1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28 #include "llvm/CodeGen/ValueTypes.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/DiagnosticPrinter.h"
31 #include "llvm/IR/IntrinsicsRISCV.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "riscv-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
46                                          const RISCVSubtarget &STI)
47     : TargetLowering(TM), Subtarget(STI) {
48 
49   if (Subtarget.isRV32E())
50     report_fatal_error("Codegen not yet implemented for RV32E");
51 
52   RISCVABI::ABI ABI = Subtarget.getTargetABI();
53   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
54 
55   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
56       !Subtarget.hasStdExtF()) {
57     errs() << "Hard-float 'f' ABI can't be used for a target that "
58                 "doesn't support the F instruction set extension (ignoring "
59                           "target-abi)\n";
60     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
61   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
62              !Subtarget.hasStdExtD()) {
63     errs() << "Hard-float 'd' ABI can't be used for a target that "
64               "doesn't support the D instruction set extension (ignoring "
65               "target-abi)\n";
66     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
67   }
68 
69   switch (ABI) {
70   default:
71     report_fatal_error("Don't know how to lower this ABI");
72   case RISCVABI::ABI_ILP32:
73   case RISCVABI::ABI_ILP32F:
74   case RISCVABI::ABI_ILP32D:
75   case RISCVABI::ABI_LP64:
76   case RISCVABI::ABI_LP64F:
77   case RISCVABI::ABI_LP64D:
78     break;
79   }
80 
81   MVT XLenVT = Subtarget.getXLenVT();
82 
83   // Set up the register classes.
84   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
85 
86   if (Subtarget.hasStdExtZfh())
87     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
88   if (Subtarget.hasStdExtF())
89     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
90   if (Subtarget.hasStdExtD())
91     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
92 
93   static const MVT::SimpleValueType BoolVecVTs[] = {
94       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
95       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
96   static const MVT::SimpleValueType IntVecVTs[] = {
97       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
98       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
99       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
100       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
101       MVT::nxv4i64, MVT::nxv8i64};
102   static const MVT::SimpleValueType F16VecVTs[] = {
103       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
104       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
105   static const MVT::SimpleValueType F32VecVTs[] = {
106       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
107   static const MVT::SimpleValueType F64VecVTs[] = {
108       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
109 
110   if (Subtarget.hasStdExtV()) {
111     auto addRegClassForRVV = [this](MVT VT) {
112       unsigned Size = VT.getSizeInBits().getKnownMinValue();
113       assert(Size <= 512 && isPowerOf2_32(Size));
114       const TargetRegisterClass *RC;
115       if (Size <= 64)
116         RC = &RISCV::VRRegClass;
117       else if (Size == 128)
118         RC = &RISCV::VRM2RegClass;
119       else if (Size == 256)
120         RC = &RISCV::VRM4RegClass;
121       else
122         RC = &RISCV::VRM8RegClass;
123 
124       addRegisterClass(VT, RC);
125     };
126 
127     for (MVT VT : BoolVecVTs)
128       addRegClassForRVV(VT);
129     for (MVT VT : IntVecVTs)
130       addRegClassForRVV(VT);
131 
132     if (Subtarget.hasStdExtZfh())
133       for (MVT VT : F16VecVTs)
134         addRegClassForRVV(VT);
135 
136     if (Subtarget.hasStdExtF())
137       for (MVT VT : F32VecVTs)
138         addRegClassForRVV(VT);
139 
140     if (Subtarget.hasStdExtD())
141       for (MVT VT : F64VecVTs)
142         addRegClassForRVV(VT);
143 
144     if (Subtarget.useRVVForFixedLengthVectors()) {
145       auto addRegClassForFixedVectors = [this](MVT VT) {
146         MVT ContainerVT = getContainerForFixedLengthVector(VT);
147         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
148         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
149         addRegisterClass(VT, TRI.getRegClass(RCID));
150       };
151       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
152         if (useRVVForFixedLengthVectorVT(VT))
153           addRegClassForFixedVectors(VT);
154 
155       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
156         if (useRVVForFixedLengthVectorVT(VT))
157           addRegClassForFixedVectors(VT);
158     }
159   }
160 
161   // Compute derived properties from the register classes.
162   computeRegisterProperties(STI.getRegisterInfo());
163 
164   setStackPointerRegisterToSaveRestore(RISCV::X2);
165 
166   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
167     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
168 
169   // TODO: add all necessary setOperationAction calls.
170   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
171 
172   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
173   setOperationAction(ISD::BR_CC, XLenVT, Expand);
174   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
175   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
176 
177   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
178   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
179 
180   setOperationAction(ISD::VASTART, MVT::Other, Custom);
181   setOperationAction(ISD::VAARG, MVT::Other, Expand);
182   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
183   setOperationAction(ISD::VAEND, MVT::Other, Expand);
184 
185   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
186   if (!Subtarget.hasStdExtZbb()) {
187     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
188     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
189   }
190 
191   if (Subtarget.is64Bit()) {
192     setOperationAction(ISD::ADD, MVT::i32, Custom);
193     setOperationAction(ISD::SUB, MVT::i32, Custom);
194     setOperationAction(ISD::SHL, MVT::i32, Custom);
195     setOperationAction(ISD::SRA, MVT::i32, Custom);
196     setOperationAction(ISD::SRL, MVT::i32, Custom);
197 
198     setOperationAction(ISD::UADDO, MVT::i32, Custom);
199     setOperationAction(ISD::USUBO, MVT::i32, Custom);
200     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
201     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
202   }
203 
204   if (!Subtarget.hasStdExtM()) {
205     setOperationAction(ISD::MUL, XLenVT, Expand);
206     setOperationAction(ISD::MULHS, XLenVT, Expand);
207     setOperationAction(ISD::MULHU, XLenVT, Expand);
208     setOperationAction(ISD::SDIV, XLenVT, Expand);
209     setOperationAction(ISD::UDIV, XLenVT, Expand);
210     setOperationAction(ISD::SREM, XLenVT, Expand);
211     setOperationAction(ISD::UREM, XLenVT, Expand);
212   } else {
213     if (Subtarget.is64Bit()) {
214       setOperationAction(ISD::MUL, MVT::i32, Custom);
215       setOperationAction(ISD::MUL, MVT::i128, Custom);
216 
217       setOperationAction(ISD::SDIV, MVT::i8, Custom);
218       setOperationAction(ISD::UDIV, MVT::i8, Custom);
219       setOperationAction(ISD::UREM, MVT::i8, Custom);
220       setOperationAction(ISD::SDIV, MVT::i16, Custom);
221       setOperationAction(ISD::UDIV, MVT::i16, Custom);
222       setOperationAction(ISD::UREM, MVT::i16, Custom);
223       setOperationAction(ISD::SDIV, MVT::i32, Custom);
224       setOperationAction(ISD::UDIV, MVT::i32, Custom);
225       setOperationAction(ISD::UREM, MVT::i32, Custom);
226     } else {
227       setOperationAction(ISD::MUL, MVT::i64, Custom);
228     }
229   }
230 
231   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
232   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
233   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
234   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
235 
236   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
237   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
238   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
239 
240   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
241     if (Subtarget.is64Bit()) {
242       setOperationAction(ISD::ROTL, MVT::i32, Custom);
243       setOperationAction(ISD::ROTR, MVT::i32, Custom);
244     }
245   } else {
246     setOperationAction(ISD::ROTL, XLenVT, Expand);
247     setOperationAction(ISD::ROTR, XLenVT, Expand);
248   }
249 
250   if (Subtarget.hasStdExtZbp()) {
251     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
252     // more combining.
253     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
254     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
255     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
256     // BSWAP i8 doesn't exist.
257     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
258     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
259 
260     if (Subtarget.is64Bit()) {
261       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
262       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
263     }
264   } else {
265     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
266     // pattern match it directly in isel.
267     setOperationAction(ISD::BSWAP, XLenVT,
268                        Subtarget.hasStdExtZbb() ? Legal : Expand);
269   }
270 
271   if (Subtarget.hasStdExtZbb()) {
272     setOperationAction(ISD::SMIN, XLenVT, Legal);
273     setOperationAction(ISD::SMAX, XLenVT, Legal);
274     setOperationAction(ISD::UMIN, XLenVT, Legal);
275     setOperationAction(ISD::UMAX, XLenVT, Legal);
276 
277     if (Subtarget.is64Bit()) {
278       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
279       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
280       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
281       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
282     }
283   } else {
284     setOperationAction(ISD::CTTZ, XLenVT, Expand);
285     setOperationAction(ISD::CTLZ, XLenVT, Expand);
286     setOperationAction(ISD::CTPOP, XLenVT, Expand);
287   }
288 
289   if (Subtarget.hasStdExtZbt()) {
290     setOperationAction(ISD::FSHL, XLenVT, Custom);
291     setOperationAction(ISD::FSHR, XLenVT, Custom);
292     setOperationAction(ISD::SELECT, XLenVT, Legal);
293 
294     if (Subtarget.is64Bit()) {
295       setOperationAction(ISD::FSHL, MVT::i32, Custom);
296       setOperationAction(ISD::FSHR, MVT::i32, Custom);
297     }
298   } else {
299     setOperationAction(ISD::SELECT, XLenVT, Custom);
300   }
301 
302   ISD::CondCode FPCCToExpand[] = {
303       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
304       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
305       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
306 
307   ISD::NodeType FPOpToExpand[] = {
308       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
309       ISD::FP_TO_FP16};
310 
311   if (Subtarget.hasStdExtZfh())
312     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
313 
314   if (Subtarget.hasStdExtZfh()) {
315     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
316     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
317     for (auto CC : FPCCToExpand)
318       setCondCodeAction(CC, MVT::f16, Expand);
319     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
320     setOperationAction(ISD::SELECT, MVT::f16, Custom);
321     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
322     for (auto Op : FPOpToExpand)
323       setOperationAction(Op, MVT::f16, Expand);
324   }
325 
326   if (Subtarget.hasStdExtF()) {
327     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
328     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
329     for (auto CC : FPCCToExpand)
330       setCondCodeAction(CC, MVT::f32, Expand);
331     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
332     setOperationAction(ISD::SELECT, MVT::f32, Custom);
333     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
334     for (auto Op : FPOpToExpand)
335       setOperationAction(Op, MVT::f32, Expand);
336     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
337     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
338   }
339 
340   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
341     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
342 
343   if (Subtarget.hasStdExtD()) {
344     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
345     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
346     for (auto CC : FPCCToExpand)
347       setCondCodeAction(CC, MVT::f64, Expand);
348     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
349     setOperationAction(ISD::SELECT, MVT::f64, Custom);
350     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
351     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
352     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
353     for (auto Op : FPOpToExpand)
354       setOperationAction(Op, MVT::f64, Expand);
355     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
356     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
357   }
358 
359   if (Subtarget.is64Bit()) {
360     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
361     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
362     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
363     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
364   }
365 
366   if (Subtarget.hasStdExtF()) {
367     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
368     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
369   }
370 
371   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
372   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
373   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
374   setOperationAction(ISD::JumpTable, XLenVT, Custom);
375 
376   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
377 
378   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
379   // Unfortunately this can't be determined just from the ISA naming string.
380   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
381                      Subtarget.is64Bit() ? Legal : Custom);
382 
383   setOperationAction(ISD::TRAP, MVT::Other, Legal);
384   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
385   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
386   if (Subtarget.is64Bit())
387     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
388 
389   if (Subtarget.hasStdExtA()) {
390     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
391     setMinCmpXchgSizeInBits(32);
392   } else {
393     setMaxAtomicSizeInBitsSupported(0);
394   }
395 
396   setBooleanContents(ZeroOrOneBooleanContent);
397 
398   if (Subtarget.hasStdExtV()) {
399     setBooleanVectorContents(ZeroOrOneBooleanContent);
400 
401     setOperationAction(ISD::VSCALE, XLenVT, Custom);
402 
403     // RVV intrinsics may have illegal operands.
404     // We also need to custom legalize vmv.x.s.
405     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
406     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
407     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
408     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
409     if (Subtarget.is64Bit()) {
410       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
411     } else {
412       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
413       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
414     }
415 
416     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
417 
418     static unsigned IntegerVPOps[] = {
419         ISD::VP_ADD,  ISD::VP_SUB,  ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV,
420         ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR,   ISD::VP_XOR,
421         ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL};
422 
423     if (!Subtarget.is64Bit()) {
424       // We must custom-lower certain vXi64 operations on RV32 due to the vector
425       // element type being illegal.
426       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
427       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
428 
429       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
430       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
431       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
432       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
433       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
434       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
435       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
436       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
437     }
438 
439     for (MVT VT : BoolVecVTs) {
440       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
441 
442       // Mask VTs are custom-expanded into a series of standard nodes
443       setOperationAction(ISD::TRUNCATE, VT, Custom);
444       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
445       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
446 
447       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
448       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
449 
450       setOperationAction(ISD::SELECT, VT, Expand);
451       setOperationAction(ISD::SELECT_CC, VT, Expand);
452       setOperationAction(ISD::VSELECT, VT, Expand);
453 
454       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
455       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
456       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
457 
458       // RVV has native int->float & float->int conversions where the
459       // element type sizes are within one power-of-two of each other. Any
460       // wider distances between type sizes have to be lowered as sequences
461       // which progressively narrow the gap in stages.
462       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
463       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
464       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
465       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
466 
467       // Expand all extending loads to types larger than this, and truncating
468       // stores from types larger than this.
469       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
470         setTruncStoreAction(OtherVT, VT, Expand);
471         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
472         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
473         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
474       }
475     }
476 
477     for (MVT VT : IntVecVTs) {
478       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
479       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
480 
481       setOperationAction(ISD::SMIN, VT, Legal);
482       setOperationAction(ISD::SMAX, VT, Legal);
483       setOperationAction(ISD::UMIN, VT, Legal);
484       setOperationAction(ISD::UMAX, VT, Legal);
485 
486       setOperationAction(ISD::ROTL, VT, Expand);
487       setOperationAction(ISD::ROTR, VT, Expand);
488 
489       // Custom-lower extensions and truncations from/to mask types.
490       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
491       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
492       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
493 
494       // RVV has native int->float & float->int conversions where the
495       // element type sizes are within one power-of-two of each other. Any
496       // wider distances between type sizes have to be lowered as sequences
497       // which progressively narrow the gap in stages.
498       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
499       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
500       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
501       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
502 
503       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
504       // nodes which truncate by one power of two at a time.
505       setOperationAction(ISD::TRUNCATE, VT, Custom);
506 
507       // Custom-lower insert/extract operations to simplify patterns.
508       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
509       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
510 
511       // Custom-lower reduction operations to set up the corresponding custom
512       // nodes' operands.
513       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
514       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
515       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
516       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
517       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
518       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
519       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
520       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
521 
522       for (unsigned VPOpc : IntegerVPOps)
523         setOperationAction(VPOpc, VT, Custom);
524 
525       setOperationAction(ISD::MLOAD, VT, Custom);
526       setOperationAction(ISD::MSTORE, VT, Custom);
527       setOperationAction(ISD::MGATHER, VT, Custom);
528       setOperationAction(ISD::MSCATTER, VT, Custom);
529 
530       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
531       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
532       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
533 
534       setOperationAction(ISD::SELECT, VT, Expand);
535       setOperationAction(ISD::SELECT_CC, VT, Expand);
536 
537       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
538       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
539 
540       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
541         setTruncStoreAction(VT, OtherVT, Expand);
542         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
543         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
544         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
545       }
546     }
547 
548     // Expand various CCs to best match the RVV ISA, which natively supports UNE
549     // but no other unordered comparisons, and supports all ordered comparisons
550     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
551     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
552     // and we pattern-match those back to the "original", swapping operands once
553     // more. This way we catch both operations and both "vf" and "fv" forms with
554     // fewer patterns.
555     ISD::CondCode VFPCCToExpand[] = {
556         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
557         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
558         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
559     };
560 
561     // Sets common operation actions on RVV floating-point vector types.
562     const auto SetCommonVFPActions = [&](MVT VT) {
563       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
564       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
565       // sizes are within one power-of-two of each other. Therefore conversions
566       // between vXf16 and vXf64 must be lowered as sequences which convert via
567       // vXf32.
568       setOperationAction(ISD::FP_ROUND, VT, Custom);
569       setOperationAction(ISD::FP_EXTEND, VT, Custom);
570       // Custom-lower insert/extract operations to simplify patterns.
571       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
572       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
573       // Expand various condition codes (explained above).
574       for (auto CC : VFPCCToExpand)
575         setCondCodeAction(CC, VT, Expand);
576 
577       setOperationAction(ISD::FMINNUM, VT, Legal);
578       setOperationAction(ISD::FMAXNUM, VT, Legal);
579 
580       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
581       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
582       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
583       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
584       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
585 
586       setOperationAction(ISD::MLOAD, VT, Custom);
587       setOperationAction(ISD::MSTORE, VT, Custom);
588       setOperationAction(ISD::MGATHER, VT, Custom);
589       setOperationAction(ISD::MSCATTER, VT, Custom);
590 
591       setOperationAction(ISD::SELECT, VT, Expand);
592       setOperationAction(ISD::SELECT_CC, VT, Expand);
593 
594       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
595       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
596       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
597 
598       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
599     };
600 
601     // Sets common extload/truncstore actions on RVV floating-point vector
602     // types.
603     const auto SetCommonVFPExtLoadTruncStoreActions =
604         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
605           for (auto SmallVT : SmallerVTs) {
606             setTruncStoreAction(VT, SmallVT, Expand);
607             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
608           }
609         };
610 
611     if (Subtarget.hasStdExtZfh())
612       for (MVT VT : F16VecVTs)
613         SetCommonVFPActions(VT);
614 
615     for (MVT VT : F32VecVTs) {
616       if (Subtarget.hasStdExtF())
617         SetCommonVFPActions(VT);
618       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
619     }
620 
621     for (MVT VT : F64VecVTs) {
622       if (Subtarget.hasStdExtD())
623         SetCommonVFPActions(VT);
624       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
625       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
626     }
627 
628     if (Subtarget.useRVVForFixedLengthVectors()) {
629       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
630         if (!useRVVForFixedLengthVectorVT(VT))
631           continue;
632 
633         // By default everything must be expanded.
634         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
635           setOperationAction(Op, VT, Expand);
636         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
637           setTruncStoreAction(VT, OtherVT, Expand);
638           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
639           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
640           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
641         }
642 
643         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
644         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
645         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
646 
647         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
648         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
649 
650         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
651         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
652 
653         setOperationAction(ISD::LOAD, VT, Custom);
654         setOperationAction(ISD::STORE, VT, Custom);
655 
656         setOperationAction(ISD::SETCC, VT, Custom);
657 
658         setOperationAction(ISD::TRUNCATE, VT, Custom);
659 
660         setOperationAction(ISD::BITCAST, VT, Custom);
661 
662         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
663         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
664         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
665 
666         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
667         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
668         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
669         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
670 
671         // Operations below are different for between masks and other vectors.
672         if (VT.getVectorElementType() == MVT::i1) {
673           setOperationAction(ISD::AND, VT, Custom);
674           setOperationAction(ISD::OR, VT, Custom);
675           setOperationAction(ISD::XOR, VT, Custom);
676           continue;
677         }
678 
679         // Use SPLAT_VECTOR to prevent type legalization from destroying the
680         // splats when type legalizing i64 scalar on RV32.
681         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
682         // improvements first.
683         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
684           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
685           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
686         }
687 
688         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
689         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
690 
691         setOperationAction(ISD::MLOAD, VT, Custom);
692         setOperationAction(ISD::MSTORE, VT, Custom);
693         setOperationAction(ISD::MGATHER, VT, Custom);
694         setOperationAction(ISD::MSCATTER, VT, Custom);
695         setOperationAction(ISD::ADD, VT, Custom);
696         setOperationAction(ISD::MUL, VT, Custom);
697         setOperationAction(ISD::SUB, VT, Custom);
698         setOperationAction(ISD::AND, VT, Custom);
699         setOperationAction(ISD::OR, VT, Custom);
700         setOperationAction(ISD::XOR, VT, Custom);
701         setOperationAction(ISD::SDIV, VT, Custom);
702         setOperationAction(ISD::SREM, VT, Custom);
703         setOperationAction(ISD::UDIV, VT, Custom);
704         setOperationAction(ISD::UREM, VT, Custom);
705         setOperationAction(ISD::SHL, VT, Custom);
706         setOperationAction(ISD::SRA, VT, Custom);
707         setOperationAction(ISD::SRL, VT, Custom);
708 
709         setOperationAction(ISD::SMIN, VT, Custom);
710         setOperationAction(ISD::SMAX, VT, Custom);
711         setOperationAction(ISD::UMIN, VT, Custom);
712         setOperationAction(ISD::UMAX, VT, Custom);
713         setOperationAction(ISD::ABS,  VT, Custom);
714 
715         setOperationAction(ISD::MULHS, VT, Custom);
716         setOperationAction(ISD::MULHU, VT, Custom);
717 
718         setOperationAction(ISD::VSELECT, VT, Custom);
719         setOperationAction(ISD::SELECT, VT, Expand);
720         setOperationAction(ISD::SELECT_CC, VT, Expand);
721 
722         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
723         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
724         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
725 
726         // Custom-lower reduction operations to set up the corresponding custom
727         // nodes' operands.
728         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
729         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
730         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
731         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
732         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
733 
734         for (unsigned VPOpc : IntegerVPOps)
735           setOperationAction(VPOpc, VT, Custom);
736       }
737 
738       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
739         if (!useRVVForFixedLengthVectorVT(VT))
740           continue;
741 
742         // By default everything must be expanded.
743         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
744           setOperationAction(Op, VT, Expand);
745         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
746           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
747           setTruncStoreAction(VT, OtherVT, Expand);
748         }
749 
750         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
751         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
752         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
753 
754         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
755         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
756         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
757         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
758 
759         setOperationAction(ISD::LOAD, VT, Custom);
760         setOperationAction(ISD::STORE, VT, Custom);
761         setOperationAction(ISD::MLOAD, VT, Custom);
762         setOperationAction(ISD::MSTORE, VT, Custom);
763         setOperationAction(ISD::MGATHER, VT, Custom);
764         setOperationAction(ISD::MSCATTER, VT, Custom);
765         setOperationAction(ISD::FADD, VT, Custom);
766         setOperationAction(ISD::FSUB, VT, Custom);
767         setOperationAction(ISD::FMUL, VT, Custom);
768         setOperationAction(ISD::FDIV, VT, Custom);
769         setOperationAction(ISD::FNEG, VT, Custom);
770         setOperationAction(ISD::FABS, VT, Custom);
771         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
772         setOperationAction(ISD::FSQRT, VT, Custom);
773         setOperationAction(ISD::FMA, VT, Custom);
774         setOperationAction(ISD::FMINNUM, VT, Custom);
775         setOperationAction(ISD::FMAXNUM, VT, Custom);
776 
777         setOperationAction(ISD::FP_ROUND, VT, Custom);
778         setOperationAction(ISD::FP_EXTEND, VT, Custom);
779 
780         for (auto CC : VFPCCToExpand)
781           setCondCodeAction(CC, VT, Expand);
782 
783         setOperationAction(ISD::VSELECT, VT, Custom);
784         setOperationAction(ISD::SELECT, VT, Expand);
785         setOperationAction(ISD::SELECT_CC, VT, Expand);
786 
787         setOperationAction(ISD::BITCAST, VT, Custom);
788 
789         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
790         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
791         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
792         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
793       }
794 
795       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
796       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
797       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
798       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
799       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
800       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
801       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
802       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
803     }
804   }
805 
806   // Function alignments.
807   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
808   setMinFunctionAlignment(FunctionAlignment);
809   setPrefFunctionAlignment(FunctionAlignment);
810 
811   setMinimumJumpTableEntries(5);
812 
813   // Jumps are expensive, compared to logic
814   setJumpIsExpensive();
815 
816   // We can use any register for comparisons
817   setHasMultipleConditionRegisters();
818 
819   setTargetDAGCombine(ISD::AND);
820   setTargetDAGCombine(ISD::OR);
821   setTargetDAGCombine(ISD::XOR);
822   if (Subtarget.hasStdExtV()) {
823     setTargetDAGCombine(ISD::FCOPYSIGN);
824     setTargetDAGCombine(ISD::MGATHER);
825     setTargetDAGCombine(ISD::MSCATTER);
826     setTargetDAGCombine(ISD::SRA);
827     setTargetDAGCombine(ISD::SRL);
828     setTargetDAGCombine(ISD::SHL);
829   }
830 }
831 
832 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
833                                             LLVMContext &Context,
834                                             EVT VT) const {
835   if (!VT.isVector())
836     return getPointerTy(DL);
837   if (Subtarget.hasStdExtV() &&
838       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
839     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
840   return VT.changeVectorElementTypeToInteger();
841 }
842 
843 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
844   return Subtarget.getXLenVT();
845 }
846 
847 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
848                                              const CallInst &I,
849                                              MachineFunction &MF,
850                                              unsigned Intrinsic) const {
851   switch (Intrinsic) {
852   default:
853     return false;
854   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
855   case Intrinsic::riscv_masked_atomicrmw_add_i32:
856   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
857   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
858   case Intrinsic::riscv_masked_atomicrmw_max_i32:
859   case Intrinsic::riscv_masked_atomicrmw_min_i32:
860   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
861   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
862   case Intrinsic::riscv_masked_cmpxchg_i32:
863     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
864     Info.opc = ISD::INTRINSIC_W_CHAIN;
865     Info.memVT = MVT::getVT(PtrTy->getElementType());
866     Info.ptrVal = I.getArgOperand(0);
867     Info.offset = 0;
868     Info.align = Align(4);
869     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
870                  MachineMemOperand::MOVolatile;
871     return true;
872   }
873 }
874 
875 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
876                                                 const AddrMode &AM, Type *Ty,
877                                                 unsigned AS,
878                                                 Instruction *I) const {
879   // No global is ever allowed as a base.
880   if (AM.BaseGV)
881     return false;
882 
883   // Require a 12-bit signed offset.
884   if (!isInt<12>(AM.BaseOffs))
885     return false;
886 
887   switch (AM.Scale) {
888   case 0: // "r+i" or just "i", depending on HasBaseReg.
889     break;
890   case 1:
891     if (!AM.HasBaseReg) // allow "r+i".
892       break;
893     return false; // disallow "r+r" or "r+r+i".
894   default:
895     return false;
896   }
897 
898   return true;
899 }
900 
901 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
902   return isInt<12>(Imm);
903 }
904 
905 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
906   return isInt<12>(Imm);
907 }
908 
909 // On RV32, 64-bit integers are split into their high and low parts and held
910 // in two different registers, so the trunc is free since the low register can
911 // just be used.
912 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
913   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
914     return false;
915   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
916   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
917   return (SrcBits == 64 && DestBits == 32);
918 }
919 
920 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
921   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
922       !SrcVT.isInteger() || !DstVT.isInteger())
923     return false;
924   unsigned SrcBits = SrcVT.getSizeInBits();
925   unsigned DestBits = DstVT.getSizeInBits();
926   return (SrcBits == 64 && DestBits == 32);
927 }
928 
929 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
930   // Zexts are free if they can be combined with a load.
931   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
932     EVT MemVT = LD->getMemoryVT();
933     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
934          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
935         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
936          LD->getExtensionType() == ISD::ZEXTLOAD))
937       return true;
938   }
939 
940   return TargetLowering::isZExtFree(Val, VT2);
941 }
942 
943 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
944   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
945 }
946 
947 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
948   return Subtarget.hasStdExtZbb();
949 }
950 
951 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
952   return Subtarget.hasStdExtZbb();
953 }
954 
955 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
956                                        bool ForCodeSize) const {
957   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
958     return false;
959   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
960     return false;
961   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
962     return false;
963   if (Imm.isNegZero())
964     return false;
965   return Imm.isZero();
966 }
967 
968 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
969   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
970          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
971          (VT == MVT::f64 && Subtarget.hasStdExtD());
972 }
973 
974 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
975                                                       CallingConv::ID CC,
976                                                       EVT VT) const {
977   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
978   // end up using a GPR but that will be decided based on ABI.
979   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
980     return MVT::f32;
981 
982   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
983 }
984 
985 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
986                                                            CallingConv::ID CC,
987                                                            EVT VT) const {
988   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
989   // end up using a GPR but that will be decided based on ABI.
990   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
991     return 1;
992 
993   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
994 }
995 
996 // Changes the condition code and swaps operands if necessary, so the SetCC
997 // operation matches one of the comparisons supported directly by branches
998 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
999 // with 1/-1.
1000 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1001                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1002   // Convert X > -1 to X >= 0.
1003   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1004     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1005     CC = ISD::SETGE;
1006     return;
1007   }
1008   // Convert X < 1 to 0 >= X.
1009   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1010     RHS = LHS;
1011     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1012     CC = ISD::SETGE;
1013     return;
1014   }
1015 
1016   switch (CC) {
1017   default:
1018     break;
1019   case ISD::SETGT:
1020   case ISD::SETLE:
1021   case ISD::SETUGT:
1022   case ISD::SETULE:
1023     CC = ISD::getSetCCSwappedOperands(CC);
1024     std::swap(LHS, RHS);
1025     break;
1026   }
1027 }
1028 
1029 // Return the RISC-V branch opcode that matches the given DAG integer
1030 // condition code. The CondCode must be one of those supported by the RISC-V
1031 // ISA (see translateSetCCForBranch).
1032 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
1033   switch (CC) {
1034   default:
1035     llvm_unreachable("Unsupported CondCode");
1036   case ISD::SETEQ:
1037     return RISCV::BEQ;
1038   case ISD::SETNE:
1039     return RISCV::BNE;
1040   case ISD::SETLT:
1041     return RISCV::BLT;
1042   case ISD::SETGE:
1043     return RISCV::BGE;
1044   case ISD::SETULT:
1045     return RISCV::BLTU;
1046   case ISD::SETUGE:
1047     return RISCV::BGEU;
1048   }
1049 }
1050 
1051 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1052   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1053   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1054   if (VT.getVectorElementType() == MVT::i1)
1055     KnownSize *= 8;
1056 
1057   switch (KnownSize) {
1058   default:
1059     llvm_unreachable("Invalid LMUL.");
1060   case 8:
1061     return RISCVII::VLMUL::LMUL_F8;
1062   case 16:
1063     return RISCVII::VLMUL::LMUL_F4;
1064   case 32:
1065     return RISCVII::VLMUL::LMUL_F2;
1066   case 64:
1067     return RISCVII::VLMUL::LMUL_1;
1068   case 128:
1069     return RISCVII::VLMUL::LMUL_2;
1070   case 256:
1071     return RISCVII::VLMUL::LMUL_4;
1072   case 512:
1073     return RISCVII::VLMUL::LMUL_8;
1074   }
1075 }
1076 
1077 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1078   switch (LMul) {
1079   default:
1080     llvm_unreachable("Invalid LMUL.");
1081   case RISCVII::VLMUL::LMUL_F8:
1082   case RISCVII::VLMUL::LMUL_F4:
1083   case RISCVII::VLMUL::LMUL_F2:
1084   case RISCVII::VLMUL::LMUL_1:
1085     return RISCV::VRRegClassID;
1086   case RISCVII::VLMUL::LMUL_2:
1087     return RISCV::VRM2RegClassID;
1088   case RISCVII::VLMUL::LMUL_4:
1089     return RISCV::VRM4RegClassID;
1090   case RISCVII::VLMUL::LMUL_8:
1091     return RISCV::VRM8RegClassID;
1092   }
1093 }
1094 
1095 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1096   RISCVII::VLMUL LMUL = getLMUL(VT);
1097   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1098       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1099       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1100       LMUL == RISCVII::VLMUL::LMUL_1) {
1101     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1102                   "Unexpected subreg numbering");
1103     return RISCV::sub_vrm1_0 + Index;
1104   }
1105   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1106     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1107                   "Unexpected subreg numbering");
1108     return RISCV::sub_vrm2_0 + Index;
1109   }
1110   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1111     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1112                   "Unexpected subreg numbering");
1113     return RISCV::sub_vrm4_0 + Index;
1114   }
1115   llvm_unreachable("Invalid vector type.");
1116 }
1117 
1118 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1119   if (VT.getVectorElementType() == MVT::i1)
1120     return RISCV::VRRegClassID;
1121   return getRegClassIDForLMUL(getLMUL(VT));
1122 }
1123 
1124 // Attempt to decompose a subvector insert/extract between VecVT and
1125 // SubVecVT via subregister indices. Returns the subregister index that
1126 // can perform the subvector insert/extract with the given element index, as
1127 // well as the index corresponding to any leftover subvectors that must be
1128 // further inserted/extracted within the register class for SubVecVT.
1129 std::pair<unsigned, unsigned>
1130 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1131     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1132     const RISCVRegisterInfo *TRI) {
1133   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1134                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1135                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1136                 "Register classes not ordered");
1137   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1138   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1139   // Try to compose a subregister index that takes us from the incoming
1140   // LMUL>1 register class down to the outgoing one. At each step we half
1141   // the LMUL:
1142   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1143   // Note that this is not guaranteed to find a subregister index, such as
1144   // when we are extracting from one VR type to another.
1145   unsigned SubRegIdx = RISCV::NoSubRegister;
1146   for (const unsigned RCID :
1147        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1148     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1149       VecVT = VecVT.getHalfNumVectorElementsVT();
1150       bool IsHi =
1151           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1152       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1153                                             getSubregIndexByMVT(VecVT, IsHi));
1154       if (IsHi)
1155         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1156     }
1157   return {SubRegIdx, InsertExtractIdx};
1158 }
1159 
1160 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1161 // stores for those types.
1162 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1163   return !Subtarget.useRVVForFixedLengthVectors() ||
1164          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1165 }
1166 
1167 static bool useRVVForFixedLengthVectorVT(MVT VT,
1168                                          const RISCVSubtarget &Subtarget) {
1169   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1170   if (!Subtarget.useRVVForFixedLengthVectors())
1171     return false;
1172 
1173   // We only support a set of vector types with an equivalent number of
1174   // elements to avoid legalization issues. Therefore -- since we don't have
1175   // v512i8/v512i16/etc -- the longest fixed-length vector type we support has
1176   // 256 elements.
1177   if (VT.getVectorNumElements() > 256)
1178     return false;
1179 
1180   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1181 
1182   // Don't use RVV for vectors we cannot scalarize if required.
1183   switch (VT.getVectorElementType().SimpleTy) {
1184   // i1 is supported but has different rules.
1185   default:
1186     return false;
1187   case MVT::i1:
1188     // Masks can only use a single register.
1189     if (VT.getVectorNumElements() > MinVLen)
1190       return false;
1191     MinVLen /= 8;
1192     break;
1193   case MVT::i8:
1194   case MVT::i16:
1195   case MVT::i32:
1196   case MVT::i64:
1197     break;
1198   case MVT::f16:
1199     if (!Subtarget.hasStdExtZfh())
1200       return false;
1201     break;
1202   case MVT::f32:
1203     if (!Subtarget.hasStdExtF())
1204       return false;
1205     break;
1206   case MVT::f64:
1207     if (!Subtarget.hasStdExtD())
1208       return false;
1209     break;
1210   }
1211 
1212   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1213   // Don't use RVV for types that don't fit.
1214   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1215     return false;
1216 
1217   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1218   // the base fixed length RVV support in place.
1219   if (!VT.isPow2VectorType())
1220     return false;
1221 
1222   return true;
1223 }
1224 
1225 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1226   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1227 }
1228 
1229 // Return the largest legal scalable vector type that matches VT's element type.
1230 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1231                                             const RISCVSubtarget &Subtarget) {
1232   // This may be called before legal types are setup.
1233   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1234           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1235          "Expected legal fixed length vector!");
1236 
1237   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1238 
1239   MVT EltVT = VT.getVectorElementType();
1240   switch (EltVT.SimpleTy) {
1241   default:
1242     llvm_unreachable("unexpected element type for RVV container");
1243   case MVT::i1:
1244   case MVT::i8:
1245   case MVT::i16:
1246   case MVT::i32:
1247   case MVT::i64:
1248   case MVT::f16:
1249   case MVT::f32:
1250   case MVT::f64: {
1251     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1252     // narrower types, but we can't have a fractional LMUL with demoninator less
1253     // than 64/SEW.
1254     unsigned NumElts =
1255         divideCeil(VT.getVectorNumElements(), MinVLen / RISCV::RVVBitsPerBlock);
1256     return MVT::getScalableVectorVT(EltVT, NumElts);
1257   }
1258   }
1259 }
1260 
1261 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1262                                             const RISCVSubtarget &Subtarget) {
1263   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1264                                           Subtarget);
1265 }
1266 
1267 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1268   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1269 }
1270 
1271 // Grow V to consume an entire RVV register.
1272 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1273                                        const RISCVSubtarget &Subtarget) {
1274   assert(VT.isScalableVector() &&
1275          "Expected to convert into a scalable vector!");
1276   assert(V.getValueType().isFixedLengthVector() &&
1277          "Expected a fixed length vector operand!");
1278   SDLoc DL(V);
1279   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1280   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1281 }
1282 
1283 // Shrink V so it's just big enough to maintain a VT's worth of data.
1284 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1285                                          const RISCVSubtarget &Subtarget) {
1286   assert(VT.isFixedLengthVector() &&
1287          "Expected to convert into a fixed length vector!");
1288   assert(V.getValueType().isScalableVector() &&
1289          "Expected a scalable vector operand!");
1290   SDLoc DL(V);
1291   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1292   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1293 }
1294 
1295 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1296 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1297 // the vector type that it is contained in.
1298 static std::pair<SDValue, SDValue>
1299 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1300                 const RISCVSubtarget &Subtarget) {
1301   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1302   MVT XLenVT = Subtarget.getXLenVT();
1303   SDValue VL = VecVT.isFixedLengthVector()
1304                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1305                    : DAG.getRegister(RISCV::X0, XLenVT);
1306   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1307   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1308   return {Mask, VL};
1309 }
1310 
1311 // As above but assuming the given type is a scalable vector type.
1312 static std::pair<SDValue, SDValue>
1313 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1314                         const RISCVSubtarget &Subtarget) {
1315   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1316   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1317 }
1318 
1319 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1320 // of either is (currently) supported. This can get us into an infinite loop
1321 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1322 // as a ..., etc.
1323 // Until either (or both) of these can reliably lower any node, reporting that
1324 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1325 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1326 // which is not desirable.
1327 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1328     EVT VT, unsigned DefinedValues) const {
1329   return false;
1330 }
1331 
1332 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1333   // Only splats are currently supported.
1334   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1335     return true;
1336 
1337   return false;
1338 }
1339 
1340 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1341                                  const RISCVSubtarget &Subtarget) {
1342   MVT VT = Op.getSimpleValueType();
1343   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1344 
1345   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1346 
1347   SDLoc DL(Op);
1348   SDValue Mask, VL;
1349   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1350 
1351   unsigned Opc =
1352       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1353   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1354   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1355 }
1356 
1357 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1358                                  const RISCVSubtarget &Subtarget) {
1359   MVT VT = Op.getSimpleValueType();
1360   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1361 
1362   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1363 
1364   SDLoc DL(Op);
1365   SDValue Mask, VL;
1366   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1367 
1368   MVT XLenVT = Subtarget.getXLenVT();
1369   unsigned NumElts = Op.getNumOperands();
1370 
1371   if (VT.getVectorElementType() == MVT::i1) {
1372     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1373       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1374       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1375     }
1376 
1377     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1378       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1379       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1380     }
1381 
1382     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1383     // scalar integer chunks whose bit-width depends on the number of mask
1384     // bits and XLEN.
1385     // First, determine the most appropriate scalar integer type to use. This
1386     // is at most XLenVT, but may be shrunk to a smaller vector element type
1387     // according to the size of the final vector - use i8 chunks rather than
1388     // XLenVT if we're producing a v8i1. This results in more consistent
1389     // codegen across RV32 and RV64.
1390     unsigned NumViaIntegerBits =
1391         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1392     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1393       // If we have to use more than one INSERT_VECTOR_ELT then this
1394       // optimization is likely to increase code size; avoid peforming it in
1395       // such a case. We can use a load from a constant pool in this case.
1396       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1397         return SDValue();
1398       // Now we can create our integer vector type. Note that it may be larger
1399       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1400       MVT IntegerViaVecVT =
1401           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1402                            divideCeil(NumElts, NumViaIntegerBits));
1403 
1404       uint64_t Bits = 0;
1405       unsigned BitPos = 0, IntegerEltIdx = 0;
1406       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1407 
1408       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1409         // Once we accumulate enough bits to fill our scalar type, insert into
1410         // our vector and clear our accumulated data.
1411         if (I != 0 && I % NumViaIntegerBits == 0) {
1412           if (NumViaIntegerBits <= 32)
1413             Bits = SignExtend64(Bits, 32);
1414           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1415           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1416                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1417           Bits = 0;
1418           BitPos = 0;
1419           IntegerEltIdx++;
1420         }
1421         SDValue V = Op.getOperand(I);
1422         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1423         Bits |= ((uint64_t)BitValue << BitPos);
1424       }
1425 
1426       // Insert the (remaining) scalar value into position in our integer
1427       // vector type.
1428       if (NumViaIntegerBits <= 32)
1429         Bits = SignExtend64(Bits, 32);
1430       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1431       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1432                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1433 
1434       if (NumElts < NumViaIntegerBits) {
1435         // If we're producing a smaller vector than our minimum legal integer
1436         // type, bitcast to the equivalent (known-legal) mask type, and extract
1437         // our final mask.
1438         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1439         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1440         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1441                           DAG.getConstant(0, DL, XLenVT));
1442       } else {
1443         // Else we must have produced an integer type with the same size as the
1444         // mask type; bitcast for the final result.
1445         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1446         Vec = DAG.getBitcast(VT, Vec);
1447       }
1448 
1449       return Vec;
1450     }
1451 
1452     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1453     // vector type, we have a legal equivalently-sized i8 type, so we can use
1454     // that.
1455     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
1456     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
1457 
1458     SDValue WideVec;
1459     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1460       // For a splat, perform a scalar truncate before creating the wider
1461       // vector.
1462       assert(Splat.getValueType() == XLenVT &&
1463              "Unexpected type for i1 splat value");
1464       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
1465                           DAG.getConstant(1, DL, XLenVT));
1466       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
1467     } else {
1468       SmallVector<SDValue, 8> Ops(Op->op_values());
1469       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
1470       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
1471       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
1472     }
1473 
1474     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
1475   }
1476 
1477   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1478     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1479                                         : RISCVISD::VMV_V_X_VL;
1480     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1481     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1482   }
1483 
1484   // Try and match an index sequence, which we can lower directly to the vid
1485   // instruction. An all-undef vector is matched by getSplatValue, above.
1486   if (VT.isInteger()) {
1487     bool IsVID = true;
1488     for (unsigned I = 0; I < NumElts && IsVID; I++)
1489       IsVID &= Op.getOperand(I).isUndef() ||
1490                (isa<ConstantSDNode>(Op.getOperand(I)) &&
1491                 Op.getConstantOperandVal(I) == I);
1492 
1493     if (IsVID) {
1494       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1495       return convertFromScalableVector(VT, VID, DAG, Subtarget);
1496     }
1497   }
1498 
1499   // Attempt to detect "hidden" splats, which only reveal themselves as splats
1500   // when re-interpreted as a vector with a larger element type. For example,
1501   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
1502   // could be instead splat as
1503   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
1504   // TODO: This optimization could also work on non-constant splats, but it
1505   // would require bit-manipulation instructions to construct the splat value.
1506   SmallVector<SDValue> Sequence;
1507   unsigned EltBitSize = VT.getScalarSizeInBits();
1508   const auto *BV = cast<BuildVectorSDNode>(Op);
1509   if (VT.isInteger() && EltBitSize < 64 &&
1510       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1511       BV->getRepeatedSequence(Sequence) &&
1512       (Sequence.size() * EltBitSize) <= 64) {
1513     unsigned SeqLen = Sequence.size();
1514     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
1515     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
1516     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
1517             ViaIntVT == MVT::i64) &&
1518            "Unexpected sequence type");
1519 
1520     unsigned EltIdx = 0;
1521     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
1522     uint64_t SplatValue = 0;
1523     // Construct the amalgamated value which can be splatted as this larger
1524     // vector type.
1525     for (const auto &SeqV : Sequence) {
1526       if (!SeqV.isUndef())
1527         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
1528                        << (EltIdx * EltBitSize));
1529       EltIdx++;
1530     }
1531 
1532     // On RV64, sign-extend from 32 to 64 bits where possible in order to
1533     // achieve better constant materializion.
1534     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
1535       SplatValue = SignExtend64(SplatValue, 32);
1536 
1537     // Since we can't introduce illegal i64 types at this stage, we can only
1538     // perform an i64 splat on RV32 if it is its own sign-extended value. That
1539     // way we can use RVV instructions to splat.
1540     assert((ViaIntVT.bitsLE(XLenVT) ||
1541             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
1542            "Unexpected bitcast sequence");
1543     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
1544       SDValue ViaVL =
1545           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
1546       MVT ViaContainerVT =
1547           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
1548       SDValue Splat =
1549           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
1550                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
1551       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
1552       return DAG.getBitcast(VT, Splat);
1553     }
1554   }
1555 
1556   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1557   // which constitute a large proportion of the elements. In such cases we can
1558   // splat a vector with the dominant element and make up the shortfall with
1559   // INSERT_VECTOR_ELTs.
1560   // Note that this includes vectors of 2 elements by association. The
1561   // upper-most element is the "dominant" one, allowing us to use a splat to
1562   // "insert" the upper element, and an insert of the lower element at position
1563   // 0, which improves codegen.
1564   SDValue DominantValue;
1565   unsigned MostCommonCount = 0;
1566   DenseMap<SDValue, unsigned> ValueCounts;
1567   unsigned NumUndefElts =
1568       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
1569 
1570   for (SDValue V : Op->op_values()) {
1571     if (V.isUndef())
1572       continue;
1573 
1574     ValueCounts.insert(std::make_pair(V, 0));
1575     unsigned &Count = ValueCounts[V];
1576 
1577     // Is this value dominant? In case of a tie, prefer the highest element as
1578     // it's cheaper to insert near the beginning of a vector than it is at the
1579     // end.
1580     if (++Count >= MostCommonCount) {
1581       DominantValue = V;
1582       MostCommonCount = Count;
1583     }
1584   }
1585 
1586   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
1587   unsigned NumDefElts = NumElts - NumUndefElts;
1588   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
1589 
1590   // Don't perform this optimization when optimizing for size, since
1591   // materializing elements and inserting them tends to cause code bloat.
1592   if (!DAG.shouldOptForSize() &&
1593       ((MostCommonCount > DominantValueCountThreshold) ||
1594        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
1595     // Start by splatting the most common element.
1596     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
1597 
1598     DenseSet<SDValue> Processed{DominantValue};
1599     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
1600     for (const auto &OpIdx : enumerate(Op->ops())) {
1601       const SDValue &V = OpIdx.value();
1602       if (V.isUndef() || !Processed.insert(V).second)
1603         continue;
1604       if (ValueCounts[V] == 1) {
1605         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
1606                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
1607       } else {
1608         // Blend in all instances of this value using a VSELECT, using a
1609         // mask where each bit signals whether that element is the one
1610         // we're after.
1611         SmallVector<SDValue> Ops;
1612         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
1613           return DAG.getConstant(V == V1, DL, XLenVT);
1614         });
1615         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
1616                           DAG.getBuildVector(SelMaskTy, DL, Ops),
1617                           DAG.getSplatBuildVector(VT, DL, V), Vec);
1618       }
1619     }
1620 
1621     return Vec;
1622   }
1623 
1624   return SDValue();
1625 }
1626 
1627 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
1628                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
1629   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
1630     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
1631     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
1632     // If Hi constant is all the same sign bit as Lo, lower this as a custom
1633     // node in order to try and match RVV vector/scalar instructions.
1634     if ((LoC >> 31) == HiC)
1635       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
1636   }
1637 
1638   // Fall back to a stack store and stride x0 vector load.
1639   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
1640 }
1641 
1642 // Called by type legalization to handle splat of i64 on RV32.
1643 // FIXME: We can optimize this when the type has sign or zero bits in one
1644 // of the halves.
1645 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
1646                                    SDValue VL, SelectionDAG &DAG) {
1647   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
1648   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1649                            DAG.getConstant(0, DL, MVT::i32));
1650   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1651                            DAG.getConstant(1, DL, MVT::i32));
1652   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
1653 }
1654 
1655 // This function lowers a splat of a scalar operand Splat with the vector
1656 // length VL. It ensures the final sequence is type legal, which is useful when
1657 // lowering a splat after type legalization.
1658 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
1659                                 SelectionDAG &DAG,
1660                                 const RISCVSubtarget &Subtarget) {
1661   if (VT.isFloatingPoint())
1662     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
1663 
1664   MVT XLenVT = Subtarget.getXLenVT();
1665 
1666   // Simplest case is that the operand needs to be promoted to XLenVT.
1667   if (Scalar.getValueType().bitsLE(XLenVT)) {
1668     // If the operand is a constant, sign extend to increase our chances
1669     // of being able to use a .vi instruction. ANY_EXTEND would become a
1670     // a zero extend and the simm5 check in isel would fail.
1671     // FIXME: Should we ignore the upper bits in isel instead?
1672     unsigned ExtOpc =
1673         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
1674     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
1675     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
1676   }
1677 
1678   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
1679          "Unexpected scalar for splat lowering!");
1680 
1681   // Otherwise use the more complicated splatting algorithm.
1682   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
1683 }
1684 
1685 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
1686                                    const RISCVSubtarget &Subtarget) {
1687   SDValue V1 = Op.getOperand(0);
1688   SDValue V2 = Op.getOperand(1);
1689   SDLoc DL(Op);
1690   MVT XLenVT = Subtarget.getXLenVT();
1691   MVT VT = Op.getSimpleValueType();
1692   unsigned NumElts = VT.getVectorNumElements();
1693   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
1694 
1695   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1696 
1697   SDValue TrueMask, VL;
1698   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1699 
1700   if (SVN->isSplat()) {
1701     const int Lane = SVN->getSplatIndex();
1702     if (Lane >= 0) {
1703       MVT SVT = VT.getVectorElementType();
1704 
1705       // Turn splatted vector load into a strided load with an X0 stride.
1706       SDValue V = V1;
1707       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
1708       // with undef.
1709       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
1710       int Offset = Lane;
1711       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
1712         int OpElements =
1713             V.getOperand(0).getSimpleValueType().getVectorNumElements();
1714         V = V.getOperand(Offset / OpElements);
1715         Offset %= OpElements;
1716       }
1717 
1718       // We need to ensure the load isn't atomic or volatile.
1719       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
1720         auto *Ld = cast<LoadSDNode>(V);
1721         Offset *= SVT.getStoreSize();
1722         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
1723                                                    TypeSize::Fixed(Offset), DL);
1724 
1725         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
1726         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
1727           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
1728           SDValue IntID =
1729               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
1730           SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
1731                            DAG.getRegister(RISCV::X0, XLenVT), VL};
1732           SDValue NewLoad = DAG.getMemIntrinsicNode(
1733               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
1734               DAG.getMachineFunction().getMachineMemOperand(
1735                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
1736           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
1737           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
1738         }
1739 
1740         // Otherwise use a scalar load and splat. This will give the best
1741         // opportunity to fold a splat into the operation. ISel can turn it into
1742         // the x0 strided load if we aren't able to fold away the select.
1743         if (SVT.isFloatingPoint())
1744           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
1745                           Ld->getPointerInfo().getWithOffset(Offset),
1746                           Ld->getOriginalAlign(),
1747                           Ld->getMemOperand()->getFlags());
1748         else
1749           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
1750                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
1751                              Ld->getOriginalAlign(),
1752                              Ld->getMemOperand()->getFlags());
1753         DAG.makeEquivalentMemoryOrdering(Ld, V);
1754 
1755         unsigned Opc =
1756             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1757         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
1758         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1759       }
1760 
1761       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1762       assert(Lane < (int)NumElts && "Unexpected lane!");
1763       SDValue Gather =
1764           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
1765                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
1766       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1767     }
1768   }
1769 
1770   // Detect shuffles which can be re-expressed as vector selects; these are
1771   // shuffles in which each element in the destination is taken from an element
1772   // at the corresponding index in either source vectors.
1773   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
1774     int MaskIndex = MaskIdx.value();
1775     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
1776   });
1777 
1778   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
1779 
1780   SmallVector<SDValue> MaskVals;
1781   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
1782   // merged with a second vrgather.
1783   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
1784 
1785   // By default we preserve the original operand order, and use a mask to
1786   // select LHS as true and RHS as false. However, since RVV vector selects may
1787   // feature splats but only on the LHS, we may choose to invert our mask and
1788   // instead select between RHS and LHS.
1789   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
1790   bool InvertMask = IsSelect == SwapOps;
1791 
1792   // Now construct the mask that will be used by the vselect or blended
1793   // vrgather operation. For vrgathers, construct the appropriate indices into
1794   // each vector.
1795   for (int MaskIndex : SVN->getMask()) {
1796     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
1797     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
1798     if (!IsSelect) {
1799       bool IsLHS = MaskIndex < (int)NumElts;
1800       // For "undef" elements of -1, shuffle in element 0 instead.
1801       GatherIndicesLHS.push_back(
1802           DAG.getConstant(IsLHS ? std::max(MaskIndex, 0) : 0, DL, XLenVT));
1803       // TODO: If we're masking out unused elements anyway, it might produce
1804       // better code if we use the most-common element index instead of 0.
1805       GatherIndicesRHS.push_back(
1806           DAG.getConstant(IsLHS ? 0 : MaskIndex - NumElts, DL, XLenVT));
1807     }
1808   }
1809 
1810   if (SwapOps) {
1811     std::swap(V1, V2);
1812     std::swap(GatherIndicesLHS, GatherIndicesRHS);
1813   }
1814 
1815   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
1816   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
1817   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
1818 
1819   if (IsSelect)
1820     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
1821 
1822   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
1823     // On such a large vector we're unable to use i8 as the index type.
1824     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
1825     // may involve vector splitting if we're already at LMUL=8, or our
1826     // user-supplied maximum fixed-length LMUL.
1827     return SDValue();
1828   }
1829 
1830   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
1831   MVT IndexVT = VT.changeTypeToInteger();
1832   // Since we can't introduce illegal index types at this stage, use i16 and
1833   // vrgatherei16 if the corresponding index type for plain vrgather is greater
1834   // than XLenVT.
1835   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
1836     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
1837     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
1838   }
1839 
1840   MVT IndexContainerVT =
1841       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
1842 
1843   SDValue Gather;
1844   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
1845   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
1846   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
1847     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
1848   } else {
1849     SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
1850     LHSIndices =
1851         convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
1852 
1853     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1854     Gather =
1855         DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL);
1856   }
1857 
1858   // If a second vector operand is used by this shuffle, blend it in with an
1859   // additional vrgather.
1860   if (!V2.isUndef()) {
1861     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
1862     SelectMask =
1863         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
1864 
1865     SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
1866     RHSIndices =
1867         convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
1868 
1869     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
1870     V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL);
1871     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
1872                          Gather, VL);
1873   }
1874 
1875   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1876 }
1877 
1878 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
1879                                      SDLoc DL, SelectionDAG &DAG,
1880                                      const RISCVSubtarget &Subtarget) {
1881   if (VT.isScalableVector())
1882     return DAG.getFPExtendOrRound(Op, DL, VT);
1883   assert(VT.isFixedLengthVector() &&
1884          "Unexpected value type for RVV FP extend/round lowering");
1885   SDValue Mask, VL;
1886   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1887   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
1888                         ? RISCVISD::FP_EXTEND_VL
1889                         : RISCVISD::FP_ROUND_VL;
1890   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
1891 }
1892 
1893 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
1894                                             SelectionDAG &DAG) const {
1895   switch (Op.getOpcode()) {
1896   default:
1897     report_fatal_error("unimplemented operand");
1898   case ISD::GlobalAddress:
1899     return lowerGlobalAddress(Op, DAG);
1900   case ISD::BlockAddress:
1901     return lowerBlockAddress(Op, DAG);
1902   case ISD::ConstantPool:
1903     return lowerConstantPool(Op, DAG);
1904   case ISD::JumpTable:
1905     return lowerJumpTable(Op, DAG);
1906   case ISD::GlobalTLSAddress:
1907     return lowerGlobalTLSAddress(Op, DAG);
1908   case ISD::SELECT:
1909     return lowerSELECT(Op, DAG);
1910   case ISD::BRCOND:
1911     return lowerBRCOND(Op, DAG);
1912   case ISD::VASTART:
1913     return lowerVASTART(Op, DAG);
1914   case ISD::FRAMEADDR:
1915     return lowerFRAMEADDR(Op, DAG);
1916   case ISD::RETURNADDR:
1917     return lowerRETURNADDR(Op, DAG);
1918   case ISD::SHL_PARTS:
1919     return lowerShiftLeftParts(Op, DAG);
1920   case ISD::SRA_PARTS:
1921     return lowerShiftRightParts(Op, DAG, true);
1922   case ISD::SRL_PARTS:
1923     return lowerShiftRightParts(Op, DAG, false);
1924   case ISD::BITCAST: {
1925     SDLoc DL(Op);
1926     EVT VT = Op.getValueType();
1927     SDValue Op0 = Op.getOperand(0);
1928     EVT Op0VT = Op0.getValueType();
1929     MVT XLenVT = Subtarget.getXLenVT();
1930     if (VT.isFixedLengthVector()) {
1931       // We can handle fixed length vector bitcasts with a simple replacement
1932       // in isel.
1933       if (Op0VT.isFixedLengthVector())
1934         return Op;
1935       // When bitcasting from scalar to fixed-length vector, insert the scalar
1936       // into a one-element vector of the result type, and perform a vector
1937       // bitcast.
1938       if (!Op0VT.isVector()) {
1939         auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
1940         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
1941                                               DAG.getUNDEF(BVT), Op0,
1942                                               DAG.getConstant(0, DL, XLenVT)));
1943       }
1944       return SDValue();
1945     }
1946     // Custom-legalize bitcasts from fixed-length vector types to scalar types
1947     // thus: bitcast the vector to a one-element vector type whose element type
1948     // is the same as the result type, and extract the first element.
1949     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
1950       LLVMContext &Context = *DAG.getContext();
1951       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
1952       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
1953                          DAG.getConstant(0, DL, XLenVT));
1954     }
1955     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
1956       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
1957       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
1958       return FPConv;
1959     }
1960     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
1961         Subtarget.hasStdExtF()) {
1962       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
1963       SDValue FPConv =
1964           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
1965       return FPConv;
1966     }
1967     return SDValue();
1968   }
1969   case ISD::INTRINSIC_WO_CHAIN:
1970     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1971   case ISD::INTRINSIC_W_CHAIN:
1972     return LowerINTRINSIC_W_CHAIN(Op, DAG);
1973   case ISD::BSWAP:
1974   case ISD::BITREVERSE: {
1975     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
1976     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
1977     MVT VT = Op.getSimpleValueType();
1978     SDLoc DL(Op);
1979     // Start with the maximum immediate value which is the bitwidth - 1.
1980     unsigned Imm = VT.getSizeInBits() - 1;
1981     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
1982     if (Op.getOpcode() == ISD::BSWAP)
1983       Imm &= ~0x7U;
1984     return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
1985                        DAG.getConstant(Imm, DL, VT));
1986   }
1987   case ISD::FSHL:
1988   case ISD::FSHR: {
1989     MVT VT = Op.getSimpleValueType();
1990     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
1991     SDLoc DL(Op);
1992     if (Op.getOperand(2).getOpcode() == ISD::Constant)
1993       return Op;
1994     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
1995     // use log(XLen) bits. Mask the shift amount accordingly.
1996     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
1997     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
1998                                 DAG.getConstant(ShAmtWidth, DL, VT));
1999     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
2000     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
2001   }
2002   case ISD::TRUNCATE: {
2003     SDLoc DL(Op);
2004     MVT VT = Op.getSimpleValueType();
2005     // Only custom-lower vector truncates
2006     if (!VT.isVector())
2007       return Op;
2008 
2009     // Truncates to mask types are handled differently
2010     if (VT.getVectorElementType() == MVT::i1)
2011       return lowerVectorMaskTrunc(Op, DAG);
2012 
2013     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2014     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2015     // truncate by one power of two at a time.
2016     MVT DstEltVT = VT.getVectorElementType();
2017 
2018     SDValue Src = Op.getOperand(0);
2019     MVT SrcVT = Src.getSimpleValueType();
2020     MVT SrcEltVT = SrcVT.getVectorElementType();
2021 
2022     assert(DstEltVT.bitsLT(SrcEltVT) &&
2023            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
2024            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
2025            "Unexpected vector truncate lowering");
2026 
2027     MVT ContainerVT = SrcVT;
2028     if (SrcVT.isFixedLengthVector()) {
2029       ContainerVT = getContainerForFixedLengthVector(SrcVT);
2030       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2031     }
2032 
2033     SDValue Result = Src;
2034     SDValue Mask, VL;
2035     std::tie(Mask, VL) =
2036         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
2037     LLVMContext &Context = *DAG.getContext();
2038     const ElementCount Count = ContainerVT.getVectorElementCount();
2039     do {
2040       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
2041       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
2042       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
2043                            Mask, VL);
2044     } while (SrcEltVT != DstEltVT);
2045 
2046     if (SrcVT.isFixedLengthVector())
2047       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
2048 
2049     return Result;
2050   }
2051   case ISD::ANY_EXTEND:
2052   case ISD::ZERO_EXTEND:
2053     if (Op.getOperand(0).getValueType().isVector() &&
2054         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2055       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2056     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2057   case ISD::SIGN_EXTEND:
2058     if (Op.getOperand(0).getValueType().isVector() &&
2059         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2060       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2061     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2062   case ISD::SPLAT_VECTOR_PARTS:
2063     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2064   case ISD::INSERT_VECTOR_ELT:
2065     return lowerINSERT_VECTOR_ELT(Op, DAG);
2066   case ISD::EXTRACT_VECTOR_ELT:
2067     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2068   case ISD::VSCALE: {
2069     MVT VT = Op.getSimpleValueType();
2070     SDLoc DL(Op);
2071     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2072     // We define our scalable vector types for lmul=1 to use a 64 bit known
2073     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2074     // vscale as VLENB / 8.
2075     assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!");
2076     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2077                                  DAG.getConstant(3, DL, VT));
2078     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2079   }
2080   case ISD::FP_EXTEND: {
2081     // RVV can only do fp_extend to types double the size as the source. We
2082     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2083     // via f32.
2084     SDLoc DL(Op);
2085     MVT VT = Op.getSimpleValueType();
2086     SDValue Src = Op.getOperand(0);
2087     MVT SrcVT = Src.getSimpleValueType();
2088 
2089     // Prepare any fixed-length vector operands.
2090     MVT ContainerVT = VT;
2091     if (SrcVT.isFixedLengthVector()) {
2092       ContainerVT = getContainerForFixedLengthVector(VT);
2093       MVT SrcContainerVT =
2094           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2095       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2096     }
2097 
2098     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2099         SrcVT.getVectorElementType() != MVT::f16) {
2100       // For scalable vectors, we only need to close the gap between
2101       // vXf16->vXf64.
2102       if (!VT.isFixedLengthVector())
2103         return Op;
2104       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2105       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2106       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2107     }
2108 
2109     MVT InterVT = VT.changeVectorElementType(MVT::f32);
2110     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2111     SDValue IntermediateExtend = getRVVFPExtendOrRound(
2112         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2113 
2114     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2115                                            DL, DAG, Subtarget);
2116     if (VT.isFixedLengthVector())
2117       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2118     return Extend;
2119   }
2120   case ISD::FP_ROUND: {
2121     // RVV can only do fp_round to types half the size as the source. We
2122     // custom-lower f64->f16 rounds via RVV's round-to-odd float
2123     // conversion instruction.
2124     SDLoc DL(Op);
2125     MVT VT = Op.getSimpleValueType();
2126     SDValue Src = Op.getOperand(0);
2127     MVT SrcVT = Src.getSimpleValueType();
2128 
2129     // Prepare any fixed-length vector operands.
2130     MVT ContainerVT = VT;
2131     if (VT.isFixedLengthVector()) {
2132       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2133       ContainerVT =
2134           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2135       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2136     }
2137 
2138     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2139         SrcVT.getVectorElementType() != MVT::f64) {
2140       // For scalable vectors, we only need to close the gap between
2141       // vXf64<->vXf16.
2142       if (!VT.isFixedLengthVector())
2143         return Op;
2144       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2145       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2146       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2147     }
2148 
2149     SDValue Mask, VL;
2150     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2151 
2152     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2153     SDValue IntermediateRound =
2154         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2155     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2156                                           DL, DAG, Subtarget);
2157 
2158     if (VT.isFixedLengthVector())
2159       return convertFromScalableVector(VT, Round, DAG, Subtarget);
2160     return Round;
2161   }
2162   case ISD::FP_TO_SINT:
2163   case ISD::FP_TO_UINT:
2164   case ISD::SINT_TO_FP:
2165   case ISD::UINT_TO_FP: {
2166     // RVV can only do fp<->int conversions to types half/double the size as
2167     // the source. We custom-lower any conversions that do two hops into
2168     // sequences.
2169     MVT VT = Op.getSimpleValueType();
2170     if (!VT.isVector())
2171       return Op;
2172     SDLoc DL(Op);
2173     SDValue Src = Op.getOperand(0);
2174     MVT EltVT = VT.getVectorElementType();
2175     MVT SrcVT = Src.getSimpleValueType();
2176     MVT SrcEltVT = SrcVT.getVectorElementType();
2177     unsigned EltSize = EltVT.getSizeInBits();
2178     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2179     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2180            "Unexpected vector element types");
2181 
2182     bool IsInt2FP = SrcEltVT.isInteger();
2183     // Widening conversions
2184     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2185       if (IsInt2FP) {
2186         // Do a regular integer sign/zero extension then convert to float.
2187         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2188                                       VT.getVectorElementCount());
2189         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2190                                  ? ISD::ZERO_EXTEND
2191                                  : ISD::SIGN_EXTEND;
2192         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2193         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2194       }
2195       // FP2Int
2196       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2197       // Do one doubling fp_extend then complete the operation by converting
2198       // to int.
2199       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2200       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2201       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2202     }
2203 
2204     // Narrowing conversions
2205     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2206       if (IsInt2FP) {
2207         // One narrowing int_to_fp, then an fp_round.
2208         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2209         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2210         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2211         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2212       }
2213       // FP2Int
2214       // One narrowing fp_to_int, then truncate the integer. If the float isn't
2215       // representable by the integer, the result is poison.
2216       MVT IVecVT =
2217           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
2218                            VT.getVectorElementCount());
2219       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
2220       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
2221     }
2222 
2223     // Scalable vectors can exit here. Patterns will handle equally-sized
2224     // conversions halving/doubling ones.
2225     if (!VT.isFixedLengthVector())
2226       return Op;
2227 
2228     // For fixed-length vectors we lower to a custom "VL" node.
2229     unsigned RVVOpc = 0;
2230     switch (Op.getOpcode()) {
2231     default:
2232       llvm_unreachable("Impossible opcode");
2233     case ISD::FP_TO_SINT:
2234       RVVOpc = RISCVISD::FP_TO_SINT_VL;
2235       break;
2236     case ISD::FP_TO_UINT:
2237       RVVOpc = RISCVISD::FP_TO_UINT_VL;
2238       break;
2239     case ISD::SINT_TO_FP:
2240       RVVOpc = RISCVISD::SINT_TO_FP_VL;
2241       break;
2242     case ISD::UINT_TO_FP:
2243       RVVOpc = RISCVISD::UINT_TO_FP_VL;
2244       break;
2245     }
2246 
2247     MVT ContainerVT, SrcContainerVT;
2248     // Derive the reference container type from the larger vector type.
2249     if (SrcEltSize > EltSize) {
2250       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2251       ContainerVT =
2252           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2253     } else {
2254       ContainerVT = getContainerForFixedLengthVector(VT);
2255       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
2256     }
2257 
2258     SDValue Mask, VL;
2259     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2260 
2261     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2262     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
2263     return convertFromScalableVector(VT, Src, DAG, Subtarget);
2264   }
2265   case ISD::VECREDUCE_ADD:
2266   case ISD::VECREDUCE_UMAX:
2267   case ISD::VECREDUCE_SMAX:
2268   case ISD::VECREDUCE_UMIN:
2269   case ISD::VECREDUCE_SMIN:
2270     return lowerVECREDUCE(Op, DAG);
2271   case ISD::VECREDUCE_AND:
2272   case ISD::VECREDUCE_OR:
2273   case ISD::VECREDUCE_XOR:
2274     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2275       return lowerVectorMaskVECREDUCE(Op, DAG);
2276     return lowerVECREDUCE(Op, DAG);
2277   case ISD::VECREDUCE_FADD:
2278   case ISD::VECREDUCE_SEQ_FADD:
2279   case ISD::VECREDUCE_FMIN:
2280   case ISD::VECREDUCE_FMAX:
2281     return lowerFPVECREDUCE(Op, DAG);
2282   case ISD::INSERT_SUBVECTOR:
2283     return lowerINSERT_SUBVECTOR(Op, DAG);
2284   case ISD::EXTRACT_SUBVECTOR:
2285     return lowerEXTRACT_SUBVECTOR(Op, DAG);
2286   case ISD::STEP_VECTOR:
2287     return lowerSTEP_VECTOR(Op, DAG);
2288   case ISD::VECTOR_REVERSE:
2289     return lowerVECTOR_REVERSE(Op, DAG);
2290   case ISD::BUILD_VECTOR:
2291     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
2292   case ISD::SPLAT_VECTOR:
2293     if (Op.getValueType().getVectorElementType() == MVT::i1)
2294       return lowerVectorMaskSplat(Op, DAG);
2295     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
2296   case ISD::VECTOR_SHUFFLE:
2297     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
2298   case ISD::CONCAT_VECTORS: {
2299     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
2300     // better than going through the stack, as the default expansion does.
2301     SDLoc DL(Op);
2302     MVT VT = Op.getSimpleValueType();
2303     unsigned NumOpElts =
2304         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
2305     SDValue Vec = DAG.getUNDEF(VT);
2306     for (const auto &OpIdx : enumerate(Op->ops()))
2307       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
2308                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
2309     return Vec;
2310   }
2311   case ISD::LOAD:
2312     return lowerFixedLengthVectorLoadToRVV(Op, DAG);
2313   case ISD::STORE:
2314     return lowerFixedLengthVectorStoreToRVV(Op, DAG);
2315   case ISD::MLOAD:
2316     return lowerMLOAD(Op, DAG);
2317   case ISD::MSTORE:
2318     return lowerMSTORE(Op, DAG);
2319   case ISD::SETCC:
2320     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
2321   case ISD::ADD:
2322     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
2323   case ISD::SUB:
2324     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
2325   case ISD::MUL:
2326     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
2327   case ISD::MULHS:
2328     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
2329   case ISD::MULHU:
2330     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
2331   case ISD::AND:
2332     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
2333                                               RISCVISD::AND_VL);
2334   case ISD::OR:
2335     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
2336                                               RISCVISD::OR_VL);
2337   case ISD::XOR:
2338     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
2339                                               RISCVISD::XOR_VL);
2340   case ISD::SDIV:
2341     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
2342   case ISD::SREM:
2343     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
2344   case ISD::UDIV:
2345     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
2346   case ISD::UREM:
2347     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
2348   case ISD::SHL:
2349     return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL);
2350   case ISD::SRA:
2351     return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL);
2352   case ISD::SRL:
2353     return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL);
2354   case ISD::FADD:
2355     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
2356   case ISD::FSUB:
2357     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
2358   case ISD::FMUL:
2359     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
2360   case ISD::FDIV:
2361     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
2362   case ISD::FNEG:
2363     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
2364   case ISD::FABS:
2365     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
2366   case ISD::FSQRT:
2367     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
2368   case ISD::FMA:
2369     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
2370   case ISD::SMIN:
2371     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
2372   case ISD::SMAX:
2373     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
2374   case ISD::UMIN:
2375     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
2376   case ISD::UMAX:
2377     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
2378   case ISD::FMINNUM:
2379     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
2380   case ISD::FMAXNUM:
2381     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
2382   case ISD::ABS:
2383     return lowerABS(Op, DAG);
2384   case ISD::VSELECT:
2385     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
2386   case ISD::FCOPYSIGN:
2387     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
2388   case ISD::MGATHER:
2389     return lowerMGATHER(Op, DAG);
2390   case ISD::MSCATTER:
2391     return lowerMSCATTER(Op, DAG);
2392   case ISD::FLT_ROUNDS_:
2393     return lowerGET_ROUNDING(Op, DAG);
2394   case ISD::SET_ROUNDING:
2395     return lowerSET_ROUNDING(Op, DAG);
2396   case ISD::VP_ADD:
2397     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
2398   case ISD::VP_SUB:
2399     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
2400   case ISD::VP_MUL:
2401     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
2402   case ISD::VP_SDIV:
2403     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
2404   case ISD::VP_UDIV:
2405     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
2406   case ISD::VP_SREM:
2407     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
2408   case ISD::VP_UREM:
2409     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
2410   case ISD::VP_AND:
2411     return lowerVPOp(Op, DAG, RISCVISD::AND_VL);
2412   case ISD::VP_OR:
2413     return lowerVPOp(Op, DAG, RISCVISD::OR_VL);
2414   case ISD::VP_XOR:
2415     return lowerVPOp(Op, DAG, RISCVISD::XOR_VL);
2416   case ISD::VP_ASHR:
2417     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
2418   case ISD::VP_LSHR:
2419     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
2420   case ISD::VP_SHL:
2421     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
2422   }
2423 }
2424 
2425 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
2426                              SelectionDAG &DAG, unsigned Flags) {
2427   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
2428 }
2429 
2430 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
2431                              SelectionDAG &DAG, unsigned Flags) {
2432   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
2433                                    Flags);
2434 }
2435 
2436 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
2437                              SelectionDAG &DAG, unsigned Flags) {
2438   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
2439                                    N->getOffset(), Flags);
2440 }
2441 
2442 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
2443                              SelectionDAG &DAG, unsigned Flags) {
2444   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
2445 }
2446 
2447 template <class NodeTy>
2448 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
2449                                      bool IsLocal) const {
2450   SDLoc DL(N);
2451   EVT Ty = getPointerTy(DAG.getDataLayout());
2452 
2453   if (isPositionIndependent()) {
2454     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2455     if (IsLocal)
2456       // Use PC-relative addressing to access the symbol. This generates the
2457       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
2458       // %pcrel_lo(auipc)).
2459       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2460 
2461     // Use PC-relative addressing to access the GOT for this symbol, then load
2462     // the address from the GOT. This generates the pattern (PseudoLA sym),
2463     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
2464     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
2465   }
2466 
2467   switch (getTargetMachine().getCodeModel()) {
2468   default:
2469     report_fatal_error("Unsupported code model for lowering");
2470   case CodeModel::Small: {
2471     // Generate a sequence for accessing addresses within the first 2 GiB of
2472     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
2473     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
2474     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
2475     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2476     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
2477   }
2478   case CodeModel::Medium: {
2479     // Generate a sequence for accessing addresses within any 2GiB range within
2480     // the address space. This generates the pattern (PseudoLLA sym), which
2481     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
2482     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2483     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2484   }
2485   }
2486 }
2487 
2488 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
2489                                                 SelectionDAG &DAG) const {
2490   SDLoc DL(Op);
2491   EVT Ty = Op.getValueType();
2492   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2493   int64_t Offset = N->getOffset();
2494   MVT XLenVT = Subtarget.getXLenVT();
2495 
2496   const GlobalValue *GV = N->getGlobal();
2497   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
2498   SDValue Addr = getAddr(N, DAG, IsLocal);
2499 
2500   // In order to maximise the opportunity for common subexpression elimination,
2501   // emit a separate ADD node for the global address offset instead of folding
2502   // it in the global address node. Later peephole optimisations may choose to
2503   // fold it back in when profitable.
2504   if (Offset != 0)
2505     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2506                        DAG.getConstant(Offset, DL, XLenVT));
2507   return Addr;
2508 }
2509 
2510 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
2511                                                SelectionDAG &DAG) const {
2512   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2513 
2514   return getAddr(N, DAG);
2515 }
2516 
2517 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
2518                                                SelectionDAG &DAG) const {
2519   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2520 
2521   return getAddr(N, DAG);
2522 }
2523 
2524 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
2525                                             SelectionDAG &DAG) const {
2526   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2527 
2528   return getAddr(N, DAG);
2529 }
2530 
2531 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
2532                                               SelectionDAG &DAG,
2533                                               bool UseGOT) const {
2534   SDLoc DL(N);
2535   EVT Ty = getPointerTy(DAG.getDataLayout());
2536   const GlobalValue *GV = N->getGlobal();
2537   MVT XLenVT = Subtarget.getXLenVT();
2538 
2539   if (UseGOT) {
2540     // Use PC-relative addressing to access the GOT for this TLS symbol, then
2541     // load the address from the GOT and add the thread pointer. This generates
2542     // the pattern (PseudoLA_TLS_IE sym), which expands to
2543     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
2544     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2545     SDValue Load =
2546         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
2547 
2548     // Add the thread pointer.
2549     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2550     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
2551   }
2552 
2553   // Generate a sequence for accessing the address relative to the thread
2554   // pointer, with the appropriate adjustment for the thread pointer offset.
2555   // This generates the pattern
2556   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
2557   SDValue AddrHi =
2558       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
2559   SDValue AddrAdd =
2560       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
2561   SDValue AddrLo =
2562       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
2563 
2564   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2565   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2566   SDValue MNAdd = SDValue(
2567       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
2568       0);
2569   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
2570 }
2571 
2572 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
2573                                                SelectionDAG &DAG) const {
2574   SDLoc DL(N);
2575   EVT Ty = getPointerTy(DAG.getDataLayout());
2576   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
2577   const GlobalValue *GV = N->getGlobal();
2578 
2579   // Use a PC-relative addressing mode to access the global dynamic GOT address.
2580   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
2581   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
2582   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2583   SDValue Load =
2584       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
2585 
2586   // Prepare argument list to generate call.
2587   ArgListTy Args;
2588   ArgListEntry Entry;
2589   Entry.Node = Load;
2590   Entry.Ty = CallTy;
2591   Args.push_back(Entry);
2592 
2593   // Setup call to __tls_get_addr.
2594   TargetLowering::CallLoweringInfo CLI(DAG);
2595   CLI.setDebugLoc(DL)
2596       .setChain(DAG.getEntryNode())
2597       .setLibCallee(CallingConv::C, CallTy,
2598                     DAG.getExternalSymbol("__tls_get_addr", Ty),
2599                     std::move(Args));
2600 
2601   return LowerCallTo(CLI).first;
2602 }
2603 
2604 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
2605                                                    SelectionDAG &DAG) const {
2606   SDLoc DL(Op);
2607   EVT Ty = Op.getValueType();
2608   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2609   int64_t Offset = N->getOffset();
2610   MVT XLenVT = Subtarget.getXLenVT();
2611 
2612   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
2613 
2614   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
2615       CallingConv::GHC)
2616     report_fatal_error("In GHC calling convention TLS is not supported");
2617 
2618   SDValue Addr;
2619   switch (Model) {
2620   case TLSModel::LocalExec:
2621     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
2622     break;
2623   case TLSModel::InitialExec:
2624     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
2625     break;
2626   case TLSModel::LocalDynamic:
2627   case TLSModel::GeneralDynamic:
2628     Addr = getDynamicTLSAddr(N, DAG);
2629     break;
2630   }
2631 
2632   // In order to maximise the opportunity for common subexpression elimination,
2633   // emit a separate ADD node for the global address offset instead of folding
2634   // it in the global address node. Later peephole optimisations may choose to
2635   // fold it back in when profitable.
2636   if (Offset != 0)
2637     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2638                        DAG.getConstant(Offset, DL, XLenVT));
2639   return Addr;
2640 }
2641 
2642 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2643   SDValue CondV = Op.getOperand(0);
2644   SDValue TrueV = Op.getOperand(1);
2645   SDValue FalseV = Op.getOperand(2);
2646   SDLoc DL(Op);
2647   MVT XLenVT = Subtarget.getXLenVT();
2648 
2649   // If the result type is XLenVT and CondV is the output of a SETCC node
2650   // which also operated on XLenVT inputs, then merge the SETCC node into the
2651   // lowered RISCVISD::SELECT_CC to take advantage of the integer
2652   // compare+branch instructions. i.e.:
2653   // (select (setcc lhs, rhs, cc), truev, falsev)
2654   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
2655   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
2656       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
2657     SDValue LHS = CondV.getOperand(0);
2658     SDValue RHS = CondV.getOperand(1);
2659     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
2660     ISD::CondCode CCVal = CC->get();
2661 
2662     // Special case for a select of 2 constants that have a diffence of 1.
2663     // Normally this is done by DAGCombine, but if the select is introduced by
2664     // type legalization or op legalization, we miss it. Restricting to SETLT
2665     // case for now because that is what signed saturating add/sub need.
2666     // FIXME: We don't need the condition to be SETLT or even a SETCC,
2667     // but we would probably want to swap the true/false values if the condition
2668     // is SETGE/SETLE to avoid an XORI.
2669     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
2670         CCVal == ISD::SETLT) {
2671       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
2672       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
2673       if (TrueVal - 1 == FalseVal)
2674         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
2675       if (TrueVal + 1 == FalseVal)
2676         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
2677     }
2678 
2679     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2680 
2681     SDValue TargetCC = DAG.getTargetConstant(CCVal, DL, XLenVT);
2682     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
2683     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2684   }
2685 
2686   // Otherwise:
2687   // (select condv, truev, falsev)
2688   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
2689   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
2690   SDValue SetNE = DAG.getTargetConstant(ISD::SETNE, DL, XLenVT);
2691 
2692   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
2693 
2694   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2695 }
2696 
2697 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
2698   SDValue CondV = Op.getOperand(1);
2699   SDLoc DL(Op);
2700   MVT XLenVT = Subtarget.getXLenVT();
2701 
2702   if (CondV.getOpcode() == ISD::SETCC &&
2703       CondV.getOperand(0).getValueType() == XLenVT) {
2704     SDValue LHS = CondV.getOperand(0);
2705     SDValue RHS = CondV.getOperand(1);
2706     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
2707 
2708     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2709 
2710     SDValue TargetCC = DAG.getCondCode(CCVal);
2711     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2712                        LHS, RHS, TargetCC, Op.getOperand(2));
2713   }
2714 
2715   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2716                      CondV, DAG.getConstant(0, DL, XLenVT),
2717                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
2718 }
2719 
2720 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2721   MachineFunction &MF = DAG.getMachineFunction();
2722   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
2723 
2724   SDLoc DL(Op);
2725   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2726                                  getPointerTy(MF.getDataLayout()));
2727 
2728   // vastart just stores the address of the VarArgsFrameIndex slot into the
2729   // memory location argument.
2730   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2731   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2732                       MachinePointerInfo(SV));
2733 }
2734 
2735 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
2736                                             SelectionDAG &DAG) const {
2737   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2738   MachineFunction &MF = DAG.getMachineFunction();
2739   MachineFrameInfo &MFI = MF.getFrameInfo();
2740   MFI.setFrameAddressIsTaken(true);
2741   Register FrameReg = RI.getFrameRegister(MF);
2742   int XLenInBytes = Subtarget.getXLen() / 8;
2743 
2744   EVT VT = Op.getValueType();
2745   SDLoc DL(Op);
2746   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
2747   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2748   while (Depth--) {
2749     int Offset = -(XLenInBytes * 2);
2750     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
2751                               DAG.getIntPtrConstant(Offset, DL));
2752     FrameAddr =
2753         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2754   }
2755   return FrameAddr;
2756 }
2757 
2758 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
2759                                              SelectionDAG &DAG) const {
2760   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2761   MachineFunction &MF = DAG.getMachineFunction();
2762   MachineFrameInfo &MFI = MF.getFrameInfo();
2763   MFI.setReturnAddressIsTaken(true);
2764   MVT XLenVT = Subtarget.getXLenVT();
2765   int XLenInBytes = Subtarget.getXLen() / 8;
2766 
2767   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2768     return SDValue();
2769 
2770   EVT VT = Op.getValueType();
2771   SDLoc DL(Op);
2772   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2773   if (Depth) {
2774     int Off = -XLenInBytes;
2775     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
2776     SDValue Offset = DAG.getConstant(Off, DL, VT);
2777     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
2778                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
2779                        MachinePointerInfo());
2780   }
2781 
2782   // Return the value of the return address register, marking it an implicit
2783   // live-in.
2784   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
2785   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
2786 }
2787 
2788 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
2789                                                  SelectionDAG &DAG) const {
2790   SDLoc DL(Op);
2791   SDValue Lo = Op.getOperand(0);
2792   SDValue Hi = Op.getOperand(1);
2793   SDValue Shamt = Op.getOperand(2);
2794   EVT VT = Lo.getValueType();
2795 
2796   // if Shamt-XLEN < 0: // Shamt < XLEN
2797   //   Lo = Lo << Shamt
2798   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
2799   // else:
2800   //   Lo = 0
2801   //   Hi = Lo << (Shamt-XLEN)
2802 
2803   SDValue Zero = DAG.getConstant(0, DL, VT);
2804   SDValue One = DAG.getConstant(1, DL, VT);
2805   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
2806   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
2807   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
2808   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
2809 
2810   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2811   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
2812   SDValue ShiftRightLo =
2813       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
2814   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2815   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2816   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
2817 
2818   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2819 
2820   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
2821   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2822 
2823   SDValue Parts[2] = {Lo, Hi};
2824   return DAG.getMergeValues(Parts, DL);
2825 }
2826 
2827 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2828                                                   bool IsSRA) const {
2829   SDLoc DL(Op);
2830   SDValue Lo = Op.getOperand(0);
2831   SDValue Hi = Op.getOperand(1);
2832   SDValue Shamt = Op.getOperand(2);
2833   EVT VT = Lo.getValueType();
2834 
2835   // SRA expansion:
2836   //   if Shamt-XLEN < 0: // Shamt < XLEN
2837   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2838   //     Hi = Hi >>s Shamt
2839   //   else:
2840   //     Lo = Hi >>s (Shamt-XLEN);
2841   //     Hi = Hi >>s (XLEN-1)
2842   //
2843   // SRL expansion:
2844   //   if Shamt-XLEN < 0: // Shamt < XLEN
2845   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2846   //     Hi = Hi >>u Shamt
2847   //   else:
2848   //     Lo = Hi >>u (Shamt-XLEN);
2849   //     Hi = 0;
2850 
2851   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
2852 
2853   SDValue Zero = DAG.getConstant(0, DL, VT);
2854   SDValue One = DAG.getConstant(1, DL, VT);
2855   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
2856   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
2857   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
2858   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
2859 
2860   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2861   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
2862   SDValue ShiftLeftHi =
2863       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
2864   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
2865   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
2866   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
2867   SDValue HiFalse =
2868       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
2869 
2870   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2871 
2872   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
2873   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2874 
2875   SDValue Parts[2] = {Lo, Hi};
2876   return DAG.getMergeValues(Parts, DL);
2877 }
2878 
2879 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
2880 // legal equivalently-sized i8 type, so we can use that as a go-between.
2881 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
2882                                                   SelectionDAG &DAG) const {
2883   SDLoc DL(Op);
2884   MVT VT = Op.getSimpleValueType();
2885   SDValue SplatVal = Op.getOperand(0);
2886   // All-zeros or all-ones splats are handled specially.
2887   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
2888     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
2889     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
2890   }
2891   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
2892     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
2893     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
2894   }
2895   MVT XLenVT = Subtarget.getXLenVT();
2896   assert(SplatVal.getValueType() == XLenVT &&
2897          "Unexpected type for i1 splat value");
2898   MVT InterVT = VT.changeVectorElementType(MVT::i8);
2899   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
2900                          DAG.getConstant(1, DL, XLenVT));
2901   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
2902   SDValue Zero = DAG.getConstant(0, DL, InterVT);
2903   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
2904 }
2905 
2906 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
2907 // illegal (currently only vXi64 RV32).
2908 // FIXME: We could also catch non-constant sign-extended i32 values and lower
2909 // them to SPLAT_VECTOR_I64
2910 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
2911                                                      SelectionDAG &DAG) const {
2912   SDLoc DL(Op);
2913   MVT VecVT = Op.getSimpleValueType();
2914   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
2915          "Unexpected SPLAT_VECTOR_PARTS lowering");
2916 
2917   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
2918   SDValue Lo = Op.getOperand(0);
2919   SDValue Hi = Op.getOperand(1);
2920 
2921   if (VecVT.isFixedLengthVector()) {
2922     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
2923     SDLoc DL(Op);
2924     SDValue Mask, VL;
2925     std::tie(Mask, VL) =
2926         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2927 
2928     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
2929     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
2930   }
2931 
2932   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2933     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2934     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2935     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2936     // node in order to try and match RVV vector/scalar instructions.
2937     if ((LoC >> 31) == HiC)
2938       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2939   }
2940 
2941   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
2942   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
2943       isa<ConstantSDNode>(Hi.getOperand(1)) &&
2944       Hi.getConstantOperandVal(1) == 31)
2945     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2946 
2947   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
2948   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
2949                      DAG.getRegister(RISCV::X0, MVT::i64));
2950 }
2951 
2952 // Custom-lower extensions from mask vectors by using a vselect either with 1
2953 // for zero/any-extension or -1 for sign-extension:
2954 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
2955 // Note that any-extension is lowered identically to zero-extension.
2956 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
2957                                                 int64_t ExtTrueVal) const {
2958   SDLoc DL(Op);
2959   MVT VecVT = Op.getSimpleValueType();
2960   SDValue Src = Op.getOperand(0);
2961   // Only custom-lower extensions from mask types
2962   assert(Src.getValueType().isVector() &&
2963          Src.getValueType().getVectorElementType() == MVT::i1);
2964 
2965   MVT XLenVT = Subtarget.getXLenVT();
2966   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
2967   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
2968 
2969   if (VecVT.isScalableVector()) {
2970     // Be careful not to introduce illegal scalar types at this stage, and be
2971     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
2972     // illegal and must be expanded. Since we know that the constants are
2973     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
2974     bool IsRV32E64 =
2975         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
2976 
2977     if (!IsRV32E64) {
2978       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
2979       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
2980     } else {
2981       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
2982       SplatTrueVal =
2983           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
2984     }
2985 
2986     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
2987   }
2988 
2989   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
2990   MVT I1ContainerVT =
2991       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
2992 
2993   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
2994 
2995   SDValue Mask, VL;
2996   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2997 
2998   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
2999   SplatTrueVal =
3000       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
3001   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
3002                                SplatTrueVal, SplatZero, VL);
3003 
3004   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
3005 }
3006 
3007 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3008     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
3009   MVT ExtVT = Op.getSimpleValueType();
3010   // Only custom-lower extensions from fixed-length vector types.
3011   if (!ExtVT.isFixedLengthVector())
3012     return Op;
3013   MVT VT = Op.getOperand(0).getSimpleValueType();
3014   // Grab the canonical container type for the extended type. Infer the smaller
3015   // type from that to ensure the same number of vector elements, as we know
3016   // the LMUL will be sufficient to hold the smaller type.
3017   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
3018   // Get the extended container type manually to ensure the same number of
3019   // vector elements between source and dest.
3020   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
3021                                      ContainerExtVT.getVectorElementCount());
3022 
3023   SDValue Op1 =
3024       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3025 
3026   SDLoc DL(Op);
3027   SDValue Mask, VL;
3028   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3029 
3030   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
3031 
3032   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
3033 }
3034 
3035 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3036 // setcc operation:
3037 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
3038 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
3039                                                   SelectionDAG &DAG) const {
3040   SDLoc DL(Op);
3041   EVT MaskVT = Op.getValueType();
3042   // Only expect to custom-lower truncations to mask types
3043   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
3044          "Unexpected type for vector mask lowering");
3045   SDValue Src = Op.getOperand(0);
3046   MVT VecVT = Src.getSimpleValueType();
3047 
3048   // If this is a fixed vector, we need to convert it to a scalable vector.
3049   MVT ContainerVT = VecVT;
3050   if (VecVT.isFixedLengthVector()) {
3051     ContainerVT = getContainerForFixedLengthVector(VecVT);
3052     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3053   }
3054 
3055   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
3056   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
3057 
3058   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
3059   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
3060 
3061   if (VecVT.isScalableVector()) {
3062     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
3063     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
3064   }
3065 
3066   SDValue Mask, VL;
3067   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3068 
3069   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3070   SDValue Trunc =
3071       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
3072   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
3073                       DAG.getCondCode(ISD::SETNE), Mask, VL);
3074   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
3075 }
3076 
3077 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3078 // first position of a vector, and that vector is slid up to the insert index.
3079 // By limiting the active vector length to index+1 and merging with the
3080 // original vector (with an undisturbed tail policy for elements >= VL), we
3081 // achieve the desired result of leaving all elements untouched except the one
3082 // at VL-1, which is replaced with the desired value.
3083 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3084                                                     SelectionDAG &DAG) const {
3085   SDLoc DL(Op);
3086   MVT VecVT = Op.getSimpleValueType();
3087   SDValue Vec = Op.getOperand(0);
3088   SDValue Val = Op.getOperand(1);
3089   SDValue Idx = Op.getOperand(2);
3090 
3091   if (VecVT.getVectorElementType() == MVT::i1) {
3092     // FIXME: For now we just promote to an i8 vector and insert into that,
3093     // but this is probably not optimal.
3094     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3095     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3096     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
3097     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
3098   }
3099 
3100   MVT ContainerVT = VecVT;
3101   // If the operand is a fixed-length vector, convert to a scalable one.
3102   if (VecVT.isFixedLengthVector()) {
3103     ContainerVT = getContainerForFixedLengthVector(VecVT);
3104     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3105   }
3106 
3107   MVT XLenVT = Subtarget.getXLenVT();
3108 
3109   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3110   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
3111   // Even i64-element vectors on RV32 can be lowered without scalar
3112   // legalization if the most-significant 32 bits of the value are not affected
3113   // by the sign-extension of the lower 32 bits.
3114   // TODO: We could also catch sign extensions of a 32-bit value.
3115   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
3116     const auto *CVal = cast<ConstantSDNode>(Val);
3117     if (isInt<32>(CVal->getSExtValue())) {
3118       IsLegalInsert = true;
3119       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3120     }
3121   }
3122 
3123   SDValue Mask, VL;
3124   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3125 
3126   SDValue ValInVec;
3127 
3128   if (IsLegalInsert) {
3129     unsigned Opc =
3130         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
3131     if (isNullConstant(Idx)) {
3132       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
3133       if (!VecVT.isFixedLengthVector())
3134         return Vec;
3135       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
3136     }
3137     ValInVec =
3138         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
3139   } else {
3140     // On RV32, i64-element vectors must be specially handled to place the
3141     // value at element 0, by using two vslide1up instructions in sequence on
3142     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3143     // this.
3144     SDValue One = DAG.getConstant(1, DL, XLenVT);
3145     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
3146     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
3147     MVT I32ContainerVT =
3148         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
3149     SDValue I32Mask =
3150         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
3151     // Limit the active VL to two.
3152     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
3153     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
3154     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
3155     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
3156                            InsertI64VL);
3157     // First slide in the hi value, then the lo in underneath it.
3158     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3159                            ValHi, I32Mask, InsertI64VL);
3160     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3161                            ValLo, I32Mask, InsertI64VL);
3162     // Bitcast back to the right container type.
3163     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
3164   }
3165 
3166   // Now that the value is in a vector, slide it into position.
3167   SDValue InsertVL =
3168       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
3169   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3170                                 ValInVec, Idx, Mask, InsertVL);
3171   if (!VecVT.isFixedLengthVector())
3172     return Slideup;
3173   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3174 }
3175 
3176 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
3177 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
3178 // types this is done using VMV_X_S to allow us to glean information about the
3179 // sign bits of the result.
3180 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
3181                                                      SelectionDAG &DAG) const {
3182   SDLoc DL(Op);
3183   SDValue Idx = Op.getOperand(1);
3184   SDValue Vec = Op.getOperand(0);
3185   EVT EltVT = Op.getValueType();
3186   MVT VecVT = Vec.getSimpleValueType();
3187   MVT XLenVT = Subtarget.getXLenVT();
3188 
3189   if (VecVT.getVectorElementType() == MVT::i1) {
3190     // FIXME: For now we just promote to an i8 vector and extract from that,
3191     // but this is probably not optimal.
3192     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3193     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3194     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
3195   }
3196 
3197   // If this is a fixed vector, we need to convert it to a scalable vector.
3198   MVT ContainerVT = VecVT;
3199   if (VecVT.isFixedLengthVector()) {
3200     ContainerVT = getContainerForFixedLengthVector(VecVT);
3201     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3202   }
3203 
3204   // If the index is 0, the vector is already in the right position.
3205   if (!isNullConstant(Idx)) {
3206     // Use a VL of 1 to avoid processing more elements than we need.
3207     SDValue VL = DAG.getConstant(1, DL, XLenVT);
3208     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3209     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3210     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3211                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
3212   }
3213 
3214   if (!EltVT.isInteger()) {
3215     // Floating-point extracts are handled in TableGen.
3216     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
3217                        DAG.getConstant(0, DL, XLenVT));
3218   }
3219 
3220   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3221   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
3222 }
3223 
3224 // Some RVV intrinsics may claim that they want an integer operand to be
3225 // promoted or expanded.
3226 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
3227                                           const RISCVSubtarget &Subtarget) {
3228   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3229           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
3230          "Unexpected opcode");
3231 
3232   if (!Subtarget.hasStdExtV())
3233     return SDValue();
3234 
3235   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
3236   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
3237   SDLoc DL(Op);
3238 
3239   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
3240       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
3241   if (!II || !II->SplatOperand)
3242     return SDValue();
3243 
3244   unsigned SplatOp = II->SplatOperand + HasChain;
3245   assert(SplatOp < Op.getNumOperands());
3246 
3247   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
3248   SDValue &ScalarOp = Operands[SplatOp];
3249   MVT OpVT = ScalarOp.getSimpleValueType();
3250   MVT XLenVT = Subtarget.getXLenVT();
3251 
3252   // If this isn't a scalar, or its type is XLenVT we're done.
3253   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
3254     return SDValue();
3255 
3256   // Simplest case is that the operand needs to be promoted to XLenVT.
3257   if (OpVT.bitsLT(XLenVT)) {
3258     // If the operand is a constant, sign extend to increase our chances
3259     // of being able to use a .vi instruction. ANY_EXTEND would become a
3260     // a zero extend and the simm5 check in isel would fail.
3261     // FIXME: Should we ignore the upper bits in isel instead?
3262     unsigned ExtOpc =
3263         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
3264     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
3265     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3266   }
3267 
3268   // Use the previous operand to get the vXi64 VT. The result might be a mask
3269   // VT for compares. Using the previous operand assumes that the previous
3270   // operand will never have a smaller element size than a scalar operand and
3271   // that a widening operation never uses SEW=64.
3272   // NOTE: If this fails the below assert, we can probably just find the
3273   // element count from any operand or result and use it to construct the VT.
3274   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
3275   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
3276 
3277   // The more complex case is when the scalar is larger than XLenVT.
3278   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
3279          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
3280 
3281   // If this is a sign-extended 32-bit constant, we can truncate it and rely
3282   // on the instruction to sign-extend since SEW>XLEN.
3283   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
3284     if (isInt<32>(CVal->getSExtValue())) {
3285       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3286       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3287     }
3288   }
3289 
3290   // We need to convert the scalar to a splat vector.
3291   // FIXME: Can we implicitly truncate the scalar if it is known to
3292   // be sign extended?
3293   // VL should be the last operand.
3294   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
3295   assert(VL.getValueType() == XLenVT);
3296   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
3297   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3298 }
3299 
3300 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3301                                                      SelectionDAG &DAG) const {
3302   unsigned IntNo = Op.getConstantOperandVal(0);
3303   SDLoc DL(Op);
3304   MVT XLenVT = Subtarget.getXLenVT();
3305 
3306   switch (IntNo) {
3307   default:
3308     break; // Don't custom lower most intrinsics.
3309   case Intrinsic::thread_pointer: {
3310     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3311     return DAG.getRegister(RISCV::X4, PtrVT);
3312   }
3313   case Intrinsic::riscv_orc_b:
3314     // Lower to the GORCI encoding for orc.b.
3315     return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
3316                        DAG.getConstant(7, DL, XLenVT));
3317   case Intrinsic::riscv_grev:
3318   case Intrinsic::riscv_gorc: {
3319     unsigned Opc =
3320         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
3321     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3322   }
3323   case Intrinsic::riscv_shfl:
3324   case Intrinsic::riscv_unshfl: {
3325     unsigned Opc =
3326         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
3327     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3328   }
3329   case Intrinsic::riscv_bcompress:
3330   case Intrinsic::riscv_bdecompress: {
3331     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
3332                                                        : RISCVISD::BDECOMPRESS;
3333     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3334   }
3335   case Intrinsic::riscv_vmv_x_s:
3336     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
3337     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
3338                        Op.getOperand(1));
3339   case Intrinsic::riscv_vmv_v_x:
3340     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
3341                             Op.getSimpleValueType(), DL, DAG, Subtarget);
3342   case Intrinsic::riscv_vfmv_v_f:
3343     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
3344                        Op.getOperand(1), Op.getOperand(2));
3345   case Intrinsic::riscv_vmv_s_x: {
3346     SDValue Scalar = Op.getOperand(2);
3347 
3348     if (Scalar.getValueType().bitsLE(XLenVT)) {
3349       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
3350       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
3351                          Op.getOperand(1), Scalar, Op.getOperand(3));
3352     }
3353 
3354     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
3355 
3356     // This is an i64 value that lives in two scalar registers. We have to
3357     // insert this in a convoluted way. First we build vXi64 splat containing
3358     // the/ two values that we assemble using some bit math. Next we'll use
3359     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
3360     // to merge element 0 from our splat into the source vector.
3361     // FIXME: This is probably not the best way to do this, but it is
3362     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
3363     // point.
3364     //   sw lo, (a0)
3365     //   sw hi, 4(a0)
3366     //   vlse vX, (a0)
3367     //
3368     //   vid.v      vVid
3369     //   vmseq.vx   mMask, vVid, 0
3370     //   vmerge.vvm vDest, vSrc, vVal, mMask
3371     MVT VT = Op.getSimpleValueType();
3372     SDValue Vec = Op.getOperand(1);
3373     SDValue VL = Op.getOperand(3);
3374 
3375     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
3376     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
3377                                       DAG.getConstant(0, DL, MVT::i32), VL);
3378 
3379     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
3380     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3381     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3382     SDValue SelectCond =
3383         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
3384                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
3385     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
3386                        Vec, VL);
3387   }
3388   case Intrinsic::riscv_vslide1up:
3389   case Intrinsic::riscv_vslide1down:
3390   case Intrinsic::riscv_vslide1up_mask:
3391   case Intrinsic::riscv_vslide1down_mask: {
3392     // We need to special case these when the scalar is larger than XLen.
3393     unsigned NumOps = Op.getNumOperands();
3394     bool IsMasked = NumOps == 6;
3395     unsigned OpOffset = IsMasked ? 1 : 0;
3396     SDValue Scalar = Op.getOperand(2 + OpOffset);
3397     if (Scalar.getValueType().bitsLE(XLenVT))
3398       break;
3399 
3400     // Splatting a sign extended constant is fine.
3401     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
3402       if (isInt<32>(CVal->getSExtValue()))
3403         break;
3404 
3405     MVT VT = Op.getSimpleValueType();
3406     assert(VT.getVectorElementType() == MVT::i64 &&
3407            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
3408 
3409     // Convert the vector source to the equivalent nxvXi32 vector.
3410     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
3411     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
3412 
3413     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3414                                    DAG.getConstant(0, DL, XLenVT));
3415     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3416                                    DAG.getConstant(1, DL, XLenVT));
3417 
3418     // Double the VL since we halved SEW.
3419     SDValue VL = Op.getOperand(NumOps - 1);
3420     SDValue I32VL =
3421         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
3422 
3423     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
3424     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
3425 
3426     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
3427     // instructions.
3428     if (IntNo == Intrinsic::riscv_vslide1up ||
3429         IntNo == Intrinsic::riscv_vslide1up_mask) {
3430       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
3431                         I32Mask, I32VL);
3432       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
3433                         I32Mask, I32VL);
3434     } else {
3435       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
3436                         I32Mask, I32VL);
3437       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
3438                         I32Mask, I32VL);
3439     }
3440 
3441     // Convert back to nxvXi64.
3442     Vec = DAG.getBitcast(VT, Vec);
3443 
3444     if (!IsMasked)
3445       return Vec;
3446 
3447     // Apply mask after the operation.
3448     SDValue Mask = Op.getOperand(NumOps - 2);
3449     SDValue MaskedOff = Op.getOperand(1);
3450     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
3451   }
3452   }
3453 
3454   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3455 }
3456 
3457 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
3458                                                     SelectionDAG &DAG) const {
3459   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3460 }
3461 
3462 static MVT getLMUL1VT(MVT VT) {
3463   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
3464          "Unexpected vector MVT");
3465   return MVT::getScalableVectorVT(
3466       VT.getVectorElementType(),
3467       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
3468 }
3469 
3470 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
3471   switch (ISDOpcode) {
3472   default:
3473     llvm_unreachable("Unhandled reduction");
3474   case ISD::VECREDUCE_ADD:
3475     return RISCVISD::VECREDUCE_ADD_VL;
3476   case ISD::VECREDUCE_UMAX:
3477     return RISCVISD::VECREDUCE_UMAX_VL;
3478   case ISD::VECREDUCE_SMAX:
3479     return RISCVISD::VECREDUCE_SMAX_VL;
3480   case ISD::VECREDUCE_UMIN:
3481     return RISCVISD::VECREDUCE_UMIN_VL;
3482   case ISD::VECREDUCE_SMIN:
3483     return RISCVISD::VECREDUCE_SMIN_VL;
3484   case ISD::VECREDUCE_AND:
3485     return RISCVISD::VECREDUCE_AND_VL;
3486   case ISD::VECREDUCE_OR:
3487     return RISCVISD::VECREDUCE_OR_VL;
3488   case ISD::VECREDUCE_XOR:
3489     return RISCVISD::VECREDUCE_XOR_VL;
3490   }
3491 }
3492 
3493 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op,
3494                                                       SelectionDAG &DAG) const {
3495   SDLoc DL(Op);
3496   SDValue Vec = Op.getOperand(0);
3497   MVT VecVT = Vec.getSimpleValueType();
3498   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
3499           Op.getOpcode() == ISD::VECREDUCE_OR ||
3500           Op.getOpcode() == ISD::VECREDUCE_XOR) &&
3501          "Unexpected reduction lowering");
3502 
3503   MVT XLenVT = Subtarget.getXLenVT();
3504   assert(Op.getValueType() == XLenVT &&
3505          "Expected reduction output to be legalized to XLenVT");
3506 
3507   MVT ContainerVT = VecVT;
3508   if (VecVT.isFixedLengthVector()) {
3509     ContainerVT = getContainerForFixedLengthVector(VecVT);
3510     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3511   }
3512 
3513   SDValue Mask, VL;
3514   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3515   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3516 
3517   switch (Op.getOpcode()) {
3518   default:
3519     llvm_unreachable("Unhandled reduction");
3520   case ISD::VECREDUCE_AND:
3521     // vpopc ~x == 0
3522     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL);
3523     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3524     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ);
3525   case ISD::VECREDUCE_OR:
3526     // vpopc x != 0
3527     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3528     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3529   case ISD::VECREDUCE_XOR: {
3530     // ((vpopc x) & 1) != 0
3531     SDValue One = DAG.getConstant(1, DL, XLenVT);
3532     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3533     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
3534     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3535   }
3536   }
3537 }
3538 
3539 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
3540                                             SelectionDAG &DAG) const {
3541   SDLoc DL(Op);
3542   SDValue Vec = Op.getOperand(0);
3543   EVT VecEVT = Vec.getValueType();
3544 
3545   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
3546 
3547   // Due to ordering in legalize types we may have a vector type that needs to
3548   // be split. Do that manually so we can get down to a legal type.
3549   while (getTypeAction(*DAG.getContext(), VecEVT) ==
3550          TargetLowering::TypeSplitVector) {
3551     SDValue Lo, Hi;
3552     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
3553     VecEVT = Lo.getValueType();
3554     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
3555   }
3556 
3557   // TODO: The type may need to be widened rather than split. Or widened before
3558   // it can be split.
3559   if (!isTypeLegal(VecEVT))
3560     return SDValue();
3561 
3562   MVT VecVT = VecEVT.getSimpleVT();
3563   MVT VecEltVT = VecVT.getVectorElementType();
3564   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
3565 
3566   MVT ContainerVT = VecVT;
3567   if (VecVT.isFixedLengthVector()) {
3568     ContainerVT = getContainerForFixedLengthVector(VecVT);
3569     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3570   }
3571 
3572   MVT M1VT = getLMUL1VT(ContainerVT);
3573 
3574   SDValue Mask, VL;
3575   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3576 
3577   // FIXME: This is a VLMAX splat which might be too large and can prevent
3578   // vsetvli removal.
3579   SDValue NeutralElem =
3580       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
3581   SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
3582   SDValue Reduction =
3583       DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL);
3584   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3585                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3586   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
3587 }
3588 
3589 // Given a reduction op, this function returns the matching reduction opcode,
3590 // the vector SDValue and the scalar SDValue required to lower this to a
3591 // RISCVISD node.
3592 static std::tuple<unsigned, SDValue, SDValue>
3593 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
3594   SDLoc DL(Op);
3595   auto Flags = Op->getFlags();
3596   unsigned Opcode = Op.getOpcode();
3597   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
3598   switch (Opcode) {
3599   default:
3600     llvm_unreachable("Unhandled reduction");
3601   case ISD::VECREDUCE_FADD:
3602     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
3603                            DAG.getConstantFP(0.0, DL, EltVT));
3604   case ISD::VECREDUCE_SEQ_FADD:
3605     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
3606                            Op.getOperand(0));
3607   case ISD::VECREDUCE_FMIN:
3608     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
3609                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3610   case ISD::VECREDUCE_FMAX:
3611     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
3612                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3613   }
3614 }
3615 
3616 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
3617                                               SelectionDAG &DAG) const {
3618   SDLoc DL(Op);
3619   MVT VecEltVT = Op.getSimpleValueType();
3620 
3621   unsigned RVVOpcode;
3622   SDValue VectorVal, ScalarVal;
3623   std::tie(RVVOpcode, VectorVal, ScalarVal) =
3624       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
3625   MVT VecVT = VectorVal.getSimpleValueType();
3626 
3627   MVT ContainerVT = VecVT;
3628   if (VecVT.isFixedLengthVector()) {
3629     ContainerVT = getContainerForFixedLengthVector(VecVT);
3630     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
3631   }
3632 
3633   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
3634 
3635   SDValue Mask, VL;
3636   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3637 
3638   // FIXME: This is a VLMAX splat which might be too large and can prevent
3639   // vsetvli removal.
3640   SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
3641   SDValue Reduction =
3642       DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL);
3643   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3644                      DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3645 }
3646 
3647 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
3648                                                    SelectionDAG &DAG) const {
3649   SDValue Vec = Op.getOperand(0);
3650   SDValue SubVec = Op.getOperand(1);
3651   MVT VecVT = Vec.getSimpleValueType();
3652   MVT SubVecVT = SubVec.getSimpleValueType();
3653 
3654   SDLoc DL(Op);
3655   MVT XLenVT = Subtarget.getXLenVT();
3656   unsigned OrigIdx = Op.getConstantOperandVal(2);
3657   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3658 
3659   // We don't have the ability to slide mask vectors up indexed by their i1
3660   // elements; the smallest we can do is i8. Often we are able to bitcast to
3661   // equivalent i8 vectors. Note that when inserting a fixed-length vector
3662   // into a scalable one, we might not necessarily have enough scalable
3663   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
3664   if (SubVecVT.getVectorElementType() == MVT::i1 &&
3665       (OrigIdx != 0 || !Vec.isUndef())) {
3666     if (VecVT.getVectorMinNumElements() >= 8 &&
3667         SubVecVT.getVectorMinNumElements() >= 8) {
3668       assert(OrigIdx % 8 == 0 && "Invalid index");
3669       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
3670              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
3671              "Unexpected mask vector lowering");
3672       OrigIdx /= 8;
3673       SubVecVT =
3674           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
3675                            SubVecVT.isScalableVector());
3676       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
3677                                VecVT.isScalableVector());
3678       Vec = DAG.getBitcast(VecVT, Vec);
3679       SubVec = DAG.getBitcast(SubVecVT, SubVec);
3680     } else {
3681       // We can't slide this mask vector up indexed by its i1 elements.
3682       // This poses a problem when we wish to insert a scalable vector which
3683       // can't be re-expressed as a larger type. Just choose the slow path and
3684       // extend to a larger type, then truncate back down.
3685       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
3686       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
3687       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
3688       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
3689       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
3690                         Op.getOperand(2));
3691       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
3692       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
3693     }
3694   }
3695 
3696   // If the subvector vector is a fixed-length type, we cannot use subregister
3697   // manipulation to simplify the codegen; we don't know which register of a
3698   // LMUL group contains the specific subvector as we only know the minimum
3699   // register size. Therefore we must slide the vector group up the full
3700   // amount.
3701   if (SubVecVT.isFixedLengthVector()) {
3702     if (OrigIdx == 0 && Vec.isUndef())
3703       return Op;
3704     MVT ContainerVT = VecVT;
3705     if (VecVT.isFixedLengthVector()) {
3706       ContainerVT = getContainerForFixedLengthVector(VecVT);
3707       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3708     }
3709     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
3710                          DAG.getUNDEF(ContainerVT), SubVec,
3711                          DAG.getConstant(0, DL, XLenVT));
3712     SDValue Mask =
3713         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
3714     // Set the vector length to only the number of elements we care about. Note
3715     // that for slideup this includes the offset.
3716     SDValue VL =
3717         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
3718     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
3719     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3720                                   SubVec, SlideupAmt, Mask, VL);
3721     if (VecVT.isFixedLengthVector())
3722       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3723     return DAG.getBitcast(Op.getValueType(), Slideup);
3724   }
3725 
3726   unsigned SubRegIdx, RemIdx;
3727   std::tie(SubRegIdx, RemIdx) =
3728       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
3729           VecVT, SubVecVT, OrigIdx, TRI);
3730 
3731   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
3732   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
3733                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
3734                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
3735 
3736   // 1. If the Idx has been completely eliminated and this subvector's size is
3737   // a vector register or a multiple thereof, or the surrounding elements are
3738   // undef, then this is a subvector insert which naturally aligns to a vector
3739   // register. These can easily be handled using subregister manipulation.
3740   // 2. If the subvector is smaller than a vector register, then the insertion
3741   // must preserve the undisturbed elements of the register. We do this by
3742   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
3743   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
3744   // subvector within the vector register, and an INSERT_SUBVECTOR of that
3745   // LMUL=1 type back into the larger vector (resolving to another subregister
3746   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
3747   // to avoid allocating a large register group to hold our subvector.
3748   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
3749     return Op;
3750 
3751   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
3752   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
3753   // (in our case undisturbed). This means we can set up a subvector insertion
3754   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
3755   // size of the subvector.
3756   MVT InterSubVT = VecVT;
3757   SDValue AlignedExtract = Vec;
3758   unsigned AlignedIdx = OrigIdx - RemIdx;
3759   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
3760     InterSubVT = getLMUL1VT(VecVT);
3761     // Extract a subvector equal to the nearest full vector register type. This
3762     // should resolve to a EXTRACT_SUBREG instruction.
3763     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
3764                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
3765   }
3766 
3767   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
3768   // For scalable vectors this must be further multiplied by vscale.
3769   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
3770 
3771   SDValue Mask, VL;
3772   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
3773 
3774   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
3775   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
3776   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
3777   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
3778 
3779   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
3780                        DAG.getUNDEF(InterSubVT), SubVec,
3781                        DAG.getConstant(0, DL, XLenVT));
3782 
3783   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
3784                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
3785 
3786   // If required, insert this subvector back into the correct vector register.
3787   // This should resolve to an INSERT_SUBREG instruction.
3788   if (VecVT.bitsGT(InterSubVT))
3789     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
3790                           DAG.getConstant(AlignedIdx, DL, XLenVT));
3791 
3792   // We might have bitcast from a mask type: cast back to the original type if
3793   // required.
3794   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
3795 }
3796 
3797 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
3798                                                     SelectionDAG &DAG) const {
3799   SDValue Vec = Op.getOperand(0);
3800   MVT SubVecVT = Op.getSimpleValueType();
3801   MVT VecVT = Vec.getSimpleValueType();
3802 
3803   SDLoc DL(Op);
3804   MVT XLenVT = Subtarget.getXLenVT();
3805   unsigned OrigIdx = Op.getConstantOperandVal(1);
3806   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3807 
3808   // We don't have the ability to slide mask vectors down indexed by their i1
3809   // elements; the smallest we can do is i8. Often we are able to bitcast to
3810   // equivalent i8 vectors. Note that when extracting a fixed-length vector
3811   // from a scalable one, we might not necessarily have enough scalable
3812   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
3813   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
3814     if (VecVT.getVectorMinNumElements() >= 8 &&
3815         SubVecVT.getVectorMinNumElements() >= 8) {
3816       assert(OrigIdx % 8 == 0 && "Invalid index");
3817       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
3818              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
3819              "Unexpected mask vector lowering");
3820       OrigIdx /= 8;
3821       SubVecVT =
3822           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
3823                            SubVecVT.isScalableVector());
3824       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
3825                                VecVT.isScalableVector());
3826       Vec = DAG.getBitcast(VecVT, Vec);
3827     } else {
3828       // We can't slide this mask vector down, indexed by its i1 elements.
3829       // This poses a problem when we wish to extract a scalable vector which
3830       // can't be re-expressed as a larger type. Just choose the slow path and
3831       // extend to a larger type, then truncate back down.
3832       // TODO: We could probably improve this when extracting certain fixed
3833       // from fixed, where we can extract as i8 and shift the correct element
3834       // right to reach the desired subvector?
3835       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
3836       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
3837       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
3838       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
3839                         Op.getOperand(1));
3840       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
3841       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
3842     }
3843   }
3844 
3845   // If the subvector vector is a fixed-length type, we cannot use subregister
3846   // manipulation to simplify the codegen; we don't know which register of a
3847   // LMUL group contains the specific subvector as we only know the minimum
3848   // register size. Therefore we must slide the vector group down the full
3849   // amount.
3850   if (SubVecVT.isFixedLengthVector()) {
3851     // With an index of 0 this is a cast-like subvector, which can be performed
3852     // with subregister operations.
3853     if (OrigIdx == 0)
3854       return Op;
3855     MVT ContainerVT = VecVT;
3856     if (VecVT.isFixedLengthVector()) {
3857       ContainerVT = getContainerForFixedLengthVector(VecVT);
3858       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3859     }
3860     SDValue Mask =
3861         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
3862     // Set the vector length to only the number of elements we care about. This
3863     // avoids sliding down elements we're going to discard straight away.
3864     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
3865     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
3866     SDValue Slidedown =
3867         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3868                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
3869     // Now we can use a cast-like subvector extract to get the result.
3870     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
3871                             DAG.getConstant(0, DL, XLenVT));
3872     return DAG.getBitcast(Op.getValueType(), Slidedown);
3873   }
3874 
3875   unsigned SubRegIdx, RemIdx;
3876   std::tie(SubRegIdx, RemIdx) =
3877       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
3878           VecVT, SubVecVT, OrigIdx, TRI);
3879 
3880   // If the Idx has been completely eliminated then this is a subvector extract
3881   // which naturally aligns to a vector register. These can easily be handled
3882   // using subregister manipulation.
3883   if (RemIdx == 0)
3884     return Op;
3885 
3886   // Else we must shift our vector register directly to extract the subvector.
3887   // Do this using VSLIDEDOWN.
3888 
3889   // If the vector type is an LMUL-group type, extract a subvector equal to the
3890   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
3891   // instruction.
3892   MVT InterSubVT = VecVT;
3893   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
3894     InterSubVT = getLMUL1VT(VecVT);
3895     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
3896                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
3897   }
3898 
3899   // Slide this vector register down by the desired number of elements in order
3900   // to place the desired subvector starting at element 0.
3901   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
3902   // For scalable vectors this must be further multiplied by vscale.
3903   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
3904 
3905   SDValue Mask, VL;
3906   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
3907   SDValue Slidedown =
3908       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
3909                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
3910 
3911   // Now the vector is in the right position, extract our final subvector. This
3912   // should resolve to a COPY.
3913   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
3914                           DAG.getConstant(0, DL, XLenVT));
3915 
3916   // We might have bitcast from a mask type: cast back to the original type if
3917   // required.
3918   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
3919 }
3920 
3921 // Lower step_vector to the vid instruction. Any non-identity step value must
3922 // be accounted for my manual expansion.
3923 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
3924                                               SelectionDAG &DAG) const {
3925   SDLoc DL(Op);
3926   MVT VT = Op.getSimpleValueType();
3927   MVT XLenVT = Subtarget.getXLenVT();
3928   SDValue Mask, VL;
3929   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
3930   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3931   uint64_t StepValImm = Op.getConstantOperandVal(0);
3932   if (StepValImm != 1) {
3933     assert(Op.getOperand(0).getValueType() == XLenVT &&
3934            "Unexpected step value type");
3935     if (isPowerOf2_64(StepValImm)) {
3936       SDValue StepVal =
3937           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
3938                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
3939       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
3940     } else {
3941       SDValue StepVal =
3942           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Op.getOperand(0));
3943       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
3944     }
3945   }
3946   return StepVec;
3947 }
3948 
3949 // Implement vector_reverse using vrgather.vv with indices determined by
3950 // subtracting the id of each element from (VLMAX-1). This will convert
3951 // the indices like so:
3952 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
3953 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
3954 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
3955                                                  SelectionDAG &DAG) const {
3956   SDLoc DL(Op);
3957   MVT VecVT = Op.getSimpleValueType();
3958   unsigned EltSize = VecVT.getScalarSizeInBits();
3959   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
3960 
3961   unsigned MaxVLMAX = 0;
3962   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
3963   if (VectorBitsMax != 0)
3964     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
3965 
3966   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
3967   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
3968 
3969   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
3970   // to use vrgatherei16.vv.
3971   // TODO: It's also possible to use vrgatherei16.vv for other types to
3972   // decrease register width for the index calculation.
3973   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
3974     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
3975     // Reverse each half, then reassemble them in reverse order.
3976     // NOTE: It's also possible that after splitting that VLMAX no longer
3977     // requires vrgatherei16.vv.
3978     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
3979       SDValue Lo, Hi;
3980       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
3981       EVT LoVT, HiVT;
3982       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
3983       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
3984       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
3985       // Reassemble the low and high pieces reversed.
3986       // FIXME: This is a CONCAT_VECTORS.
3987       SDValue Res =
3988           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
3989                       DAG.getIntPtrConstant(0, DL));
3990       return DAG.getNode(
3991           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
3992           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
3993     }
3994 
3995     // Just promote the int type to i16 which will double the LMUL.
3996     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
3997     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
3998   }
3999 
4000   MVT XLenVT = Subtarget.getXLenVT();
4001   SDValue Mask, VL;
4002   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4003 
4004   // Calculate VLMAX-1 for the desired SEW.
4005   unsigned MinElts = VecVT.getVectorMinNumElements();
4006   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
4007                               DAG.getConstant(MinElts, DL, XLenVT));
4008   SDValue VLMinus1 =
4009       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
4010 
4011   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
4012   bool IsRV32E64 =
4013       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
4014   SDValue SplatVL;
4015   if (!IsRV32E64)
4016     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
4017   else
4018     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
4019 
4020   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
4021   SDValue Indices =
4022       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
4023 
4024   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
4025 }
4026 
4027 SDValue
4028 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
4029                                                      SelectionDAG &DAG) const {
4030   SDLoc DL(Op);
4031   auto *Load = cast<LoadSDNode>(Op);
4032 
4033   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4034                                       Load->getMemoryVT(),
4035                                       *Load->getMemOperand())) {
4036     SDValue Result, Chain;
4037     std::tie(Result, Chain) = expandUnalignedLoad(Load, DAG);
4038     return DAG.getMergeValues({Result, Chain}, DL);
4039   }
4040 
4041   MVT VT = Op.getSimpleValueType();
4042   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4043 
4044   SDValue VL =
4045       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4046 
4047   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4048   SDValue NewLoad = DAG.getMemIntrinsicNode(
4049       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
4050       Load->getMemoryVT(), Load->getMemOperand());
4051 
4052   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
4053   return DAG.getMergeValues({Result, Load->getChain()}, DL);
4054 }
4055 
4056 SDValue
4057 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
4058                                                       SelectionDAG &DAG) const {
4059   SDLoc DL(Op);
4060   auto *Store = cast<StoreSDNode>(Op);
4061 
4062   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4063                                       Store->getMemoryVT(),
4064                                       *Store->getMemOperand()))
4065     return expandUnalignedStore(Store, DAG);
4066 
4067   SDValue StoreVal = Store->getValue();
4068   MVT VT = StoreVal.getSimpleValueType();
4069 
4070   // If the size less than a byte, we need to pad with zeros to make a byte.
4071   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
4072     VT = MVT::v8i1;
4073     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
4074                            DAG.getConstant(0, DL, VT), StoreVal,
4075                            DAG.getIntPtrConstant(0, DL));
4076   }
4077 
4078   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4079 
4080   SDValue VL =
4081       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4082 
4083   SDValue NewValue =
4084       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
4085   return DAG.getMemIntrinsicNode(
4086       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
4087       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
4088       Store->getMemoryVT(), Store->getMemOperand());
4089 }
4090 
4091 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const {
4092   auto *Load = cast<MaskedLoadSDNode>(Op);
4093 
4094   SDLoc DL(Op);
4095   MVT VT = Op.getSimpleValueType();
4096   MVT XLenVT = Subtarget.getXLenVT();
4097 
4098   SDValue Mask = Load->getMask();
4099   SDValue PassThru = Load->getPassThru();
4100   SDValue VL;
4101 
4102   MVT ContainerVT = VT;
4103   if (VT.isFixedLengthVector()) {
4104     ContainerVT = getContainerForFixedLengthVector(VT);
4105     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4106 
4107     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4108     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4109     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4110   } else
4111     VL = DAG.getRegister(RISCV::X0, XLenVT);
4112 
4113   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4114   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT);
4115   SDValue Ops[] = {Load->getChain(),   IntID, PassThru,
4116                    Load->getBasePtr(), Mask,  VL};
4117   SDValue Result =
4118       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4119                               Load->getMemoryVT(), Load->getMemOperand());
4120   SDValue Chain = Result.getValue(1);
4121 
4122   if (VT.isFixedLengthVector())
4123     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4124 
4125   return DAG.getMergeValues({Result, Chain}, DL);
4126 }
4127 
4128 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const {
4129   auto *Store = cast<MaskedStoreSDNode>(Op);
4130 
4131   SDLoc DL(Op);
4132   SDValue Val = Store->getValue();
4133   SDValue Mask = Store->getMask();
4134   MVT VT = Val.getSimpleValueType();
4135   MVT XLenVT = Subtarget.getXLenVT();
4136   SDValue VL;
4137 
4138   MVT ContainerVT = VT;
4139   if (VT.isFixedLengthVector()) {
4140     ContainerVT = getContainerForFixedLengthVector(VT);
4141     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4142 
4143     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4144     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4145     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4146   } else
4147     VL = DAG.getRegister(RISCV::X0, XLenVT);
4148 
4149   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT);
4150   return DAG.getMemIntrinsicNode(
4151       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
4152       {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL},
4153       Store->getMemoryVT(), Store->getMemOperand());
4154 }
4155 
4156 SDValue
4157 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
4158                                                       SelectionDAG &DAG) const {
4159   MVT InVT = Op.getOperand(0).getSimpleValueType();
4160   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
4161 
4162   MVT VT = Op.getSimpleValueType();
4163 
4164   SDValue Op1 =
4165       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4166   SDValue Op2 =
4167       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4168 
4169   SDLoc DL(Op);
4170   SDValue VL =
4171       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4172 
4173   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4174   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4175 
4176   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
4177                             Op.getOperand(2), Mask, VL);
4178 
4179   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
4180 }
4181 
4182 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
4183     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
4184   MVT VT = Op.getSimpleValueType();
4185 
4186   if (VT.getVectorElementType() == MVT::i1)
4187     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
4188 
4189   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
4190 }
4191 
4192 // Lower vector ABS to smax(X, sub(0, X)).
4193 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
4194   SDLoc DL(Op);
4195   MVT VT = Op.getSimpleValueType();
4196   SDValue X = Op.getOperand(0);
4197 
4198   assert(VT.isFixedLengthVector() && "Unexpected type");
4199 
4200   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4201   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
4202 
4203   SDValue Mask, VL;
4204   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4205 
4206   SDValue SplatZero =
4207       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4208                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4209   SDValue NegX =
4210       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
4211   SDValue Max =
4212       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
4213 
4214   return convertFromScalableVector(VT, Max, DAG, Subtarget);
4215 }
4216 
4217 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
4218     SDValue Op, SelectionDAG &DAG) const {
4219   SDLoc DL(Op);
4220   MVT VT = Op.getSimpleValueType();
4221   SDValue Mag = Op.getOperand(0);
4222   SDValue Sign = Op.getOperand(1);
4223   assert(Mag.getValueType() == Sign.getValueType() &&
4224          "Can only handle COPYSIGN with matching types.");
4225 
4226   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4227   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
4228   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
4229 
4230   SDValue Mask, VL;
4231   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4232 
4233   SDValue CopySign =
4234       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
4235 
4236   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
4237 }
4238 
4239 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
4240     SDValue Op, SelectionDAG &DAG) const {
4241   MVT VT = Op.getSimpleValueType();
4242   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4243 
4244   MVT I1ContainerVT =
4245       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4246 
4247   SDValue CC =
4248       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
4249   SDValue Op1 =
4250       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4251   SDValue Op2 =
4252       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
4253 
4254   SDLoc DL(Op);
4255   SDValue Mask, VL;
4256   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4257 
4258   SDValue Select =
4259       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
4260 
4261   return convertFromScalableVector(VT, Select, DAG, Subtarget);
4262 }
4263 
4264 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
4265                                                unsigned NewOpc,
4266                                                bool HasMask) const {
4267   MVT VT = Op.getSimpleValueType();
4268   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4269 
4270   // Create list of operands by converting existing ones to scalable types.
4271   SmallVector<SDValue, 6> Ops;
4272   for (const SDValue &V : Op->op_values()) {
4273     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
4274 
4275     // Pass through non-vector operands.
4276     if (!V.getValueType().isVector()) {
4277       Ops.push_back(V);
4278       continue;
4279     }
4280 
4281     // "cast" fixed length vector to a scalable vector.
4282     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
4283            "Only fixed length vectors are supported!");
4284     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
4285   }
4286 
4287   SDLoc DL(Op);
4288   SDValue Mask, VL;
4289   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4290   if (HasMask)
4291     Ops.push_back(Mask);
4292   Ops.push_back(VL);
4293 
4294   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
4295   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
4296 }
4297 
4298 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
4299 // * Operands of each node are assumed to be in the same order.
4300 // * The EVL operand is promoted from i32 to i64 on RV64.
4301 // * Fixed-length vectors are converted to their scalable-vector container
4302 //   types.
4303 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
4304                                        unsigned RISCVISDOpc) const {
4305   SDLoc DL(Op);
4306   MVT VT = Op.getSimpleValueType();
4307   SmallVector<SDValue, 4> Ops;
4308 
4309   for (const auto &OpIdx : enumerate(Op->ops())) {
4310     SDValue V = OpIdx.value();
4311     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
4312     // Pass through operands which aren't fixed-length vectors.
4313     if (!V.getValueType().isFixedLengthVector()) {
4314       Ops.push_back(V);
4315       continue;
4316     }
4317     // "cast" fixed length vector to a scalable vector.
4318     MVT OpVT = V.getSimpleValueType();
4319     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
4320     assert(useRVVForFixedLengthVectorVT(OpVT) &&
4321            "Only fixed length vectors are supported!");
4322     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
4323   }
4324 
4325   if (!VT.isFixedLengthVector())
4326     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
4327 
4328   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4329 
4330   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
4331 
4332   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
4333 }
4334 
4335 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to
4336 // a RVV indexed load. The RVV indexed load instructions only support the
4337 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4338 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4339 // indexing is extended to the XLEN value type and scaled accordingly.
4340 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const {
4341   auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
4342   SDLoc DL(Op);
4343 
4344   SDValue Index = MGN->getIndex();
4345   SDValue Mask = MGN->getMask();
4346   SDValue PassThru = MGN->getPassThru();
4347 
4348   MVT VT = Op.getSimpleValueType();
4349   MVT IndexVT = Index.getSimpleValueType();
4350   MVT XLenVT = Subtarget.getXLenVT();
4351 
4352   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4353          "Unexpected VTs!");
4354   assert(MGN->getBasePtr().getSimpleValueType() == XLenVT &&
4355          "Unexpected pointer type");
4356   // Targets have to explicitly opt-in for extending vector loads.
4357   assert(MGN->getExtensionType() == ISD::NON_EXTLOAD &&
4358          "Unexpected extending MGATHER");
4359 
4360   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4361   // the selection of the masked intrinsics doesn't do this for us.
4362   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4363 
4364   SDValue VL;
4365   MVT ContainerVT = VT;
4366   if (VT.isFixedLengthVector()) {
4367     // We need to use the larger of the result and index type to determine the
4368     // scalable type to use so we don't increase LMUL for any operand/result.
4369     if (VT.bitsGE(IndexVT)) {
4370       ContainerVT = getContainerForFixedLengthVector(VT);
4371       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4372                                  ContainerVT.getVectorElementCount());
4373     } else {
4374       IndexVT = getContainerForFixedLengthVector(IndexVT);
4375       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
4376                                      IndexVT.getVectorElementCount());
4377     }
4378 
4379     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4380 
4381     if (!IsUnmasked) {
4382       MVT MaskVT =
4383           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4384       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4385       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4386     }
4387 
4388     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4389   } else
4390     VL = DAG.getRegister(RISCV::X0, XLenVT);
4391 
4392   unsigned IntID =
4393       IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask;
4394   SmallVector<SDValue, 8> Ops{MGN->getChain(),
4395                               DAG.getTargetConstant(IntID, DL, XLenVT)};
4396   if (!IsUnmasked)
4397     Ops.push_back(PassThru);
4398   Ops.push_back(MGN->getBasePtr());
4399   Ops.push_back(Index);
4400   if (!IsUnmasked)
4401     Ops.push_back(Mask);
4402   Ops.push_back(VL);
4403 
4404   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4405   SDValue Result =
4406       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4407                               MGN->getMemoryVT(), MGN->getMemOperand());
4408   SDValue Chain = Result.getValue(1);
4409 
4410   if (VT.isFixedLengthVector())
4411     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4412 
4413   return DAG.getMergeValues({Result, Chain}, DL);
4414 }
4415 
4416 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to
4417 // a RVV indexed store. The RVV indexed store instructions only support the
4418 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4419 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4420 // indexing is extended to the XLEN value type and scaled accordingly.
4421 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op,
4422                                            SelectionDAG &DAG) const {
4423   auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
4424   SDLoc DL(Op);
4425   SDValue Index = MSN->getIndex();
4426   SDValue Mask = MSN->getMask();
4427   SDValue Val = MSN->getValue();
4428 
4429   MVT VT = Val.getSimpleValueType();
4430   MVT IndexVT = Index.getSimpleValueType();
4431   MVT XLenVT = Subtarget.getXLenVT();
4432 
4433   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4434          "Unexpected VTs!");
4435   assert(MSN->getBasePtr().getSimpleValueType() == XLenVT &&
4436          "Unexpected pointer type");
4437   // Targets have to explicitly opt-in for extending vector loads and
4438   // truncating vector stores.
4439   assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER");
4440 
4441   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4442   // the selection of the masked intrinsics doesn't do this for us.
4443   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4444 
4445   SDValue VL;
4446   if (VT.isFixedLengthVector()) {
4447     // We need to use the larger of the value and index type to determine the
4448     // scalable type to use so we don't increase LMUL for any operand/result.
4449     MVT ContainerVT;
4450     if (VT.bitsGE(IndexVT)) {
4451       ContainerVT = getContainerForFixedLengthVector(VT);
4452       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4453                                  ContainerVT.getVectorElementCount());
4454     } else {
4455       IndexVT = getContainerForFixedLengthVector(IndexVT);
4456       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4457                                      IndexVT.getVectorElementCount());
4458     }
4459 
4460     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4461     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4462 
4463     if (!IsUnmasked) {
4464       MVT MaskVT =
4465           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4466       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4467     }
4468 
4469     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4470   } else
4471     VL = DAG.getRegister(RISCV::X0, XLenVT);
4472 
4473   unsigned IntID =
4474       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
4475   SmallVector<SDValue, 8> Ops{MSN->getChain(),
4476                               DAG.getTargetConstant(IntID, DL, XLenVT)};
4477   Ops.push_back(Val);
4478   Ops.push_back(MSN->getBasePtr());
4479   Ops.push_back(Index);
4480   if (!IsUnmasked)
4481     Ops.push_back(Mask);
4482   Ops.push_back(VL);
4483 
4484   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops,
4485                                  MSN->getMemoryVT(), MSN->getMemOperand());
4486 }
4487 
4488 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
4489                                                SelectionDAG &DAG) const {
4490   const MVT XLenVT = Subtarget.getXLenVT();
4491   SDLoc DL(Op);
4492   SDValue Chain = Op->getOperand(0);
4493   SDValue SysRegNo = DAG.getConstant(
4494       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4495   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
4496   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
4497 
4498   // Encoding used for rounding mode in RISCV differs from that used in
4499   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
4500   // table, which consists of a sequence of 4-bit fields, each representing
4501   // corresponding FLT_ROUNDS mode.
4502   static const int Table =
4503       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
4504       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
4505       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
4506       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
4507       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
4508 
4509   SDValue Shift =
4510       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
4511   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4512                                 DAG.getConstant(Table, DL, XLenVT), Shift);
4513   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4514                                DAG.getConstant(7, DL, XLenVT));
4515 
4516   return DAG.getMergeValues({Masked, Chain}, DL);
4517 }
4518 
4519 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
4520                                                SelectionDAG &DAG) const {
4521   const MVT XLenVT = Subtarget.getXLenVT();
4522   SDLoc DL(Op);
4523   SDValue Chain = Op->getOperand(0);
4524   SDValue RMValue = Op->getOperand(1);
4525   SDValue SysRegNo = DAG.getConstant(
4526       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4527 
4528   // Encoding used for rounding mode in RISCV differs from that used in
4529   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
4530   // a table, which consists of a sequence of 4-bit fields, each representing
4531   // corresponding RISCV mode.
4532   static const unsigned Table =
4533       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
4534       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
4535       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
4536       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
4537       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
4538 
4539   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
4540                               DAG.getConstant(2, DL, XLenVT));
4541   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4542                                 DAG.getConstant(Table, DL, XLenVT), Shift);
4543   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4544                         DAG.getConstant(0x7, DL, XLenVT));
4545   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
4546                      RMValue);
4547 }
4548 
4549 // Returns the opcode of the target-specific SDNode that implements the 32-bit
4550 // form of the given Opcode.
4551 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
4552   switch (Opcode) {
4553   default:
4554     llvm_unreachable("Unexpected opcode");
4555   case ISD::SHL:
4556     return RISCVISD::SLLW;
4557   case ISD::SRA:
4558     return RISCVISD::SRAW;
4559   case ISD::SRL:
4560     return RISCVISD::SRLW;
4561   case ISD::SDIV:
4562     return RISCVISD::DIVW;
4563   case ISD::UDIV:
4564     return RISCVISD::DIVUW;
4565   case ISD::UREM:
4566     return RISCVISD::REMUW;
4567   case ISD::ROTL:
4568     return RISCVISD::ROLW;
4569   case ISD::ROTR:
4570     return RISCVISD::RORW;
4571   case RISCVISD::GREV:
4572     return RISCVISD::GREVW;
4573   case RISCVISD::GORC:
4574     return RISCVISD::GORCW;
4575   }
4576 }
4577 
4578 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
4579 // Because i32 isn't a legal type for RV64, these operations would otherwise
4580 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
4581 // later one because the fact the operation was originally of type i32 is
4582 // lost.
4583 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
4584                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
4585   SDLoc DL(N);
4586   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
4587   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
4588   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
4589   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
4590   // ReplaceNodeResults requires we maintain the same type for the return value.
4591   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
4592 }
4593 
4594 // Converts the given 32-bit operation to a i64 operation with signed extension
4595 // semantic to reduce the signed extension instructions.
4596 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
4597   SDLoc DL(N);
4598   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4599   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4600   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
4601   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
4602                                DAG.getValueType(MVT::i32));
4603   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
4604 }
4605 
4606 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
4607                                              SmallVectorImpl<SDValue> &Results,
4608                                              SelectionDAG &DAG) const {
4609   SDLoc DL(N);
4610   switch (N->getOpcode()) {
4611   default:
4612     llvm_unreachable("Don't know how to custom type legalize this operation!");
4613   case ISD::STRICT_FP_TO_SINT:
4614   case ISD::STRICT_FP_TO_UINT:
4615   case ISD::FP_TO_SINT:
4616   case ISD::FP_TO_UINT: {
4617     bool IsStrict = N->isStrictFPOpcode();
4618     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4619            "Unexpected custom legalisation");
4620     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
4621     // If the FP type needs to be softened, emit a library call using the 'si'
4622     // version. If we left it to default legalization we'd end up with 'di'. If
4623     // the FP type doesn't need to be softened just let generic type
4624     // legalization promote the result type.
4625     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
4626         TargetLowering::TypeSoftenFloat)
4627       return;
4628     RTLIB::Libcall LC;
4629     if (N->getOpcode() == ISD::FP_TO_SINT ||
4630         N->getOpcode() == ISD::STRICT_FP_TO_SINT)
4631       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
4632     else
4633       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
4634     MakeLibCallOptions CallOptions;
4635     EVT OpVT = Op0.getValueType();
4636     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
4637     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4638     SDValue Result;
4639     std::tie(Result, Chain) =
4640         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
4641     Results.push_back(Result);
4642     if (IsStrict)
4643       Results.push_back(Chain);
4644     break;
4645   }
4646   case ISD::READCYCLECOUNTER: {
4647     assert(!Subtarget.is64Bit() &&
4648            "READCYCLECOUNTER only has custom type legalization on riscv32");
4649 
4650     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4651     SDValue RCW =
4652         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
4653 
4654     Results.push_back(
4655         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
4656     Results.push_back(RCW.getValue(2));
4657     break;
4658   }
4659   case ISD::MUL: {
4660     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
4661     unsigned XLen = Subtarget.getXLen();
4662     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
4663     if (Size > XLen) {
4664       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
4665       SDValue LHS = N->getOperand(0);
4666       SDValue RHS = N->getOperand(1);
4667       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
4668 
4669       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
4670       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
4671       // We need exactly one side to be unsigned.
4672       if (LHSIsU == RHSIsU)
4673         return;
4674 
4675       auto MakeMULPair = [&](SDValue S, SDValue U) {
4676         MVT XLenVT = Subtarget.getXLenVT();
4677         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
4678         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
4679         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
4680         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
4681         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
4682       };
4683 
4684       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
4685       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
4686 
4687       // The other operand should be signed, but still prefer MULH when
4688       // possible.
4689       if (RHSIsU && LHSIsS && !RHSIsS)
4690         Results.push_back(MakeMULPair(LHS, RHS));
4691       else if (LHSIsU && RHSIsS && !LHSIsS)
4692         Results.push_back(MakeMULPair(RHS, LHS));
4693 
4694       return;
4695     }
4696     LLVM_FALLTHROUGH;
4697   }
4698   case ISD::ADD:
4699   case ISD::SUB:
4700     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4701            "Unexpected custom legalisation");
4702     if (N->getOperand(1).getOpcode() == ISD::Constant)
4703       return;
4704     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
4705     break;
4706   case ISD::SHL:
4707   case ISD::SRA:
4708   case ISD::SRL:
4709     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4710            "Unexpected custom legalisation");
4711     if (N->getOperand(1).getOpcode() == ISD::Constant)
4712       return;
4713     Results.push_back(customLegalizeToWOp(N, DAG));
4714     break;
4715   case ISD::ROTL:
4716   case ISD::ROTR:
4717     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4718            "Unexpected custom legalisation");
4719     Results.push_back(customLegalizeToWOp(N, DAG));
4720     break;
4721   case ISD::CTTZ:
4722   case ISD::CTTZ_ZERO_UNDEF:
4723   case ISD::CTLZ:
4724   case ISD::CTLZ_ZERO_UNDEF: {
4725     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4726            "Unexpected custom legalisation");
4727 
4728     SDValue NewOp0 =
4729         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4730     bool IsCTZ =
4731         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
4732     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
4733     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
4734     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4735     return;
4736   }
4737   case ISD::SDIV:
4738   case ISD::UDIV:
4739   case ISD::UREM: {
4740     MVT VT = N->getSimpleValueType(0);
4741     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
4742            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
4743            "Unexpected custom legalisation");
4744     if (N->getOperand(0).getOpcode() == ISD::Constant ||
4745         N->getOperand(1).getOpcode() == ISD::Constant)
4746       return;
4747 
4748     // If the input is i32, use ANY_EXTEND since the W instructions don't read
4749     // the upper 32 bits. For other types we need to sign or zero extend
4750     // based on the opcode.
4751     unsigned ExtOpc = ISD::ANY_EXTEND;
4752     if (VT != MVT::i32)
4753       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
4754                                            : ISD::ZERO_EXTEND;
4755 
4756     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
4757     break;
4758   }
4759   case ISD::UADDO:
4760   case ISD::USUBO: {
4761     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4762            "Unexpected custom legalisation");
4763     bool IsAdd = N->getOpcode() == ISD::UADDO;
4764     // Create an ADDW or SUBW.
4765     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4766     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4767     SDValue Res =
4768         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
4769     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
4770                       DAG.getValueType(MVT::i32));
4771 
4772     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
4773     // Since the inputs are sign extended from i32, this is equivalent to
4774     // comparing the lower 32 bits.
4775     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
4776     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
4777                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
4778 
4779     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4780     Results.push_back(Overflow);
4781     return;
4782   }
4783   case ISD::UADDSAT:
4784   case ISD::USUBSAT: {
4785     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4786            "Unexpected custom legalisation");
4787     if (Subtarget.hasStdExtZbb()) {
4788       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
4789       // sign extend allows overflow of the lower 32 bits to be detected on
4790       // the promoted size.
4791       SDValue LHS =
4792           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
4793       SDValue RHS =
4794           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
4795       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
4796       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4797       return;
4798     }
4799 
4800     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
4801     // promotion for UADDO/USUBO.
4802     Results.push_back(expandAddSubSat(N, DAG));
4803     return;
4804   }
4805   case ISD::BITCAST: {
4806     EVT VT = N->getValueType(0);
4807     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
4808     SDValue Op0 = N->getOperand(0);
4809     EVT Op0VT = Op0.getValueType();
4810     MVT XLenVT = Subtarget.getXLenVT();
4811     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
4812       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
4813       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
4814     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
4815                Subtarget.hasStdExtF()) {
4816       SDValue FPConv =
4817           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
4818       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
4819     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
4820                isTypeLegal(Op0VT)) {
4821       // Custom-legalize bitcasts from fixed-length vector types to illegal
4822       // scalar types in order to improve codegen. Bitcast the vector to a
4823       // one-element vector type whose element type is the same as the result
4824       // type, and extract the first element.
4825       LLVMContext &Context = *DAG.getContext();
4826       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
4827       Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
4828                                     DAG.getConstant(0, DL, XLenVT)));
4829     }
4830     break;
4831   }
4832   case RISCVISD::GREV:
4833   case RISCVISD::GORC: {
4834     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4835            "Unexpected custom legalisation");
4836     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
4837     // This is similar to customLegalizeToWOp, except that we pass the second
4838     // operand (a TargetConstant) straight through: it is already of type
4839     // XLenVT.
4840     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
4841     SDValue NewOp0 =
4842         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4843     SDValue NewOp1 =
4844         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4845     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
4846     // ReplaceNodeResults requires we maintain the same type for the return
4847     // value.
4848     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
4849     break;
4850   }
4851   case RISCVISD::SHFL: {
4852     // There is no SHFLIW instruction, but we can just promote the operation.
4853     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4854            "Unexpected custom legalisation");
4855     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
4856     SDValue NewOp0 =
4857         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4858     SDValue NewOp1 =
4859         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4860     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
4861     // ReplaceNodeResults requires we maintain the same type for the return
4862     // value.
4863     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
4864     break;
4865   }
4866   case ISD::BSWAP:
4867   case ISD::BITREVERSE: {
4868     MVT VT = N->getSimpleValueType(0);
4869     MVT XLenVT = Subtarget.getXLenVT();
4870     assert((VT == MVT::i8 || VT == MVT::i16 ||
4871             (VT == MVT::i32 && Subtarget.is64Bit())) &&
4872            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
4873     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
4874     unsigned Imm = VT.getSizeInBits() - 1;
4875     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
4876     if (N->getOpcode() == ISD::BSWAP)
4877       Imm &= ~0x7U;
4878     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
4879     SDValue GREVI =
4880         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
4881     // ReplaceNodeResults requires we maintain the same type for the return
4882     // value.
4883     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
4884     break;
4885   }
4886   case ISD::FSHL:
4887   case ISD::FSHR: {
4888     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4889            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
4890     SDValue NewOp0 =
4891         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4892     SDValue NewOp1 =
4893         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4894     SDValue NewOp2 =
4895         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
4896     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
4897     // Mask the shift amount to 5 bits.
4898     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
4899                          DAG.getConstant(0x1f, DL, MVT::i64));
4900     unsigned Opc =
4901         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
4902     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
4903     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
4904     break;
4905   }
4906   case ISD::EXTRACT_VECTOR_ELT: {
4907     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
4908     // type is illegal (currently only vXi64 RV32).
4909     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
4910     // transferred to the destination register. We issue two of these from the
4911     // upper- and lower- halves of the SEW-bit vector element, slid down to the
4912     // first element.
4913     SDValue Vec = N->getOperand(0);
4914     SDValue Idx = N->getOperand(1);
4915 
4916     // The vector type hasn't been legalized yet so we can't issue target
4917     // specific nodes if it needs legalization.
4918     // FIXME: We would manually legalize if it's important.
4919     if (!isTypeLegal(Vec.getValueType()))
4920       return;
4921 
4922     MVT VecVT = Vec.getSimpleValueType();
4923 
4924     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
4925            VecVT.getVectorElementType() == MVT::i64 &&
4926            "Unexpected EXTRACT_VECTOR_ELT legalization");
4927 
4928     // If this is a fixed vector, we need to convert it to a scalable vector.
4929     MVT ContainerVT = VecVT;
4930     if (VecVT.isFixedLengthVector()) {
4931       ContainerVT = getContainerForFixedLengthVector(VecVT);
4932       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4933     }
4934 
4935     MVT XLenVT = Subtarget.getXLenVT();
4936 
4937     // Use a VL of 1 to avoid processing more elements than we need.
4938     MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
4939     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4940     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4941 
4942     // Unless the index is known to be 0, we must slide the vector down to get
4943     // the desired element into index 0.
4944     if (!isNullConstant(Idx)) {
4945       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4946                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4947     }
4948 
4949     // Extract the lower XLEN bits of the correct vector element.
4950     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4951 
4952     // To extract the upper XLEN bits of the vector element, shift the first
4953     // element right by 32 bits and re-extract the lower XLEN bits.
4954     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4955                                      DAG.getConstant(32, DL, XLenVT), VL);
4956     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
4957                                  ThirtyTwoV, Mask, VL);
4958 
4959     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
4960 
4961     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
4962     break;
4963   }
4964   case ISD::INTRINSIC_WO_CHAIN: {
4965     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4966     switch (IntNo) {
4967     default:
4968       llvm_unreachable(
4969           "Don't know how to custom type legalize this intrinsic!");
4970     case Intrinsic::riscv_orc_b: {
4971       // Lower to the GORCI encoding for orc.b with the operand extended.
4972       SDValue NewOp =
4973           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4974       // If Zbp is enabled, use GORCIW which will sign extend the result.
4975       unsigned Opc =
4976           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
4977       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
4978                                 DAG.getConstant(7, DL, MVT::i64));
4979       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4980       return;
4981     }
4982     case Intrinsic::riscv_grev:
4983     case Intrinsic::riscv_gorc: {
4984       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4985              "Unexpected custom legalisation");
4986       SDValue NewOp1 =
4987           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4988       SDValue NewOp2 =
4989           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
4990       unsigned Opc =
4991           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
4992       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
4993       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4994       break;
4995     }
4996     case Intrinsic::riscv_shfl:
4997     case Intrinsic::riscv_unshfl: {
4998       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4999              "Unexpected custom legalisation");
5000       SDValue NewOp1 =
5001           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5002       SDValue NewOp2 =
5003           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5004       unsigned Opc =
5005           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
5006       if (isa<ConstantSDNode>(N->getOperand(2))) {
5007         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5008                              DAG.getConstant(0xf, DL, MVT::i64));
5009         Opc =
5010             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
5011       }
5012       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5013       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5014       break;
5015     }
5016     case Intrinsic::riscv_bcompress:
5017     case Intrinsic::riscv_bdecompress: {
5018       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5019              "Unexpected custom legalisation");
5020       SDValue NewOp1 =
5021           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5022       SDValue NewOp2 =
5023           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5024       unsigned Opc = IntNo == Intrinsic::riscv_bcompress
5025                          ? RISCVISD::BCOMPRESSW
5026                          : RISCVISD::BDECOMPRESSW;
5027       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5028       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5029       break;
5030     }
5031     case Intrinsic::riscv_vmv_x_s: {
5032       EVT VT = N->getValueType(0);
5033       MVT XLenVT = Subtarget.getXLenVT();
5034       if (VT.bitsLT(XLenVT)) {
5035         // Simple case just extract using vmv.x.s and truncate.
5036         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
5037                                       Subtarget.getXLenVT(), N->getOperand(1));
5038         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
5039         return;
5040       }
5041 
5042       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
5043              "Unexpected custom legalization");
5044 
5045       // We need to do the move in two steps.
5046       SDValue Vec = N->getOperand(1);
5047       MVT VecVT = Vec.getSimpleValueType();
5048 
5049       // First extract the lower XLEN bits of the element.
5050       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5051 
5052       // To extract the upper XLEN bits of the vector element, shift the first
5053       // element right by 32 bits and re-extract the lower XLEN bits.
5054       SDValue VL = DAG.getConstant(1, DL, XLenVT);
5055       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5056       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5057       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
5058                                        DAG.getConstant(32, DL, XLenVT), VL);
5059       SDValue LShr32 =
5060           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
5061       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5062 
5063       Results.push_back(
5064           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5065       break;
5066     }
5067     }
5068     break;
5069   }
5070   case ISD::VECREDUCE_ADD:
5071   case ISD::VECREDUCE_AND:
5072   case ISD::VECREDUCE_OR:
5073   case ISD::VECREDUCE_XOR:
5074   case ISD::VECREDUCE_SMAX:
5075   case ISD::VECREDUCE_UMAX:
5076   case ISD::VECREDUCE_SMIN:
5077   case ISD::VECREDUCE_UMIN:
5078     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
5079       Results.push_back(V);
5080     break;
5081   case ISD::FLT_ROUNDS_: {
5082     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
5083     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
5084     Results.push_back(Res.getValue(0));
5085     Results.push_back(Res.getValue(1));
5086     break;
5087   }
5088   }
5089 }
5090 
5091 // A structure to hold one of the bit-manipulation patterns below. Together, a
5092 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
5093 //   (or (and (shl x, 1), 0xAAAAAAAA),
5094 //       (and (srl x, 1), 0x55555555))
5095 struct RISCVBitmanipPat {
5096   SDValue Op;
5097   unsigned ShAmt;
5098   bool IsSHL;
5099 
5100   bool formsPairWith(const RISCVBitmanipPat &Other) const {
5101     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
5102   }
5103 };
5104 
5105 // Matches patterns of the form
5106 //   (and (shl x, C2), (C1 << C2))
5107 //   (and (srl x, C2), C1)
5108 //   (shl (and x, C1), C2)
5109 //   (srl (and x, (C1 << C2)), C2)
5110 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
5111 // The expected masks for each shift amount are specified in BitmanipMasks where
5112 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
5113 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
5114 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
5115 // XLen is 64.
5116 static Optional<RISCVBitmanipPat>
5117 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
5118   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
5119          "Unexpected number of masks");
5120   Optional<uint64_t> Mask;
5121   // Optionally consume a mask around the shift operation.
5122   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
5123     Mask = Op.getConstantOperandVal(1);
5124     Op = Op.getOperand(0);
5125   }
5126   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
5127     return None;
5128   bool IsSHL = Op.getOpcode() == ISD::SHL;
5129 
5130   if (!isa<ConstantSDNode>(Op.getOperand(1)))
5131     return None;
5132   uint64_t ShAmt = Op.getConstantOperandVal(1);
5133 
5134   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
5135   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
5136     return None;
5137   // If we don't have enough masks for 64 bit, then we must be trying to
5138   // match SHFL so we're only allowed to shift 1/4 of the width.
5139   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
5140     return None;
5141 
5142   SDValue Src = Op.getOperand(0);
5143 
5144   // The expected mask is shifted left when the AND is found around SHL
5145   // patterns.
5146   //   ((x >> 1) & 0x55555555)
5147   //   ((x << 1) & 0xAAAAAAAA)
5148   bool SHLExpMask = IsSHL;
5149 
5150   if (!Mask) {
5151     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
5152     // the mask is all ones: consume that now.
5153     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
5154       Mask = Src.getConstantOperandVal(1);
5155       Src = Src.getOperand(0);
5156       // The expected mask is now in fact shifted left for SRL, so reverse the
5157       // decision.
5158       //   ((x & 0xAAAAAAAA) >> 1)
5159       //   ((x & 0x55555555) << 1)
5160       SHLExpMask = !SHLExpMask;
5161     } else {
5162       // Use a default shifted mask of all-ones if there's no AND, truncated
5163       // down to the expected width. This simplifies the logic later on.
5164       Mask = maskTrailingOnes<uint64_t>(Width);
5165       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
5166     }
5167   }
5168 
5169   unsigned MaskIdx = Log2_32(ShAmt);
5170   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
5171 
5172   if (SHLExpMask)
5173     ExpMask <<= ShAmt;
5174 
5175   if (Mask != ExpMask)
5176     return None;
5177 
5178   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
5179 }
5180 
5181 // Matches any of the following bit-manipulation patterns:
5182 //   (and (shl x, 1), (0x55555555 << 1))
5183 //   (and (srl x, 1), 0x55555555)
5184 //   (shl (and x, 0x55555555), 1)
5185 //   (srl (and x, (0x55555555 << 1)), 1)
5186 // where the shift amount and mask may vary thus:
5187 //   [1]  = 0x55555555 / 0xAAAAAAAA
5188 //   [2]  = 0x33333333 / 0xCCCCCCCC
5189 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
5190 //   [8]  = 0x00FF00FF / 0xFF00FF00
5191 //   [16] = 0x0000FFFF / 0xFFFFFFFF
5192 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
5193 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
5194   // These are the unshifted masks which we use to match bit-manipulation
5195   // patterns. They may be shifted left in certain circumstances.
5196   static const uint64_t BitmanipMasks[] = {
5197       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
5198       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
5199 
5200   return matchRISCVBitmanipPat(Op, BitmanipMasks);
5201 }
5202 
5203 // Match the following pattern as a GREVI(W) operation
5204 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
5205 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
5206                                const RISCVSubtarget &Subtarget) {
5207   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5208   EVT VT = Op.getValueType();
5209 
5210   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
5211     auto LHS = matchGREVIPat(Op.getOperand(0));
5212     auto RHS = matchGREVIPat(Op.getOperand(1));
5213     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
5214       SDLoc DL(Op);
5215       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
5216                          DAG.getConstant(LHS->ShAmt, DL, VT));
5217     }
5218   }
5219   return SDValue();
5220 }
5221 
5222 // Matches any the following pattern as a GORCI(W) operation
5223 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
5224 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
5225 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
5226 // Note that with the variant of 3.,
5227 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
5228 // the inner pattern will first be matched as GREVI and then the outer
5229 // pattern will be matched to GORC via the first rule above.
5230 // 4.  (or (rotl/rotr x, bitwidth/2), x)
5231 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
5232                                const RISCVSubtarget &Subtarget) {
5233   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5234   EVT VT = Op.getValueType();
5235 
5236   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
5237     SDLoc DL(Op);
5238     SDValue Op0 = Op.getOperand(0);
5239     SDValue Op1 = Op.getOperand(1);
5240 
5241     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
5242       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
5243           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
5244           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
5245         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
5246       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
5247       if ((Reverse.getOpcode() == ISD::ROTL ||
5248            Reverse.getOpcode() == ISD::ROTR) &&
5249           Reverse.getOperand(0) == X &&
5250           isa<ConstantSDNode>(Reverse.getOperand(1))) {
5251         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
5252         if (RotAmt == (VT.getSizeInBits() / 2))
5253           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
5254                              DAG.getConstant(RotAmt, DL, VT));
5255       }
5256       return SDValue();
5257     };
5258 
5259     // Check for either commutable permutation of (or (GREVI x, shamt), x)
5260     if (SDValue V = MatchOROfReverse(Op0, Op1))
5261       return V;
5262     if (SDValue V = MatchOROfReverse(Op1, Op0))
5263       return V;
5264 
5265     // OR is commutable so canonicalize its OR operand to the left
5266     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
5267       std::swap(Op0, Op1);
5268     if (Op0.getOpcode() != ISD::OR)
5269       return SDValue();
5270     SDValue OrOp0 = Op0.getOperand(0);
5271     SDValue OrOp1 = Op0.getOperand(1);
5272     auto LHS = matchGREVIPat(OrOp0);
5273     // OR is commutable so swap the operands and try again: x might have been
5274     // on the left
5275     if (!LHS) {
5276       std::swap(OrOp0, OrOp1);
5277       LHS = matchGREVIPat(OrOp0);
5278     }
5279     auto RHS = matchGREVIPat(Op1);
5280     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
5281       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
5282                          DAG.getConstant(LHS->ShAmt, DL, VT));
5283     }
5284   }
5285   return SDValue();
5286 }
5287 
5288 // Matches any of the following bit-manipulation patterns:
5289 //   (and (shl x, 1), (0x22222222 << 1))
5290 //   (and (srl x, 1), 0x22222222)
5291 //   (shl (and x, 0x22222222), 1)
5292 //   (srl (and x, (0x22222222 << 1)), 1)
5293 // where the shift amount and mask may vary thus:
5294 //   [1]  = 0x22222222 / 0x44444444
5295 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
5296 //   [4]  = 0x00F000F0 / 0x0F000F00
5297 //   [8]  = 0x0000FF00 / 0x00FF0000
5298 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
5299 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
5300   // These are the unshifted masks which we use to match bit-manipulation
5301   // patterns. They may be shifted left in certain circumstances.
5302   static const uint64_t BitmanipMasks[] = {
5303       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
5304       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
5305 
5306   return matchRISCVBitmanipPat(Op, BitmanipMasks);
5307 }
5308 
5309 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
5310 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
5311                                const RISCVSubtarget &Subtarget) {
5312   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5313   EVT VT = Op.getValueType();
5314 
5315   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
5316     return SDValue();
5317 
5318   SDValue Op0 = Op.getOperand(0);
5319   SDValue Op1 = Op.getOperand(1);
5320 
5321   // Or is commutable so canonicalize the second OR to the LHS.
5322   if (Op0.getOpcode() != ISD::OR)
5323     std::swap(Op0, Op1);
5324   if (Op0.getOpcode() != ISD::OR)
5325     return SDValue();
5326 
5327   // We found an inner OR, so our operands are the operands of the inner OR
5328   // and the other operand of the outer OR.
5329   SDValue A = Op0.getOperand(0);
5330   SDValue B = Op0.getOperand(1);
5331   SDValue C = Op1;
5332 
5333   auto Match1 = matchSHFLPat(A);
5334   auto Match2 = matchSHFLPat(B);
5335 
5336   // If neither matched, we failed.
5337   if (!Match1 && !Match2)
5338     return SDValue();
5339 
5340   // We had at least one match. if one failed, try the remaining C operand.
5341   if (!Match1) {
5342     std::swap(A, C);
5343     Match1 = matchSHFLPat(A);
5344     if (!Match1)
5345       return SDValue();
5346   } else if (!Match2) {
5347     std::swap(B, C);
5348     Match2 = matchSHFLPat(B);
5349     if (!Match2)
5350       return SDValue();
5351   }
5352   assert(Match1 && Match2);
5353 
5354   // Make sure our matches pair up.
5355   if (!Match1->formsPairWith(*Match2))
5356     return SDValue();
5357 
5358   // All the remains is to make sure C is an AND with the same input, that masks
5359   // out the bits that are being shuffled.
5360   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
5361       C.getOperand(0) != Match1->Op)
5362     return SDValue();
5363 
5364   uint64_t Mask = C.getConstantOperandVal(1);
5365 
5366   static const uint64_t BitmanipMasks[] = {
5367       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
5368       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
5369   };
5370 
5371   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
5372   unsigned MaskIdx = Log2_32(Match1->ShAmt);
5373   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
5374 
5375   if (Mask != ExpMask)
5376     return SDValue();
5377 
5378   SDLoc DL(Op);
5379   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
5380                      DAG.getConstant(Match1->ShAmt, DL, VT));
5381 }
5382 
5383 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
5384 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
5385 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
5386 // not undo itself, but they are redundant.
5387 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
5388   SDValue Src = N->getOperand(0);
5389 
5390   if (Src.getOpcode() != N->getOpcode())
5391     return SDValue();
5392 
5393   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
5394       !isa<ConstantSDNode>(Src.getOperand(1)))
5395     return SDValue();
5396 
5397   unsigned ShAmt1 = N->getConstantOperandVal(1);
5398   unsigned ShAmt2 = Src.getConstantOperandVal(1);
5399   Src = Src.getOperand(0);
5400 
5401   unsigned CombinedShAmt;
5402   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
5403     CombinedShAmt = ShAmt1 | ShAmt2;
5404   else
5405     CombinedShAmt = ShAmt1 ^ ShAmt2;
5406 
5407   if (CombinedShAmt == 0)
5408     return Src;
5409 
5410   SDLoc DL(N);
5411   return DAG.getNode(
5412       N->getOpcode(), DL, N->getValueType(0), Src,
5413       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
5414 }
5415 
5416 // Combine a constant select operand into its use:
5417 //
5418 // (and (select_cc lhs, rhs, cc, -1, c), x)
5419 //   -> (select_cc lhs, rhs, cc, x, (and, x, c))  [AllOnes=1]
5420 // (or  (select_cc lhs, rhs, cc, 0, c), x)
5421 //   -> (select_cc lhs, rhs, cc, x, (or, x, c))  [AllOnes=0]
5422 // (xor (select_cc lhs, rhs, cc, 0, c), x)
5423 //   -> (select_cc lhs, rhs, cc, x, (xor, x, c))  [AllOnes=0]
5424 static SDValue combineSelectCCAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
5425                                      SelectionDAG &DAG, bool AllOnes) {
5426   EVT VT = N->getValueType(0);
5427 
5428   if (Slct.getOpcode() != RISCVISD::SELECT_CC || !Slct.hasOneUse())
5429     return SDValue();
5430 
5431   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
5432     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
5433   };
5434 
5435   bool SwapSelectOps;
5436   SDValue TrueVal = Slct.getOperand(3);
5437   SDValue FalseVal = Slct.getOperand(4);
5438   SDValue NonConstantVal;
5439   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
5440     SwapSelectOps = false;
5441     NonConstantVal = FalseVal;
5442   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
5443     SwapSelectOps = true;
5444     NonConstantVal = TrueVal;
5445   } else
5446     return SDValue();
5447 
5448   // Slct is now know to be the desired identity constant when CC is true.
5449   TrueVal = OtherOp;
5450   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
5451   // Unless SwapSelectOps says CC should be false.
5452   if (SwapSelectOps)
5453     std::swap(TrueVal, FalseVal);
5454 
5455   return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
5456                      {Slct.getOperand(0), Slct.getOperand(1),
5457                       Slct.getOperand(2), TrueVal, FalseVal});
5458 }
5459 
5460 // Attempt combineSelectAndUse on each operand of a commutative operator N.
5461 static SDValue combineSelectCCAndUseCommutative(SDNode *N, SelectionDAG &DAG,
5462                                                 bool AllOnes) {
5463   SDValue N0 = N->getOperand(0);
5464   SDValue N1 = N->getOperand(1);
5465   if (SDValue Result = combineSelectCCAndUse(N, N0, N1, DAG, AllOnes))
5466     return Result;
5467   if (SDValue Result = combineSelectCCAndUse(N, N1, N0, DAG, AllOnes))
5468     return Result;
5469   return SDValue();
5470 }
5471 
5472 static SDValue performANDCombine(SDNode *N,
5473                                  TargetLowering::DAGCombinerInfo &DCI,
5474                                  const RISCVSubtarget &Subtarget) {
5475   SelectionDAG &DAG = DCI.DAG;
5476 
5477   // fold (and (select_cc lhs, rhs, cc, -1, y), x) ->
5478   //      (select lhs, rhs, cc, x, (and x, y))
5479   return combineSelectCCAndUseCommutative(N, DAG, true);
5480 }
5481 
5482 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
5483                                 const RISCVSubtarget &Subtarget) {
5484   SelectionDAG &DAG = DCI.DAG;
5485   if (Subtarget.hasStdExtZbp()) {
5486     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
5487       return GREV;
5488     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
5489       return GORC;
5490     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
5491       return SHFL;
5492   }
5493 
5494   // fold (or (select_cc lhs, rhs, cc, 0, y), x) ->
5495   //      (select lhs, rhs, cc, x, (or x, y))
5496   return combineSelectCCAndUseCommutative(N, DAG, false);
5497 }
5498 
5499 static SDValue performXORCombine(SDNode *N,
5500                                  TargetLowering::DAGCombinerInfo &DCI,
5501                                  const RISCVSubtarget &Subtarget) {
5502   SelectionDAG &DAG = DCI.DAG;
5503 
5504   // fold (xor (select_cc lhs, rhs, cc, 0, y), x) ->
5505   //      (select lhs, rhs, cc, x, (xor x, y))
5506   return combineSelectCCAndUseCommutative(N, DAG, false);
5507 }
5508 
5509 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
5510                                                DAGCombinerInfo &DCI) const {
5511   SelectionDAG &DAG = DCI.DAG;
5512 
5513   switch (N->getOpcode()) {
5514   default:
5515     break;
5516   case RISCVISD::SplitF64: {
5517     SDValue Op0 = N->getOperand(0);
5518     // If the input to SplitF64 is just BuildPairF64 then the operation is
5519     // redundant. Instead, use BuildPairF64's operands directly.
5520     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
5521       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
5522 
5523     SDLoc DL(N);
5524 
5525     // It's cheaper to materialise two 32-bit integers than to load a double
5526     // from the constant pool and transfer it to integer registers through the
5527     // stack.
5528     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
5529       APInt V = C->getValueAPF().bitcastToAPInt();
5530       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
5531       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
5532       return DCI.CombineTo(N, Lo, Hi);
5533     }
5534 
5535     // This is a target-specific version of a DAGCombine performed in
5536     // DAGCombiner::visitBITCAST. It performs the equivalent of:
5537     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5538     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5539     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
5540         !Op0.getNode()->hasOneUse())
5541       break;
5542     SDValue NewSplitF64 =
5543         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
5544                     Op0.getOperand(0));
5545     SDValue Lo = NewSplitF64.getValue(0);
5546     SDValue Hi = NewSplitF64.getValue(1);
5547     APInt SignBit = APInt::getSignMask(32);
5548     if (Op0.getOpcode() == ISD::FNEG) {
5549       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
5550                                   DAG.getConstant(SignBit, DL, MVT::i32));
5551       return DCI.CombineTo(N, Lo, NewHi);
5552     }
5553     assert(Op0.getOpcode() == ISD::FABS);
5554     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
5555                                 DAG.getConstant(~SignBit, DL, MVT::i32));
5556     return DCI.CombineTo(N, Lo, NewHi);
5557   }
5558   case RISCVISD::SLLW:
5559   case RISCVISD::SRAW:
5560   case RISCVISD::SRLW:
5561   case RISCVISD::ROLW:
5562   case RISCVISD::RORW: {
5563     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5564     SDValue LHS = N->getOperand(0);
5565     SDValue RHS = N->getOperand(1);
5566     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5567     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
5568     if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) ||
5569         SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) {
5570       if (N->getOpcode() != ISD::DELETED_NODE)
5571         DCI.AddToWorklist(N);
5572       return SDValue(N, 0);
5573     }
5574     break;
5575   }
5576   case RISCVISD::CLZW:
5577   case RISCVISD::CTZW: {
5578     // Only the lower 32 bits of the first operand are read
5579     SDValue Op0 = N->getOperand(0);
5580     APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
5581     if (SimplifyDemandedBits(Op0, Mask, DCI)) {
5582       if (N->getOpcode() != ISD::DELETED_NODE)
5583         DCI.AddToWorklist(N);
5584       return SDValue(N, 0);
5585     }
5586     break;
5587   }
5588   case RISCVISD::FSL:
5589   case RISCVISD::FSR: {
5590     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
5591     SDValue ShAmt = N->getOperand(2);
5592     unsigned BitWidth = ShAmt.getValueSizeInBits();
5593     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5594     APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1);
5595     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5596       if (N->getOpcode() != ISD::DELETED_NODE)
5597         DCI.AddToWorklist(N);
5598       return SDValue(N, 0);
5599     }
5600     break;
5601   }
5602   case RISCVISD::FSLW:
5603   case RISCVISD::FSRW: {
5604     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
5605     // read.
5606     SDValue Op0 = N->getOperand(0);
5607     SDValue Op1 = N->getOperand(1);
5608     SDValue ShAmt = N->getOperand(2);
5609     APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
5610     APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6);
5611     if (SimplifyDemandedBits(Op0, OpMask, DCI) ||
5612         SimplifyDemandedBits(Op1, OpMask, DCI) ||
5613         SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5614       if (N->getOpcode() != ISD::DELETED_NODE)
5615         DCI.AddToWorklist(N);
5616       return SDValue(N, 0);
5617     }
5618     break;
5619   }
5620   case RISCVISD::GREV:
5621   case RISCVISD::GORC: {
5622     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
5623     SDValue ShAmt = N->getOperand(1);
5624     unsigned BitWidth = ShAmt.getValueSizeInBits();
5625     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5626     APInt ShAmtMask(BitWidth, BitWidth - 1);
5627     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5628       if (N->getOpcode() != ISD::DELETED_NODE)
5629         DCI.AddToWorklist(N);
5630       return SDValue(N, 0);
5631     }
5632 
5633     return combineGREVI_GORCI(N, DCI.DAG);
5634   }
5635   case RISCVISD::GREVW:
5636   case RISCVISD::GORCW: {
5637     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5638     SDValue LHS = N->getOperand(0);
5639     SDValue RHS = N->getOperand(1);
5640     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5641     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
5642     if (SimplifyDemandedBits(LHS, LHSMask, DCI) ||
5643         SimplifyDemandedBits(RHS, RHSMask, DCI)) {
5644       if (N->getOpcode() != ISD::DELETED_NODE)
5645         DCI.AddToWorklist(N);
5646       return SDValue(N, 0);
5647     }
5648 
5649     return combineGREVI_GORCI(N, DCI.DAG);
5650   }
5651   case RISCVISD::SHFL:
5652   case RISCVISD::UNSHFL: {
5653     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
5654     SDValue ShAmt = N->getOperand(1);
5655     unsigned BitWidth = ShAmt.getValueSizeInBits();
5656     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5657     APInt ShAmtMask(BitWidth, (BitWidth / 2) - 1);
5658     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5659       if (N->getOpcode() != ISD::DELETED_NODE)
5660         DCI.AddToWorklist(N);
5661       return SDValue(N, 0);
5662     }
5663 
5664     break;
5665   }
5666   case RISCVISD::SHFLW:
5667   case RISCVISD::UNSHFLW: {
5668     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5669     SDValue LHS = N->getOperand(0);
5670     SDValue RHS = N->getOperand(1);
5671     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5672     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
5673     if (SimplifyDemandedBits(LHS, LHSMask, DCI) ||
5674         SimplifyDemandedBits(RHS, RHSMask, DCI)) {
5675       if (N->getOpcode() != ISD::DELETED_NODE)
5676         DCI.AddToWorklist(N);
5677       return SDValue(N, 0);
5678     }
5679 
5680     break;
5681   }
5682   case RISCVISD::BCOMPRESSW:
5683   case RISCVISD::BDECOMPRESSW: {
5684     // Only the lower 32 bits of LHS and RHS are read.
5685     SDValue LHS = N->getOperand(0);
5686     SDValue RHS = N->getOperand(1);
5687     APInt Mask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5688     if (SimplifyDemandedBits(LHS, Mask, DCI) ||
5689         SimplifyDemandedBits(RHS, Mask, DCI)) {
5690       if (N->getOpcode() != ISD::DELETED_NODE)
5691         DCI.AddToWorklist(N);
5692       return SDValue(N, 0);
5693     }
5694 
5695     break;
5696   }
5697   case RISCVISD::FMV_X_ANYEXTW_RV64: {
5698     SDLoc DL(N);
5699     SDValue Op0 = N->getOperand(0);
5700     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
5701     // conversion is unnecessary and can be replaced with an ANY_EXTEND
5702     // of the FMV_W_X_RV64 operand.
5703     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
5704       assert(Op0.getOperand(0).getValueType() == MVT::i64 &&
5705              "Unexpected value type!");
5706       return Op0.getOperand(0);
5707     }
5708 
5709     // This is a target-specific version of a DAGCombine performed in
5710     // DAGCombiner::visitBITCAST. It performs the equivalent of:
5711     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5712     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5713     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
5714         !Op0.getNode()->hasOneUse())
5715       break;
5716     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
5717                                  Op0.getOperand(0));
5718     APInt SignBit = APInt::getSignMask(32).sext(64);
5719     if (Op0.getOpcode() == ISD::FNEG)
5720       return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
5721                          DAG.getConstant(SignBit, DL, MVT::i64));
5722 
5723     assert(Op0.getOpcode() == ISD::FABS);
5724     return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
5725                        DAG.getConstant(~SignBit, DL, MVT::i64));
5726   }
5727   case ISD::AND:
5728     return performANDCombine(N, DCI, Subtarget);
5729   case ISD::OR:
5730     return performORCombine(N, DCI, Subtarget);
5731   case ISD::XOR:
5732     return performXORCombine(N, DCI, Subtarget);
5733   case RISCVISD::SELECT_CC: {
5734     // Transform
5735     SDValue LHS = N->getOperand(0);
5736     SDValue RHS = N->getOperand(1);
5737     auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2));
5738     if (!ISD::isIntEqualitySetCC(CCVal))
5739       break;
5740 
5741     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
5742     //      (select_cc X, Y, lt, trueV, falseV)
5743     // Sometimes the setcc is introduced after select_cc has been formed.
5744     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
5745         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
5746       // If we're looking for eq 0 instead of ne 0, we need to invert the
5747       // condition.
5748       bool Invert = CCVal == ISD::SETEQ;
5749       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
5750       if (Invert)
5751         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5752 
5753       SDLoc DL(N);
5754       RHS = LHS.getOperand(1);
5755       LHS = LHS.getOperand(0);
5756       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
5757 
5758       SDValue TargetCC =
5759           DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT());
5760       return DAG.getNode(
5761           RISCVISD::SELECT_CC, DL, N->getValueType(0),
5762           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
5763     }
5764 
5765     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
5766     //      (select_cc X, Y, eq/ne, trueV, falseV)
5767     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
5768       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
5769                          {LHS.getOperand(0), LHS.getOperand(1),
5770                           N->getOperand(2), N->getOperand(3),
5771                           N->getOperand(4)});
5772     // (select_cc X, 1, setne, trueV, falseV) ->
5773     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
5774     // This can occur when legalizing some floating point comparisons.
5775     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
5776     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
5777       SDLoc DL(N);
5778       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5779       SDValue TargetCC =
5780           DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT());
5781       RHS = DAG.getConstant(0, DL, LHS.getValueType());
5782       return DAG.getNode(
5783           RISCVISD::SELECT_CC, DL, N->getValueType(0),
5784           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
5785     }
5786 
5787     break;
5788   }
5789   case RISCVISD::BR_CC: {
5790     SDValue LHS = N->getOperand(1);
5791     SDValue RHS = N->getOperand(2);
5792     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
5793     if (!ISD::isIntEqualitySetCC(CCVal))
5794       break;
5795 
5796     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
5797     //      (br_cc X, Y, lt, dest)
5798     // Sometimes the setcc is introduced after br_cc has been formed.
5799     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
5800         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
5801       // If we're looking for eq 0 instead of ne 0, we need to invert the
5802       // condition.
5803       bool Invert = CCVal == ISD::SETEQ;
5804       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
5805       if (Invert)
5806         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5807 
5808       SDLoc DL(N);
5809       RHS = LHS.getOperand(1);
5810       LHS = LHS.getOperand(0);
5811       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
5812 
5813       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
5814                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
5815                          N->getOperand(4));
5816     }
5817 
5818     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
5819     //      (br_cc X, Y, eq/ne, trueV, falseV)
5820     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
5821       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
5822                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
5823                          N->getOperand(3), N->getOperand(4));
5824 
5825     // (br_cc X, 1, setne, br_cc) ->
5826     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
5827     // This can occur when legalizing some floating point comparisons.
5828     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
5829     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
5830       SDLoc DL(N);
5831       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5832       SDValue TargetCC = DAG.getCondCode(CCVal);
5833       RHS = DAG.getConstant(0, DL, LHS.getValueType());
5834       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
5835                          N->getOperand(0), LHS, RHS, TargetCC,
5836                          N->getOperand(4));
5837     }
5838     break;
5839   }
5840   case ISD::FCOPYSIGN: {
5841     EVT VT = N->getValueType(0);
5842     if (!VT.isVector())
5843       break;
5844     // There is a form of VFSGNJ which injects the negated sign of its second
5845     // operand. Try and bubble any FNEG up after the extend/round to produce
5846     // this optimized pattern. Avoid modifying cases where FP_ROUND and
5847     // TRUNC=1.
5848     SDValue In2 = N->getOperand(1);
5849     // Avoid cases where the extend/round has multiple uses, as duplicating
5850     // those is typically more expensive than removing a fneg.
5851     if (!In2.hasOneUse())
5852       break;
5853     if (In2.getOpcode() != ISD::FP_EXTEND &&
5854         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
5855       break;
5856     In2 = In2.getOperand(0);
5857     if (In2.getOpcode() != ISD::FNEG)
5858       break;
5859     SDLoc DL(N);
5860     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
5861     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
5862                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
5863   }
5864   case ISD::MGATHER:
5865   case ISD::MSCATTER: {
5866     if (!DCI.isBeforeLegalize())
5867       break;
5868     MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N);
5869     SDValue Index = MGSN->getIndex();
5870     EVT IndexVT = Index.getValueType();
5871     MVT XLenVT = Subtarget.getXLenVT();
5872     // RISCV indexed loads only support the "unsigned unscaled" addressing
5873     // mode, so anything else must be manually legalized.
5874     bool NeedsIdxLegalization = MGSN->isIndexScaled() ||
5875                                 (MGSN->isIndexSigned() &&
5876                                  IndexVT.getVectorElementType().bitsLT(XLenVT));
5877     if (!NeedsIdxLegalization)
5878       break;
5879 
5880     SDLoc DL(N);
5881 
5882     // Any index legalization should first promote to XLenVT, so we don't lose
5883     // bits when scaling. This may create an illegal index type so we let
5884     // LLVM's legalization take care of the splitting.
5885     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
5886       IndexVT = IndexVT.changeVectorElementType(XLenVT);
5887       Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND
5888                                                 : ISD::ZERO_EXTEND,
5889                           DL, IndexVT, Index);
5890     }
5891 
5892     unsigned Scale = N->getConstantOperandVal(5);
5893     if (MGSN->isIndexScaled() && Scale != 1) {
5894       // Manually scale the indices by the element size.
5895       // TODO: Sanitize the scale operand here?
5896       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
5897       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
5898       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
5899     }
5900 
5901     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
5902     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) {
5903       return DAG.getMaskedGather(
5904           N->getVTList(), MGSN->getMemoryVT(), DL,
5905           {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(),
5906            MGSN->getBasePtr(), Index, MGN->getScale()},
5907           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
5908     }
5909     const auto *MSN = cast<MaskedScatterSDNode>(N);
5910     return DAG.getMaskedScatter(
5911         N->getVTList(), MGSN->getMemoryVT(), DL,
5912         {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(),
5913          Index, MGSN->getScale()},
5914         MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
5915   }
5916   case RISCVISD::SRA_VL:
5917   case RISCVISD::SRL_VL:
5918   case RISCVISD::SHL_VL: {
5919     SDValue ShAmt = N->getOperand(1);
5920     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
5921       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
5922       SDLoc DL(N);
5923       SDValue VL = N->getOperand(3);
5924       EVT VT = N->getValueType(0);
5925       ShAmt =
5926           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
5927       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
5928                          N->getOperand(2), N->getOperand(3));
5929     }
5930     break;
5931   }
5932   case ISD::SRA:
5933   case ISD::SRL:
5934   case ISD::SHL: {
5935     SDValue ShAmt = N->getOperand(1);
5936     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
5937       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
5938       SDLoc DL(N);
5939       EVT VT = N->getValueType(0);
5940       ShAmt =
5941           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0));
5942       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
5943     }
5944     break;
5945   }
5946   }
5947 
5948   return SDValue();
5949 }
5950 
5951 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
5952     const SDNode *N, CombineLevel Level) const {
5953   // The following folds are only desirable if `(OP _, c1 << c2)` can be
5954   // materialised in fewer instructions than `(OP _, c1)`:
5955   //
5956   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
5957   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
5958   SDValue N0 = N->getOperand(0);
5959   EVT Ty = N0.getValueType();
5960   if (Ty.isScalarInteger() &&
5961       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
5962     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
5963     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
5964     if (C1 && C2) {
5965       const APInt &C1Int = C1->getAPIntValue();
5966       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
5967 
5968       // We can materialise `c1 << c2` into an add immediate, so it's "free",
5969       // and the combine should happen, to potentially allow further combines
5970       // later.
5971       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
5972           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
5973         return true;
5974 
5975       // We can materialise `c1` in an add immediate, so it's "free", and the
5976       // combine should be prevented.
5977       if (C1Int.getMinSignedBits() <= 64 &&
5978           isLegalAddImmediate(C1Int.getSExtValue()))
5979         return false;
5980 
5981       // Neither constant will fit into an immediate, so find materialisation
5982       // costs.
5983       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
5984                                               Subtarget.is64Bit());
5985       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
5986           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
5987 
5988       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
5989       // combine should be prevented.
5990       if (C1Cost < ShiftedC1Cost)
5991         return false;
5992     }
5993   }
5994   return true;
5995 }
5996 
5997 bool RISCVTargetLowering::targetShrinkDemandedConstant(
5998     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
5999     TargetLoweringOpt &TLO) const {
6000   // Delay this optimization as late as possible.
6001   if (!TLO.LegalOps)
6002     return false;
6003 
6004   EVT VT = Op.getValueType();
6005   if (VT.isVector())
6006     return false;
6007 
6008   // Only handle AND for now.
6009   if (Op.getOpcode() != ISD::AND)
6010     return false;
6011 
6012   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6013   if (!C)
6014     return false;
6015 
6016   const APInt &Mask = C->getAPIntValue();
6017 
6018   // Clear all non-demanded bits initially.
6019   APInt ShrunkMask = Mask & DemandedBits;
6020 
6021   // Try to make a smaller immediate by setting undemanded bits.
6022 
6023   APInt ExpandedMask = Mask | ~DemandedBits;
6024 
6025   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
6026     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
6027   };
6028   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
6029     if (NewMask == Mask)
6030       return true;
6031     SDLoc DL(Op);
6032     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
6033     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
6034     return TLO.CombineTo(Op, NewOp);
6035   };
6036 
6037   // If the shrunk mask fits in sign extended 12 bits, let the target
6038   // independent code apply it.
6039   if (ShrunkMask.isSignedIntN(12))
6040     return false;
6041 
6042   // Preserve (and X, 0xffff) when zext.h is supported.
6043   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
6044     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
6045     if (IsLegalMask(NewMask))
6046       return UseMask(NewMask);
6047   }
6048 
6049   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
6050   if (VT == MVT::i64) {
6051     APInt NewMask = APInt(64, 0xffffffff);
6052     if (IsLegalMask(NewMask))
6053       return UseMask(NewMask);
6054   }
6055 
6056   // For the remaining optimizations, we need to be able to make a negative
6057   // number through a combination of mask and undemanded bits.
6058   if (!ExpandedMask.isNegative())
6059     return false;
6060 
6061   // What is the fewest number of bits we need to represent the negative number.
6062   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
6063 
6064   // Try to make a 12 bit negative immediate. If that fails try to make a 32
6065   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
6066   APInt NewMask = ShrunkMask;
6067   if (MinSignedBits <= 12)
6068     NewMask.setBitsFrom(11);
6069   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
6070     NewMask.setBitsFrom(31);
6071   else
6072     return false;
6073 
6074   // Sanity check that our new mask is a subset of the demanded mask.
6075   assert(IsLegalMask(NewMask));
6076   return UseMask(NewMask);
6077 }
6078 
6079 static void computeGREV(APInt &Src, unsigned ShAmt) {
6080   ShAmt &= Src.getBitWidth() - 1;
6081   uint64_t x = Src.getZExtValue();
6082   if (ShAmt & 1)
6083     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
6084   if (ShAmt & 2)
6085     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
6086   if (ShAmt & 4)
6087     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
6088   if (ShAmt & 8)
6089     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
6090   if (ShAmt & 16)
6091     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
6092   if (ShAmt & 32)
6093     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
6094   Src = x;
6095 }
6096 
6097 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6098                                                         KnownBits &Known,
6099                                                         const APInt &DemandedElts,
6100                                                         const SelectionDAG &DAG,
6101                                                         unsigned Depth) const {
6102   unsigned BitWidth = Known.getBitWidth();
6103   unsigned Opc = Op.getOpcode();
6104   assert((Opc >= ISD::BUILTIN_OP_END ||
6105           Opc == ISD::INTRINSIC_WO_CHAIN ||
6106           Opc == ISD::INTRINSIC_W_CHAIN ||
6107           Opc == ISD::INTRINSIC_VOID) &&
6108          "Should use MaskedValueIsZero if you don't know whether Op"
6109          " is a target node!");
6110 
6111   Known.resetAll();
6112   switch (Opc) {
6113   default: break;
6114   case RISCVISD::SELECT_CC: {
6115     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
6116     // If we don't know any bits, early out.
6117     if (Known.isUnknown())
6118       break;
6119     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
6120 
6121     // Only known if known in both the LHS and RHS.
6122     Known = KnownBits::commonBits(Known, Known2);
6123     break;
6124   }
6125   case RISCVISD::REMUW: {
6126     KnownBits Known2;
6127     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
6128     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
6129     // We only care about the lower 32 bits.
6130     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
6131     // Restore the original width by sign extending.
6132     Known = Known.sext(BitWidth);
6133     break;
6134   }
6135   case RISCVISD::DIVUW: {
6136     KnownBits Known2;
6137     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
6138     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
6139     // We only care about the lower 32 bits.
6140     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
6141     // Restore the original width by sign extending.
6142     Known = Known.sext(BitWidth);
6143     break;
6144   }
6145   case RISCVISD::CTZW: {
6146     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6147     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
6148     unsigned LowBits = Log2_32(PossibleTZ) + 1;
6149     Known.Zero.setBitsFrom(LowBits);
6150     break;
6151   }
6152   case RISCVISD::CLZW: {
6153     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6154     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
6155     unsigned LowBits = Log2_32(PossibleLZ) + 1;
6156     Known.Zero.setBitsFrom(LowBits);
6157     break;
6158   }
6159   case RISCVISD::GREV:
6160   case RISCVISD::GREVW: {
6161     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6162       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6163       if (Opc == RISCVISD::GREVW)
6164         Known = Known.trunc(32);
6165       unsigned ShAmt = C->getZExtValue();
6166       computeGREV(Known.Zero, ShAmt);
6167       computeGREV(Known.One, ShAmt);
6168       if (Opc == RISCVISD::GREVW)
6169         Known = Known.sext(BitWidth);
6170     }
6171     break;
6172   }
6173   case RISCVISD::READ_VLENB:
6174     // We assume VLENB is at least 16 bytes.
6175     Known.Zero.setLowBits(4);
6176     break;
6177   case ISD::INTRINSIC_W_CHAIN: {
6178     unsigned IntNo = Op.getConstantOperandVal(1);
6179     switch (IntNo) {
6180     default:
6181       // We can't do anything for most intrinsics.
6182       break;
6183     case Intrinsic::riscv_vsetvli:
6184     case Intrinsic::riscv_vsetvlimax:
6185       // Assume that VL output is positive and would fit in an int32_t.
6186       // TODO: VLEN might be capped at 16 bits in a future V spec update.
6187       if (BitWidth >= 32)
6188         Known.Zero.setBitsFrom(31);
6189       break;
6190     }
6191     break;
6192   }
6193   }
6194 }
6195 
6196 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
6197     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6198     unsigned Depth) const {
6199   switch (Op.getOpcode()) {
6200   default:
6201     break;
6202   case RISCVISD::SLLW:
6203   case RISCVISD::SRAW:
6204   case RISCVISD::SRLW:
6205   case RISCVISD::DIVW:
6206   case RISCVISD::DIVUW:
6207   case RISCVISD::REMUW:
6208   case RISCVISD::ROLW:
6209   case RISCVISD::RORW:
6210   case RISCVISD::GREVW:
6211   case RISCVISD::GORCW:
6212   case RISCVISD::FSLW:
6213   case RISCVISD::FSRW:
6214   case RISCVISD::SHFLW:
6215   case RISCVISD::UNSHFLW:
6216   case RISCVISD::BCOMPRESSW:
6217   case RISCVISD::BDECOMPRESSW:
6218     // TODO: As the result is sign-extended, this is conservatively correct. A
6219     // more precise answer could be calculated for SRAW depending on known
6220     // bits in the shift amount.
6221     return 33;
6222   case RISCVISD::SHFL:
6223   case RISCVISD::UNSHFL: {
6224     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
6225     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
6226     // will stay within the upper 32 bits. If there were more than 32 sign bits
6227     // before there will be at least 33 sign bits after.
6228     if (Op.getValueType() == MVT::i64 &&
6229         isa<ConstantSDNode>(Op.getOperand(1)) &&
6230         (Op.getConstantOperandVal(1) & 0x10) == 0) {
6231       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
6232       if (Tmp > 32)
6233         return 33;
6234     }
6235     break;
6236   }
6237   case RISCVISD::VMV_X_S:
6238     // The number of sign bits of the scalar result is computed by obtaining the
6239     // element type of the input vector operand, subtracting its width from the
6240     // XLEN, and then adding one (sign bit within the element type). If the
6241     // element type is wider than XLen, the least-significant XLEN bits are
6242     // taken.
6243     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
6244       return 1;
6245     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
6246   }
6247 
6248   return 1;
6249 }
6250 
6251 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
6252                                                   MachineBasicBlock *BB) {
6253   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
6254 
6255   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
6256   // Should the count have wrapped while it was being read, we need to try
6257   // again.
6258   // ...
6259   // read:
6260   // rdcycleh x3 # load high word of cycle
6261   // rdcycle  x2 # load low word of cycle
6262   // rdcycleh x4 # load high word of cycle
6263   // bne x3, x4, read # check if high word reads match, otherwise try again
6264   // ...
6265 
6266   MachineFunction &MF = *BB->getParent();
6267   const BasicBlock *LLVM_BB = BB->getBasicBlock();
6268   MachineFunction::iterator It = ++BB->getIterator();
6269 
6270   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
6271   MF.insert(It, LoopMBB);
6272 
6273   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
6274   MF.insert(It, DoneMBB);
6275 
6276   // Transfer the remainder of BB and its successor edges to DoneMBB.
6277   DoneMBB->splice(DoneMBB->begin(), BB,
6278                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
6279   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
6280 
6281   BB->addSuccessor(LoopMBB);
6282 
6283   MachineRegisterInfo &RegInfo = MF.getRegInfo();
6284   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
6285   Register LoReg = MI.getOperand(0).getReg();
6286   Register HiReg = MI.getOperand(1).getReg();
6287   DebugLoc DL = MI.getDebugLoc();
6288 
6289   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
6290   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
6291       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
6292       .addReg(RISCV::X0);
6293   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
6294       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
6295       .addReg(RISCV::X0);
6296   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
6297       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
6298       .addReg(RISCV::X0);
6299 
6300   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
6301       .addReg(HiReg)
6302       .addReg(ReadAgainReg)
6303       .addMBB(LoopMBB);
6304 
6305   LoopMBB->addSuccessor(LoopMBB);
6306   LoopMBB->addSuccessor(DoneMBB);
6307 
6308   MI.eraseFromParent();
6309 
6310   return DoneMBB;
6311 }
6312 
6313 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
6314                                              MachineBasicBlock *BB) {
6315   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
6316 
6317   MachineFunction &MF = *BB->getParent();
6318   DebugLoc DL = MI.getDebugLoc();
6319   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6320   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
6321   Register LoReg = MI.getOperand(0).getReg();
6322   Register HiReg = MI.getOperand(1).getReg();
6323   Register SrcReg = MI.getOperand(2).getReg();
6324   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
6325   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
6326 
6327   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
6328                           RI);
6329   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
6330   MachineMemOperand *MMOLo =
6331       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
6332   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
6333       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
6334   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
6335       .addFrameIndex(FI)
6336       .addImm(0)
6337       .addMemOperand(MMOLo);
6338   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
6339       .addFrameIndex(FI)
6340       .addImm(4)
6341       .addMemOperand(MMOHi);
6342   MI.eraseFromParent(); // The pseudo instruction is gone now.
6343   return BB;
6344 }
6345 
6346 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
6347                                                  MachineBasicBlock *BB) {
6348   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
6349          "Unexpected instruction");
6350 
6351   MachineFunction &MF = *BB->getParent();
6352   DebugLoc DL = MI.getDebugLoc();
6353   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6354   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
6355   Register DstReg = MI.getOperand(0).getReg();
6356   Register LoReg = MI.getOperand(1).getReg();
6357   Register HiReg = MI.getOperand(2).getReg();
6358   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
6359   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
6360 
6361   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
6362   MachineMemOperand *MMOLo =
6363       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
6364   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
6365       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
6366   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
6367       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
6368       .addFrameIndex(FI)
6369       .addImm(0)
6370       .addMemOperand(MMOLo);
6371   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
6372       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
6373       .addFrameIndex(FI)
6374       .addImm(4)
6375       .addMemOperand(MMOHi);
6376   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
6377   MI.eraseFromParent(); // The pseudo instruction is gone now.
6378   return BB;
6379 }
6380 
6381 static bool isSelectPseudo(MachineInstr &MI) {
6382   switch (MI.getOpcode()) {
6383   default:
6384     return false;
6385   case RISCV::Select_GPR_Using_CC_GPR:
6386   case RISCV::Select_FPR16_Using_CC_GPR:
6387   case RISCV::Select_FPR32_Using_CC_GPR:
6388   case RISCV::Select_FPR64_Using_CC_GPR:
6389     return true;
6390   }
6391 }
6392 
6393 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
6394                                            MachineBasicBlock *BB) {
6395   // To "insert" Select_* instructions, we actually have to insert the triangle
6396   // control-flow pattern.  The incoming instructions know the destination vreg
6397   // to set, the condition code register to branch on, the true/false values to
6398   // select between, and the condcode to use to select the appropriate branch.
6399   //
6400   // We produce the following control flow:
6401   //     HeadMBB
6402   //     |  \
6403   //     |  IfFalseMBB
6404   //     | /
6405   //    TailMBB
6406   //
6407   // When we find a sequence of selects we attempt to optimize their emission
6408   // by sharing the control flow. Currently we only handle cases where we have
6409   // multiple selects with the exact same condition (same LHS, RHS and CC).
6410   // The selects may be interleaved with other instructions if the other
6411   // instructions meet some requirements we deem safe:
6412   // - They are debug instructions. Otherwise,
6413   // - They do not have side-effects, do not access memory and their inputs do
6414   //   not depend on the results of the select pseudo-instructions.
6415   // The TrueV/FalseV operands of the selects cannot depend on the result of
6416   // previous selects in the sequence.
6417   // These conditions could be further relaxed. See the X86 target for a
6418   // related approach and more information.
6419   Register LHS = MI.getOperand(1).getReg();
6420   Register RHS = MI.getOperand(2).getReg();
6421   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
6422 
6423   SmallVector<MachineInstr *, 4> SelectDebugValues;
6424   SmallSet<Register, 4> SelectDests;
6425   SelectDests.insert(MI.getOperand(0).getReg());
6426 
6427   MachineInstr *LastSelectPseudo = &MI;
6428 
6429   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
6430        SequenceMBBI != E; ++SequenceMBBI) {
6431     if (SequenceMBBI->isDebugInstr())
6432       continue;
6433     else if (isSelectPseudo(*SequenceMBBI)) {
6434       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
6435           SequenceMBBI->getOperand(2).getReg() != RHS ||
6436           SequenceMBBI->getOperand(3).getImm() != CC ||
6437           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
6438           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
6439         break;
6440       LastSelectPseudo = &*SequenceMBBI;
6441       SequenceMBBI->collectDebugValues(SelectDebugValues);
6442       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
6443     } else {
6444       if (SequenceMBBI->hasUnmodeledSideEffects() ||
6445           SequenceMBBI->mayLoadOrStore())
6446         break;
6447       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
6448             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
6449           }))
6450         break;
6451     }
6452   }
6453 
6454   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
6455   const BasicBlock *LLVM_BB = BB->getBasicBlock();
6456   DebugLoc DL = MI.getDebugLoc();
6457   MachineFunction::iterator I = ++BB->getIterator();
6458 
6459   MachineBasicBlock *HeadMBB = BB;
6460   MachineFunction *F = BB->getParent();
6461   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
6462   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
6463 
6464   F->insert(I, IfFalseMBB);
6465   F->insert(I, TailMBB);
6466 
6467   // Transfer debug instructions associated with the selects to TailMBB.
6468   for (MachineInstr *DebugInstr : SelectDebugValues) {
6469     TailMBB->push_back(DebugInstr->removeFromParent());
6470   }
6471 
6472   // Move all instructions after the sequence to TailMBB.
6473   TailMBB->splice(TailMBB->end(), HeadMBB,
6474                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
6475   // Update machine-CFG edges by transferring all successors of the current
6476   // block to the new block which will contain the Phi nodes for the selects.
6477   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
6478   // Set the successors for HeadMBB.
6479   HeadMBB->addSuccessor(IfFalseMBB);
6480   HeadMBB->addSuccessor(TailMBB);
6481 
6482   // Insert appropriate branch.
6483   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
6484 
6485   BuildMI(HeadMBB, DL, TII.get(Opcode))
6486     .addReg(LHS)
6487     .addReg(RHS)
6488     .addMBB(TailMBB);
6489 
6490   // IfFalseMBB just falls through to TailMBB.
6491   IfFalseMBB->addSuccessor(TailMBB);
6492 
6493   // Create PHIs for all of the select pseudo-instructions.
6494   auto SelectMBBI = MI.getIterator();
6495   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
6496   auto InsertionPoint = TailMBB->begin();
6497   while (SelectMBBI != SelectEnd) {
6498     auto Next = std::next(SelectMBBI);
6499     if (isSelectPseudo(*SelectMBBI)) {
6500       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
6501       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
6502               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
6503           .addReg(SelectMBBI->getOperand(4).getReg())
6504           .addMBB(HeadMBB)
6505           .addReg(SelectMBBI->getOperand(5).getReg())
6506           .addMBB(IfFalseMBB);
6507       SelectMBBI->eraseFromParent();
6508     }
6509     SelectMBBI = Next;
6510   }
6511 
6512   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6513   return TailMBB;
6514 }
6515 
6516 MachineBasicBlock *
6517 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
6518                                                  MachineBasicBlock *BB) const {
6519   switch (MI.getOpcode()) {
6520   default:
6521     llvm_unreachable("Unexpected instr type to insert");
6522   case RISCV::ReadCycleWide:
6523     assert(!Subtarget.is64Bit() &&
6524            "ReadCycleWrite is only to be used on riscv32");
6525     return emitReadCycleWidePseudo(MI, BB);
6526   case RISCV::Select_GPR_Using_CC_GPR:
6527   case RISCV::Select_FPR16_Using_CC_GPR:
6528   case RISCV::Select_FPR32_Using_CC_GPR:
6529   case RISCV::Select_FPR64_Using_CC_GPR:
6530     return emitSelectPseudo(MI, BB);
6531   case RISCV::BuildPairF64Pseudo:
6532     return emitBuildPairF64Pseudo(MI, BB);
6533   case RISCV::SplitF64Pseudo:
6534     return emitSplitF64Pseudo(MI, BB);
6535   }
6536 }
6537 
6538 // Calling Convention Implementation.
6539 // The expectations for frontend ABI lowering vary from target to target.
6540 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
6541 // details, but this is a longer term goal. For now, we simply try to keep the
6542 // role of the frontend as simple and well-defined as possible. The rules can
6543 // be summarised as:
6544 // * Never split up large scalar arguments. We handle them here.
6545 // * If a hardfloat calling convention is being used, and the struct may be
6546 // passed in a pair of registers (fp+fp, int+fp), and both registers are
6547 // available, then pass as two separate arguments. If either the GPRs or FPRs
6548 // are exhausted, then pass according to the rule below.
6549 // * If a struct could never be passed in registers or directly in a stack
6550 // slot (as it is larger than 2*XLEN and the floating point rules don't
6551 // apply), then pass it using a pointer with the byval attribute.
6552 // * If a struct is less than 2*XLEN, then coerce to either a two-element
6553 // word-sized array or a 2*XLEN scalar (depending on alignment).
6554 // * The frontend can determine whether a struct is returned by reference or
6555 // not based on its size and fields. If it will be returned by reference, the
6556 // frontend must modify the prototype so a pointer with the sret annotation is
6557 // passed as the first argument. This is not necessary for large scalar
6558 // returns.
6559 // * Struct return values and varargs should be coerced to structs containing
6560 // register-size fields in the same situations they would be for fixed
6561 // arguments.
6562 
6563 static const MCPhysReg ArgGPRs[] = {
6564   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
6565   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
6566 };
6567 static const MCPhysReg ArgFPR16s[] = {
6568   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
6569   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
6570 };
6571 static const MCPhysReg ArgFPR32s[] = {
6572   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
6573   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
6574 };
6575 static const MCPhysReg ArgFPR64s[] = {
6576   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
6577   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
6578 };
6579 // This is an interim calling convention and it may be changed in the future.
6580 static const MCPhysReg ArgVRs[] = {
6581     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
6582     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
6583     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
6584 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
6585                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
6586                                      RISCV::V20M2, RISCV::V22M2};
6587 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
6588                                      RISCV::V20M4};
6589 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
6590 
6591 // Pass a 2*XLEN argument that has been split into two XLEN values through
6592 // registers or the stack as necessary.
6593 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
6594                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
6595                                 MVT ValVT2, MVT LocVT2,
6596                                 ISD::ArgFlagsTy ArgFlags2) {
6597   unsigned XLenInBytes = XLen / 8;
6598   if (Register Reg = State.AllocateReg(ArgGPRs)) {
6599     // At least one half can be passed via register.
6600     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
6601                                      VA1.getLocVT(), CCValAssign::Full));
6602   } else {
6603     // Both halves must be passed on the stack, with proper alignment.
6604     Align StackAlign =
6605         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
6606     State.addLoc(
6607         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
6608                             State.AllocateStack(XLenInBytes, StackAlign),
6609                             VA1.getLocVT(), CCValAssign::Full));
6610     State.addLoc(CCValAssign::getMem(
6611         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
6612         LocVT2, CCValAssign::Full));
6613     return false;
6614   }
6615 
6616   if (Register Reg = State.AllocateReg(ArgGPRs)) {
6617     // The second half can also be passed via register.
6618     State.addLoc(
6619         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
6620   } else {
6621     // The second half is passed via the stack, without additional alignment.
6622     State.addLoc(CCValAssign::getMem(
6623         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
6624         LocVT2, CCValAssign::Full));
6625   }
6626 
6627   return false;
6628 }
6629 
6630 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
6631                                Optional<unsigned> FirstMaskArgument,
6632                                CCState &State, const RISCVTargetLowering &TLI) {
6633   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
6634   if (RC == &RISCV::VRRegClass) {
6635     // Assign the first mask argument to V0.
6636     // This is an interim calling convention and it may be changed in the
6637     // future.
6638     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
6639       return State.AllocateReg(RISCV::V0);
6640     return State.AllocateReg(ArgVRs);
6641   }
6642   if (RC == &RISCV::VRM2RegClass)
6643     return State.AllocateReg(ArgVRM2s);
6644   if (RC == &RISCV::VRM4RegClass)
6645     return State.AllocateReg(ArgVRM4s);
6646   if (RC == &RISCV::VRM8RegClass)
6647     return State.AllocateReg(ArgVRM8s);
6648   llvm_unreachable("Unhandled register class for ValueType");
6649 }
6650 
6651 // Implements the RISC-V calling convention. Returns true upon failure.
6652 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
6653                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
6654                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
6655                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
6656                      Optional<unsigned> FirstMaskArgument) {
6657   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
6658   assert(XLen == 32 || XLen == 64);
6659   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
6660 
6661   // Any return value split in to more than two values can't be returned
6662   // directly. Vectors are returned via the available vector registers.
6663   if (!LocVT.isVector() && IsRet && ValNo > 1)
6664     return true;
6665 
6666   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
6667   // variadic argument, or if no F16/F32 argument registers are available.
6668   bool UseGPRForF16_F32 = true;
6669   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
6670   // variadic argument, or if no F64 argument registers are available.
6671   bool UseGPRForF64 = true;
6672 
6673   switch (ABI) {
6674   default:
6675     llvm_unreachable("Unexpected ABI");
6676   case RISCVABI::ABI_ILP32:
6677   case RISCVABI::ABI_LP64:
6678     break;
6679   case RISCVABI::ABI_ILP32F:
6680   case RISCVABI::ABI_LP64F:
6681     UseGPRForF16_F32 = !IsFixed;
6682     break;
6683   case RISCVABI::ABI_ILP32D:
6684   case RISCVABI::ABI_LP64D:
6685     UseGPRForF16_F32 = !IsFixed;
6686     UseGPRForF64 = !IsFixed;
6687     break;
6688   }
6689 
6690   // FPR16, FPR32, and FPR64 alias each other.
6691   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
6692     UseGPRForF16_F32 = true;
6693     UseGPRForF64 = true;
6694   }
6695 
6696   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
6697   // similar local variables rather than directly checking against the target
6698   // ABI.
6699 
6700   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
6701     LocVT = XLenVT;
6702     LocInfo = CCValAssign::BCvt;
6703   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
6704     LocVT = MVT::i64;
6705     LocInfo = CCValAssign::BCvt;
6706   }
6707 
6708   // If this is a variadic argument, the RISC-V calling convention requires
6709   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
6710   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
6711   // be used regardless of whether the original argument was split during
6712   // legalisation or not. The argument will not be passed by registers if the
6713   // original type is larger than 2*XLEN, so the register alignment rule does
6714   // not apply.
6715   unsigned TwoXLenInBytes = (2 * XLen) / 8;
6716   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
6717       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
6718     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
6719     // Skip 'odd' register if necessary.
6720     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
6721       State.AllocateReg(ArgGPRs);
6722   }
6723 
6724   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
6725   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
6726       State.getPendingArgFlags();
6727 
6728   assert(PendingLocs.size() == PendingArgFlags.size() &&
6729          "PendingLocs and PendingArgFlags out of sync");
6730 
6731   // Handle passing f64 on RV32D with a soft float ABI or when floating point
6732   // registers are exhausted.
6733   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
6734     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
6735            "Can't lower f64 if it is split");
6736     // Depending on available argument GPRS, f64 may be passed in a pair of
6737     // GPRs, split between a GPR and the stack, or passed completely on the
6738     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
6739     // cases.
6740     Register Reg = State.AllocateReg(ArgGPRs);
6741     LocVT = MVT::i32;
6742     if (!Reg) {
6743       unsigned StackOffset = State.AllocateStack(8, Align(8));
6744       State.addLoc(
6745           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
6746       return false;
6747     }
6748     if (!State.AllocateReg(ArgGPRs))
6749       State.AllocateStack(4, Align(4));
6750     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6751     return false;
6752   }
6753 
6754   // Fixed-length vectors are located in the corresponding scalable-vector
6755   // container types.
6756   if (ValVT.isFixedLengthVector())
6757     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
6758 
6759   // Split arguments might be passed indirectly, so keep track of the pending
6760   // values. Split vectors are passed via a mix of registers and indirectly, so
6761   // treat them as we would any other argument.
6762   if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
6763     LocVT = XLenVT;
6764     LocInfo = CCValAssign::Indirect;
6765     PendingLocs.push_back(
6766         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
6767     PendingArgFlags.push_back(ArgFlags);
6768     if (!ArgFlags.isSplitEnd()) {
6769       return false;
6770     }
6771   }
6772 
6773   // If the split argument only had two elements, it should be passed directly
6774   // in registers or on the stack.
6775   if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
6776     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
6777     // Apply the normal calling convention rules to the first half of the
6778     // split argument.
6779     CCValAssign VA = PendingLocs[0];
6780     ISD::ArgFlagsTy AF = PendingArgFlags[0];
6781     PendingLocs.clear();
6782     PendingArgFlags.clear();
6783     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
6784                                ArgFlags);
6785   }
6786 
6787   // Allocate to a register if possible, or else a stack slot.
6788   Register Reg;
6789   unsigned StoreSizeBytes = XLen / 8;
6790   Align StackAlign = Align(XLen / 8);
6791 
6792   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
6793     Reg = State.AllocateReg(ArgFPR16s);
6794   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
6795     Reg = State.AllocateReg(ArgFPR32s);
6796   else if (ValVT == MVT::f64 && !UseGPRForF64)
6797     Reg = State.AllocateReg(ArgFPR64s);
6798   else if (ValVT.isVector()) {
6799     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
6800     if (!Reg) {
6801       // For return values, the vector must be passed fully via registers or
6802       // via the stack.
6803       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
6804       // but we're using all of them.
6805       if (IsRet)
6806         return true;
6807       // Try using a GPR to pass the address
6808       if ((Reg = State.AllocateReg(ArgGPRs))) {
6809         LocVT = XLenVT;
6810         LocInfo = CCValAssign::Indirect;
6811       } else if (ValVT.isScalableVector()) {
6812         report_fatal_error("Unable to pass scalable vector types on the stack");
6813       } else {
6814         // Pass fixed-length vectors on the stack.
6815         LocVT = ValVT;
6816         StoreSizeBytes = ValVT.getStoreSize();
6817         // Align vectors to their element sizes, being careful for vXi1
6818         // vectors.
6819         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
6820       }
6821     }
6822   } else {
6823     Reg = State.AllocateReg(ArgGPRs);
6824   }
6825 
6826   unsigned StackOffset =
6827       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
6828 
6829   // If we reach this point and PendingLocs is non-empty, we must be at the
6830   // end of a split argument that must be passed indirectly.
6831   if (!PendingLocs.empty()) {
6832     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
6833     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
6834 
6835     for (auto &It : PendingLocs) {
6836       if (Reg)
6837         It.convertToReg(Reg);
6838       else
6839         It.convertToMem(StackOffset);
6840       State.addLoc(It);
6841     }
6842     PendingLocs.clear();
6843     PendingArgFlags.clear();
6844     return false;
6845   }
6846 
6847   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
6848           (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) &&
6849          "Expected an XLenVT or vector types at this stage");
6850 
6851   if (Reg) {
6852     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6853     return false;
6854   }
6855 
6856   // When a floating-point value is passed on the stack, no bit-conversion is
6857   // needed.
6858   if (ValVT.isFloatingPoint()) {
6859     LocVT = ValVT;
6860     LocInfo = CCValAssign::Full;
6861   }
6862   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
6863   return false;
6864 }
6865 
6866 template <typename ArgTy>
6867 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
6868   for (const auto &ArgIdx : enumerate(Args)) {
6869     MVT ArgVT = ArgIdx.value().VT;
6870     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
6871       return ArgIdx.index();
6872   }
6873   return None;
6874 }
6875 
6876 void RISCVTargetLowering::analyzeInputArgs(
6877     MachineFunction &MF, CCState &CCInfo,
6878     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
6879     RISCVCCAssignFn Fn) const {
6880   unsigned NumArgs = Ins.size();
6881   FunctionType *FType = MF.getFunction().getFunctionType();
6882 
6883   Optional<unsigned> FirstMaskArgument;
6884   if (Subtarget.hasStdExtV())
6885     FirstMaskArgument = preAssignMask(Ins);
6886 
6887   for (unsigned i = 0; i != NumArgs; ++i) {
6888     MVT ArgVT = Ins[i].VT;
6889     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
6890 
6891     Type *ArgTy = nullptr;
6892     if (IsRet)
6893       ArgTy = FType->getReturnType();
6894     else if (Ins[i].isOrigArg())
6895       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
6896 
6897     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
6898     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
6899            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
6900            FirstMaskArgument)) {
6901       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
6902                         << EVT(ArgVT).getEVTString() << '\n');
6903       llvm_unreachable(nullptr);
6904     }
6905   }
6906 }
6907 
6908 void RISCVTargetLowering::analyzeOutputArgs(
6909     MachineFunction &MF, CCState &CCInfo,
6910     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
6911     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
6912   unsigned NumArgs = Outs.size();
6913 
6914   Optional<unsigned> FirstMaskArgument;
6915   if (Subtarget.hasStdExtV())
6916     FirstMaskArgument = preAssignMask(Outs);
6917 
6918   for (unsigned i = 0; i != NumArgs; i++) {
6919     MVT ArgVT = Outs[i].VT;
6920     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
6921     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
6922 
6923     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
6924     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
6925            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
6926            FirstMaskArgument)) {
6927       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
6928                         << EVT(ArgVT).getEVTString() << "\n");
6929       llvm_unreachable(nullptr);
6930     }
6931   }
6932 }
6933 
6934 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
6935 // values.
6936 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
6937                                    const CCValAssign &VA, const SDLoc &DL,
6938                                    const RISCVSubtarget &Subtarget) {
6939   switch (VA.getLocInfo()) {
6940   default:
6941     llvm_unreachable("Unexpected CCValAssign::LocInfo");
6942   case CCValAssign::Full:
6943     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
6944       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
6945     break;
6946   case CCValAssign::BCvt:
6947     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
6948       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
6949     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
6950       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
6951     else
6952       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
6953     break;
6954   }
6955   return Val;
6956 }
6957 
6958 // The caller is responsible for loading the full value if the argument is
6959 // passed with CCValAssign::Indirect.
6960 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
6961                                 const CCValAssign &VA, const SDLoc &DL,
6962                                 const RISCVTargetLowering &TLI) {
6963   MachineFunction &MF = DAG.getMachineFunction();
6964   MachineRegisterInfo &RegInfo = MF.getRegInfo();
6965   EVT LocVT = VA.getLocVT();
6966   SDValue Val;
6967   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
6968   Register VReg = RegInfo.createVirtualRegister(RC);
6969   RegInfo.addLiveIn(VA.getLocReg(), VReg);
6970   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
6971 
6972   if (VA.getLocInfo() == CCValAssign::Indirect)
6973     return Val;
6974 
6975   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
6976 }
6977 
6978 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
6979                                    const CCValAssign &VA, const SDLoc &DL,
6980                                    const RISCVSubtarget &Subtarget) {
6981   EVT LocVT = VA.getLocVT();
6982 
6983   switch (VA.getLocInfo()) {
6984   default:
6985     llvm_unreachable("Unexpected CCValAssign::LocInfo");
6986   case CCValAssign::Full:
6987     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
6988       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
6989     break;
6990   case CCValAssign::BCvt:
6991     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
6992       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
6993     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
6994       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
6995     else
6996       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
6997     break;
6998   }
6999   return Val;
7000 }
7001 
7002 // The caller is responsible for loading the full value if the argument is
7003 // passed with CCValAssign::Indirect.
7004 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
7005                                 const CCValAssign &VA, const SDLoc &DL) {
7006   MachineFunction &MF = DAG.getMachineFunction();
7007   MachineFrameInfo &MFI = MF.getFrameInfo();
7008   EVT LocVT = VA.getLocVT();
7009   EVT ValVT = VA.getValVT();
7010   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
7011   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
7012                                  /*Immutable=*/true);
7013   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7014   SDValue Val;
7015 
7016   ISD::LoadExtType ExtType;
7017   switch (VA.getLocInfo()) {
7018   default:
7019     llvm_unreachable("Unexpected CCValAssign::LocInfo");
7020   case CCValAssign::Full:
7021   case CCValAssign::Indirect:
7022   case CCValAssign::BCvt:
7023     ExtType = ISD::NON_EXTLOAD;
7024     break;
7025   }
7026   Val = DAG.getExtLoad(
7027       ExtType, DL, LocVT, Chain, FIN,
7028       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
7029   return Val;
7030 }
7031 
7032 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
7033                                        const CCValAssign &VA, const SDLoc &DL) {
7034   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
7035          "Unexpected VA");
7036   MachineFunction &MF = DAG.getMachineFunction();
7037   MachineFrameInfo &MFI = MF.getFrameInfo();
7038   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7039 
7040   if (VA.isMemLoc()) {
7041     // f64 is passed on the stack.
7042     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
7043     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
7044     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
7045                        MachinePointerInfo::getFixedStack(MF, FI));
7046   }
7047 
7048   assert(VA.isRegLoc() && "Expected register VA assignment");
7049 
7050   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7051   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
7052   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
7053   SDValue Hi;
7054   if (VA.getLocReg() == RISCV::X17) {
7055     // Second half of f64 is passed on the stack.
7056     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
7057     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
7058     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
7059                      MachinePointerInfo::getFixedStack(MF, FI));
7060   } else {
7061     // Second half of f64 is passed in another GPR.
7062     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7063     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
7064     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
7065   }
7066   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
7067 }
7068 
7069 // FastCC has less than 1% performance improvement for some particular
7070 // benchmark. But theoretically, it may has benenfit for some cases.
7071 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
7072                             unsigned ValNo, MVT ValVT, MVT LocVT,
7073                             CCValAssign::LocInfo LocInfo,
7074                             ISD::ArgFlagsTy ArgFlags, CCState &State,
7075                             bool IsFixed, bool IsRet, Type *OrigTy,
7076                             const RISCVTargetLowering &TLI,
7077                             Optional<unsigned> FirstMaskArgument) {
7078 
7079   // X5 and X6 might be used for save-restore libcall.
7080   static const MCPhysReg GPRList[] = {
7081       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
7082       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
7083       RISCV::X29, RISCV::X30, RISCV::X31};
7084 
7085   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7086     if (unsigned Reg = State.AllocateReg(GPRList)) {
7087       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7088       return false;
7089     }
7090   }
7091 
7092   if (LocVT == MVT::f16) {
7093     static const MCPhysReg FPR16List[] = {
7094         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
7095         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
7096         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
7097         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
7098     if (unsigned Reg = State.AllocateReg(FPR16List)) {
7099       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7100       return false;
7101     }
7102   }
7103 
7104   if (LocVT == MVT::f32) {
7105     static const MCPhysReg FPR32List[] = {
7106         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
7107         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
7108         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
7109         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
7110     if (unsigned Reg = State.AllocateReg(FPR32List)) {
7111       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7112       return false;
7113     }
7114   }
7115 
7116   if (LocVT == MVT::f64) {
7117     static const MCPhysReg FPR64List[] = {
7118         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
7119         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
7120         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
7121         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
7122     if (unsigned Reg = State.AllocateReg(FPR64List)) {
7123       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7124       return false;
7125     }
7126   }
7127 
7128   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
7129     unsigned Offset4 = State.AllocateStack(4, Align(4));
7130     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
7131     return false;
7132   }
7133 
7134   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
7135     unsigned Offset5 = State.AllocateStack(8, Align(8));
7136     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
7137     return false;
7138   }
7139 
7140   if (LocVT.isVector()) {
7141     if (unsigned Reg =
7142             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
7143       // Fixed-length vectors are located in the corresponding scalable-vector
7144       // container types.
7145       if (ValVT.isFixedLengthVector())
7146         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
7147       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7148     } else {
7149       // Try and pass the address via a "fast" GPR.
7150       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
7151         LocInfo = CCValAssign::Indirect;
7152         LocVT = TLI.getSubtarget().getXLenVT();
7153         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
7154       } else if (ValVT.isFixedLengthVector()) {
7155         auto StackAlign =
7156             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
7157         unsigned StackOffset =
7158             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
7159         State.addLoc(
7160             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
7161       } else {
7162         // Can't pass scalable vectors on the stack.
7163         return true;
7164       }
7165     }
7166 
7167     return false;
7168   }
7169 
7170   return true; // CC didn't match.
7171 }
7172 
7173 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
7174                          CCValAssign::LocInfo LocInfo,
7175                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
7176 
7177   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7178     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
7179     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
7180     static const MCPhysReg GPRList[] = {
7181         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
7182         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
7183     if (unsigned Reg = State.AllocateReg(GPRList)) {
7184       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7185       return false;
7186     }
7187   }
7188 
7189   if (LocVT == MVT::f32) {
7190     // Pass in STG registers: F1, ..., F6
7191     //                        fs0 ... fs5
7192     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
7193                                           RISCV::F18_F, RISCV::F19_F,
7194                                           RISCV::F20_F, RISCV::F21_F};
7195     if (unsigned Reg = State.AllocateReg(FPR32List)) {
7196       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7197       return false;
7198     }
7199   }
7200 
7201   if (LocVT == MVT::f64) {
7202     // Pass in STG registers: D1, ..., D6
7203     //                        fs6 ... fs11
7204     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
7205                                           RISCV::F24_D, RISCV::F25_D,
7206                                           RISCV::F26_D, RISCV::F27_D};
7207     if (unsigned Reg = State.AllocateReg(FPR64List)) {
7208       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7209       return false;
7210     }
7211   }
7212 
7213   report_fatal_error("No registers left in GHC calling convention");
7214   return true;
7215 }
7216 
7217 // Transform physical registers into virtual registers.
7218 SDValue RISCVTargetLowering::LowerFormalArguments(
7219     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
7220     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
7221     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7222 
7223   MachineFunction &MF = DAG.getMachineFunction();
7224 
7225   switch (CallConv) {
7226   default:
7227     report_fatal_error("Unsupported calling convention");
7228   case CallingConv::C:
7229   case CallingConv::Fast:
7230     break;
7231   case CallingConv::GHC:
7232     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
7233         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
7234       report_fatal_error(
7235         "GHC calling convention requires the F and D instruction set extensions");
7236   }
7237 
7238   const Function &Func = MF.getFunction();
7239   if (Func.hasFnAttribute("interrupt")) {
7240     if (!Func.arg_empty())
7241       report_fatal_error(
7242         "Functions with the interrupt attribute cannot have arguments!");
7243 
7244     StringRef Kind =
7245       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
7246 
7247     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
7248       report_fatal_error(
7249         "Function interrupt attribute argument not supported!");
7250   }
7251 
7252   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7253   MVT XLenVT = Subtarget.getXLenVT();
7254   unsigned XLenInBytes = Subtarget.getXLen() / 8;
7255   // Used with vargs to acumulate store chains.
7256   std::vector<SDValue> OutChains;
7257 
7258   // Assign locations to all of the incoming arguments.
7259   SmallVector<CCValAssign, 16> ArgLocs;
7260   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
7261 
7262   if (CallConv == CallingConv::GHC)
7263     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
7264   else
7265     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
7266                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
7267                                                    : CC_RISCV);
7268 
7269   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
7270     CCValAssign &VA = ArgLocs[i];
7271     SDValue ArgValue;
7272     // Passing f64 on RV32D with a soft float ABI must be handled as a special
7273     // case.
7274     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
7275       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
7276     else if (VA.isRegLoc())
7277       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
7278     else
7279       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
7280 
7281     if (VA.getLocInfo() == CCValAssign::Indirect) {
7282       // If the original argument was split and passed by reference (e.g. i128
7283       // on RV32), we need to load all parts of it here (using the same
7284       // address). Vectors may be partly split to registers and partly to the
7285       // stack, in which case the base address is partly offset and subsequent
7286       // stores are relative to that.
7287       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
7288                                    MachinePointerInfo()));
7289       unsigned ArgIndex = Ins[i].OrigArgIndex;
7290       unsigned ArgPartOffset = Ins[i].PartOffset;
7291       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
7292       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
7293         CCValAssign &PartVA = ArgLocs[i + 1];
7294         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
7295         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
7296         if (PartVA.getValVT().isScalableVector())
7297           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
7298         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
7299         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
7300                                      MachinePointerInfo()));
7301         ++i;
7302       }
7303       continue;
7304     }
7305     InVals.push_back(ArgValue);
7306   }
7307 
7308   if (IsVarArg) {
7309     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
7310     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
7311     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
7312     MachineFrameInfo &MFI = MF.getFrameInfo();
7313     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7314     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
7315 
7316     // Offset of the first variable argument from stack pointer, and size of
7317     // the vararg save area. For now, the varargs save area is either zero or
7318     // large enough to hold a0-a7.
7319     int VaArgOffset, VarArgsSaveSize;
7320 
7321     // If all registers are allocated, then all varargs must be passed on the
7322     // stack and we don't need to save any argregs.
7323     if (ArgRegs.size() == Idx) {
7324       VaArgOffset = CCInfo.getNextStackOffset();
7325       VarArgsSaveSize = 0;
7326     } else {
7327       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
7328       VaArgOffset = -VarArgsSaveSize;
7329     }
7330 
7331     // Record the frame index of the first variable argument
7332     // which is a value necessary to VASTART.
7333     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
7334     RVFI->setVarArgsFrameIndex(FI);
7335 
7336     // If saving an odd number of registers then create an extra stack slot to
7337     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
7338     // offsets to even-numbered registered remain 2*XLEN-aligned.
7339     if (Idx % 2) {
7340       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
7341       VarArgsSaveSize += XLenInBytes;
7342     }
7343 
7344     // Copy the integer registers that may have been used for passing varargs
7345     // to the vararg save area.
7346     for (unsigned I = Idx; I < ArgRegs.size();
7347          ++I, VaArgOffset += XLenInBytes) {
7348       const Register Reg = RegInfo.createVirtualRegister(RC);
7349       RegInfo.addLiveIn(ArgRegs[I], Reg);
7350       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
7351       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
7352       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
7353       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
7354                                    MachinePointerInfo::getFixedStack(MF, FI));
7355       cast<StoreSDNode>(Store.getNode())
7356           ->getMemOperand()
7357           ->setValue((Value *)nullptr);
7358       OutChains.push_back(Store);
7359     }
7360     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
7361   }
7362 
7363   // All stores are grouped in one node to allow the matching between
7364   // the size of Ins and InVals. This only happens for vararg functions.
7365   if (!OutChains.empty()) {
7366     OutChains.push_back(Chain);
7367     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
7368   }
7369 
7370   return Chain;
7371 }
7372 
7373 /// isEligibleForTailCallOptimization - Check whether the call is eligible
7374 /// for tail call optimization.
7375 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
7376 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
7377     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
7378     const SmallVector<CCValAssign, 16> &ArgLocs) const {
7379 
7380   auto &Callee = CLI.Callee;
7381   auto CalleeCC = CLI.CallConv;
7382   auto &Outs = CLI.Outs;
7383   auto &Caller = MF.getFunction();
7384   auto CallerCC = Caller.getCallingConv();
7385 
7386   // Exception-handling functions need a special set of instructions to
7387   // indicate a return to the hardware. Tail-calling another function would
7388   // probably break this.
7389   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
7390   // should be expanded as new function attributes are introduced.
7391   if (Caller.hasFnAttribute("interrupt"))
7392     return false;
7393 
7394   // Do not tail call opt if the stack is used to pass parameters.
7395   if (CCInfo.getNextStackOffset() != 0)
7396     return false;
7397 
7398   // Do not tail call opt if any parameters need to be passed indirectly.
7399   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
7400   // passed indirectly. So the address of the value will be passed in a
7401   // register, or if not available, then the address is put on the stack. In
7402   // order to pass indirectly, space on the stack often needs to be allocated
7403   // in order to store the value. In this case the CCInfo.getNextStackOffset()
7404   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
7405   // are passed CCValAssign::Indirect.
7406   for (auto &VA : ArgLocs)
7407     if (VA.getLocInfo() == CCValAssign::Indirect)
7408       return false;
7409 
7410   // Do not tail call opt if either caller or callee uses struct return
7411   // semantics.
7412   auto IsCallerStructRet = Caller.hasStructRetAttr();
7413   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
7414   if (IsCallerStructRet || IsCalleeStructRet)
7415     return false;
7416 
7417   // Externally-defined functions with weak linkage should not be
7418   // tail-called. The behaviour of branch instructions in this situation (as
7419   // used for tail calls) is implementation-defined, so we cannot rely on the
7420   // linker replacing the tail call with a return.
7421   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
7422     const GlobalValue *GV = G->getGlobal();
7423     if (GV->hasExternalWeakLinkage())
7424       return false;
7425   }
7426 
7427   // The callee has to preserve all registers the caller needs to preserve.
7428   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
7429   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
7430   if (CalleeCC != CallerCC) {
7431     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
7432     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
7433       return false;
7434   }
7435 
7436   // Byval parameters hand the function a pointer directly into the stack area
7437   // we want to reuse during a tail call. Working around this *is* possible
7438   // but less efficient and uglier in LowerCall.
7439   for (auto &Arg : Outs)
7440     if (Arg.Flags.isByVal())
7441       return false;
7442 
7443   return true;
7444 }
7445 
7446 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
7447   return DAG.getDataLayout().getPrefTypeAlign(
7448       VT.getTypeForEVT(*DAG.getContext()));
7449 }
7450 
7451 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
7452 // and output parameter nodes.
7453 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
7454                                        SmallVectorImpl<SDValue> &InVals) const {
7455   SelectionDAG &DAG = CLI.DAG;
7456   SDLoc &DL = CLI.DL;
7457   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
7458   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
7459   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
7460   SDValue Chain = CLI.Chain;
7461   SDValue Callee = CLI.Callee;
7462   bool &IsTailCall = CLI.IsTailCall;
7463   CallingConv::ID CallConv = CLI.CallConv;
7464   bool IsVarArg = CLI.IsVarArg;
7465   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7466   MVT XLenVT = Subtarget.getXLenVT();
7467 
7468   MachineFunction &MF = DAG.getMachineFunction();
7469 
7470   // Analyze the operands of the call, assigning locations to each operand.
7471   SmallVector<CCValAssign, 16> ArgLocs;
7472   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
7473 
7474   if (CallConv == CallingConv::GHC)
7475     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
7476   else
7477     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
7478                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
7479                                                     : CC_RISCV);
7480 
7481   // Check if it's really possible to do a tail call.
7482   if (IsTailCall)
7483     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
7484 
7485   if (IsTailCall)
7486     ++NumTailCalls;
7487   else if (CLI.CB && CLI.CB->isMustTailCall())
7488     report_fatal_error("failed to perform tail call elimination on a call "
7489                        "site marked musttail");
7490 
7491   // Get a count of how many bytes are to be pushed on the stack.
7492   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
7493 
7494   // Create local copies for byval args
7495   SmallVector<SDValue, 8> ByValArgs;
7496   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
7497     ISD::ArgFlagsTy Flags = Outs[i].Flags;
7498     if (!Flags.isByVal())
7499       continue;
7500 
7501     SDValue Arg = OutVals[i];
7502     unsigned Size = Flags.getByValSize();
7503     Align Alignment = Flags.getNonZeroByValAlign();
7504 
7505     int FI =
7506         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
7507     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
7508     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
7509 
7510     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
7511                           /*IsVolatile=*/false,
7512                           /*AlwaysInline=*/false, IsTailCall,
7513                           MachinePointerInfo(), MachinePointerInfo());
7514     ByValArgs.push_back(FIPtr);
7515   }
7516 
7517   if (!IsTailCall)
7518     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
7519 
7520   // Copy argument values to their designated locations.
7521   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
7522   SmallVector<SDValue, 8> MemOpChains;
7523   SDValue StackPtr;
7524   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
7525     CCValAssign &VA = ArgLocs[i];
7526     SDValue ArgValue = OutVals[i];
7527     ISD::ArgFlagsTy Flags = Outs[i].Flags;
7528 
7529     // Handle passing f64 on RV32D with a soft float ABI as a special case.
7530     bool IsF64OnRV32DSoftABI =
7531         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
7532     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
7533       SDValue SplitF64 = DAG.getNode(
7534           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
7535       SDValue Lo = SplitF64.getValue(0);
7536       SDValue Hi = SplitF64.getValue(1);
7537 
7538       Register RegLo = VA.getLocReg();
7539       RegsToPass.push_back(std::make_pair(RegLo, Lo));
7540 
7541       if (RegLo == RISCV::X17) {
7542         // Second half of f64 is passed on the stack.
7543         // Work out the address of the stack slot.
7544         if (!StackPtr.getNode())
7545           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
7546         // Emit the store.
7547         MemOpChains.push_back(
7548             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
7549       } else {
7550         // Second half of f64 is passed in another GPR.
7551         assert(RegLo < RISCV::X31 && "Invalid register pair");
7552         Register RegHigh = RegLo + 1;
7553         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
7554       }
7555       continue;
7556     }
7557 
7558     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
7559     // as any other MemLoc.
7560 
7561     // Promote the value if needed.
7562     // For now, only handle fully promoted and indirect arguments.
7563     if (VA.getLocInfo() == CCValAssign::Indirect) {
7564       // Store the argument in a stack slot and pass its address.
7565       Align StackAlign =
7566           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
7567                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
7568       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
7569       // If the original argument was split (e.g. i128), we need
7570       // to store the required parts of it here (and pass just one address).
7571       // Vectors may be partly split to registers and partly to the stack, in
7572       // which case the base address is partly offset and subsequent stores are
7573       // relative to that.
7574       unsigned ArgIndex = Outs[i].OrigArgIndex;
7575       unsigned ArgPartOffset = Outs[i].PartOffset;
7576       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
7577       // Calculate the total size to store. We don't have access to what we're
7578       // actually storing other than performing the loop and collecting the
7579       // info.
7580       SmallVector<std::pair<SDValue, SDValue>> Parts;
7581       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
7582         SDValue PartValue = OutVals[i + 1];
7583         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
7584         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
7585         EVT PartVT = PartValue.getValueType();
7586         if (PartVT.isScalableVector())
7587           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
7588         StoredSize += PartVT.getStoreSize();
7589         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
7590         Parts.push_back(std::make_pair(PartValue, Offset));
7591         ++i;
7592       }
7593       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
7594       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
7595       MemOpChains.push_back(
7596           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
7597                        MachinePointerInfo::getFixedStack(MF, FI)));
7598       for (const auto &Part : Parts) {
7599         SDValue PartValue = Part.first;
7600         SDValue PartOffset = Part.second;
7601         SDValue Address =
7602             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
7603         MemOpChains.push_back(
7604             DAG.getStore(Chain, DL, PartValue, Address,
7605                          MachinePointerInfo::getFixedStack(MF, FI)));
7606       }
7607       ArgValue = SpillSlot;
7608     } else {
7609       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
7610     }
7611 
7612     // Use local copy if it is a byval arg.
7613     if (Flags.isByVal())
7614       ArgValue = ByValArgs[j++];
7615 
7616     if (VA.isRegLoc()) {
7617       // Queue up the argument copies and emit them at the end.
7618       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
7619     } else {
7620       assert(VA.isMemLoc() && "Argument not register or memory");
7621       assert(!IsTailCall && "Tail call not allowed if stack is used "
7622                             "for passing parameters");
7623 
7624       // Work out the address of the stack slot.
7625       if (!StackPtr.getNode())
7626         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
7627       SDValue Address =
7628           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
7629                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
7630 
7631       // Emit the store.
7632       MemOpChains.push_back(
7633           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
7634     }
7635   }
7636 
7637   // Join the stores, which are independent of one another.
7638   if (!MemOpChains.empty())
7639     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
7640 
7641   SDValue Glue;
7642 
7643   // Build a sequence of copy-to-reg nodes, chained and glued together.
7644   for (auto &Reg : RegsToPass) {
7645     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
7646     Glue = Chain.getValue(1);
7647   }
7648 
7649   // Validate that none of the argument registers have been marked as
7650   // reserved, if so report an error. Do the same for the return address if this
7651   // is not a tailcall.
7652   validateCCReservedRegs(RegsToPass, MF);
7653   if (!IsTailCall &&
7654       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
7655     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
7656         MF.getFunction(),
7657         "Return address register required, but has been reserved."});
7658 
7659   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
7660   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
7661   // split it and then direct call can be matched by PseudoCALL.
7662   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
7663     const GlobalValue *GV = S->getGlobal();
7664 
7665     unsigned OpFlags = RISCVII::MO_CALL;
7666     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
7667       OpFlags = RISCVII::MO_PLT;
7668 
7669     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
7670   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
7671     unsigned OpFlags = RISCVII::MO_CALL;
7672 
7673     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
7674                                                  nullptr))
7675       OpFlags = RISCVII::MO_PLT;
7676 
7677     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
7678   }
7679 
7680   // The first call operand is the chain and the second is the target address.
7681   SmallVector<SDValue, 8> Ops;
7682   Ops.push_back(Chain);
7683   Ops.push_back(Callee);
7684 
7685   // Add argument registers to the end of the list so that they are
7686   // known live into the call.
7687   for (auto &Reg : RegsToPass)
7688     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
7689 
7690   if (!IsTailCall) {
7691     // Add a register mask operand representing the call-preserved registers.
7692     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
7693     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
7694     assert(Mask && "Missing call preserved mask for calling convention");
7695     Ops.push_back(DAG.getRegisterMask(Mask));
7696   }
7697 
7698   // Glue the call to the argument copies, if any.
7699   if (Glue.getNode())
7700     Ops.push_back(Glue);
7701 
7702   // Emit the call.
7703   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7704 
7705   if (IsTailCall) {
7706     MF.getFrameInfo().setHasTailCall();
7707     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
7708   }
7709 
7710   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
7711   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
7712   Glue = Chain.getValue(1);
7713 
7714   // Mark the end of the call, which is glued to the call itself.
7715   Chain = DAG.getCALLSEQ_END(Chain,
7716                              DAG.getConstant(NumBytes, DL, PtrVT, true),
7717                              DAG.getConstant(0, DL, PtrVT, true),
7718                              Glue, DL);
7719   Glue = Chain.getValue(1);
7720 
7721   // Assign locations to each value returned by this call.
7722   SmallVector<CCValAssign, 16> RVLocs;
7723   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
7724   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
7725 
7726   // Copy all of the result registers out of their specified physreg.
7727   for (auto &VA : RVLocs) {
7728     // Copy the value out
7729     SDValue RetValue =
7730         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
7731     // Glue the RetValue to the end of the call sequence
7732     Chain = RetValue.getValue(1);
7733     Glue = RetValue.getValue(2);
7734 
7735     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
7736       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
7737       SDValue RetValue2 =
7738           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
7739       Chain = RetValue2.getValue(1);
7740       Glue = RetValue2.getValue(2);
7741       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
7742                              RetValue2);
7743     }
7744 
7745     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
7746 
7747     InVals.push_back(RetValue);
7748   }
7749 
7750   return Chain;
7751 }
7752 
7753 bool RISCVTargetLowering::CanLowerReturn(
7754     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
7755     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
7756   SmallVector<CCValAssign, 16> RVLocs;
7757   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
7758 
7759   Optional<unsigned> FirstMaskArgument;
7760   if (Subtarget.hasStdExtV())
7761     FirstMaskArgument = preAssignMask(Outs);
7762 
7763   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
7764     MVT VT = Outs[i].VT;
7765     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
7766     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
7767     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
7768                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
7769                  *this, FirstMaskArgument))
7770       return false;
7771   }
7772   return true;
7773 }
7774 
7775 SDValue
7776 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7777                                  bool IsVarArg,
7778                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
7779                                  const SmallVectorImpl<SDValue> &OutVals,
7780                                  const SDLoc &DL, SelectionDAG &DAG) const {
7781   const MachineFunction &MF = DAG.getMachineFunction();
7782   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
7783 
7784   // Stores the assignment of the return value to a location.
7785   SmallVector<CCValAssign, 16> RVLocs;
7786 
7787   // Info about the registers and stack slot.
7788   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
7789                  *DAG.getContext());
7790 
7791   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
7792                     nullptr, CC_RISCV);
7793 
7794   if (CallConv == CallingConv::GHC && !RVLocs.empty())
7795     report_fatal_error("GHC functions return void only");
7796 
7797   SDValue Glue;
7798   SmallVector<SDValue, 4> RetOps(1, Chain);
7799 
7800   // Copy the result values into the output registers.
7801   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
7802     SDValue Val = OutVals[i];
7803     CCValAssign &VA = RVLocs[i];
7804     assert(VA.isRegLoc() && "Can only return in registers!");
7805 
7806     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
7807       // Handle returning f64 on RV32D with a soft float ABI.
7808       assert(VA.isRegLoc() && "Expected return via registers");
7809       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
7810                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
7811       SDValue Lo = SplitF64.getValue(0);
7812       SDValue Hi = SplitF64.getValue(1);
7813       Register RegLo = VA.getLocReg();
7814       assert(RegLo < RISCV::X31 && "Invalid register pair");
7815       Register RegHi = RegLo + 1;
7816 
7817       if (STI.isRegisterReservedByUser(RegLo) ||
7818           STI.isRegisterReservedByUser(RegHi))
7819         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
7820             MF.getFunction(),
7821             "Return value register required, but has been reserved."});
7822 
7823       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
7824       Glue = Chain.getValue(1);
7825       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
7826       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
7827       Glue = Chain.getValue(1);
7828       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
7829     } else {
7830       // Handle a 'normal' return.
7831       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
7832       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
7833 
7834       if (STI.isRegisterReservedByUser(VA.getLocReg()))
7835         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
7836             MF.getFunction(),
7837             "Return value register required, but has been reserved."});
7838 
7839       // Guarantee that all emitted copies are stuck together.
7840       Glue = Chain.getValue(1);
7841       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7842     }
7843   }
7844 
7845   RetOps[0] = Chain; // Update chain.
7846 
7847   // Add the glue node if we have it.
7848   if (Glue.getNode()) {
7849     RetOps.push_back(Glue);
7850   }
7851 
7852   // Interrupt service routines use different return instructions.
7853   const Function &Func = DAG.getMachineFunction().getFunction();
7854   if (Func.hasFnAttribute("interrupt")) {
7855     if (!Func.getReturnType()->isVoidTy())
7856       report_fatal_error(
7857           "Functions with the interrupt attribute must have void return type!");
7858 
7859     MachineFunction &MF = DAG.getMachineFunction();
7860     StringRef Kind =
7861       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
7862 
7863     unsigned RetOpc;
7864     if (Kind == "user")
7865       RetOpc = RISCVISD::URET_FLAG;
7866     else if (Kind == "supervisor")
7867       RetOpc = RISCVISD::SRET_FLAG;
7868     else
7869       RetOpc = RISCVISD::MRET_FLAG;
7870 
7871     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
7872   }
7873 
7874   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
7875 }
7876 
7877 void RISCVTargetLowering::validateCCReservedRegs(
7878     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
7879     MachineFunction &MF) const {
7880   const Function &F = MF.getFunction();
7881   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
7882 
7883   if (llvm::any_of(Regs, [&STI](auto Reg) {
7884         return STI.isRegisterReservedByUser(Reg.first);
7885       }))
7886     F.getContext().diagnose(DiagnosticInfoUnsupported{
7887         F, "Argument register required, but has been reserved."});
7888 }
7889 
7890 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
7891   return CI->isTailCall();
7892 }
7893 
7894 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
7895 #define NODE_NAME_CASE(NODE)                                                   \
7896   case RISCVISD::NODE:                                                         \
7897     return "RISCVISD::" #NODE;
7898   // clang-format off
7899   switch ((RISCVISD::NodeType)Opcode) {
7900   case RISCVISD::FIRST_NUMBER:
7901     break;
7902   NODE_NAME_CASE(RET_FLAG)
7903   NODE_NAME_CASE(URET_FLAG)
7904   NODE_NAME_CASE(SRET_FLAG)
7905   NODE_NAME_CASE(MRET_FLAG)
7906   NODE_NAME_CASE(CALL)
7907   NODE_NAME_CASE(SELECT_CC)
7908   NODE_NAME_CASE(BR_CC)
7909   NODE_NAME_CASE(BuildPairF64)
7910   NODE_NAME_CASE(SplitF64)
7911   NODE_NAME_CASE(TAIL)
7912   NODE_NAME_CASE(MULHSU)
7913   NODE_NAME_CASE(SLLW)
7914   NODE_NAME_CASE(SRAW)
7915   NODE_NAME_CASE(SRLW)
7916   NODE_NAME_CASE(DIVW)
7917   NODE_NAME_CASE(DIVUW)
7918   NODE_NAME_CASE(REMUW)
7919   NODE_NAME_CASE(ROLW)
7920   NODE_NAME_CASE(RORW)
7921   NODE_NAME_CASE(CLZW)
7922   NODE_NAME_CASE(CTZW)
7923   NODE_NAME_CASE(FSLW)
7924   NODE_NAME_CASE(FSRW)
7925   NODE_NAME_CASE(FSL)
7926   NODE_NAME_CASE(FSR)
7927   NODE_NAME_CASE(FMV_H_X)
7928   NODE_NAME_CASE(FMV_X_ANYEXTH)
7929   NODE_NAME_CASE(FMV_W_X_RV64)
7930   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
7931   NODE_NAME_CASE(READ_CYCLE_WIDE)
7932   NODE_NAME_CASE(GREV)
7933   NODE_NAME_CASE(GREVW)
7934   NODE_NAME_CASE(GORC)
7935   NODE_NAME_CASE(GORCW)
7936   NODE_NAME_CASE(SHFL)
7937   NODE_NAME_CASE(SHFLW)
7938   NODE_NAME_CASE(UNSHFL)
7939   NODE_NAME_CASE(UNSHFLW)
7940   NODE_NAME_CASE(BCOMPRESS)
7941   NODE_NAME_CASE(BCOMPRESSW)
7942   NODE_NAME_CASE(BDECOMPRESS)
7943   NODE_NAME_CASE(BDECOMPRESSW)
7944   NODE_NAME_CASE(VMV_V_X_VL)
7945   NODE_NAME_CASE(VFMV_V_F_VL)
7946   NODE_NAME_CASE(VMV_X_S)
7947   NODE_NAME_CASE(VMV_S_X_VL)
7948   NODE_NAME_CASE(VFMV_S_F_VL)
7949   NODE_NAME_CASE(SPLAT_VECTOR_I64)
7950   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
7951   NODE_NAME_CASE(READ_VLENB)
7952   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
7953   NODE_NAME_CASE(VSLIDEUP_VL)
7954   NODE_NAME_CASE(VSLIDE1UP_VL)
7955   NODE_NAME_CASE(VSLIDEDOWN_VL)
7956   NODE_NAME_CASE(VSLIDE1DOWN_VL)
7957   NODE_NAME_CASE(VID_VL)
7958   NODE_NAME_CASE(VFNCVT_ROD_VL)
7959   NODE_NAME_CASE(VECREDUCE_ADD_VL)
7960   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
7961   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
7962   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
7963   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
7964   NODE_NAME_CASE(VECREDUCE_AND_VL)
7965   NODE_NAME_CASE(VECREDUCE_OR_VL)
7966   NODE_NAME_CASE(VECREDUCE_XOR_VL)
7967   NODE_NAME_CASE(VECREDUCE_FADD_VL)
7968   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
7969   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
7970   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
7971   NODE_NAME_CASE(ADD_VL)
7972   NODE_NAME_CASE(AND_VL)
7973   NODE_NAME_CASE(MUL_VL)
7974   NODE_NAME_CASE(OR_VL)
7975   NODE_NAME_CASE(SDIV_VL)
7976   NODE_NAME_CASE(SHL_VL)
7977   NODE_NAME_CASE(SREM_VL)
7978   NODE_NAME_CASE(SRA_VL)
7979   NODE_NAME_CASE(SRL_VL)
7980   NODE_NAME_CASE(SUB_VL)
7981   NODE_NAME_CASE(UDIV_VL)
7982   NODE_NAME_CASE(UREM_VL)
7983   NODE_NAME_CASE(XOR_VL)
7984   NODE_NAME_CASE(FADD_VL)
7985   NODE_NAME_CASE(FSUB_VL)
7986   NODE_NAME_CASE(FMUL_VL)
7987   NODE_NAME_CASE(FDIV_VL)
7988   NODE_NAME_CASE(FNEG_VL)
7989   NODE_NAME_CASE(FABS_VL)
7990   NODE_NAME_CASE(FSQRT_VL)
7991   NODE_NAME_CASE(FMA_VL)
7992   NODE_NAME_CASE(FCOPYSIGN_VL)
7993   NODE_NAME_CASE(SMIN_VL)
7994   NODE_NAME_CASE(SMAX_VL)
7995   NODE_NAME_CASE(UMIN_VL)
7996   NODE_NAME_CASE(UMAX_VL)
7997   NODE_NAME_CASE(FMINNUM_VL)
7998   NODE_NAME_CASE(FMAXNUM_VL)
7999   NODE_NAME_CASE(MULHS_VL)
8000   NODE_NAME_CASE(MULHU_VL)
8001   NODE_NAME_CASE(FP_TO_SINT_VL)
8002   NODE_NAME_CASE(FP_TO_UINT_VL)
8003   NODE_NAME_CASE(SINT_TO_FP_VL)
8004   NODE_NAME_CASE(UINT_TO_FP_VL)
8005   NODE_NAME_CASE(FP_EXTEND_VL)
8006   NODE_NAME_CASE(FP_ROUND_VL)
8007   NODE_NAME_CASE(SETCC_VL)
8008   NODE_NAME_CASE(VSELECT_VL)
8009   NODE_NAME_CASE(VMAND_VL)
8010   NODE_NAME_CASE(VMOR_VL)
8011   NODE_NAME_CASE(VMXOR_VL)
8012   NODE_NAME_CASE(VMCLR_VL)
8013   NODE_NAME_CASE(VMSET_VL)
8014   NODE_NAME_CASE(VRGATHER_VX_VL)
8015   NODE_NAME_CASE(VRGATHER_VV_VL)
8016   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
8017   NODE_NAME_CASE(VSEXT_VL)
8018   NODE_NAME_CASE(VZEXT_VL)
8019   NODE_NAME_CASE(VPOPC_VL)
8020   NODE_NAME_CASE(VLE_VL)
8021   NODE_NAME_CASE(VSE_VL)
8022   NODE_NAME_CASE(READ_CSR)
8023   NODE_NAME_CASE(WRITE_CSR)
8024   NODE_NAME_CASE(SWAP_CSR)
8025   }
8026   // clang-format on
8027   return nullptr;
8028 #undef NODE_NAME_CASE
8029 }
8030 
8031 /// getConstraintType - Given a constraint letter, return the type of
8032 /// constraint it is for this target.
8033 RISCVTargetLowering::ConstraintType
8034 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
8035   if (Constraint.size() == 1) {
8036     switch (Constraint[0]) {
8037     default:
8038       break;
8039     case 'f':
8040     case 'v':
8041       return C_RegisterClass;
8042     case 'I':
8043     case 'J':
8044     case 'K':
8045       return C_Immediate;
8046     case 'A':
8047       return C_Memory;
8048     }
8049   }
8050   return TargetLowering::getConstraintType(Constraint);
8051 }
8052 
8053 std::pair<unsigned, const TargetRegisterClass *>
8054 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
8055                                                   StringRef Constraint,
8056                                                   MVT VT) const {
8057   // First, see if this is a constraint that directly corresponds to a
8058   // RISCV register class.
8059   if (Constraint.size() == 1) {
8060     switch (Constraint[0]) {
8061     case 'r':
8062       return std::make_pair(0U, &RISCV::GPRRegClass);
8063     case 'f':
8064       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
8065         return std::make_pair(0U, &RISCV::FPR16RegClass);
8066       if (Subtarget.hasStdExtF() && VT == MVT::f32)
8067         return std::make_pair(0U, &RISCV::FPR32RegClass);
8068       if (Subtarget.hasStdExtD() && VT == MVT::f64)
8069         return std::make_pair(0U, &RISCV::FPR64RegClass);
8070       break;
8071     case 'v':
8072       for (const auto *RC :
8073            {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass,
8074             &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
8075         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
8076           return std::make_pair(0U, RC);
8077       }
8078       break;
8079     default:
8080       break;
8081     }
8082   }
8083 
8084   // Clang will correctly decode the usage of register name aliases into their
8085   // official names. However, other frontends like `rustc` do not. This allows
8086   // users of these frontends to use the ABI names for registers in LLVM-style
8087   // register constraints.
8088   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
8089                                .Case("{zero}", RISCV::X0)
8090                                .Case("{ra}", RISCV::X1)
8091                                .Case("{sp}", RISCV::X2)
8092                                .Case("{gp}", RISCV::X3)
8093                                .Case("{tp}", RISCV::X4)
8094                                .Case("{t0}", RISCV::X5)
8095                                .Case("{t1}", RISCV::X6)
8096                                .Case("{t2}", RISCV::X7)
8097                                .Cases("{s0}", "{fp}", RISCV::X8)
8098                                .Case("{s1}", RISCV::X9)
8099                                .Case("{a0}", RISCV::X10)
8100                                .Case("{a1}", RISCV::X11)
8101                                .Case("{a2}", RISCV::X12)
8102                                .Case("{a3}", RISCV::X13)
8103                                .Case("{a4}", RISCV::X14)
8104                                .Case("{a5}", RISCV::X15)
8105                                .Case("{a6}", RISCV::X16)
8106                                .Case("{a7}", RISCV::X17)
8107                                .Case("{s2}", RISCV::X18)
8108                                .Case("{s3}", RISCV::X19)
8109                                .Case("{s4}", RISCV::X20)
8110                                .Case("{s5}", RISCV::X21)
8111                                .Case("{s6}", RISCV::X22)
8112                                .Case("{s7}", RISCV::X23)
8113                                .Case("{s8}", RISCV::X24)
8114                                .Case("{s9}", RISCV::X25)
8115                                .Case("{s10}", RISCV::X26)
8116                                .Case("{s11}", RISCV::X27)
8117                                .Case("{t3}", RISCV::X28)
8118                                .Case("{t4}", RISCV::X29)
8119                                .Case("{t5}", RISCV::X30)
8120                                .Case("{t6}", RISCV::X31)
8121                                .Default(RISCV::NoRegister);
8122   if (XRegFromAlias != RISCV::NoRegister)
8123     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
8124 
8125   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
8126   // TableGen record rather than the AsmName to choose registers for InlineAsm
8127   // constraints, plus we want to match those names to the widest floating point
8128   // register type available, manually select floating point registers here.
8129   //
8130   // The second case is the ABI name of the register, so that frontends can also
8131   // use the ABI names in register constraint lists.
8132   if (Subtarget.hasStdExtF()) {
8133     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
8134                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
8135                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
8136                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
8137                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
8138                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
8139                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
8140                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
8141                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
8142                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
8143                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
8144                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
8145                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
8146                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
8147                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
8148                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
8149                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
8150                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
8151                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
8152                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
8153                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
8154                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
8155                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
8156                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
8157                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
8158                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
8159                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
8160                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
8161                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
8162                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
8163                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
8164                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
8165                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
8166                         .Default(RISCV::NoRegister);
8167     if (FReg != RISCV::NoRegister) {
8168       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
8169       if (Subtarget.hasStdExtD()) {
8170         unsigned RegNo = FReg - RISCV::F0_F;
8171         unsigned DReg = RISCV::F0_D + RegNo;
8172         return std::make_pair(DReg, &RISCV::FPR64RegClass);
8173       }
8174       return std::make_pair(FReg, &RISCV::FPR32RegClass);
8175     }
8176   }
8177 
8178   if (Subtarget.hasStdExtV()) {
8179     Register VReg = StringSwitch<Register>(Constraint.lower())
8180                         .Case("{v0}", RISCV::V0)
8181                         .Case("{v1}", RISCV::V1)
8182                         .Case("{v2}", RISCV::V2)
8183                         .Case("{v3}", RISCV::V3)
8184                         .Case("{v4}", RISCV::V4)
8185                         .Case("{v5}", RISCV::V5)
8186                         .Case("{v6}", RISCV::V6)
8187                         .Case("{v7}", RISCV::V7)
8188                         .Case("{v8}", RISCV::V8)
8189                         .Case("{v9}", RISCV::V9)
8190                         .Case("{v10}", RISCV::V10)
8191                         .Case("{v11}", RISCV::V11)
8192                         .Case("{v12}", RISCV::V12)
8193                         .Case("{v13}", RISCV::V13)
8194                         .Case("{v14}", RISCV::V14)
8195                         .Case("{v15}", RISCV::V15)
8196                         .Case("{v16}", RISCV::V16)
8197                         .Case("{v17}", RISCV::V17)
8198                         .Case("{v18}", RISCV::V18)
8199                         .Case("{v19}", RISCV::V19)
8200                         .Case("{v20}", RISCV::V20)
8201                         .Case("{v21}", RISCV::V21)
8202                         .Case("{v22}", RISCV::V22)
8203                         .Case("{v23}", RISCV::V23)
8204                         .Case("{v24}", RISCV::V24)
8205                         .Case("{v25}", RISCV::V25)
8206                         .Case("{v26}", RISCV::V26)
8207                         .Case("{v27}", RISCV::V27)
8208                         .Case("{v28}", RISCV::V28)
8209                         .Case("{v29}", RISCV::V29)
8210                         .Case("{v30}", RISCV::V30)
8211                         .Case("{v31}", RISCV::V31)
8212                         .Default(RISCV::NoRegister);
8213     if (VReg != RISCV::NoRegister) {
8214       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
8215         return std::make_pair(VReg, &RISCV::VMRegClass);
8216       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
8217         return std::make_pair(VReg, &RISCV::VRRegClass);
8218       for (const auto *RC :
8219            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
8220         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
8221           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
8222           return std::make_pair(VReg, RC);
8223         }
8224       }
8225     }
8226   }
8227 
8228   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
8229 }
8230 
8231 unsigned
8232 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
8233   // Currently only support length 1 constraints.
8234   if (ConstraintCode.size() == 1) {
8235     switch (ConstraintCode[0]) {
8236     case 'A':
8237       return InlineAsm::Constraint_A;
8238     default:
8239       break;
8240     }
8241   }
8242 
8243   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
8244 }
8245 
8246 void RISCVTargetLowering::LowerAsmOperandForConstraint(
8247     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
8248     SelectionDAG &DAG) const {
8249   // Currently only support length 1 constraints.
8250   if (Constraint.length() == 1) {
8251     switch (Constraint[0]) {
8252     case 'I':
8253       // Validate & create a 12-bit signed immediate operand.
8254       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
8255         uint64_t CVal = C->getSExtValue();
8256         if (isInt<12>(CVal))
8257           Ops.push_back(
8258               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
8259       }
8260       return;
8261     case 'J':
8262       // Validate & create an integer zero operand.
8263       if (auto *C = dyn_cast<ConstantSDNode>(Op))
8264         if (C->getZExtValue() == 0)
8265           Ops.push_back(
8266               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
8267       return;
8268     case 'K':
8269       // Validate & create a 5-bit unsigned immediate operand.
8270       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
8271         uint64_t CVal = C->getZExtValue();
8272         if (isUInt<5>(CVal))
8273           Ops.push_back(
8274               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
8275       }
8276       return;
8277     default:
8278       break;
8279     }
8280   }
8281   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8282 }
8283 
8284 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
8285                                                    Instruction *Inst,
8286                                                    AtomicOrdering Ord) const {
8287   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
8288     return Builder.CreateFence(Ord);
8289   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
8290     return Builder.CreateFence(AtomicOrdering::Release);
8291   return nullptr;
8292 }
8293 
8294 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
8295                                                     Instruction *Inst,
8296                                                     AtomicOrdering Ord) const {
8297   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
8298     return Builder.CreateFence(AtomicOrdering::Acquire);
8299   return nullptr;
8300 }
8301 
8302 TargetLowering::AtomicExpansionKind
8303 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
8304   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
8305   // point operations can't be used in an lr/sc sequence without breaking the
8306   // forward-progress guarantee.
8307   if (AI->isFloatingPointOperation())
8308     return AtomicExpansionKind::CmpXChg;
8309 
8310   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
8311   if (Size == 8 || Size == 16)
8312     return AtomicExpansionKind::MaskedIntrinsic;
8313   return AtomicExpansionKind::None;
8314 }
8315 
8316 static Intrinsic::ID
8317 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
8318   if (XLen == 32) {
8319     switch (BinOp) {
8320     default:
8321       llvm_unreachable("Unexpected AtomicRMW BinOp");
8322     case AtomicRMWInst::Xchg:
8323       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
8324     case AtomicRMWInst::Add:
8325       return Intrinsic::riscv_masked_atomicrmw_add_i32;
8326     case AtomicRMWInst::Sub:
8327       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
8328     case AtomicRMWInst::Nand:
8329       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
8330     case AtomicRMWInst::Max:
8331       return Intrinsic::riscv_masked_atomicrmw_max_i32;
8332     case AtomicRMWInst::Min:
8333       return Intrinsic::riscv_masked_atomicrmw_min_i32;
8334     case AtomicRMWInst::UMax:
8335       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
8336     case AtomicRMWInst::UMin:
8337       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
8338     }
8339   }
8340 
8341   if (XLen == 64) {
8342     switch (BinOp) {
8343     default:
8344       llvm_unreachable("Unexpected AtomicRMW BinOp");
8345     case AtomicRMWInst::Xchg:
8346       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
8347     case AtomicRMWInst::Add:
8348       return Intrinsic::riscv_masked_atomicrmw_add_i64;
8349     case AtomicRMWInst::Sub:
8350       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
8351     case AtomicRMWInst::Nand:
8352       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
8353     case AtomicRMWInst::Max:
8354       return Intrinsic::riscv_masked_atomicrmw_max_i64;
8355     case AtomicRMWInst::Min:
8356       return Intrinsic::riscv_masked_atomicrmw_min_i64;
8357     case AtomicRMWInst::UMax:
8358       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
8359     case AtomicRMWInst::UMin:
8360       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
8361     }
8362   }
8363 
8364   llvm_unreachable("Unexpected XLen\n");
8365 }
8366 
8367 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
8368     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
8369     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
8370   unsigned XLen = Subtarget.getXLen();
8371   Value *Ordering =
8372       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
8373   Type *Tys[] = {AlignedAddr->getType()};
8374   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
8375       AI->getModule(),
8376       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
8377 
8378   if (XLen == 64) {
8379     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
8380     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8381     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
8382   }
8383 
8384   Value *Result;
8385 
8386   // Must pass the shift amount needed to sign extend the loaded value prior
8387   // to performing a signed comparison for min/max. ShiftAmt is the number of
8388   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
8389   // is the number of bits to left+right shift the value in order to
8390   // sign-extend.
8391   if (AI->getOperation() == AtomicRMWInst::Min ||
8392       AI->getOperation() == AtomicRMWInst::Max) {
8393     const DataLayout &DL = AI->getModule()->getDataLayout();
8394     unsigned ValWidth =
8395         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
8396     Value *SextShamt =
8397         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
8398     Result = Builder.CreateCall(LrwOpScwLoop,
8399                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
8400   } else {
8401     Result =
8402         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
8403   }
8404 
8405   if (XLen == 64)
8406     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8407   return Result;
8408 }
8409 
8410 TargetLowering::AtomicExpansionKind
8411 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
8412     AtomicCmpXchgInst *CI) const {
8413   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
8414   if (Size == 8 || Size == 16)
8415     return AtomicExpansionKind::MaskedIntrinsic;
8416   return AtomicExpansionKind::None;
8417 }
8418 
8419 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
8420     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
8421     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
8422   unsigned XLen = Subtarget.getXLen();
8423   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
8424   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
8425   if (XLen == 64) {
8426     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
8427     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
8428     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8429     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
8430   }
8431   Type *Tys[] = {AlignedAddr->getType()};
8432   Function *MaskedCmpXchg =
8433       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
8434   Value *Result = Builder.CreateCall(
8435       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
8436   if (XLen == 64)
8437     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8438   return Result;
8439 }
8440 
8441 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
8442   return false;
8443 }
8444 
8445 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
8446                                                      EVT VT) const {
8447   VT = VT.getScalarType();
8448 
8449   if (!VT.isSimple())
8450     return false;
8451 
8452   switch (VT.getSimpleVT().SimpleTy) {
8453   case MVT::f16:
8454     return Subtarget.hasStdExtZfh();
8455   case MVT::f32:
8456     return Subtarget.hasStdExtF();
8457   case MVT::f64:
8458     return Subtarget.hasStdExtD();
8459   default:
8460     break;
8461   }
8462 
8463   return false;
8464 }
8465 
8466 Register RISCVTargetLowering::getExceptionPointerRegister(
8467     const Constant *PersonalityFn) const {
8468   return RISCV::X10;
8469 }
8470 
8471 Register RISCVTargetLowering::getExceptionSelectorRegister(
8472     const Constant *PersonalityFn) const {
8473   return RISCV::X11;
8474 }
8475 
8476 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
8477   // Return false to suppress the unnecessary extensions if the LibCall
8478   // arguments or return value is f32 type for LP64 ABI.
8479   RISCVABI::ABI ABI = Subtarget.getTargetABI();
8480   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
8481     return false;
8482 
8483   return true;
8484 }
8485 
8486 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
8487   if (Subtarget.is64Bit() && Type == MVT::i32)
8488     return true;
8489 
8490   return IsSigned;
8491 }
8492 
8493 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
8494                                                  SDValue C) const {
8495   // Check integral scalar types.
8496   if (VT.isScalarInteger()) {
8497     // Omit the optimization if the sub target has the M extension and the data
8498     // size exceeds XLen.
8499     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
8500       return false;
8501     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
8502       // Break the MUL to a SLLI and an ADD/SUB.
8503       const APInt &Imm = ConstNode->getAPIntValue();
8504       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
8505           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
8506         return true;
8507       // Omit the following optimization if the sub target has the M extension
8508       // and the data size >= XLen.
8509       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
8510         return false;
8511       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
8512       // a pair of LUI/ADDI.
8513       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
8514         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
8515         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
8516             (1 - ImmS).isPowerOf2())
8517         return true;
8518       }
8519     }
8520   }
8521 
8522   return false;
8523 }
8524 
8525 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
8526     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
8527     bool *Fast) const {
8528   if (!VT.isVector())
8529     return false;
8530 
8531   EVT ElemVT = VT.getVectorElementType();
8532   if (Alignment >= ElemVT.getStoreSize()) {
8533     if (Fast)
8534       *Fast = true;
8535     return true;
8536   }
8537 
8538   return false;
8539 }
8540 
8541 bool RISCVTargetLowering::splitValueIntoRegisterParts(
8542     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
8543     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
8544   bool IsABIRegCopy = CC.hasValue();
8545   EVT ValueVT = Val.getValueType();
8546   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
8547     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
8548     // and cast to f32.
8549     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
8550     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
8551     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
8552                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
8553     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
8554     Parts[0] = Val;
8555     return true;
8556   }
8557 
8558   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
8559     LLVMContext &Context = *DAG.getContext();
8560     EVT ValueEltVT = ValueVT.getVectorElementType();
8561     EVT PartEltVT = PartVT.getVectorElementType();
8562     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
8563     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
8564     if (PartVTBitSize % ValueVTBitSize == 0) {
8565       // If the element types are different, bitcast to the same element type of
8566       // PartVT first.
8567       if (ValueEltVT != PartEltVT) {
8568         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
8569         assert(Count != 0 && "The number of element should not be zero.");
8570         EVT SameEltTypeVT =
8571             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
8572         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
8573       }
8574       Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
8575                         Val, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
8576       Parts[0] = Val;
8577       return true;
8578     }
8579   }
8580   return false;
8581 }
8582 
8583 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
8584     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
8585     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
8586   bool IsABIRegCopy = CC.hasValue();
8587   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
8588     SDValue Val = Parts[0];
8589 
8590     // Cast the f32 to i32, truncate to i16, and cast back to f16.
8591     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
8592     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
8593     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
8594     return Val;
8595   }
8596 
8597   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
8598     LLVMContext &Context = *DAG.getContext();
8599     SDValue Val = Parts[0];
8600     EVT ValueEltVT = ValueVT.getVectorElementType();
8601     EVT PartEltVT = PartVT.getVectorElementType();
8602     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
8603     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
8604     if (PartVTBitSize % ValueVTBitSize == 0) {
8605       EVT SameEltTypeVT = ValueVT;
8606       // If the element types are different, convert it to the same element type
8607       // of PartVT.
8608       if (ValueEltVT != PartEltVT) {
8609         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
8610         assert(Count != 0 && "The number of element should not be zero.");
8611         SameEltTypeVT =
8612             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
8613       }
8614       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val,
8615                         DAG.getConstant(0, DL, Subtarget.getXLenVT()));
8616       if (ValueEltVT != PartEltVT)
8617         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
8618       return Val;
8619     }
8620   }
8621   return SDValue();
8622 }
8623 
8624 #define GET_REGISTER_MATCHER
8625 #include "RISCVGenAsmMatcher.inc"
8626 
8627 Register
8628 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
8629                                        const MachineFunction &MF) const {
8630   Register Reg = MatchRegisterAltName(RegName);
8631   if (Reg == RISCV::NoRegister)
8632     Reg = MatchRegisterName(RegName);
8633   if (Reg == RISCV::NoRegister)
8634     report_fatal_error(
8635         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
8636   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
8637   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
8638     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
8639                              StringRef(RegName) + "\"."));
8640   return Reg;
8641 }
8642 
8643 namespace llvm {
8644 namespace RISCVVIntrinsicsTable {
8645 
8646 #define GET_RISCVVIntrinsicsTable_IMPL
8647 #include "RISCVGenSearchableTables.inc"
8648 
8649 } // namespace RISCVVIntrinsicsTable
8650 
8651 } // namespace llvm
8652