1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the interfaces that RISCV uses to lower LLVM code into a 11 // selection DAG. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RISCVISelLowering.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAGISel.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "riscv-lower" 39 40 STATISTIC(NumTailCalls, "Number of tail calls"); 41 42 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 43 const RISCVSubtarget &STI) 44 : TargetLowering(TM), Subtarget(STI) { 45 46 MVT XLenVT = Subtarget.getXLenVT(); 47 48 // Set up the register classes. 49 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 50 51 if (Subtarget.hasStdExtF()) 52 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 53 if (Subtarget.hasStdExtD()) 54 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 55 56 // Compute derived properties from the register classes. 57 computeRegisterProperties(STI.getRegisterInfo()); 58 59 setStackPointerRegisterToSaveRestore(RISCV::X2); 60 61 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 62 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 63 64 // TODO: add all necessary setOperationAction calls. 65 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 66 67 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 68 setOperationAction(ISD::BR_CC, XLenVT, Expand); 69 setOperationAction(ISD::SELECT, XLenVT, Custom); 70 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 71 72 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 73 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 74 75 setOperationAction(ISD::VASTART, MVT::Other, Custom); 76 setOperationAction(ISD::VAARG, MVT::Other, Expand); 77 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 78 setOperationAction(ISD::VAEND, MVT::Other, Expand); 79 80 for (auto VT : {MVT::i1, MVT::i8, MVT::i16}) 81 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 82 83 if (!Subtarget.hasStdExtM()) { 84 setOperationAction(ISD::MUL, XLenVT, Expand); 85 setOperationAction(ISD::MULHS, XLenVT, Expand); 86 setOperationAction(ISD::MULHU, XLenVT, Expand); 87 setOperationAction(ISD::SDIV, XLenVT, Expand); 88 setOperationAction(ISD::UDIV, XLenVT, Expand); 89 setOperationAction(ISD::SREM, XLenVT, Expand); 90 setOperationAction(ISD::UREM, XLenVT, Expand); 91 } 92 93 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 94 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 95 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 96 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 97 98 setOperationAction(ISD::SHL_PARTS, XLenVT, Expand); 99 setOperationAction(ISD::SRL_PARTS, XLenVT, Expand); 100 setOperationAction(ISD::SRA_PARTS, XLenVT, Expand); 101 102 setOperationAction(ISD::ROTL, XLenVT, Expand); 103 setOperationAction(ISD::ROTR, XLenVT, Expand); 104 setOperationAction(ISD::BSWAP, XLenVT, Expand); 105 setOperationAction(ISD::CTTZ, XLenVT, Expand); 106 setOperationAction(ISD::CTLZ, XLenVT, Expand); 107 setOperationAction(ISD::CTPOP, XLenVT, Expand); 108 109 ISD::CondCode FPCCToExtend[] = { 110 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETO, ISD::SETUEQ, 111 ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, 112 ISD::SETGT, ISD::SETGE, ISD::SETNE}; 113 114 // TODO: add proper support for the various FMA variants 115 // (FMADD.S, FMSUB.S, FNMSUB.S, FNMADD.S). 116 ISD::NodeType FPOpToExtend[] = { 117 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FMA}; 118 119 if (Subtarget.hasStdExtF()) { 120 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 121 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 122 for (auto CC : FPCCToExtend) 123 setCondCodeAction(CC, MVT::f32, Expand); 124 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 125 setOperationAction(ISD::SELECT, MVT::f32, Custom); 126 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 127 for (auto Op : FPOpToExtend) 128 setOperationAction(Op, MVT::f32, Expand); 129 } 130 131 if (Subtarget.hasStdExtD()) { 132 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 133 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 134 for (auto CC : FPCCToExtend) 135 setCondCodeAction(CC, MVT::f64, Expand); 136 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 137 setOperationAction(ISD::SELECT, MVT::f64, Custom); 138 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 139 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 140 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 141 for (auto Op : FPOpToExtend) 142 setOperationAction(Op, MVT::f64, Expand); 143 } 144 145 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 146 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 147 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 148 149 if (Subtarget.hasStdExtA()) { 150 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 151 setMinCmpXchgSizeInBits(32); 152 } else { 153 setMaxAtomicSizeInBitsSupported(0); 154 } 155 156 setBooleanContents(ZeroOrOneBooleanContent); 157 158 // Function alignments (log2). 159 unsigned FunctionAlignment = Subtarget.hasStdExtC() ? 1 : 2; 160 setMinFunctionAlignment(FunctionAlignment); 161 setPrefFunctionAlignment(FunctionAlignment); 162 163 // Effectively disable jump table generation. 164 setMinimumJumpTableEntries(INT_MAX); 165 } 166 167 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 168 EVT VT) const { 169 if (!VT.isVector()) 170 return getPointerTy(DL); 171 return VT.changeVectorElementTypeToInteger(); 172 } 173 174 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 175 const CallInst &I, 176 MachineFunction &MF, 177 unsigned Intrinsic) const { 178 switch (Intrinsic) { 179 default: 180 return false; 181 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 182 case Intrinsic::riscv_masked_atomicrmw_add_i32: 183 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 184 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 185 case Intrinsic::riscv_masked_atomicrmw_max_i32: 186 case Intrinsic::riscv_masked_atomicrmw_min_i32: 187 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 188 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 189 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 190 Info.opc = ISD::INTRINSIC_W_CHAIN; 191 Info.memVT = MVT::getVT(PtrTy->getElementType()); 192 Info.ptrVal = I.getArgOperand(0); 193 Info.offset = 0; 194 Info.align = 4; 195 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 196 MachineMemOperand::MOVolatile; 197 return true; 198 } 199 } 200 201 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 202 const AddrMode &AM, Type *Ty, 203 unsigned AS, 204 Instruction *I) const { 205 // No global is ever allowed as a base. 206 if (AM.BaseGV) 207 return false; 208 209 // Require a 12-bit signed offset. 210 if (!isInt<12>(AM.BaseOffs)) 211 return false; 212 213 switch (AM.Scale) { 214 case 0: // "r+i" or just "i", depending on HasBaseReg. 215 break; 216 case 1: 217 if (!AM.HasBaseReg) // allow "r+i". 218 break; 219 return false; // disallow "r+r" or "r+r+i". 220 default: 221 return false; 222 } 223 224 return true; 225 } 226 227 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 228 return isInt<12>(Imm); 229 } 230 231 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 232 return isInt<12>(Imm); 233 } 234 235 // On RV32, 64-bit integers are split into their high and low parts and held 236 // in two different registers, so the trunc is free since the low register can 237 // just be used. 238 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 239 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 240 return false; 241 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 242 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 243 return (SrcBits == 64 && DestBits == 32); 244 } 245 246 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 247 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 248 !SrcVT.isInteger() || !DstVT.isInteger()) 249 return false; 250 unsigned SrcBits = SrcVT.getSizeInBits(); 251 unsigned DestBits = DstVT.getSizeInBits(); 252 return (SrcBits == 64 && DestBits == 32); 253 } 254 255 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 256 // Zexts are free if they can be combined with a load. 257 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 258 EVT MemVT = LD->getMemoryVT(); 259 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 260 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 261 (LD->getExtensionType() == ISD::NON_EXTLOAD || 262 LD->getExtensionType() == ISD::ZEXTLOAD)) 263 return true; 264 } 265 266 return TargetLowering::isZExtFree(Val, VT2); 267 } 268 269 // Changes the condition code and swaps operands if necessary, so the SetCC 270 // operation matches one of the comparisons supported directly in the RISC-V 271 // ISA. 272 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 273 switch (CC) { 274 default: 275 break; 276 case ISD::SETGT: 277 case ISD::SETLE: 278 case ISD::SETUGT: 279 case ISD::SETULE: 280 CC = ISD::getSetCCSwappedOperands(CC); 281 std::swap(LHS, RHS); 282 break; 283 } 284 } 285 286 // Return the RISC-V branch opcode that matches the given DAG integer 287 // condition code. The CondCode must be one of those supported by the RISC-V 288 // ISA (see normaliseSetCC). 289 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 290 switch (CC) { 291 default: 292 llvm_unreachable("Unsupported CondCode"); 293 case ISD::SETEQ: 294 return RISCV::BEQ; 295 case ISD::SETNE: 296 return RISCV::BNE; 297 case ISD::SETLT: 298 return RISCV::BLT; 299 case ISD::SETGE: 300 return RISCV::BGE; 301 case ISD::SETULT: 302 return RISCV::BLTU; 303 case ISD::SETUGE: 304 return RISCV::BGEU; 305 } 306 } 307 308 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 309 SelectionDAG &DAG) const { 310 switch (Op.getOpcode()) { 311 default: 312 report_fatal_error("unimplemented operand"); 313 case ISD::GlobalAddress: 314 return lowerGlobalAddress(Op, DAG); 315 case ISD::BlockAddress: 316 return lowerBlockAddress(Op, DAG); 317 case ISD::ConstantPool: 318 return lowerConstantPool(Op, DAG); 319 case ISD::SELECT: 320 return lowerSELECT(Op, DAG); 321 case ISD::VASTART: 322 return lowerVASTART(Op, DAG); 323 case ISD::FRAMEADDR: 324 return lowerFRAMEADDR(Op, DAG); 325 case ISD::RETURNADDR: 326 return lowerRETURNADDR(Op, DAG); 327 } 328 } 329 330 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 331 SelectionDAG &DAG) const { 332 SDLoc DL(Op); 333 EVT Ty = Op.getValueType(); 334 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 335 const GlobalValue *GV = N->getGlobal(); 336 int64_t Offset = N->getOffset(); 337 MVT XLenVT = Subtarget.getXLenVT(); 338 339 if (isPositionIndependent()) 340 report_fatal_error("Unable to lowerGlobalAddress"); 341 // In order to maximise the opportunity for common subexpression elimination, 342 // emit a separate ADD node for the global address offset instead of folding 343 // it in the global address node. Later peephole optimisations may choose to 344 // fold it back in when profitable. 345 SDValue GAHi = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_HI); 346 SDValue GALo = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_LO); 347 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0); 348 SDValue MNLo = 349 SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0); 350 if (Offset != 0) 351 return DAG.getNode(ISD::ADD, DL, Ty, MNLo, 352 DAG.getConstant(Offset, DL, XLenVT)); 353 return MNLo; 354 } 355 356 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 357 SelectionDAG &DAG) const { 358 SDLoc DL(Op); 359 EVT Ty = Op.getValueType(); 360 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 361 const BlockAddress *BA = N->getBlockAddress(); 362 int64_t Offset = N->getOffset(); 363 364 if (isPositionIndependent()) 365 report_fatal_error("Unable to lowerBlockAddress"); 366 367 SDValue BAHi = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_HI); 368 SDValue BALo = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_LO); 369 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, BAHi), 0); 370 SDValue MNLo = 371 SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, BALo), 0); 372 return MNLo; 373 } 374 375 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 376 SelectionDAG &DAG) const { 377 SDLoc DL(Op); 378 EVT Ty = Op.getValueType(); 379 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 380 const Constant *CPA = N->getConstVal(); 381 int64_t Offset = N->getOffset(); 382 unsigned Alignment = N->getAlignment(); 383 384 if (!isPositionIndependent()) { 385 SDValue CPAHi = 386 DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_HI); 387 SDValue CPALo = 388 DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_LO); 389 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, CPAHi), 0); 390 SDValue MNLo = 391 SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, CPALo), 0); 392 return MNLo; 393 } else { 394 report_fatal_error("Unable to lowerConstantPool"); 395 } 396 } 397 398 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 399 SDValue CondV = Op.getOperand(0); 400 SDValue TrueV = Op.getOperand(1); 401 SDValue FalseV = Op.getOperand(2); 402 SDLoc DL(Op); 403 MVT XLenVT = Subtarget.getXLenVT(); 404 405 // If the result type is XLenVT and CondV is the output of a SETCC node 406 // which also operated on XLenVT inputs, then merge the SETCC node into the 407 // lowered RISCVISD::SELECT_CC to take advantage of the integer 408 // compare+branch instructions. i.e.: 409 // (select (setcc lhs, rhs, cc), truev, falsev) 410 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 411 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 412 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 413 SDValue LHS = CondV.getOperand(0); 414 SDValue RHS = CondV.getOperand(1); 415 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 416 ISD::CondCode CCVal = CC->get(); 417 418 normaliseSetCC(LHS, RHS, CCVal); 419 420 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 421 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 422 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 423 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 424 } 425 426 // Otherwise: 427 // (select condv, truev, falsev) 428 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 429 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 430 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 431 432 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 433 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 434 435 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 436 } 437 438 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 439 MachineFunction &MF = DAG.getMachineFunction(); 440 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 441 442 SDLoc DL(Op); 443 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 444 getPointerTy(MF.getDataLayout())); 445 446 // vastart just stores the address of the VarArgsFrameIndex slot into the 447 // memory location argument. 448 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 449 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 450 MachinePointerInfo(SV)); 451 } 452 453 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 454 SelectionDAG &DAG) const { 455 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 456 MachineFunction &MF = DAG.getMachineFunction(); 457 MachineFrameInfo &MFI = MF.getFrameInfo(); 458 MFI.setFrameAddressIsTaken(true); 459 unsigned FrameReg = RI.getFrameRegister(MF); 460 int XLenInBytes = Subtarget.getXLen() / 8; 461 462 EVT VT = Op.getValueType(); 463 SDLoc DL(Op); 464 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 465 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 466 while (Depth--) { 467 int Offset = -(XLenInBytes * 2); 468 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 469 DAG.getIntPtrConstant(Offset, DL)); 470 FrameAddr = 471 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 472 } 473 return FrameAddr; 474 } 475 476 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 477 SelectionDAG &DAG) const { 478 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 479 MachineFunction &MF = DAG.getMachineFunction(); 480 MachineFrameInfo &MFI = MF.getFrameInfo(); 481 MFI.setReturnAddressIsTaken(true); 482 MVT XLenVT = Subtarget.getXLenVT(); 483 int XLenInBytes = Subtarget.getXLen() / 8; 484 485 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 486 return SDValue(); 487 488 EVT VT = Op.getValueType(); 489 SDLoc DL(Op); 490 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 491 if (Depth) { 492 int Off = -XLenInBytes; 493 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 494 SDValue Offset = DAG.getConstant(Off, DL, VT); 495 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 496 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 497 MachinePointerInfo()); 498 } 499 500 // Return the value of the return address register, marking it an implicit 501 // live-in. 502 unsigned Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 503 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 504 } 505 506 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 507 DAGCombinerInfo &DCI) const { 508 switch (N->getOpcode()) { 509 default: 510 break; 511 case RISCVISD::SplitF64: { 512 // If the input to SplitF64 is just BuildPairF64 then the operation is 513 // redundant. Instead, use BuildPairF64's operands directly. 514 SDValue Op0 = N->getOperand(0); 515 if (Op0->getOpcode() != RISCVISD::BuildPairF64) 516 break; 517 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 518 } 519 } 520 521 return SDValue(); 522 } 523 524 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 525 MachineBasicBlock *BB) { 526 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 527 528 MachineFunction &MF = *BB->getParent(); 529 DebugLoc DL = MI.getDebugLoc(); 530 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 531 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 532 unsigned LoReg = MI.getOperand(0).getReg(); 533 unsigned HiReg = MI.getOperand(1).getReg(); 534 unsigned SrcReg = MI.getOperand(2).getReg(); 535 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 536 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 537 538 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 539 RI); 540 MachineMemOperand *MMO = 541 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 542 MachineMemOperand::MOLoad, 8, 8); 543 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 544 .addFrameIndex(FI) 545 .addImm(0) 546 .addMemOperand(MMO); 547 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 548 .addFrameIndex(FI) 549 .addImm(4) 550 .addMemOperand(MMO); 551 MI.eraseFromParent(); // The pseudo instruction is gone now. 552 return BB; 553 } 554 555 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 556 MachineBasicBlock *BB) { 557 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 558 "Unexpected instruction"); 559 560 MachineFunction &MF = *BB->getParent(); 561 DebugLoc DL = MI.getDebugLoc(); 562 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 563 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 564 unsigned DstReg = MI.getOperand(0).getReg(); 565 unsigned LoReg = MI.getOperand(1).getReg(); 566 unsigned HiReg = MI.getOperand(2).getReg(); 567 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 568 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 569 570 MachineMemOperand *MMO = 571 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 572 MachineMemOperand::MOStore, 8, 8); 573 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 574 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 575 .addFrameIndex(FI) 576 .addImm(0) 577 .addMemOperand(MMO); 578 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 579 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 580 .addFrameIndex(FI) 581 .addImm(4) 582 .addMemOperand(MMO); 583 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 584 MI.eraseFromParent(); // The pseudo instruction is gone now. 585 return BB; 586 } 587 588 MachineBasicBlock * 589 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 590 MachineBasicBlock *BB) const { 591 switch (MI.getOpcode()) { 592 default: 593 llvm_unreachable("Unexpected instr type to insert"); 594 case RISCV::Select_GPR_Using_CC_GPR: 595 case RISCV::Select_FPR32_Using_CC_GPR: 596 case RISCV::Select_FPR64_Using_CC_GPR: 597 break; 598 case RISCV::BuildPairF64Pseudo: 599 return emitBuildPairF64Pseudo(MI, BB); 600 case RISCV::SplitF64Pseudo: 601 return emitSplitF64Pseudo(MI, BB); 602 } 603 604 // To "insert" a SELECT instruction, we actually have to insert the triangle 605 // control-flow pattern. The incoming instruction knows the destination vreg 606 // to set, the condition code register to branch on, the true/false values to 607 // select between, and the condcode to use to select the appropriate branch. 608 // 609 // We produce the following control flow: 610 // HeadMBB 611 // | \ 612 // | IfFalseMBB 613 // | / 614 // TailMBB 615 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 616 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 617 DebugLoc DL = MI.getDebugLoc(); 618 MachineFunction::iterator I = ++BB->getIterator(); 619 620 MachineBasicBlock *HeadMBB = BB; 621 MachineFunction *F = BB->getParent(); 622 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 623 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 624 625 F->insert(I, IfFalseMBB); 626 F->insert(I, TailMBB); 627 // Move all remaining instructions to TailMBB. 628 TailMBB->splice(TailMBB->begin(), HeadMBB, 629 std::next(MachineBasicBlock::iterator(MI)), HeadMBB->end()); 630 // Update machine-CFG edges by transferring all successors of the current 631 // block to the new block which will contain the Phi node for the select. 632 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 633 // Set the successors for HeadMBB. 634 HeadMBB->addSuccessor(IfFalseMBB); 635 HeadMBB->addSuccessor(TailMBB); 636 637 // Insert appropriate branch. 638 unsigned LHS = MI.getOperand(1).getReg(); 639 unsigned RHS = MI.getOperand(2).getReg(); 640 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 641 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 642 643 BuildMI(HeadMBB, DL, TII.get(Opcode)) 644 .addReg(LHS) 645 .addReg(RHS) 646 .addMBB(TailMBB); 647 648 // IfFalseMBB just falls through to TailMBB. 649 IfFalseMBB->addSuccessor(TailMBB); 650 651 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 652 BuildMI(*TailMBB, TailMBB->begin(), DL, TII.get(RISCV::PHI), 653 MI.getOperand(0).getReg()) 654 .addReg(MI.getOperand(4).getReg()) 655 .addMBB(HeadMBB) 656 .addReg(MI.getOperand(5).getReg()) 657 .addMBB(IfFalseMBB); 658 659 MI.eraseFromParent(); // The pseudo instruction is gone now. 660 return TailMBB; 661 } 662 663 // Calling Convention Implementation. 664 // The expectations for frontend ABI lowering vary from target to target. 665 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 666 // details, but this is a longer term goal. For now, we simply try to keep the 667 // role of the frontend as simple and well-defined as possible. The rules can 668 // be summarised as: 669 // * Never split up large scalar arguments. We handle them here. 670 // * If a hardfloat calling convention is being used, and the struct may be 671 // passed in a pair of registers (fp+fp, int+fp), and both registers are 672 // available, then pass as two separate arguments. If either the GPRs or FPRs 673 // are exhausted, then pass according to the rule below. 674 // * If a struct could never be passed in registers or directly in a stack 675 // slot (as it is larger than 2*XLEN and the floating point rules don't 676 // apply), then pass it using a pointer with the byval attribute. 677 // * If a struct is less than 2*XLEN, then coerce to either a two-element 678 // word-sized array or a 2*XLEN scalar (depending on alignment). 679 // * The frontend can determine whether a struct is returned by reference or 680 // not based on its size and fields. If it will be returned by reference, the 681 // frontend must modify the prototype so a pointer with the sret annotation is 682 // passed as the first argument. This is not necessary for large scalar 683 // returns. 684 // * Struct return values and varargs should be coerced to structs containing 685 // register-size fields in the same situations they would be for fixed 686 // arguments. 687 688 static const MCPhysReg ArgGPRs[] = { 689 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 690 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 691 }; 692 693 // Pass a 2*XLEN argument that has been split into two XLEN values through 694 // registers or the stack as necessary. 695 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 696 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 697 MVT ValVT2, MVT LocVT2, 698 ISD::ArgFlagsTy ArgFlags2) { 699 unsigned XLenInBytes = XLen / 8; 700 if (unsigned Reg = State.AllocateReg(ArgGPRs)) { 701 // At least one half can be passed via register. 702 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 703 VA1.getLocVT(), CCValAssign::Full)); 704 } else { 705 // Both halves must be passed on the stack, with proper alignment. 706 unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign()); 707 State.addLoc( 708 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 709 State.AllocateStack(XLenInBytes, StackAlign), 710 VA1.getLocVT(), CCValAssign::Full)); 711 State.addLoc(CCValAssign::getMem( 712 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 713 CCValAssign::Full)); 714 return false; 715 } 716 717 if (unsigned Reg = State.AllocateReg(ArgGPRs)) { 718 // The second half can also be passed via register. 719 State.addLoc( 720 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 721 } else { 722 // The second half is passed via the stack, without additional alignment. 723 State.addLoc(CCValAssign::getMem( 724 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 725 CCValAssign::Full)); 726 } 727 728 return false; 729 } 730 731 // Implements the RISC-V calling convention. Returns true upon failure. 732 static bool CC_RISCV(const DataLayout &DL, unsigned ValNo, MVT ValVT, MVT LocVT, 733 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 734 CCState &State, bool IsFixed, bool IsRet, Type *OrigTy) { 735 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 736 assert(XLen == 32 || XLen == 64); 737 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 738 if (ValVT == MVT::f32) { 739 LocVT = MVT::i32; 740 LocInfo = CCValAssign::BCvt; 741 } 742 743 // Any return value split in to more than two values can't be returned 744 // directly. 745 if (IsRet && ValNo > 1) 746 return true; 747 748 // If this is a variadic argument, the RISC-V calling convention requires 749 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 750 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 751 // be used regardless of whether the original argument was split during 752 // legalisation or not. The argument will not be passed by registers if the 753 // original type is larger than 2*XLEN, so the register alignment rule does 754 // not apply. 755 unsigned TwoXLenInBytes = (2 * XLen) / 8; 756 if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes && 757 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 758 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 759 // Skip 'odd' register if necessary. 760 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 761 State.AllocateReg(ArgGPRs); 762 } 763 764 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 765 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 766 State.getPendingArgFlags(); 767 768 assert(PendingLocs.size() == PendingArgFlags.size() && 769 "PendingLocs and PendingArgFlags out of sync"); 770 771 // Handle passing f64 on RV32D with a soft float ABI. 772 if (XLen == 32 && ValVT == MVT::f64) { 773 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 774 "Can't lower f64 if it is split"); 775 // Depending on available argument GPRS, f64 may be passed in a pair of 776 // GPRs, split between a GPR and the stack, or passed completely on the 777 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 778 // cases. 779 unsigned Reg = State.AllocateReg(ArgGPRs); 780 LocVT = MVT::i32; 781 if (!Reg) { 782 unsigned StackOffset = State.AllocateStack(8, 8); 783 State.addLoc( 784 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 785 return false; 786 } 787 if (!State.AllocateReg(ArgGPRs)) 788 State.AllocateStack(4, 4); 789 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 790 return false; 791 } 792 793 // Split arguments might be passed indirectly, so keep track of the pending 794 // values. 795 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 796 LocVT = XLenVT; 797 LocInfo = CCValAssign::Indirect; 798 PendingLocs.push_back( 799 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 800 PendingArgFlags.push_back(ArgFlags); 801 if (!ArgFlags.isSplitEnd()) { 802 return false; 803 } 804 } 805 806 // If the split argument only had two elements, it should be passed directly 807 // in registers or on the stack. 808 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 809 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 810 // Apply the normal calling convention rules to the first half of the 811 // split argument. 812 CCValAssign VA = PendingLocs[0]; 813 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 814 PendingLocs.clear(); 815 PendingArgFlags.clear(); 816 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 817 ArgFlags); 818 } 819 820 // Allocate to a register if possible, or else a stack slot. 821 unsigned Reg = State.AllocateReg(ArgGPRs); 822 unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8); 823 824 // If we reach this point and PendingLocs is non-empty, we must be at the 825 // end of a split argument that must be passed indirectly. 826 if (!PendingLocs.empty()) { 827 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 828 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 829 830 for (auto &It : PendingLocs) { 831 if (Reg) 832 It.convertToReg(Reg); 833 else 834 It.convertToMem(StackOffset); 835 State.addLoc(It); 836 } 837 PendingLocs.clear(); 838 PendingArgFlags.clear(); 839 return false; 840 } 841 842 assert(LocVT == XLenVT && "Expected an XLenVT at this stage"); 843 844 if (Reg) { 845 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 846 return false; 847 } 848 849 if (ValVT == MVT::f32) { 850 LocVT = MVT::f32; 851 LocInfo = CCValAssign::Full; 852 } 853 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 854 return false; 855 } 856 857 void RISCVTargetLowering::analyzeInputArgs( 858 MachineFunction &MF, CCState &CCInfo, 859 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 860 unsigned NumArgs = Ins.size(); 861 FunctionType *FType = MF.getFunction().getFunctionType(); 862 863 for (unsigned i = 0; i != NumArgs; ++i) { 864 MVT ArgVT = Ins[i].VT; 865 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 866 867 Type *ArgTy = nullptr; 868 if (IsRet) 869 ArgTy = FType->getReturnType(); 870 else if (Ins[i].isOrigArg()) 871 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 872 873 if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full, 874 ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) { 875 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 876 << EVT(ArgVT).getEVTString() << '\n'); 877 llvm_unreachable(nullptr); 878 } 879 } 880 } 881 882 void RISCVTargetLowering::analyzeOutputArgs( 883 MachineFunction &MF, CCState &CCInfo, 884 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 885 CallLoweringInfo *CLI) const { 886 unsigned NumArgs = Outs.size(); 887 888 for (unsigned i = 0; i != NumArgs; i++) { 889 MVT ArgVT = Outs[i].VT; 890 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 891 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 892 893 if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full, 894 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { 895 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 896 << EVT(ArgVT).getEVTString() << "\n"); 897 llvm_unreachable(nullptr); 898 } 899 } 900 } 901 902 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 903 // values. 904 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 905 const CCValAssign &VA, const SDLoc &DL) { 906 switch (VA.getLocInfo()) { 907 default: 908 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 909 case CCValAssign::Full: 910 break; 911 case CCValAssign::BCvt: 912 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 913 break; 914 } 915 return Val; 916 } 917 918 // The caller is responsible for loading the full value if the argument is 919 // passed with CCValAssign::Indirect. 920 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 921 const CCValAssign &VA, const SDLoc &DL) { 922 MachineFunction &MF = DAG.getMachineFunction(); 923 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 924 EVT LocVT = VA.getLocVT(); 925 SDValue Val; 926 927 unsigned VReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 928 RegInfo.addLiveIn(VA.getLocReg(), VReg); 929 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 930 931 if (VA.getLocInfo() == CCValAssign::Indirect) 932 return Val; 933 934 return convertLocVTToValVT(DAG, Val, VA, DL); 935 } 936 937 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 938 const CCValAssign &VA, const SDLoc &DL) { 939 EVT LocVT = VA.getLocVT(); 940 941 switch (VA.getLocInfo()) { 942 default: 943 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 944 case CCValAssign::Full: 945 break; 946 case CCValAssign::BCvt: 947 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 948 break; 949 } 950 return Val; 951 } 952 953 // The caller is responsible for loading the full value if the argument is 954 // passed with CCValAssign::Indirect. 955 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 956 const CCValAssign &VA, const SDLoc &DL) { 957 MachineFunction &MF = DAG.getMachineFunction(); 958 MachineFrameInfo &MFI = MF.getFrameInfo(); 959 EVT LocVT = VA.getLocVT(); 960 EVT ValVT = VA.getValVT(); 961 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 962 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 963 VA.getLocMemOffset(), /*Immutable=*/true); 964 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 965 SDValue Val; 966 967 ISD::LoadExtType ExtType; 968 switch (VA.getLocInfo()) { 969 default: 970 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 971 case CCValAssign::Full: 972 case CCValAssign::Indirect: 973 ExtType = ISD::NON_EXTLOAD; 974 break; 975 } 976 Val = DAG.getExtLoad( 977 ExtType, DL, LocVT, Chain, FIN, 978 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 979 return Val; 980 } 981 982 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 983 const CCValAssign &VA, const SDLoc &DL) { 984 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 985 "Unexpected VA"); 986 MachineFunction &MF = DAG.getMachineFunction(); 987 MachineFrameInfo &MFI = MF.getFrameInfo(); 988 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 989 990 if (VA.isMemLoc()) { 991 // f64 is passed on the stack. 992 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 993 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 994 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 995 MachinePointerInfo::getFixedStack(MF, FI)); 996 } 997 998 assert(VA.isRegLoc() && "Expected register VA assignment"); 999 1000 unsigned LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1001 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 1002 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 1003 SDValue Hi; 1004 if (VA.getLocReg() == RISCV::X17) { 1005 // Second half of f64 is passed on the stack. 1006 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 1007 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1008 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 1009 MachinePointerInfo::getFixedStack(MF, FI)); 1010 } else { 1011 // Second half of f64 is passed in another GPR. 1012 unsigned HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1013 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 1014 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 1015 } 1016 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 1017 } 1018 1019 // Transform physical registers into virtual registers. 1020 SDValue RISCVTargetLowering::LowerFormalArguments( 1021 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1022 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1023 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1024 1025 switch (CallConv) { 1026 default: 1027 report_fatal_error("Unsupported calling convention"); 1028 case CallingConv::C: 1029 case CallingConv::Fast: 1030 break; 1031 } 1032 1033 MachineFunction &MF = DAG.getMachineFunction(); 1034 1035 const Function &Func = MF.getFunction(); 1036 if (Func.hasFnAttribute("interrupt")) { 1037 if (!Func.arg_empty()) 1038 report_fatal_error( 1039 "Functions with the interrupt attribute cannot have arguments!"); 1040 1041 StringRef Kind = 1042 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 1043 1044 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 1045 report_fatal_error( 1046 "Function interrupt attribute argument not supported!"); 1047 } 1048 1049 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1050 MVT XLenVT = Subtarget.getXLenVT(); 1051 unsigned XLenInBytes = Subtarget.getXLen() / 8; 1052 // Used with vargs to acumulate store chains. 1053 std::vector<SDValue> OutChains; 1054 1055 // Assign locations to all of the incoming arguments. 1056 SmallVector<CCValAssign, 16> ArgLocs; 1057 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1058 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 1059 1060 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1061 CCValAssign &VA = ArgLocs[i]; 1062 SDValue ArgValue; 1063 // Passing f64 on RV32D with a soft float ABI must be handled as a special 1064 // case. 1065 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 1066 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 1067 else if (VA.isRegLoc()) 1068 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); 1069 else 1070 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 1071 1072 if (VA.getLocInfo() == CCValAssign::Indirect) { 1073 // If the original argument was split and passed by reference (e.g. i128 1074 // on RV32), we need to load all parts of it here (using the same 1075 // address). 1076 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1077 MachinePointerInfo())); 1078 unsigned ArgIndex = Ins[i].OrigArgIndex; 1079 assert(Ins[i].PartOffset == 0); 1080 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 1081 CCValAssign &PartVA = ArgLocs[i + 1]; 1082 unsigned PartOffset = Ins[i + 1].PartOffset; 1083 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1084 DAG.getIntPtrConstant(PartOffset, DL)); 1085 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1086 MachinePointerInfo())); 1087 ++i; 1088 } 1089 continue; 1090 } 1091 InVals.push_back(ArgValue); 1092 } 1093 1094 if (IsVarArg) { 1095 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 1096 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 1097 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 1098 MachineFrameInfo &MFI = MF.getFrameInfo(); 1099 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1100 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 1101 1102 // Offset of the first variable argument from stack pointer, and size of 1103 // the vararg save area. For now, the varargs save area is either zero or 1104 // large enough to hold a0-a7. 1105 int VaArgOffset, VarArgsSaveSize; 1106 1107 // If all registers are allocated, then all varargs must be passed on the 1108 // stack and we don't need to save any argregs. 1109 if (ArgRegs.size() == Idx) { 1110 VaArgOffset = CCInfo.getNextStackOffset(); 1111 VarArgsSaveSize = 0; 1112 } else { 1113 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 1114 VaArgOffset = -VarArgsSaveSize; 1115 } 1116 1117 // Record the frame index of the first variable argument 1118 // which is a value necessary to VASTART. 1119 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1120 RVFI->setVarArgsFrameIndex(FI); 1121 1122 // If saving an odd number of registers then create an extra stack slot to 1123 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 1124 // offsets to even-numbered registered remain 2*XLEN-aligned. 1125 if (Idx % 2) { 1126 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, 1127 true); 1128 VarArgsSaveSize += XLenInBytes; 1129 } 1130 1131 // Copy the integer registers that may have been used for passing varargs 1132 // to the vararg save area. 1133 for (unsigned I = Idx; I < ArgRegs.size(); 1134 ++I, VaArgOffset += XLenInBytes) { 1135 const unsigned Reg = RegInfo.createVirtualRegister(RC); 1136 RegInfo.addLiveIn(ArgRegs[I], Reg); 1137 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 1138 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1139 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1140 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 1141 MachinePointerInfo::getFixedStack(MF, FI)); 1142 cast<StoreSDNode>(Store.getNode()) 1143 ->getMemOperand() 1144 ->setValue((Value *)nullptr); 1145 OutChains.push_back(Store); 1146 } 1147 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 1148 } 1149 1150 // All stores are grouped in one node to allow the matching between 1151 // the size of Ins and InVals. This only happens for vararg functions. 1152 if (!OutChains.empty()) { 1153 OutChains.push_back(Chain); 1154 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1155 } 1156 1157 return Chain; 1158 } 1159 1160 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 1161 /// for tail call optimization. 1162 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 1163 bool RISCVTargetLowering::IsEligibleForTailCallOptimization( 1164 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 1165 const SmallVector<CCValAssign, 16> &ArgLocs) const { 1166 1167 auto &Callee = CLI.Callee; 1168 auto CalleeCC = CLI.CallConv; 1169 auto IsVarArg = CLI.IsVarArg; 1170 auto &Outs = CLI.Outs; 1171 auto &Caller = MF.getFunction(); 1172 auto CallerCC = Caller.getCallingConv(); 1173 1174 // Do not tail call opt functions with "disable-tail-calls" attribute. 1175 if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 1176 return false; 1177 1178 // Exception-handling functions need a special set of instructions to 1179 // indicate a return to the hardware. Tail-calling another function would 1180 // probably break this. 1181 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 1182 // should be expanded as new function attributes are introduced. 1183 if (Caller.hasFnAttribute("interrupt")) 1184 return false; 1185 1186 // Do not tail call opt functions with varargs. 1187 if (IsVarArg) 1188 return false; 1189 1190 // Do not tail call opt if the stack is used to pass parameters. 1191 if (CCInfo.getNextStackOffset() != 0) 1192 return false; 1193 1194 // Do not tail call opt if any parameters need to be passed indirectly. 1195 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 1196 // passed indirectly. So the address of the value will be passed in a 1197 // register, or if not available, then the address is put on the stack. In 1198 // order to pass indirectly, space on the stack often needs to be allocated 1199 // in order to store the value. In this case the CCInfo.getNextStackOffset() 1200 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 1201 // are passed CCValAssign::Indirect. 1202 for (auto &VA : ArgLocs) 1203 if (VA.getLocInfo() == CCValAssign::Indirect) 1204 return false; 1205 1206 // Do not tail call opt if either caller or callee uses struct return 1207 // semantics. 1208 auto IsCallerStructRet = Caller.hasStructRetAttr(); 1209 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 1210 if (IsCallerStructRet || IsCalleeStructRet) 1211 return false; 1212 1213 // Externally-defined functions with weak linkage should not be 1214 // tail-called. The behaviour of branch instructions in this situation (as 1215 // used for tail calls) is implementation-defined, so we cannot rely on the 1216 // linker replacing the tail call with a return. 1217 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1218 const GlobalValue *GV = G->getGlobal(); 1219 if (GV->hasExternalWeakLinkage()) 1220 return false; 1221 } 1222 1223 // The callee has to preserve all registers the caller needs to preserve. 1224 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1225 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1226 if (CalleeCC != CallerCC) { 1227 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 1228 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 1229 return false; 1230 } 1231 1232 // Byval parameters hand the function a pointer directly into the stack area 1233 // we want to reuse during a tail call. Working around this *is* possible 1234 // but less efficient and uglier in LowerCall. 1235 for (auto &Arg : Outs) 1236 if (Arg.Flags.isByVal()) 1237 return false; 1238 1239 return true; 1240 } 1241 1242 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 1243 // and output parameter nodes. 1244 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 1245 SmallVectorImpl<SDValue> &InVals) const { 1246 SelectionDAG &DAG = CLI.DAG; 1247 SDLoc &DL = CLI.DL; 1248 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1249 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1250 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1251 SDValue Chain = CLI.Chain; 1252 SDValue Callee = CLI.Callee; 1253 bool &IsTailCall = CLI.IsTailCall; 1254 CallingConv::ID CallConv = CLI.CallConv; 1255 bool IsVarArg = CLI.IsVarArg; 1256 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1257 MVT XLenVT = Subtarget.getXLenVT(); 1258 1259 MachineFunction &MF = DAG.getMachineFunction(); 1260 1261 // Analyze the operands of the call, assigning locations to each operand. 1262 SmallVector<CCValAssign, 16> ArgLocs; 1263 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1264 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 1265 1266 // Check if it's really possible to do a tail call. 1267 if (IsTailCall) 1268 IsTailCall = IsEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, 1269 ArgLocs); 1270 1271 if (IsTailCall) 1272 ++NumTailCalls; 1273 else if (CLI.CS && CLI.CS.isMustTailCall()) 1274 report_fatal_error("failed to perform tail call elimination on a call " 1275 "site marked musttail"); 1276 1277 // Get a count of how many bytes are to be pushed on the stack. 1278 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1279 1280 // Create local copies for byval args 1281 SmallVector<SDValue, 8> ByValArgs; 1282 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 1283 ISD::ArgFlagsTy Flags = Outs[i].Flags; 1284 if (!Flags.isByVal()) 1285 continue; 1286 1287 SDValue Arg = OutVals[i]; 1288 unsigned Size = Flags.getByValSize(); 1289 unsigned Align = Flags.getByValAlign(); 1290 1291 int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false); 1292 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1293 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 1294 1295 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, 1296 /*IsVolatile=*/false, 1297 /*AlwaysInline=*/false, 1298 IsTailCall, MachinePointerInfo(), 1299 MachinePointerInfo()); 1300 ByValArgs.push_back(FIPtr); 1301 } 1302 1303 if (!IsTailCall) 1304 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 1305 1306 // Copy argument values to their designated locations. 1307 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 1308 SmallVector<SDValue, 8> MemOpChains; 1309 SDValue StackPtr; 1310 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 1311 CCValAssign &VA = ArgLocs[i]; 1312 SDValue ArgValue = OutVals[i]; 1313 ISD::ArgFlagsTy Flags = Outs[i].Flags; 1314 1315 // Handle passing f64 on RV32D with a soft float ABI as a special case. 1316 bool IsF64OnRV32DSoftABI = 1317 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 1318 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 1319 SDValue SplitF64 = DAG.getNode( 1320 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 1321 SDValue Lo = SplitF64.getValue(0); 1322 SDValue Hi = SplitF64.getValue(1); 1323 1324 unsigned RegLo = VA.getLocReg(); 1325 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 1326 1327 if (RegLo == RISCV::X17) { 1328 // Second half of f64 is passed on the stack. 1329 // Work out the address of the stack slot. 1330 if (!StackPtr.getNode()) 1331 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 1332 // Emit the store. 1333 MemOpChains.push_back( 1334 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 1335 } else { 1336 // Second half of f64 is passed in another GPR. 1337 unsigned RegHigh = RegLo + 1; 1338 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 1339 } 1340 continue; 1341 } 1342 1343 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 1344 // as any other MemLoc. 1345 1346 // Promote the value if needed. 1347 // For now, only handle fully promoted and indirect arguments. 1348 if (VA.getLocInfo() == CCValAssign::Indirect) { 1349 // Store the argument in a stack slot and pass its address. 1350 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 1351 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1352 MemOpChains.push_back( 1353 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1354 MachinePointerInfo::getFixedStack(MF, FI))); 1355 // If the original argument was split (e.g. i128), we need 1356 // to store all parts of it here (and pass just one address). 1357 unsigned ArgIndex = Outs[i].OrigArgIndex; 1358 assert(Outs[i].PartOffset == 0); 1359 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 1360 SDValue PartValue = OutVals[i + 1]; 1361 unsigned PartOffset = Outs[i + 1].PartOffset; 1362 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1363 DAG.getIntPtrConstant(PartOffset, DL)); 1364 MemOpChains.push_back( 1365 DAG.getStore(Chain, DL, PartValue, Address, 1366 MachinePointerInfo::getFixedStack(MF, FI))); 1367 ++i; 1368 } 1369 ArgValue = SpillSlot; 1370 } else { 1371 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 1372 } 1373 1374 // Use local copy if it is a byval arg. 1375 if (Flags.isByVal()) 1376 ArgValue = ByValArgs[j++]; 1377 1378 if (VA.isRegLoc()) { 1379 // Queue up the argument copies and emit them at the end. 1380 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1381 } else { 1382 assert(VA.isMemLoc() && "Argument not register or memory"); 1383 assert(!IsTailCall && "Tail call not allowed if stack is used " 1384 "for passing parameters"); 1385 1386 // Work out the address of the stack slot. 1387 if (!StackPtr.getNode()) 1388 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 1389 SDValue Address = 1390 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1391 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 1392 1393 // Emit the store. 1394 MemOpChains.push_back( 1395 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1396 } 1397 } 1398 1399 // Join the stores, which are independent of one another. 1400 if (!MemOpChains.empty()) 1401 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1402 1403 SDValue Glue; 1404 1405 // Build a sequence of copy-to-reg nodes, chained and glued together. 1406 for (auto &Reg : RegsToPass) { 1407 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 1408 Glue = Chain.getValue(1); 1409 } 1410 1411 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 1412 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 1413 // split it and then direct call can be matched by PseudoCALL. 1414 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 1415 Callee = DAG.getTargetGlobalAddress(S->getGlobal(), DL, PtrVT, 0, 0); 1416 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1417 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, 0); 1418 } 1419 1420 // The first call operand is the chain and the second is the target address. 1421 SmallVector<SDValue, 8> Ops; 1422 Ops.push_back(Chain); 1423 Ops.push_back(Callee); 1424 1425 // Add argument registers to the end of the list so that they are 1426 // known live into the call. 1427 for (auto &Reg : RegsToPass) 1428 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 1429 1430 if (!IsTailCall) { 1431 // Add a register mask operand representing the call-preserved registers. 1432 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1433 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1434 assert(Mask && "Missing call preserved mask for calling convention"); 1435 Ops.push_back(DAG.getRegisterMask(Mask)); 1436 } 1437 1438 // Glue the call to the argument copies, if any. 1439 if (Glue.getNode()) 1440 Ops.push_back(Glue); 1441 1442 // Emit the call. 1443 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1444 1445 if (IsTailCall) { 1446 MF.getFrameInfo().setHasTailCall(); 1447 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 1448 } 1449 1450 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 1451 Glue = Chain.getValue(1); 1452 1453 // Mark the end of the call, which is glued to the call itself. 1454 Chain = DAG.getCALLSEQ_END(Chain, 1455 DAG.getConstant(NumBytes, DL, PtrVT, true), 1456 DAG.getConstant(0, DL, PtrVT, true), 1457 Glue, DL); 1458 Glue = Chain.getValue(1); 1459 1460 // Assign locations to each value returned by this call. 1461 SmallVector<CCValAssign, 16> RVLocs; 1462 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 1463 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 1464 1465 // Copy all of the result registers out of their specified physreg. 1466 for (auto &VA : RVLocs) { 1467 // Copy the value out 1468 SDValue RetValue = 1469 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 1470 // Glue the RetValue to the end of the call sequence 1471 Chain = RetValue.getValue(1); 1472 Glue = RetValue.getValue(2); 1473 1474 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 1475 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 1476 SDValue RetValue2 = 1477 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 1478 Chain = RetValue2.getValue(1); 1479 Glue = RetValue2.getValue(2); 1480 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 1481 RetValue2); 1482 } 1483 1484 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 1485 1486 InVals.push_back(RetValue); 1487 } 1488 1489 return Chain; 1490 } 1491 1492 bool RISCVTargetLowering::CanLowerReturn( 1493 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 1494 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 1495 SmallVector<CCValAssign, 16> RVLocs; 1496 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 1497 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 1498 MVT VT = Outs[i].VT; 1499 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 1500 if (CC_RISCV(MF.getDataLayout(), i, VT, VT, CCValAssign::Full, ArgFlags, 1501 CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) 1502 return false; 1503 } 1504 return true; 1505 } 1506 1507 SDValue 1508 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1509 bool IsVarArg, 1510 const SmallVectorImpl<ISD::OutputArg> &Outs, 1511 const SmallVectorImpl<SDValue> &OutVals, 1512 const SDLoc &DL, SelectionDAG &DAG) const { 1513 // Stores the assignment of the return value to a location. 1514 SmallVector<CCValAssign, 16> RVLocs; 1515 1516 // Info about the registers and stack slot. 1517 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 1518 *DAG.getContext()); 1519 1520 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 1521 nullptr); 1522 1523 SDValue Glue; 1524 SmallVector<SDValue, 4> RetOps(1, Chain); 1525 1526 // Copy the result values into the output registers. 1527 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 1528 SDValue Val = OutVals[i]; 1529 CCValAssign &VA = RVLocs[i]; 1530 assert(VA.isRegLoc() && "Can only return in registers!"); 1531 1532 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 1533 // Handle returning f64 on RV32D with a soft float ABI. 1534 assert(VA.isRegLoc() && "Expected return via registers"); 1535 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 1536 DAG.getVTList(MVT::i32, MVT::i32), Val); 1537 SDValue Lo = SplitF64.getValue(0); 1538 SDValue Hi = SplitF64.getValue(1); 1539 unsigned RegLo = VA.getLocReg(); 1540 unsigned RegHi = RegLo + 1; 1541 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 1542 Glue = Chain.getValue(1); 1543 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 1544 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 1545 Glue = Chain.getValue(1); 1546 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 1547 } else { 1548 // Handle a 'normal' return. 1549 Val = convertValVTToLocVT(DAG, Val, VA, DL); 1550 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 1551 1552 // Guarantee that all emitted copies are stuck together. 1553 Glue = Chain.getValue(1); 1554 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 1555 } 1556 } 1557 1558 RetOps[0] = Chain; // Update chain. 1559 1560 // Add the glue node if we have it. 1561 if (Glue.getNode()) { 1562 RetOps.push_back(Glue); 1563 } 1564 1565 // Interrupt service routines use different return instructions. 1566 const Function &Func = DAG.getMachineFunction().getFunction(); 1567 if (Func.hasFnAttribute("interrupt")) { 1568 if (!Func.getReturnType()->isVoidTy()) 1569 report_fatal_error( 1570 "Functions with the interrupt attribute must have void return type!"); 1571 1572 MachineFunction &MF = DAG.getMachineFunction(); 1573 StringRef Kind = 1574 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 1575 1576 unsigned RetOpc; 1577 if (Kind == "user") 1578 RetOpc = RISCVISD::URET_FLAG; 1579 else if (Kind == "supervisor") 1580 RetOpc = RISCVISD::SRET_FLAG; 1581 else 1582 RetOpc = RISCVISD::MRET_FLAG; 1583 1584 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 1585 } 1586 1587 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 1588 } 1589 1590 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 1591 switch ((RISCVISD::NodeType)Opcode) { 1592 case RISCVISD::FIRST_NUMBER: 1593 break; 1594 case RISCVISD::RET_FLAG: 1595 return "RISCVISD::RET_FLAG"; 1596 case RISCVISD::URET_FLAG: 1597 return "RISCVISD::URET_FLAG"; 1598 case RISCVISD::SRET_FLAG: 1599 return "RISCVISD::SRET_FLAG"; 1600 case RISCVISD::MRET_FLAG: 1601 return "RISCVISD::MRET_FLAG"; 1602 case RISCVISD::CALL: 1603 return "RISCVISD::CALL"; 1604 case RISCVISD::SELECT_CC: 1605 return "RISCVISD::SELECT_CC"; 1606 case RISCVISD::BuildPairF64: 1607 return "RISCVISD::BuildPairF64"; 1608 case RISCVISD::SplitF64: 1609 return "RISCVISD::SplitF64"; 1610 case RISCVISD::TAIL: 1611 return "RISCVISD::TAIL"; 1612 } 1613 return nullptr; 1614 } 1615 1616 std::pair<unsigned, const TargetRegisterClass *> 1617 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 1618 StringRef Constraint, 1619 MVT VT) const { 1620 // First, see if this is a constraint that directly corresponds to a 1621 // RISCV register class. 1622 if (Constraint.size() == 1) { 1623 switch (Constraint[0]) { 1624 case 'r': 1625 return std::make_pair(0U, &RISCV::GPRRegClass); 1626 default: 1627 break; 1628 } 1629 } 1630 1631 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1632 } 1633 1634 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 1635 Instruction *Inst, 1636 AtomicOrdering Ord) const { 1637 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 1638 return Builder.CreateFence(Ord); 1639 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 1640 return Builder.CreateFence(AtomicOrdering::Release); 1641 return nullptr; 1642 } 1643 1644 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 1645 Instruction *Inst, 1646 AtomicOrdering Ord) const { 1647 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 1648 return Builder.CreateFence(AtomicOrdering::Acquire); 1649 return nullptr; 1650 } 1651 1652 TargetLowering::AtomicExpansionKind 1653 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1654 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 1655 if (Size == 8 || Size == 16) 1656 return AtomicExpansionKind::MaskedIntrinsic; 1657 return AtomicExpansionKind::None; 1658 } 1659 1660 static Intrinsic::ID 1661 getIntrinsicForMaskedAtomicRMWBinOp32(AtomicRMWInst::BinOp BinOp) { 1662 switch (BinOp) { 1663 default: 1664 llvm_unreachable("Unexpected AtomicRMW BinOp"); 1665 case AtomicRMWInst::Xchg: 1666 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 1667 case AtomicRMWInst::Add: 1668 return Intrinsic::riscv_masked_atomicrmw_add_i32; 1669 case AtomicRMWInst::Sub: 1670 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 1671 case AtomicRMWInst::Nand: 1672 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 1673 case AtomicRMWInst::Max: 1674 return Intrinsic::riscv_masked_atomicrmw_max_i32; 1675 case AtomicRMWInst::Min: 1676 return Intrinsic::riscv_masked_atomicrmw_min_i32; 1677 case AtomicRMWInst::UMax: 1678 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 1679 case AtomicRMWInst::UMin: 1680 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 1681 } 1682 } 1683 1684 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 1685 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 1686 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 1687 Value *Ordering = Builder.getInt32(static_cast<uint32_t>(AI->getOrdering())); 1688 Type *Tys[] = {AlignedAddr->getType()}; 1689 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 1690 AI->getModule(), 1691 getIntrinsicForMaskedAtomicRMWBinOp32(AI->getOperation()), Tys); 1692 1693 // Must pass the shift amount needed to sign extend the loaded value prior 1694 // to performing a signed comparison for min/max. ShiftAmt is the number of 1695 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 1696 // is the number of bits to left+right shift the value in order to 1697 // sign-extend. 1698 if (AI->getOperation() == AtomicRMWInst::Min || 1699 AI->getOperation() == AtomicRMWInst::Max) { 1700 const DataLayout &DL = AI->getModule()->getDataLayout(); 1701 unsigned ValWidth = 1702 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 1703 Value *SextShamt = Builder.CreateSub( 1704 Builder.getInt32(Subtarget.getXLen() - ValWidth), ShiftAmt); 1705 return Builder.CreateCall(LrwOpScwLoop, 1706 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 1707 } 1708 1709 return Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 1710 } 1711