1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "RISCV.h"
16 #include "RISCVMachineFunctionInfo.h"
17 #include "RISCVRegisterInfo.h"
18 #include "RISCVSubtarget.h"
19 #include "RISCVTargetMachine.h"
20 #include "Utils/RISCVMatInt.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAGISel.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IntrinsicsRISCV.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "riscv-lower"
41 
42 STATISTIC(NumTailCalls, "Number of tail calls");
43 
44 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
45                                          const RISCVSubtarget &STI)
46     : TargetLowering(TM), Subtarget(STI) {
47 
48   if (Subtarget.isRV32E())
49     report_fatal_error("Codegen not yet implemented for RV32E");
50 
51   RISCVABI::ABI ABI = Subtarget.getTargetABI();
52   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
53 
54   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
55       !Subtarget.hasStdExtF()) {
56     errs() << "Hard-float 'f' ABI can't be used for a target that "
57                 "doesn't support the F instruction set extension (ignoring "
58                           "target-abi)\n";
59     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
60   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
61              !Subtarget.hasStdExtD()) {
62     errs() << "Hard-float 'd' ABI can't be used for a target that "
63               "doesn't support the D instruction set extension (ignoring "
64               "target-abi)\n";
65     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
66   }
67 
68   switch (ABI) {
69   default:
70     report_fatal_error("Don't know how to lower this ABI");
71   case RISCVABI::ABI_ILP32:
72   case RISCVABI::ABI_ILP32F:
73   case RISCVABI::ABI_ILP32D:
74   case RISCVABI::ABI_LP64:
75   case RISCVABI::ABI_LP64F:
76   case RISCVABI::ABI_LP64D:
77     break;
78   }
79 
80   MVT XLenVT = Subtarget.getXLenVT();
81 
82   // Set up the register classes.
83   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
84 
85   if (Subtarget.hasStdExtF())
86     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
87   if (Subtarget.hasStdExtD())
88     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
89 
90   // Compute derived properties from the register classes.
91   computeRegisterProperties(STI.getRegisterInfo());
92 
93   setStackPointerRegisterToSaveRestore(RISCV::X2);
94 
95   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
96     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
97 
98   // TODO: add all necessary setOperationAction calls.
99   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
100 
101   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
102   setOperationAction(ISD::BR_CC, XLenVT, Expand);
103   setOperationAction(ISD::SELECT, XLenVT, Custom);
104   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
105 
106   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
107   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
108 
109   setOperationAction(ISD::VASTART, MVT::Other, Custom);
110   setOperationAction(ISD::VAARG, MVT::Other, Expand);
111   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
112   setOperationAction(ISD::VAEND, MVT::Other, Expand);
113 
114   for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
115     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
116 
117   if (Subtarget.is64Bit()) {
118     setOperationAction(ISD::ADD, MVT::i32, Custom);
119     setOperationAction(ISD::SUB, MVT::i32, Custom);
120     setOperationAction(ISD::SHL, MVT::i32, Custom);
121     setOperationAction(ISD::SRA, MVT::i32, Custom);
122     setOperationAction(ISD::SRL, MVT::i32, Custom);
123   }
124 
125   if (!Subtarget.hasStdExtM()) {
126     setOperationAction(ISD::MUL, XLenVT, Expand);
127     setOperationAction(ISD::MULHS, XLenVT, Expand);
128     setOperationAction(ISD::MULHU, XLenVT, Expand);
129     setOperationAction(ISD::SDIV, XLenVT, Expand);
130     setOperationAction(ISD::UDIV, XLenVT, Expand);
131     setOperationAction(ISD::SREM, XLenVT, Expand);
132     setOperationAction(ISD::UREM, XLenVT, Expand);
133   }
134 
135   if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) {
136     setOperationAction(ISD::MUL, MVT::i32, Custom);
137     setOperationAction(ISD::SDIV, MVT::i32, Custom);
138     setOperationAction(ISD::UDIV, MVT::i32, Custom);
139     setOperationAction(ISD::UREM, MVT::i32, Custom);
140   }
141 
142   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
143   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
144   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
145   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
146 
147   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
148   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
149   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
150 
151   setOperationAction(ISD::ROTL, XLenVT, Expand);
152   setOperationAction(ISD::ROTR, XLenVT, Expand);
153   setOperationAction(ISD::BSWAP, XLenVT, Expand);
154   setOperationAction(ISD::CTTZ, XLenVT, Expand);
155   setOperationAction(ISD::CTLZ, XLenVT, Expand);
156   setOperationAction(ISD::CTPOP, XLenVT, Expand);
157 
158   ISD::CondCode FPCCToExtend[] = {
159       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
160       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
161       ISD::SETGE,  ISD::SETNE};
162 
163   ISD::NodeType FPOpToExtend[] = {
164       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
165       ISD::FP_TO_FP16};
166 
167   if (Subtarget.hasStdExtF()) {
168     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
169     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
170     for (auto CC : FPCCToExtend)
171       setCondCodeAction(CC, MVT::f32, Expand);
172     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
173     setOperationAction(ISD::SELECT, MVT::f32, Custom);
174     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
175     for (auto Op : FPOpToExtend)
176       setOperationAction(Op, MVT::f32, Expand);
177     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
178     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
179   }
180 
181   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
182     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
183 
184   if (Subtarget.hasStdExtD()) {
185     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
186     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
187     for (auto CC : FPCCToExtend)
188       setCondCodeAction(CC, MVT::f64, Expand);
189     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
190     setOperationAction(ISD::SELECT, MVT::f64, Custom);
191     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
192     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
193     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
194     for (auto Op : FPOpToExtend)
195       setOperationAction(Op, MVT::f64, Expand);
196     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
197     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
198   }
199 
200   if (Subtarget.is64Bit() &&
201       !(Subtarget.hasStdExtD() || Subtarget.hasStdExtF())) {
202     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
203     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
204     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
205     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
206   }
207 
208   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
209   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
210   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
211 
212   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
213 
214   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
215   // Unfortunately this can't be determined just from the ISA naming string.
216   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
217                      Subtarget.is64Bit() ? Legal : Custom);
218 
219   setOperationAction(ISD::TRAP, MVT::Other, Legal);
220   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
221   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
222 
223   if (Subtarget.hasStdExtA()) {
224     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
225     setMinCmpXchgSizeInBits(32);
226   } else {
227     setMaxAtomicSizeInBitsSupported(0);
228   }
229 
230   setBooleanContents(ZeroOrOneBooleanContent);
231 
232   // Function alignments.
233   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
234   setMinFunctionAlignment(FunctionAlignment);
235   setPrefFunctionAlignment(FunctionAlignment);
236 
237   // Effectively disable jump table generation.
238   setMinimumJumpTableEntries(INT_MAX);
239 }
240 
241 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
242                                             EVT VT) const {
243   if (!VT.isVector())
244     return getPointerTy(DL);
245   return VT.changeVectorElementTypeToInteger();
246 }
247 
248 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
249                                              const CallInst &I,
250                                              MachineFunction &MF,
251                                              unsigned Intrinsic) const {
252   switch (Intrinsic) {
253   default:
254     return false;
255   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
256   case Intrinsic::riscv_masked_atomicrmw_add_i32:
257   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
258   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
259   case Intrinsic::riscv_masked_atomicrmw_max_i32:
260   case Intrinsic::riscv_masked_atomicrmw_min_i32:
261   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
262   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
263   case Intrinsic::riscv_masked_cmpxchg_i32:
264     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
265     Info.opc = ISD::INTRINSIC_W_CHAIN;
266     Info.memVT = MVT::getVT(PtrTy->getElementType());
267     Info.ptrVal = I.getArgOperand(0);
268     Info.offset = 0;
269     Info.align = Align(4);
270     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
271                  MachineMemOperand::MOVolatile;
272     return true;
273   }
274 }
275 
276 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
277                                                 const AddrMode &AM, Type *Ty,
278                                                 unsigned AS,
279                                                 Instruction *I) const {
280   // No global is ever allowed as a base.
281   if (AM.BaseGV)
282     return false;
283 
284   // Require a 12-bit signed offset.
285   if (!isInt<12>(AM.BaseOffs))
286     return false;
287 
288   switch (AM.Scale) {
289   case 0: // "r+i" or just "i", depending on HasBaseReg.
290     break;
291   case 1:
292     if (!AM.HasBaseReg) // allow "r+i".
293       break;
294     return false; // disallow "r+r" or "r+r+i".
295   default:
296     return false;
297   }
298 
299   return true;
300 }
301 
302 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
303   return isInt<12>(Imm);
304 }
305 
306 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
307   return isInt<12>(Imm);
308 }
309 
310 // On RV32, 64-bit integers are split into their high and low parts and held
311 // in two different registers, so the trunc is free since the low register can
312 // just be used.
313 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
314   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
315     return false;
316   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
317   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
318   return (SrcBits == 64 && DestBits == 32);
319 }
320 
321 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
322   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
323       !SrcVT.isInteger() || !DstVT.isInteger())
324     return false;
325   unsigned SrcBits = SrcVT.getSizeInBits();
326   unsigned DestBits = DstVT.getSizeInBits();
327   return (SrcBits == 64 && DestBits == 32);
328 }
329 
330 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
331   // Zexts are free if they can be combined with a load.
332   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
333     EVT MemVT = LD->getMemoryVT();
334     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
335          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
336         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
337          LD->getExtensionType() == ISD::ZEXTLOAD))
338       return true;
339   }
340 
341   return TargetLowering::isZExtFree(Val, VT2);
342 }
343 
344 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
345   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
346 }
347 
348 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
349                                        bool ForCodeSize) const {
350   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
351     return false;
352   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
353     return false;
354   if (Imm.isNegZero())
355     return false;
356   return Imm.isZero();
357 }
358 
359 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
360   return (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
361          (VT == MVT::f64 && Subtarget.hasStdExtD());
362 }
363 
364 // Changes the condition code and swaps operands if necessary, so the SetCC
365 // operation matches one of the comparisons supported directly in the RISC-V
366 // ISA.
367 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
368   switch (CC) {
369   default:
370     break;
371   case ISD::SETGT:
372   case ISD::SETLE:
373   case ISD::SETUGT:
374   case ISD::SETULE:
375     CC = ISD::getSetCCSwappedOperands(CC);
376     std::swap(LHS, RHS);
377     break;
378   }
379 }
380 
381 // Return the RISC-V branch opcode that matches the given DAG integer
382 // condition code. The CondCode must be one of those supported by the RISC-V
383 // ISA (see normaliseSetCC).
384 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
385   switch (CC) {
386   default:
387     llvm_unreachable("Unsupported CondCode");
388   case ISD::SETEQ:
389     return RISCV::BEQ;
390   case ISD::SETNE:
391     return RISCV::BNE;
392   case ISD::SETLT:
393     return RISCV::BLT;
394   case ISD::SETGE:
395     return RISCV::BGE;
396   case ISD::SETULT:
397     return RISCV::BLTU;
398   case ISD::SETUGE:
399     return RISCV::BGEU;
400   }
401 }
402 
403 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
404                                             SelectionDAG &DAG) const {
405   switch (Op.getOpcode()) {
406   default:
407     report_fatal_error("unimplemented operand");
408   case ISD::GlobalAddress:
409     return lowerGlobalAddress(Op, DAG);
410   case ISD::BlockAddress:
411     return lowerBlockAddress(Op, DAG);
412   case ISD::ConstantPool:
413     return lowerConstantPool(Op, DAG);
414   case ISD::GlobalTLSAddress:
415     return lowerGlobalTLSAddress(Op, DAG);
416   case ISD::SELECT:
417     return lowerSELECT(Op, DAG);
418   case ISD::VASTART:
419     return lowerVASTART(Op, DAG);
420   case ISD::FRAMEADDR:
421     return lowerFRAMEADDR(Op, DAG);
422   case ISD::RETURNADDR:
423     return lowerRETURNADDR(Op, DAG);
424   case ISD::SHL_PARTS:
425     return lowerShiftLeftParts(Op, DAG);
426   case ISD::SRA_PARTS:
427     return lowerShiftRightParts(Op, DAG, true);
428   case ISD::SRL_PARTS:
429     return lowerShiftRightParts(Op, DAG, false);
430   case ISD::BITCAST: {
431     assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() &&
432            "Unexpected custom legalisation");
433     SDLoc DL(Op);
434     SDValue Op0 = Op.getOperand(0);
435     if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32)
436       return SDValue();
437     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
438     SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
439     return FPConv;
440   }
441   case ISD::INTRINSIC_WO_CHAIN:
442     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
443   }
444 }
445 
446 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
447                              SelectionDAG &DAG, unsigned Flags) {
448   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
449 }
450 
451 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
452                              SelectionDAG &DAG, unsigned Flags) {
453   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
454                                    Flags);
455 }
456 
457 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
458                              SelectionDAG &DAG, unsigned Flags) {
459   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
460                                    N->getOffset(), Flags);
461 }
462 
463 template <class NodeTy>
464 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
465                                      bool IsLocal) const {
466   SDLoc DL(N);
467   EVT Ty = getPointerTy(DAG.getDataLayout());
468 
469   if (isPositionIndependent()) {
470     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
471     if (IsLocal)
472       // Use PC-relative addressing to access the symbol. This generates the
473       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
474       // %pcrel_lo(auipc)).
475       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
476 
477     // Use PC-relative addressing to access the GOT for this symbol, then load
478     // the address from the GOT. This generates the pattern (PseudoLA sym),
479     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
480     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
481   }
482 
483   switch (getTargetMachine().getCodeModel()) {
484   default:
485     report_fatal_error("Unsupported code model for lowering");
486   case CodeModel::Small: {
487     // Generate a sequence for accessing addresses within the first 2 GiB of
488     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
489     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
490     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
491     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
492     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
493   }
494   case CodeModel::Medium: {
495     // Generate a sequence for accessing addresses within any 2GiB range within
496     // the address space. This generates the pattern (PseudoLLA sym), which
497     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
498     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
499     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
500   }
501   }
502 }
503 
504 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
505                                                 SelectionDAG &DAG) const {
506   SDLoc DL(Op);
507   EVT Ty = Op.getValueType();
508   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
509   int64_t Offset = N->getOffset();
510   MVT XLenVT = Subtarget.getXLenVT();
511 
512   const GlobalValue *GV = N->getGlobal();
513   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
514   SDValue Addr = getAddr(N, DAG, IsLocal);
515 
516   // In order to maximise the opportunity for common subexpression elimination,
517   // emit a separate ADD node for the global address offset instead of folding
518   // it in the global address node. Later peephole optimisations may choose to
519   // fold it back in when profitable.
520   if (Offset != 0)
521     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
522                        DAG.getConstant(Offset, DL, XLenVT));
523   return Addr;
524 }
525 
526 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
527                                                SelectionDAG &DAG) const {
528   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
529 
530   return getAddr(N, DAG);
531 }
532 
533 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
534                                                SelectionDAG &DAG) const {
535   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
536 
537   return getAddr(N, DAG);
538 }
539 
540 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
541                                               SelectionDAG &DAG,
542                                               bool UseGOT) const {
543   SDLoc DL(N);
544   EVT Ty = getPointerTy(DAG.getDataLayout());
545   const GlobalValue *GV = N->getGlobal();
546   MVT XLenVT = Subtarget.getXLenVT();
547 
548   if (UseGOT) {
549     // Use PC-relative addressing to access the GOT for this TLS symbol, then
550     // load the address from the GOT and add the thread pointer. This generates
551     // the pattern (PseudoLA_TLS_IE sym), which expands to
552     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
553     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
554     SDValue Load =
555         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
556 
557     // Add the thread pointer.
558     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
559     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
560   }
561 
562   // Generate a sequence for accessing the address relative to the thread
563   // pointer, with the appropriate adjustment for the thread pointer offset.
564   // This generates the pattern
565   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
566   SDValue AddrHi =
567       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
568   SDValue AddrAdd =
569       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
570   SDValue AddrLo =
571       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
572 
573   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
574   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
575   SDValue MNAdd = SDValue(
576       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
577       0);
578   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
579 }
580 
581 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
582                                                SelectionDAG &DAG) const {
583   SDLoc DL(N);
584   EVT Ty = getPointerTy(DAG.getDataLayout());
585   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
586   const GlobalValue *GV = N->getGlobal();
587 
588   // Use a PC-relative addressing mode to access the global dynamic GOT address.
589   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
590   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
591   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
592   SDValue Load =
593       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
594 
595   // Prepare argument list to generate call.
596   ArgListTy Args;
597   ArgListEntry Entry;
598   Entry.Node = Load;
599   Entry.Ty = CallTy;
600   Args.push_back(Entry);
601 
602   // Setup call to __tls_get_addr.
603   TargetLowering::CallLoweringInfo CLI(DAG);
604   CLI.setDebugLoc(DL)
605       .setChain(DAG.getEntryNode())
606       .setLibCallee(CallingConv::C, CallTy,
607                     DAG.getExternalSymbol("__tls_get_addr", Ty),
608                     std::move(Args));
609 
610   return LowerCallTo(CLI).first;
611 }
612 
613 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
614                                                    SelectionDAG &DAG) const {
615   SDLoc DL(Op);
616   EVT Ty = Op.getValueType();
617   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
618   int64_t Offset = N->getOffset();
619   MVT XLenVT = Subtarget.getXLenVT();
620 
621   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
622 
623   SDValue Addr;
624   switch (Model) {
625   case TLSModel::LocalExec:
626     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
627     break;
628   case TLSModel::InitialExec:
629     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
630     break;
631   case TLSModel::LocalDynamic:
632   case TLSModel::GeneralDynamic:
633     Addr = getDynamicTLSAddr(N, DAG);
634     break;
635   }
636 
637   // In order to maximise the opportunity for common subexpression elimination,
638   // emit a separate ADD node for the global address offset instead of folding
639   // it in the global address node. Later peephole optimisations may choose to
640   // fold it back in when profitable.
641   if (Offset != 0)
642     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
643                        DAG.getConstant(Offset, DL, XLenVT));
644   return Addr;
645 }
646 
647 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
648   SDValue CondV = Op.getOperand(0);
649   SDValue TrueV = Op.getOperand(1);
650   SDValue FalseV = Op.getOperand(2);
651   SDLoc DL(Op);
652   MVT XLenVT = Subtarget.getXLenVT();
653 
654   // If the result type is XLenVT and CondV is the output of a SETCC node
655   // which also operated on XLenVT inputs, then merge the SETCC node into the
656   // lowered RISCVISD::SELECT_CC to take advantage of the integer
657   // compare+branch instructions. i.e.:
658   // (select (setcc lhs, rhs, cc), truev, falsev)
659   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
660   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
661       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
662     SDValue LHS = CondV.getOperand(0);
663     SDValue RHS = CondV.getOperand(1);
664     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
665     ISD::CondCode CCVal = CC->get();
666 
667     normaliseSetCC(LHS, RHS, CCVal);
668 
669     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
670     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
671     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
672     return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
673   }
674 
675   // Otherwise:
676   // (select condv, truev, falsev)
677   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
678   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
679   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
680 
681   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
682   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
683 
684   return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
685 }
686 
687 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
688   MachineFunction &MF = DAG.getMachineFunction();
689   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
690 
691   SDLoc DL(Op);
692   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
693                                  getPointerTy(MF.getDataLayout()));
694 
695   // vastart just stores the address of the VarArgsFrameIndex slot into the
696   // memory location argument.
697   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
698   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
699                       MachinePointerInfo(SV));
700 }
701 
702 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
703                                             SelectionDAG &DAG) const {
704   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
705   MachineFunction &MF = DAG.getMachineFunction();
706   MachineFrameInfo &MFI = MF.getFrameInfo();
707   MFI.setFrameAddressIsTaken(true);
708   Register FrameReg = RI.getFrameRegister(MF);
709   int XLenInBytes = Subtarget.getXLen() / 8;
710 
711   EVT VT = Op.getValueType();
712   SDLoc DL(Op);
713   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
714   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
715   while (Depth--) {
716     int Offset = -(XLenInBytes * 2);
717     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
718                               DAG.getIntPtrConstant(Offset, DL));
719     FrameAddr =
720         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
721   }
722   return FrameAddr;
723 }
724 
725 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
726                                              SelectionDAG &DAG) const {
727   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
728   MachineFunction &MF = DAG.getMachineFunction();
729   MachineFrameInfo &MFI = MF.getFrameInfo();
730   MFI.setReturnAddressIsTaken(true);
731   MVT XLenVT = Subtarget.getXLenVT();
732   int XLenInBytes = Subtarget.getXLen() / 8;
733 
734   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
735     return SDValue();
736 
737   EVT VT = Op.getValueType();
738   SDLoc DL(Op);
739   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
740   if (Depth) {
741     int Off = -XLenInBytes;
742     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
743     SDValue Offset = DAG.getConstant(Off, DL, VT);
744     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
745                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
746                        MachinePointerInfo());
747   }
748 
749   // Return the value of the return address register, marking it an implicit
750   // live-in.
751   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
752   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
753 }
754 
755 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
756                                                  SelectionDAG &DAG) const {
757   SDLoc DL(Op);
758   SDValue Lo = Op.getOperand(0);
759   SDValue Hi = Op.getOperand(1);
760   SDValue Shamt = Op.getOperand(2);
761   EVT VT = Lo.getValueType();
762 
763   // if Shamt-XLEN < 0: // Shamt < XLEN
764   //   Lo = Lo << Shamt
765   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
766   // else:
767   //   Lo = 0
768   //   Hi = Lo << (Shamt-XLEN)
769 
770   SDValue Zero = DAG.getConstant(0, DL, VT);
771   SDValue One = DAG.getConstant(1, DL, VT);
772   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
773   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
774   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
775   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
776 
777   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
778   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
779   SDValue ShiftRightLo =
780       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
781   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
782   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
783   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
784 
785   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
786 
787   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
788   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
789 
790   SDValue Parts[2] = {Lo, Hi};
791   return DAG.getMergeValues(Parts, DL);
792 }
793 
794 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
795                                                   bool IsSRA) const {
796   SDLoc DL(Op);
797   SDValue Lo = Op.getOperand(0);
798   SDValue Hi = Op.getOperand(1);
799   SDValue Shamt = Op.getOperand(2);
800   EVT VT = Lo.getValueType();
801 
802   // SRA expansion:
803   //   if Shamt-XLEN < 0: // Shamt < XLEN
804   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
805   //     Hi = Hi >>s Shamt
806   //   else:
807   //     Lo = Hi >>s (Shamt-XLEN);
808   //     Hi = Hi >>s (XLEN-1)
809   //
810   // SRL expansion:
811   //   if Shamt-XLEN < 0: // Shamt < XLEN
812   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
813   //     Hi = Hi >>u Shamt
814   //   else:
815   //     Lo = Hi >>u (Shamt-XLEN);
816   //     Hi = 0;
817 
818   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
819 
820   SDValue Zero = DAG.getConstant(0, DL, VT);
821   SDValue One = DAG.getConstant(1, DL, VT);
822   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
823   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
824   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
825   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
826 
827   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
828   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
829   SDValue ShiftLeftHi =
830       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
831   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
832   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
833   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
834   SDValue HiFalse =
835       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
836 
837   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
838 
839   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
840   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
841 
842   SDValue Parts[2] = {Lo, Hi};
843   return DAG.getMergeValues(Parts, DL);
844 }
845 
846 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
847                                                      SelectionDAG &DAG) const {
848   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
849   SDLoc DL(Op);
850   switch (IntNo) {
851   default:
852     return SDValue();    // Don't custom lower most intrinsics.
853   case Intrinsic::thread_pointer: {
854     EVT PtrVT = getPointerTy(DAG.getDataLayout());
855     return DAG.getRegister(RISCV::X4, PtrVT);
856   }
857   }
858 }
859 
860 // Returns the opcode of the target-specific SDNode that implements the 32-bit
861 // form of the given Opcode.
862 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
863   switch (Opcode) {
864   default:
865     llvm_unreachable("Unexpected opcode");
866   case ISD::SHL:
867     return RISCVISD::SLLW;
868   case ISD::SRA:
869     return RISCVISD::SRAW;
870   case ISD::SRL:
871     return RISCVISD::SRLW;
872   case ISD::SDIV:
873     return RISCVISD::DIVW;
874   case ISD::UDIV:
875     return RISCVISD::DIVUW;
876   case ISD::UREM:
877     return RISCVISD::REMUW;
878   }
879 }
880 
881 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
882 // Because i32 isn't a legal type for RV64, these operations would otherwise
883 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
884 // later one because the fact the operation was originally of type i32 is
885 // lost.
886 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) {
887   SDLoc DL(N);
888   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
889   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
890   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
891   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
892   // ReplaceNodeResults requires we maintain the same type for the return value.
893   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
894 }
895 
896 // Converts the given 32-bit operation to a i64 operation with signed extension
897 // semantic to reduce the signed extension instructions.
898 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
899   SDLoc DL(N);
900   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
901   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
902   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
903   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
904                                DAG.getValueType(MVT::i32));
905   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
906 }
907 
908 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
909                                              SmallVectorImpl<SDValue> &Results,
910                                              SelectionDAG &DAG) const {
911   SDLoc DL(N);
912   switch (N->getOpcode()) {
913   default:
914     llvm_unreachable("Don't know how to custom type legalize this operation!");
915   case ISD::STRICT_FP_TO_SINT:
916   case ISD::STRICT_FP_TO_UINT:
917   case ISD::FP_TO_SINT:
918   case ISD::FP_TO_UINT: {
919     bool IsStrict = N->isStrictFPOpcode();
920     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
921            "Unexpected custom legalisation");
922     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
923     RTLIB::Libcall LC;
924     if (N->getOpcode() == ISD::FP_TO_SINT ||
925         N->getOpcode() == ISD::STRICT_FP_TO_SINT)
926       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
927     else
928       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
929     MakeLibCallOptions CallOptions;
930     EVT OpVT = Op0.getValueType();
931     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
932     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
933     SDValue Result;
934     std::tie(Result, Chain) =
935         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
936     Results.push_back(Result);
937     if (IsStrict)
938       Results.push_back(Chain);
939     break;
940   }
941   case ISD::READCYCLECOUNTER: {
942     assert(!Subtarget.is64Bit() &&
943            "READCYCLECOUNTER only has custom type legalization on riscv32");
944 
945     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
946     SDValue RCW =
947         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
948 
949     Results.push_back(
950         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
951     Results.push_back(RCW.getValue(2));
952     break;
953   }
954   case ISD::ADD:
955   case ISD::SUB:
956   case ISD::MUL:
957     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
958            "Unexpected custom legalisation");
959     if (N->getOperand(1).getOpcode() == ISD::Constant)
960       return;
961     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
962     break;
963   case ISD::SHL:
964   case ISD::SRA:
965   case ISD::SRL:
966     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
967            "Unexpected custom legalisation");
968     if (N->getOperand(1).getOpcode() == ISD::Constant)
969       return;
970     Results.push_back(customLegalizeToWOp(N, DAG));
971     break;
972   case ISD::SDIV:
973   case ISD::UDIV:
974   case ISD::UREM:
975     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
976            Subtarget.hasStdExtM() && "Unexpected custom legalisation");
977     if (N->getOperand(0).getOpcode() == ISD::Constant ||
978         N->getOperand(1).getOpcode() == ISD::Constant)
979       return;
980     Results.push_back(customLegalizeToWOp(N, DAG));
981     break;
982   case ISD::BITCAST: {
983     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
984            Subtarget.hasStdExtF() && "Unexpected custom legalisation");
985     SDLoc DL(N);
986     SDValue Op0 = N->getOperand(0);
987     if (Op0.getValueType() != MVT::f32)
988       return;
989     SDValue FPConv =
990         DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
991     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
992     break;
993   }
994   }
995 }
996 
997 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
998                                                DAGCombinerInfo &DCI) const {
999   SelectionDAG &DAG = DCI.DAG;
1000 
1001   switch (N->getOpcode()) {
1002   default:
1003     break;
1004   case RISCVISD::SplitF64: {
1005     SDValue Op0 = N->getOperand(0);
1006     // If the input to SplitF64 is just BuildPairF64 then the operation is
1007     // redundant. Instead, use BuildPairF64's operands directly.
1008     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
1009       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
1010 
1011     SDLoc DL(N);
1012 
1013     // It's cheaper to materialise two 32-bit integers than to load a double
1014     // from the constant pool and transfer it to integer registers through the
1015     // stack.
1016     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
1017       APInt V = C->getValueAPF().bitcastToAPInt();
1018       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
1019       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
1020       return DCI.CombineTo(N, Lo, Hi);
1021     }
1022 
1023     // This is a target-specific version of a DAGCombine performed in
1024     // DAGCombiner::visitBITCAST. It performs the equivalent of:
1025     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
1026     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
1027     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
1028         !Op0.getNode()->hasOneUse())
1029       break;
1030     SDValue NewSplitF64 =
1031         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
1032                     Op0.getOperand(0));
1033     SDValue Lo = NewSplitF64.getValue(0);
1034     SDValue Hi = NewSplitF64.getValue(1);
1035     APInt SignBit = APInt::getSignMask(32);
1036     if (Op0.getOpcode() == ISD::FNEG) {
1037       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
1038                                   DAG.getConstant(SignBit, DL, MVT::i32));
1039       return DCI.CombineTo(N, Lo, NewHi);
1040     }
1041     assert(Op0.getOpcode() == ISD::FABS);
1042     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
1043                                 DAG.getConstant(~SignBit, DL, MVT::i32));
1044     return DCI.CombineTo(N, Lo, NewHi);
1045   }
1046   case RISCVISD::SLLW:
1047   case RISCVISD::SRAW:
1048   case RISCVISD::SRLW: {
1049     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
1050     SDValue LHS = N->getOperand(0);
1051     SDValue RHS = N->getOperand(1);
1052     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
1053     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
1054     if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) ||
1055         (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)))
1056       return SDValue();
1057     break;
1058   }
1059   case RISCVISD::FMV_X_ANYEXTW_RV64: {
1060     SDLoc DL(N);
1061     SDValue Op0 = N->getOperand(0);
1062     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
1063     // conversion is unnecessary and can be replaced with an ANY_EXTEND
1064     // of the FMV_W_X_RV64 operand.
1065     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
1066       SDValue AExtOp =
1067           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0));
1068       return DCI.CombineTo(N, AExtOp);
1069     }
1070 
1071     // This is a target-specific version of a DAGCombine performed in
1072     // DAGCombiner::visitBITCAST. It performs the equivalent of:
1073     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
1074     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
1075     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
1076         !Op0.getNode()->hasOneUse())
1077       break;
1078     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
1079                                  Op0.getOperand(0));
1080     APInt SignBit = APInt::getSignMask(32).sext(64);
1081     if (Op0.getOpcode() == ISD::FNEG) {
1082       return DCI.CombineTo(N,
1083                            DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
1084                                        DAG.getConstant(SignBit, DL, MVT::i64)));
1085     }
1086     assert(Op0.getOpcode() == ISD::FABS);
1087     return DCI.CombineTo(N,
1088                          DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
1089                                      DAG.getConstant(~SignBit, DL, MVT::i64)));
1090   }
1091   }
1092 
1093   return SDValue();
1094 }
1095 
1096 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
1097     const SDNode *N, CombineLevel Level) const {
1098   // The following folds are only desirable if `(OP _, c1 << c2)` can be
1099   // materialised in fewer instructions than `(OP _, c1)`:
1100   //
1101   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
1102   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
1103   SDValue N0 = N->getOperand(0);
1104   EVT Ty = N0.getValueType();
1105   if (Ty.isScalarInteger() &&
1106       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
1107     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
1108     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
1109     if (C1 && C2) {
1110       APInt C1Int = C1->getAPIntValue();
1111       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
1112 
1113       // We can materialise `c1 << c2` into an add immediate, so it's "free",
1114       // and the combine should happen, to potentially allow further combines
1115       // later.
1116       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
1117           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
1118         return true;
1119 
1120       // We can materialise `c1` in an add immediate, so it's "free", and the
1121       // combine should be prevented.
1122       if (C1Int.getMinSignedBits() <= 64 &&
1123           isLegalAddImmediate(C1Int.getSExtValue()))
1124         return false;
1125 
1126       // Neither constant will fit into an immediate, so find materialisation
1127       // costs.
1128       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
1129                                               Subtarget.is64Bit());
1130       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
1131           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
1132 
1133       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
1134       // combine should be prevented.
1135       if (C1Cost < ShiftedC1Cost)
1136         return false;
1137     }
1138   }
1139   return true;
1140 }
1141 
1142 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
1143     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
1144     unsigned Depth) const {
1145   switch (Op.getOpcode()) {
1146   default:
1147     break;
1148   case RISCVISD::SLLW:
1149   case RISCVISD::SRAW:
1150   case RISCVISD::SRLW:
1151   case RISCVISD::DIVW:
1152   case RISCVISD::DIVUW:
1153   case RISCVISD::REMUW:
1154     // TODO: As the result is sign-extended, this is conservatively correct. A
1155     // more precise answer could be calculated for SRAW depending on known
1156     // bits in the shift amount.
1157     return 33;
1158   }
1159 
1160   return 1;
1161 }
1162 
1163 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
1164                                                   MachineBasicBlock *BB) {
1165   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
1166 
1167   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
1168   // Should the count have wrapped while it was being read, we need to try
1169   // again.
1170   // ...
1171   // read:
1172   // rdcycleh x3 # load high word of cycle
1173   // rdcycle  x2 # load low word of cycle
1174   // rdcycleh x4 # load high word of cycle
1175   // bne x3, x4, read # check if high word reads match, otherwise try again
1176   // ...
1177 
1178   MachineFunction &MF = *BB->getParent();
1179   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1180   MachineFunction::iterator It = ++BB->getIterator();
1181 
1182   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1183   MF.insert(It, LoopMBB);
1184 
1185   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1186   MF.insert(It, DoneMBB);
1187 
1188   // Transfer the remainder of BB and its successor edges to DoneMBB.
1189   DoneMBB->splice(DoneMBB->begin(), BB,
1190                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1191   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
1192 
1193   BB->addSuccessor(LoopMBB);
1194 
1195   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1196   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1197   Register LoReg = MI.getOperand(0).getReg();
1198   Register HiReg = MI.getOperand(1).getReg();
1199   DebugLoc DL = MI.getDebugLoc();
1200 
1201   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1202   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
1203       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1204       .addReg(RISCV::X0);
1205   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
1206       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
1207       .addReg(RISCV::X0);
1208   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
1209       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1210       .addReg(RISCV::X0);
1211 
1212   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
1213       .addReg(HiReg)
1214       .addReg(ReadAgainReg)
1215       .addMBB(LoopMBB);
1216 
1217   LoopMBB->addSuccessor(LoopMBB);
1218   LoopMBB->addSuccessor(DoneMBB);
1219 
1220   MI.eraseFromParent();
1221 
1222   return DoneMBB;
1223 }
1224 
1225 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
1226                                              MachineBasicBlock *BB) {
1227   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
1228 
1229   MachineFunction &MF = *BB->getParent();
1230   DebugLoc DL = MI.getDebugLoc();
1231   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1232   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1233   Register LoReg = MI.getOperand(0).getReg();
1234   Register HiReg = MI.getOperand(1).getReg();
1235   Register SrcReg = MI.getOperand(2).getReg();
1236   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
1237   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
1238 
1239   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
1240                           RI);
1241   MachineMemOperand *MMO =
1242       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1243                               MachineMemOperand::MOLoad, 8, Align(8));
1244   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
1245       .addFrameIndex(FI)
1246       .addImm(0)
1247       .addMemOperand(MMO);
1248   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
1249       .addFrameIndex(FI)
1250       .addImm(4)
1251       .addMemOperand(MMO);
1252   MI.eraseFromParent(); // The pseudo instruction is gone now.
1253   return BB;
1254 }
1255 
1256 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
1257                                                  MachineBasicBlock *BB) {
1258   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
1259          "Unexpected instruction");
1260 
1261   MachineFunction &MF = *BB->getParent();
1262   DebugLoc DL = MI.getDebugLoc();
1263   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1264   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1265   Register DstReg = MI.getOperand(0).getReg();
1266   Register LoReg = MI.getOperand(1).getReg();
1267   Register HiReg = MI.getOperand(2).getReg();
1268   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
1269   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
1270 
1271   MachineMemOperand *MMO =
1272       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1273                               MachineMemOperand::MOStore, 8, Align(8));
1274   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1275       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
1276       .addFrameIndex(FI)
1277       .addImm(0)
1278       .addMemOperand(MMO);
1279   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1280       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
1281       .addFrameIndex(FI)
1282       .addImm(4)
1283       .addMemOperand(MMO);
1284   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
1285   MI.eraseFromParent(); // The pseudo instruction is gone now.
1286   return BB;
1287 }
1288 
1289 static bool isSelectPseudo(MachineInstr &MI) {
1290   switch (MI.getOpcode()) {
1291   default:
1292     return false;
1293   case RISCV::Select_GPR_Using_CC_GPR:
1294   case RISCV::Select_FPR32_Using_CC_GPR:
1295   case RISCV::Select_FPR64_Using_CC_GPR:
1296     return true;
1297   }
1298 }
1299 
1300 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
1301                                            MachineBasicBlock *BB) {
1302   // To "insert" Select_* instructions, we actually have to insert the triangle
1303   // control-flow pattern.  The incoming instructions know the destination vreg
1304   // to set, the condition code register to branch on, the true/false values to
1305   // select between, and the condcode to use to select the appropriate branch.
1306   //
1307   // We produce the following control flow:
1308   //     HeadMBB
1309   //     |  \
1310   //     |  IfFalseMBB
1311   //     | /
1312   //    TailMBB
1313   //
1314   // When we find a sequence of selects we attempt to optimize their emission
1315   // by sharing the control flow. Currently we only handle cases where we have
1316   // multiple selects with the exact same condition (same LHS, RHS and CC).
1317   // The selects may be interleaved with other instructions if the other
1318   // instructions meet some requirements we deem safe:
1319   // - They are debug instructions. Otherwise,
1320   // - They do not have side-effects, do not access memory and their inputs do
1321   //   not depend on the results of the select pseudo-instructions.
1322   // The TrueV/FalseV operands of the selects cannot depend on the result of
1323   // previous selects in the sequence.
1324   // These conditions could be further relaxed. See the X86 target for a
1325   // related approach and more information.
1326   Register LHS = MI.getOperand(1).getReg();
1327   Register RHS = MI.getOperand(2).getReg();
1328   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
1329 
1330   SmallVector<MachineInstr *, 4> SelectDebugValues;
1331   SmallSet<Register, 4> SelectDests;
1332   SelectDests.insert(MI.getOperand(0).getReg());
1333 
1334   MachineInstr *LastSelectPseudo = &MI;
1335 
1336   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
1337        SequenceMBBI != E; ++SequenceMBBI) {
1338     if (SequenceMBBI->isDebugInstr())
1339       continue;
1340     else if (isSelectPseudo(*SequenceMBBI)) {
1341       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
1342           SequenceMBBI->getOperand(2).getReg() != RHS ||
1343           SequenceMBBI->getOperand(3).getImm() != CC ||
1344           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
1345           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
1346         break;
1347       LastSelectPseudo = &*SequenceMBBI;
1348       SequenceMBBI->collectDebugValues(SelectDebugValues);
1349       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
1350     } else {
1351       if (SequenceMBBI->hasUnmodeledSideEffects() ||
1352           SequenceMBBI->mayLoadOrStore())
1353         break;
1354       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
1355             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
1356           }))
1357         break;
1358     }
1359   }
1360 
1361   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1362   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1363   DebugLoc DL = MI.getDebugLoc();
1364   MachineFunction::iterator I = ++BB->getIterator();
1365 
1366   MachineBasicBlock *HeadMBB = BB;
1367   MachineFunction *F = BB->getParent();
1368   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
1369   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
1370 
1371   F->insert(I, IfFalseMBB);
1372   F->insert(I, TailMBB);
1373 
1374   // Transfer debug instructions associated with the selects to TailMBB.
1375   for (MachineInstr *DebugInstr : SelectDebugValues) {
1376     TailMBB->push_back(DebugInstr->removeFromParent());
1377   }
1378 
1379   // Move all instructions after the sequence to TailMBB.
1380   TailMBB->splice(TailMBB->end(), HeadMBB,
1381                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
1382   // Update machine-CFG edges by transferring all successors of the current
1383   // block to the new block which will contain the Phi nodes for the selects.
1384   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
1385   // Set the successors for HeadMBB.
1386   HeadMBB->addSuccessor(IfFalseMBB);
1387   HeadMBB->addSuccessor(TailMBB);
1388 
1389   // Insert appropriate branch.
1390   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
1391 
1392   BuildMI(HeadMBB, DL, TII.get(Opcode))
1393     .addReg(LHS)
1394     .addReg(RHS)
1395     .addMBB(TailMBB);
1396 
1397   // IfFalseMBB just falls through to TailMBB.
1398   IfFalseMBB->addSuccessor(TailMBB);
1399 
1400   // Create PHIs for all of the select pseudo-instructions.
1401   auto SelectMBBI = MI.getIterator();
1402   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
1403   auto InsertionPoint = TailMBB->begin();
1404   while (SelectMBBI != SelectEnd) {
1405     auto Next = std::next(SelectMBBI);
1406     if (isSelectPseudo(*SelectMBBI)) {
1407       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
1408       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
1409               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
1410           .addReg(SelectMBBI->getOperand(4).getReg())
1411           .addMBB(HeadMBB)
1412           .addReg(SelectMBBI->getOperand(5).getReg())
1413           .addMBB(IfFalseMBB);
1414       SelectMBBI->eraseFromParent();
1415     }
1416     SelectMBBI = Next;
1417   }
1418 
1419   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
1420   return TailMBB;
1421 }
1422 
1423 MachineBasicBlock *
1424 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1425                                                  MachineBasicBlock *BB) const {
1426   switch (MI.getOpcode()) {
1427   default:
1428     llvm_unreachable("Unexpected instr type to insert");
1429   case RISCV::ReadCycleWide:
1430     assert(!Subtarget.is64Bit() &&
1431            "ReadCycleWrite is only to be used on riscv32");
1432     return emitReadCycleWidePseudo(MI, BB);
1433   case RISCV::Select_GPR_Using_CC_GPR:
1434   case RISCV::Select_FPR32_Using_CC_GPR:
1435   case RISCV::Select_FPR64_Using_CC_GPR:
1436     return emitSelectPseudo(MI, BB);
1437   case RISCV::BuildPairF64Pseudo:
1438     return emitBuildPairF64Pseudo(MI, BB);
1439   case RISCV::SplitF64Pseudo:
1440     return emitSplitF64Pseudo(MI, BB);
1441   }
1442 }
1443 
1444 // Calling Convention Implementation.
1445 // The expectations for frontend ABI lowering vary from target to target.
1446 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
1447 // details, but this is a longer term goal. For now, we simply try to keep the
1448 // role of the frontend as simple and well-defined as possible. The rules can
1449 // be summarised as:
1450 // * Never split up large scalar arguments. We handle them here.
1451 // * If a hardfloat calling convention is being used, and the struct may be
1452 // passed in a pair of registers (fp+fp, int+fp), and both registers are
1453 // available, then pass as two separate arguments. If either the GPRs or FPRs
1454 // are exhausted, then pass according to the rule below.
1455 // * If a struct could never be passed in registers or directly in a stack
1456 // slot (as it is larger than 2*XLEN and the floating point rules don't
1457 // apply), then pass it using a pointer with the byval attribute.
1458 // * If a struct is less than 2*XLEN, then coerce to either a two-element
1459 // word-sized array or a 2*XLEN scalar (depending on alignment).
1460 // * The frontend can determine whether a struct is returned by reference or
1461 // not based on its size and fields. If it will be returned by reference, the
1462 // frontend must modify the prototype so a pointer with the sret annotation is
1463 // passed as the first argument. This is not necessary for large scalar
1464 // returns.
1465 // * Struct return values and varargs should be coerced to structs containing
1466 // register-size fields in the same situations they would be for fixed
1467 // arguments.
1468 
1469 static const MCPhysReg ArgGPRs[] = {
1470   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
1471   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
1472 };
1473 static const MCPhysReg ArgFPR32s[] = {
1474   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
1475   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
1476 };
1477 static const MCPhysReg ArgFPR64s[] = {
1478   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
1479   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
1480 };
1481 
1482 // Pass a 2*XLEN argument that has been split into two XLEN values through
1483 // registers or the stack as necessary.
1484 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
1485                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
1486                                 MVT ValVT2, MVT LocVT2,
1487                                 ISD::ArgFlagsTy ArgFlags2) {
1488   unsigned XLenInBytes = XLen / 8;
1489   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1490     // At least one half can be passed via register.
1491     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
1492                                      VA1.getLocVT(), CCValAssign::Full));
1493   } else {
1494     // Both halves must be passed on the stack, with proper alignment.
1495     Align StackAlign =
1496         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
1497     State.addLoc(
1498         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
1499                             State.AllocateStack(XLenInBytes, StackAlign),
1500                             VA1.getLocVT(), CCValAssign::Full));
1501     State.addLoc(CCValAssign::getMem(
1502         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
1503         LocVT2, CCValAssign::Full));
1504     return false;
1505   }
1506 
1507   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1508     // The second half can also be passed via register.
1509     State.addLoc(
1510         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
1511   } else {
1512     // The second half is passed via the stack, without additional alignment.
1513     State.addLoc(CCValAssign::getMem(
1514         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
1515         LocVT2, CCValAssign::Full));
1516   }
1517 
1518   return false;
1519 }
1520 
1521 // Implements the RISC-V calling convention. Returns true upon failure.
1522 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
1523                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
1524                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
1525                      bool IsRet, Type *OrigTy) {
1526   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
1527   assert(XLen == 32 || XLen == 64);
1528   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
1529 
1530   // Any return value split in to more than two values can't be returned
1531   // directly.
1532   if (IsRet && ValNo > 1)
1533     return true;
1534 
1535   // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a
1536   // variadic argument, or if no F32 argument registers are available.
1537   bool UseGPRForF32 = true;
1538   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
1539   // variadic argument, or if no F64 argument registers are available.
1540   bool UseGPRForF64 = true;
1541 
1542   switch (ABI) {
1543   default:
1544     llvm_unreachable("Unexpected ABI");
1545   case RISCVABI::ABI_ILP32:
1546   case RISCVABI::ABI_LP64:
1547     break;
1548   case RISCVABI::ABI_ILP32F:
1549   case RISCVABI::ABI_LP64F:
1550     UseGPRForF32 = !IsFixed;
1551     break;
1552   case RISCVABI::ABI_ILP32D:
1553   case RISCVABI::ABI_LP64D:
1554     UseGPRForF32 = !IsFixed;
1555     UseGPRForF64 = !IsFixed;
1556     break;
1557   }
1558 
1559   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s))
1560     UseGPRForF32 = true;
1561   if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s))
1562     UseGPRForF64 = true;
1563 
1564   // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local
1565   // variables rather than directly checking against the target ABI.
1566 
1567   if (UseGPRForF32 && ValVT == MVT::f32) {
1568     LocVT = XLenVT;
1569     LocInfo = CCValAssign::BCvt;
1570   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
1571     LocVT = MVT::i64;
1572     LocInfo = CCValAssign::BCvt;
1573   }
1574 
1575   // If this is a variadic argument, the RISC-V calling convention requires
1576   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
1577   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
1578   // be used regardless of whether the original argument was split during
1579   // legalisation or not. The argument will not be passed by registers if the
1580   // original type is larger than 2*XLEN, so the register alignment rule does
1581   // not apply.
1582   unsigned TwoXLenInBytes = (2 * XLen) / 8;
1583   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
1584       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
1585     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
1586     // Skip 'odd' register if necessary.
1587     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
1588       State.AllocateReg(ArgGPRs);
1589   }
1590 
1591   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
1592   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
1593       State.getPendingArgFlags();
1594 
1595   assert(PendingLocs.size() == PendingArgFlags.size() &&
1596          "PendingLocs and PendingArgFlags out of sync");
1597 
1598   // Handle passing f64 on RV32D with a soft float ABI or when floating point
1599   // registers are exhausted.
1600   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
1601     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
1602            "Can't lower f64 if it is split");
1603     // Depending on available argument GPRS, f64 may be passed in a pair of
1604     // GPRs, split between a GPR and the stack, or passed completely on the
1605     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
1606     // cases.
1607     Register Reg = State.AllocateReg(ArgGPRs);
1608     LocVT = MVT::i32;
1609     if (!Reg) {
1610       unsigned StackOffset = State.AllocateStack(8, Align(8));
1611       State.addLoc(
1612           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1613       return false;
1614     }
1615     if (!State.AllocateReg(ArgGPRs))
1616       State.AllocateStack(4, Align(4));
1617     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1618     return false;
1619   }
1620 
1621   // Split arguments might be passed indirectly, so keep track of the pending
1622   // values.
1623   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
1624     LocVT = XLenVT;
1625     LocInfo = CCValAssign::Indirect;
1626     PendingLocs.push_back(
1627         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
1628     PendingArgFlags.push_back(ArgFlags);
1629     if (!ArgFlags.isSplitEnd()) {
1630       return false;
1631     }
1632   }
1633 
1634   // If the split argument only had two elements, it should be passed directly
1635   // in registers or on the stack.
1636   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
1637     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
1638     // Apply the normal calling convention rules to the first half of the
1639     // split argument.
1640     CCValAssign VA = PendingLocs[0];
1641     ISD::ArgFlagsTy AF = PendingArgFlags[0];
1642     PendingLocs.clear();
1643     PendingArgFlags.clear();
1644     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
1645                                ArgFlags);
1646   }
1647 
1648   // Allocate to a register if possible, or else a stack slot.
1649   Register Reg;
1650   if (ValVT == MVT::f32 && !UseGPRForF32)
1651     Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s);
1652   else if (ValVT == MVT::f64 && !UseGPRForF64)
1653     Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s);
1654   else
1655     Reg = State.AllocateReg(ArgGPRs);
1656   unsigned StackOffset =
1657       Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8));
1658 
1659   // If we reach this point and PendingLocs is non-empty, we must be at the
1660   // end of a split argument that must be passed indirectly.
1661   if (!PendingLocs.empty()) {
1662     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
1663     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
1664 
1665     for (auto &It : PendingLocs) {
1666       if (Reg)
1667         It.convertToReg(Reg);
1668       else
1669         It.convertToMem(StackOffset);
1670       State.addLoc(It);
1671     }
1672     PendingLocs.clear();
1673     PendingArgFlags.clear();
1674     return false;
1675   }
1676 
1677   assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) &&
1678          "Expected an XLenVT at this stage");
1679 
1680   if (Reg) {
1681     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1682     return false;
1683   }
1684 
1685   // When an f32 or f64 is passed on the stack, no bit-conversion is needed.
1686   if (ValVT == MVT::f32 || ValVT == MVT::f64) {
1687     LocVT = ValVT;
1688     LocInfo = CCValAssign::Full;
1689   }
1690   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1691   return false;
1692 }
1693 
1694 void RISCVTargetLowering::analyzeInputArgs(
1695     MachineFunction &MF, CCState &CCInfo,
1696     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
1697   unsigned NumArgs = Ins.size();
1698   FunctionType *FType = MF.getFunction().getFunctionType();
1699 
1700   for (unsigned i = 0; i != NumArgs; ++i) {
1701     MVT ArgVT = Ins[i].VT;
1702     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
1703 
1704     Type *ArgTy = nullptr;
1705     if (IsRet)
1706       ArgTy = FType->getReturnType();
1707     else if (Ins[i].isOrigArg())
1708       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
1709 
1710     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1711     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1712                  ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy)) {
1713       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
1714                         << EVT(ArgVT).getEVTString() << '\n');
1715       llvm_unreachable(nullptr);
1716     }
1717   }
1718 }
1719 
1720 void RISCVTargetLowering::analyzeOutputArgs(
1721     MachineFunction &MF, CCState &CCInfo,
1722     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
1723     CallLoweringInfo *CLI) const {
1724   unsigned NumArgs = Outs.size();
1725 
1726   for (unsigned i = 0; i != NumArgs; i++) {
1727     MVT ArgVT = Outs[i].VT;
1728     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
1729     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
1730 
1731     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1732     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1733                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
1734       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
1735                         << EVT(ArgVT).getEVTString() << "\n");
1736       llvm_unreachable(nullptr);
1737     }
1738   }
1739 }
1740 
1741 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
1742 // values.
1743 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
1744                                    const CCValAssign &VA, const SDLoc &DL) {
1745   switch (VA.getLocInfo()) {
1746   default:
1747     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1748   case CCValAssign::Full:
1749     break;
1750   case CCValAssign::BCvt:
1751     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1752       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
1753       break;
1754     }
1755     Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
1756     break;
1757   }
1758   return Val;
1759 }
1760 
1761 // The caller is responsible for loading the full value if the argument is
1762 // passed with CCValAssign::Indirect.
1763 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
1764                                 const CCValAssign &VA, const SDLoc &DL) {
1765   MachineFunction &MF = DAG.getMachineFunction();
1766   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1767   EVT LocVT = VA.getLocVT();
1768   SDValue Val;
1769   const TargetRegisterClass *RC;
1770 
1771   switch (LocVT.getSimpleVT().SimpleTy) {
1772   default:
1773     llvm_unreachable("Unexpected register type");
1774   case MVT::i32:
1775   case MVT::i64:
1776     RC = &RISCV::GPRRegClass;
1777     break;
1778   case MVT::f32:
1779     RC = &RISCV::FPR32RegClass;
1780     break;
1781   case MVT::f64:
1782     RC = &RISCV::FPR64RegClass;
1783     break;
1784   }
1785 
1786   Register VReg = RegInfo.createVirtualRegister(RC);
1787   RegInfo.addLiveIn(VA.getLocReg(), VReg);
1788   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1789 
1790   if (VA.getLocInfo() == CCValAssign::Indirect)
1791     return Val;
1792 
1793   return convertLocVTToValVT(DAG, Val, VA, DL);
1794 }
1795 
1796 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
1797                                    const CCValAssign &VA, const SDLoc &DL) {
1798   EVT LocVT = VA.getLocVT();
1799 
1800   switch (VA.getLocInfo()) {
1801   default:
1802     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1803   case CCValAssign::Full:
1804     break;
1805   case CCValAssign::BCvt:
1806     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1807       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
1808       break;
1809     }
1810     Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
1811     break;
1812   }
1813   return Val;
1814 }
1815 
1816 // The caller is responsible for loading the full value if the argument is
1817 // passed with CCValAssign::Indirect.
1818 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
1819                                 const CCValAssign &VA, const SDLoc &DL) {
1820   MachineFunction &MF = DAG.getMachineFunction();
1821   MachineFrameInfo &MFI = MF.getFrameInfo();
1822   EVT LocVT = VA.getLocVT();
1823   EVT ValVT = VA.getValVT();
1824   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
1825   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
1826                                  VA.getLocMemOffset(), /*Immutable=*/true);
1827   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1828   SDValue Val;
1829 
1830   ISD::LoadExtType ExtType;
1831   switch (VA.getLocInfo()) {
1832   default:
1833     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1834   case CCValAssign::Full:
1835   case CCValAssign::Indirect:
1836   case CCValAssign::BCvt:
1837     ExtType = ISD::NON_EXTLOAD;
1838     break;
1839   }
1840   Val = DAG.getExtLoad(
1841       ExtType, DL, LocVT, Chain, FIN,
1842       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
1843   return Val;
1844 }
1845 
1846 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
1847                                        const CCValAssign &VA, const SDLoc &DL) {
1848   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
1849          "Unexpected VA");
1850   MachineFunction &MF = DAG.getMachineFunction();
1851   MachineFrameInfo &MFI = MF.getFrameInfo();
1852   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1853 
1854   if (VA.isMemLoc()) {
1855     // f64 is passed on the stack.
1856     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
1857     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1858     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
1859                        MachinePointerInfo::getFixedStack(MF, FI));
1860   }
1861 
1862   assert(VA.isRegLoc() && "Expected register VA assignment");
1863 
1864   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1865   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
1866   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
1867   SDValue Hi;
1868   if (VA.getLocReg() == RISCV::X17) {
1869     // Second half of f64 is passed on the stack.
1870     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
1871     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1872     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
1873                      MachinePointerInfo::getFixedStack(MF, FI));
1874   } else {
1875     // Second half of f64 is passed in another GPR.
1876     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1877     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
1878     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
1879   }
1880   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1881 }
1882 
1883 // FastCC has less than 1% performance improvement for some particular
1884 // benchmark. But theoretically, it may has benenfit for some cases.
1885 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
1886                             CCValAssign::LocInfo LocInfo,
1887                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
1888 
1889   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
1890     // X5 and X6 might be used for save-restore libcall.
1891     static const MCPhysReg GPRList[] = {
1892         RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
1893         RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
1894         RISCV::X29, RISCV::X30, RISCV::X31};
1895     if (unsigned Reg = State.AllocateReg(GPRList)) {
1896       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1897       return false;
1898     }
1899   }
1900 
1901   if (LocVT == MVT::f32) {
1902     static const MCPhysReg FPR32List[] = {
1903         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
1904         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
1905         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
1906         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
1907     if (unsigned Reg = State.AllocateReg(FPR32List)) {
1908       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1909       return false;
1910     }
1911   }
1912 
1913   if (LocVT == MVT::f64) {
1914     static const MCPhysReg FPR64List[] = {
1915         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
1916         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
1917         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
1918         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
1919     if (unsigned Reg = State.AllocateReg(FPR64List)) {
1920       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1921       return false;
1922     }
1923   }
1924 
1925   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
1926     unsigned Offset4 = State.AllocateStack(4, Align(4));
1927     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
1928     return false;
1929   }
1930 
1931   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
1932     unsigned Offset5 = State.AllocateStack(8, Align(8));
1933     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
1934     return false;
1935   }
1936 
1937   return true; // CC didn't match.
1938 }
1939 
1940 // Transform physical registers into virtual registers.
1941 SDValue RISCVTargetLowering::LowerFormalArguments(
1942     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1943     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1944     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1945 
1946   switch (CallConv) {
1947   default:
1948     report_fatal_error("Unsupported calling convention");
1949   case CallingConv::C:
1950   case CallingConv::Fast:
1951     break;
1952   }
1953 
1954   MachineFunction &MF = DAG.getMachineFunction();
1955 
1956   const Function &Func = MF.getFunction();
1957   if (Func.hasFnAttribute("interrupt")) {
1958     if (!Func.arg_empty())
1959       report_fatal_error(
1960         "Functions with the interrupt attribute cannot have arguments!");
1961 
1962     StringRef Kind =
1963       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
1964 
1965     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
1966       report_fatal_error(
1967         "Function interrupt attribute argument not supported!");
1968   }
1969 
1970   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1971   MVT XLenVT = Subtarget.getXLenVT();
1972   unsigned XLenInBytes = Subtarget.getXLen() / 8;
1973   // Used with vargs to acumulate store chains.
1974   std::vector<SDValue> OutChains;
1975 
1976   // Assign locations to all of the incoming arguments.
1977   SmallVector<CCValAssign, 16> ArgLocs;
1978   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1979 
1980   if (CallConv == CallingConv::Fast)
1981     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
1982   else
1983     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
1984 
1985   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1986     CCValAssign &VA = ArgLocs[i];
1987     SDValue ArgValue;
1988     // Passing f64 on RV32D with a soft float ABI must be handled as a special
1989     // case.
1990     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
1991       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
1992     else if (VA.isRegLoc())
1993       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
1994     else
1995       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
1996 
1997     if (VA.getLocInfo() == CCValAssign::Indirect) {
1998       // If the original argument was split and passed by reference (e.g. i128
1999       // on RV32), we need to load all parts of it here (using the same
2000       // address).
2001       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
2002                                    MachinePointerInfo()));
2003       unsigned ArgIndex = Ins[i].OrigArgIndex;
2004       assert(Ins[i].PartOffset == 0);
2005       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
2006         CCValAssign &PartVA = ArgLocs[i + 1];
2007         unsigned PartOffset = Ins[i + 1].PartOffset;
2008         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
2009                                       DAG.getIntPtrConstant(PartOffset, DL));
2010         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
2011                                      MachinePointerInfo()));
2012         ++i;
2013       }
2014       continue;
2015     }
2016     InVals.push_back(ArgValue);
2017   }
2018 
2019   if (IsVarArg) {
2020     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
2021     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
2022     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
2023     MachineFrameInfo &MFI = MF.getFrameInfo();
2024     MachineRegisterInfo &RegInfo = MF.getRegInfo();
2025     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
2026 
2027     // Offset of the first variable argument from stack pointer, and size of
2028     // the vararg save area. For now, the varargs save area is either zero or
2029     // large enough to hold a0-a7.
2030     int VaArgOffset, VarArgsSaveSize;
2031 
2032     // If all registers are allocated, then all varargs must be passed on the
2033     // stack and we don't need to save any argregs.
2034     if (ArgRegs.size() == Idx) {
2035       VaArgOffset = CCInfo.getNextStackOffset();
2036       VarArgsSaveSize = 0;
2037     } else {
2038       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
2039       VaArgOffset = -VarArgsSaveSize;
2040     }
2041 
2042     // Record the frame index of the first variable argument
2043     // which is a value necessary to VASTART.
2044     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
2045     RVFI->setVarArgsFrameIndex(FI);
2046 
2047     // If saving an odd number of registers then create an extra stack slot to
2048     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
2049     // offsets to even-numbered registered remain 2*XLEN-aligned.
2050     if (Idx % 2) {
2051       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
2052       VarArgsSaveSize += XLenInBytes;
2053     }
2054 
2055     // Copy the integer registers that may have been used for passing varargs
2056     // to the vararg save area.
2057     for (unsigned I = Idx; I < ArgRegs.size();
2058          ++I, VaArgOffset += XLenInBytes) {
2059       const Register Reg = RegInfo.createVirtualRegister(RC);
2060       RegInfo.addLiveIn(ArgRegs[I], Reg);
2061       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
2062       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
2063       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2064       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
2065                                    MachinePointerInfo::getFixedStack(MF, FI));
2066       cast<StoreSDNode>(Store.getNode())
2067           ->getMemOperand()
2068           ->setValue((Value *)nullptr);
2069       OutChains.push_back(Store);
2070     }
2071     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
2072   }
2073 
2074   // All stores are grouped in one node to allow the matching between
2075   // the size of Ins and InVals. This only happens for vararg functions.
2076   if (!OutChains.empty()) {
2077     OutChains.push_back(Chain);
2078     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
2079   }
2080 
2081   return Chain;
2082 }
2083 
2084 /// isEligibleForTailCallOptimization - Check whether the call is eligible
2085 /// for tail call optimization.
2086 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
2087 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
2088     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
2089     const SmallVector<CCValAssign, 16> &ArgLocs) const {
2090 
2091   auto &Callee = CLI.Callee;
2092   auto CalleeCC = CLI.CallConv;
2093   auto &Outs = CLI.Outs;
2094   auto &Caller = MF.getFunction();
2095   auto CallerCC = Caller.getCallingConv();
2096 
2097   // Exception-handling functions need a special set of instructions to
2098   // indicate a return to the hardware. Tail-calling another function would
2099   // probably break this.
2100   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
2101   // should be expanded as new function attributes are introduced.
2102   if (Caller.hasFnAttribute("interrupt"))
2103     return false;
2104 
2105   // Do not tail call opt if the stack is used to pass parameters.
2106   if (CCInfo.getNextStackOffset() != 0)
2107     return false;
2108 
2109   // Do not tail call opt if any parameters need to be passed indirectly.
2110   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
2111   // passed indirectly. So the address of the value will be passed in a
2112   // register, or if not available, then the address is put on the stack. In
2113   // order to pass indirectly, space on the stack often needs to be allocated
2114   // in order to store the value. In this case the CCInfo.getNextStackOffset()
2115   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
2116   // are passed CCValAssign::Indirect.
2117   for (auto &VA : ArgLocs)
2118     if (VA.getLocInfo() == CCValAssign::Indirect)
2119       return false;
2120 
2121   // Do not tail call opt if either caller or callee uses struct return
2122   // semantics.
2123   auto IsCallerStructRet = Caller.hasStructRetAttr();
2124   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
2125   if (IsCallerStructRet || IsCalleeStructRet)
2126     return false;
2127 
2128   // Externally-defined functions with weak linkage should not be
2129   // tail-called. The behaviour of branch instructions in this situation (as
2130   // used for tail calls) is implementation-defined, so we cannot rely on the
2131   // linker replacing the tail call with a return.
2132   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2133     const GlobalValue *GV = G->getGlobal();
2134     if (GV->hasExternalWeakLinkage())
2135       return false;
2136   }
2137 
2138   // The callee has to preserve all registers the caller needs to preserve.
2139   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
2140   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2141   if (CalleeCC != CallerCC) {
2142     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2143     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2144       return false;
2145   }
2146 
2147   // Byval parameters hand the function a pointer directly into the stack area
2148   // we want to reuse during a tail call. Working around this *is* possible
2149   // but less efficient and uglier in LowerCall.
2150   for (auto &Arg : Outs)
2151     if (Arg.Flags.isByVal())
2152       return false;
2153 
2154   return true;
2155 }
2156 
2157 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
2158 // and output parameter nodes.
2159 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
2160                                        SmallVectorImpl<SDValue> &InVals) const {
2161   SelectionDAG &DAG = CLI.DAG;
2162   SDLoc &DL = CLI.DL;
2163   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2164   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2165   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2166   SDValue Chain = CLI.Chain;
2167   SDValue Callee = CLI.Callee;
2168   bool &IsTailCall = CLI.IsTailCall;
2169   CallingConv::ID CallConv = CLI.CallConv;
2170   bool IsVarArg = CLI.IsVarArg;
2171   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2172   MVT XLenVT = Subtarget.getXLenVT();
2173 
2174   MachineFunction &MF = DAG.getMachineFunction();
2175 
2176   // Analyze the operands of the call, assigning locations to each operand.
2177   SmallVector<CCValAssign, 16> ArgLocs;
2178   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2179 
2180   if (CallConv == CallingConv::Fast)
2181     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
2182   else
2183     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
2184 
2185   // Check if it's really possible to do a tail call.
2186   if (IsTailCall)
2187     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
2188 
2189   if (IsTailCall)
2190     ++NumTailCalls;
2191   else if (CLI.CB && CLI.CB->isMustTailCall())
2192     report_fatal_error("failed to perform tail call elimination on a call "
2193                        "site marked musttail");
2194 
2195   // Get a count of how many bytes are to be pushed on the stack.
2196   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
2197 
2198   // Create local copies for byval args
2199   SmallVector<SDValue, 8> ByValArgs;
2200   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2201     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2202     if (!Flags.isByVal())
2203       continue;
2204 
2205     SDValue Arg = OutVals[i];
2206     unsigned Size = Flags.getByValSize();
2207     Align Alignment = Flags.getNonZeroByValAlign();
2208 
2209     int FI =
2210         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
2211     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2212     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
2213 
2214     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
2215                           /*IsVolatile=*/false,
2216                           /*AlwaysInline=*/false, IsTailCall,
2217                           MachinePointerInfo(), MachinePointerInfo());
2218     ByValArgs.push_back(FIPtr);
2219   }
2220 
2221   if (!IsTailCall)
2222     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
2223 
2224   // Copy argument values to their designated locations.
2225   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
2226   SmallVector<SDValue, 8> MemOpChains;
2227   SDValue StackPtr;
2228   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
2229     CCValAssign &VA = ArgLocs[i];
2230     SDValue ArgValue = OutVals[i];
2231     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2232 
2233     // Handle passing f64 on RV32D with a soft float ABI as a special case.
2234     bool IsF64OnRV32DSoftABI =
2235         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
2236     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
2237       SDValue SplitF64 = DAG.getNode(
2238           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
2239       SDValue Lo = SplitF64.getValue(0);
2240       SDValue Hi = SplitF64.getValue(1);
2241 
2242       Register RegLo = VA.getLocReg();
2243       RegsToPass.push_back(std::make_pair(RegLo, Lo));
2244 
2245       if (RegLo == RISCV::X17) {
2246         // Second half of f64 is passed on the stack.
2247         // Work out the address of the stack slot.
2248         if (!StackPtr.getNode())
2249           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2250         // Emit the store.
2251         MemOpChains.push_back(
2252             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
2253       } else {
2254         // Second half of f64 is passed in another GPR.
2255         assert(RegLo < RISCV::X31 && "Invalid register pair");
2256         Register RegHigh = RegLo + 1;
2257         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
2258       }
2259       continue;
2260     }
2261 
2262     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
2263     // as any other MemLoc.
2264 
2265     // Promote the value if needed.
2266     // For now, only handle fully promoted and indirect arguments.
2267     if (VA.getLocInfo() == CCValAssign::Indirect) {
2268       // Store the argument in a stack slot and pass its address.
2269       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
2270       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2271       MemOpChains.push_back(
2272           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
2273                        MachinePointerInfo::getFixedStack(MF, FI)));
2274       // If the original argument was split (e.g. i128), we need
2275       // to store all parts of it here (and pass just one address).
2276       unsigned ArgIndex = Outs[i].OrigArgIndex;
2277       assert(Outs[i].PartOffset == 0);
2278       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
2279         SDValue PartValue = OutVals[i + 1];
2280         unsigned PartOffset = Outs[i + 1].PartOffset;
2281         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
2282                                       DAG.getIntPtrConstant(PartOffset, DL));
2283         MemOpChains.push_back(
2284             DAG.getStore(Chain, DL, PartValue, Address,
2285                          MachinePointerInfo::getFixedStack(MF, FI)));
2286         ++i;
2287       }
2288       ArgValue = SpillSlot;
2289     } else {
2290       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
2291     }
2292 
2293     // Use local copy if it is a byval arg.
2294     if (Flags.isByVal())
2295       ArgValue = ByValArgs[j++];
2296 
2297     if (VA.isRegLoc()) {
2298       // Queue up the argument copies and emit them at the end.
2299       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
2300     } else {
2301       assert(VA.isMemLoc() && "Argument not register or memory");
2302       assert(!IsTailCall && "Tail call not allowed if stack is used "
2303                             "for passing parameters");
2304 
2305       // Work out the address of the stack slot.
2306       if (!StackPtr.getNode())
2307         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2308       SDValue Address =
2309           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
2310                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
2311 
2312       // Emit the store.
2313       MemOpChains.push_back(
2314           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
2315     }
2316   }
2317 
2318   // Join the stores, which are independent of one another.
2319   if (!MemOpChains.empty())
2320     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2321 
2322   SDValue Glue;
2323 
2324   // Build a sequence of copy-to-reg nodes, chained and glued together.
2325   for (auto &Reg : RegsToPass) {
2326     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
2327     Glue = Chain.getValue(1);
2328   }
2329 
2330   // Validate that none of the argument registers have been marked as
2331   // reserved, if so report an error. Do the same for the return address if this
2332   // is not a tailcall.
2333   validateCCReservedRegs(RegsToPass, MF);
2334   if (!IsTailCall &&
2335       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
2336     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2337         MF.getFunction(),
2338         "Return address register required, but has been reserved."});
2339 
2340   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
2341   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
2342   // split it and then direct call can be matched by PseudoCALL.
2343   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
2344     const GlobalValue *GV = S->getGlobal();
2345 
2346     unsigned OpFlags = RISCVII::MO_CALL;
2347     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
2348       OpFlags = RISCVII::MO_PLT;
2349 
2350     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2351   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2352     unsigned OpFlags = RISCVII::MO_CALL;
2353 
2354     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
2355                                                  nullptr))
2356       OpFlags = RISCVII::MO_PLT;
2357 
2358     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
2359   }
2360 
2361   // The first call operand is the chain and the second is the target address.
2362   SmallVector<SDValue, 8> Ops;
2363   Ops.push_back(Chain);
2364   Ops.push_back(Callee);
2365 
2366   // Add argument registers to the end of the list so that they are
2367   // known live into the call.
2368   for (auto &Reg : RegsToPass)
2369     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
2370 
2371   if (!IsTailCall) {
2372     // Add a register mask operand representing the call-preserved registers.
2373     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2374     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2375     assert(Mask && "Missing call preserved mask for calling convention");
2376     Ops.push_back(DAG.getRegisterMask(Mask));
2377   }
2378 
2379   // Glue the call to the argument copies, if any.
2380   if (Glue.getNode())
2381     Ops.push_back(Glue);
2382 
2383   // Emit the call.
2384   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2385 
2386   if (IsTailCall) {
2387     MF.getFrameInfo().setHasTailCall();
2388     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
2389   }
2390 
2391   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
2392   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2393   Glue = Chain.getValue(1);
2394 
2395   // Mark the end of the call, which is glued to the call itself.
2396   Chain = DAG.getCALLSEQ_END(Chain,
2397                              DAG.getConstant(NumBytes, DL, PtrVT, true),
2398                              DAG.getConstant(0, DL, PtrVT, true),
2399                              Glue, DL);
2400   Glue = Chain.getValue(1);
2401 
2402   // Assign locations to each value returned by this call.
2403   SmallVector<CCValAssign, 16> RVLocs;
2404   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
2405   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
2406 
2407   // Copy all of the result registers out of their specified physreg.
2408   for (auto &VA : RVLocs) {
2409     // Copy the value out
2410     SDValue RetValue =
2411         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
2412     // Glue the RetValue to the end of the call sequence
2413     Chain = RetValue.getValue(1);
2414     Glue = RetValue.getValue(2);
2415 
2416     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2417       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
2418       SDValue RetValue2 =
2419           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
2420       Chain = RetValue2.getValue(1);
2421       Glue = RetValue2.getValue(2);
2422       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
2423                              RetValue2);
2424     }
2425 
2426     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
2427 
2428     InVals.push_back(RetValue);
2429   }
2430 
2431   return Chain;
2432 }
2433 
2434 bool RISCVTargetLowering::CanLowerReturn(
2435     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
2436     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2437   SmallVector<CCValAssign, 16> RVLocs;
2438   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2439   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2440     MVT VT = Outs[i].VT;
2441     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2442     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
2443     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
2444                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
2445       return false;
2446   }
2447   return true;
2448 }
2449 
2450 SDValue
2451 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2452                                  bool IsVarArg,
2453                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2454                                  const SmallVectorImpl<SDValue> &OutVals,
2455                                  const SDLoc &DL, SelectionDAG &DAG) const {
2456   const MachineFunction &MF = DAG.getMachineFunction();
2457   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2458 
2459   // Stores the assignment of the return value to a location.
2460   SmallVector<CCValAssign, 16> RVLocs;
2461 
2462   // Info about the registers and stack slot.
2463   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2464                  *DAG.getContext());
2465 
2466   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
2467                     nullptr);
2468 
2469   SDValue Glue;
2470   SmallVector<SDValue, 4> RetOps(1, Chain);
2471 
2472   // Copy the result values into the output registers.
2473   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
2474     SDValue Val = OutVals[i];
2475     CCValAssign &VA = RVLocs[i];
2476     assert(VA.isRegLoc() && "Can only return in registers!");
2477 
2478     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2479       // Handle returning f64 on RV32D with a soft float ABI.
2480       assert(VA.isRegLoc() && "Expected return via registers");
2481       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
2482                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
2483       SDValue Lo = SplitF64.getValue(0);
2484       SDValue Hi = SplitF64.getValue(1);
2485       Register RegLo = VA.getLocReg();
2486       assert(RegLo < RISCV::X31 && "Invalid register pair");
2487       Register RegHi = RegLo + 1;
2488 
2489       if (STI.isRegisterReservedByUser(RegLo) ||
2490           STI.isRegisterReservedByUser(RegHi))
2491         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2492             MF.getFunction(),
2493             "Return value register required, but has been reserved."});
2494 
2495       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
2496       Glue = Chain.getValue(1);
2497       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
2498       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
2499       Glue = Chain.getValue(1);
2500       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
2501     } else {
2502       // Handle a 'normal' return.
2503       Val = convertValVTToLocVT(DAG, Val, VA, DL);
2504       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
2505 
2506       if (STI.isRegisterReservedByUser(VA.getLocReg()))
2507         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2508             MF.getFunction(),
2509             "Return value register required, but has been reserved."});
2510 
2511       // Guarantee that all emitted copies are stuck together.
2512       Glue = Chain.getValue(1);
2513       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2514     }
2515   }
2516 
2517   RetOps[0] = Chain; // Update chain.
2518 
2519   // Add the glue node if we have it.
2520   if (Glue.getNode()) {
2521     RetOps.push_back(Glue);
2522   }
2523 
2524   // Interrupt service routines use different return instructions.
2525   const Function &Func = DAG.getMachineFunction().getFunction();
2526   if (Func.hasFnAttribute("interrupt")) {
2527     if (!Func.getReturnType()->isVoidTy())
2528       report_fatal_error(
2529           "Functions with the interrupt attribute must have void return type!");
2530 
2531     MachineFunction &MF = DAG.getMachineFunction();
2532     StringRef Kind =
2533       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
2534 
2535     unsigned RetOpc;
2536     if (Kind == "user")
2537       RetOpc = RISCVISD::URET_FLAG;
2538     else if (Kind == "supervisor")
2539       RetOpc = RISCVISD::SRET_FLAG;
2540     else
2541       RetOpc = RISCVISD::MRET_FLAG;
2542 
2543     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
2544   }
2545 
2546   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
2547 }
2548 
2549 void RISCVTargetLowering::validateCCReservedRegs(
2550     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
2551     MachineFunction &MF) const {
2552   const Function &F = MF.getFunction();
2553   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2554 
2555   if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) {
2556         return STI.isRegisterReservedByUser(Reg.first);
2557       }))
2558     F.getContext().diagnose(DiagnosticInfoUnsupported{
2559         F, "Argument register required, but has been reserved."});
2560 }
2561 
2562 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2563   return CI->isTailCall();
2564 }
2565 
2566 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
2567   switch ((RISCVISD::NodeType)Opcode) {
2568   case RISCVISD::FIRST_NUMBER:
2569     break;
2570   case RISCVISD::RET_FLAG:
2571     return "RISCVISD::RET_FLAG";
2572   case RISCVISD::URET_FLAG:
2573     return "RISCVISD::URET_FLAG";
2574   case RISCVISD::SRET_FLAG:
2575     return "RISCVISD::SRET_FLAG";
2576   case RISCVISD::MRET_FLAG:
2577     return "RISCVISD::MRET_FLAG";
2578   case RISCVISD::CALL:
2579     return "RISCVISD::CALL";
2580   case RISCVISD::SELECT_CC:
2581     return "RISCVISD::SELECT_CC";
2582   case RISCVISD::BuildPairF64:
2583     return "RISCVISD::BuildPairF64";
2584   case RISCVISD::SplitF64:
2585     return "RISCVISD::SplitF64";
2586   case RISCVISD::TAIL:
2587     return "RISCVISD::TAIL";
2588   case RISCVISD::SLLW:
2589     return "RISCVISD::SLLW";
2590   case RISCVISD::SRAW:
2591     return "RISCVISD::SRAW";
2592   case RISCVISD::SRLW:
2593     return "RISCVISD::SRLW";
2594   case RISCVISD::DIVW:
2595     return "RISCVISD::DIVW";
2596   case RISCVISD::DIVUW:
2597     return "RISCVISD::DIVUW";
2598   case RISCVISD::REMUW:
2599     return "RISCVISD::REMUW";
2600   case RISCVISD::FMV_W_X_RV64:
2601     return "RISCVISD::FMV_W_X_RV64";
2602   case RISCVISD::FMV_X_ANYEXTW_RV64:
2603     return "RISCVISD::FMV_X_ANYEXTW_RV64";
2604   case RISCVISD::READ_CYCLE_WIDE:
2605     return "RISCVISD::READ_CYCLE_WIDE";
2606   }
2607   return nullptr;
2608 }
2609 
2610 /// getConstraintType - Given a constraint letter, return the type of
2611 /// constraint it is for this target.
2612 RISCVTargetLowering::ConstraintType
2613 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
2614   if (Constraint.size() == 1) {
2615     switch (Constraint[0]) {
2616     default:
2617       break;
2618     case 'f':
2619       return C_RegisterClass;
2620     case 'I':
2621     case 'J':
2622     case 'K':
2623       return C_Immediate;
2624     case 'A':
2625       return C_Memory;
2626     }
2627   }
2628   return TargetLowering::getConstraintType(Constraint);
2629 }
2630 
2631 std::pair<unsigned, const TargetRegisterClass *>
2632 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2633                                                   StringRef Constraint,
2634                                                   MVT VT) const {
2635   // First, see if this is a constraint that directly corresponds to a
2636   // RISCV register class.
2637   if (Constraint.size() == 1) {
2638     switch (Constraint[0]) {
2639     case 'r':
2640       return std::make_pair(0U, &RISCV::GPRRegClass);
2641     case 'f':
2642       if (Subtarget.hasStdExtF() && VT == MVT::f32)
2643         return std::make_pair(0U, &RISCV::FPR32RegClass);
2644       if (Subtarget.hasStdExtD() && VT == MVT::f64)
2645         return std::make_pair(0U, &RISCV::FPR64RegClass);
2646       break;
2647     default:
2648       break;
2649     }
2650   }
2651 
2652   // Clang will correctly decode the usage of register name aliases into their
2653   // official names. However, other frontends like `rustc` do not. This allows
2654   // users of these frontends to use the ABI names for registers in LLVM-style
2655   // register constraints.
2656   Register XRegFromAlias = StringSwitch<Register>(Constraint.lower())
2657                                .Case("{zero}", RISCV::X0)
2658                                .Case("{ra}", RISCV::X1)
2659                                .Case("{sp}", RISCV::X2)
2660                                .Case("{gp}", RISCV::X3)
2661                                .Case("{tp}", RISCV::X4)
2662                                .Case("{t0}", RISCV::X5)
2663                                .Case("{t1}", RISCV::X6)
2664                                .Case("{t2}", RISCV::X7)
2665                                .Cases("{s0}", "{fp}", RISCV::X8)
2666                                .Case("{s1}", RISCV::X9)
2667                                .Case("{a0}", RISCV::X10)
2668                                .Case("{a1}", RISCV::X11)
2669                                .Case("{a2}", RISCV::X12)
2670                                .Case("{a3}", RISCV::X13)
2671                                .Case("{a4}", RISCV::X14)
2672                                .Case("{a5}", RISCV::X15)
2673                                .Case("{a6}", RISCV::X16)
2674                                .Case("{a7}", RISCV::X17)
2675                                .Case("{s2}", RISCV::X18)
2676                                .Case("{s3}", RISCV::X19)
2677                                .Case("{s4}", RISCV::X20)
2678                                .Case("{s5}", RISCV::X21)
2679                                .Case("{s6}", RISCV::X22)
2680                                .Case("{s7}", RISCV::X23)
2681                                .Case("{s8}", RISCV::X24)
2682                                .Case("{s9}", RISCV::X25)
2683                                .Case("{s10}", RISCV::X26)
2684                                .Case("{s11}", RISCV::X27)
2685                                .Case("{t3}", RISCV::X28)
2686                                .Case("{t4}", RISCV::X29)
2687                                .Case("{t5}", RISCV::X30)
2688                                .Case("{t6}", RISCV::X31)
2689                                .Default(RISCV::NoRegister);
2690   if (XRegFromAlias != RISCV::NoRegister)
2691     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
2692 
2693   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
2694   // TableGen record rather than the AsmName to choose registers for InlineAsm
2695   // constraints, plus we want to match those names to the widest floating point
2696   // register type available, manually select floating point registers here.
2697   //
2698   // The second case is the ABI name of the register, so that frontends can also
2699   // use the ABI names in register constraint lists.
2700   if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) {
2701     std::pair<Register, Register> FReg =
2702         StringSwitch<std::pair<Register, Register>>(Constraint.lower())
2703             .Cases("{f0}", "{ft0}", {RISCV::F0_F, RISCV::F0_D})
2704             .Cases("{f1}", "{ft1}", {RISCV::F1_F, RISCV::F1_D})
2705             .Cases("{f2}", "{ft2}", {RISCV::F2_F, RISCV::F2_D})
2706             .Cases("{f3}", "{ft3}", {RISCV::F3_F, RISCV::F3_D})
2707             .Cases("{f4}", "{ft4}", {RISCV::F4_F, RISCV::F4_D})
2708             .Cases("{f5}", "{ft5}", {RISCV::F5_F, RISCV::F5_D})
2709             .Cases("{f6}", "{ft6}", {RISCV::F6_F, RISCV::F6_D})
2710             .Cases("{f7}", "{ft7}", {RISCV::F7_F, RISCV::F7_D})
2711             .Cases("{f8}", "{fs0}", {RISCV::F8_F, RISCV::F8_D})
2712             .Cases("{f9}", "{fs1}", {RISCV::F9_F, RISCV::F9_D})
2713             .Cases("{f10}", "{fa0}", {RISCV::F10_F, RISCV::F10_D})
2714             .Cases("{f11}", "{fa1}", {RISCV::F11_F, RISCV::F11_D})
2715             .Cases("{f12}", "{fa2}", {RISCV::F12_F, RISCV::F12_D})
2716             .Cases("{f13}", "{fa3}", {RISCV::F13_F, RISCV::F13_D})
2717             .Cases("{f14}", "{fa4}", {RISCV::F14_F, RISCV::F14_D})
2718             .Cases("{f15}", "{fa5}", {RISCV::F15_F, RISCV::F15_D})
2719             .Cases("{f16}", "{fa6}", {RISCV::F16_F, RISCV::F16_D})
2720             .Cases("{f17}", "{fa7}", {RISCV::F17_F, RISCV::F17_D})
2721             .Cases("{f18}", "{fs2}", {RISCV::F18_F, RISCV::F18_D})
2722             .Cases("{f19}", "{fs3}", {RISCV::F19_F, RISCV::F19_D})
2723             .Cases("{f20}", "{fs4}", {RISCV::F20_F, RISCV::F20_D})
2724             .Cases("{f21}", "{fs5}", {RISCV::F21_F, RISCV::F21_D})
2725             .Cases("{f22}", "{fs6}", {RISCV::F22_F, RISCV::F22_D})
2726             .Cases("{f23}", "{fs7}", {RISCV::F23_F, RISCV::F23_D})
2727             .Cases("{f24}", "{fs8}", {RISCV::F24_F, RISCV::F24_D})
2728             .Cases("{f25}", "{fs9}", {RISCV::F25_F, RISCV::F25_D})
2729             .Cases("{f26}", "{fs10}", {RISCV::F26_F, RISCV::F26_D})
2730             .Cases("{f27}", "{fs11}", {RISCV::F27_F, RISCV::F27_D})
2731             .Cases("{f28}", "{ft8}", {RISCV::F28_F, RISCV::F28_D})
2732             .Cases("{f29}", "{ft9}", {RISCV::F29_F, RISCV::F29_D})
2733             .Cases("{f30}", "{ft10}", {RISCV::F30_F, RISCV::F30_D})
2734             .Cases("{f31}", "{ft11}", {RISCV::F31_F, RISCV::F31_D})
2735             .Default({RISCV::NoRegister, RISCV::NoRegister});
2736     if (FReg.first != RISCV::NoRegister)
2737       return Subtarget.hasStdExtD()
2738                  ? std::make_pair(FReg.second, &RISCV::FPR64RegClass)
2739                  : std::make_pair(FReg.first, &RISCV::FPR32RegClass);
2740   }
2741 
2742   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2743 }
2744 
2745 unsigned
2746 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
2747   // Currently only support length 1 constraints.
2748   if (ConstraintCode.size() == 1) {
2749     switch (ConstraintCode[0]) {
2750     case 'A':
2751       return InlineAsm::Constraint_A;
2752     default:
2753       break;
2754     }
2755   }
2756 
2757   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
2758 }
2759 
2760 void RISCVTargetLowering::LowerAsmOperandForConstraint(
2761     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2762     SelectionDAG &DAG) const {
2763   // Currently only support length 1 constraints.
2764   if (Constraint.length() == 1) {
2765     switch (Constraint[0]) {
2766     case 'I':
2767       // Validate & create a 12-bit signed immediate operand.
2768       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2769         uint64_t CVal = C->getSExtValue();
2770         if (isInt<12>(CVal))
2771           Ops.push_back(
2772               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2773       }
2774       return;
2775     case 'J':
2776       // Validate & create an integer zero operand.
2777       if (auto *C = dyn_cast<ConstantSDNode>(Op))
2778         if (C->getZExtValue() == 0)
2779           Ops.push_back(
2780               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
2781       return;
2782     case 'K':
2783       // Validate & create a 5-bit unsigned immediate operand.
2784       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2785         uint64_t CVal = C->getZExtValue();
2786         if (isUInt<5>(CVal))
2787           Ops.push_back(
2788               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2789       }
2790       return;
2791     default:
2792       break;
2793     }
2794   }
2795   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2796 }
2797 
2798 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
2799                                                    Instruction *Inst,
2800                                                    AtomicOrdering Ord) const {
2801   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
2802     return Builder.CreateFence(Ord);
2803   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
2804     return Builder.CreateFence(AtomicOrdering::Release);
2805   return nullptr;
2806 }
2807 
2808 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
2809                                                     Instruction *Inst,
2810                                                     AtomicOrdering Ord) const {
2811   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
2812     return Builder.CreateFence(AtomicOrdering::Acquire);
2813   return nullptr;
2814 }
2815 
2816 TargetLowering::AtomicExpansionKind
2817 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
2818   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
2819   // point operations can't be used in an lr/sc sequence without breaking the
2820   // forward-progress guarantee.
2821   if (AI->isFloatingPointOperation())
2822     return AtomicExpansionKind::CmpXChg;
2823 
2824   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
2825   if (Size == 8 || Size == 16)
2826     return AtomicExpansionKind::MaskedIntrinsic;
2827   return AtomicExpansionKind::None;
2828 }
2829 
2830 static Intrinsic::ID
2831 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
2832   if (XLen == 32) {
2833     switch (BinOp) {
2834     default:
2835       llvm_unreachable("Unexpected AtomicRMW BinOp");
2836     case AtomicRMWInst::Xchg:
2837       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
2838     case AtomicRMWInst::Add:
2839       return Intrinsic::riscv_masked_atomicrmw_add_i32;
2840     case AtomicRMWInst::Sub:
2841       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
2842     case AtomicRMWInst::Nand:
2843       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
2844     case AtomicRMWInst::Max:
2845       return Intrinsic::riscv_masked_atomicrmw_max_i32;
2846     case AtomicRMWInst::Min:
2847       return Intrinsic::riscv_masked_atomicrmw_min_i32;
2848     case AtomicRMWInst::UMax:
2849       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
2850     case AtomicRMWInst::UMin:
2851       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
2852     }
2853   }
2854 
2855   if (XLen == 64) {
2856     switch (BinOp) {
2857     default:
2858       llvm_unreachable("Unexpected AtomicRMW BinOp");
2859     case AtomicRMWInst::Xchg:
2860       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
2861     case AtomicRMWInst::Add:
2862       return Intrinsic::riscv_masked_atomicrmw_add_i64;
2863     case AtomicRMWInst::Sub:
2864       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
2865     case AtomicRMWInst::Nand:
2866       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
2867     case AtomicRMWInst::Max:
2868       return Intrinsic::riscv_masked_atomicrmw_max_i64;
2869     case AtomicRMWInst::Min:
2870       return Intrinsic::riscv_masked_atomicrmw_min_i64;
2871     case AtomicRMWInst::UMax:
2872       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
2873     case AtomicRMWInst::UMin:
2874       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
2875     }
2876   }
2877 
2878   llvm_unreachable("Unexpected XLen\n");
2879 }
2880 
2881 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
2882     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
2883     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
2884   unsigned XLen = Subtarget.getXLen();
2885   Value *Ordering =
2886       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
2887   Type *Tys[] = {AlignedAddr->getType()};
2888   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
2889       AI->getModule(),
2890       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
2891 
2892   if (XLen == 64) {
2893     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
2894     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2895     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
2896   }
2897 
2898   Value *Result;
2899 
2900   // Must pass the shift amount needed to sign extend the loaded value prior
2901   // to performing a signed comparison for min/max. ShiftAmt is the number of
2902   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
2903   // is the number of bits to left+right shift the value in order to
2904   // sign-extend.
2905   if (AI->getOperation() == AtomicRMWInst::Min ||
2906       AI->getOperation() == AtomicRMWInst::Max) {
2907     const DataLayout &DL = AI->getModule()->getDataLayout();
2908     unsigned ValWidth =
2909         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
2910     Value *SextShamt =
2911         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
2912     Result = Builder.CreateCall(LrwOpScwLoop,
2913                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
2914   } else {
2915     Result =
2916         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
2917   }
2918 
2919   if (XLen == 64)
2920     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2921   return Result;
2922 }
2923 
2924 TargetLowering::AtomicExpansionKind
2925 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
2926     AtomicCmpXchgInst *CI) const {
2927   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
2928   if (Size == 8 || Size == 16)
2929     return AtomicExpansionKind::MaskedIntrinsic;
2930   return AtomicExpansionKind::None;
2931 }
2932 
2933 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
2934     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
2935     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
2936   unsigned XLen = Subtarget.getXLen();
2937   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
2938   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
2939   if (XLen == 64) {
2940     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
2941     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
2942     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2943     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
2944   }
2945   Type *Tys[] = {AlignedAddr->getType()};
2946   Function *MaskedCmpXchg =
2947       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
2948   Value *Result = Builder.CreateCall(
2949       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
2950   if (XLen == 64)
2951     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2952   return Result;
2953 }
2954 
2955 Register RISCVTargetLowering::getExceptionPointerRegister(
2956     const Constant *PersonalityFn) const {
2957   return RISCV::X10;
2958 }
2959 
2960 Register RISCVTargetLowering::getExceptionSelectorRegister(
2961     const Constant *PersonalityFn) const {
2962   return RISCV::X11;
2963 }
2964 
2965 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
2966   // Return false to suppress the unnecessary extensions if the LibCall
2967   // arguments or return value is f32 type for LP64 ABI.
2968   RISCVABI::ABI ABI = Subtarget.getTargetABI();
2969   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
2970     return false;
2971 
2972   return true;
2973 }
2974 
2975 #define GET_REGISTER_MATCHER
2976 #include "RISCVGenAsmMatcher.inc"
2977 
2978 Register
2979 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
2980                                        const MachineFunction &MF) const {
2981   Register Reg = MatchRegisterAltName(RegName);
2982   if (Reg == RISCV::NoRegister)
2983     Reg = MatchRegisterName(RegName);
2984   if (Reg == RISCV::NoRegister)
2985     report_fatal_error(
2986         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
2987   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
2988   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
2989     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
2990                              StringRef(RegName) + "\"."));
2991   return Reg;
2992 }
2993