail call optimization. 10851 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 10852 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 10853 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 10854 const SmallVector<CCValAssign, 16> &ArgLocs) const { 10855 10856 auto &Callee = CLI.Callee; 10857 auto CalleeCC = CLI.CallConv; 10858 auto &Outs = CLI.Outs; 10859 auto &Caller = MF.getFunction(); 10860 auto CallerCC = Caller.getCallingConv(); 10861 10862 // Exception-handling functions need a special set of instructions to 10863 // indicate a return to the hardware. Tail-calling another function would 10864 // probably break this. 10865 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 10866 // should be expanded as new function attributes are introduced. 10867 if (Caller.hasFnAttribute("interrupt")) 10868 return false; 10869 10870 // Do not tail call opt if the stack is used to pass parameters. 10871 if (CCInfo.getNextStackOffset() != 0) 10872 return false; 10873 10874 // Do not tail call opt if any parameters need to be passed indirectly. 10875 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 10876 // passed indirectly. So the address of the value will be passed in a 10877 // register, or if not available, then the address is put on the stack. In 10878 // order to pass indirectly, space on the stack often needs to be allocated 10879 // in order to store the value. In this case the CCInfo.getNextStackOffset() 10880 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 10881 // are passed CCValAssign::Indirect. 10882 for (auto &VA : ArgLocs) 10883 if (VA.getLocInfo() == CCValAssign::Indirect) 10884 return false; 10885 10886 // Do not tail call opt if either caller or callee uses struct return 10887 // semantics. 10888 auto IsCallerStructRet = Caller.hasStructRetAttr(); 10889 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 10890 if (IsCallerStructRet || IsCalleeStructRet) 10891 return false; 10892 10893 // Externally-defined functions with weak linkage should not be 10894 // tail-called. The behaviour of branch instructions in this situation (as 10895 // used for tail calls) is implementation-defined, so we cannot rely on the 10896 // linker replacing the tail call with a return. 10897 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 10898 const GlobalValue *GV = G->getGlobal(); 10899 if (GV->hasExternalWeakLinkage()) 10900 return false; 10901 } 10902 10903 // The callee has to preserve all registers the caller needs to preserve. 10904 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10905 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 10906 if (CalleeCC != CallerCC) { 10907 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 10908 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 10909 return false; 10910 } 10911 10912 // Byval parameters hand the function a pointer directly into the stack area 10913 // we want to reuse during a tail call. Working around this *is* possible 10914 // but less efficient and uglier in LowerCall. 10915 for (auto &Arg : Outs) 10916 if (Arg.Flags.isByVal()) 10917 return false; 10918 10919 return true; 10920 } 10921 10922 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 10923 return DAG.getDataLayout().getPrefTypeAlign( 10924 VT.getTypeForEVT(*DAG.getContext())); 10925 } 10926 10927 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 10928 // and output parameter nodes. 10929 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 10930 SmallVectorImpl<SDValue> &InVals) const { 10931 SelectionDAG &DAG = CLI.DAG; 10932 SDLoc &DL = CLI.DL; 10933 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 10934 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 10935 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 10936 SDValue Chain = CLI.Chain; 10937 SDValue Callee = CLI.Callee; 10938 bool &IsTailCall = CLI.IsTailCall; 10939 CallingConv::ID CallConv = CLI.CallConv; 10940 bool IsVarArg = CLI.IsVarArg; 10941 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10942 MVT XLenVT = Subtarget.getXLenVT(); 10943 10944 MachineFunction &MF = DAG.getMachineFunction(); 10945 10946 // Analyze the operands of the call, assigning locations to each operand. 10947 SmallVector<CCValAssign, 16> ArgLocs; 10948 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10949 10950 if (CallConv == CallingConv::GHC) 10951 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 10952 else 10953 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 10954 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10955 : CC_RISCV); 10956 10957 // Check if it's really possible to do a tail call. 10958 if (IsTailCall) 10959 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 10960 10961 if (IsTailCall) 10962 ++NumTailCalls; 10963 else if (CLI.CB && CLI.CB->isMustTailCall()) 10964 report_fatal_error("failed to perform tail call elimination on a call " 10965 "site marked musttail"); 10966 10967 // Get a count of how many bytes are to be pushed on the stack. 10968 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 10969 10970 // Create local copies for byval args 10971 SmallVector<SDValue, 8> ByValArgs; 10972 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10973 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10974 if (!Flags.isByVal()) 10975 continue; 10976 10977 SDValue Arg = OutVals[i]; 10978 unsigned Size = Flags.getByValSize(); 10979 Align Alignment = Flags.getNonZeroByValAlign(); 10980 10981 int FI = 10982 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 10983 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10984 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 10985 10986 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 10987 /*IsVolatile=*/false, 10988 /*AlwaysInline=*/false, IsTailCall, 10989 MachinePointerInfo(), MachinePointerInfo()); 10990 ByValArgs.push_back(FIPtr); 10991 } 10992 10993 if (!IsTailCall) 10994 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 10995 10996 // Copy argument values to their designated locations. 10997 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 10998 SmallVector<SDValue, 8> MemOpChains; 10999 SDValue StackPtr; 11000 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 11001 CCValAssign &VA = ArgLocs[i]; 11002 SDValue ArgValue = OutVals[i]; 11003 ISD::ArgFlagsTy Flags = Outs[i].Flags; 11004 11005 // Handle passing f64 on RV32D with a soft float ABI as a special case. 11006 bool IsF64OnRV32DSoftABI = 11007 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 11008 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 11009 SDValue SplitF64 = DAG.getNode( 11010 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 11011 SDValue Lo = SplitF64.getValue(0); 11012 SDValue Hi = SplitF64.getValue(1); 11013 11014 Register RegLo = VA.getLocReg(); 11015 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 11016 11017 if (RegLo == RISCV::X17) { 11018 // Second half of f64 is passed on the stack. 11019 // Work out the address of the stack slot. 11020 if (!StackPtr.getNode()) 11021 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 11022 // Emit the store. 11023 MemOpChains.push_back( 11024 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 11025 } else { 11026 // Second half of f64 is passed in another GPR. 11027 assert(RegLo < RISCV::X31 && "Invalid register pair"); 11028 Register RegHigh = RegLo + 1; 11029 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 11030 } 11031 continue; 11032 } 11033 11034 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 11035 // as any other MemLoc. 11036 11037 // Promote the value if needed. 11038 // For now, only handle fully promoted and indirect arguments. 11039 if (VA.getLocInfo() == CCValAssign::Indirect) { 11040 // Store the argument in a stack slot and pass its address. 11041 Align StackAlign = 11042 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 11043 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 11044 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 11045 // If the original argument was split (e.g. i128), we need 11046 // to store the required parts of it here (and pass just one address). 11047 // Vectors may be partly split to registers and partly to the stack, in 11048 // which case the base address is partly offset and subsequent stores are 11049 // relative to that. 11050 unsigned ArgIndex = Outs[i].OrigArgIndex; 11051 unsigned ArgPartOffset = Outs[i].PartOffset; 11052 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 11053 // Calculate the total size to store. We don't have access to what we're 11054 // actually storing other than performing the loop and collecting the 11055 // info. 11056 SmallVector<std::pair<SDValue, SDValue>> Parts; 11057 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 11058 SDValue PartValue = OutVals[i + 1]; 11059 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 11060 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 11061 EVT PartVT = PartValue.getValueType(); 11062 if (PartVT.isScalableVector()) 11063 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 11064 StoredSize += PartVT.getStoreSize(); 11065 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 11066 Parts.push_back(std::make_pair(PartValue, Offset)); 11067 ++i; 11068 } 11069 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 11070 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 11071 MemOpChains.push_back( 11072 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 11073 MachinePointerInfo::getFixedStack(MF, FI))); 11074 for (const auto &Part : Parts) { 11075 SDValue PartValue = Part.first; 11076 SDValue PartOffset = Part.second; 11077 SDValue Address = 11078 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 11079 MemOpChains.push_back( 11080 DAG.getStore(Chain, DL, PartValue, Address, 11081 MachinePointerInfo::getFixedStack(MF, FI))); 11082 } 11083 ArgValue = SpillSlot; 11084 } else { 11085 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 11086 } 11087 11088 // Use local copy if it is a byval arg. 11089 if (Flags.isByVal()) 11090 ArgValue = ByValArgs[j++]; 11091 11092 if (VA.isRegLoc()) { 11093 // Queue up the argument copies and emit them at the end. 11094 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 11095 } else { 11096 assert(VA.isMemLoc() && "Argument not register or memory"); 11097 assert(!IsTailCall && "Tail call not allowed if stack is used " 11098 "for passing parameters"); 11099 11100 // Work out the address of the stack slot. 11101 if (!StackPtr.getNode()) 11102 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 11103 SDValue Address = 11104 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 11105 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 11106 11107 // Emit the store. 11108 MemOpChains.push_back( 11109 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 11110 } 11111 } 11112 11113 // Join the stores, which are independent of one another. 11114 if (!MemOpChains.empty()) 11115 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 11116 11117 SDValue Glue; 11118 11119 // Build a sequence of copy-to-reg nodes, chained and glued together. 11120 for (auto &Reg : RegsToPass) { 11121 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 11122 Glue = Chain.getValue(1); 11123 } 11124 11125 // Validate that none of the argument registers have been marked as 11126 // reserved, if so report an error. Do the same for the return address if this 11127 // is not a tailcall. 11128 validateCCReservedRegs(RegsToPass, MF); 11129 if (!IsTailCall && 11130 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 11131 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 11132 MF.getFunction(), 11133 "Return address register required, but has been reserved."}); 11134 11135 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 11136 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 11137 // split it and then direct call can be matched by PseudoCALL. 11138 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 11139 const GlobalValue *GV = S->getGlobal(); 11140 11141 unsigned OpFlags = RISCVII::MO_CALL; 11142 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 11143 OpFlags = RISCVII::MO_PLT; 11144 11145 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 11146 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 11147 unsigned OpFlags = RISCVII::MO_CALL; 11148 11149 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 11150 nullptr)) 11151 OpFlags = RISCVII::MO_PLT; 11152 11153 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 11154 } 11155 11156 // The first call operand is the chain and the second is the target address. 11157 SmallVector<SDValue, 8> Ops; 11158 Ops.push_back(Chain); 11159 Ops.push_back(Callee); 11160 11161 // Add argument registers to the end of the list so that they are 11162 // known live into the call. 11163 for (auto &Reg : RegsToPass) 11164 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 11165 11166 if (!IsTailCall) { 11167 // Add a register mask operand representing the call-preserved registers. 11168 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11169 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 11170 assert(Mask && "Missing call preserved mask for calling convention"); 11171 Ops.push_back(DAG.getRegisterMask(Mask)); 11172 } 11173 11174 // Glue the call to the argument copies, if any. 11175 if (Glue.getNode()) 11176 Ops.push_back(Glue); 11177 11178 // Emit the call. 11179 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 11180 11181 if (IsTailCall) { 11182 MF.getFrameInfo().setHasTailCall(); 11183 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 11184 } 11185 11186 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 11187 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 11188 Glue = Chain.getValue(1); 11189 11190 // Mark the end of the call, which is glued to the call itself. 11191 Chain = DAG.getCALLSEQ_END(Chain, 11192 DAG.getConstant(NumBytes, DL, PtrVT, true), 11193 DAG.getConstant(0, DL, PtrVT, true), 11194 Glue, DL); 11195 Glue = Chain.getValue(1); 11196 11197 // Assign locations to each value returned by this call. 11198 SmallVector<CCValAssign, 16> RVLocs; 11199 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 11200 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 11201 11202 // Copy all of the result registers out of their specified physreg. 11203 for (auto &VA : RVLocs) { 11204 // Copy the value out 11205 SDValue RetValue = 11206 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 11207 // Glue the RetValue to the end of the call sequence 11208 Chain = RetValue.getValue(1); 11209 Glue = RetValue.getValue(2); 11210 11211 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 11212 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 11213 SDValue RetValue2 = 11214 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 11215 Chain = RetValue2.getValue(1); 11216 Glue = RetValue2.getValue(2); 11217 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 11218 RetValue2); 11219 } 11220 11221 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 11222 11223 InVals.push_back(RetValue); 11224 } 11225 11226 return Chain; 11227 } 11228 11229 bool RISCVTargetLowering::CanLowerReturn( 11230 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 11231 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 11232 SmallVector<CCValAssign, 16> RVLocs; 11233 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 11234 11235 Optional<unsigned> FirstMaskArgument; 11236 if (Subtarget.hasVInstructions()) 11237 FirstMaskArgument = preAssignMask(Outs); 11238 11239 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 11240 MVT VT = Outs[i].VT; 11241 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 11242 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 11243 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 11244 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 11245 *this, FirstMaskArgument)) 11246 return false; 11247 } 11248 return true; 11249 } 11250 11251 SDValue 11252 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 11253 bool IsVarArg, 11254 const SmallVectorImpl<ISD::OutputArg> &Outs, 11255 const SmallVectorImpl<SDValue> &OutVals, 11256 const SDLoc &DL, SelectionDAG &DAG) const { 11257 const MachineFunction &MF = DAG.getMachineFunction(); 11258 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 11259 11260 // Stores the assignment of the return value to a location. 11261 SmallVector<CCValAssign, 16> RVLocs; 11262 11263 // Info about the registers and stack slot. 11264 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 11265 *DAG.getContext()); 11266 11267 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 11268 nullptr, CC_RISCV); 11269 11270 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 11271 report_fatal_error("GHC functions return void only"); 11272 11273 SDValue Glue; 11274 SmallVector<SDValue, 4> RetOps(1, Chain); 11275 11276 // Copy the result values into the output registers. 11277 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 11278 SDValue Val = OutVals[i]; 11279 CCValAssign &VA = RVLocs[i]; 11280 assert(VA.isRegLoc() && "Can only return in registers!"); 11281 11282 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 11283 // Handle returning f64 on RV32D with a soft float ABI. 11284 assert(VA.isRegLoc() && "Expected return via registers"); 11285 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 11286 DAG.getVTList(MVT::i32, MVT::i32), Val); 11287 SDValue Lo = SplitF64.getValue(0); 11288 SDValue Hi = SplitF64.getValue(1); 11289 Register RegLo = VA.getLocReg(); 11290 assert(RegLo < RISCV::X31 && "Invalid register pair"); 11291 Register RegHi = RegLo + 1; 11292 11293 if (STI.isRegisterReservedByUser(RegLo) || 11294 STI.isRegisterReservedByUser(RegHi)) 11295 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 11296 MF.getFunction(), 11297 "Return value register required, but has been reserved."}); 11298 11299 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 11300 Glue = Chain.getValue(1); 11301 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 11302 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 11303 Glue = Chain.getValue(1); 11304 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 11305 } else { 11306 // Handle a 'normal' return. 11307 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 11308 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 11309 11310 if (STI.isRegisterReservedByUser(VA.getLocReg())) 11311 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 11312 MF.getFunction(), 11313 "Return value register required, but has been reserved."}); 11314 11315 // Guarantee that all emitted copies are stuck together. 11316 Glue = Chain.getValue(1); 11317 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 11318 } 11319 } 11320 11321 RetOps[0] = Chain; // Update chain. 11322 11323 // Add the glue node if we have it. 11324 if (Glue.getNode()) { 11325 RetOps.push_back(Glue); 11326 } 11327 11328 unsigned RetOpc = RISCVISD::RET_FLAG; 11329 // Interrupt service routines use different return instructions. 11330 const Function &Func = DAG.getMachineFunction().getFunction(); 11331 if (Func.hasFnAttribute("interrupt")) { 11332 if (!Func.getReturnType()->isVoidTy()) 11333 report_fatal_error( 11334 "Functions with the interrupt attribute must have void return type!"); 11335 11336 MachineFunction &MF = DAG.getMachineFunction(); 11337 StringRef Kind = 11338 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 11339 11340 if (Kind == "user") 11341 RetOpc = RISCVISD::URET_FLAG; 11342 else if (Kind == "supervisor") 11343 RetOpc = RISCVISD::SRET_FLAG; 11344 else 11345 RetOpc = RISCVISD::MRET_FLAG; 11346 } 11347 11348 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 11349 } 11350 11351 void RISCVTargetLowering::validateCCReservedRegs( 11352 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 11353 MachineFunction &MF) const { 11354 const Function &F = MF.getFunction(); 11355 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 11356 11357 if (llvm::any_of(Regs, [&STI](auto Reg) { 11358 return STI.isRegisterReservedByUser(Reg.first); 11359 })) 11360 F.getContext().diagnose(DiagnosticInfoUnsupported{ 11361 F, "Argument register required, but has been reserved."}); 11362 } 11363 11364 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 11365 return CI->isTailCall(); 11366 } 11367 11368 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 11369 #define NODE_NAME_CASE(NODE) \ 11370 case RISCVISD::NODE: \ 11371 return "RISCVISD::" #NODE; 11372 // clang-format off 11373 switch ((RISCVISD::NodeType)Opcode) { 11374 case RISCVISD::FIRST_NUMBER: 11375 break; 11376 NODE_NAME_CASE(RET_FLAG) 11377 NODE_NAME_CASE(URET_FLAG) 11378 NODE_NAME_CASE(SRET_FLAG) 11379 NODE_NAME_CASE(MRET_FLAG) 11380 NODE_NAME_CASE(CALL) 11381 NODE_NAME_CASE(SELECT_CC) 11382 NODE_NAME_CASE(BR_CC) 11383 NODE_NAME_CASE(BuildPairF64) 11384 NODE_NAME_CASE(SplitF64) 11385 NODE_NAME_CASE(TAIL) 11386 NODE_NAME_CASE(ADD_LO) 11387 NODE_NAME_CASE(HI) 11388 NODE_NAME_CASE(LLA) 11389 NODE_NAME_CASE(ADD_TPREL) 11390 NODE_NAME_CASE(LA) 11391 NODE_NAME_CASE(LA_TLS_IE) 11392 NODE_NAME_CASE(LA_TLS_GD) 11393 NODE_NAME_CASE(MULHSU) 11394 NODE_NAME_CASE(SLLW) 11395 NODE_NAME_CASE(SRAW) 11396 NODE_NAME_CASE(SRLW) 11397 NODE_NAME_CASE(DIVW) 11398 NODE_NAME_CASE(DIVUW) 11399 NODE_NAME_CASE(REMUW) 11400 NODE_NAME_CASE(ROLW) 11401 NODE_NAME_CASE(RORW) 11402 NODE_NAME_CASE(CLZW) 11403 NODE_NAME_CASE(CTZW) 11404 NODE_NAME_CASE(FSLW) 11405 NODE_NAME_CASE(FSRW) 11406 NODE_NAME_CASE(FSL) 11407 NODE_NAME_CASE(FSR) 11408 NODE_NAME_CASE(FMV_H_X) 11409 NODE_NAME_CASE(FMV_X_ANYEXTH) 11410 NODE_NAME_CASE(FMV_X_SIGNEXTH) 11411 NODE_NAME_CASE(FMV_W_X_RV64) 11412 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 11413 NODE_NAME_CASE(FCVT_X) 11414 NODE_NAME_CASE(FCVT_XU) 11415 NODE_NAME_CASE(FCVT_W_RV64) 11416 NODE_NAME_CASE(FCVT_WU_RV64) 11417 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 11418 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 11419 NODE_NAME_CASE(READ_CYCLE_WIDE) 11420 NODE_NAME_CASE(GREV) 11421 NODE_NAME_CASE(GREVW) 11422 NODE_NAME_CASE(GORC) 11423 NODE_NAME_CASE(GORCW) 11424 NODE_NAME_CASE(SHFL) 11425 NODE_NAME_CASE(SHFLW) 11426 NODE_NAME_CASE(UNSHFL) 11427 NODE_NAME_CASE(UNSHFLW) 11428 NODE_NAME_CASE(BFP) 11429 NODE_NAME_CASE(BFPW) 11430 NODE_NAME_CASE(BCOMPRESS) 11431 NODE_NAME_CASE(BCOMPRESSW) 11432 NODE_NAME_CASE(BDECOMPRESS) 11433 NODE_NAME_CASE(BDECOMPRESSW) 11434 NODE_NAME_CASE(VMV_V_X_VL) 11435 NODE_NAME_CASE(VFMV_V_F_VL) 11436 NODE_NAME_CASE(VMV_X_S) 11437 NODE_NAME_CASE(VMV_S_X_VL) 11438 NODE_NAME_CASE(VFMV_S_F_VL) 11439 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 11440 NODE_NAME_CASE(READ_VLENB) 11441 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 11442 NODE_NAME_CASE(VSLIDEUP_VL) 11443 NODE_NAME_CASE(VSLIDE1UP_VL) 11444 NODE_NAME_CASE(VSLIDEDOWN_VL) 11445 NODE_NAME_CASE(VSLIDE1DOWN_VL) 11446 NODE_NAME_CASE(VID_VL) 11447 NODE_NAME_CASE(VFNCVT_ROD_VL) 11448 NODE_NAME_CASE(VECREDUCE_ADD_VL) 11449 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 11450 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 11451 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 11452 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 11453 NODE_NAME_CASE(VECREDUCE_AND_VL) 11454 NODE_NAME_CASE(VECREDUCE_OR_VL) 11455 NODE_NAME_CASE(VECREDUCE_XOR_VL) 11456 NODE_NAME_CASE(VECREDUCE_FADD_VL) 11457 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 11458 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 11459 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 11460 NODE_NAME_CASE(ADD_VL) 11461 NODE_NAME_CASE(AND_VL) 11462 NODE_NAME_CASE(MUL_VL) 11463 NODE_NAME_CASE(OR_VL) 11464 NODE_NAME_CASE(SDIV_VL) 11465 NODE_NAME_CASE(SHL_VL) 11466 NODE_NAME_CASE(SREM_VL) 11467 NODE_NAME_CASE(SRA_VL) 11468 NODE_NAME_CASE(SRL_VL) 11469 NODE_NAME_CASE(SUB_VL) 11470 NODE_NAME_CASE(UDIV_VL) 11471 NODE_NAME_CASE(UREM_VL) 11472 NODE_NAME_CASE(XOR_VL) 11473 NODE_NAME_CASE(SADDSAT_VL) 11474 NODE_NAME_CASE(UADDSAT_VL) 11475 NODE_NAME_CASE(SSUBSAT_VL) 11476 NODE_NAME_CASE(USUBSAT_VL) 11477 NODE_NAME_CASE(FADD_VL) 11478 NODE_NAME_CASE(FSUB_VL) 11479 NODE_NAME_CASE(FMUL_VL) 11480 NODE_NAME_CASE(FDIV_VL) 11481 NODE_NAME_CASE(FNEG_VL) 11482 NODE_NAME_CASE(FABS_VL) 11483 NODE_NAME_CASE(FSQRT_VL) 11484 NODE_NAME_CASE(VFMADD_VL) 11485 NODE_NAME_CASE(VFNMADD_VL) 11486 NODE_NAME_CASE(VFMSUB_VL) 11487 NODE_NAME_CASE(VFNMSUB_VL) 11488 NODE_NAME_CASE(FCOPYSIGN_VL) 11489 NODE_NAME_CASE(SMIN_VL) 11490 NODE_NAME_CASE(SMAX_VL) 11491 NODE_NAME_CASE(UMIN_VL) 11492 NODE_NAME_CASE(UMAX_VL) 11493 NODE_NAME_CASE(FMINNUM_VL) 11494 NODE_NAME_CASE(FMAXNUM_VL) 11495 NODE_NAME_CASE(MULHS_VL) 11496 NODE_NAME_CASE(MULHU_VL) 11497 NODE_NAME_CASE(FP_TO_SINT_VL) 11498 NODE_NAME_CASE(FP_TO_UINT_VL) 11499 NODE_NAME_CASE(SINT_TO_FP_VL) 11500 NODE_NAME_CASE(UINT_TO_FP_VL) 11501 NODE_NAME_CASE(FP_EXTEND_VL) 11502 NODE_NAME_CASE(FP_ROUND_VL) 11503 NODE_NAME_CASE(VWMUL_VL) 11504 NODE_NAME_CASE(VWMULU_VL) 11505 NODE_NAME_CASE(VWMULSU_VL) 11506 NODE_NAME_CASE(VWADD_VL) 11507 NODE_NAME_CASE(VWADDU_VL) 11508 NODE_NAME_CASE(VWSUB_VL) 11509 NODE_NAME_CASE(VWSUBU_VL) 11510 NODE_NAME_CASE(VWADD_W_VL) 11511 NODE_NAME_CASE(VWADDU_W_VL) 11512 NODE_NAME_CASE(VWSUB_W_VL) 11513 NODE_NAME_CASE(VWSUBU_W_VL) 11514 NODE_NAME_CASE(SETCC_VL) 11515 NODE_NAME_CASE(VSELECT_VL) 11516 NODE_NAME_CASE(VP_MERGE_VL) 11517 NODE_NAME_CASE(VMAND_VL) 11518 NODE_NAME_CASE(VMOR_VL) 11519 NODE_NAME_CASE(VMXOR_VL) 11520 NODE_NAME_CASE(VMCLR_VL) 11521 NODE_NAME_CASE(VMSET_VL) 11522 NODE_NAME_CASE(VRGATHER_VX_VL) 11523 NODE_NAME_CASE(VRGATHER_VV_VL) 11524 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 11525 NODE_NAME_CASE(VSEXT_VL) 11526 NODE_NAME_CASE(VZEXT_VL) 11527 NODE_NAME_CASE(VCPOP_VL) 11528 NODE_NAME_CASE(READ_CSR) 11529 NODE_NAME_CASE(WRITE_CSR) 11530 NODE_NAME_CASE(SWAP_CSR) 11531 } 11532 // clang-format on 11533 return nullptr; 11534 #undef NODE_NAME_CASE 11535 } 11536 11537 /// getConstraintType - Given a constraint letter, return the type of 11538 /// constraint it is for this target. 11539 RISCVTargetLowering::ConstraintType 11540 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 11541 if (Constraint.size() == 1) { 11542 switch (Constraint[0]) { 11543 default: 11544 break; 11545 case 'f': 11546 return C_RegisterClass; 11547 case 'I': 11548 case 'J': 11549 case 'K': 11550 return C_Immediate; 11551 case 'A': 11552 return C_Memory; 11553 case 'S': // A symbolic address 11554 return C_Other; 11555 } 11556 } else { 11557 if (Constraint == "vr" || Constraint == "vm") 11558 return C_RegisterClass; 11559 } 11560 return TargetLowering::getConstraintType(Constraint); 11561 } 11562 11563 std::pair<unsigned, const TargetRegisterClass *> 11564 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11565 StringRef Constraint, 11566 MVT VT) const { 11567 // First, see if this is a constraint that directly corresponds to a 11568 // RISCV register class. 11569 if (Constraint.size() == 1) { 11570 switch (Constraint[0]) { 11571 case 'r': 11572 // TODO: Support fixed vectors up to XLen for P extension? 11573 if (VT.isVector()) 11574 break; 11575 return std::make_pair(0U, &RISCV::GPRRegClass); 11576 case 'f': 11577 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 11578 return std::make_pair(0U, &RISCV::FPR16RegClass); 11579 if (Subtarget.hasStdExtF() && VT == MVT::f32) 11580 return std::make_pair(0U, &RISCV::FPR32RegClass); 11581 if (Subtarget.hasStdExtD() && VT == MVT::f64) 11582 return std::make_pair(0U, &RISCV::FPR64RegClass); 11583 break; 11584 default: 11585 break; 11586 } 11587 } else if (Constraint == "vr") { 11588 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 11589 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11590 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 11591 return std::make_pair(0U, RC); 11592 } 11593 } else if (Constraint == "vm") { 11594 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 11595 return std::make_pair(0U, &RISCV::VMV0RegClass); 11596 } 11597 11598 // Clang will correctly decode the usage of register name aliases into their 11599 // official names. However, other frontends like `rustc` do not. This allows 11600 // users of these frontends to use the ABI names for registers in LLVM-style 11601 // register constraints. 11602 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 11603 .Case("{zero}", RISCV::X0) 11604 .Case("{ra}", RISCV::X1) 11605 .Case("{sp}", RISCV::X2) 11606 .Case("{gp}", RISCV::X3) 11607 .Case("{tp}", RISCV::X4) 11608 .Case("{t0}", RISCV::X5) 11609 .Case("{t1}", RISCV::X6) 11610 .Case("{t2}", RISCV::X7) 11611 .Cases("{s0}", "{fp}", RISCV::X8) 11612 .Case("{s1}", RISCV::X9) 11613 .Case("{a0}", RISCV::X10) 11614 .Case("{a1}", RISCV::X11) 11615 .Case("{a2}", RISCV::X12) 11616 .Case("{a3}", RISCV::X13) 11617 .Case("{a4}", RISCV::X14) 11618 .Case("{a5}", RISCV::X15) 11619 .Case("{a6}", RISCV::X16) 11620 .Case("{a7}", RISCV::X17) 11621 .Case("{s2}", RISCV::X18) 11622 .Case("{s3}", RISCV::X19) 11623 .Case("{s4}", RISCV::X20) 11624 .Case("{s5}", RISCV::X21) 11625 .Case("{s6}", RISCV::X22) 11626 .Case("{s7}", RISCV::X23) 11627 .Case("{s8}", RISCV::X24) 11628 .Case("{s9}", RISCV::X25) 11629 .Case("{s10}", RISCV::X26) 11630 .Case("{s11}", RISCV::X27) 11631 .Case("{t3}", RISCV::X28) 11632 .Case("{t4}", RISCV::X29) 11633 .Case("{t5}", RISCV::X30) 11634 .Case("{t6}", RISCV::X31) 11635 .Default(RISCV::NoRegister); 11636 if (XRegFromAlias != RISCV::NoRegister) 11637 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 11638 11639 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 11640 // TableGen record rather than the AsmName to choose registers for InlineAsm 11641 // constraints, plus we want to match those names to the widest floating point 11642 // register type available, manually select floating point registers here. 11643 // 11644 // The second case is the ABI name of the register, so that frontends can also 11645 // use the ABI names in register constraint lists. 11646 if (Subtarget.hasStdExtF()) { 11647 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 11648 .Cases("{f0}", "{ft0}", RISCV::F0_F) 11649 .Cases("{f1}", "{ft1}", RISCV::F1_F) 11650 .Cases("{f2}", "{ft2}", RISCV::F2_F) 11651 .Cases("{f3}", "{ft3}", RISCV::F3_F) 11652 .Cases("{f4}", "{ft4}", RISCV::F4_F) 11653 .Cases("{f5}", "{ft5}", RISCV::F5_F) 11654 .Cases("{f6}", "{ft6}", RISCV::F6_F) 11655 .Cases("{f7}", "{ft7}", RISCV::F7_F) 11656 .Cases("{f8}", "{fs0}", RISCV::F8_F) 11657 .Cases("{f9}", "{fs1}", RISCV::F9_F) 11658 .Cases("{f10}", "{fa0}", RISCV::F10_F) 11659 .Cases("{f11}", "{fa1}", RISCV::F11_F) 11660 .Cases("{f12}", "{fa2}", RISCV::F12_F) 11661 .Cases("{f13}", "{fa3}", RISCV::F13_F) 11662 .Cases("{f14}", "{fa4}", RISCV::F14_F) 11663 .Cases("{f15}", "{fa5}", RISCV::F15_F) 11664 .Cases("{f16}", "{fa6}", RISCV::F16_F) 11665 .Cases("{f17}", "{fa7}", RISCV::F17_F) 11666 .Cases("{f18}", "{fs2}", RISCV::F18_F) 11667 .Cases("{f19}", "{fs3}", RISCV::F19_F) 11668 .Cases("{f20}", "{fs4}", RISCV::F20_F) 11669 .Cases("{f21}", "{fs5}", RISCV::F21_F) 11670 .Cases("{f22}", "{fs6}", RISCV::F22_F) 11671 .Cases("{f23}", "{fs7}", RISCV::F23_F) 11672 .Cases("{f24}", "{fs8}", RISCV::F24_F) 11673 .Cases("{f25}", "{fs9}", RISCV::F25_F) 11674 .Cases("{f26}", "{fs10}", RISCV::F26_F) 11675 .Cases("{f27}", "{fs11}", RISCV::F27_F) 11676 .Cases("{f28}", "{ft8}", RISCV::F28_F) 11677 .Cases("{f29}", "{ft9}", RISCV::F29_F) 11678 .Cases("{f30}", "{ft10}", RISCV::F30_F) 11679 .Cases("{f31}", "{ft11}", RISCV::F31_F) 11680 .Default(RISCV::NoRegister); 11681 if (FReg != RISCV::NoRegister) { 11682 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 11683 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 11684 unsigned RegNo = FReg - RISCV::F0_F; 11685 unsigned DReg = RISCV::F0_D + RegNo; 11686 return std::make_pair(DReg, &RISCV::FPR64RegClass); 11687 } 11688 if (VT == MVT::f32 || VT == MVT::Other) 11689 return std::make_pair(FReg, &RISCV::FPR32RegClass); 11690 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 11691 unsigned RegNo = FReg - RISCV::F0_F; 11692 unsigned HReg = RISCV::F0_H + RegNo; 11693 return std::make_pair(HReg, &RISCV::FPR16RegClass); 11694 } 11695 } 11696 } 11697 11698 if (Subtarget.hasVInstructions()) { 11699 Register VReg = StringSwitch<Register>(Constraint.lower()) 11700 .Case("{v0}", RISCV::V0) 11701 .Case("{v1}", RISCV::V1) 11702 .Case("{v2}", RISCV::V2) 11703 .Case("{v3}", RISCV::V3) 11704 .Case("{v4}", RISCV::V4) 11705 .Case("{v5}", RISCV::V5) 11706 .Case("{v6}", RISCV::V6) 11707 .Case("{v7}", RISCV::V7) 11708 .Case("{v8}", RISCV::V8) 11709 .Case("{v9}", RISCV::V9) 11710 .Case("{v10}", RISCV::V10) 11711 .Case("{v11}", RISCV::V11) 11712 .Case("{v12}", RISCV::V12) 11713 .Case("{v13}", RISCV::V13) 11714 .Case("{v14}", RISCV::V14) 11715 .Case("{v15}", RISCV::V15) 11716 .Case("{v16}", RISCV::V16) 11717 .Case("{v17}", RISCV::V17) 11718 .Case("{v18}", RISCV::V18) 11719 .Case("{v19}", RISCV::V19) 11720 .Case("{v20}", RISCV::V20) 11721 .Case("{v21}", RISCV::V21) 11722 .Case("{v22}", RISCV::V22) 11723 .Case("{v23}", RISCV::V23) 11724 .Case("{v24}", RISCV::V24) 11725 .Case("{v25}", RISCV::V25) 11726 .Case("{v26}", RISCV::V26) 11727 .Case("{v27}", RISCV::V27) 11728 .Case("{v28}", RISCV::V28) 11729 .Case("{v29}", RISCV::V29) 11730 .Case("{v30}", RISCV::V30) 11731 .Case("{v31}", RISCV::V31) 11732 .Default(RISCV::NoRegister); 11733 if (VReg != RISCV::NoRegister) { 11734 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 11735 return std::make_pair(VReg, &RISCV::VMRegClass); 11736 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 11737 return std::make_pair(VReg, &RISCV::VRRegClass); 11738 for (const auto *RC : 11739 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11740 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 11741 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 11742 return std::make_pair(VReg, RC); 11743 } 11744 } 11745 } 11746 } 11747 11748 std::pair<Register, const TargetRegisterClass *> Res = 11749 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11750 11751 // If we picked one of the Zfinx register classes, remap it to the GPR class. 11752 // FIXME: When Zfinx is supported in CodeGen this will need to take the 11753 // Subtarget into account. 11754 if (Res.second == &RISCV::GPRF16RegClass || 11755 Res.second == &RISCV::GPRF32RegClass || 11756 Res.second == &RISCV::GPRF64RegClass) 11757 return std::make_pair(Res.first, &RISCV::GPRRegClass); 11758 11759 return Res; 11760 } 11761 11762 unsigned 11763 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 11764 // Currently only support length 1 constraints. 11765 if (ConstraintCode.size() == 1) { 11766 switch (ConstraintCode[0]) { 11767 case 'A': 11768 return InlineAsm::Constraint_A; 11769 default: 11770 break; 11771 } 11772 } 11773 11774 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 11775 } 11776 11777 void RISCVTargetLowering::LowerAsmOperandForConstraint( 11778 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 11779 SelectionDAG &DAG) const { 11780 // Currently only support length 1 constraints. 11781 if (Constraint.length() == 1) { 11782 switch (Constraint[0]) { 11783 case 'I': 11784 // Validate & create a 12-bit signed immediate operand. 11785 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11786 uint64_t CVal = C->getSExtValue(); 11787 if (isInt<12>(CVal)) 11788 Ops.push_back( 11789 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11790 } 11791 return; 11792 case 'J': 11793 // Validate & create an integer zero operand. 11794 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 11795 if (C->getZExtValue() == 0) 11796 Ops.push_back( 11797 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 11798 return; 11799 case 'K': 11800 // Validate & create a 5-bit unsigned immediate operand. 11801 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11802 uint64_t CVal = C->getZExtValue(); 11803 if (isUInt<5>(CVal)) 11804 Ops.push_back( 11805 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11806 } 11807 return; 11808 case 'S': 11809 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 11810 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 11811 GA->getValueType(0))); 11812 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 11813 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 11814 BA->getValueType(0))); 11815 } 11816 return; 11817 default: 11818 break; 11819 } 11820 } 11821 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11822 } 11823 11824 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11825 Instruction *Inst, 11826 AtomicOrdering Ord) const { 11827 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 11828 return Builder.CreateFence(Ord); 11829 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 11830 return Builder.CreateFence(AtomicOrdering::Release); 11831 return nullptr; 11832 } 11833 11834 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11835 Instruction *Inst, 11836 AtomicOrdering Ord) const { 11837 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 11838 return Builder.CreateFence(AtomicOrdering::Acquire); 11839 return nullptr; 11840 } 11841 11842 TargetLowering::AtomicExpansionKind 11843 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 11844 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 11845 // point operations can't be used in an lr/sc sequence without breaking the 11846 // forward-progress guarantee. 11847 if (AI->isFloatingPointOperation()) 11848 return AtomicExpansionKind::CmpXChg; 11849 11850 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 11851 if (Size == 8 || Size == 16) 11852 return AtomicExpansionKind::MaskedIntrinsic; 11853 return AtomicExpansionKind::None; 11854 } 11855 11856 static Intrinsic::ID 11857 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 11858 if (XLen == 32) { 11859 switch (BinOp) { 11860 default: 11861 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11862 case AtomicRMWInst::Xchg: 11863 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 11864 case AtomicRMWInst::Add: 11865 return Intrinsic::riscv_masked_atomicrmw_add_i32; 11866 case AtomicRMWInst::Sub: 11867 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 11868 case AtomicRMWInst::Nand: 11869 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 11870 case AtomicRMWInst::Max: 11871 return Intrinsic::riscv_masked_atomicrmw_max_i32; 11872 case AtomicRMWInst::Min: 11873 return Intrinsic::riscv_masked_atomicrmw_min_i32; 11874 case AtomicRMWInst::UMax: 11875 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 11876 case AtomicRMWInst::UMin: 11877 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 11878 } 11879 } 11880 11881 if (XLen == 64) { 11882 switch (BinOp) { 11883 default: 11884 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11885 case AtomicRMWInst::Xchg: 11886 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 11887 case AtomicRMWInst::Add: 11888 return Intrinsic::riscv_masked_atomicrmw_add_i64; 11889 case AtomicRMWInst::Sub: 11890 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 11891 case AtomicRMWInst::Nand: 11892 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 11893 case AtomicRMWInst::Max: 11894 return Intrinsic::riscv_masked_atomicrmw_max_i64; 11895 case AtomicRMWInst::Min: 11896 return Intrinsic::riscv_masked_atomicrmw_min_i64; 11897 case AtomicRMWInst::UMax: 11898 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 11899 case AtomicRMWInst::UMin: 11900 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 11901 } 11902 } 11903 11904 llvm_unreachable("Unexpected XLen\n"); 11905 } 11906 11907 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 11908 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 11909 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 11910 unsigned XLen = Subtarget.getXLen(); 11911 Value *Ordering = 11912 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 11913 Type *Tys[] = {AlignedAddr->getType()}; 11914 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 11915 AI->getModule(), 11916 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 11917 11918 if (XLen == 64) { 11919 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 11920 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11921 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 11922 } 11923 11924 Value *Result; 11925 11926 // Must pass the shift amount needed to sign extend the loaded value prior 11927 // to performing a signed comparison for min/max. ShiftAmt is the number of 11928 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 11929 // is the number of bits to left+right shift the value in order to 11930 // sign-extend. 11931 if (AI->getOperation() == AtomicRMWInst::Min || 11932 AI->getOperation() == AtomicRMWInst::Max) { 11933 const DataLayout &DL = AI->getModule()->getDataLayout(); 11934 unsigned ValWidth = 11935 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 11936 Value *SextShamt = 11937 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 11938 Result = Builder.CreateCall(LrwOpScwLoop, 11939 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 11940 } else { 11941 Result = 11942 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 11943 } 11944 11945 if (XLen == 64) 11946 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11947 return Result; 11948 } 11949 11950 TargetLowering::AtomicExpansionKind 11951 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 11952 AtomicCmpXchgInst *CI) const { 11953 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 11954 if (Size == 8 || Size == 16) 11955 return AtomicExpansionKind::MaskedIntrinsic; 11956 return AtomicExpansionKind::None; 11957 } 11958 11959 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 11960 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 11961 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 11962 unsigned XLen = Subtarget.getXLen(); 11963 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 11964 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 11965 if (XLen == 64) { 11966 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 11967 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 11968 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11969 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 11970 } 11971 Type *Tys[] = {AlignedAddr->getType()}; 11972 Function *MaskedCmpXchg = 11973 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 11974 Value *Result = Builder.CreateCall( 11975 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 11976 if (XLen == 64) 11977 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11978 return Result; 11979 } 11980 11981 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT, 11982 EVT DataVT) const { 11983 return false; 11984 } 11985 11986 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 11987 EVT VT) const { 11988 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 11989 return false; 11990 11991 switch (FPVT.getSimpleVT().SimpleTy) { 11992 case MVT::f16: 11993 return Subtarget.hasStdExtZfh(); 11994 case MVT::f32: 11995 return Subtarget.hasStdExtF(); 11996 case MVT::f64: 11997 return Subtarget.hasStdExtD(); 11998 default: 11999 return false; 12000 } 12001 } 12002 12003 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 12004 // If we are using the small code model, we can reduce size of jump table 12005 // entry to 4 bytes. 12006 if (Subtarget.is64Bit() && !isPositionIndependent() && 12007 getTargetMachine().getCodeModel() == CodeModel::Small) { 12008 return MachineJumpTableInfo::EK_Custom32; 12009 } 12010 return TargetLowering::getJumpTableEncoding(); 12011 } 12012 12013 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 12014 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 12015 unsigned uid, MCContext &Ctx) const { 12016 assert(Subtarget.is64Bit() && !isPositionIndependent() && 12017 getTargetMachine().getCodeModel() == CodeModel::Small); 12018 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 12019 } 12020 12021 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 12022 EVT VT) const { 12023 VT = VT.getScalarType(); 12024 12025 if (!VT.isSimple()) 12026 return false; 12027 12028 switch (VT.getSimpleVT().SimpleTy) { 12029 case MVT::f16: 12030 return Subtarget.hasStdExtZfh(); 12031 case MVT::f32: 12032 return Subtarget.hasStdExtF(); 12033 case MVT::f64: 12034 return Subtarget.hasStdExtD(); 12035 default: 12036 break; 12037 } 12038 12039 return false; 12040 } 12041 12042 Register RISCVTargetLowering::getExceptionPointerRegister( 12043 const Constant *PersonalityFn) const { 12044 return RISCV::X10; 12045 } 12046 12047 Register RISCVTargetLowering::getExceptionSelectorRegister( 12048 const Constant *PersonalityFn) const { 12049 return RISCV::X11; 12050 } 12051 12052 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 12053 // Return false to suppress the unnecessary extensions if the LibCall 12054 // arguments or return value is f32 type for LP64 ABI. 12055 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 12056 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 12057 return false; 12058 12059 return true; 12060 } 12061 12062 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 12063 if (Subtarget.is64Bit() && Type == MVT::i32) 12064 return true; 12065 12066 return IsSigned; 12067 } 12068 12069 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 12070 SDValue C) const { 12071 // Check integral scalar types. 12072 if (VT.isScalarInteger()) { 12073 // Omit the optimization if the sub target has the M extension and the data 12074 // size exceeds XLen. 12075 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 12076 return false; 12077 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 12078 // Break the MUL to a SLLI and an ADD/SUB. 12079 const APInt &Imm = ConstNode->getAPIntValue(); 12080 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 12081 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 12082 return true; 12083 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 12084 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 12085 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 12086 (Imm - 8).isPowerOf2())) 12087 return true; 12088 // Omit the following optimization if the sub target has the M extension 12089 // and the data size >= XLen. 12090 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 12091 return false; 12092 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 12093 // a pair of LUI/ADDI. 12094 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 12095 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 12096 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 12097 (1 - ImmS).isPowerOf2()) 12098 return true; 12099 } 12100 } 12101 } 12102 12103 return false; 12104 } 12105 12106 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode, 12107 SDValue ConstNode) const { 12108 // Let the DAGCombiner decide for vectors. 12109 EVT VT = AddNode.getValueType(); 12110 if (VT.isVector()) 12111 return true; 12112 12113 // Let the DAGCombiner decide for larger types. 12114 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 12115 return true; 12116 12117 // It is worse if c1 is simm12 while c1*c2 is not. 12118 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 12119 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 12120 const APInt &C1 = C1Node->getAPIntValue(); 12121 const APInt &C2 = C2Node->getAPIntValue(); 12122 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 12123 return false; 12124 12125 // Default to true and let the DAGCombiner decide. 12126 return true; 12127 } 12128 12129 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 12130 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 12131 bool *Fast) const { 12132 if (!VT.isVector()) { 12133 if (Fast) 12134 *Fast = false; 12135 return Subtarget.enableUnalignedScalarMem(); 12136 } 12137 12138 // All vector implementations must support element alignment 12139 EVT ElemVT = VT.getVectorElementType(); 12140 if (Alignment >= ElemVT.getStoreSize()) { 12141 if (Fast) 12142 *Fast = true; 12143 return true; 12144 } 12145 12146 return false; 12147 } 12148 12149 bool RISCVTargetLowering::splitValueIntoRegisterParts( 12150 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 12151 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 12152 bool IsABIRegCopy = CC.has_value(); 12153 EVT ValueVT = Val.getValueType(); 12154 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 12155 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 12156 // and cast to f32. 12157 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 12158 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 12159 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 12160 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 12161 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 12162 Parts[0] = Val; 12163 return true; 12164 } 12165 12166 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 12167 LLVMContext &Context = *DAG.getContext(); 12168 EVT ValueEltVT = ValueVT.getVectorElementType(); 12169 EVT PartEltVT = PartVT.getVectorElementType(); 12170 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 12171 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 12172 if (PartVTBitSize % ValueVTBitSize == 0) { 12173 assert(PartVTBitSize >= ValueVTBitSize); 12174 // If the element types are different, bitcast to the same element type of 12175 // PartVT first. 12176 // Give an example here, we want copy a <vscale x 1 x i8> value to 12177 // <vscale x 4 x i16>. 12178 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 12179 // subvector, then we can bitcast to <vscale x 4 x i16>. 12180 if (ValueEltVT != PartEltVT) { 12181 if (PartVTBitSize > ValueVTBitSize) { 12182 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 12183 assert(Count != 0 && "The number of element should not be zero."); 12184 EVT SameEltTypeVT = 12185 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 12186 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 12187 DAG.getUNDEF(SameEltTypeVT), Val, 12188 DAG.getVectorIdxConstant(0, DL)); 12189 } 12190 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 12191 } else { 12192 Val = 12193 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 12194 Val, DAG.getVectorIdxConstant(0, DL)); 12195 } 12196 Parts[0] = Val; 12197 return true; 12198 } 12199 } 12200 return false; 12201 } 12202 12203 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 12204 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 12205 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 12206 bool IsABIRegCopy = CC.has_value(); 12207 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 12208 SDValue Val = Parts[0]; 12209 12210 // Cast the f32 to i32, truncate to i16, and cast back to f16. 12211 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 12212 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 12213 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 12214 return Val; 12215 } 12216 12217 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 12218 LLVMContext &Context = *DAG.getContext(); 12219 SDValue Val = Parts[0]; 12220 EVT ValueEltVT = ValueVT.getVectorElementType(); 12221 EVT PartEltVT = PartVT.getVectorElementType(); 12222 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 12223 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 12224 if (PartVTBitSize % ValueVTBitSize == 0) { 12225 assert(PartVTBitSize >= ValueVTBitSize); 12226 EVT SameEltTypeVT = ValueVT; 12227 // If the element types are different, convert it to the same element type 12228 // of PartVT. 12229 // Give an example here, we want copy a <vscale x 1 x i8> value from 12230 // <vscale x 4 x i16>. 12231 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 12232 // then we can extract <vscale x 1 x i8>. 12233 if (ValueEltVT != PartEltVT) { 12234 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 12235 assert(Count != 0 && "The number of element should not be zero."); 12236 SameEltTypeVT = 12237 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 12238 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 12239 } 12240 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 12241 DAG.getVectorIdxConstant(0, DL)); 12242 return Val; 12243 } 12244 } 12245 return SDValue(); 12246 } 12247 12248 SDValue 12249 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 12250 SelectionDAG &DAG, 12251 SmallVectorImpl<SDNode *> &Created) const { 12252 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 12253 if (isIntDivCheap(N->getValueType(0), Attr)) 12254 return SDValue(N, 0); // Lower SDIV as SDIV 12255 12256 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 12257 "Unexpected divisor!"); 12258 12259 // Conditional move is needed, so do the transformation iff Zbt is enabled. 12260 if (!Subtarget.hasStdExtZbt()) 12261 return SDValue(); 12262 12263 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 12264 // Besides, more critical path instructions will be generated when dividing 12265 // by 2. So we keep using the original DAGs for these cases. 12266 unsigned Lg2 = Divisor.countTrailingZeros(); 12267 if (Lg2 == 1 || Lg2 >= 12) 12268 return SDValue(); 12269 12270 // fold (sdiv X, pow2) 12271 EVT VT = N->getValueType(0); 12272 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 12273 return SDValue(); 12274 12275 SDLoc DL(N); 12276 SDValue N0 = N->getOperand(0); 12277 SDValue Zero = DAG.getConstant(0, DL, VT); 12278 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 12279 12280 // Add (N0 < 0) ? Pow2 - 1 : 0; 12281 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 12282 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 12283 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 12284 12285 Created.push_back(Cmp.getNode()); 12286 Created.push_back(Add.getNode()); 12287 Created.push_back(Sel.getNode()); 12288 12289 // Divide by pow2. 12290 SDValue SRA = 12291 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 12292 12293 // If we're dividing by a positive value, we're done. Otherwise, we must 12294 // negate the result. 12295 if (Divisor.isNonNegative()) 12296 return SRA; 12297 12298 Created.push_back(SRA.getNode()); 12299 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 12300 } 12301 12302 #define GET_REGISTER_MATCHER 12303 #include "RISCVGenAsmMatcher.inc" 12304 12305 Register 12306 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 12307 const MachineFunction &MF) const { 12308 Register Reg = MatchRegisterAltName(RegName); 12309 if (Reg == RISCV::NoRegister) 12310 Reg = MatchRegisterName(RegName); 12311 if (Reg == RISCV::NoRegister) 12312 report_fatal_error( 12313 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 12314 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 12315 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 12316 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 12317 StringRef(RegName) + "\".")); 12318 return Reg; 12319 } 12320 12321 namespace llvm { 12322 namespace RISCVVIntrinsicsTable { 12323 12324 #define GET_RISCVVIntrinsicsTable_IMPL 12325 #include "RISCVGenSearchableTables.inc" 12326 12327 } // namespace RISCVVIntrinsicsTable 12328 12329 } // namespace llvm 12330