1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "RISCV.h"
16 #include "RISCVMachineFunctionInfo.h"
17 #include "RISCVRegisterInfo.h"
18 #include "RISCVSubtarget.h"
19 #include "RISCVTargetMachine.h"
20 #include "Utils/RISCVMatInt.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAGISel.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "riscv-lower"
40 
41 STATISTIC(NumTailCalls, "Number of tail calls");
42 
43 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
44                                          const RISCVSubtarget &STI)
45     : TargetLowering(TM), Subtarget(STI) {
46 
47   if (Subtarget.isRV32E())
48     report_fatal_error("Codegen not yet implemented for RV32E");
49 
50   RISCVABI::ABI ABI = Subtarget.getTargetABI();
51   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
52 
53   switch (ABI) {
54   default:
55     report_fatal_error("Don't know how to lower this ABI");
56   case RISCVABI::ABI_ILP32:
57   case RISCVABI::ABI_ILP32F:
58   case RISCVABI::ABI_ILP32D:
59   case RISCVABI::ABI_LP64:
60   case RISCVABI::ABI_LP64F:
61   case RISCVABI::ABI_LP64D:
62     break;
63   }
64 
65   MVT XLenVT = Subtarget.getXLenVT();
66 
67   // Set up the register classes.
68   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
69 
70   if (Subtarget.hasStdExtF())
71     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
72   if (Subtarget.hasStdExtD())
73     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
74 
75   // Compute derived properties from the register classes.
76   computeRegisterProperties(STI.getRegisterInfo());
77 
78   setStackPointerRegisterToSaveRestore(RISCV::X2);
79 
80   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
81     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
82 
83   // TODO: add all necessary setOperationAction calls.
84   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
85 
86   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
87   setOperationAction(ISD::BR_CC, XLenVT, Expand);
88   setOperationAction(ISD::SELECT, XLenVT, Custom);
89   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
90 
91   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
92   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
93 
94   setOperationAction(ISD::VASTART, MVT::Other, Custom);
95   setOperationAction(ISD::VAARG, MVT::Other, Expand);
96   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
97   setOperationAction(ISD::VAEND, MVT::Other, Expand);
98 
99   for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
100     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
101 
102   if (Subtarget.is64Bit()) {
103     setOperationAction(ISD::ADD, MVT::i32, Custom);
104     setOperationAction(ISD::SUB, MVT::i32, Custom);
105     setOperationAction(ISD::SHL, MVT::i32, Custom);
106     setOperationAction(ISD::SRA, MVT::i32, Custom);
107     setOperationAction(ISD::SRL, MVT::i32, Custom);
108   }
109 
110   if (!Subtarget.hasStdExtM()) {
111     setOperationAction(ISD::MUL, XLenVT, Expand);
112     setOperationAction(ISD::MULHS, XLenVT, Expand);
113     setOperationAction(ISD::MULHU, XLenVT, Expand);
114     setOperationAction(ISD::SDIV, XLenVT, Expand);
115     setOperationAction(ISD::UDIV, XLenVT, Expand);
116     setOperationAction(ISD::SREM, XLenVT, Expand);
117     setOperationAction(ISD::UREM, XLenVT, Expand);
118   }
119 
120   if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) {
121     setOperationAction(ISD::MUL, MVT::i32, Custom);
122     setOperationAction(ISD::SDIV, MVT::i32, Custom);
123     setOperationAction(ISD::UDIV, MVT::i32, Custom);
124     setOperationAction(ISD::UREM, MVT::i32, Custom);
125   }
126 
127   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
128   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
129   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
130   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
131 
132   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
133   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
134   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
135 
136   setOperationAction(ISD::ROTL, XLenVT, Expand);
137   setOperationAction(ISD::ROTR, XLenVT, Expand);
138   setOperationAction(ISD::BSWAP, XLenVT, Expand);
139   setOperationAction(ISD::CTTZ, XLenVT, Expand);
140   setOperationAction(ISD::CTLZ, XLenVT, Expand);
141   setOperationAction(ISD::CTPOP, XLenVT, Expand);
142 
143   ISD::CondCode FPCCToExtend[] = {
144       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
145       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
146       ISD::SETGE,  ISD::SETNE};
147 
148   ISD::NodeType FPOpToExtend[] = {
149       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM};
150 
151   if (Subtarget.hasStdExtF()) {
152     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
153     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
154     for (auto CC : FPCCToExtend)
155       setCondCodeAction(CC, MVT::f32, Expand);
156     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
157     setOperationAction(ISD::SELECT, MVT::f32, Custom);
158     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
159     for (auto Op : FPOpToExtend)
160       setOperationAction(Op, MVT::f32, Expand);
161   }
162 
163   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
164     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
165 
166   if (Subtarget.hasStdExtD()) {
167     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
168     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
169     for (auto CC : FPCCToExtend)
170       setCondCodeAction(CC, MVT::f64, Expand);
171     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
172     setOperationAction(ISD::SELECT, MVT::f64, Custom);
173     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
174     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
175     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
176     for (auto Op : FPOpToExtend)
177       setOperationAction(Op, MVT::f64, Expand);
178   }
179 
180   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
181   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
182   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
183 
184   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
185 
186   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
187   // Unfortunately this can't be determined just from the ISA naming string.
188   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
189                      Subtarget.is64Bit() ? Legal : Custom);
190 
191   if (Subtarget.hasStdExtA()) {
192     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
193     setMinCmpXchgSizeInBits(32);
194   } else {
195     setMaxAtomicSizeInBitsSupported(0);
196   }
197 
198   setBooleanContents(ZeroOrOneBooleanContent);
199 
200   // Function alignments.
201   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
202   setMinFunctionAlignment(FunctionAlignment);
203   setPrefFunctionAlignment(FunctionAlignment);
204 
205   // Effectively disable jump table generation.
206   setMinimumJumpTableEntries(INT_MAX);
207 }
208 
209 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
210                                             EVT VT) const {
211   if (!VT.isVector())
212     return getPointerTy(DL);
213   return VT.changeVectorElementTypeToInteger();
214 }
215 
216 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
217                                              const CallInst &I,
218                                              MachineFunction &MF,
219                                              unsigned Intrinsic) const {
220   switch (Intrinsic) {
221   default:
222     return false;
223   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
224   case Intrinsic::riscv_masked_atomicrmw_add_i32:
225   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
226   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
227   case Intrinsic::riscv_masked_atomicrmw_max_i32:
228   case Intrinsic::riscv_masked_atomicrmw_min_i32:
229   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
230   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
231   case Intrinsic::riscv_masked_cmpxchg_i32:
232     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
233     Info.opc = ISD::INTRINSIC_W_CHAIN;
234     Info.memVT = MVT::getVT(PtrTy->getElementType());
235     Info.ptrVal = I.getArgOperand(0);
236     Info.offset = 0;
237     Info.align = Align(4);
238     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
239                  MachineMemOperand::MOVolatile;
240     return true;
241   }
242 }
243 
244 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
245                                                 const AddrMode &AM, Type *Ty,
246                                                 unsigned AS,
247                                                 Instruction *I) const {
248   // No global is ever allowed as a base.
249   if (AM.BaseGV)
250     return false;
251 
252   // Require a 12-bit signed offset.
253   if (!isInt<12>(AM.BaseOffs))
254     return false;
255 
256   switch (AM.Scale) {
257   case 0: // "r+i" or just "i", depending on HasBaseReg.
258     break;
259   case 1:
260     if (!AM.HasBaseReg) // allow "r+i".
261       break;
262     return false; // disallow "r+r" or "r+r+i".
263   default:
264     return false;
265   }
266 
267   return true;
268 }
269 
270 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
271   return isInt<12>(Imm);
272 }
273 
274 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
275   return isInt<12>(Imm);
276 }
277 
278 // On RV32, 64-bit integers are split into their high and low parts and held
279 // in two different registers, so the trunc is free since the low register can
280 // just be used.
281 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
282   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
283     return false;
284   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
285   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
286   return (SrcBits == 64 && DestBits == 32);
287 }
288 
289 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
290   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
291       !SrcVT.isInteger() || !DstVT.isInteger())
292     return false;
293   unsigned SrcBits = SrcVT.getSizeInBits();
294   unsigned DestBits = DstVT.getSizeInBits();
295   return (SrcBits == 64 && DestBits == 32);
296 }
297 
298 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
299   // Zexts are free if they can be combined with a load.
300   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
301     EVT MemVT = LD->getMemoryVT();
302     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
303          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
304         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
305          LD->getExtensionType() == ISD::ZEXTLOAD))
306       return true;
307   }
308 
309   return TargetLowering::isZExtFree(Val, VT2);
310 }
311 
312 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
313   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
314 }
315 
316 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
317   return (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
318          (VT == MVT::f64 && Subtarget.hasStdExtD());
319 }
320 
321 // Changes the condition code and swaps operands if necessary, so the SetCC
322 // operation matches one of the comparisons supported directly in the RISC-V
323 // ISA.
324 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
325   switch (CC) {
326   default:
327     break;
328   case ISD::SETGT:
329   case ISD::SETLE:
330   case ISD::SETUGT:
331   case ISD::SETULE:
332     CC = ISD::getSetCCSwappedOperands(CC);
333     std::swap(LHS, RHS);
334     break;
335   }
336 }
337 
338 // Return the RISC-V branch opcode that matches the given DAG integer
339 // condition code. The CondCode must be one of those supported by the RISC-V
340 // ISA (see normaliseSetCC).
341 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
342   switch (CC) {
343   default:
344     llvm_unreachable("Unsupported CondCode");
345   case ISD::SETEQ:
346     return RISCV::BEQ;
347   case ISD::SETNE:
348     return RISCV::BNE;
349   case ISD::SETLT:
350     return RISCV::BLT;
351   case ISD::SETGE:
352     return RISCV::BGE;
353   case ISD::SETULT:
354     return RISCV::BLTU;
355   case ISD::SETUGE:
356     return RISCV::BGEU;
357   }
358 }
359 
360 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
361                                             SelectionDAG &DAG) const {
362   switch (Op.getOpcode()) {
363   default:
364     report_fatal_error("unimplemented operand");
365   case ISD::GlobalAddress:
366     return lowerGlobalAddress(Op, DAG);
367   case ISD::BlockAddress:
368     return lowerBlockAddress(Op, DAG);
369   case ISD::ConstantPool:
370     return lowerConstantPool(Op, DAG);
371   case ISD::GlobalTLSAddress:
372     return lowerGlobalTLSAddress(Op, DAG);
373   case ISD::SELECT:
374     return lowerSELECT(Op, DAG);
375   case ISD::VASTART:
376     return lowerVASTART(Op, DAG);
377   case ISD::FRAMEADDR:
378     return lowerFRAMEADDR(Op, DAG);
379   case ISD::RETURNADDR:
380     return lowerRETURNADDR(Op, DAG);
381   case ISD::SHL_PARTS:
382     return lowerShiftLeftParts(Op, DAG);
383   case ISD::SRA_PARTS:
384     return lowerShiftRightParts(Op, DAG, true);
385   case ISD::SRL_PARTS:
386     return lowerShiftRightParts(Op, DAG, false);
387   case ISD::BITCAST: {
388     assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() &&
389            "Unexpected custom legalisation");
390     SDLoc DL(Op);
391     SDValue Op0 = Op.getOperand(0);
392     if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32)
393       return SDValue();
394     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
395     SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
396     return FPConv;
397   }
398   }
399 }
400 
401 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
402                              SelectionDAG &DAG, unsigned Flags) {
403   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
404 }
405 
406 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
407                              SelectionDAG &DAG, unsigned Flags) {
408   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
409                                    Flags);
410 }
411 
412 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
413                              SelectionDAG &DAG, unsigned Flags) {
414   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
415                                    N->getOffset(), Flags);
416 }
417 
418 template <class NodeTy>
419 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
420                                      bool IsLocal) const {
421   SDLoc DL(N);
422   EVT Ty = getPointerTy(DAG.getDataLayout());
423 
424   if (isPositionIndependent()) {
425     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
426     if (IsLocal)
427       // Use PC-relative addressing to access the symbol. This generates the
428       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
429       // %pcrel_lo(auipc)).
430       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
431 
432     // Use PC-relative addressing to access the GOT for this symbol, then load
433     // the address from the GOT. This generates the pattern (PseudoLA sym),
434     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
435     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
436   }
437 
438   switch (getTargetMachine().getCodeModel()) {
439   default:
440     report_fatal_error("Unsupported code model for lowering");
441   case CodeModel::Small: {
442     // Generate a sequence for accessing addresses within the first 2 GiB of
443     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
444     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
445     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
446     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
447     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
448   }
449   case CodeModel::Medium: {
450     // Generate a sequence for accessing addresses within any 2GiB range within
451     // the address space. This generates the pattern (PseudoLLA sym), which
452     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
453     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
454     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
455   }
456   }
457 }
458 
459 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
460                                                 SelectionDAG &DAG) const {
461   SDLoc DL(Op);
462   EVT Ty = Op.getValueType();
463   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
464   int64_t Offset = N->getOffset();
465   MVT XLenVT = Subtarget.getXLenVT();
466 
467   const GlobalValue *GV = N->getGlobal();
468   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
469   SDValue Addr = getAddr(N, DAG, IsLocal);
470 
471   // In order to maximise the opportunity for common subexpression elimination,
472   // emit a separate ADD node for the global address offset instead of folding
473   // it in the global address node. Later peephole optimisations may choose to
474   // fold it back in when profitable.
475   if (Offset != 0)
476     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
477                        DAG.getConstant(Offset, DL, XLenVT));
478   return Addr;
479 }
480 
481 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
482                                                SelectionDAG &DAG) const {
483   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
484 
485   return getAddr(N, DAG);
486 }
487 
488 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
489                                                SelectionDAG &DAG) const {
490   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
491 
492   return getAddr(N, DAG);
493 }
494 
495 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
496                                               SelectionDAG &DAG,
497                                               bool UseGOT) const {
498   SDLoc DL(N);
499   EVT Ty = getPointerTy(DAG.getDataLayout());
500   const GlobalValue *GV = N->getGlobal();
501   MVT XLenVT = Subtarget.getXLenVT();
502 
503   if (UseGOT) {
504     // Use PC-relative addressing to access the GOT for this TLS symbol, then
505     // load the address from the GOT and add the thread pointer. This generates
506     // the pattern (PseudoLA_TLS_IE sym), which expands to
507     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
508     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
509     SDValue Load =
510         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
511 
512     // Add the thread pointer.
513     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
514     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
515   }
516 
517   // Generate a sequence for accessing the address relative to the thread
518   // pointer, with the appropriate adjustment for the thread pointer offset.
519   // This generates the pattern
520   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
521   SDValue AddrHi =
522       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
523   SDValue AddrAdd =
524       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
525   SDValue AddrLo =
526       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
527 
528   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
529   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
530   SDValue MNAdd = SDValue(
531       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
532       0);
533   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
534 }
535 
536 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
537                                                SelectionDAG &DAG) const {
538   SDLoc DL(N);
539   EVT Ty = getPointerTy(DAG.getDataLayout());
540   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
541   const GlobalValue *GV = N->getGlobal();
542 
543   // Use a PC-relative addressing mode to access the global dynamic GOT address.
544   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
545   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
546   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
547   SDValue Load =
548       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
549 
550   // Prepare argument list to generate call.
551   ArgListTy Args;
552   ArgListEntry Entry;
553   Entry.Node = Load;
554   Entry.Ty = CallTy;
555   Args.push_back(Entry);
556 
557   // Setup call to __tls_get_addr.
558   TargetLowering::CallLoweringInfo CLI(DAG);
559   CLI.setDebugLoc(DL)
560       .setChain(DAG.getEntryNode())
561       .setLibCallee(CallingConv::C, CallTy,
562                     DAG.getExternalSymbol("__tls_get_addr", Ty),
563                     std::move(Args));
564 
565   return LowerCallTo(CLI).first;
566 }
567 
568 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
569                                                    SelectionDAG &DAG) const {
570   SDLoc DL(Op);
571   EVT Ty = Op.getValueType();
572   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
573   int64_t Offset = N->getOffset();
574   MVT XLenVT = Subtarget.getXLenVT();
575 
576   // Non-PIC TLS lowering should always use the LocalExec model.
577   TLSModel::Model Model = isPositionIndependent()
578                               ? getTargetMachine().getTLSModel(N->getGlobal())
579                               : TLSModel::LocalExec;
580 
581   SDValue Addr;
582   switch (Model) {
583   case TLSModel::LocalExec:
584     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
585     break;
586   case TLSModel::InitialExec:
587     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
588     break;
589   case TLSModel::LocalDynamic:
590   case TLSModel::GeneralDynamic:
591     Addr = getDynamicTLSAddr(N, DAG);
592     break;
593   }
594 
595   // In order to maximise the opportunity for common subexpression elimination,
596   // emit a separate ADD node for the global address offset instead of folding
597   // it in the global address node. Later peephole optimisations may choose to
598   // fold it back in when profitable.
599   if (Offset != 0)
600     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
601                        DAG.getConstant(Offset, DL, XLenVT));
602   return Addr;
603 }
604 
605 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
606   SDValue CondV = Op.getOperand(0);
607   SDValue TrueV = Op.getOperand(1);
608   SDValue FalseV = Op.getOperand(2);
609   SDLoc DL(Op);
610   MVT XLenVT = Subtarget.getXLenVT();
611 
612   // If the result type is XLenVT and CondV is the output of a SETCC node
613   // which also operated on XLenVT inputs, then merge the SETCC node into the
614   // lowered RISCVISD::SELECT_CC to take advantage of the integer
615   // compare+branch instructions. i.e.:
616   // (select (setcc lhs, rhs, cc), truev, falsev)
617   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
618   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
619       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
620     SDValue LHS = CondV.getOperand(0);
621     SDValue RHS = CondV.getOperand(1);
622     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
623     ISD::CondCode CCVal = CC->get();
624 
625     normaliseSetCC(LHS, RHS, CCVal);
626 
627     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
628     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
629     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
630     return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
631   }
632 
633   // Otherwise:
634   // (select condv, truev, falsev)
635   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
636   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
637   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
638 
639   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
640   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
641 
642   return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
643 }
644 
645 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
646   MachineFunction &MF = DAG.getMachineFunction();
647   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
648 
649   SDLoc DL(Op);
650   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
651                                  getPointerTy(MF.getDataLayout()));
652 
653   // vastart just stores the address of the VarArgsFrameIndex slot into the
654   // memory location argument.
655   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
656   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
657                       MachinePointerInfo(SV));
658 }
659 
660 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
661                                             SelectionDAG &DAG) const {
662   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
663   MachineFunction &MF = DAG.getMachineFunction();
664   MachineFrameInfo &MFI = MF.getFrameInfo();
665   MFI.setFrameAddressIsTaken(true);
666   Register FrameReg = RI.getFrameRegister(MF);
667   int XLenInBytes = Subtarget.getXLen() / 8;
668 
669   EVT VT = Op.getValueType();
670   SDLoc DL(Op);
671   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
672   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
673   while (Depth--) {
674     int Offset = -(XLenInBytes * 2);
675     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
676                               DAG.getIntPtrConstant(Offset, DL));
677     FrameAddr =
678         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
679   }
680   return FrameAddr;
681 }
682 
683 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
684                                              SelectionDAG &DAG) const {
685   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
686   MachineFunction &MF = DAG.getMachineFunction();
687   MachineFrameInfo &MFI = MF.getFrameInfo();
688   MFI.setReturnAddressIsTaken(true);
689   MVT XLenVT = Subtarget.getXLenVT();
690   int XLenInBytes = Subtarget.getXLen() / 8;
691 
692   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
693     return SDValue();
694 
695   EVT VT = Op.getValueType();
696   SDLoc DL(Op);
697   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
698   if (Depth) {
699     int Off = -XLenInBytes;
700     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
701     SDValue Offset = DAG.getConstant(Off, DL, VT);
702     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
703                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
704                        MachinePointerInfo());
705   }
706 
707   // Return the value of the return address register, marking it an implicit
708   // live-in.
709   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
710   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
711 }
712 
713 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
714                                                  SelectionDAG &DAG) const {
715   SDLoc DL(Op);
716   SDValue Lo = Op.getOperand(0);
717   SDValue Hi = Op.getOperand(1);
718   SDValue Shamt = Op.getOperand(2);
719   EVT VT = Lo.getValueType();
720 
721   // if Shamt-XLEN < 0: // Shamt < XLEN
722   //   Lo = Lo << Shamt
723   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
724   // else:
725   //   Lo = 0
726   //   Hi = Lo << (Shamt-XLEN)
727 
728   SDValue Zero = DAG.getConstant(0, DL, VT);
729   SDValue One = DAG.getConstant(1, DL, VT);
730   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
731   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
732   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
733   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
734 
735   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
736   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
737   SDValue ShiftRightLo =
738       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
739   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
740   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
741   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
742 
743   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
744 
745   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
746   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
747 
748   SDValue Parts[2] = {Lo, Hi};
749   return DAG.getMergeValues(Parts, DL);
750 }
751 
752 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
753                                                   bool IsSRA) const {
754   SDLoc DL(Op);
755   SDValue Lo = Op.getOperand(0);
756   SDValue Hi = Op.getOperand(1);
757   SDValue Shamt = Op.getOperand(2);
758   EVT VT = Lo.getValueType();
759 
760   // SRA expansion:
761   //   if Shamt-XLEN < 0: // Shamt < XLEN
762   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
763   //     Hi = Hi >>s Shamt
764   //   else:
765   //     Lo = Hi >>s (Shamt-XLEN);
766   //     Hi = Hi >>s (XLEN-1)
767   //
768   // SRL expansion:
769   //   if Shamt-XLEN < 0: // Shamt < XLEN
770   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
771   //     Hi = Hi >>u Shamt
772   //   else:
773   //     Lo = Hi >>u (Shamt-XLEN);
774   //     Hi = 0;
775 
776   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
777 
778   SDValue Zero = DAG.getConstant(0, DL, VT);
779   SDValue One = DAG.getConstant(1, DL, VT);
780   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
781   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
782   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
783   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
784 
785   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
786   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
787   SDValue ShiftLeftHi =
788       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
789   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
790   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
791   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
792   SDValue HiFalse =
793       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
794 
795   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
796 
797   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
798   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
799 
800   SDValue Parts[2] = {Lo, Hi};
801   return DAG.getMergeValues(Parts, DL);
802 }
803 
804 // Returns the opcode of the target-specific SDNode that implements the 32-bit
805 // form of the given Opcode.
806 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
807   switch (Opcode) {
808   default:
809     llvm_unreachable("Unexpected opcode");
810   case ISD::SHL:
811     return RISCVISD::SLLW;
812   case ISD::SRA:
813     return RISCVISD::SRAW;
814   case ISD::SRL:
815     return RISCVISD::SRLW;
816   case ISD::SDIV:
817     return RISCVISD::DIVW;
818   case ISD::UDIV:
819     return RISCVISD::DIVUW;
820   case ISD::UREM:
821     return RISCVISD::REMUW;
822   }
823 }
824 
825 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
826 // Because i32 isn't a legal type for RV64, these operations would otherwise
827 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
828 // later one because the fact the operation was originally of type i32 is
829 // lost.
830 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) {
831   SDLoc DL(N);
832   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
833   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
834   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
835   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
836   // ReplaceNodeResults requires we maintain the same type for the return value.
837   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
838 }
839 
840 // Converts the given 32-bit operation to a i64 operation with signed extension
841 // semantic to reduce the signed extension instructions.
842 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
843   SDLoc DL(N);
844   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
845   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
846   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
847   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
848                                DAG.getValueType(MVT::i32));
849   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
850 }
851 
852 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
853                                              SmallVectorImpl<SDValue> &Results,
854                                              SelectionDAG &DAG) const {
855   SDLoc DL(N);
856   switch (N->getOpcode()) {
857   default:
858     llvm_unreachable("Don't know how to custom type legalize this operation!");
859   case ISD::READCYCLECOUNTER: {
860     assert(!Subtarget.is64Bit() &&
861            "READCYCLECOUNTER only has custom type legalization on riscv32");
862 
863     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
864     SDValue RCW =
865         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
866 
867     Results.push_back(RCW);
868     Results.push_back(RCW.getValue(1));
869     Results.push_back(RCW.getValue(2));
870     break;
871   }
872   case ISD::ADD:
873   case ISD::SUB:
874   case ISD::MUL:
875     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
876            "Unexpected custom legalisation");
877     if (N->getOperand(1).getOpcode() == ISD::Constant)
878       return;
879     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
880     break;
881   case ISD::SHL:
882   case ISD::SRA:
883   case ISD::SRL:
884     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
885            "Unexpected custom legalisation");
886     if (N->getOperand(1).getOpcode() == ISD::Constant)
887       return;
888     Results.push_back(customLegalizeToWOp(N, DAG));
889     break;
890   case ISD::SDIV:
891   case ISD::UDIV:
892   case ISD::UREM:
893     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
894            Subtarget.hasStdExtM() && "Unexpected custom legalisation");
895     if (N->getOperand(0).getOpcode() == ISD::Constant ||
896         N->getOperand(1).getOpcode() == ISD::Constant)
897       return;
898     Results.push_back(customLegalizeToWOp(N, DAG));
899     break;
900   case ISD::BITCAST: {
901     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
902            Subtarget.hasStdExtF() && "Unexpected custom legalisation");
903     SDLoc DL(N);
904     SDValue Op0 = N->getOperand(0);
905     if (Op0.getValueType() != MVT::f32)
906       return;
907     SDValue FPConv =
908         DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
909     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
910     break;
911   }
912   }
913 }
914 
915 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
916                                                DAGCombinerInfo &DCI) const {
917   SelectionDAG &DAG = DCI.DAG;
918 
919   switch (N->getOpcode()) {
920   default:
921     break;
922   case RISCVISD::SplitF64: {
923     SDValue Op0 = N->getOperand(0);
924     // If the input to SplitF64 is just BuildPairF64 then the operation is
925     // redundant. Instead, use BuildPairF64's operands directly.
926     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
927       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
928 
929     SDLoc DL(N);
930 
931     // It's cheaper to materialise two 32-bit integers than to load a double
932     // from the constant pool and transfer it to integer registers through the
933     // stack.
934     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
935       APInt V = C->getValueAPF().bitcastToAPInt();
936       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
937       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
938       return DCI.CombineTo(N, Lo, Hi);
939     }
940 
941     // This is a target-specific version of a DAGCombine performed in
942     // DAGCombiner::visitBITCAST. It performs the equivalent of:
943     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
944     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
945     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
946         !Op0.getNode()->hasOneUse())
947       break;
948     SDValue NewSplitF64 =
949         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
950                     Op0.getOperand(0));
951     SDValue Lo = NewSplitF64.getValue(0);
952     SDValue Hi = NewSplitF64.getValue(1);
953     APInt SignBit = APInt::getSignMask(32);
954     if (Op0.getOpcode() == ISD::FNEG) {
955       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
956                                   DAG.getConstant(SignBit, DL, MVT::i32));
957       return DCI.CombineTo(N, Lo, NewHi);
958     }
959     assert(Op0.getOpcode() == ISD::FABS);
960     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
961                                 DAG.getConstant(~SignBit, DL, MVT::i32));
962     return DCI.CombineTo(N, Lo, NewHi);
963   }
964   case RISCVISD::SLLW:
965   case RISCVISD::SRAW:
966   case RISCVISD::SRLW: {
967     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
968     SDValue LHS = N->getOperand(0);
969     SDValue RHS = N->getOperand(1);
970     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
971     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
972     if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) ||
973         (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)))
974       return SDValue();
975     break;
976   }
977   case RISCVISD::FMV_X_ANYEXTW_RV64: {
978     SDLoc DL(N);
979     SDValue Op0 = N->getOperand(0);
980     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
981     // conversion is unnecessary and can be replaced with an ANY_EXTEND
982     // of the FMV_W_X_RV64 operand.
983     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
984       SDValue AExtOp =
985           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0));
986       return DCI.CombineTo(N, AExtOp);
987     }
988 
989     // This is a target-specific version of a DAGCombine performed in
990     // DAGCombiner::visitBITCAST. It performs the equivalent of:
991     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
992     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
993     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
994         !Op0.getNode()->hasOneUse())
995       break;
996     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
997                                  Op0.getOperand(0));
998     APInt SignBit = APInt::getSignMask(32).sext(64);
999     if (Op0.getOpcode() == ISD::FNEG) {
1000       return DCI.CombineTo(N,
1001                            DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
1002                                        DAG.getConstant(SignBit, DL, MVT::i64)));
1003     }
1004     assert(Op0.getOpcode() == ISD::FABS);
1005     return DCI.CombineTo(N,
1006                          DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
1007                                      DAG.getConstant(~SignBit, DL, MVT::i64)));
1008   }
1009   }
1010 
1011   return SDValue();
1012 }
1013 
1014 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
1015     const SDNode *N, CombineLevel Level) const {
1016   // The following folds are only desirable if `(OP _, c1 << c2)` can be
1017   // materialised in fewer instructions than `(OP _, c1)`:
1018   //
1019   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
1020   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
1021   SDValue N0 = N->getOperand(0);
1022   EVT Ty = N0.getValueType();
1023   if (Ty.isScalarInteger() &&
1024       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
1025     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
1026     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
1027     if (C1 && C2) {
1028       APInt C1Int = C1->getAPIntValue();
1029       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
1030 
1031       // We can materialise `c1 << c2` into an add immediate, so it's "free",
1032       // and the combine should happen, to potentially allow further combines
1033       // later.
1034       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
1035           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
1036         return true;
1037 
1038       // We can materialise `c1` in an add immediate, so it's "free", and the
1039       // combine should be prevented.
1040       if (C1Int.getMinSignedBits() <= 64 &&
1041           isLegalAddImmediate(C1Int.getSExtValue()))
1042         return false;
1043 
1044       // Neither constant will fit into an immediate, so find materialisation
1045       // costs.
1046       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
1047                                               Subtarget.is64Bit());
1048       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
1049           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
1050 
1051       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
1052       // combine should be prevented.
1053       if (C1Cost < ShiftedC1Cost)
1054         return false;
1055     }
1056   }
1057   return true;
1058 }
1059 
1060 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
1061     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
1062     unsigned Depth) const {
1063   switch (Op.getOpcode()) {
1064   default:
1065     break;
1066   case RISCVISD::SLLW:
1067   case RISCVISD::SRAW:
1068   case RISCVISD::SRLW:
1069   case RISCVISD::DIVW:
1070   case RISCVISD::DIVUW:
1071   case RISCVISD::REMUW:
1072     // TODO: As the result is sign-extended, this is conservatively correct. A
1073     // more precise answer could be calculated for SRAW depending on known
1074     // bits in the shift amount.
1075     return 33;
1076   }
1077 
1078   return 1;
1079 }
1080 
1081 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
1082                                                   MachineBasicBlock *BB) {
1083   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
1084 
1085   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
1086   // Should the count have wrapped while it was being read, we need to try
1087   // again.
1088   // ...
1089   // read:
1090   // rdcycleh x3 # load high word of cycle
1091   // rdcycle  x2 # load low word of cycle
1092   // rdcycleh x4 # load high word of cycle
1093   // bne x3, x4, read # check if high word reads match, otherwise try again
1094   // ...
1095 
1096   MachineFunction &MF = *BB->getParent();
1097   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1098   MachineFunction::iterator It = ++BB->getIterator();
1099 
1100   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1101   MF.insert(It, LoopMBB);
1102 
1103   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1104   MF.insert(It, DoneMBB);
1105 
1106   // Transfer the remainder of BB and its successor edges to DoneMBB.
1107   DoneMBB->splice(DoneMBB->begin(), BB,
1108                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1109   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
1110 
1111   BB->addSuccessor(LoopMBB);
1112 
1113   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1114   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1115   Register LoReg = MI.getOperand(0).getReg();
1116   Register HiReg = MI.getOperand(1).getReg();
1117   DebugLoc DL = MI.getDebugLoc();
1118 
1119   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1120   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
1121       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1122       .addReg(RISCV::X0);
1123   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
1124       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
1125       .addReg(RISCV::X0);
1126   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
1127       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1128       .addReg(RISCV::X0);
1129 
1130   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
1131       .addReg(HiReg)
1132       .addReg(ReadAgainReg)
1133       .addMBB(LoopMBB);
1134 
1135   LoopMBB->addSuccessor(LoopMBB);
1136   LoopMBB->addSuccessor(DoneMBB);
1137 
1138   MI.eraseFromParent();
1139 
1140   return DoneMBB;
1141 }
1142 
1143 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
1144                                              MachineBasicBlock *BB) {
1145   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
1146 
1147   MachineFunction &MF = *BB->getParent();
1148   DebugLoc DL = MI.getDebugLoc();
1149   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1150   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1151   Register LoReg = MI.getOperand(0).getReg();
1152   Register HiReg = MI.getOperand(1).getReg();
1153   Register SrcReg = MI.getOperand(2).getReg();
1154   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
1155   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
1156 
1157   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
1158                           RI);
1159   MachineMemOperand *MMO =
1160       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1161                               MachineMemOperand::MOLoad, 8, 8);
1162   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
1163       .addFrameIndex(FI)
1164       .addImm(0)
1165       .addMemOperand(MMO);
1166   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
1167       .addFrameIndex(FI)
1168       .addImm(4)
1169       .addMemOperand(MMO);
1170   MI.eraseFromParent(); // The pseudo instruction is gone now.
1171   return BB;
1172 }
1173 
1174 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
1175                                                  MachineBasicBlock *BB) {
1176   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
1177          "Unexpected instruction");
1178 
1179   MachineFunction &MF = *BB->getParent();
1180   DebugLoc DL = MI.getDebugLoc();
1181   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1182   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1183   Register DstReg = MI.getOperand(0).getReg();
1184   Register LoReg = MI.getOperand(1).getReg();
1185   Register HiReg = MI.getOperand(2).getReg();
1186   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
1187   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
1188 
1189   MachineMemOperand *MMO =
1190       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1191                               MachineMemOperand::MOStore, 8, 8);
1192   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1193       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
1194       .addFrameIndex(FI)
1195       .addImm(0)
1196       .addMemOperand(MMO);
1197   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1198       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
1199       .addFrameIndex(FI)
1200       .addImm(4)
1201       .addMemOperand(MMO);
1202   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
1203   MI.eraseFromParent(); // The pseudo instruction is gone now.
1204   return BB;
1205 }
1206 
1207 static bool isSelectPseudo(MachineInstr &MI) {
1208   switch (MI.getOpcode()) {
1209   default:
1210     return false;
1211   case RISCV::Select_GPR_Using_CC_GPR:
1212   case RISCV::Select_FPR32_Using_CC_GPR:
1213   case RISCV::Select_FPR64_Using_CC_GPR:
1214     return true;
1215   }
1216 }
1217 
1218 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
1219                                            MachineBasicBlock *BB) {
1220   // To "insert" Select_* instructions, we actually have to insert the triangle
1221   // control-flow pattern.  The incoming instructions know the destination vreg
1222   // to set, the condition code register to branch on, the true/false values to
1223   // select between, and the condcode to use to select the appropriate branch.
1224   //
1225   // We produce the following control flow:
1226   //     HeadMBB
1227   //     |  \
1228   //     |  IfFalseMBB
1229   //     | /
1230   //    TailMBB
1231   //
1232   // When we find a sequence of selects we attempt to optimize their emission
1233   // by sharing the control flow. Currently we only handle cases where we have
1234   // multiple selects with the exact same condition (same LHS, RHS and CC).
1235   // The selects may be interleaved with other instructions if the other
1236   // instructions meet some requirements we deem safe:
1237   // - They are debug instructions. Otherwise,
1238   // - They do not have side-effects, do not access memory and their inputs do
1239   //   not depend on the results of the select pseudo-instructions.
1240   // The TrueV/FalseV operands of the selects cannot depend on the result of
1241   // previous selects in the sequence.
1242   // These conditions could be further relaxed. See the X86 target for a
1243   // related approach and more information.
1244   Register LHS = MI.getOperand(1).getReg();
1245   Register RHS = MI.getOperand(2).getReg();
1246   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
1247 
1248   SmallVector<MachineInstr *, 4> SelectDebugValues;
1249   SmallSet<Register, 4> SelectDests;
1250   SelectDests.insert(MI.getOperand(0).getReg());
1251 
1252   MachineInstr *LastSelectPseudo = &MI;
1253 
1254   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
1255        SequenceMBBI != E; ++SequenceMBBI) {
1256     if (SequenceMBBI->isDebugInstr())
1257       continue;
1258     else if (isSelectPseudo(*SequenceMBBI)) {
1259       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
1260           SequenceMBBI->getOperand(2).getReg() != RHS ||
1261           SequenceMBBI->getOperand(3).getImm() != CC ||
1262           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
1263           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
1264         break;
1265       LastSelectPseudo = &*SequenceMBBI;
1266       SequenceMBBI->collectDebugValues(SelectDebugValues);
1267       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
1268     } else {
1269       if (SequenceMBBI->hasUnmodeledSideEffects() ||
1270           SequenceMBBI->mayLoadOrStore())
1271         break;
1272       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
1273             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
1274           }))
1275         break;
1276     }
1277   }
1278 
1279   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1280   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1281   DebugLoc DL = MI.getDebugLoc();
1282   MachineFunction::iterator I = ++BB->getIterator();
1283 
1284   MachineBasicBlock *HeadMBB = BB;
1285   MachineFunction *F = BB->getParent();
1286   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
1287   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
1288 
1289   F->insert(I, IfFalseMBB);
1290   F->insert(I, TailMBB);
1291 
1292   // Transfer debug instructions associated with the selects to TailMBB.
1293   for (MachineInstr *DebugInstr : SelectDebugValues) {
1294     TailMBB->push_back(DebugInstr->removeFromParent());
1295   }
1296 
1297   // Move all instructions after the sequence to TailMBB.
1298   TailMBB->splice(TailMBB->end(), HeadMBB,
1299                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
1300   // Update machine-CFG edges by transferring all successors of the current
1301   // block to the new block which will contain the Phi nodes for the selects.
1302   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
1303   // Set the successors for HeadMBB.
1304   HeadMBB->addSuccessor(IfFalseMBB);
1305   HeadMBB->addSuccessor(TailMBB);
1306 
1307   // Insert appropriate branch.
1308   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
1309 
1310   BuildMI(HeadMBB, DL, TII.get(Opcode))
1311     .addReg(LHS)
1312     .addReg(RHS)
1313     .addMBB(TailMBB);
1314 
1315   // IfFalseMBB just falls through to TailMBB.
1316   IfFalseMBB->addSuccessor(TailMBB);
1317 
1318   // Create PHIs for all of the select pseudo-instructions.
1319   auto SelectMBBI = MI.getIterator();
1320   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
1321   auto InsertionPoint = TailMBB->begin();
1322   while (SelectMBBI != SelectEnd) {
1323     auto Next = std::next(SelectMBBI);
1324     if (isSelectPseudo(*SelectMBBI)) {
1325       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
1326       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
1327               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
1328           .addReg(SelectMBBI->getOperand(4).getReg())
1329           .addMBB(HeadMBB)
1330           .addReg(SelectMBBI->getOperand(5).getReg())
1331           .addMBB(IfFalseMBB);
1332       SelectMBBI->eraseFromParent();
1333     }
1334     SelectMBBI = Next;
1335   }
1336 
1337   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
1338   return TailMBB;
1339 }
1340 
1341 MachineBasicBlock *
1342 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1343                                                  MachineBasicBlock *BB) const {
1344   switch (MI.getOpcode()) {
1345   default:
1346     llvm_unreachable("Unexpected instr type to insert");
1347   case RISCV::ReadCycleWide:
1348     assert(!Subtarget.is64Bit() &&
1349            "ReadCycleWrite is only to be used on riscv32");
1350     return emitReadCycleWidePseudo(MI, BB);
1351   case RISCV::Select_GPR_Using_CC_GPR:
1352   case RISCV::Select_FPR32_Using_CC_GPR:
1353   case RISCV::Select_FPR64_Using_CC_GPR:
1354     return emitSelectPseudo(MI, BB);
1355   case RISCV::BuildPairF64Pseudo:
1356     return emitBuildPairF64Pseudo(MI, BB);
1357   case RISCV::SplitF64Pseudo:
1358     return emitSplitF64Pseudo(MI, BB);
1359   }
1360 }
1361 
1362 // Calling Convention Implementation.
1363 // The expectations for frontend ABI lowering vary from target to target.
1364 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
1365 // details, but this is a longer term goal. For now, we simply try to keep the
1366 // role of the frontend as simple and well-defined as possible. The rules can
1367 // be summarised as:
1368 // * Never split up large scalar arguments. We handle them here.
1369 // * If a hardfloat calling convention is being used, and the struct may be
1370 // passed in a pair of registers (fp+fp, int+fp), and both registers are
1371 // available, then pass as two separate arguments. If either the GPRs or FPRs
1372 // are exhausted, then pass according to the rule below.
1373 // * If a struct could never be passed in registers or directly in a stack
1374 // slot (as it is larger than 2*XLEN and the floating point rules don't
1375 // apply), then pass it using a pointer with the byval attribute.
1376 // * If a struct is less than 2*XLEN, then coerce to either a two-element
1377 // word-sized array or a 2*XLEN scalar (depending on alignment).
1378 // * The frontend can determine whether a struct is returned by reference or
1379 // not based on its size and fields. If it will be returned by reference, the
1380 // frontend must modify the prototype so a pointer with the sret annotation is
1381 // passed as the first argument. This is not necessary for large scalar
1382 // returns.
1383 // * Struct return values and varargs should be coerced to structs containing
1384 // register-size fields in the same situations they would be for fixed
1385 // arguments.
1386 
1387 static const MCPhysReg ArgGPRs[] = {
1388   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
1389   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
1390 };
1391 static const MCPhysReg ArgFPR32s[] = {
1392   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
1393   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
1394 };
1395 static const MCPhysReg ArgFPR64s[] = {
1396   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
1397   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
1398 };
1399 
1400 // Pass a 2*XLEN argument that has been split into two XLEN values through
1401 // registers or the stack as necessary.
1402 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
1403                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
1404                                 MVT ValVT2, MVT LocVT2,
1405                                 ISD::ArgFlagsTy ArgFlags2) {
1406   unsigned XLenInBytes = XLen / 8;
1407   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1408     // At least one half can be passed via register.
1409     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
1410                                      VA1.getLocVT(), CCValAssign::Full));
1411   } else {
1412     // Both halves must be passed on the stack, with proper alignment.
1413     unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign());
1414     State.addLoc(
1415         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
1416                             State.AllocateStack(XLenInBytes, StackAlign),
1417                             VA1.getLocVT(), CCValAssign::Full));
1418     State.addLoc(CCValAssign::getMem(
1419         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
1420         CCValAssign::Full));
1421     return false;
1422   }
1423 
1424   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1425     // The second half can also be passed via register.
1426     State.addLoc(
1427         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
1428   } else {
1429     // The second half is passed via the stack, without additional alignment.
1430     State.addLoc(CCValAssign::getMem(
1431         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
1432         CCValAssign::Full));
1433   }
1434 
1435   return false;
1436 }
1437 
1438 // Implements the RISC-V calling convention. Returns true upon failure.
1439 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
1440                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
1441                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
1442                      bool IsRet, Type *OrigTy) {
1443   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
1444   assert(XLen == 32 || XLen == 64);
1445   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
1446 
1447   // Any return value split in to more than two values can't be returned
1448   // directly.
1449   if (IsRet && ValNo > 1)
1450     return true;
1451 
1452   // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a
1453   // variadic argument, or if no F32 argument registers are available.
1454   bool UseGPRForF32 = true;
1455   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
1456   // variadic argument, or if no F64 argument registers are available.
1457   bool UseGPRForF64 = true;
1458 
1459   switch (ABI) {
1460   default:
1461     llvm_unreachable("Unexpected ABI");
1462   case RISCVABI::ABI_ILP32:
1463   case RISCVABI::ABI_LP64:
1464     break;
1465   case RISCVABI::ABI_ILP32F:
1466   case RISCVABI::ABI_LP64F:
1467     UseGPRForF32 = !IsFixed;
1468     break;
1469   case RISCVABI::ABI_ILP32D:
1470   case RISCVABI::ABI_LP64D:
1471     UseGPRForF32 = !IsFixed;
1472     UseGPRForF64 = !IsFixed;
1473     break;
1474   }
1475 
1476   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s))
1477     UseGPRForF32 = true;
1478   if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s))
1479     UseGPRForF64 = true;
1480 
1481   // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local
1482   // variables rather than directly checking against the target ABI.
1483 
1484   if (UseGPRForF32 && ValVT == MVT::f32) {
1485     LocVT = XLenVT;
1486     LocInfo = CCValAssign::BCvt;
1487   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
1488     LocVT = MVT::i64;
1489     LocInfo = CCValAssign::BCvt;
1490   }
1491 
1492   // If this is a variadic argument, the RISC-V calling convention requires
1493   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
1494   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
1495   // be used regardless of whether the original argument was split during
1496   // legalisation or not. The argument will not be passed by registers if the
1497   // original type is larger than 2*XLEN, so the register alignment rule does
1498   // not apply.
1499   unsigned TwoXLenInBytes = (2 * XLen) / 8;
1500   if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes &&
1501       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
1502     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
1503     // Skip 'odd' register if necessary.
1504     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
1505       State.AllocateReg(ArgGPRs);
1506   }
1507 
1508   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
1509   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
1510       State.getPendingArgFlags();
1511 
1512   assert(PendingLocs.size() == PendingArgFlags.size() &&
1513          "PendingLocs and PendingArgFlags out of sync");
1514 
1515   // Handle passing f64 on RV32D with a soft float ABI or when floating point
1516   // registers are exhausted.
1517   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
1518     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
1519            "Can't lower f64 if it is split");
1520     // Depending on available argument GPRS, f64 may be passed in a pair of
1521     // GPRs, split between a GPR and the stack, or passed completely on the
1522     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
1523     // cases.
1524     Register Reg = State.AllocateReg(ArgGPRs);
1525     LocVT = MVT::i32;
1526     if (!Reg) {
1527       unsigned StackOffset = State.AllocateStack(8, 8);
1528       State.addLoc(
1529           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1530       return false;
1531     }
1532     if (!State.AllocateReg(ArgGPRs))
1533       State.AllocateStack(4, 4);
1534     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1535     return false;
1536   }
1537 
1538   // Split arguments might be passed indirectly, so keep track of the pending
1539   // values.
1540   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
1541     LocVT = XLenVT;
1542     LocInfo = CCValAssign::Indirect;
1543     PendingLocs.push_back(
1544         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
1545     PendingArgFlags.push_back(ArgFlags);
1546     if (!ArgFlags.isSplitEnd()) {
1547       return false;
1548     }
1549   }
1550 
1551   // If the split argument only had two elements, it should be passed directly
1552   // in registers or on the stack.
1553   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
1554     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
1555     // Apply the normal calling convention rules to the first half of the
1556     // split argument.
1557     CCValAssign VA = PendingLocs[0];
1558     ISD::ArgFlagsTy AF = PendingArgFlags[0];
1559     PendingLocs.clear();
1560     PendingArgFlags.clear();
1561     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
1562                                ArgFlags);
1563   }
1564 
1565   // Allocate to a register if possible, or else a stack slot.
1566   Register Reg;
1567   if (ValVT == MVT::f32 && !UseGPRForF32)
1568     Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s);
1569   else if (ValVT == MVT::f64 && !UseGPRForF64)
1570     Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s);
1571   else
1572     Reg = State.AllocateReg(ArgGPRs);
1573   unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8);
1574 
1575   // If we reach this point and PendingLocs is non-empty, we must be at the
1576   // end of a split argument that must be passed indirectly.
1577   if (!PendingLocs.empty()) {
1578     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
1579     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
1580 
1581     for (auto &It : PendingLocs) {
1582       if (Reg)
1583         It.convertToReg(Reg);
1584       else
1585         It.convertToMem(StackOffset);
1586       State.addLoc(It);
1587     }
1588     PendingLocs.clear();
1589     PendingArgFlags.clear();
1590     return false;
1591   }
1592 
1593   assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) &&
1594          "Expected an XLenVT at this stage");
1595 
1596   if (Reg) {
1597     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1598     return false;
1599   }
1600 
1601   // When an f32 or f64 is passed on the stack, no bit-conversion is needed.
1602   if (ValVT == MVT::f32 || ValVT == MVT::f64) {
1603     LocVT = ValVT;
1604     LocInfo = CCValAssign::Full;
1605   }
1606   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1607   return false;
1608 }
1609 
1610 void RISCVTargetLowering::analyzeInputArgs(
1611     MachineFunction &MF, CCState &CCInfo,
1612     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
1613   unsigned NumArgs = Ins.size();
1614   FunctionType *FType = MF.getFunction().getFunctionType();
1615 
1616   for (unsigned i = 0; i != NumArgs; ++i) {
1617     MVT ArgVT = Ins[i].VT;
1618     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
1619 
1620     Type *ArgTy = nullptr;
1621     if (IsRet)
1622       ArgTy = FType->getReturnType();
1623     else if (Ins[i].isOrigArg())
1624       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
1625 
1626     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1627     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1628                  ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) {
1629       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
1630                         << EVT(ArgVT).getEVTString() << '\n');
1631       llvm_unreachable(nullptr);
1632     }
1633   }
1634 }
1635 
1636 void RISCVTargetLowering::analyzeOutputArgs(
1637     MachineFunction &MF, CCState &CCInfo,
1638     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
1639     CallLoweringInfo *CLI) const {
1640   unsigned NumArgs = Outs.size();
1641 
1642   for (unsigned i = 0; i != NumArgs; i++) {
1643     MVT ArgVT = Outs[i].VT;
1644     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
1645     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
1646 
1647     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1648     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1649                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
1650       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
1651                         << EVT(ArgVT).getEVTString() << "\n");
1652       llvm_unreachable(nullptr);
1653     }
1654   }
1655 }
1656 
1657 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
1658 // values.
1659 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
1660                                    const CCValAssign &VA, const SDLoc &DL) {
1661   switch (VA.getLocInfo()) {
1662   default:
1663     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1664   case CCValAssign::Full:
1665     break;
1666   case CCValAssign::BCvt:
1667     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1668       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
1669       break;
1670     }
1671     Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
1672     break;
1673   }
1674   return Val;
1675 }
1676 
1677 // The caller is responsible for loading the full value if the argument is
1678 // passed with CCValAssign::Indirect.
1679 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
1680                                 const CCValAssign &VA, const SDLoc &DL) {
1681   MachineFunction &MF = DAG.getMachineFunction();
1682   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1683   EVT LocVT = VA.getLocVT();
1684   SDValue Val;
1685   const TargetRegisterClass *RC;
1686 
1687   switch (LocVT.getSimpleVT().SimpleTy) {
1688   default:
1689     llvm_unreachable("Unexpected register type");
1690   case MVT::i32:
1691   case MVT::i64:
1692     RC = &RISCV::GPRRegClass;
1693     break;
1694   case MVT::f32:
1695     RC = &RISCV::FPR32RegClass;
1696     break;
1697   case MVT::f64:
1698     RC = &RISCV::FPR64RegClass;
1699     break;
1700   }
1701 
1702   Register VReg = RegInfo.createVirtualRegister(RC);
1703   RegInfo.addLiveIn(VA.getLocReg(), VReg);
1704   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1705 
1706   if (VA.getLocInfo() == CCValAssign::Indirect)
1707     return Val;
1708 
1709   return convertLocVTToValVT(DAG, Val, VA, DL);
1710 }
1711 
1712 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
1713                                    const CCValAssign &VA, const SDLoc &DL) {
1714   EVT LocVT = VA.getLocVT();
1715 
1716   switch (VA.getLocInfo()) {
1717   default:
1718     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1719   case CCValAssign::Full:
1720     break;
1721   case CCValAssign::BCvt:
1722     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1723       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
1724       break;
1725     }
1726     Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
1727     break;
1728   }
1729   return Val;
1730 }
1731 
1732 // The caller is responsible for loading the full value if the argument is
1733 // passed with CCValAssign::Indirect.
1734 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
1735                                 const CCValAssign &VA, const SDLoc &DL) {
1736   MachineFunction &MF = DAG.getMachineFunction();
1737   MachineFrameInfo &MFI = MF.getFrameInfo();
1738   EVT LocVT = VA.getLocVT();
1739   EVT ValVT = VA.getValVT();
1740   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
1741   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
1742                                  VA.getLocMemOffset(), /*Immutable=*/true);
1743   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1744   SDValue Val;
1745 
1746   ISD::LoadExtType ExtType;
1747   switch (VA.getLocInfo()) {
1748   default:
1749     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1750   case CCValAssign::Full:
1751   case CCValAssign::Indirect:
1752   case CCValAssign::BCvt:
1753     ExtType = ISD::NON_EXTLOAD;
1754     break;
1755   }
1756   Val = DAG.getExtLoad(
1757       ExtType, DL, LocVT, Chain, FIN,
1758       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
1759   return Val;
1760 }
1761 
1762 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
1763                                        const CCValAssign &VA, const SDLoc &DL) {
1764   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
1765          "Unexpected VA");
1766   MachineFunction &MF = DAG.getMachineFunction();
1767   MachineFrameInfo &MFI = MF.getFrameInfo();
1768   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1769 
1770   if (VA.isMemLoc()) {
1771     // f64 is passed on the stack.
1772     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
1773     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1774     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
1775                        MachinePointerInfo::getFixedStack(MF, FI));
1776   }
1777 
1778   assert(VA.isRegLoc() && "Expected register VA assignment");
1779 
1780   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1781   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
1782   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
1783   SDValue Hi;
1784   if (VA.getLocReg() == RISCV::X17) {
1785     // Second half of f64 is passed on the stack.
1786     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
1787     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1788     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
1789                      MachinePointerInfo::getFixedStack(MF, FI));
1790   } else {
1791     // Second half of f64 is passed in another GPR.
1792     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1793     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
1794     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
1795   }
1796   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1797 }
1798 
1799 // FastCC has less than 1% performance improvement for some particular
1800 // benchmark. But theoretically, it may has benenfit for some cases.
1801 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
1802                             CCValAssign::LocInfo LocInfo,
1803                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
1804 
1805   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
1806     // X5 and X6 might be used for save-restore libcall.
1807     static const MCPhysReg GPRList[] = {
1808         RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
1809         RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
1810         RISCV::X29, RISCV::X30, RISCV::X31};
1811     if (unsigned Reg = State.AllocateReg(GPRList)) {
1812       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1813       return false;
1814     }
1815   }
1816 
1817   if (LocVT == MVT::f32) {
1818     static const MCPhysReg FPR32List[] = {
1819         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
1820         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
1821         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
1822         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
1823     if (unsigned Reg = State.AllocateReg(FPR32List)) {
1824       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1825       return false;
1826     }
1827   }
1828 
1829   if (LocVT == MVT::f64) {
1830     static const MCPhysReg FPR64List[] = {
1831         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
1832         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
1833         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
1834         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
1835     if (unsigned Reg = State.AllocateReg(FPR64List)) {
1836       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1837       return false;
1838     }
1839   }
1840 
1841   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
1842     unsigned Offset4 = State.AllocateStack(4, 4);
1843     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
1844     return false;
1845   }
1846 
1847   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
1848     unsigned Offset5 = State.AllocateStack(8, 8);
1849     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
1850     return false;
1851   }
1852 
1853   return true; // CC didn't match.
1854 }
1855 
1856 // Transform physical registers into virtual registers.
1857 SDValue RISCVTargetLowering::LowerFormalArguments(
1858     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1859     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1860     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1861 
1862   switch (CallConv) {
1863   default:
1864     report_fatal_error("Unsupported calling convention");
1865   case CallingConv::C:
1866   case CallingConv::Fast:
1867     break;
1868   }
1869 
1870   MachineFunction &MF = DAG.getMachineFunction();
1871 
1872   const Function &Func = MF.getFunction();
1873   if (Func.hasFnAttribute("interrupt")) {
1874     if (!Func.arg_empty())
1875       report_fatal_error(
1876         "Functions with the interrupt attribute cannot have arguments!");
1877 
1878     StringRef Kind =
1879       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
1880 
1881     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
1882       report_fatal_error(
1883         "Function interrupt attribute argument not supported!");
1884   }
1885 
1886   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1887   MVT XLenVT = Subtarget.getXLenVT();
1888   unsigned XLenInBytes = Subtarget.getXLen() / 8;
1889   // Used with vargs to acumulate store chains.
1890   std::vector<SDValue> OutChains;
1891 
1892   // Assign locations to all of the incoming arguments.
1893   SmallVector<CCValAssign, 16> ArgLocs;
1894   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1895 
1896   if (CallConv == CallingConv::Fast)
1897     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
1898   else
1899     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
1900 
1901   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1902     CCValAssign &VA = ArgLocs[i];
1903     SDValue ArgValue;
1904     // Passing f64 on RV32D with a soft float ABI must be handled as a special
1905     // case.
1906     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
1907       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
1908     else if (VA.isRegLoc())
1909       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
1910     else
1911       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
1912 
1913     if (VA.getLocInfo() == CCValAssign::Indirect) {
1914       // If the original argument was split and passed by reference (e.g. i128
1915       // on RV32), we need to load all parts of it here (using the same
1916       // address).
1917       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1918                                    MachinePointerInfo()));
1919       unsigned ArgIndex = Ins[i].OrigArgIndex;
1920       assert(Ins[i].PartOffset == 0);
1921       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
1922         CCValAssign &PartVA = ArgLocs[i + 1];
1923         unsigned PartOffset = Ins[i + 1].PartOffset;
1924         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1925                                       DAG.getIntPtrConstant(PartOffset, DL));
1926         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1927                                      MachinePointerInfo()));
1928         ++i;
1929       }
1930       continue;
1931     }
1932     InVals.push_back(ArgValue);
1933   }
1934 
1935   if (IsVarArg) {
1936     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
1937     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
1938     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
1939     MachineFrameInfo &MFI = MF.getFrameInfo();
1940     MachineRegisterInfo &RegInfo = MF.getRegInfo();
1941     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
1942 
1943     // Offset of the first variable argument from stack pointer, and size of
1944     // the vararg save area. For now, the varargs save area is either zero or
1945     // large enough to hold a0-a7.
1946     int VaArgOffset, VarArgsSaveSize;
1947 
1948     // If all registers are allocated, then all varargs must be passed on the
1949     // stack and we don't need to save any argregs.
1950     if (ArgRegs.size() == Idx) {
1951       VaArgOffset = CCInfo.getNextStackOffset();
1952       VarArgsSaveSize = 0;
1953     } else {
1954       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
1955       VaArgOffset = -VarArgsSaveSize;
1956     }
1957 
1958     // Record the frame index of the first variable argument
1959     // which is a value necessary to VASTART.
1960     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
1961     RVFI->setVarArgsFrameIndex(FI);
1962 
1963     // If saving an odd number of registers then create an extra stack slot to
1964     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
1965     // offsets to even-numbered registered remain 2*XLEN-aligned.
1966     if (Idx % 2) {
1967       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
1968       VarArgsSaveSize += XLenInBytes;
1969     }
1970 
1971     // Copy the integer registers that may have been used for passing varargs
1972     // to the vararg save area.
1973     for (unsigned I = Idx; I < ArgRegs.size();
1974          ++I, VaArgOffset += XLenInBytes) {
1975       const Register Reg = RegInfo.createVirtualRegister(RC);
1976       RegInfo.addLiveIn(ArgRegs[I], Reg);
1977       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
1978       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
1979       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1980       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
1981                                    MachinePointerInfo::getFixedStack(MF, FI));
1982       cast<StoreSDNode>(Store.getNode())
1983           ->getMemOperand()
1984           ->setValue((Value *)nullptr);
1985       OutChains.push_back(Store);
1986     }
1987     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
1988   }
1989 
1990   // All stores are grouped in one node to allow the matching between
1991   // the size of Ins and InVals. This only happens for vararg functions.
1992   if (!OutChains.empty()) {
1993     OutChains.push_back(Chain);
1994     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
1995   }
1996 
1997   return Chain;
1998 }
1999 
2000 /// isEligibleForTailCallOptimization - Check whether the call is eligible
2001 /// for tail call optimization.
2002 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
2003 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
2004     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
2005     const SmallVector<CCValAssign, 16> &ArgLocs) const {
2006 
2007   auto &Callee = CLI.Callee;
2008   auto CalleeCC = CLI.CallConv;
2009   auto &Outs = CLI.Outs;
2010   auto &Caller = MF.getFunction();
2011   auto CallerCC = Caller.getCallingConv();
2012 
2013   // Do not tail call opt functions with "disable-tail-calls" attribute.
2014   if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
2015     return false;
2016 
2017   // Exception-handling functions need a special set of instructions to
2018   // indicate a return to the hardware. Tail-calling another function would
2019   // probably break this.
2020   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
2021   // should be expanded as new function attributes are introduced.
2022   if (Caller.hasFnAttribute("interrupt"))
2023     return false;
2024 
2025   // Do not tail call opt if the stack is used to pass parameters.
2026   if (CCInfo.getNextStackOffset() != 0)
2027     return false;
2028 
2029   // Do not tail call opt if any parameters need to be passed indirectly.
2030   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
2031   // passed indirectly. So the address of the value will be passed in a
2032   // register, or if not available, then the address is put on the stack. In
2033   // order to pass indirectly, space on the stack often needs to be allocated
2034   // in order to store the value. In this case the CCInfo.getNextStackOffset()
2035   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
2036   // are passed CCValAssign::Indirect.
2037   for (auto &VA : ArgLocs)
2038     if (VA.getLocInfo() == CCValAssign::Indirect)
2039       return false;
2040 
2041   // Do not tail call opt if either caller or callee uses struct return
2042   // semantics.
2043   auto IsCallerStructRet = Caller.hasStructRetAttr();
2044   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
2045   if (IsCallerStructRet || IsCalleeStructRet)
2046     return false;
2047 
2048   // Externally-defined functions with weak linkage should not be
2049   // tail-called. The behaviour of branch instructions in this situation (as
2050   // used for tail calls) is implementation-defined, so we cannot rely on the
2051   // linker replacing the tail call with a return.
2052   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2053     const GlobalValue *GV = G->getGlobal();
2054     if (GV->hasExternalWeakLinkage())
2055       return false;
2056   }
2057 
2058   // The callee has to preserve all registers the caller needs to preserve.
2059   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
2060   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2061   if (CalleeCC != CallerCC) {
2062     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2063     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2064       return false;
2065   }
2066 
2067   // Byval parameters hand the function a pointer directly into the stack area
2068   // we want to reuse during a tail call. Working around this *is* possible
2069   // but less efficient and uglier in LowerCall.
2070   for (auto &Arg : Outs)
2071     if (Arg.Flags.isByVal())
2072       return false;
2073 
2074   return true;
2075 }
2076 
2077 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
2078 // and output parameter nodes.
2079 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
2080                                        SmallVectorImpl<SDValue> &InVals) const {
2081   SelectionDAG &DAG = CLI.DAG;
2082   SDLoc &DL = CLI.DL;
2083   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2084   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2085   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2086   SDValue Chain = CLI.Chain;
2087   SDValue Callee = CLI.Callee;
2088   bool &IsTailCall = CLI.IsTailCall;
2089   CallingConv::ID CallConv = CLI.CallConv;
2090   bool IsVarArg = CLI.IsVarArg;
2091   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2092   MVT XLenVT = Subtarget.getXLenVT();
2093 
2094   MachineFunction &MF = DAG.getMachineFunction();
2095 
2096   // Analyze the operands of the call, assigning locations to each operand.
2097   SmallVector<CCValAssign, 16> ArgLocs;
2098   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2099 
2100   if (CallConv == CallingConv::Fast)
2101     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
2102   else
2103     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
2104 
2105   // Check if it's really possible to do a tail call.
2106   if (IsTailCall)
2107     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
2108 
2109   if (IsTailCall)
2110     ++NumTailCalls;
2111   else if (CLI.CS && CLI.CS.isMustTailCall())
2112     report_fatal_error("failed to perform tail call elimination on a call "
2113                        "site marked musttail");
2114 
2115   // Get a count of how many bytes are to be pushed on the stack.
2116   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
2117 
2118   // Create local copies for byval args
2119   SmallVector<SDValue, 8> ByValArgs;
2120   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2121     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2122     if (!Flags.isByVal())
2123       continue;
2124 
2125     SDValue Arg = OutVals[i];
2126     unsigned Size = Flags.getByValSize();
2127     unsigned Align = Flags.getByValAlign();
2128 
2129     int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false);
2130     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2131     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
2132 
2133     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
2134                           /*IsVolatile=*/false,
2135                           /*AlwaysInline=*/false,
2136                           IsTailCall, MachinePointerInfo(),
2137                           MachinePointerInfo());
2138     ByValArgs.push_back(FIPtr);
2139   }
2140 
2141   if (!IsTailCall)
2142     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
2143 
2144   // Copy argument values to their designated locations.
2145   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
2146   SmallVector<SDValue, 8> MemOpChains;
2147   SDValue StackPtr;
2148   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
2149     CCValAssign &VA = ArgLocs[i];
2150     SDValue ArgValue = OutVals[i];
2151     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2152 
2153     // Handle passing f64 on RV32D with a soft float ABI as a special case.
2154     bool IsF64OnRV32DSoftABI =
2155         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
2156     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
2157       SDValue SplitF64 = DAG.getNode(
2158           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
2159       SDValue Lo = SplitF64.getValue(0);
2160       SDValue Hi = SplitF64.getValue(1);
2161 
2162       Register RegLo = VA.getLocReg();
2163       RegsToPass.push_back(std::make_pair(RegLo, Lo));
2164 
2165       if (RegLo == RISCV::X17) {
2166         // Second half of f64 is passed on the stack.
2167         // Work out the address of the stack slot.
2168         if (!StackPtr.getNode())
2169           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2170         // Emit the store.
2171         MemOpChains.push_back(
2172             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
2173       } else {
2174         // Second half of f64 is passed in another GPR.
2175         assert(RegLo < RISCV::X31 && "Invalid register pair");
2176         Register RegHigh = RegLo + 1;
2177         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
2178       }
2179       continue;
2180     }
2181 
2182     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
2183     // as any other MemLoc.
2184 
2185     // Promote the value if needed.
2186     // For now, only handle fully promoted and indirect arguments.
2187     if (VA.getLocInfo() == CCValAssign::Indirect) {
2188       // Store the argument in a stack slot and pass its address.
2189       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
2190       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2191       MemOpChains.push_back(
2192           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
2193                        MachinePointerInfo::getFixedStack(MF, FI)));
2194       // If the original argument was split (e.g. i128), we need
2195       // to store all parts of it here (and pass just one address).
2196       unsigned ArgIndex = Outs[i].OrigArgIndex;
2197       assert(Outs[i].PartOffset == 0);
2198       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
2199         SDValue PartValue = OutVals[i + 1];
2200         unsigned PartOffset = Outs[i + 1].PartOffset;
2201         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
2202                                       DAG.getIntPtrConstant(PartOffset, DL));
2203         MemOpChains.push_back(
2204             DAG.getStore(Chain, DL, PartValue, Address,
2205                          MachinePointerInfo::getFixedStack(MF, FI)));
2206         ++i;
2207       }
2208       ArgValue = SpillSlot;
2209     } else {
2210       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
2211     }
2212 
2213     // Use local copy if it is a byval arg.
2214     if (Flags.isByVal())
2215       ArgValue = ByValArgs[j++];
2216 
2217     if (VA.isRegLoc()) {
2218       // Queue up the argument copies and emit them at the end.
2219       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
2220     } else {
2221       assert(VA.isMemLoc() && "Argument not register or memory");
2222       assert(!IsTailCall && "Tail call not allowed if stack is used "
2223                             "for passing parameters");
2224 
2225       // Work out the address of the stack slot.
2226       if (!StackPtr.getNode())
2227         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2228       SDValue Address =
2229           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
2230                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
2231 
2232       // Emit the store.
2233       MemOpChains.push_back(
2234           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
2235     }
2236   }
2237 
2238   // Join the stores, which are independent of one another.
2239   if (!MemOpChains.empty())
2240     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2241 
2242   SDValue Glue;
2243 
2244   // Build a sequence of copy-to-reg nodes, chained and glued together.
2245   for (auto &Reg : RegsToPass) {
2246     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
2247     Glue = Chain.getValue(1);
2248   }
2249 
2250   // Validate that none of the argument registers have been marked as
2251   // reserved, if so report an error. Do the same for the return address if this
2252   // is not a tailcall.
2253   validateCCReservedRegs(RegsToPass, MF);
2254   if (!IsTailCall &&
2255       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
2256     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2257         MF.getFunction(),
2258         "Return address register required, but has been reserved."});
2259 
2260   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
2261   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
2262   // split it and then direct call can be matched by PseudoCALL.
2263   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
2264     const GlobalValue *GV = S->getGlobal();
2265 
2266     unsigned OpFlags = RISCVII::MO_CALL;
2267     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
2268       OpFlags = RISCVII::MO_PLT;
2269 
2270     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2271   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2272     unsigned OpFlags = RISCVII::MO_CALL;
2273 
2274     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
2275                                                  nullptr))
2276       OpFlags = RISCVII::MO_PLT;
2277 
2278     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
2279   }
2280 
2281   // The first call operand is the chain and the second is the target address.
2282   SmallVector<SDValue, 8> Ops;
2283   Ops.push_back(Chain);
2284   Ops.push_back(Callee);
2285 
2286   // Add argument registers to the end of the list so that they are
2287   // known live into the call.
2288   for (auto &Reg : RegsToPass)
2289     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
2290 
2291   if (!IsTailCall) {
2292     // Add a register mask operand representing the call-preserved registers.
2293     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2294     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2295     assert(Mask && "Missing call preserved mask for calling convention");
2296     Ops.push_back(DAG.getRegisterMask(Mask));
2297   }
2298 
2299   // Glue the call to the argument copies, if any.
2300   if (Glue.getNode())
2301     Ops.push_back(Glue);
2302 
2303   // Emit the call.
2304   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2305 
2306   if (IsTailCall) {
2307     MF.getFrameInfo().setHasTailCall();
2308     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
2309   }
2310 
2311   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
2312   Glue = Chain.getValue(1);
2313 
2314   // Mark the end of the call, which is glued to the call itself.
2315   Chain = DAG.getCALLSEQ_END(Chain,
2316                              DAG.getConstant(NumBytes, DL, PtrVT, true),
2317                              DAG.getConstant(0, DL, PtrVT, true),
2318                              Glue, DL);
2319   Glue = Chain.getValue(1);
2320 
2321   // Assign locations to each value returned by this call.
2322   SmallVector<CCValAssign, 16> RVLocs;
2323   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
2324   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
2325 
2326   // Copy all of the result registers out of their specified physreg.
2327   for (auto &VA : RVLocs) {
2328     // Copy the value out
2329     SDValue RetValue =
2330         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
2331     // Glue the RetValue to the end of the call sequence
2332     Chain = RetValue.getValue(1);
2333     Glue = RetValue.getValue(2);
2334 
2335     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2336       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
2337       SDValue RetValue2 =
2338           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
2339       Chain = RetValue2.getValue(1);
2340       Glue = RetValue2.getValue(2);
2341       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
2342                              RetValue2);
2343     }
2344 
2345     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
2346 
2347     InVals.push_back(RetValue);
2348   }
2349 
2350   return Chain;
2351 }
2352 
2353 bool RISCVTargetLowering::CanLowerReturn(
2354     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
2355     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2356   SmallVector<CCValAssign, 16> RVLocs;
2357   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2358   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2359     MVT VT = Outs[i].VT;
2360     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2361     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
2362     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
2363                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
2364       return false;
2365   }
2366   return true;
2367 }
2368 
2369 SDValue
2370 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2371                                  bool IsVarArg,
2372                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2373                                  const SmallVectorImpl<SDValue> &OutVals,
2374                                  const SDLoc &DL, SelectionDAG &DAG) const {
2375   const MachineFunction &MF = DAG.getMachineFunction();
2376   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2377 
2378   // Stores the assignment of the return value to a location.
2379   SmallVector<CCValAssign, 16> RVLocs;
2380 
2381   // Info about the registers and stack slot.
2382   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2383                  *DAG.getContext());
2384 
2385   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
2386                     nullptr);
2387 
2388   SDValue Glue;
2389   SmallVector<SDValue, 4> RetOps(1, Chain);
2390 
2391   // Copy the result values into the output registers.
2392   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
2393     SDValue Val = OutVals[i];
2394     CCValAssign &VA = RVLocs[i];
2395     assert(VA.isRegLoc() && "Can only return in registers!");
2396 
2397     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2398       // Handle returning f64 on RV32D with a soft float ABI.
2399       assert(VA.isRegLoc() && "Expected return via registers");
2400       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
2401                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
2402       SDValue Lo = SplitF64.getValue(0);
2403       SDValue Hi = SplitF64.getValue(1);
2404       Register RegLo = VA.getLocReg();
2405       assert(RegLo < RISCV::X31 && "Invalid register pair");
2406       Register RegHi = RegLo + 1;
2407 
2408       if (STI.isRegisterReservedByUser(RegLo) ||
2409           STI.isRegisterReservedByUser(RegHi))
2410         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2411             MF.getFunction(),
2412             "Return value register required, but has been reserved."});
2413 
2414       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
2415       Glue = Chain.getValue(1);
2416       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
2417       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
2418       Glue = Chain.getValue(1);
2419       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
2420     } else {
2421       // Handle a 'normal' return.
2422       Val = convertValVTToLocVT(DAG, Val, VA, DL);
2423       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
2424 
2425       if (STI.isRegisterReservedByUser(VA.getLocReg()))
2426         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2427             MF.getFunction(),
2428             "Return value register required, but has been reserved."});
2429 
2430       // Guarantee that all emitted copies are stuck together.
2431       Glue = Chain.getValue(1);
2432       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2433     }
2434   }
2435 
2436   RetOps[0] = Chain; // Update chain.
2437 
2438   // Add the glue node if we have it.
2439   if (Glue.getNode()) {
2440     RetOps.push_back(Glue);
2441   }
2442 
2443   // Interrupt service routines use different return instructions.
2444   const Function &Func = DAG.getMachineFunction().getFunction();
2445   if (Func.hasFnAttribute("interrupt")) {
2446     if (!Func.getReturnType()->isVoidTy())
2447       report_fatal_error(
2448           "Functions with the interrupt attribute must have void return type!");
2449 
2450     MachineFunction &MF = DAG.getMachineFunction();
2451     StringRef Kind =
2452       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
2453 
2454     unsigned RetOpc;
2455     if (Kind == "user")
2456       RetOpc = RISCVISD::URET_FLAG;
2457     else if (Kind == "supervisor")
2458       RetOpc = RISCVISD::SRET_FLAG;
2459     else
2460       RetOpc = RISCVISD::MRET_FLAG;
2461 
2462     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
2463   }
2464 
2465   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
2466 }
2467 
2468 void RISCVTargetLowering::validateCCReservedRegs(
2469     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
2470     MachineFunction &MF) const {
2471   const Function &F = MF.getFunction();
2472   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2473 
2474   if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) {
2475         return STI.isRegisterReservedByUser(Reg.first);
2476       }))
2477     F.getContext().diagnose(DiagnosticInfoUnsupported{
2478         F, "Argument register required, but has been reserved."});
2479 }
2480 
2481 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
2482   switch ((RISCVISD::NodeType)Opcode) {
2483   case RISCVISD::FIRST_NUMBER:
2484     break;
2485   case RISCVISD::RET_FLAG:
2486     return "RISCVISD::RET_FLAG";
2487   case RISCVISD::URET_FLAG:
2488     return "RISCVISD::URET_FLAG";
2489   case RISCVISD::SRET_FLAG:
2490     return "RISCVISD::SRET_FLAG";
2491   case RISCVISD::MRET_FLAG:
2492     return "RISCVISD::MRET_FLAG";
2493   case RISCVISD::CALL:
2494     return "RISCVISD::CALL";
2495   case RISCVISD::SELECT_CC:
2496     return "RISCVISD::SELECT_CC";
2497   case RISCVISD::BuildPairF64:
2498     return "RISCVISD::BuildPairF64";
2499   case RISCVISD::SplitF64:
2500     return "RISCVISD::SplitF64";
2501   case RISCVISD::TAIL:
2502     return "RISCVISD::TAIL";
2503   case RISCVISD::SLLW:
2504     return "RISCVISD::SLLW";
2505   case RISCVISD::SRAW:
2506     return "RISCVISD::SRAW";
2507   case RISCVISD::SRLW:
2508     return "RISCVISD::SRLW";
2509   case RISCVISD::DIVW:
2510     return "RISCVISD::DIVW";
2511   case RISCVISD::DIVUW:
2512     return "RISCVISD::DIVUW";
2513   case RISCVISD::REMUW:
2514     return "RISCVISD::REMUW";
2515   case RISCVISD::FMV_W_X_RV64:
2516     return "RISCVISD::FMV_W_X_RV64";
2517   case RISCVISD::FMV_X_ANYEXTW_RV64:
2518     return "RISCVISD::FMV_X_ANYEXTW_RV64";
2519   case RISCVISD::READ_CYCLE_WIDE:
2520     return "RISCVISD::READ_CYCLE_WIDE";
2521   }
2522   return nullptr;
2523 }
2524 
2525 /// getConstraintType - Given a constraint letter, return the type of
2526 /// constraint it is for this target.
2527 RISCVTargetLowering::ConstraintType
2528 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
2529   if (Constraint.size() == 1) {
2530     switch (Constraint[0]) {
2531     default:
2532       break;
2533     case 'f':
2534       return C_RegisterClass;
2535     case 'I':
2536     case 'J':
2537     case 'K':
2538       return C_Immediate;
2539     case 'A':
2540       return C_Memory;
2541     }
2542   }
2543   return TargetLowering::getConstraintType(Constraint);
2544 }
2545 
2546 std::pair<unsigned, const TargetRegisterClass *>
2547 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2548                                                   StringRef Constraint,
2549                                                   MVT VT) const {
2550   // First, see if this is a constraint that directly corresponds to a
2551   // RISCV register class.
2552   if (Constraint.size() == 1) {
2553     switch (Constraint[0]) {
2554     case 'r':
2555       return std::make_pair(0U, &RISCV::GPRRegClass);
2556     case 'f':
2557       if (Subtarget.hasStdExtF() && VT == MVT::f32)
2558         return std::make_pair(0U, &RISCV::FPR32RegClass);
2559       if (Subtarget.hasStdExtD() && VT == MVT::f64)
2560         return std::make_pair(0U, &RISCV::FPR64RegClass);
2561       break;
2562     default:
2563       break;
2564     }
2565   }
2566 
2567   // Clang will correctly decode the usage of register name aliases into their
2568   // official names. However, other frontends like `rustc` do not. This allows
2569   // users of these frontends to use the ABI names for registers in LLVM-style
2570   // register constraints.
2571   Register XRegFromAlias = StringSwitch<Register>(Constraint.lower())
2572                                .Case("{zero}", RISCV::X0)
2573                                .Case("{ra}", RISCV::X1)
2574                                .Case("{sp}", RISCV::X2)
2575                                .Case("{gp}", RISCV::X3)
2576                                .Case("{tp}", RISCV::X4)
2577                                .Case("{t0}", RISCV::X5)
2578                                .Case("{t1}", RISCV::X6)
2579                                .Case("{t2}", RISCV::X7)
2580                                .Cases("{s0}", "{fp}", RISCV::X8)
2581                                .Case("{s1}", RISCV::X9)
2582                                .Case("{a0}", RISCV::X10)
2583                                .Case("{a1}", RISCV::X11)
2584                                .Case("{a2}", RISCV::X12)
2585                                .Case("{a3}", RISCV::X13)
2586                                .Case("{a4}", RISCV::X14)
2587                                .Case("{a5}", RISCV::X15)
2588                                .Case("{a6}", RISCV::X16)
2589                                .Case("{a7}", RISCV::X17)
2590                                .Case("{s2}", RISCV::X18)
2591                                .Case("{s3}", RISCV::X19)
2592                                .Case("{s4}", RISCV::X20)
2593                                .Case("{s5}", RISCV::X21)
2594                                .Case("{s6}", RISCV::X22)
2595                                .Case("{s7}", RISCV::X23)
2596                                .Case("{s8}", RISCV::X24)
2597                                .Case("{s9}", RISCV::X25)
2598                                .Case("{s10}", RISCV::X26)
2599                                .Case("{s11}", RISCV::X27)
2600                                .Case("{t3}", RISCV::X28)
2601                                .Case("{t4}", RISCV::X29)
2602                                .Case("{t5}", RISCV::X30)
2603                                .Case("{t6}", RISCV::X31)
2604                                .Default(RISCV::NoRegister);
2605   if (XRegFromAlias != RISCV::NoRegister)
2606     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
2607 
2608   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
2609   // TableGen record rather than the AsmName to choose registers for InlineAsm
2610   // constraints, plus we want to match those names to the widest floating point
2611   // register type available, manually select floating point registers here.
2612   //
2613   // The second case is the ABI name of the register, so that frontends can also
2614   // use the ABI names in register constraint lists.
2615   if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) {
2616     std::pair<Register, Register> FReg =
2617         StringSwitch<std::pair<Register, Register>>(Constraint.lower())
2618             .Cases("{f0}", "{ft0}", {RISCV::F0_F, RISCV::F0_D})
2619             .Cases("{f1}", "{ft1}", {RISCV::F1_F, RISCV::F1_D})
2620             .Cases("{f2}", "{ft2}", {RISCV::F2_F, RISCV::F2_D})
2621             .Cases("{f3}", "{ft3}", {RISCV::F3_F, RISCV::F3_D})
2622             .Cases("{f4}", "{ft4}", {RISCV::F4_F, RISCV::F4_D})
2623             .Cases("{f5}", "{ft5}", {RISCV::F5_F, RISCV::F5_D})
2624             .Cases("{f6}", "{ft6}", {RISCV::F6_F, RISCV::F6_D})
2625             .Cases("{f7}", "{ft7}", {RISCV::F7_F, RISCV::F7_D})
2626             .Cases("{f8}", "{fs0}", {RISCV::F8_F, RISCV::F8_D})
2627             .Cases("{f9}", "{fs1}", {RISCV::F9_F, RISCV::F9_D})
2628             .Cases("{f10}", "{fa0}", {RISCV::F10_F, RISCV::F10_D})
2629             .Cases("{f11}", "{fa1}", {RISCV::F11_F, RISCV::F11_D})
2630             .Cases("{f12}", "{fa2}", {RISCV::F12_F, RISCV::F12_D})
2631             .Cases("{f13}", "{fa3}", {RISCV::F13_F, RISCV::F13_D})
2632             .Cases("{f14}", "{fa4}", {RISCV::F14_F, RISCV::F14_D})
2633             .Cases("{f15}", "{fa5}", {RISCV::F15_F, RISCV::F15_D})
2634             .Cases("{f16}", "{fa6}", {RISCV::F16_F, RISCV::F16_D})
2635             .Cases("{f17}", "{fa7}", {RISCV::F17_F, RISCV::F17_D})
2636             .Cases("{f18}", "{fs2}", {RISCV::F18_F, RISCV::F18_D})
2637             .Cases("{f19}", "{fs3}", {RISCV::F19_F, RISCV::F19_D})
2638             .Cases("{f20}", "{fs4}", {RISCV::F20_F, RISCV::F20_D})
2639             .Cases("{f21}", "{fs5}", {RISCV::F21_F, RISCV::F21_D})
2640             .Cases("{f22}", "{fs6}", {RISCV::F22_F, RISCV::F22_D})
2641             .Cases("{f23}", "{fs7}", {RISCV::F23_F, RISCV::F23_D})
2642             .Cases("{f24}", "{fs8}", {RISCV::F24_F, RISCV::F24_D})
2643             .Cases("{f25}", "{fs9}", {RISCV::F25_F, RISCV::F25_D})
2644             .Cases("{f26}", "{fs10}", {RISCV::F26_F, RISCV::F26_D})
2645             .Cases("{f27}", "{fs11}", {RISCV::F27_F, RISCV::F27_D})
2646             .Cases("{f28}", "{ft8}", {RISCV::F28_F, RISCV::F28_D})
2647             .Cases("{f29}", "{ft9}", {RISCV::F29_F, RISCV::F29_D})
2648             .Cases("{f30}", "{ft10}", {RISCV::F30_F, RISCV::F30_D})
2649             .Cases("{f31}", "{ft11}", {RISCV::F31_F, RISCV::F31_D})
2650             .Default({RISCV::NoRegister, RISCV::NoRegister});
2651     if (FReg.first != RISCV::NoRegister)
2652       return Subtarget.hasStdExtD()
2653                  ? std::make_pair(FReg.second, &RISCV::FPR64RegClass)
2654                  : std::make_pair(FReg.first, &RISCV::FPR32RegClass);
2655   }
2656 
2657   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2658 }
2659 
2660 unsigned
2661 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
2662   // Currently only support length 1 constraints.
2663   if (ConstraintCode.size() == 1) {
2664     switch (ConstraintCode[0]) {
2665     case 'A':
2666       return InlineAsm::Constraint_A;
2667     default:
2668       break;
2669     }
2670   }
2671 
2672   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
2673 }
2674 
2675 void RISCVTargetLowering::LowerAsmOperandForConstraint(
2676     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2677     SelectionDAG &DAG) const {
2678   // Currently only support length 1 constraints.
2679   if (Constraint.length() == 1) {
2680     switch (Constraint[0]) {
2681     case 'I':
2682       // Validate & create a 12-bit signed immediate operand.
2683       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2684         uint64_t CVal = C->getSExtValue();
2685         if (isInt<12>(CVal))
2686           Ops.push_back(
2687               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2688       }
2689       return;
2690     case 'J':
2691       // Validate & create an integer zero operand.
2692       if (auto *C = dyn_cast<ConstantSDNode>(Op))
2693         if (C->getZExtValue() == 0)
2694           Ops.push_back(
2695               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
2696       return;
2697     case 'K':
2698       // Validate & create a 5-bit unsigned immediate operand.
2699       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2700         uint64_t CVal = C->getZExtValue();
2701         if (isUInt<5>(CVal))
2702           Ops.push_back(
2703               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2704       }
2705       return;
2706     default:
2707       break;
2708     }
2709   }
2710   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2711 }
2712 
2713 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
2714                                                    Instruction *Inst,
2715                                                    AtomicOrdering Ord) const {
2716   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
2717     return Builder.CreateFence(Ord);
2718   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
2719     return Builder.CreateFence(AtomicOrdering::Release);
2720   return nullptr;
2721 }
2722 
2723 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
2724                                                     Instruction *Inst,
2725                                                     AtomicOrdering Ord) const {
2726   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
2727     return Builder.CreateFence(AtomicOrdering::Acquire);
2728   return nullptr;
2729 }
2730 
2731 TargetLowering::AtomicExpansionKind
2732 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
2733   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
2734   // point operations can't be used in an lr/sc sequence without breaking the
2735   // forward-progress guarantee.
2736   if (AI->isFloatingPointOperation())
2737     return AtomicExpansionKind::CmpXChg;
2738 
2739   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
2740   if (Size == 8 || Size == 16)
2741     return AtomicExpansionKind::MaskedIntrinsic;
2742   return AtomicExpansionKind::None;
2743 }
2744 
2745 static Intrinsic::ID
2746 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
2747   if (XLen == 32) {
2748     switch (BinOp) {
2749     default:
2750       llvm_unreachable("Unexpected AtomicRMW BinOp");
2751     case AtomicRMWInst::Xchg:
2752       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
2753     case AtomicRMWInst::Add:
2754       return Intrinsic::riscv_masked_atomicrmw_add_i32;
2755     case AtomicRMWInst::Sub:
2756       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
2757     case AtomicRMWInst::Nand:
2758       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
2759     case AtomicRMWInst::Max:
2760       return Intrinsic::riscv_masked_atomicrmw_max_i32;
2761     case AtomicRMWInst::Min:
2762       return Intrinsic::riscv_masked_atomicrmw_min_i32;
2763     case AtomicRMWInst::UMax:
2764       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
2765     case AtomicRMWInst::UMin:
2766       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
2767     }
2768   }
2769 
2770   if (XLen == 64) {
2771     switch (BinOp) {
2772     default:
2773       llvm_unreachable("Unexpected AtomicRMW BinOp");
2774     case AtomicRMWInst::Xchg:
2775       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
2776     case AtomicRMWInst::Add:
2777       return Intrinsic::riscv_masked_atomicrmw_add_i64;
2778     case AtomicRMWInst::Sub:
2779       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
2780     case AtomicRMWInst::Nand:
2781       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
2782     case AtomicRMWInst::Max:
2783       return Intrinsic::riscv_masked_atomicrmw_max_i64;
2784     case AtomicRMWInst::Min:
2785       return Intrinsic::riscv_masked_atomicrmw_min_i64;
2786     case AtomicRMWInst::UMax:
2787       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
2788     case AtomicRMWInst::UMin:
2789       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
2790     }
2791   }
2792 
2793   llvm_unreachable("Unexpected XLen\n");
2794 }
2795 
2796 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
2797     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
2798     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
2799   unsigned XLen = Subtarget.getXLen();
2800   Value *Ordering =
2801       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
2802   Type *Tys[] = {AlignedAddr->getType()};
2803   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
2804       AI->getModule(),
2805       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
2806 
2807   if (XLen == 64) {
2808     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
2809     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2810     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
2811   }
2812 
2813   Value *Result;
2814 
2815   // Must pass the shift amount needed to sign extend the loaded value prior
2816   // to performing a signed comparison for min/max. ShiftAmt is the number of
2817   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
2818   // is the number of bits to left+right shift the value in order to
2819   // sign-extend.
2820   if (AI->getOperation() == AtomicRMWInst::Min ||
2821       AI->getOperation() == AtomicRMWInst::Max) {
2822     const DataLayout &DL = AI->getModule()->getDataLayout();
2823     unsigned ValWidth =
2824         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
2825     Value *SextShamt =
2826         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
2827     Result = Builder.CreateCall(LrwOpScwLoop,
2828                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
2829   } else {
2830     Result =
2831         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
2832   }
2833 
2834   if (XLen == 64)
2835     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2836   return Result;
2837 }
2838 
2839 TargetLowering::AtomicExpansionKind
2840 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
2841     AtomicCmpXchgInst *CI) const {
2842   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
2843   if (Size == 8 || Size == 16)
2844     return AtomicExpansionKind::MaskedIntrinsic;
2845   return AtomicExpansionKind::None;
2846 }
2847 
2848 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
2849     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
2850     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
2851   unsigned XLen = Subtarget.getXLen();
2852   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
2853   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
2854   if (XLen == 64) {
2855     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
2856     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
2857     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2858     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
2859   }
2860   Type *Tys[] = {AlignedAddr->getType()};
2861   Function *MaskedCmpXchg =
2862       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
2863   Value *Result = Builder.CreateCall(
2864       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
2865   if (XLen == 64)
2866     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2867   return Result;
2868 }
2869 
2870 unsigned RISCVTargetLowering::getExceptionPointerRegister(
2871     const Constant *PersonalityFn) const {
2872   return RISCV::X10;
2873 }
2874 
2875 unsigned RISCVTargetLowering::getExceptionSelectorRegister(
2876     const Constant *PersonalityFn) const {
2877   return RISCV::X11;
2878 }
2879 
2880 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
2881   // Return false to suppress the unnecessary extensions if the LibCall
2882   // arguments or return value is f32 type for LP64 ABI.
2883   RISCVABI::ABI ABI = Subtarget.getTargetABI();
2884   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
2885     return false;
2886 
2887   return true;
2888 }
2889