1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
254       Subtarget.hasStdExtZbkb()) {
255     if (Subtarget.is64Bit()) {
256       setOperationAction(ISD::ROTL, MVT::i32, Custom);
257       setOperationAction(ISD::ROTR, MVT::i32, Custom);
258     }
259   } else {
260     setOperationAction(ISD::ROTL, XLenVT, Expand);
261     setOperationAction(ISD::ROTR, XLenVT, Expand);
262   }
263 
264   if (Subtarget.hasStdExtZbp()) {
265     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
266     // more combining.
267     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
268     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
269     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
270     // BSWAP i8 doesn't exist.
271     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
272     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
273 
274     if (Subtarget.is64Bit()) {
275       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
276       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
277     }
278   } else {
279     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
280     // pattern match it directly in isel.
281     setOperationAction(ISD::BSWAP, XLenVT,
282                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
283                            ? Legal
284                            : Expand);
285     // Zbkb can use rev8+brev8 to implement bitreverse.
286     setOperationAction(ISD::BITREVERSE, XLenVT,
287                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
288   }
289 
290   if (Subtarget.hasStdExtZbb()) {
291     setOperationAction(ISD::SMIN, XLenVT, Legal);
292     setOperationAction(ISD::SMAX, XLenVT, Legal);
293     setOperationAction(ISD::UMIN, XLenVT, Legal);
294     setOperationAction(ISD::UMAX, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit()) {
297       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
298       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
299       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
300       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
301     }
302   } else {
303     setOperationAction(ISD::CTTZ, XLenVT, Expand);
304     setOperationAction(ISD::CTLZ, XLenVT, Expand);
305     setOperationAction(ISD::CTPOP, XLenVT, Expand);
306   }
307 
308   if (Subtarget.hasStdExtZbt()) {
309     setOperationAction(ISD::FSHL, XLenVT, Custom);
310     setOperationAction(ISD::FSHR, XLenVT, Custom);
311     setOperationAction(ISD::SELECT, XLenVT, Legal);
312 
313     if (Subtarget.is64Bit()) {
314       setOperationAction(ISD::FSHL, MVT::i32, Custom);
315       setOperationAction(ISD::FSHR, MVT::i32, Custom);
316     }
317   } else {
318     setOperationAction(ISD::SELECT, XLenVT, Custom);
319   }
320 
321   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
322       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
323       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
324       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
325       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
326       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
327       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
328 
329   static const ISD::CondCode FPCCToExpand[] = {
330       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
331       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
332       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
333 
334   static const ISD::NodeType FPOpToExpand[] = {
335       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
336       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
337 
338   if (Subtarget.hasStdExtZfh())
339     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
340 
341   if (Subtarget.hasStdExtZfh()) {
342     for (auto NT : FPLegalNodeTypes)
343       setOperationAction(NT, MVT::f16, Legal);
344     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
345     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
346     for (auto CC : FPCCToExpand)
347       setCondCodeAction(CC, MVT::f16, Expand);
348     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
349     setOperationAction(ISD::SELECT, MVT::f16, Custom);
350     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
351 
352     setOperationAction(ISD::FREM,       MVT::f16, Promote);
353     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
354     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
355     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
356     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
357     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
358     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
359     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
360     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
361     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
362     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
363     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
364     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
365     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
366     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
367     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
368     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
369     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
370 
371     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
372     // complete support for all operations in LegalizeDAG.
373 
374     // We need to custom promote this.
375     if (Subtarget.is64Bit())
376       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
377   }
378 
379   if (Subtarget.hasStdExtF()) {
380     for (auto NT : FPLegalNodeTypes)
381       setOperationAction(NT, MVT::f32, Legal);
382     for (auto CC : FPCCToExpand)
383       setCondCodeAction(CC, MVT::f32, Expand);
384     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
385     setOperationAction(ISD::SELECT, MVT::f32, Custom);
386     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
387     for (auto Op : FPOpToExpand)
388       setOperationAction(Op, MVT::f32, Expand);
389     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
390     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
391   }
392 
393   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
394     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
395 
396   if (Subtarget.hasStdExtD()) {
397     for (auto NT : FPLegalNodeTypes)
398       setOperationAction(NT, MVT::f64, Legal);
399     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
400     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
401     for (auto CC : FPCCToExpand)
402       setCondCodeAction(CC, MVT::f64, Expand);
403     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
404     setOperationAction(ISD::SELECT, MVT::f64, Custom);
405     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
406     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
407     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
408     for (auto Op : FPOpToExpand)
409       setOperationAction(Op, MVT::f64, Expand);
410     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
411     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
412   }
413 
414   if (Subtarget.is64Bit()) {
415     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
416     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
417     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
418     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
419   }
420 
421   if (Subtarget.hasStdExtF()) {
422     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
423     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
424 
425     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
426     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
427     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
428     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
429 
430     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
431     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
432   }
433 
434   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
435   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
436   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
437   setOperationAction(ISD::JumpTable, XLenVT, Custom);
438 
439   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
440 
441   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
442   // Unfortunately this can't be determined just from the ISA naming string.
443   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
444                      Subtarget.is64Bit() ? Legal : Custom);
445 
446   setOperationAction(ISD::TRAP, MVT::Other, Legal);
447   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
448   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
449   if (Subtarget.is64Bit())
450     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
451 
452   if (Subtarget.hasStdExtA()) {
453     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
454     setMinCmpXchgSizeInBits(32);
455   } else {
456     setMaxAtomicSizeInBitsSupported(0);
457   }
458 
459   setBooleanContents(ZeroOrOneBooleanContent);
460 
461   if (Subtarget.hasVInstructions()) {
462     setBooleanVectorContents(ZeroOrOneBooleanContent);
463 
464     setOperationAction(ISD::VSCALE, XLenVT, Custom);
465 
466     // RVV intrinsics may have illegal operands.
467     // We also need to custom legalize vmv.x.s.
468     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
469     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
470     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
471     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
472     if (Subtarget.is64Bit()) {
473       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
474     } else {
475       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
476       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
477     }
478 
479     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
480     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
481 
482     static const unsigned IntegerVPOps[] = {
483         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
484         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
485         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
486         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
487         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
488         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
489         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
490         ISD::VP_MERGE,       ISD::VP_SELECT};
491 
492     static const unsigned FloatingPointVPOps[] = {
493         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
494         ISD::VP_FDIV,        ISD::VP_FNEG,        ISD::VP_FMA,
495         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN,
496         ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,       ISD::VP_SELECT};
497 
498     if (!Subtarget.is64Bit()) {
499       // We must custom-lower certain vXi64 operations on RV32 due to the vector
500       // element type being illegal.
501       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
502       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
503 
504       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
505       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
506       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
507       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
508       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
509       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
510       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
511       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
512 
513       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
514       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
515       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
516       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
517       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
518       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
519       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
520       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
521     }
522 
523     for (MVT VT : BoolVecVTs) {
524       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
525 
526       // Mask VTs are custom-expanded into a series of standard nodes
527       setOperationAction(ISD::TRUNCATE, VT, Custom);
528       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
529       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
530       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
531 
532       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
533       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
534 
535       setOperationAction(ISD::SELECT, VT, Custom);
536       setOperationAction(ISD::SELECT_CC, VT, Expand);
537       setOperationAction(ISD::VSELECT, VT, Expand);
538       setOperationAction(ISD::VP_MERGE, VT, Expand);
539       setOperationAction(ISD::VP_SELECT, VT, Expand);
540 
541       setOperationAction(ISD::VP_AND, VT, Custom);
542       setOperationAction(ISD::VP_OR, VT, Custom);
543       setOperationAction(ISD::VP_XOR, VT, Custom);
544 
545       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
546       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
547       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
548 
549       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
550       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
551       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
552 
553       // RVV has native int->float & float->int conversions where the
554       // element type sizes are within one power-of-two of each other. Any
555       // wider distances between type sizes have to be lowered as sequences
556       // which progressively narrow the gap in stages.
557       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
558       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
559       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
560       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
561 
562       // Expand all extending loads to types larger than this, and truncating
563       // stores from types larger than this.
564       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
565         setTruncStoreAction(OtherVT, VT, Expand);
566         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
567         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
568         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
569       }
570     }
571 
572     for (MVT VT : IntVecVTs) {
573       if (VT.getVectorElementType() == MVT::i64 &&
574           !Subtarget.hasVInstructionsI64())
575         continue;
576 
577       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
578       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
579 
580       // Vectors implement MULHS/MULHU.
581       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
582       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
583 
584       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
585       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) {
586         setOperationAction(ISD::MULHU, VT, Expand);
587         setOperationAction(ISD::MULHS, VT, Expand);
588       }
589 
590       setOperationAction(ISD::SMIN, VT, Legal);
591       setOperationAction(ISD::SMAX, VT, Legal);
592       setOperationAction(ISD::UMIN, VT, Legal);
593       setOperationAction(ISD::UMAX, VT, Legal);
594 
595       setOperationAction(ISD::ROTL, VT, Expand);
596       setOperationAction(ISD::ROTR, VT, Expand);
597 
598       setOperationAction(ISD::CTTZ, VT, Expand);
599       setOperationAction(ISD::CTLZ, VT, Expand);
600       setOperationAction(ISD::CTPOP, VT, Expand);
601 
602       setOperationAction(ISD::BSWAP, VT, Expand);
603 
604       // Custom-lower extensions and truncations from/to mask types.
605       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
606       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
607       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
608 
609       // RVV has native int->float & float->int conversions where the
610       // element type sizes are within one power-of-two of each other. Any
611       // wider distances between type sizes have to be lowered as sequences
612       // which progressively narrow the gap in stages.
613       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
614       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
615       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
616       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
617 
618       setOperationAction(ISD::SADDSAT, VT, Legal);
619       setOperationAction(ISD::UADDSAT, VT, Legal);
620       setOperationAction(ISD::SSUBSAT, VT, Legal);
621       setOperationAction(ISD::USUBSAT, VT, Legal);
622 
623       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
624       // nodes which truncate by one power of two at a time.
625       setOperationAction(ISD::TRUNCATE, VT, Custom);
626 
627       // Custom-lower insert/extract operations to simplify patterns.
628       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
629       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
630 
631       // Custom-lower reduction operations to set up the corresponding custom
632       // nodes' operands.
633       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
634       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
635       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
636       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
637       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
638       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
639       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
640       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
641 
642       for (unsigned VPOpc : IntegerVPOps)
643         setOperationAction(VPOpc, VT, Custom);
644 
645       setOperationAction(ISD::LOAD, VT, Custom);
646       setOperationAction(ISD::STORE, VT, Custom);
647 
648       setOperationAction(ISD::MLOAD, VT, Custom);
649       setOperationAction(ISD::MSTORE, VT, Custom);
650       setOperationAction(ISD::MGATHER, VT, Custom);
651       setOperationAction(ISD::MSCATTER, VT, Custom);
652 
653       setOperationAction(ISD::VP_LOAD, VT, Custom);
654       setOperationAction(ISD::VP_STORE, VT, Custom);
655       setOperationAction(ISD::VP_GATHER, VT, Custom);
656       setOperationAction(ISD::VP_SCATTER, VT, Custom);
657 
658       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
659       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
660       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
661 
662       setOperationAction(ISD::SELECT, VT, Custom);
663       setOperationAction(ISD::SELECT_CC, VT, Expand);
664 
665       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
666       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
667 
668       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
669         setTruncStoreAction(VT, OtherVT, Expand);
670         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
671         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
672         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
673       }
674 
675       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
676       // type that can represent the value exactly.
677       if (VT.getVectorElementType() != MVT::i64) {
678         MVT FloatEltVT =
679             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
680         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
681         if (isTypeLegal(FloatVT)) {
682           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
683           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
684         }
685       }
686     }
687 
688     // Expand various CCs to best match the RVV ISA, which natively supports UNE
689     // but no other unordered comparisons, and supports all ordered comparisons
690     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
691     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
692     // and we pattern-match those back to the "original", swapping operands once
693     // more. This way we catch both operations and both "vf" and "fv" forms with
694     // fewer patterns.
695     static const ISD::CondCode VFPCCToExpand[] = {
696         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
697         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
698         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
699     };
700 
701     // Sets common operation actions on RVV floating-point vector types.
702     const auto SetCommonVFPActions = [&](MVT VT) {
703       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
704       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
705       // sizes are within one power-of-two of each other. Therefore conversions
706       // between vXf16 and vXf64 must be lowered as sequences which convert via
707       // vXf32.
708       setOperationAction(ISD::FP_ROUND, VT, Custom);
709       setOperationAction(ISD::FP_EXTEND, VT, Custom);
710       // Custom-lower insert/extract operations to simplify patterns.
711       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
712       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
713       // Expand various condition codes (explained above).
714       for (auto CC : VFPCCToExpand)
715         setCondCodeAction(CC, VT, Expand);
716 
717       setOperationAction(ISD::FMINNUM, VT, Legal);
718       setOperationAction(ISD::FMAXNUM, VT, Legal);
719 
720       setOperationAction(ISD::FTRUNC, VT, Custom);
721       setOperationAction(ISD::FCEIL, VT, Custom);
722       setOperationAction(ISD::FFLOOR, VT, Custom);
723       setOperationAction(ISD::FROUND, VT, Custom);
724 
725       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
726       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
727       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
728       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
729 
730       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
731 
732       setOperationAction(ISD::LOAD, VT, Custom);
733       setOperationAction(ISD::STORE, VT, Custom);
734 
735       setOperationAction(ISD::MLOAD, VT, Custom);
736       setOperationAction(ISD::MSTORE, VT, Custom);
737       setOperationAction(ISD::MGATHER, VT, Custom);
738       setOperationAction(ISD::MSCATTER, VT, Custom);
739 
740       setOperationAction(ISD::VP_LOAD, VT, Custom);
741       setOperationAction(ISD::VP_STORE, VT, Custom);
742       setOperationAction(ISD::VP_GATHER, VT, Custom);
743       setOperationAction(ISD::VP_SCATTER, VT, Custom);
744 
745       setOperationAction(ISD::SELECT, VT, Custom);
746       setOperationAction(ISD::SELECT_CC, VT, Expand);
747 
748       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
749       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
750       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
751 
752       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
753 
754       for (unsigned VPOpc : FloatingPointVPOps)
755         setOperationAction(VPOpc, VT, Custom);
756     };
757 
758     // Sets common extload/truncstore actions on RVV floating-point vector
759     // types.
760     const auto SetCommonVFPExtLoadTruncStoreActions =
761         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
762           for (auto SmallVT : SmallerVTs) {
763             setTruncStoreAction(VT, SmallVT, Expand);
764             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
765           }
766         };
767 
768     if (Subtarget.hasVInstructionsF16())
769       for (MVT VT : F16VecVTs)
770         SetCommonVFPActions(VT);
771 
772     for (MVT VT : F32VecVTs) {
773       if (Subtarget.hasVInstructionsF32())
774         SetCommonVFPActions(VT);
775       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
776     }
777 
778     for (MVT VT : F64VecVTs) {
779       if (Subtarget.hasVInstructionsF64())
780         SetCommonVFPActions(VT);
781       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
782       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
783     }
784 
785     if (Subtarget.useRVVForFixedLengthVectors()) {
786       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
787         if (!useRVVForFixedLengthVectorVT(VT))
788           continue;
789 
790         // By default everything must be expanded.
791         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
792           setOperationAction(Op, VT, Expand);
793         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
794           setTruncStoreAction(VT, OtherVT, Expand);
795           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
796           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
797           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
798         }
799 
800         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
801         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
802         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
803 
804         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
805         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
806 
807         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
808         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
809 
810         setOperationAction(ISD::LOAD, VT, Custom);
811         setOperationAction(ISD::STORE, VT, Custom);
812 
813         setOperationAction(ISD::SETCC, VT, Custom);
814 
815         setOperationAction(ISD::SELECT, VT, Custom);
816 
817         setOperationAction(ISD::TRUNCATE, VT, Custom);
818 
819         setOperationAction(ISD::BITCAST, VT, Custom);
820 
821         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
822         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
823         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
824 
825         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
826         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
827         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
828 
829         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
830         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
831         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
832         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
833 
834         // Operations below are different for between masks and other vectors.
835         if (VT.getVectorElementType() == MVT::i1) {
836           setOperationAction(ISD::VP_AND, VT, Custom);
837           setOperationAction(ISD::VP_OR, VT, Custom);
838           setOperationAction(ISD::VP_XOR, VT, Custom);
839           setOperationAction(ISD::AND, VT, Custom);
840           setOperationAction(ISD::OR, VT, Custom);
841           setOperationAction(ISD::XOR, VT, Custom);
842           continue;
843         }
844 
845         // Use SPLAT_VECTOR to prevent type legalization from destroying the
846         // splats when type legalizing i64 scalar on RV32.
847         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
848         // improvements first.
849         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
850           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
851           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
852         }
853 
854         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
855         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
856 
857         setOperationAction(ISD::MLOAD, VT, Custom);
858         setOperationAction(ISD::MSTORE, VT, Custom);
859         setOperationAction(ISD::MGATHER, VT, Custom);
860         setOperationAction(ISD::MSCATTER, VT, Custom);
861 
862         setOperationAction(ISD::VP_LOAD, VT, Custom);
863         setOperationAction(ISD::VP_STORE, VT, Custom);
864         setOperationAction(ISD::VP_GATHER, VT, Custom);
865         setOperationAction(ISD::VP_SCATTER, VT, Custom);
866 
867         setOperationAction(ISD::ADD, VT, Custom);
868         setOperationAction(ISD::MUL, VT, Custom);
869         setOperationAction(ISD::SUB, VT, Custom);
870         setOperationAction(ISD::AND, VT, Custom);
871         setOperationAction(ISD::OR, VT, Custom);
872         setOperationAction(ISD::XOR, VT, Custom);
873         setOperationAction(ISD::SDIV, VT, Custom);
874         setOperationAction(ISD::SREM, VT, Custom);
875         setOperationAction(ISD::UDIV, VT, Custom);
876         setOperationAction(ISD::UREM, VT, Custom);
877         setOperationAction(ISD::SHL, VT, Custom);
878         setOperationAction(ISD::SRA, VT, Custom);
879         setOperationAction(ISD::SRL, VT, Custom);
880 
881         setOperationAction(ISD::SMIN, VT, Custom);
882         setOperationAction(ISD::SMAX, VT, Custom);
883         setOperationAction(ISD::UMIN, VT, Custom);
884         setOperationAction(ISD::UMAX, VT, Custom);
885         setOperationAction(ISD::ABS,  VT, Custom);
886 
887         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
888         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) {
889           setOperationAction(ISD::MULHS, VT, Custom);
890           setOperationAction(ISD::MULHU, VT, Custom);
891         }
892 
893         setOperationAction(ISD::SADDSAT, VT, Custom);
894         setOperationAction(ISD::UADDSAT, VT, Custom);
895         setOperationAction(ISD::SSUBSAT, VT, Custom);
896         setOperationAction(ISD::USUBSAT, VT, Custom);
897 
898         setOperationAction(ISD::VSELECT, VT, Custom);
899         setOperationAction(ISD::SELECT_CC, VT, Expand);
900 
901         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
902         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
903         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
904 
905         // Custom-lower reduction operations to set up the corresponding custom
906         // nodes' operands.
907         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
908         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
909         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
910         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
911         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
912 
913         for (unsigned VPOpc : IntegerVPOps)
914           setOperationAction(VPOpc, VT, Custom);
915 
916         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
917         // type that can represent the value exactly.
918         if (VT.getVectorElementType() != MVT::i64) {
919           MVT FloatEltVT =
920               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
921           EVT FloatVT =
922               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
923           if (isTypeLegal(FloatVT)) {
924             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
925             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
926           }
927         }
928       }
929 
930       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
931         if (!useRVVForFixedLengthVectorVT(VT))
932           continue;
933 
934         // By default everything must be expanded.
935         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
936           setOperationAction(Op, VT, Expand);
937         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
938           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
939           setTruncStoreAction(VT, OtherVT, Expand);
940         }
941 
942         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
943         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
944         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
945 
946         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
947         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
948         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
949         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
950         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
951 
952         setOperationAction(ISD::LOAD, VT, Custom);
953         setOperationAction(ISD::STORE, VT, Custom);
954         setOperationAction(ISD::MLOAD, VT, Custom);
955         setOperationAction(ISD::MSTORE, VT, Custom);
956         setOperationAction(ISD::MGATHER, VT, Custom);
957         setOperationAction(ISD::MSCATTER, VT, Custom);
958 
959         setOperationAction(ISD::VP_LOAD, VT, Custom);
960         setOperationAction(ISD::VP_STORE, VT, Custom);
961         setOperationAction(ISD::VP_GATHER, VT, Custom);
962         setOperationAction(ISD::VP_SCATTER, VT, Custom);
963 
964         setOperationAction(ISD::FADD, VT, Custom);
965         setOperationAction(ISD::FSUB, VT, Custom);
966         setOperationAction(ISD::FMUL, VT, Custom);
967         setOperationAction(ISD::FDIV, VT, Custom);
968         setOperationAction(ISD::FNEG, VT, Custom);
969         setOperationAction(ISD::FABS, VT, Custom);
970         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
971         setOperationAction(ISD::FSQRT, VT, Custom);
972         setOperationAction(ISD::FMA, VT, Custom);
973         setOperationAction(ISD::FMINNUM, VT, Custom);
974         setOperationAction(ISD::FMAXNUM, VT, Custom);
975 
976         setOperationAction(ISD::FP_ROUND, VT, Custom);
977         setOperationAction(ISD::FP_EXTEND, VT, Custom);
978 
979         setOperationAction(ISD::FTRUNC, VT, Custom);
980         setOperationAction(ISD::FCEIL, VT, Custom);
981         setOperationAction(ISD::FFLOOR, VT, Custom);
982         setOperationAction(ISD::FROUND, VT, Custom);
983 
984         for (auto CC : VFPCCToExpand)
985           setCondCodeAction(CC, VT, Expand);
986 
987         setOperationAction(ISD::VSELECT, VT, Custom);
988         setOperationAction(ISD::SELECT, VT, Custom);
989         setOperationAction(ISD::SELECT_CC, VT, Expand);
990 
991         setOperationAction(ISD::BITCAST, VT, Custom);
992 
993         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
994         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
995         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
996         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
997 
998         for (unsigned VPOpc : FloatingPointVPOps)
999           setOperationAction(VPOpc, VT, Custom);
1000       }
1001 
1002       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1003       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1004       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1005       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1006       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1007       if (Subtarget.hasStdExtZfh())
1008         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1009       if (Subtarget.hasStdExtF())
1010         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1011       if (Subtarget.hasStdExtD())
1012         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1013     }
1014   }
1015 
1016   // Function alignments.
1017   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1018   setMinFunctionAlignment(FunctionAlignment);
1019   setPrefFunctionAlignment(FunctionAlignment);
1020 
1021   setMinimumJumpTableEntries(5);
1022 
1023   // Jumps are expensive, compared to logic
1024   setJumpIsExpensive();
1025 
1026   setTargetDAGCombine(ISD::ADD);
1027   setTargetDAGCombine(ISD::SUB);
1028   setTargetDAGCombine(ISD::AND);
1029   setTargetDAGCombine(ISD::OR);
1030   setTargetDAGCombine(ISD::XOR);
1031   setTargetDAGCombine(ISD::ROTL);
1032   setTargetDAGCombine(ISD::ROTR);
1033   setTargetDAGCombine(ISD::ANY_EXTEND);
1034   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1035   if (Subtarget.hasStdExtZfh())
1036     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1037   if (Subtarget.hasStdExtF()) {
1038     setTargetDAGCombine(ISD::ZERO_EXTEND);
1039     setTargetDAGCombine(ISD::FP_TO_SINT);
1040     setTargetDAGCombine(ISD::FP_TO_UINT);
1041     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
1042     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
1043   }
1044   if (Subtarget.hasVInstructions()) {
1045     setTargetDAGCombine(ISD::FCOPYSIGN);
1046     setTargetDAGCombine(ISD::MGATHER);
1047     setTargetDAGCombine(ISD::MSCATTER);
1048     setTargetDAGCombine(ISD::VP_GATHER);
1049     setTargetDAGCombine(ISD::VP_SCATTER);
1050     setTargetDAGCombine(ISD::SRA);
1051     setTargetDAGCombine(ISD::SRL);
1052     setTargetDAGCombine(ISD::SHL);
1053     setTargetDAGCombine(ISD::STORE);
1054     setTargetDAGCombine(ISD::SPLAT_VECTOR);
1055   }
1056 
1057   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1058   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1059 }
1060 
1061 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1062                                             LLVMContext &Context,
1063                                             EVT VT) const {
1064   if (!VT.isVector())
1065     return getPointerTy(DL);
1066   if (Subtarget.hasVInstructions() &&
1067       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1068     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1069   return VT.changeVectorElementTypeToInteger();
1070 }
1071 
1072 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1073   return Subtarget.getXLenVT();
1074 }
1075 
1076 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1077                                              const CallInst &I,
1078                                              MachineFunction &MF,
1079                                              unsigned Intrinsic) const {
1080   auto &DL = I.getModule()->getDataLayout();
1081   switch (Intrinsic) {
1082   default:
1083     return false;
1084   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1085   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1086   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1087   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1088   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1089   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1090   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1091   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1092   case Intrinsic::riscv_masked_cmpxchg_i32:
1093     Info.opc = ISD::INTRINSIC_W_CHAIN;
1094     Info.memVT = MVT::i32;
1095     Info.ptrVal = I.getArgOperand(0);
1096     Info.offset = 0;
1097     Info.align = Align(4);
1098     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1099                  MachineMemOperand::MOVolatile;
1100     return true;
1101   case Intrinsic::riscv_masked_strided_load:
1102     Info.opc = ISD::INTRINSIC_W_CHAIN;
1103     Info.ptrVal = I.getArgOperand(1);
1104     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1105     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1106     Info.size = MemoryLocation::UnknownSize;
1107     Info.flags |= MachineMemOperand::MOLoad;
1108     return true;
1109   case Intrinsic::riscv_masked_strided_store:
1110     Info.opc = ISD::INTRINSIC_VOID;
1111     Info.ptrVal = I.getArgOperand(1);
1112     Info.memVT =
1113         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1114     Info.align = Align(
1115         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1116         8);
1117     Info.size = MemoryLocation::UnknownSize;
1118     Info.flags |= MachineMemOperand::MOStore;
1119     return true;
1120   }
1121 }
1122 
1123 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1124                                                 const AddrMode &AM, Type *Ty,
1125                                                 unsigned AS,
1126                                                 Instruction *I) const {
1127   // No global is ever allowed as a base.
1128   if (AM.BaseGV)
1129     return false;
1130 
1131   // Require a 12-bit signed offset.
1132   if (!isInt<12>(AM.BaseOffs))
1133     return false;
1134 
1135   switch (AM.Scale) {
1136   case 0: // "r+i" or just "i", depending on HasBaseReg.
1137     break;
1138   case 1:
1139     if (!AM.HasBaseReg) // allow "r+i".
1140       break;
1141     return false; // disallow "r+r" or "r+r+i".
1142   default:
1143     return false;
1144   }
1145 
1146   return true;
1147 }
1148 
1149 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1150   return isInt<12>(Imm);
1151 }
1152 
1153 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1154   return isInt<12>(Imm);
1155 }
1156 
1157 // On RV32, 64-bit integers are split into their high and low parts and held
1158 // in two different registers, so the trunc is free since the low register can
1159 // just be used.
1160 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1161   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1162     return false;
1163   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1164   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1165   return (SrcBits == 64 && DestBits == 32);
1166 }
1167 
1168 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1169   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1170       !SrcVT.isInteger() || !DstVT.isInteger())
1171     return false;
1172   unsigned SrcBits = SrcVT.getSizeInBits();
1173   unsigned DestBits = DstVT.getSizeInBits();
1174   return (SrcBits == 64 && DestBits == 32);
1175 }
1176 
1177 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1178   // Zexts are free if they can be combined with a load.
1179   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1180   // poorly with type legalization of compares preferring sext.
1181   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1182     EVT MemVT = LD->getMemoryVT();
1183     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1184         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1185          LD->getExtensionType() == ISD::ZEXTLOAD))
1186       return true;
1187   }
1188 
1189   return TargetLowering::isZExtFree(Val, VT2);
1190 }
1191 
1192 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1193   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1194 }
1195 
1196 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1197   return Subtarget.hasStdExtZbb();
1198 }
1199 
1200 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1201   return Subtarget.hasStdExtZbb();
1202 }
1203 
1204 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1205   EVT VT = Y.getValueType();
1206 
1207   // FIXME: Support vectors once we have tests.
1208   if (VT.isVector())
1209     return false;
1210 
1211   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1212           Subtarget.hasStdExtZbkb()) &&
1213          !isa<ConstantSDNode>(Y);
1214 }
1215 
1216 /// Check if sinking \p I's operands to I's basic block is profitable, because
1217 /// the operands can be folded into a target instruction, e.g.
1218 /// splats of scalars can fold into vector instructions.
1219 bool RISCVTargetLowering::shouldSinkOperands(
1220     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1221   using namespace llvm::PatternMatch;
1222 
1223   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1224     return false;
1225 
1226   auto IsSinker = [&](Instruction *I, int Operand) {
1227     switch (I->getOpcode()) {
1228     case Instruction::Add:
1229     case Instruction::Sub:
1230     case Instruction::Mul:
1231     case Instruction::And:
1232     case Instruction::Or:
1233     case Instruction::Xor:
1234     case Instruction::FAdd:
1235     case Instruction::FSub:
1236     case Instruction::FMul:
1237     case Instruction::FDiv:
1238     case Instruction::ICmp:
1239     case Instruction::FCmp:
1240       return true;
1241     case Instruction::Shl:
1242     case Instruction::LShr:
1243     case Instruction::AShr:
1244     case Instruction::UDiv:
1245     case Instruction::SDiv:
1246     case Instruction::URem:
1247     case Instruction::SRem:
1248       return Operand == 1;
1249     case Instruction::Call:
1250       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1251         switch (II->getIntrinsicID()) {
1252         case Intrinsic::fma:
1253         case Intrinsic::vp_fma:
1254           return Operand == 0 || Operand == 1;
1255         // FIXME: Our patterns can only match vx/vf instructions when the splat
1256         // it on the RHS, because TableGen doesn't recognize our VP operations
1257         // as commutative.
1258         case Intrinsic::vp_add:
1259         case Intrinsic::vp_mul:
1260         case Intrinsic::vp_and:
1261         case Intrinsic::vp_or:
1262         case Intrinsic::vp_xor:
1263         case Intrinsic::vp_fadd:
1264         case Intrinsic::vp_fmul:
1265         case Intrinsic::vp_shl:
1266         case Intrinsic::vp_lshr:
1267         case Intrinsic::vp_ashr:
1268         case Intrinsic::vp_udiv:
1269         case Intrinsic::vp_sdiv:
1270         case Intrinsic::vp_urem:
1271         case Intrinsic::vp_srem:
1272           return Operand == 1;
1273         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1274         // explicit patterns for both LHS and RHS (as 'vr' versions).
1275         case Intrinsic::vp_sub:
1276         case Intrinsic::vp_fsub:
1277         case Intrinsic::vp_fdiv:
1278           return Operand == 0 || Operand == 1;
1279         default:
1280           return false;
1281         }
1282       }
1283       return false;
1284     default:
1285       return false;
1286     }
1287   };
1288 
1289   for (auto OpIdx : enumerate(I->operands())) {
1290     if (!IsSinker(I, OpIdx.index()))
1291       continue;
1292 
1293     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1294     // Make sure we are not already sinking this operand
1295     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1296       continue;
1297 
1298     // We are looking for a splat that can be sunk.
1299     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1300                              m_Undef(), m_ZeroMask())))
1301       continue;
1302 
1303     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1304     // and vector registers
1305     for (Use &U : Op->uses()) {
1306       Instruction *Insn = cast<Instruction>(U.getUser());
1307       if (!IsSinker(Insn, U.getOperandNo()))
1308         return false;
1309     }
1310 
1311     Ops.push_back(&Op->getOperandUse(0));
1312     Ops.push_back(&OpIdx.value());
1313   }
1314   return true;
1315 }
1316 
1317 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1318                                        bool ForCodeSize) const {
1319   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1320   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1321     return false;
1322   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1323     return false;
1324   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1325     return false;
1326   return Imm.isZero();
1327 }
1328 
1329 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1330   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1331          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1332          (VT == MVT::f64 && Subtarget.hasStdExtD());
1333 }
1334 
1335 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1336                                                       CallingConv::ID CC,
1337                                                       EVT VT) const {
1338   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1339   // We might still end up using a GPR but that will be decided based on ABI.
1340   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1341   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1342     return MVT::f32;
1343 
1344   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1345 }
1346 
1347 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1348                                                            CallingConv::ID CC,
1349                                                            EVT VT) const {
1350   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1351   // We might still end up using a GPR but that will be decided based on ABI.
1352   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1353   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1354     return 1;
1355 
1356   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1357 }
1358 
1359 // Changes the condition code and swaps operands if necessary, so the SetCC
1360 // operation matches one of the comparisons supported directly by branches
1361 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1362 // with 1/-1.
1363 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1364                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1365   // Convert X > -1 to X >= 0.
1366   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1367     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1368     CC = ISD::SETGE;
1369     return;
1370   }
1371   // Convert X < 1 to 0 >= X.
1372   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1373     RHS = LHS;
1374     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1375     CC = ISD::SETGE;
1376     return;
1377   }
1378 
1379   switch (CC) {
1380   default:
1381     break;
1382   case ISD::SETGT:
1383   case ISD::SETLE:
1384   case ISD::SETUGT:
1385   case ISD::SETULE:
1386     CC = ISD::getSetCCSwappedOperands(CC);
1387     std::swap(LHS, RHS);
1388     break;
1389   }
1390 }
1391 
1392 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1393   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1394   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1395   if (VT.getVectorElementType() == MVT::i1)
1396     KnownSize *= 8;
1397 
1398   switch (KnownSize) {
1399   default:
1400     llvm_unreachable("Invalid LMUL.");
1401   case 8:
1402     return RISCVII::VLMUL::LMUL_F8;
1403   case 16:
1404     return RISCVII::VLMUL::LMUL_F4;
1405   case 32:
1406     return RISCVII::VLMUL::LMUL_F2;
1407   case 64:
1408     return RISCVII::VLMUL::LMUL_1;
1409   case 128:
1410     return RISCVII::VLMUL::LMUL_2;
1411   case 256:
1412     return RISCVII::VLMUL::LMUL_4;
1413   case 512:
1414     return RISCVII::VLMUL::LMUL_8;
1415   }
1416 }
1417 
1418 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1419   switch (LMul) {
1420   default:
1421     llvm_unreachable("Invalid LMUL.");
1422   case RISCVII::VLMUL::LMUL_F8:
1423   case RISCVII::VLMUL::LMUL_F4:
1424   case RISCVII::VLMUL::LMUL_F2:
1425   case RISCVII::VLMUL::LMUL_1:
1426     return RISCV::VRRegClassID;
1427   case RISCVII::VLMUL::LMUL_2:
1428     return RISCV::VRM2RegClassID;
1429   case RISCVII::VLMUL::LMUL_4:
1430     return RISCV::VRM4RegClassID;
1431   case RISCVII::VLMUL::LMUL_8:
1432     return RISCV::VRM8RegClassID;
1433   }
1434 }
1435 
1436 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1437   RISCVII::VLMUL LMUL = getLMUL(VT);
1438   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1439       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1440       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1441       LMUL == RISCVII::VLMUL::LMUL_1) {
1442     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1443                   "Unexpected subreg numbering");
1444     return RISCV::sub_vrm1_0 + Index;
1445   }
1446   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1447     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1448                   "Unexpected subreg numbering");
1449     return RISCV::sub_vrm2_0 + Index;
1450   }
1451   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1452     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1453                   "Unexpected subreg numbering");
1454     return RISCV::sub_vrm4_0 + Index;
1455   }
1456   llvm_unreachable("Invalid vector type.");
1457 }
1458 
1459 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1460   if (VT.getVectorElementType() == MVT::i1)
1461     return RISCV::VRRegClassID;
1462   return getRegClassIDForLMUL(getLMUL(VT));
1463 }
1464 
1465 // Attempt to decompose a subvector insert/extract between VecVT and
1466 // SubVecVT via subregister indices. Returns the subregister index that
1467 // can perform the subvector insert/extract with the given element index, as
1468 // well as the index corresponding to any leftover subvectors that must be
1469 // further inserted/extracted within the register class for SubVecVT.
1470 std::pair<unsigned, unsigned>
1471 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1472     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1473     const RISCVRegisterInfo *TRI) {
1474   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1475                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1476                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1477                 "Register classes not ordered");
1478   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1479   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1480   // Try to compose a subregister index that takes us from the incoming
1481   // LMUL>1 register class down to the outgoing one. At each step we half
1482   // the LMUL:
1483   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1484   // Note that this is not guaranteed to find a subregister index, such as
1485   // when we are extracting from one VR type to another.
1486   unsigned SubRegIdx = RISCV::NoSubRegister;
1487   for (const unsigned RCID :
1488        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1489     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1490       VecVT = VecVT.getHalfNumVectorElementsVT();
1491       bool IsHi =
1492           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1493       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1494                                             getSubregIndexByMVT(VecVT, IsHi));
1495       if (IsHi)
1496         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1497     }
1498   return {SubRegIdx, InsertExtractIdx};
1499 }
1500 
1501 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1502 // stores for those types.
1503 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1504   return !Subtarget.useRVVForFixedLengthVectors() ||
1505          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1506 }
1507 
1508 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1509   if (ScalarTy->isPointerTy())
1510     return true;
1511 
1512   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1513       ScalarTy->isIntegerTy(32))
1514     return true;
1515 
1516   if (ScalarTy->isIntegerTy(64))
1517     return Subtarget.hasVInstructionsI64();
1518 
1519   if (ScalarTy->isHalfTy())
1520     return Subtarget.hasVInstructionsF16();
1521   if (ScalarTy->isFloatTy())
1522     return Subtarget.hasVInstructionsF32();
1523   if (ScalarTy->isDoubleTy())
1524     return Subtarget.hasVInstructionsF64();
1525 
1526   return false;
1527 }
1528 
1529 static SDValue getVLOperand(SDValue Op) {
1530   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1531           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1532          "Unexpected opcode");
1533   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1534   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1535   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1536       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1537   if (!II)
1538     return SDValue();
1539   return Op.getOperand(II->VLOperand + 1 + HasChain);
1540 }
1541 
1542 static bool useRVVForFixedLengthVectorVT(MVT VT,
1543                                          const RISCVSubtarget &Subtarget) {
1544   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1545   if (!Subtarget.useRVVForFixedLengthVectors())
1546     return false;
1547 
1548   // We only support a set of vector types with a consistent maximum fixed size
1549   // across all supported vector element types to avoid legalization issues.
1550   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1551   // fixed-length vector type we support is 1024 bytes.
1552   if (VT.getFixedSizeInBits() > 1024 * 8)
1553     return false;
1554 
1555   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1556 
1557   MVT EltVT = VT.getVectorElementType();
1558 
1559   // Don't use RVV for vectors we cannot scalarize if required.
1560   switch (EltVT.SimpleTy) {
1561   // i1 is supported but has different rules.
1562   default:
1563     return false;
1564   case MVT::i1:
1565     // Masks can only use a single register.
1566     if (VT.getVectorNumElements() > MinVLen)
1567       return false;
1568     MinVLen /= 8;
1569     break;
1570   case MVT::i8:
1571   case MVT::i16:
1572   case MVT::i32:
1573     break;
1574   case MVT::i64:
1575     if (!Subtarget.hasVInstructionsI64())
1576       return false;
1577     break;
1578   case MVT::f16:
1579     if (!Subtarget.hasVInstructionsF16())
1580       return false;
1581     break;
1582   case MVT::f32:
1583     if (!Subtarget.hasVInstructionsF32())
1584       return false;
1585     break;
1586   case MVT::f64:
1587     if (!Subtarget.hasVInstructionsF64())
1588       return false;
1589     break;
1590   }
1591 
1592   // Reject elements larger than ELEN.
1593   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1594     return false;
1595 
1596   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1597   // Don't use RVV for types that don't fit.
1598   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1599     return false;
1600 
1601   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1602   // the base fixed length RVV support in place.
1603   if (!VT.isPow2VectorType())
1604     return false;
1605 
1606   return true;
1607 }
1608 
1609 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1610   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1611 }
1612 
1613 // Return the largest legal scalable vector type that matches VT's element type.
1614 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1615                                             const RISCVSubtarget &Subtarget) {
1616   // This may be called before legal types are setup.
1617   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1618           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1619          "Expected legal fixed length vector!");
1620 
1621   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1622   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1623 
1624   MVT EltVT = VT.getVectorElementType();
1625   switch (EltVT.SimpleTy) {
1626   default:
1627     llvm_unreachable("unexpected element type for RVV container");
1628   case MVT::i1:
1629   case MVT::i8:
1630   case MVT::i16:
1631   case MVT::i32:
1632   case MVT::i64:
1633   case MVT::f16:
1634   case MVT::f32:
1635   case MVT::f64: {
1636     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1637     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1638     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1639     unsigned NumElts =
1640         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1641     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1642     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1643     return MVT::getScalableVectorVT(EltVT, NumElts);
1644   }
1645   }
1646 }
1647 
1648 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1649                                             const RISCVSubtarget &Subtarget) {
1650   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1651                                           Subtarget);
1652 }
1653 
1654 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1655   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1656 }
1657 
1658 // Grow V to consume an entire RVV register.
1659 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1660                                        const RISCVSubtarget &Subtarget) {
1661   assert(VT.isScalableVector() &&
1662          "Expected to convert into a scalable vector!");
1663   assert(V.getValueType().isFixedLengthVector() &&
1664          "Expected a fixed length vector operand!");
1665   SDLoc DL(V);
1666   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1667   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1668 }
1669 
1670 // Shrink V so it's just big enough to maintain a VT's worth of data.
1671 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1672                                          const RISCVSubtarget &Subtarget) {
1673   assert(VT.isFixedLengthVector() &&
1674          "Expected to convert into a fixed length vector!");
1675   assert(V.getValueType().isScalableVector() &&
1676          "Expected a scalable vector operand!");
1677   SDLoc DL(V);
1678   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1679   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1680 }
1681 
1682 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1683 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1684 // the vector type that it is contained in.
1685 static std::pair<SDValue, SDValue>
1686 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1687                 const RISCVSubtarget &Subtarget) {
1688   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1689   MVT XLenVT = Subtarget.getXLenVT();
1690   SDValue VL = VecVT.isFixedLengthVector()
1691                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1692                    : DAG.getRegister(RISCV::X0, XLenVT);
1693   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1694   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1695   return {Mask, VL};
1696 }
1697 
1698 // As above but assuming the given type is a scalable vector type.
1699 static std::pair<SDValue, SDValue>
1700 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1701                         const RISCVSubtarget &Subtarget) {
1702   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1703   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1704 }
1705 
1706 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1707 // of either is (currently) supported. This can get us into an infinite loop
1708 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1709 // as a ..., etc.
1710 // Until either (or both) of these can reliably lower any node, reporting that
1711 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1712 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1713 // which is not desirable.
1714 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1715     EVT VT, unsigned DefinedValues) const {
1716   return false;
1717 }
1718 
1719 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1720                                   const RISCVSubtarget &Subtarget) {
1721   // RISCV FP-to-int conversions saturate to the destination register size, but
1722   // don't produce 0 for nan. We can use a conversion instruction and fix the
1723   // nan case with a compare and a select.
1724   SDValue Src = Op.getOperand(0);
1725 
1726   EVT DstVT = Op.getValueType();
1727   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1728 
1729   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1730   unsigned Opc;
1731   if (SatVT == DstVT)
1732     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1733   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1734     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1735   else
1736     return SDValue();
1737   // FIXME: Support other SatVTs by clamping before or after the conversion.
1738 
1739   SDLoc DL(Op);
1740   SDValue FpToInt = DAG.getNode(
1741       Opc, DL, DstVT, Src,
1742       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1743 
1744   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1745   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1746 }
1747 
1748 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1749 // and back. Taking care to avoid converting values that are nan or already
1750 // correct.
1751 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1752 // have FRM dependencies modeled yet.
1753 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1754   MVT VT = Op.getSimpleValueType();
1755   assert(VT.isVector() && "Unexpected type");
1756 
1757   SDLoc DL(Op);
1758 
1759   // Freeze the source since we are increasing the number of uses.
1760   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1761 
1762   // Truncate to integer and convert back to FP.
1763   MVT IntVT = VT.changeVectorElementTypeToInteger();
1764   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1765   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1766 
1767   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1768 
1769   if (Op.getOpcode() == ISD::FCEIL) {
1770     // If the truncated value is the greater than or equal to the original
1771     // value, we've computed the ceil. Otherwise, we went the wrong way and
1772     // need to increase by 1.
1773     // FIXME: This should use a masked operation. Handle here or in isel?
1774     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1775                                  DAG.getConstantFP(1.0, DL, VT));
1776     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1777     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1778   } else if (Op.getOpcode() == ISD::FFLOOR) {
1779     // If the truncated value is the less than or equal to the original value,
1780     // we've computed the floor. Otherwise, we went the wrong way and need to
1781     // decrease by 1.
1782     // FIXME: This should use a masked operation. Handle here or in isel?
1783     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1784                                  DAG.getConstantFP(1.0, DL, VT));
1785     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1786     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1787   }
1788 
1789   // Restore the original sign so that -0.0 is preserved.
1790   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1791 
1792   // Determine the largest integer that can be represented exactly. This and
1793   // values larger than it don't have any fractional bits so don't need to
1794   // be converted.
1795   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1796   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1797   APFloat MaxVal = APFloat(FltSem);
1798   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1799                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1800   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1801 
1802   // If abs(Src) was larger than MaxVal or nan, keep it.
1803   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1804   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1805   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1806 }
1807 
1808 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1809 // This mode isn't supported in vector hardware on RISCV. But as long as we
1810 // aren't compiling with trapping math, we can emulate this with
1811 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1812 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1813 // dependencies modeled yet.
1814 // FIXME: Use masked operations to avoid final merge.
1815 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1816   MVT VT = Op.getSimpleValueType();
1817   assert(VT.isVector() && "Unexpected type");
1818 
1819   SDLoc DL(Op);
1820 
1821   // Freeze the source since we are increasing the number of uses.
1822   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1823 
1824   // We do the conversion on the absolute value and fix the sign at the end.
1825   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1826 
1827   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1828   bool Ignored;
1829   APFloat Point5Pred = APFloat(0.5f);
1830   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1831   Point5Pred.next(/*nextDown*/ true);
1832 
1833   // Add the adjustment.
1834   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1835                                DAG.getConstantFP(Point5Pred, DL, VT));
1836 
1837   // Truncate to integer and convert back to fp.
1838   MVT IntVT = VT.changeVectorElementTypeToInteger();
1839   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1840   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1841 
1842   // Restore the original sign.
1843   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1844 
1845   // Determine the largest integer that can be represented exactly. This and
1846   // values larger than it don't have any fractional bits so don't need to
1847   // be converted.
1848   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1849   APFloat MaxVal = APFloat(FltSem);
1850   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1851                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1852   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1853 
1854   // If abs(Src) was larger than MaxVal or nan, keep it.
1855   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1856   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1857   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1858 }
1859 
1860 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1861                                  const RISCVSubtarget &Subtarget) {
1862   MVT VT = Op.getSimpleValueType();
1863   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1864 
1865   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1866 
1867   SDLoc DL(Op);
1868   SDValue Mask, VL;
1869   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1870 
1871   unsigned Opc =
1872       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1873   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
1874                               Op.getOperand(0), VL);
1875   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1876 }
1877 
1878 struct VIDSequence {
1879   int64_t StepNumerator;
1880   unsigned StepDenominator;
1881   int64_t Addend;
1882 };
1883 
1884 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1885 // to the (non-zero) step S and start value X. This can be then lowered as the
1886 // RVV sequence (VID * S) + X, for example.
1887 // The step S is represented as an integer numerator divided by a positive
1888 // denominator. Note that the implementation currently only identifies
1889 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1890 // cannot detect 2/3, for example.
1891 // Note that this method will also match potentially unappealing index
1892 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1893 // determine whether this is worth generating code for.
1894 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1895   unsigned NumElts = Op.getNumOperands();
1896   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1897   if (!Op.getValueType().isInteger())
1898     return None;
1899 
1900   Optional<unsigned> SeqStepDenom;
1901   Optional<int64_t> SeqStepNum, SeqAddend;
1902   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1903   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1904   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1905     // Assume undef elements match the sequence; we just have to be careful
1906     // when interpolating across them.
1907     if (Op.getOperand(Idx).isUndef())
1908       continue;
1909     // The BUILD_VECTOR must be all constants.
1910     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1911       return None;
1912 
1913     uint64_t Val = Op.getConstantOperandVal(Idx) &
1914                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1915 
1916     if (PrevElt) {
1917       // Calculate the step since the last non-undef element, and ensure
1918       // it's consistent across the entire sequence.
1919       unsigned IdxDiff = Idx - PrevElt->second;
1920       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1921 
1922       // A zero-value value difference means that we're somewhere in the middle
1923       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1924       // step change before evaluating the sequence.
1925       if (ValDiff != 0) {
1926         int64_t Remainder = ValDiff % IdxDiff;
1927         // Normalize the step if it's greater than 1.
1928         if (Remainder != ValDiff) {
1929           // The difference must cleanly divide the element span.
1930           if (Remainder != 0)
1931             return None;
1932           ValDiff /= IdxDiff;
1933           IdxDiff = 1;
1934         }
1935 
1936         if (!SeqStepNum)
1937           SeqStepNum = ValDiff;
1938         else if (ValDiff != SeqStepNum)
1939           return None;
1940 
1941         if (!SeqStepDenom)
1942           SeqStepDenom = IdxDiff;
1943         else if (IdxDiff != *SeqStepDenom)
1944           return None;
1945       }
1946     }
1947 
1948     // Record and/or check any addend.
1949     if (SeqStepNum && SeqStepDenom) {
1950       uint64_t ExpectedVal =
1951           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1952       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1953       if (!SeqAddend)
1954         SeqAddend = Addend;
1955       else if (SeqAddend != Addend)
1956         return None;
1957     }
1958 
1959     // Record this non-undef element for later.
1960     if (!PrevElt || PrevElt->first != Val)
1961       PrevElt = std::make_pair(Val, Idx);
1962   }
1963   // We need to have logged both a step and an addend for this to count as
1964   // a legal index sequence.
1965   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1966     return None;
1967 
1968   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1969 }
1970 
1971 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1972 // and lower it as a VRGATHER_VX_VL from the source vector.
1973 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1974                                   SelectionDAG &DAG,
1975                                   const RISCVSubtarget &Subtarget) {
1976   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1977     return SDValue();
1978   SDValue Vec = SplatVal.getOperand(0);
1979   // Only perform this optimization on vectors of the same size for simplicity.
1980   if (Vec.getValueType() != VT)
1981     return SDValue();
1982   SDValue Idx = SplatVal.getOperand(1);
1983   // The index must be a legal type.
1984   if (Idx.getValueType() != Subtarget.getXLenVT())
1985     return SDValue();
1986 
1987   MVT ContainerVT = VT;
1988   if (VT.isFixedLengthVector()) {
1989     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1990     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
1991   }
1992 
1993   SDValue Mask, VL;
1994   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1995 
1996   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
1997                                Idx, Mask, VL);
1998 
1999   if (!VT.isFixedLengthVector())
2000     return Gather;
2001 
2002   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2003 }
2004 
2005 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2006                                  const RISCVSubtarget &Subtarget) {
2007   MVT VT = Op.getSimpleValueType();
2008   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2009 
2010   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2011 
2012   SDLoc DL(Op);
2013   SDValue Mask, VL;
2014   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2015 
2016   MVT XLenVT = Subtarget.getXLenVT();
2017   unsigned NumElts = Op.getNumOperands();
2018 
2019   if (VT.getVectorElementType() == MVT::i1) {
2020     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2021       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2022       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2023     }
2024 
2025     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2026       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2027       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2028     }
2029 
2030     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2031     // scalar integer chunks whose bit-width depends on the number of mask
2032     // bits and XLEN.
2033     // First, determine the most appropriate scalar integer type to use. This
2034     // is at most XLenVT, but may be shrunk to a smaller vector element type
2035     // according to the size of the final vector - use i8 chunks rather than
2036     // XLenVT if we're producing a v8i1. This results in more consistent
2037     // codegen across RV32 and RV64.
2038     unsigned NumViaIntegerBits =
2039         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2040     NumViaIntegerBits = std::min(NumViaIntegerBits,
2041                                  Subtarget.getMaxELENForFixedLengthVectors());
2042     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2043       // If we have to use more than one INSERT_VECTOR_ELT then this
2044       // optimization is likely to increase code size; avoid peforming it in
2045       // such a case. We can use a load from a constant pool in this case.
2046       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2047         return SDValue();
2048       // Now we can create our integer vector type. Note that it may be larger
2049       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2050       MVT IntegerViaVecVT =
2051           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2052                            divideCeil(NumElts, NumViaIntegerBits));
2053 
2054       uint64_t Bits = 0;
2055       unsigned BitPos = 0, IntegerEltIdx = 0;
2056       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2057 
2058       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2059         // Once we accumulate enough bits to fill our scalar type, insert into
2060         // our vector and clear our accumulated data.
2061         if (I != 0 && I % NumViaIntegerBits == 0) {
2062           if (NumViaIntegerBits <= 32)
2063             Bits = SignExtend64(Bits, 32);
2064           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2065           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2066                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2067           Bits = 0;
2068           BitPos = 0;
2069           IntegerEltIdx++;
2070         }
2071         SDValue V = Op.getOperand(I);
2072         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2073         Bits |= ((uint64_t)BitValue << BitPos);
2074       }
2075 
2076       // Insert the (remaining) scalar value into position in our integer
2077       // vector type.
2078       if (NumViaIntegerBits <= 32)
2079         Bits = SignExtend64(Bits, 32);
2080       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2081       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2082                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2083 
2084       if (NumElts < NumViaIntegerBits) {
2085         // If we're producing a smaller vector than our minimum legal integer
2086         // type, bitcast to the equivalent (known-legal) mask type, and extract
2087         // our final mask.
2088         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2089         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2090         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2091                           DAG.getConstant(0, DL, XLenVT));
2092       } else {
2093         // Else we must have produced an integer type with the same size as the
2094         // mask type; bitcast for the final result.
2095         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2096         Vec = DAG.getBitcast(VT, Vec);
2097       }
2098 
2099       return Vec;
2100     }
2101 
2102     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2103     // vector type, we have a legal equivalently-sized i8 type, so we can use
2104     // that.
2105     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2106     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2107 
2108     SDValue WideVec;
2109     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2110       // For a splat, perform a scalar truncate before creating the wider
2111       // vector.
2112       assert(Splat.getValueType() == XLenVT &&
2113              "Unexpected type for i1 splat value");
2114       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2115                           DAG.getConstant(1, DL, XLenVT));
2116       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2117     } else {
2118       SmallVector<SDValue, 8> Ops(Op->op_values());
2119       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2120       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2121       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2122     }
2123 
2124     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2125   }
2126 
2127   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2128     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2129       return Gather;
2130     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2131                                         : RISCVISD::VMV_V_X_VL;
2132     Splat =
2133         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2134     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2135   }
2136 
2137   // Try and match index sequences, which we can lower to the vid instruction
2138   // with optional modifications. An all-undef vector is matched by
2139   // getSplatValue, above.
2140   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2141     int64_t StepNumerator = SimpleVID->StepNumerator;
2142     unsigned StepDenominator = SimpleVID->StepDenominator;
2143     int64_t Addend = SimpleVID->Addend;
2144 
2145     assert(StepNumerator != 0 && "Invalid step");
2146     bool Negate = false;
2147     int64_t SplatStepVal = StepNumerator;
2148     unsigned StepOpcode = ISD::MUL;
2149     if (StepNumerator != 1) {
2150       if (isPowerOf2_64(std::abs(StepNumerator))) {
2151         Negate = StepNumerator < 0;
2152         StepOpcode = ISD::SHL;
2153         SplatStepVal = Log2_64(std::abs(StepNumerator));
2154       }
2155     }
2156 
2157     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2158     // threshold since it's the immediate value many RVV instructions accept.
2159     // There is no vmul.vi instruction so ensure multiply constant can fit in
2160     // a single addi instruction.
2161     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2162          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2163         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2164       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2165       // Convert right out of the scalable type so we can use standard ISD
2166       // nodes for the rest of the computation. If we used scalable types with
2167       // these, we'd lose the fixed-length vector info and generate worse
2168       // vsetvli code.
2169       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2170       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2171           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2172         SDValue SplatStep = DAG.getSplatVector(
2173             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2174         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2175       }
2176       if (StepDenominator != 1) {
2177         SDValue SplatStep = DAG.getSplatVector(
2178             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2179         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2180       }
2181       if (Addend != 0 || Negate) {
2182         SDValue SplatAddend =
2183             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2184         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2185       }
2186       return VID;
2187     }
2188   }
2189 
2190   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2191   // when re-interpreted as a vector with a larger element type. For example,
2192   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2193   // could be instead splat as
2194   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2195   // TODO: This optimization could also work on non-constant splats, but it
2196   // would require bit-manipulation instructions to construct the splat value.
2197   SmallVector<SDValue> Sequence;
2198   unsigned EltBitSize = VT.getScalarSizeInBits();
2199   const auto *BV = cast<BuildVectorSDNode>(Op);
2200   if (VT.isInteger() && EltBitSize < 64 &&
2201       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2202       BV->getRepeatedSequence(Sequence) &&
2203       (Sequence.size() * EltBitSize) <= 64) {
2204     unsigned SeqLen = Sequence.size();
2205     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2206     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2207     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2208             ViaIntVT == MVT::i64) &&
2209            "Unexpected sequence type");
2210 
2211     unsigned EltIdx = 0;
2212     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2213     uint64_t SplatValue = 0;
2214     // Construct the amalgamated value which can be splatted as this larger
2215     // vector type.
2216     for (const auto &SeqV : Sequence) {
2217       if (!SeqV.isUndef())
2218         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2219                        << (EltIdx * EltBitSize));
2220       EltIdx++;
2221     }
2222 
2223     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2224     // achieve better constant materializion.
2225     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2226       SplatValue = SignExtend64(SplatValue, 32);
2227 
2228     // Since we can't introduce illegal i64 types at this stage, we can only
2229     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2230     // way we can use RVV instructions to splat.
2231     assert((ViaIntVT.bitsLE(XLenVT) ||
2232             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2233            "Unexpected bitcast sequence");
2234     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2235       SDValue ViaVL =
2236           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2237       MVT ViaContainerVT =
2238           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2239       SDValue Splat =
2240           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2241                       DAG.getUNDEF(ViaContainerVT),
2242                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2243       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2244       return DAG.getBitcast(VT, Splat);
2245     }
2246   }
2247 
2248   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2249   // which constitute a large proportion of the elements. In such cases we can
2250   // splat a vector with the dominant element and make up the shortfall with
2251   // INSERT_VECTOR_ELTs.
2252   // Note that this includes vectors of 2 elements by association. The
2253   // upper-most element is the "dominant" one, allowing us to use a splat to
2254   // "insert" the upper element, and an insert of the lower element at position
2255   // 0, which improves codegen.
2256   SDValue DominantValue;
2257   unsigned MostCommonCount = 0;
2258   DenseMap<SDValue, unsigned> ValueCounts;
2259   unsigned NumUndefElts =
2260       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2261 
2262   // Track the number of scalar loads we know we'd be inserting, estimated as
2263   // any non-zero floating-point constant. Other kinds of element are either
2264   // already in registers or are materialized on demand. The threshold at which
2265   // a vector load is more desirable than several scalar materializion and
2266   // vector-insertion instructions is not known.
2267   unsigned NumScalarLoads = 0;
2268 
2269   for (SDValue V : Op->op_values()) {
2270     if (V.isUndef())
2271       continue;
2272 
2273     ValueCounts.insert(std::make_pair(V, 0));
2274     unsigned &Count = ValueCounts[V];
2275 
2276     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2277       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2278 
2279     // Is this value dominant? In case of a tie, prefer the highest element as
2280     // it's cheaper to insert near the beginning of a vector than it is at the
2281     // end.
2282     if (++Count >= MostCommonCount) {
2283       DominantValue = V;
2284       MostCommonCount = Count;
2285     }
2286   }
2287 
2288   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2289   unsigned NumDefElts = NumElts - NumUndefElts;
2290   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2291 
2292   // Don't perform this optimization when optimizing for size, since
2293   // materializing elements and inserting them tends to cause code bloat.
2294   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2295       ((MostCommonCount > DominantValueCountThreshold) ||
2296        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2297     // Start by splatting the most common element.
2298     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2299 
2300     DenseSet<SDValue> Processed{DominantValue};
2301     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2302     for (const auto &OpIdx : enumerate(Op->ops())) {
2303       const SDValue &V = OpIdx.value();
2304       if (V.isUndef() || !Processed.insert(V).second)
2305         continue;
2306       if (ValueCounts[V] == 1) {
2307         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2308                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2309       } else {
2310         // Blend in all instances of this value using a VSELECT, using a
2311         // mask where each bit signals whether that element is the one
2312         // we're after.
2313         SmallVector<SDValue> Ops;
2314         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2315           return DAG.getConstant(V == V1, DL, XLenVT);
2316         });
2317         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2318                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2319                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2320       }
2321     }
2322 
2323     return Vec;
2324   }
2325 
2326   return SDValue();
2327 }
2328 
2329 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2330                                    SDValue Lo, SDValue Hi, SDValue VL,
2331                                    SelectionDAG &DAG) {
2332   bool HasPassthru = Passthru && !Passthru.isUndef();
2333   if (!HasPassthru && !Passthru)
2334     Passthru = DAG.getUNDEF(VT);
2335   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2336     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2337     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2338     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2339     // node in order to try and match RVV vector/scalar instructions.
2340     if ((LoC >> 31) == HiC)
2341       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2342 
2343     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2344     // vmv.v.x whose EEW = 32 to lower it.
2345     auto *Const = dyn_cast<ConstantSDNode>(VL);
2346     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2347       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2348       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2349       // access the subtarget here now.
2350       auto InterVec = DAG.getNode(
2351           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2352                                   DAG.getRegister(RISCV::X0, MVT::i32));
2353       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2354     }
2355   }
2356 
2357   // Fall back to a stack store and stride x0 vector load.
2358   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2359                      Hi, VL);
2360 }
2361 
2362 // Called by type legalization to handle splat of i64 on RV32.
2363 // FIXME: We can optimize this when the type has sign or zero bits in one
2364 // of the halves.
2365 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2366                                    SDValue Scalar, SDValue VL,
2367                                    SelectionDAG &DAG) {
2368   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2369   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2370                            DAG.getConstant(0, DL, MVT::i32));
2371   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2372                            DAG.getConstant(1, DL, MVT::i32));
2373   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2374 }
2375 
2376 // This function lowers a splat of a scalar operand Splat with the vector
2377 // length VL. It ensures the final sequence is type legal, which is useful when
2378 // lowering a splat after type legalization.
2379 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2380                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2381                                 const RISCVSubtarget &Subtarget) {
2382   bool HasPassthru = Passthru && !Passthru.isUndef();
2383   if (!HasPassthru && !Passthru)
2384     Passthru = DAG.getUNDEF(VT);
2385   if (VT.isFloatingPoint()) {
2386     // If VL is 1, we could use vfmv.s.f.
2387     if (isOneConstant(VL))
2388       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2389     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2390   }
2391 
2392   MVT XLenVT = Subtarget.getXLenVT();
2393 
2394   // Simplest case is that the operand needs to be promoted to XLenVT.
2395   if (Scalar.getValueType().bitsLE(XLenVT)) {
2396     // If the operand is a constant, sign extend to increase our chances
2397     // of being able to use a .vi instruction. ANY_EXTEND would become a
2398     // a zero extend and the simm5 check in isel would fail.
2399     // FIXME: Should we ignore the upper bits in isel instead?
2400     unsigned ExtOpc =
2401         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2402     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2403     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2404     // If VL is 1 and the scalar value won't benefit from immediate, we could
2405     // use vmv.s.x.
2406     if (isOneConstant(VL) &&
2407         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2408       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2409     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2410   }
2411 
2412   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2413          "Unexpected scalar for splat lowering!");
2414 
2415   if (isOneConstant(VL) && isNullConstant(Scalar))
2416     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2417                        DAG.getConstant(0, DL, XLenVT), VL);
2418 
2419   // Otherwise use the more complicated splatting algorithm.
2420   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2421 }
2422 
2423 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2424                                 const RISCVSubtarget &Subtarget) {
2425   // We need to be able to widen elements to the next larger integer type.
2426   if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors())
2427     return false;
2428 
2429   int Size = Mask.size();
2430   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2431 
2432   int Srcs[] = {-1, -1};
2433   for (int i = 0; i != Size; ++i) {
2434     // Ignore undef elements.
2435     if (Mask[i] < 0)
2436       continue;
2437 
2438     // Is this an even or odd element.
2439     int Pol = i % 2;
2440 
2441     // Ensure we consistently use the same source for this element polarity.
2442     int Src = Mask[i] / Size;
2443     if (Srcs[Pol] < 0)
2444       Srcs[Pol] = Src;
2445     if (Srcs[Pol] != Src)
2446       return false;
2447 
2448     // Make sure the element within the source is appropriate for this element
2449     // in the destination.
2450     int Elt = Mask[i] % Size;
2451     if (Elt != i / 2)
2452       return false;
2453   }
2454 
2455   // We need to find a source for each polarity and they can't be the same.
2456   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2457     return false;
2458 
2459   // Swap the sources if the second source was in the even polarity.
2460   SwapSources = Srcs[0] > Srcs[1];
2461 
2462   return true;
2463 }
2464 
2465 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2466 /// and then extract the original number of elements from the rotated result.
2467 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2468 /// returned rotation amount is for a rotate right, where elements move from
2469 /// higher elements to lower elements. \p LoSrc indicates the first source
2470 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2471 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2472 /// 0 or 1 if a rotation is found.
2473 ///
2474 /// NOTE: We talk about rotate to the right which matches how bit shift and
2475 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2476 /// and the table below write vectors with the lowest elements on the left.
2477 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2478   int Size = Mask.size();
2479 
2480   // We need to detect various ways of spelling a rotation:
2481   //   [11, 12, 13, 14, 15,  0,  1,  2]
2482   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2483   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2484   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2485   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2486   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2487   int Rotation = 0;
2488   LoSrc = -1;
2489   HiSrc = -1;
2490   for (int i = 0; i != Size; ++i) {
2491     int M = Mask[i];
2492     if (M < 0)
2493       continue;
2494 
2495     // Determine where a rotate vector would have started.
2496     int StartIdx = i - (M % Size);
2497     // The identity rotation isn't interesting, stop.
2498     if (StartIdx == 0)
2499       return -1;
2500 
2501     // If we found the tail of a vector the rotation must be the missing
2502     // front. If we found the head of a vector, it must be how much of the
2503     // head.
2504     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2505 
2506     if (Rotation == 0)
2507       Rotation = CandidateRotation;
2508     else if (Rotation != CandidateRotation)
2509       // The rotations don't match, so we can't match this mask.
2510       return -1;
2511 
2512     // Compute which value this mask is pointing at.
2513     int MaskSrc = M < Size ? 0 : 1;
2514 
2515     // Compute which of the two target values this index should be assigned to.
2516     // This reflects whether the high elements are remaining or the low elemnts
2517     // are remaining.
2518     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2519 
2520     // Either set up this value if we've not encountered it before, or check
2521     // that it remains consistent.
2522     if (TargetSrc < 0)
2523       TargetSrc = MaskSrc;
2524     else if (TargetSrc != MaskSrc)
2525       // This may be a rotation, but it pulls from the inputs in some
2526       // unsupported interleaving.
2527       return -1;
2528   }
2529 
2530   // Check that we successfully analyzed the mask, and normalize the results.
2531   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2532   assert((LoSrc >= 0 || HiSrc >= 0) &&
2533          "Failed to find a rotated input vector!");
2534 
2535   return Rotation;
2536 }
2537 
2538 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2539                                    const RISCVSubtarget &Subtarget) {
2540   SDValue V1 = Op.getOperand(0);
2541   SDValue V2 = Op.getOperand(1);
2542   SDLoc DL(Op);
2543   MVT XLenVT = Subtarget.getXLenVT();
2544   MVT VT = Op.getSimpleValueType();
2545   unsigned NumElts = VT.getVectorNumElements();
2546   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2547 
2548   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2549 
2550   SDValue TrueMask, VL;
2551   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2552 
2553   if (SVN->isSplat()) {
2554     const int Lane = SVN->getSplatIndex();
2555     if (Lane >= 0) {
2556       MVT SVT = VT.getVectorElementType();
2557 
2558       // Turn splatted vector load into a strided load with an X0 stride.
2559       SDValue V = V1;
2560       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2561       // with undef.
2562       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2563       int Offset = Lane;
2564       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2565         int OpElements =
2566             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2567         V = V.getOperand(Offset / OpElements);
2568         Offset %= OpElements;
2569       }
2570 
2571       // We need to ensure the load isn't atomic or volatile.
2572       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2573         auto *Ld = cast<LoadSDNode>(V);
2574         Offset *= SVT.getStoreSize();
2575         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2576                                                    TypeSize::Fixed(Offset), DL);
2577 
2578         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2579         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2580           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2581           SDValue IntID =
2582               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2583           SDValue Ops[] = {Ld->getChain(),
2584                            IntID,
2585                            DAG.getUNDEF(ContainerVT),
2586                            NewAddr,
2587                            DAG.getRegister(RISCV::X0, XLenVT),
2588                            VL};
2589           SDValue NewLoad = DAG.getMemIntrinsicNode(
2590               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2591               DAG.getMachineFunction().getMachineMemOperand(
2592                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2593           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2594           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2595         }
2596 
2597         // Otherwise use a scalar load and splat. This will give the best
2598         // opportunity to fold a splat into the operation. ISel can turn it into
2599         // the x0 strided load if we aren't able to fold away the select.
2600         if (SVT.isFloatingPoint())
2601           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2602                           Ld->getPointerInfo().getWithOffset(Offset),
2603                           Ld->getOriginalAlign(),
2604                           Ld->getMemOperand()->getFlags());
2605         else
2606           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2607                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2608                              Ld->getOriginalAlign(),
2609                              Ld->getMemOperand()->getFlags());
2610         DAG.makeEquivalentMemoryOrdering(Ld, V);
2611 
2612         unsigned Opc =
2613             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2614         SDValue Splat =
2615             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2616         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2617       }
2618 
2619       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2620       assert(Lane < (int)NumElts && "Unexpected lane!");
2621       SDValue Gather =
2622           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2623                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2624       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2625     }
2626   }
2627 
2628   ArrayRef<int> Mask = SVN->getMask();
2629 
2630   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2631   // be undef which can be handled with a single SLIDEDOWN/UP.
2632   int LoSrc, HiSrc;
2633   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2634   if (Rotation > 0) {
2635     SDValue LoV, HiV;
2636     if (LoSrc >= 0) {
2637       LoV = LoSrc == 0 ? V1 : V2;
2638       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2639     }
2640     if (HiSrc >= 0) {
2641       HiV = HiSrc == 0 ? V1 : V2;
2642       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2643     }
2644 
2645     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2646     // to slide LoV up by (NumElts - Rotation).
2647     unsigned InvRotate = NumElts - Rotation;
2648 
2649     SDValue Res = DAG.getUNDEF(ContainerVT);
2650     if (HiV) {
2651       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2652       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2653       // causes multiple vsetvlis in some test cases such as lowering
2654       // reduce.mul
2655       SDValue DownVL = VL;
2656       if (LoV)
2657         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2658       Res =
2659           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2660                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2661     }
2662     if (LoV)
2663       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2664                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2665 
2666     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2667   }
2668 
2669   // Detect an interleave shuffle and lower to
2670   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2671   bool SwapSources;
2672   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2673     // Swap sources if needed.
2674     if (SwapSources)
2675       std::swap(V1, V2);
2676 
2677     // Extract the lower half of the vectors.
2678     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2679     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2680                      DAG.getConstant(0, DL, XLenVT));
2681     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2682                      DAG.getConstant(0, DL, XLenVT));
2683 
2684     // Double the element width and halve the number of elements in an int type.
2685     unsigned EltBits = VT.getScalarSizeInBits();
2686     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2687     MVT WideIntVT =
2688         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2689     // Convert this to a scalable vector. We need to base this on the
2690     // destination size to ensure there's always a type with a smaller LMUL.
2691     MVT WideIntContainerVT =
2692         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2693 
2694     // Convert sources to scalable vectors with the same element count as the
2695     // larger type.
2696     MVT HalfContainerVT = MVT::getVectorVT(
2697         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2698     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2699     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2700 
2701     // Cast sources to integer.
2702     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2703     MVT IntHalfVT =
2704         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2705     V1 = DAG.getBitcast(IntHalfVT, V1);
2706     V2 = DAG.getBitcast(IntHalfVT, V2);
2707 
2708     // Freeze V2 since we use it twice and we need to be sure that the add and
2709     // multiply see the same value.
2710     V2 = DAG.getFreeze(V2);
2711 
2712     // Recreate TrueMask using the widened type's element count.
2713     MVT MaskVT =
2714         MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount());
2715     TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2716 
2717     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2718     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2719                               V2, TrueMask, VL);
2720     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2721     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2722                                      DAG.getUNDEF(IntHalfVT),
2723                                      DAG.getAllOnesConstant(DL, XLenVT));
2724     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2725                                    V2, Multiplier, TrueMask, VL);
2726     // Add the new copies to our previous addition giving us 2^eltbits copies of
2727     // V2. This is equivalent to shifting V2 left by eltbits. This should
2728     // combine with the vwmulu.vv above to form vwmaccu.vv.
2729     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2730                       TrueMask, VL);
2731     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2732     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2733     // vector VT.
2734     ContainerVT =
2735         MVT::getVectorVT(VT.getVectorElementType(),
2736                          WideIntContainerVT.getVectorElementCount() * 2);
2737     Add = DAG.getBitcast(ContainerVT, Add);
2738     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2739   }
2740 
2741   // Detect shuffles which can be re-expressed as vector selects; these are
2742   // shuffles in which each element in the destination is taken from an element
2743   // at the corresponding index in either source vectors.
2744   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2745     int MaskIndex = MaskIdx.value();
2746     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2747   });
2748 
2749   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2750 
2751   SmallVector<SDValue> MaskVals;
2752   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2753   // merged with a second vrgather.
2754   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2755 
2756   // By default we preserve the original operand order, and use a mask to
2757   // select LHS as true and RHS as false. However, since RVV vector selects may
2758   // feature splats but only on the LHS, we may choose to invert our mask and
2759   // instead select between RHS and LHS.
2760   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2761   bool InvertMask = IsSelect == SwapOps;
2762 
2763   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2764   // half.
2765   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2766 
2767   // Now construct the mask that will be used by the vselect or blended
2768   // vrgather operation. For vrgathers, construct the appropriate indices into
2769   // each vector.
2770   for (int MaskIndex : Mask) {
2771     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2772     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2773     if (!IsSelect) {
2774       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2775       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2776                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2777                                      : DAG.getUNDEF(XLenVT));
2778       GatherIndicesRHS.push_back(
2779           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2780                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2781       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2782         ++LHSIndexCounts[MaskIndex];
2783       if (!IsLHSOrUndefIndex)
2784         ++RHSIndexCounts[MaskIndex - NumElts];
2785     }
2786   }
2787 
2788   if (SwapOps) {
2789     std::swap(V1, V2);
2790     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2791   }
2792 
2793   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2794   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2795   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2796 
2797   if (IsSelect)
2798     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2799 
2800   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2801     // On such a large vector we're unable to use i8 as the index type.
2802     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2803     // may involve vector splitting if we're already at LMUL=8, or our
2804     // user-supplied maximum fixed-length LMUL.
2805     return SDValue();
2806   }
2807 
2808   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2809   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2810   MVT IndexVT = VT.changeTypeToInteger();
2811   // Since we can't introduce illegal index types at this stage, use i16 and
2812   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2813   // than XLenVT.
2814   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2815     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2816     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2817   }
2818 
2819   MVT IndexContainerVT =
2820       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2821 
2822   SDValue Gather;
2823   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2824   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2825   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2826     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2827                               Subtarget);
2828   } else {
2829     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2830     // If only one index is used, we can use a "splat" vrgather.
2831     // TODO: We can splat the most-common index and fix-up any stragglers, if
2832     // that's beneficial.
2833     if (LHSIndexCounts.size() == 1) {
2834       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2835       Gather =
2836           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2837                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2838     } else {
2839       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2840       LHSIndices =
2841           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2842 
2843       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2844                            TrueMask, VL);
2845     }
2846   }
2847 
2848   // If a second vector operand is used by this shuffle, blend it in with an
2849   // additional vrgather.
2850   if (!V2.isUndef()) {
2851     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2852     // If only one index is used, we can use a "splat" vrgather.
2853     // TODO: We can splat the most-common index and fix-up any stragglers, if
2854     // that's beneficial.
2855     if (RHSIndexCounts.size() == 1) {
2856       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2857       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2858                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2859     } else {
2860       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2861       RHSIndices =
2862           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2863       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2864                        VL);
2865     }
2866 
2867     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2868     SelectMask =
2869         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2870 
2871     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2872                          Gather, VL);
2873   }
2874 
2875   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2876 }
2877 
2878 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2879   // Support splats for any type. These should type legalize well.
2880   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2881     return true;
2882 
2883   // Only support legal VTs for other shuffles for now.
2884   if (!isTypeLegal(VT))
2885     return false;
2886 
2887   MVT SVT = VT.getSimpleVT();
2888 
2889   bool SwapSources;
2890   int LoSrc, HiSrc;
2891   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2892          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2893 }
2894 
2895 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2896                                      SDLoc DL, SelectionDAG &DAG,
2897                                      const RISCVSubtarget &Subtarget) {
2898   if (VT.isScalableVector())
2899     return DAG.getFPExtendOrRound(Op, DL, VT);
2900   assert(VT.isFixedLengthVector() &&
2901          "Unexpected value type for RVV FP extend/round lowering");
2902   SDValue Mask, VL;
2903   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2904   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2905                         ? RISCVISD::FP_EXTEND_VL
2906                         : RISCVISD::FP_ROUND_VL;
2907   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2908 }
2909 
2910 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2911 // the exponent.
2912 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2913   MVT VT = Op.getSimpleValueType();
2914   unsigned EltSize = VT.getScalarSizeInBits();
2915   SDValue Src = Op.getOperand(0);
2916   SDLoc DL(Op);
2917 
2918   // We need a FP type that can represent the value.
2919   // TODO: Use f16 for i8 when possible?
2920   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2921   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2922 
2923   // Legal types should have been checked in the RISCVTargetLowering
2924   // constructor.
2925   // TODO: Splitting may make sense in some cases.
2926   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2927          "Expected legal float type!");
2928 
2929   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2930   // The trailing zero count is equal to log2 of this single bit value.
2931   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2932     SDValue Neg =
2933         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2934     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2935   }
2936 
2937   // We have a legal FP type, convert to it.
2938   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2939   // Bitcast to integer and shift the exponent to the LSB.
2940   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2941   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2942   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2943   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2944                               DAG.getConstant(ShiftAmt, DL, IntVT));
2945   // Truncate back to original type to allow vnsrl.
2946   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2947   // The exponent contains log2 of the value in biased form.
2948   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2949 
2950   // For trailing zeros, we just need to subtract the bias.
2951   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2952     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2953                        DAG.getConstant(ExponentBias, DL, VT));
2954 
2955   // For leading zeros, we need to remove the bias and convert from log2 to
2956   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2957   unsigned Adjust = ExponentBias + (EltSize - 1);
2958   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2959 }
2960 
2961 // While RVV has alignment restrictions, we should always be able to load as a
2962 // legal equivalently-sized byte-typed vector instead. This method is
2963 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2964 // the load is already correctly-aligned, it returns SDValue().
2965 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2966                                                     SelectionDAG &DAG) const {
2967   auto *Load = cast<LoadSDNode>(Op);
2968   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2969 
2970   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2971                                      Load->getMemoryVT(),
2972                                      *Load->getMemOperand()))
2973     return SDValue();
2974 
2975   SDLoc DL(Op);
2976   MVT VT = Op.getSimpleValueType();
2977   unsigned EltSizeBits = VT.getScalarSizeInBits();
2978   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2979          "Unexpected unaligned RVV load type");
2980   MVT NewVT =
2981       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2982   assert(NewVT.isValid() &&
2983          "Expecting equally-sized RVV vector types to be legal");
2984   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2985                           Load->getPointerInfo(), Load->getOriginalAlign(),
2986                           Load->getMemOperand()->getFlags());
2987   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2988 }
2989 
2990 // While RVV has alignment restrictions, we should always be able to store as a
2991 // legal equivalently-sized byte-typed vector instead. This method is
2992 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2993 // returns SDValue() if the store is already correctly aligned.
2994 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2995                                                      SelectionDAG &DAG) const {
2996   auto *Store = cast<StoreSDNode>(Op);
2997   assert(Store && Store->getValue().getValueType().isVector() &&
2998          "Expected vector store");
2999 
3000   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3001                                      Store->getMemoryVT(),
3002                                      *Store->getMemOperand()))
3003     return SDValue();
3004 
3005   SDLoc DL(Op);
3006   SDValue StoredVal = Store->getValue();
3007   MVT VT = StoredVal.getSimpleValueType();
3008   unsigned EltSizeBits = VT.getScalarSizeInBits();
3009   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3010          "Unexpected unaligned RVV store type");
3011   MVT NewVT =
3012       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3013   assert(NewVT.isValid() &&
3014          "Expecting equally-sized RVV vector types to be legal");
3015   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3016   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3017                       Store->getPointerInfo(), Store->getOriginalAlign(),
3018                       Store->getMemOperand()->getFlags());
3019 }
3020 
3021 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3022                                             SelectionDAG &DAG) const {
3023   switch (Op.getOpcode()) {
3024   default:
3025     report_fatal_error("unimplemented operand");
3026   case ISD::GlobalAddress:
3027     return lowerGlobalAddress(Op, DAG);
3028   case ISD::BlockAddress:
3029     return lowerBlockAddress(Op, DAG);
3030   case ISD::ConstantPool:
3031     return lowerConstantPool(Op, DAG);
3032   case ISD::JumpTable:
3033     return lowerJumpTable(Op, DAG);
3034   case ISD::GlobalTLSAddress:
3035     return lowerGlobalTLSAddress(Op, DAG);
3036   case ISD::SELECT:
3037     return lowerSELECT(Op, DAG);
3038   case ISD::BRCOND:
3039     return lowerBRCOND(Op, DAG);
3040   case ISD::VASTART:
3041     return lowerVASTART(Op, DAG);
3042   case ISD::FRAMEADDR:
3043     return lowerFRAMEADDR(Op, DAG);
3044   case ISD::RETURNADDR:
3045     return lowerRETURNADDR(Op, DAG);
3046   case ISD::SHL_PARTS:
3047     return lowerShiftLeftParts(Op, DAG);
3048   case ISD::SRA_PARTS:
3049     return lowerShiftRightParts(Op, DAG, true);
3050   case ISD::SRL_PARTS:
3051     return lowerShiftRightParts(Op, DAG, false);
3052   case ISD::BITCAST: {
3053     SDLoc DL(Op);
3054     EVT VT = Op.getValueType();
3055     SDValue Op0 = Op.getOperand(0);
3056     EVT Op0VT = Op0.getValueType();
3057     MVT XLenVT = Subtarget.getXLenVT();
3058     if (VT.isFixedLengthVector()) {
3059       // We can handle fixed length vector bitcasts with a simple replacement
3060       // in isel.
3061       if (Op0VT.isFixedLengthVector())
3062         return Op;
3063       // When bitcasting from scalar to fixed-length vector, insert the scalar
3064       // into a one-element vector of the result type, and perform a vector
3065       // bitcast.
3066       if (!Op0VT.isVector()) {
3067         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3068         if (!isTypeLegal(BVT))
3069           return SDValue();
3070         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3071                                               DAG.getUNDEF(BVT), Op0,
3072                                               DAG.getConstant(0, DL, XLenVT)));
3073       }
3074       return SDValue();
3075     }
3076     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3077     // thus: bitcast the vector to a one-element vector type whose element type
3078     // is the same as the result type, and extract the first element.
3079     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3080       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3081       if (!isTypeLegal(BVT))
3082         return SDValue();
3083       SDValue BVec = DAG.getBitcast(BVT, Op0);
3084       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3085                          DAG.getConstant(0, DL, XLenVT));
3086     }
3087     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3088       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3089       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3090       return FPConv;
3091     }
3092     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3093         Subtarget.hasStdExtF()) {
3094       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3095       SDValue FPConv =
3096           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3097       return FPConv;
3098     }
3099     return SDValue();
3100   }
3101   case ISD::INTRINSIC_WO_CHAIN:
3102     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3103   case ISD::INTRINSIC_W_CHAIN:
3104     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3105   case ISD::INTRINSIC_VOID:
3106     return LowerINTRINSIC_VOID(Op, DAG);
3107   case ISD::BSWAP:
3108   case ISD::BITREVERSE: {
3109     MVT VT = Op.getSimpleValueType();
3110     SDLoc DL(Op);
3111     if (Subtarget.hasStdExtZbp()) {
3112       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3113       // Start with the maximum immediate value which is the bitwidth - 1.
3114       unsigned Imm = VT.getSizeInBits() - 1;
3115       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3116       if (Op.getOpcode() == ISD::BSWAP)
3117         Imm &= ~0x7U;
3118       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3119                          DAG.getConstant(Imm, DL, VT));
3120     }
3121     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3122     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3123     // Expand bitreverse to a bswap(rev8) followed by brev8.
3124     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3125     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3126     // as brev8 by an isel pattern.
3127     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3128                        DAG.getConstant(7, DL, VT));
3129   }
3130   case ISD::FSHL:
3131   case ISD::FSHR: {
3132     MVT VT = Op.getSimpleValueType();
3133     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3134     SDLoc DL(Op);
3135     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3136     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3137     // accidentally setting the extra bit.
3138     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3139     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3140                                 DAG.getConstant(ShAmtWidth, DL, VT));
3141     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3142     // instruction use different orders. fshl will return its first operand for
3143     // shift of zero, fshr will return its second operand. fsl and fsr both
3144     // return rs1 so the ISD nodes need to have different operand orders.
3145     // Shift amount is in rs2.
3146     SDValue Op0 = Op.getOperand(0);
3147     SDValue Op1 = Op.getOperand(1);
3148     unsigned Opc = RISCVISD::FSL;
3149     if (Op.getOpcode() == ISD::FSHR) {
3150       std::swap(Op0, Op1);
3151       Opc = RISCVISD::FSR;
3152     }
3153     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3154   }
3155   case ISD::TRUNCATE: {
3156     SDLoc DL(Op);
3157     MVT VT = Op.getSimpleValueType();
3158     // Only custom-lower vector truncates
3159     if (!VT.isVector())
3160       return Op;
3161 
3162     // Truncates to mask types are handled differently
3163     if (VT.getVectorElementType() == MVT::i1)
3164       return lowerVectorMaskTrunc(Op, DAG);
3165 
3166     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
3167     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
3168     // truncate by one power of two at a time.
3169     MVT DstEltVT = VT.getVectorElementType();
3170 
3171     SDValue Src = Op.getOperand(0);
3172     MVT SrcVT = Src.getSimpleValueType();
3173     MVT SrcEltVT = SrcVT.getVectorElementType();
3174 
3175     assert(DstEltVT.bitsLT(SrcEltVT) &&
3176            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
3177            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
3178            "Unexpected vector truncate lowering");
3179 
3180     MVT ContainerVT = SrcVT;
3181     if (SrcVT.isFixedLengthVector()) {
3182       ContainerVT = getContainerForFixedLengthVector(SrcVT);
3183       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3184     }
3185 
3186     SDValue Result = Src;
3187     SDValue Mask, VL;
3188     std::tie(Mask, VL) =
3189         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
3190     LLVMContext &Context = *DAG.getContext();
3191     const ElementCount Count = ContainerVT.getVectorElementCount();
3192     do {
3193       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
3194       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
3195       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
3196                            Mask, VL);
3197     } while (SrcEltVT != DstEltVT);
3198 
3199     if (SrcVT.isFixedLengthVector())
3200       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3201 
3202     return Result;
3203   }
3204   case ISD::ANY_EXTEND:
3205   case ISD::ZERO_EXTEND:
3206     if (Op.getOperand(0).getValueType().isVector() &&
3207         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3208       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3209     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3210   case ISD::SIGN_EXTEND:
3211     if (Op.getOperand(0).getValueType().isVector() &&
3212         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3213       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3214     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3215   case ISD::SPLAT_VECTOR_PARTS:
3216     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3217   case ISD::INSERT_VECTOR_ELT:
3218     return lowerINSERT_VECTOR_ELT(Op, DAG);
3219   case ISD::EXTRACT_VECTOR_ELT:
3220     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3221   case ISD::VSCALE: {
3222     MVT VT = Op.getSimpleValueType();
3223     SDLoc DL(Op);
3224     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3225     // We define our scalable vector types for lmul=1 to use a 64 bit known
3226     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3227     // vscale as VLENB / 8.
3228     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3229     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3230       report_fatal_error("Support for VLEN==32 is incomplete.");
3231     if (isa<ConstantSDNode>(Op.getOperand(0))) {
3232       // We assume VLENB is a multiple of 8. We manually choose the best shift
3233       // here because SimplifyDemandedBits isn't always able to simplify it.
3234       uint64_t Val = Op.getConstantOperandVal(0);
3235       if (isPowerOf2_64(Val)) {
3236         uint64_t Log2 = Log2_64(Val);
3237         if (Log2 < 3)
3238           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3239                              DAG.getConstant(3 - Log2, DL, VT));
3240         if (Log2 > 3)
3241           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3242                              DAG.getConstant(Log2 - 3, DL, VT));
3243         return VLENB;
3244       }
3245       // If the multiplier is a multiple of 8, scale it down to avoid needing
3246       // to shift the VLENB value.
3247       if ((Val % 8) == 0)
3248         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3249                            DAG.getConstant(Val / 8, DL, VT));
3250     }
3251 
3252     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3253                                  DAG.getConstant(3, DL, VT));
3254     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3255   }
3256   case ISD::FPOWI: {
3257     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3258     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3259     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3260         Op.getOperand(1).getValueType() == MVT::i32) {
3261       SDLoc DL(Op);
3262       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3263       SDValue Powi =
3264           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3265       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3266                          DAG.getIntPtrConstant(0, DL));
3267     }
3268     return SDValue();
3269   }
3270   case ISD::FP_EXTEND: {
3271     // RVV can only do fp_extend to types double the size as the source. We
3272     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
3273     // via f32.
3274     SDLoc DL(Op);
3275     MVT VT = Op.getSimpleValueType();
3276     SDValue Src = Op.getOperand(0);
3277     MVT SrcVT = Src.getSimpleValueType();
3278 
3279     // Prepare any fixed-length vector operands.
3280     MVT ContainerVT = VT;
3281     if (SrcVT.isFixedLengthVector()) {
3282       ContainerVT = getContainerForFixedLengthVector(VT);
3283       MVT SrcContainerVT =
3284           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
3285       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3286     }
3287 
3288     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
3289         SrcVT.getVectorElementType() != MVT::f16) {
3290       // For scalable vectors, we only need to close the gap between
3291       // vXf16->vXf64.
3292       if (!VT.isFixedLengthVector())
3293         return Op;
3294       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
3295       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3296       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3297     }
3298 
3299     MVT InterVT = VT.changeVectorElementType(MVT::f32);
3300     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
3301     SDValue IntermediateExtend = getRVVFPExtendOrRound(
3302         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
3303 
3304     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
3305                                            DL, DAG, Subtarget);
3306     if (VT.isFixedLengthVector())
3307       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
3308     return Extend;
3309   }
3310   case ISD::FP_ROUND: {
3311     // RVV can only do fp_round to types half the size as the source. We
3312     // custom-lower f64->f16 rounds via RVV's round-to-odd float
3313     // conversion instruction.
3314     SDLoc DL(Op);
3315     MVT VT = Op.getSimpleValueType();
3316     SDValue Src = Op.getOperand(0);
3317     MVT SrcVT = Src.getSimpleValueType();
3318 
3319     // Prepare any fixed-length vector operands.
3320     MVT ContainerVT = VT;
3321     if (VT.isFixedLengthVector()) {
3322       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3323       ContainerVT =
3324           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3325       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3326     }
3327 
3328     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
3329         SrcVT.getVectorElementType() != MVT::f64) {
3330       // For scalable vectors, we only need to close the gap between
3331       // vXf64<->vXf16.
3332       if (!VT.isFixedLengthVector())
3333         return Op;
3334       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
3335       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3336       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3337     }
3338 
3339     SDValue Mask, VL;
3340     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3341 
3342     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
3343     SDValue IntermediateRound =
3344         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
3345     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
3346                                           DL, DAG, Subtarget);
3347 
3348     if (VT.isFixedLengthVector())
3349       return convertFromScalableVector(VT, Round, DAG, Subtarget);
3350     return Round;
3351   }
3352   case ISD::FP_TO_SINT:
3353   case ISD::FP_TO_UINT:
3354   case ISD::SINT_TO_FP:
3355   case ISD::UINT_TO_FP: {
3356     // RVV can only do fp<->int conversions to types half/double the size as
3357     // the source. We custom-lower any conversions that do two hops into
3358     // sequences.
3359     MVT VT = Op.getSimpleValueType();
3360     if (!VT.isVector())
3361       return Op;
3362     SDLoc DL(Op);
3363     SDValue Src = Op.getOperand(0);
3364     MVT EltVT = VT.getVectorElementType();
3365     MVT SrcVT = Src.getSimpleValueType();
3366     MVT SrcEltVT = SrcVT.getVectorElementType();
3367     unsigned EltSize = EltVT.getSizeInBits();
3368     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3369     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3370            "Unexpected vector element types");
3371 
3372     bool IsInt2FP = SrcEltVT.isInteger();
3373     // Widening conversions
3374     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
3375       if (IsInt2FP) {
3376         // Do a regular integer sign/zero extension then convert to float.
3377         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
3378                                       VT.getVectorElementCount());
3379         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3380                                  ? ISD::ZERO_EXTEND
3381                                  : ISD::SIGN_EXTEND;
3382         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3383         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3384       }
3385       // FP2Int
3386       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3387       // Do one doubling fp_extend then complete the operation by converting
3388       // to int.
3389       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3390       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3391       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3392     }
3393 
3394     // Narrowing conversions
3395     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
3396       if (IsInt2FP) {
3397         // One narrowing int_to_fp, then an fp_round.
3398         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3399         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3400         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3401         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3402       }
3403       // FP2Int
3404       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3405       // representable by the integer, the result is poison.
3406       MVT IVecVT =
3407           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
3408                            VT.getVectorElementCount());
3409       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3410       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3411     }
3412 
3413     // Scalable vectors can exit here. Patterns will handle equally-sized
3414     // conversions halving/doubling ones.
3415     if (!VT.isFixedLengthVector())
3416       return Op;
3417 
3418     // For fixed-length vectors we lower to a custom "VL" node.
3419     unsigned RVVOpc = 0;
3420     switch (Op.getOpcode()) {
3421     default:
3422       llvm_unreachable("Impossible opcode");
3423     case ISD::FP_TO_SINT:
3424       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3425       break;
3426     case ISD::FP_TO_UINT:
3427       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3428       break;
3429     case ISD::SINT_TO_FP:
3430       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3431       break;
3432     case ISD::UINT_TO_FP:
3433       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3434       break;
3435     }
3436 
3437     MVT ContainerVT, SrcContainerVT;
3438     // Derive the reference container type from the larger vector type.
3439     if (SrcEltSize > EltSize) {
3440       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3441       ContainerVT =
3442           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3443     } else {
3444       ContainerVT = getContainerForFixedLengthVector(VT);
3445       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3446     }
3447 
3448     SDValue Mask, VL;
3449     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3450 
3451     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3452     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3453     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3454   }
3455   case ISD::FP_TO_SINT_SAT:
3456   case ISD::FP_TO_UINT_SAT:
3457     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3458   case ISD::FTRUNC:
3459   case ISD::FCEIL:
3460   case ISD::FFLOOR:
3461     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3462   case ISD::FROUND:
3463     return lowerFROUND(Op, DAG);
3464   case ISD::VECREDUCE_ADD:
3465   case ISD::VECREDUCE_UMAX:
3466   case ISD::VECREDUCE_SMAX:
3467   case ISD::VECREDUCE_UMIN:
3468   case ISD::VECREDUCE_SMIN:
3469     return lowerVECREDUCE(Op, DAG);
3470   case ISD::VECREDUCE_AND:
3471   case ISD::VECREDUCE_OR:
3472   case ISD::VECREDUCE_XOR:
3473     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3474       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3475     return lowerVECREDUCE(Op, DAG);
3476   case ISD::VECREDUCE_FADD:
3477   case ISD::VECREDUCE_SEQ_FADD:
3478   case ISD::VECREDUCE_FMIN:
3479   case ISD::VECREDUCE_FMAX:
3480     return lowerFPVECREDUCE(Op, DAG);
3481   case ISD::VP_REDUCE_ADD:
3482   case ISD::VP_REDUCE_UMAX:
3483   case ISD::VP_REDUCE_SMAX:
3484   case ISD::VP_REDUCE_UMIN:
3485   case ISD::VP_REDUCE_SMIN:
3486   case ISD::VP_REDUCE_FADD:
3487   case ISD::VP_REDUCE_SEQ_FADD:
3488   case ISD::VP_REDUCE_FMIN:
3489   case ISD::VP_REDUCE_FMAX:
3490     return lowerVPREDUCE(Op, DAG);
3491   case ISD::VP_REDUCE_AND:
3492   case ISD::VP_REDUCE_OR:
3493   case ISD::VP_REDUCE_XOR:
3494     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3495       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3496     return lowerVPREDUCE(Op, DAG);
3497   case ISD::INSERT_SUBVECTOR:
3498     return lowerINSERT_SUBVECTOR(Op, DAG);
3499   case ISD::EXTRACT_SUBVECTOR:
3500     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3501   case ISD::STEP_VECTOR:
3502     return lowerSTEP_VECTOR(Op, DAG);
3503   case ISD::VECTOR_REVERSE:
3504     return lowerVECTOR_REVERSE(Op, DAG);
3505   case ISD::BUILD_VECTOR:
3506     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3507   case ISD::SPLAT_VECTOR:
3508     if (Op.getValueType().getVectorElementType() == MVT::i1)
3509       return lowerVectorMaskSplat(Op, DAG);
3510     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
3511   case ISD::VECTOR_SHUFFLE:
3512     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3513   case ISD::CONCAT_VECTORS: {
3514     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3515     // better than going through the stack, as the default expansion does.
3516     SDLoc DL(Op);
3517     MVT VT = Op.getSimpleValueType();
3518     unsigned NumOpElts =
3519         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3520     SDValue Vec = DAG.getUNDEF(VT);
3521     for (const auto &OpIdx : enumerate(Op->ops())) {
3522       SDValue SubVec = OpIdx.value();
3523       // Don't insert undef subvectors.
3524       if (SubVec.isUndef())
3525         continue;
3526       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3527                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3528     }
3529     return Vec;
3530   }
3531   case ISD::LOAD:
3532     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3533       return V;
3534     if (Op.getValueType().isFixedLengthVector())
3535       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3536     return Op;
3537   case ISD::STORE:
3538     if (auto V = expandUnalignedRVVStore(Op, DAG))
3539       return V;
3540     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3541       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3542     return Op;
3543   case ISD::MLOAD:
3544   case ISD::VP_LOAD:
3545     return lowerMaskedLoad(Op, DAG);
3546   case ISD::MSTORE:
3547   case ISD::VP_STORE:
3548     return lowerMaskedStore(Op, DAG);
3549   case ISD::SETCC:
3550     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3551   case ISD::ADD:
3552     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3553   case ISD::SUB:
3554     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3555   case ISD::MUL:
3556     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3557   case ISD::MULHS:
3558     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3559   case ISD::MULHU:
3560     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3561   case ISD::AND:
3562     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3563                                               RISCVISD::AND_VL);
3564   case ISD::OR:
3565     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3566                                               RISCVISD::OR_VL);
3567   case ISD::XOR:
3568     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3569                                               RISCVISD::XOR_VL);
3570   case ISD::SDIV:
3571     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3572   case ISD::SREM:
3573     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3574   case ISD::UDIV:
3575     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3576   case ISD::UREM:
3577     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3578   case ISD::SHL:
3579   case ISD::SRA:
3580   case ISD::SRL:
3581     if (Op.getSimpleValueType().isFixedLengthVector())
3582       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3583     // This can be called for an i32 shift amount that needs to be promoted.
3584     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3585            "Unexpected custom legalisation");
3586     return SDValue();
3587   case ISD::SADDSAT:
3588     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3589   case ISD::UADDSAT:
3590     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3591   case ISD::SSUBSAT:
3592     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3593   case ISD::USUBSAT:
3594     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3595   case ISD::FADD:
3596     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3597   case ISD::FSUB:
3598     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3599   case ISD::FMUL:
3600     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3601   case ISD::FDIV:
3602     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3603   case ISD::FNEG:
3604     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3605   case ISD::FABS:
3606     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3607   case ISD::FSQRT:
3608     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3609   case ISD::FMA:
3610     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3611   case ISD::SMIN:
3612     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3613   case ISD::SMAX:
3614     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3615   case ISD::UMIN:
3616     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3617   case ISD::UMAX:
3618     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3619   case ISD::FMINNUM:
3620     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3621   case ISD::FMAXNUM:
3622     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3623   case ISD::ABS:
3624     return lowerABS(Op, DAG);
3625   case ISD::CTLZ_ZERO_UNDEF:
3626   case ISD::CTTZ_ZERO_UNDEF:
3627     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3628   case ISD::VSELECT:
3629     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3630   case ISD::FCOPYSIGN:
3631     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3632   case ISD::MGATHER:
3633   case ISD::VP_GATHER:
3634     return lowerMaskedGather(Op, DAG);
3635   case ISD::MSCATTER:
3636   case ISD::VP_SCATTER:
3637     return lowerMaskedScatter(Op, DAG);
3638   case ISD::FLT_ROUNDS_:
3639     return lowerGET_ROUNDING(Op, DAG);
3640   case ISD::SET_ROUNDING:
3641     return lowerSET_ROUNDING(Op, DAG);
3642   case ISD::VP_SELECT:
3643     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3644   case ISD::VP_MERGE:
3645     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3646   case ISD::VP_ADD:
3647     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3648   case ISD::VP_SUB:
3649     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3650   case ISD::VP_MUL:
3651     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3652   case ISD::VP_SDIV:
3653     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3654   case ISD::VP_UDIV:
3655     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3656   case ISD::VP_SREM:
3657     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3658   case ISD::VP_UREM:
3659     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3660   case ISD::VP_AND:
3661     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3662   case ISD::VP_OR:
3663     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3664   case ISD::VP_XOR:
3665     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3666   case ISD::VP_ASHR:
3667     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3668   case ISD::VP_LSHR:
3669     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3670   case ISD::VP_SHL:
3671     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3672   case ISD::VP_FADD:
3673     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3674   case ISD::VP_FSUB:
3675     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3676   case ISD::VP_FMUL:
3677     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3678   case ISD::VP_FDIV:
3679     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3680   case ISD::VP_FNEG:
3681     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3682   case ISD::VP_FMA:
3683     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3684   }
3685 }
3686 
3687 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3688                              SelectionDAG &DAG, unsigned Flags) {
3689   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3690 }
3691 
3692 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3693                              SelectionDAG &DAG, unsigned Flags) {
3694   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3695                                    Flags);
3696 }
3697 
3698 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3699                              SelectionDAG &DAG, unsigned Flags) {
3700   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3701                                    N->getOffset(), Flags);
3702 }
3703 
3704 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3705                              SelectionDAG &DAG, unsigned Flags) {
3706   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3707 }
3708 
3709 template <class NodeTy>
3710 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3711                                      bool IsLocal) const {
3712   SDLoc DL(N);
3713   EVT Ty = getPointerTy(DAG.getDataLayout());
3714 
3715   if (isPositionIndependent()) {
3716     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3717     if (IsLocal)
3718       // Use PC-relative addressing to access the symbol. This generates the
3719       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3720       // %pcrel_lo(auipc)).
3721       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3722 
3723     // Use PC-relative addressing to access the GOT for this symbol, then load
3724     // the address from the GOT. This generates the pattern (PseudoLA sym),
3725     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3726     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3727   }
3728 
3729   switch (getTargetMachine().getCodeModel()) {
3730   default:
3731     report_fatal_error("Unsupported code model for lowering");
3732   case CodeModel::Small: {
3733     // Generate a sequence for accessing addresses within the first 2 GiB of
3734     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3735     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3736     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3737     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3738     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3739   }
3740   case CodeModel::Medium: {
3741     // Generate a sequence for accessing addresses within any 2GiB range within
3742     // the address space. This generates the pattern (PseudoLLA sym), which
3743     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3744     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3745     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3746   }
3747   }
3748 }
3749 
3750 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3751                                                 SelectionDAG &DAG) const {
3752   SDLoc DL(Op);
3753   EVT Ty = Op.getValueType();
3754   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3755   int64_t Offset = N->getOffset();
3756   MVT XLenVT = Subtarget.getXLenVT();
3757 
3758   const GlobalValue *GV = N->getGlobal();
3759   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3760   SDValue Addr = getAddr(N, DAG, IsLocal);
3761 
3762   // In order to maximise the opportunity for common subexpression elimination,
3763   // emit a separate ADD node for the global address offset instead of folding
3764   // it in the global address node. Later peephole optimisations may choose to
3765   // fold it back in when profitable.
3766   if (Offset != 0)
3767     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3768                        DAG.getConstant(Offset, DL, XLenVT));
3769   return Addr;
3770 }
3771 
3772 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3773                                                SelectionDAG &DAG) const {
3774   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3775 
3776   return getAddr(N, DAG);
3777 }
3778 
3779 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3780                                                SelectionDAG &DAG) const {
3781   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3782 
3783   return getAddr(N, DAG);
3784 }
3785 
3786 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3787                                             SelectionDAG &DAG) const {
3788   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3789 
3790   return getAddr(N, DAG);
3791 }
3792 
3793 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3794                                               SelectionDAG &DAG,
3795                                               bool UseGOT) const {
3796   SDLoc DL(N);
3797   EVT Ty = getPointerTy(DAG.getDataLayout());
3798   const GlobalValue *GV = N->getGlobal();
3799   MVT XLenVT = Subtarget.getXLenVT();
3800 
3801   if (UseGOT) {
3802     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3803     // load the address from the GOT and add the thread pointer. This generates
3804     // the pattern (PseudoLA_TLS_IE sym), which expands to
3805     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3806     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3807     SDValue Load =
3808         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3809 
3810     // Add the thread pointer.
3811     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3812     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3813   }
3814 
3815   // Generate a sequence for accessing the address relative to the thread
3816   // pointer, with the appropriate adjustment for the thread pointer offset.
3817   // This generates the pattern
3818   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3819   SDValue AddrHi =
3820       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3821   SDValue AddrAdd =
3822       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3823   SDValue AddrLo =
3824       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3825 
3826   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3827   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3828   SDValue MNAdd = SDValue(
3829       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3830       0);
3831   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3832 }
3833 
3834 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3835                                                SelectionDAG &DAG) const {
3836   SDLoc DL(N);
3837   EVT Ty = getPointerTy(DAG.getDataLayout());
3838   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3839   const GlobalValue *GV = N->getGlobal();
3840 
3841   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3842   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3843   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3844   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3845   SDValue Load =
3846       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3847 
3848   // Prepare argument list to generate call.
3849   ArgListTy Args;
3850   ArgListEntry Entry;
3851   Entry.Node = Load;
3852   Entry.Ty = CallTy;
3853   Args.push_back(Entry);
3854 
3855   // Setup call to __tls_get_addr.
3856   TargetLowering::CallLoweringInfo CLI(DAG);
3857   CLI.setDebugLoc(DL)
3858       .setChain(DAG.getEntryNode())
3859       .setLibCallee(CallingConv::C, CallTy,
3860                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3861                     std::move(Args));
3862 
3863   return LowerCallTo(CLI).first;
3864 }
3865 
3866 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3867                                                    SelectionDAG &DAG) const {
3868   SDLoc DL(Op);
3869   EVT Ty = Op.getValueType();
3870   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3871   int64_t Offset = N->getOffset();
3872   MVT XLenVT = Subtarget.getXLenVT();
3873 
3874   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3875 
3876   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3877       CallingConv::GHC)
3878     report_fatal_error("In GHC calling convention TLS is not supported");
3879 
3880   SDValue Addr;
3881   switch (Model) {
3882   case TLSModel::LocalExec:
3883     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3884     break;
3885   case TLSModel::InitialExec:
3886     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3887     break;
3888   case TLSModel::LocalDynamic:
3889   case TLSModel::GeneralDynamic:
3890     Addr = getDynamicTLSAddr(N, DAG);
3891     break;
3892   }
3893 
3894   // In order to maximise the opportunity for common subexpression elimination,
3895   // emit a separate ADD node for the global address offset instead of folding
3896   // it in the global address node. Later peephole optimisations may choose to
3897   // fold it back in when profitable.
3898   if (Offset != 0)
3899     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3900                        DAG.getConstant(Offset, DL, XLenVT));
3901   return Addr;
3902 }
3903 
3904 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3905   SDValue CondV = Op.getOperand(0);
3906   SDValue TrueV = Op.getOperand(1);
3907   SDValue FalseV = Op.getOperand(2);
3908   SDLoc DL(Op);
3909   MVT VT = Op.getSimpleValueType();
3910   MVT XLenVT = Subtarget.getXLenVT();
3911 
3912   // Lower vector SELECTs to VSELECTs by splatting the condition.
3913   if (VT.isVector()) {
3914     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3915     SDValue CondSplat = VT.isScalableVector()
3916                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3917                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3918     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3919   }
3920 
3921   // If the result type is XLenVT and CondV is the output of a SETCC node
3922   // which also operated on XLenVT inputs, then merge the SETCC node into the
3923   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3924   // compare+branch instructions. i.e.:
3925   // (select (setcc lhs, rhs, cc), truev, falsev)
3926   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3927   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3928       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3929     SDValue LHS = CondV.getOperand(0);
3930     SDValue RHS = CondV.getOperand(1);
3931     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3932     ISD::CondCode CCVal = CC->get();
3933 
3934     // Special case for a select of 2 constants that have a diffence of 1.
3935     // Normally this is done by DAGCombine, but if the select is introduced by
3936     // type legalization or op legalization, we miss it. Restricting to SETLT
3937     // case for now because that is what signed saturating add/sub need.
3938     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3939     // but we would probably want to swap the true/false values if the condition
3940     // is SETGE/SETLE to avoid an XORI.
3941     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3942         CCVal == ISD::SETLT) {
3943       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3944       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3945       if (TrueVal - 1 == FalseVal)
3946         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3947       if (TrueVal + 1 == FalseVal)
3948         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3949     }
3950 
3951     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3952 
3953     SDValue TargetCC = DAG.getCondCode(CCVal);
3954     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3955     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3956   }
3957 
3958   // Otherwise:
3959   // (select condv, truev, falsev)
3960   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3961   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3962   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3963 
3964   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3965 
3966   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3967 }
3968 
3969 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3970   SDValue CondV = Op.getOperand(1);
3971   SDLoc DL(Op);
3972   MVT XLenVT = Subtarget.getXLenVT();
3973 
3974   if (CondV.getOpcode() == ISD::SETCC &&
3975       CondV.getOperand(0).getValueType() == XLenVT) {
3976     SDValue LHS = CondV.getOperand(0);
3977     SDValue RHS = CondV.getOperand(1);
3978     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3979 
3980     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3981 
3982     SDValue TargetCC = DAG.getCondCode(CCVal);
3983     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3984                        LHS, RHS, TargetCC, Op.getOperand(2));
3985   }
3986 
3987   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3988                      CondV, DAG.getConstant(0, DL, XLenVT),
3989                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3990 }
3991 
3992 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3993   MachineFunction &MF = DAG.getMachineFunction();
3994   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3995 
3996   SDLoc DL(Op);
3997   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3998                                  getPointerTy(MF.getDataLayout()));
3999 
4000   // vastart just stores the address of the VarArgsFrameIndex slot into the
4001   // memory location argument.
4002   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4003   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
4004                       MachinePointerInfo(SV));
4005 }
4006 
4007 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
4008                                             SelectionDAG &DAG) const {
4009   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4010   MachineFunction &MF = DAG.getMachineFunction();
4011   MachineFrameInfo &MFI = MF.getFrameInfo();
4012   MFI.setFrameAddressIsTaken(true);
4013   Register FrameReg = RI.getFrameRegister(MF);
4014   int XLenInBytes = Subtarget.getXLen() / 8;
4015 
4016   EVT VT = Op.getValueType();
4017   SDLoc DL(Op);
4018   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
4019   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4020   while (Depth--) {
4021     int Offset = -(XLenInBytes * 2);
4022     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
4023                               DAG.getIntPtrConstant(Offset, DL));
4024     FrameAddr =
4025         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
4026   }
4027   return FrameAddr;
4028 }
4029 
4030 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
4031                                              SelectionDAG &DAG) const {
4032   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4033   MachineFunction &MF = DAG.getMachineFunction();
4034   MachineFrameInfo &MFI = MF.getFrameInfo();
4035   MFI.setReturnAddressIsTaken(true);
4036   MVT XLenVT = Subtarget.getXLenVT();
4037   int XLenInBytes = Subtarget.getXLen() / 8;
4038 
4039   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4040     return SDValue();
4041 
4042   EVT VT = Op.getValueType();
4043   SDLoc DL(Op);
4044   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4045   if (Depth) {
4046     int Off = -XLenInBytes;
4047     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
4048     SDValue Offset = DAG.getConstant(Off, DL, VT);
4049     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4050                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4051                        MachinePointerInfo());
4052   }
4053 
4054   // Return the value of the return address register, marking it an implicit
4055   // live-in.
4056   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
4057   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
4058 }
4059 
4060 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
4061                                                  SelectionDAG &DAG) const {
4062   SDLoc DL(Op);
4063   SDValue Lo = Op.getOperand(0);
4064   SDValue Hi = Op.getOperand(1);
4065   SDValue Shamt = Op.getOperand(2);
4066   EVT VT = Lo.getValueType();
4067 
4068   // if Shamt-XLEN < 0: // Shamt < XLEN
4069   //   Lo = Lo << Shamt
4070   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4071   // else:
4072   //   Lo = 0
4073   //   Hi = Lo << (Shamt-XLEN)
4074 
4075   SDValue Zero = DAG.getConstant(0, DL, VT);
4076   SDValue One = DAG.getConstant(1, DL, VT);
4077   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4078   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4079   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4080   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4081 
4082   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4083   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4084   SDValue ShiftRightLo =
4085       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4086   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4087   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4088   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4089 
4090   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4091 
4092   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4093   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4094 
4095   SDValue Parts[2] = {Lo, Hi};
4096   return DAG.getMergeValues(Parts, DL);
4097 }
4098 
4099 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4100                                                   bool IsSRA) const {
4101   SDLoc DL(Op);
4102   SDValue Lo = Op.getOperand(0);
4103   SDValue Hi = Op.getOperand(1);
4104   SDValue Shamt = Op.getOperand(2);
4105   EVT VT = Lo.getValueType();
4106 
4107   // SRA expansion:
4108   //   if Shamt-XLEN < 0: // Shamt < XLEN
4109   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4110   //     Hi = Hi >>s Shamt
4111   //   else:
4112   //     Lo = Hi >>s (Shamt-XLEN);
4113   //     Hi = Hi >>s (XLEN-1)
4114   //
4115   // SRL expansion:
4116   //   if Shamt-XLEN < 0: // Shamt < XLEN
4117   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4118   //     Hi = Hi >>u Shamt
4119   //   else:
4120   //     Lo = Hi >>u (Shamt-XLEN);
4121   //     Hi = 0;
4122 
4123   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4124 
4125   SDValue Zero = DAG.getConstant(0, DL, VT);
4126   SDValue One = DAG.getConstant(1, DL, VT);
4127   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4128   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4129   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4130   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4131 
4132   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4133   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4134   SDValue ShiftLeftHi =
4135       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4136   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4137   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4138   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4139   SDValue HiFalse =
4140       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4141 
4142   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4143 
4144   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4145   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4146 
4147   SDValue Parts[2] = {Lo, Hi};
4148   return DAG.getMergeValues(Parts, DL);
4149 }
4150 
4151 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4152 // legal equivalently-sized i8 type, so we can use that as a go-between.
4153 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4154                                                   SelectionDAG &DAG) const {
4155   SDLoc DL(Op);
4156   MVT VT = Op.getSimpleValueType();
4157   SDValue SplatVal = Op.getOperand(0);
4158   // All-zeros or all-ones splats are handled specially.
4159   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4160     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4161     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4162   }
4163   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4164     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4165     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4166   }
4167   MVT XLenVT = Subtarget.getXLenVT();
4168   assert(SplatVal.getValueType() == XLenVT &&
4169          "Unexpected type for i1 splat value");
4170   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4171   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4172                          DAG.getConstant(1, DL, XLenVT));
4173   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4174   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4175   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4176 }
4177 
4178 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4179 // illegal (currently only vXi64 RV32).
4180 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4181 // them to VMV_V_X_VL.
4182 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4183                                                      SelectionDAG &DAG) const {
4184   SDLoc DL(Op);
4185   MVT VecVT = Op.getSimpleValueType();
4186   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4187          "Unexpected SPLAT_VECTOR_PARTS lowering");
4188 
4189   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4190   SDValue Lo = Op.getOperand(0);
4191   SDValue Hi = Op.getOperand(1);
4192 
4193   if (VecVT.isFixedLengthVector()) {
4194     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4195     SDLoc DL(Op);
4196     SDValue Mask, VL;
4197     std::tie(Mask, VL) =
4198         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4199 
4200     SDValue Res =
4201         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4202     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4203   }
4204 
4205   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4206     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4207     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4208     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4209     // node in order to try and match RVV vector/scalar instructions.
4210     if ((LoC >> 31) == HiC)
4211       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4212                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4213   }
4214 
4215   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4216   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4217       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4218       Hi.getConstantOperandVal(1) == 31)
4219     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4220                        DAG.getRegister(RISCV::X0, MVT::i32));
4221 
4222   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4223   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4224                      DAG.getUNDEF(VecVT), Lo, Hi,
4225                      DAG.getRegister(RISCV::X0, MVT::i32));
4226 }
4227 
4228 // Custom-lower extensions from mask vectors by using a vselect either with 1
4229 // for zero/any-extension or -1 for sign-extension:
4230 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4231 // Note that any-extension is lowered identically to zero-extension.
4232 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4233                                                 int64_t ExtTrueVal) const {
4234   SDLoc DL(Op);
4235   MVT VecVT = Op.getSimpleValueType();
4236   SDValue Src = Op.getOperand(0);
4237   // Only custom-lower extensions from mask types
4238   assert(Src.getValueType().isVector() &&
4239          Src.getValueType().getVectorElementType() == MVT::i1);
4240 
4241   MVT XLenVT = Subtarget.getXLenVT();
4242   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4243   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4244 
4245   if (VecVT.isScalableVector()) {
4246     // Be careful not to introduce illegal scalar types at this stage, and be
4247     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
4248     // illegal and must be expanded. Since we know that the constants are
4249     // sign-extended 32-bit values, we use VMV_V_X_VL directly.
4250     bool IsRV32E64 =
4251         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
4252 
4253     if (!IsRV32E64) {
4254       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
4255       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
4256     } else {
4257       SplatZero =
4258           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4259                       SplatZero, DAG.getRegister(RISCV::X0, XLenVT));
4260       SplatTrueVal =
4261           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4262                       SplatTrueVal, DAG.getRegister(RISCV::X0, XLenVT));
4263     }
4264 
4265     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4266   }
4267 
4268   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4269   MVT I1ContainerVT =
4270       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4271 
4272   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4273 
4274   SDValue Mask, VL;
4275   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4276 
4277   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4278                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4279   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4280                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4281   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4282                                SplatTrueVal, SplatZero, VL);
4283 
4284   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4285 }
4286 
4287 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4288     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4289   MVT ExtVT = Op.getSimpleValueType();
4290   // Only custom-lower extensions from fixed-length vector types.
4291   if (!ExtVT.isFixedLengthVector())
4292     return Op;
4293   MVT VT = Op.getOperand(0).getSimpleValueType();
4294   // Grab the canonical container type for the extended type. Infer the smaller
4295   // type from that to ensure the same number of vector elements, as we know
4296   // the LMUL will be sufficient to hold the smaller type.
4297   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4298   // Get the extended container type manually to ensure the same number of
4299   // vector elements between source and dest.
4300   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4301                                      ContainerExtVT.getVectorElementCount());
4302 
4303   SDValue Op1 =
4304       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4305 
4306   SDLoc DL(Op);
4307   SDValue Mask, VL;
4308   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4309 
4310   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4311 
4312   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4313 }
4314 
4315 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4316 // setcc operation:
4317 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4318 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
4319                                                   SelectionDAG &DAG) const {
4320   SDLoc DL(Op);
4321   EVT MaskVT = Op.getValueType();
4322   // Only expect to custom-lower truncations to mask types
4323   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4324          "Unexpected type for vector mask lowering");
4325   SDValue Src = Op.getOperand(0);
4326   MVT VecVT = Src.getSimpleValueType();
4327 
4328   // If this is a fixed vector, we need to convert it to a scalable vector.
4329   MVT ContainerVT = VecVT;
4330   if (VecVT.isFixedLengthVector()) {
4331     ContainerVT = getContainerForFixedLengthVector(VecVT);
4332     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4333   }
4334 
4335   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4336   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4337 
4338   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4339                          DAG.getUNDEF(ContainerVT), SplatOne);
4340   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4341                           DAG.getUNDEF(ContainerVT), SplatZero);
4342 
4343   if (VecVT.isScalableVector()) {
4344     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
4345     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
4346   }
4347 
4348   SDValue Mask, VL;
4349   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4350 
4351   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4352   SDValue Trunc =
4353       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4354   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4355                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4356   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4357 }
4358 
4359 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4360 // first position of a vector, and that vector is slid up to the insert index.
4361 // By limiting the active vector length to index+1 and merging with the
4362 // original vector (with an undisturbed tail policy for elements >= VL), we
4363 // achieve the desired result of leaving all elements untouched except the one
4364 // at VL-1, which is replaced with the desired value.
4365 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4366                                                     SelectionDAG &DAG) const {
4367   SDLoc DL(Op);
4368   MVT VecVT = Op.getSimpleValueType();
4369   SDValue Vec = Op.getOperand(0);
4370   SDValue Val = Op.getOperand(1);
4371   SDValue Idx = Op.getOperand(2);
4372 
4373   if (VecVT.getVectorElementType() == MVT::i1) {
4374     // FIXME: For now we just promote to an i8 vector and insert into that,
4375     // but this is probably not optimal.
4376     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4377     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4378     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4379     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4380   }
4381 
4382   MVT ContainerVT = VecVT;
4383   // If the operand is a fixed-length vector, convert to a scalable one.
4384   if (VecVT.isFixedLengthVector()) {
4385     ContainerVT = getContainerForFixedLengthVector(VecVT);
4386     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4387   }
4388 
4389   MVT XLenVT = Subtarget.getXLenVT();
4390 
4391   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4392   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4393   // Even i64-element vectors on RV32 can be lowered without scalar
4394   // legalization if the most-significant 32 bits of the value are not affected
4395   // by the sign-extension of the lower 32 bits.
4396   // TODO: We could also catch sign extensions of a 32-bit value.
4397   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4398     const auto *CVal = cast<ConstantSDNode>(Val);
4399     if (isInt<32>(CVal->getSExtValue())) {
4400       IsLegalInsert = true;
4401       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4402     }
4403   }
4404 
4405   SDValue Mask, VL;
4406   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4407 
4408   SDValue ValInVec;
4409 
4410   if (IsLegalInsert) {
4411     unsigned Opc =
4412         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4413     if (isNullConstant(Idx)) {
4414       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4415       if (!VecVT.isFixedLengthVector())
4416         return Vec;
4417       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4418     }
4419     ValInVec =
4420         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4421   } else {
4422     // On RV32, i64-element vectors must be specially handled to place the
4423     // value at element 0, by using two vslide1up instructions in sequence on
4424     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4425     // this.
4426     SDValue One = DAG.getConstant(1, DL, XLenVT);
4427     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4428     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4429     MVT I32ContainerVT =
4430         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4431     SDValue I32Mask =
4432         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4433     // Limit the active VL to two.
4434     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4435     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4436     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4437     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4438                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4439     // First slide in the hi value, then the lo in underneath it.
4440     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4441                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4442                            I32Mask, InsertI64VL);
4443     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4444                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4445                            I32Mask, InsertI64VL);
4446     // Bitcast back to the right container type.
4447     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4448   }
4449 
4450   // Now that the value is in a vector, slide it into position.
4451   SDValue InsertVL =
4452       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4453   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4454                                 ValInVec, Idx, Mask, InsertVL);
4455   if (!VecVT.isFixedLengthVector())
4456     return Slideup;
4457   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4458 }
4459 
4460 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4461 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4462 // types this is done using VMV_X_S to allow us to glean information about the
4463 // sign bits of the result.
4464 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4465                                                      SelectionDAG &DAG) const {
4466   SDLoc DL(Op);
4467   SDValue Idx = Op.getOperand(1);
4468   SDValue Vec = Op.getOperand(0);
4469   EVT EltVT = Op.getValueType();
4470   MVT VecVT = Vec.getSimpleValueType();
4471   MVT XLenVT = Subtarget.getXLenVT();
4472 
4473   if (VecVT.getVectorElementType() == MVT::i1) {
4474     if (VecVT.isFixedLengthVector()) {
4475       unsigned NumElts = VecVT.getVectorNumElements();
4476       if (NumElts >= 8) {
4477         MVT WideEltVT;
4478         unsigned WidenVecLen;
4479         SDValue ExtractElementIdx;
4480         SDValue ExtractBitIdx;
4481         unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors();
4482         MVT LargestEltVT = MVT::getIntegerVT(
4483             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4484         if (NumElts <= LargestEltVT.getSizeInBits()) {
4485           assert(isPowerOf2_32(NumElts) &&
4486                  "the number of elements should be power of 2");
4487           WideEltVT = MVT::getIntegerVT(NumElts);
4488           WidenVecLen = 1;
4489           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4490           ExtractBitIdx = Idx;
4491         } else {
4492           WideEltVT = LargestEltVT;
4493           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4494           // extract element index = index / element width
4495           ExtractElementIdx = DAG.getNode(
4496               ISD::SRL, DL, XLenVT, Idx,
4497               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4498           // mask bit index = index % element width
4499           ExtractBitIdx = DAG.getNode(
4500               ISD::AND, DL, XLenVT, Idx,
4501               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4502         }
4503         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4504         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4505         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4506                                          Vec, ExtractElementIdx);
4507         // Extract the bit from GPR.
4508         SDValue ShiftRight =
4509             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4510         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4511                            DAG.getConstant(1, DL, XLenVT));
4512       }
4513     }
4514     // Otherwise, promote to an i8 vector and extract from that.
4515     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4516     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4517     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4518   }
4519 
4520   // If this is a fixed vector, we need to convert it to a scalable vector.
4521   MVT ContainerVT = VecVT;
4522   if (VecVT.isFixedLengthVector()) {
4523     ContainerVT = getContainerForFixedLengthVector(VecVT);
4524     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4525   }
4526 
4527   // If the index is 0, the vector is already in the right position.
4528   if (!isNullConstant(Idx)) {
4529     // Use a VL of 1 to avoid processing more elements than we need.
4530     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4531     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4532     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4533     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4534                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4535   }
4536 
4537   if (!EltVT.isInteger()) {
4538     // Floating-point extracts are handled in TableGen.
4539     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4540                        DAG.getConstant(0, DL, XLenVT));
4541   }
4542 
4543   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4544   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4545 }
4546 
4547 // Some RVV intrinsics may claim that they want an integer operand to be
4548 // promoted or expanded.
4549 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
4550                                           const RISCVSubtarget &Subtarget) {
4551   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4552           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4553          "Unexpected opcode");
4554 
4555   if (!Subtarget.hasVInstructions())
4556     return SDValue();
4557 
4558   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4559   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4560   SDLoc DL(Op);
4561 
4562   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4563       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4564   if (!II || !II->hasSplatOperand())
4565     return SDValue();
4566 
4567   unsigned SplatOp = II->SplatOperand + 1 + HasChain;
4568   assert(SplatOp < Op.getNumOperands());
4569 
4570   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4571   SDValue &ScalarOp = Operands[SplatOp];
4572   MVT OpVT = ScalarOp.getSimpleValueType();
4573   MVT XLenVT = Subtarget.getXLenVT();
4574 
4575   // If this isn't a scalar, or its type is XLenVT we're done.
4576   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4577     return SDValue();
4578 
4579   // Simplest case is that the operand needs to be promoted to XLenVT.
4580   if (OpVT.bitsLT(XLenVT)) {
4581     // If the operand is a constant, sign extend to increase our chances
4582     // of being able to use a .vi instruction. ANY_EXTEND would become a
4583     // a zero extend and the simm5 check in isel would fail.
4584     // FIXME: Should we ignore the upper bits in isel instead?
4585     unsigned ExtOpc =
4586         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4587     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4588     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4589   }
4590 
4591   // Use the previous operand to get the vXi64 VT. The result might be a mask
4592   // VT for compares. Using the previous operand assumes that the previous
4593   // operand will never have a smaller element size than a scalar operand and
4594   // that a widening operation never uses SEW=64.
4595   // NOTE: If this fails the below assert, we can probably just find the
4596   // element count from any operand or result and use it to construct the VT.
4597   assert(II->SplatOperand > 0 && "Unexpected splat operand!");
4598   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4599 
4600   // The more complex case is when the scalar is larger than XLenVT.
4601   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4602          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4603 
4604   // If this is a sign-extended 32-bit constant, we can truncate it and rely
4605   // on the instruction to sign-extend since SEW>XLEN.
4606   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
4607     if (isInt<32>(CVal->getSExtValue())) {
4608       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4609       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4610     }
4611   }
4612 
4613   // We need to convert the scalar to a splat vector.
4614   // FIXME: Can we implicitly truncate the scalar if it is known to
4615   // be sign extended?
4616   SDValue VL = getVLOperand(Op);
4617   assert(VL.getValueType() == XLenVT);
4618   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4619   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4620 }
4621 
4622 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4623                                                      SelectionDAG &DAG) const {
4624   unsigned IntNo = Op.getConstantOperandVal(0);
4625   SDLoc DL(Op);
4626   MVT XLenVT = Subtarget.getXLenVT();
4627 
4628   switch (IntNo) {
4629   default:
4630     break; // Don't custom lower most intrinsics.
4631   case Intrinsic::thread_pointer: {
4632     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4633     return DAG.getRegister(RISCV::X4, PtrVT);
4634   }
4635   case Intrinsic::riscv_orc_b:
4636   case Intrinsic::riscv_brev8: {
4637     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4638     unsigned Opc =
4639         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4640     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4641                        DAG.getConstant(7, DL, XLenVT));
4642   }
4643   case Intrinsic::riscv_grev:
4644   case Intrinsic::riscv_gorc: {
4645     unsigned Opc =
4646         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4647     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4648   }
4649   case Intrinsic::riscv_zip:
4650   case Intrinsic::riscv_unzip: {
4651     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4652     // For i32 the immdiate is 15. For i64 the immediate is 31.
4653     unsigned Opc =
4654         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4655     unsigned BitWidth = Op.getValueSizeInBits();
4656     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4657     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4658                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4659   }
4660   case Intrinsic::riscv_shfl:
4661   case Intrinsic::riscv_unshfl: {
4662     unsigned Opc =
4663         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4664     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4665   }
4666   case Intrinsic::riscv_bcompress:
4667   case Intrinsic::riscv_bdecompress: {
4668     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4669                                                        : RISCVISD::BDECOMPRESS;
4670     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4671   }
4672   case Intrinsic::riscv_bfp:
4673     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4674                        Op.getOperand(2));
4675   case Intrinsic::riscv_fsl:
4676     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4677                        Op.getOperand(2), Op.getOperand(3));
4678   case Intrinsic::riscv_fsr:
4679     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4680                        Op.getOperand(2), Op.getOperand(3));
4681   case Intrinsic::riscv_vmv_x_s:
4682     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4683     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4684                        Op.getOperand(1));
4685   case Intrinsic::riscv_vmv_v_x:
4686     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4687                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4688                             Subtarget);
4689   case Intrinsic::riscv_vfmv_v_f:
4690     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4691                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4692   case Intrinsic::riscv_vmv_s_x: {
4693     SDValue Scalar = Op.getOperand(2);
4694 
4695     if (Scalar.getValueType().bitsLE(XLenVT)) {
4696       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4697       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4698                          Op.getOperand(1), Scalar, Op.getOperand(3));
4699     }
4700 
4701     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4702 
4703     // This is an i64 value that lives in two scalar registers. We have to
4704     // insert this in a convoluted way. First we build vXi64 splat containing
4705     // the/ two values that we assemble using some bit math. Next we'll use
4706     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4707     // to merge element 0 from our splat into the source vector.
4708     // FIXME: This is probably not the best way to do this, but it is
4709     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4710     // point.
4711     //   sw lo, (a0)
4712     //   sw hi, 4(a0)
4713     //   vlse vX, (a0)
4714     //
4715     //   vid.v      vVid
4716     //   vmseq.vx   mMask, vVid, 0
4717     //   vmerge.vvm vDest, vSrc, vVal, mMask
4718     MVT VT = Op.getSimpleValueType();
4719     SDValue Vec = Op.getOperand(1);
4720     SDValue VL = getVLOperand(Op);
4721 
4722     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4723     if (Op.getOperand(1).isUndef())
4724       return SplattedVal;
4725     SDValue SplattedIdx =
4726         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4727                     DAG.getConstant(0, DL, MVT::i32), VL);
4728 
4729     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4730     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4731     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4732     SDValue SelectCond =
4733         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4734                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4735     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4736                        Vec, VL);
4737   }
4738   case Intrinsic::riscv_vslide1up:
4739   case Intrinsic::riscv_vslide1down:
4740   case Intrinsic::riscv_vslide1up_mask:
4741   case Intrinsic::riscv_vslide1down_mask: {
4742     // We need to special case these when the scalar is larger than XLen.
4743     unsigned NumOps = Op.getNumOperands();
4744     bool IsMasked = NumOps == 7;
4745     SDValue Scalar = Op.getOperand(3);
4746     if (Scalar.getValueType().bitsLE(XLenVT))
4747       break;
4748 
4749     // Splatting a sign extended constant is fine.
4750     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
4751       if (isInt<32>(CVal->getSExtValue()))
4752         break;
4753 
4754     MVT VT = Op.getSimpleValueType();
4755     assert(VT.getVectorElementType() == MVT::i64 &&
4756            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
4757 
4758     // Convert the vector source to the equivalent nxvXi32 vector.
4759     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4760     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(2));
4761 
4762     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4763                                    DAG.getConstant(0, DL, XLenVT));
4764     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4765                                    DAG.getConstant(1, DL, XLenVT));
4766 
4767     // Double the VL since we halved SEW.
4768     SDValue VL = getVLOperand(Op);
4769     SDValue I32VL =
4770         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4771 
4772     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4773     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
4774 
4775     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4776     // instructions.
4777     SDValue Passthru = DAG.getBitcast(I32VT, Op.getOperand(1));
4778     if (!IsMasked) {
4779       if (IntNo == Intrinsic::riscv_vslide1up) {
4780         Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4781                           ScalarHi, I32Mask, I32VL);
4782         Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4783                           ScalarLo, I32Mask, I32VL);
4784       } else {
4785         Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4786                           ScalarLo, I32Mask, I32VL);
4787         Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4788                           ScalarHi, I32Mask, I32VL);
4789       }
4790     } else {
4791       // TODO Those VSLIDE1 could be TAMA because we use vmerge to select
4792       // maskedoff
4793       SDValue Undef = DAG.getUNDEF(I32VT);
4794       if (IntNo == Intrinsic::riscv_vslide1up_mask) {
4795         Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Undef, Vec,
4796                           ScalarHi, I32Mask, I32VL);
4797         Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Undef, Vec,
4798                           ScalarLo, I32Mask, I32VL);
4799       } else {
4800         Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Undef, Vec,
4801                           ScalarLo, I32Mask, I32VL);
4802         Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Undef, Vec,
4803                           ScalarHi, I32Mask, I32VL);
4804       }
4805     }
4806 
4807     // Convert back to nxvXi64.
4808     Vec = DAG.getBitcast(VT, Vec);
4809 
4810     if (!IsMasked)
4811       return Vec;
4812     // Apply mask after the operation.
4813     SDValue Mask = Op.getOperand(NumOps - 3);
4814     SDValue MaskedOff = Op.getOperand(1);
4815     // Assume Policy operand is the last operand.
4816     uint64_t Policy = Op.getConstantOperandVal(NumOps - 1);
4817     // We don't need to select maskedoff if it's undef.
4818     if (MaskedOff.isUndef())
4819       return Vec;
4820     // TAMU
4821     if (Policy == RISCVII::TAIL_AGNOSTIC)
4822       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4823                          VL);
4824     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4825     // It's fine because vmerge does not care mask policy.
4826     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, VL);
4827   }
4828   }
4829 
4830   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4831 }
4832 
4833 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4834                                                     SelectionDAG &DAG) const {
4835   unsigned IntNo = Op.getConstantOperandVal(1);
4836   switch (IntNo) {
4837   default:
4838     break;
4839   case Intrinsic::riscv_masked_strided_load: {
4840     SDLoc DL(Op);
4841     MVT XLenVT = Subtarget.getXLenVT();
4842 
4843     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4844     // the selection of the masked intrinsics doesn't do this for us.
4845     SDValue Mask = Op.getOperand(5);
4846     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4847 
4848     MVT VT = Op->getSimpleValueType(0);
4849     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4850 
4851     SDValue PassThru = Op.getOperand(2);
4852     if (!IsUnmasked) {
4853       MVT MaskVT =
4854           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4855       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4856       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4857     }
4858 
4859     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4860 
4861     SDValue IntID = DAG.getTargetConstant(
4862         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4863         XLenVT);
4864 
4865     auto *Load = cast<MemIntrinsicSDNode>(Op);
4866     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4867     if (IsUnmasked)
4868       Ops.push_back(DAG.getUNDEF(ContainerVT));
4869     else
4870       Ops.push_back(PassThru);
4871     Ops.push_back(Op.getOperand(3)); // Ptr
4872     Ops.push_back(Op.getOperand(4)); // Stride
4873     if (!IsUnmasked)
4874       Ops.push_back(Mask);
4875     Ops.push_back(VL);
4876     if (!IsUnmasked) {
4877       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4878       Ops.push_back(Policy);
4879     }
4880 
4881     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4882     SDValue Result =
4883         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4884                                 Load->getMemoryVT(), Load->getMemOperand());
4885     SDValue Chain = Result.getValue(1);
4886     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4887     return DAG.getMergeValues({Result, Chain}, DL);
4888   }
4889   }
4890 
4891   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4892 }
4893 
4894 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4895                                                  SelectionDAG &DAG) const {
4896   unsigned IntNo = Op.getConstantOperandVal(1);
4897   switch (IntNo) {
4898   default:
4899     break;
4900   case Intrinsic::riscv_masked_strided_store: {
4901     SDLoc DL(Op);
4902     MVT XLenVT = Subtarget.getXLenVT();
4903 
4904     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4905     // the selection of the masked intrinsics doesn't do this for us.
4906     SDValue Mask = Op.getOperand(5);
4907     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4908 
4909     SDValue Val = Op.getOperand(2);
4910     MVT VT = Val.getSimpleValueType();
4911     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4912 
4913     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4914     if (!IsUnmasked) {
4915       MVT MaskVT =
4916           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4917       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4918     }
4919 
4920     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4921 
4922     SDValue IntID = DAG.getTargetConstant(
4923         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4924         XLenVT);
4925 
4926     auto *Store = cast<MemIntrinsicSDNode>(Op);
4927     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4928     Ops.push_back(Val);
4929     Ops.push_back(Op.getOperand(3)); // Ptr
4930     Ops.push_back(Op.getOperand(4)); // Stride
4931     if (!IsUnmasked)
4932       Ops.push_back(Mask);
4933     Ops.push_back(VL);
4934 
4935     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4936                                    Ops, Store->getMemoryVT(),
4937                                    Store->getMemOperand());
4938   }
4939   }
4940 
4941   return SDValue();
4942 }
4943 
4944 static MVT getLMUL1VT(MVT VT) {
4945   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4946          "Unexpected vector MVT");
4947   return MVT::getScalableVectorVT(
4948       VT.getVectorElementType(),
4949       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4950 }
4951 
4952 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4953   switch (ISDOpcode) {
4954   default:
4955     llvm_unreachable("Unhandled reduction");
4956   case ISD::VECREDUCE_ADD:
4957     return RISCVISD::VECREDUCE_ADD_VL;
4958   case ISD::VECREDUCE_UMAX:
4959     return RISCVISD::VECREDUCE_UMAX_VL;
4960   case ISD::VECREDUCE_SMAX:
4961     return RISCVISD::VECREDUCE_SMAX_VL;
4962   case ISD::VECREDUCE_UMIN:
4963     return RISCVISD::VECREDUCE_UMIN_VL;
4964   case ISD::VECREDUCE_SMIN:
4965     return RISCVISD::VECREDUCE_SMIN_VL;
4966   case ISD::VECREDUCE_AND:
4967     return RISCVISD::VECREDUCE_AND_VL;
4968   case ISD::VECREDUCE_OR:
4969     return RISCVISD::VECREDUCE_OR_VL;
4970   case ISD::VECREDUCE_XOR:
4971     return RISCVISD::VECREDUCE_XOR_VL;
4972   }
4973 }
4974 
4975 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
4976                                                          SelectionDAG &DAG,
4977                                                          bool IsVP) const {
4978   SDLoc DL(Op);
4979   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
4980   MVT VecVT = Vec.getSimpleValueType();
4981   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
4982           Op.getOpcode() == ISD::VECREDUCE_OR ||
4983           Op.getOpcode() == ISD::VECREDUCE_XOR ||
4984           Op.getOpcode() == ISD::VP_REDUCE_AND ||
4985           Op.getOpcode() == ISD::VP_REDUCE_OR ||
4986           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
4987          "Unexpected reduction lowering");
4988 
4989   MVT XLenVT = Subtarget.getXLenVT();
4990   assert(Op.getValueType() == XLenVT &&
4991          "Expected reduction output to be legalized to XLenVT");
4992 
4993   MVT ContainerVT = VecVT;
4994   if (VecVT.isFixedLengthVector()) {
4995     ContainerVT = getContainerForFixedLengthVector(VecVT);
4996     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4997   }
4998 
4999   SDValue Mask, VL;
5000   if (IsVP) {
5001     Mask = Op.getOperand(2);
5002     VL = Op.getOperand(3);
5003   } else {
5004     std::tie(Mask, VL) =
5005         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5006   }
5007 
5008   unsigned BaseOpc;
5009   ISD::CondCode CC;
5010   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5011 
5012   switch (Op.getOpcode()) {
5013   default:
5014     llvm_unreachable("Unhandled reduction");
5015   case ISD::VECREDUCE_AND:
5016   case ISD::VP_REDUCE_AND: {
5017     // vcpop ~x == 0
5018     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5019     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5020     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5021     CC = ISD::SETEQ;
5022     BaseOpc = ISD::AND;
5023     break;
5024   }
5025   case ISD::VECREDUCE_OR:
5026   case ISD::VP_REDUCE_OR:
5027     // vcpop x != 0
5028     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5029     CC = ISD::SETNE;
5030     BaseOpc = ISD::OR;
5031     break;
5032   case ISD::VECREDUCE_XOR:
5033   case ISD::VP_REDUCE_XOR: {
5034     // ((vcpop x) & 1) != 0
5035     SDValue One = DAG.getConstant(1, DL, XLenVT);
5036     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5037     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5038     CC = ISD::SETNE;
5039     BaseOpc = ISD::XOR;
5040     break;
5041   }
5042   }
5043 
5044   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5045 
5046   if (!IsVP)
5047     return SetCC;
5048 
5049   // Now include the start value in the operation.
5050   // Note that we must return the start value when no elements are operated
5051   // upon. The vcpop instructions we've emitted in each case above will return
5052   // 0 for an inactive vector, and so we've already received the neutral value:
5053   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5054   // can simply include the start value.
5055   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5056 }
5057 
5058 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5059                                             SelectionDAG &DAG) const {
5060   SDLoc DL(Op);
5061   SDValue Vec = Op.getOperand(0);
5062   EVT VecEVT = Vec.getValueType();
5063 
5064   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5065 
5066   // Due to ordering in legalize types we may have a vector type that needs to
5067   // be split. Do that manually so we can get down to a legal type.
5068   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5069          TargetLowering::TypeSplitVector) {
5070     SDValue Lo, Hi;
5071     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5072     VecEVT = Lo.getValueType();
5073     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5074   }
5075 
5076   // TODO: The type may need to be widened rather than split. Or widened before
5077   // it can be split.
5078   if (!isTypeLegal(VecEVT))
5079     return SDValue();
5080 
5081   MVT VecVT = VecEVT.getSimpleVT();
5082   MVT VecEltVT = VecVT.getVectorElementType();
5083   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5084 
5085   MVT ContainerVT = VecVT;
5086   if (VecVT.isFixedLengthVector()) {
5087     ContainerVT = getContainerForFixedLengthVector(VecVT);
5088     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5089   }
5090 
5091   MVT M1VT = getLMUL1VT(ContainerVT);
5092   MVT XLenVT = Subtarget.getXLenVT();
5093 
5094   SDValue Mask, VL;
5095   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5096 
5097   SDValue NeutralElem =
5098       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5099   SDValue IdentitySplat =
5100       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5101                        M1VT, DL, DAG, Subtarget);
5102   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5103                                   IdentitySplat, Mask, VL);
5104   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5105                              DAG.getConstant(0, DL, XLenVT));
5106   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5107 }
5108 
5109 // Given a reduction op, this function returns the matching reduction opcode,
5110 // the vector SDValue and the scalar SDValue required to lower this to a
5111 // RISCVISD node.
5112 static std::tuple<unsigned, SDValue, SDValue>
5113 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5114   SDLoc DL(Op);
5115   auto Flags = Op->getFlags();
5116   unsigned Opcode = Op.getOpcode();
5117   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5118   switch (Opcode) {
5119   default:
5120     llvm_unreachable("Unhandled reduction");
5121   case ISD::VECREDUCE_FADD: {
5122     // Use positive zero if we can. It is cheaper to materialize.
5123     SDValue Zero =
5124         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5125     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5126   }
5127   case ISD::VECREDUCE_SEQ_FADD:
5128     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5129                            Op.getOperand(0));
5130   case ISD::VECREDUCE_FMIN:
5131     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5132                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5133   case ISD::VECREDUCE_FMAX:
5134     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5135                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5136   }
5137 }
5138 
5139 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5140                                               SelectionDAG &DAG) const {
5141   SDLoc DL(Op);
5142   MVT VecEltVT = Op.getSimpleValueType();
5143 
5144   unsigned RVVOpcode;
5145   SDValue VectorVal, ScalarVal;
5146   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5147       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5148   MVT VecVT = VectorVal.getSimpleValueType();
5149 
5150   MVT ContainerVT = VecVT;
5151   if (VecVT.isFixedLengthVector()) {
5152     ContainerVT = getContainerForFixedLengthVector(VecVT);
5153     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5154   }
5155 
5156   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5157   MVT XLenVT = Subtarget.getXLenVT();
5158 
5159   SDValue Mask, VL;
5160   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5161 
5162   SDValue ScalarSplat =
5163       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5164                        M1VT, DL, DAG, Subtarget);
5165   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5166                                   VectorVal, ScalarSplat, Mask, VL);
5167   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5168                      DAG.getConstant(0, DL, XLenVT));
5169 }
5170 
5171 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5172   switch (ISDOpcode) {
5173   default:
5174     llvm_unreachable("Unhandled reduction");
5175   case ISD::VP_REDUCE_ADD:
5176     return RISCVISD::VECREDUCE_ADD_VL;
5177   case ISD::VP_REDUCE_UMAX:
5178     return RISCVISD::VECREDUCE_UMAX_VL;
5179   case ISD::VP_REDUCE_SMAX:
5180     return RISCVISD::VECREDUCE_SMAX_VL;
5181   case ISD::VP_REDUCE_UMIN:
5182     return RISCVISD::VECREDUCE_UMIN_VL;
5183   case ISD::VP_REDUCE_SMIN:
5184     return RISCVISD::VECREDUCE_SMIN_VL;
5185   case ISD::VP_REDUCE_AND:
5186     return RISCVISD::VECREDUCE_AND_VL;
5187   case ISD::VP_REDUCE_OR:
5188     return RISCVISD::VECREDUCE_OR_VL;
5189   case ISD::VP_REDUCE_XOR:
5190     return RISCVISD::VECREDUCE_XOR_VL;
5191   case ISD::VP_REDUCE_FADD:
5192     return RISCVISD::VECREDUCE_FADD_VL;
5193   case ISD::VP_REDUCE_SEQ_FADD:
5194     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5195   case ISD::VP_REDUCE_FMAX:
5196     return RISCVISD::VECREDUCE_FMAX_VL;
5197   case ISD::VP_REDUCE_FMIN:
5198     return RISCVISD::VECREDUCE_FMIN_VL;
5199   }
5200 }
5201 
5202 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5203                                            SelectionDAG &DAG) const {
5204   SDLoc DL(Op);
5205   SDValue Vec = Op.getOperand(1);
5206   EVT VecEVT = Vec.getValueType();
5207 
5208   // TODO: The type may need to be widened rather than split. Or widened before
5209   // it can be split.
5210   if (!isTypeLegal(VecEVT))
5211     return SDValue();
5212 
5213   MVT VecVT = VecEVT.getSimpleVT();
5214   MVT VecEltVT = VecVT.getVectorElementType();
5215   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5216 
5217   MVT ContainerVT = VecVT;
5218   if (VecVT.isFixedLengthVector()) {
5219     ContainerVT = getContainerForFixedLengthVector(VecVT);
5220     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5221   }
5222 
5223   SDValue VL = Op.getOperand(3);
5224   SDValue Mask = Op.getOperand(2);
5225 
5226   MVT M1VT = getLMUL1VT(ContainerVT);
5227   MVT XLenVT = Subtarget.getXLenVT();
5228   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5229 
5230   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5231                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5232                                         DL, DAG, Subtarget);
5233   SDValue Reduction =
5234       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5235   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5236                              DAG.getConstant(0, DL, XLenVT));
5237   if (!VecVT.isInteger())
5238     return Elt0;
5239   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5240 }
5241 
5242 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5243                                                    SelectionDAG &DAG) const {
5244   SDValue Vec = Op.getOperand(0);
5245   SDValue SubVec = Op.getOperand(1);
5246   MVT VecVT = Vec.getSimpleValueType();
5247   MVT SubVecVT = SubVec.getSimpleValueType();
5248 
5249   SDLoc DL(Op);
5250   MVT XLenVT = Subtarget.getXLenVT();
5251   unsigned OrigIdx = Op.getConstantOperandVal(2);
5252   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5253 
5254   // We don't have the ability to slide mask vectors up indexed by their i1
5255   // elements; the smallest we can do is i8. Often we are able to bitcast to
5256   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5257   // into a scalable one, we might not necessarily have enough scalable
5258   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5259   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5260       (OrigIdx != 0 || !Vec.isUndef())) {
5261     if (VecVT.getVectorMinNumElements() >= 8 &&
5262         SubVecVT.getVectorMinNumElements() >= 8) {
5263       assert(OrigIdx % 8 == 0 && "Invalid index");
5264       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5265              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5266              "Unexpected mask vector lowering");
5267       OrigIdx /= 8;
5268       SubVecVT =
5269           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5270                            SubVecVT.isScalableVector());
5271       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5272                                VecVT.isScalableVector());
5273       Vec = DAG.getBitcast(VecVT, Vec);
5274       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5275     } else {
5276       // We can't slide this mask vector up indexed by its i1 elements.
5277       // This poses a problem when we wish to insert a scalable vector which
5278       // can't be re-expressed as a larger type. Just choose the slow path and
5279       // extend to a larger type, then truncate back down.
5280       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5281       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5282       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5283       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5284       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5285                         Op.getOperand(2));
5286       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5287       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5288     }
5289   }
5290 
5291   // If the subvector vector is a fixed-length type, we cannot use subregister
5292   // manipulation to simplify the codegen; we don't know which register of a
5293   // LMUL group contains the specific subvector as we only know the minimum
5294   // register size. Therefore we must slide the vector group up the full
5295   // amount.
5296   if (SubVecVT.isFixedLengthVector()) {
5297     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5298       return Op;
5299     MVT ContainerVT = VecVT;
5300     if (VecVT.isFixedLengthVector()) {
5301       ContainerVT = getContainerForFixedLengthVector(VecVT);
5302       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5303     }
5304     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5305                          DAG.getUNDEF(ContainerVT), SubVec,
5306                          DAG.getConstant(0, DL, XLenVT));
5307     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5308       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5309       return DAG.getBitcast(Op.getValueType(), SubVec);
5310     }
5311     SDValue Mask =
5312         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5313     // Set the vector length to only the number of elements we care about. Note
5314     // that for slideup this includes the offset.
5315     SDValue VL =
5316         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5317     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5318     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5319                                   SubVec, SlideupAmt, Mask, VL);
5320     if (VecVT.isFixedLengthVector())
5321       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5322     return DAG.getBitcast(Op.getValueType(), Slideup);
5323   }
5324 
5325   unsigned SubRegIdx, RemIdx;
5326   std::tie(SubRegIdx, RemIdx) =
5327       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5328           VecVT, SubVecVT, OrigIdx, TRI);
5329 
5330   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5331   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5332                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5333                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5334 
5335   // 1. If the Idx has been completely eliminated and this subvector's size is
5336   // a vector register or a multiple thereof, or the surrounding elements are
5337   // undef, then this is a subvector insert which naturally aligns to a vector
5338   // register. These can easily be handled using subregister manipulation.
5339   // 2. If the subvector is smaller than a vector register, then the insertion
5340   // must preserve the undisturbed elements of the register. We do this by
5341   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5342   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5343   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5344   // LMUL=1 type back into the larger vector (resolving to another subregister
5345   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5346   // to avoid allocating a large register group to hold our subvector.
5347   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5348     return Op;
5349 
5350   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5351   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5352   // (in our case undisturbed). This means we can set up a subvector insertion
5353   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5354   // size of the subvector.
5355   MVT InterSubVT = VecVT;
5356   SDValue AlignedExtract = Vec;
5357   unsigned AlignedIdx = OrigIdx - RemIdx;
5358   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5359     InterSubVT = getLMUL1VT(VecVT);
5360     // Extract a subvector equal to the nearest full vector register type. This
5361     // should resolve to a EXTRACT_SUBREG instruction.
5362     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5363                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5364   }
5365 
5366   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5367   // For scalable vectors this must be further multiplied by vscale.
5368   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5369 
5370   SDValue Mask, VL;
5371   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5372 
5373   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5374   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5375   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5376   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5377 
5378   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5379                        DAG.getUNDEF(InterSubVT), SubVec,
5380                        DAG.getConstant(0, DL, XLenVT));
5381 
5382   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5383                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5384 
5385   // If required, insert this subvector back into the correct vector register.
5386   // This should resolve to an INSERT_SUBREG instruction.
5387   if (VecVT.bitsGT(InterSubVT))
5388     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5389                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5390 
5391   // We might have bitcast from a mask type: cast back to the original type if
5392   // required.
5393   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5394 }
5395 
5396 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5397                                                     SelectionDAG &DAG) const {
5398   SDValue Vec = Op.getOperand(0);
5399   MVT SubVecVT = Op.getSimpleValueType();
5400   MVT VecVT = Vec.getSimpleValueType();
5401 
5402   SDLoc DL(Op);
5403   MVT XLenVT = Subtarget.getXLenVT();
5404   unsigned OrigIdx = Op.getConstantOperandVal(1);
5405   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5406 
5407   // We don't have the ability to slide mask vectors down indexed by their i1
5408   // elements; the smallest we can do is i8. Often we are able to bitcast to
5409   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5410   // from a scalable one, we might not necessarily have enough scalable
5411   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5412   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5413     if (VecVT.getVectorMinNumElements() >= 8 &&
5414         SubVecVT.getVectorMinNumElements() >= 8) {
5415       assert(OrigIdx % 8 == 0 && "Invalid index");
5416       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5417              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5418              "Unexpected mask vector lowering");
5419       OrigIdx /= 8;
5420       SubVecVT =
5421           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5422                            SubVecVT.isScalableVector());
5423       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5424                                VecVT.isScalableVector());
5425       Vec = DAG.getBitcast(VecVT, Vec);
5426     } else {
5427       // We can't slide this mask vector down, indexed by its i1 elements.
5428       // This poses a problem when we wish to extract a scalable vector which
5429       // can't be re-expressed as a larger type. Just choose the slow path and
5430       // extend to a larger type, then truncate back down.
5431       // TODO: We could probably improve this when extracting certain fixed
5432       // from fixed, where we can extract as i8 and shift the correct element
5433       // right to reach the desired subvector?
5434       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5435       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5436       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5437       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5438                         Op.getOperand(1));
5439       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5440       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5441     }
5442   }
5443 
5444   // If the subvector vector is a fixed-length type, we cannot use subregister
5445   // manipulation to simplify the codegen; we don't know which register of a
5446   // LMUL group contains the specific subvector as we only know the minimum
5447   // register size. Therefore we must slide the vector group down the full
5448   // amount.
5449   if (SubVecVT.isFixedLengthVector()) {
5450     // With an index of 0 this is a cast-like subvector, which can be performed
5451     // with subregister operations.
5452     if (OrigIdx == 0)
5453       return Op;
5454     MVT ContainerVT = VecVT;
5455     if (VecVT.isFixedLengthVector()) {
5456       ContainerVT = getContainerForFixedLengthVector(VecVT);
5457       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5458     }
5459     SDValue Mask =
5460         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5461     // Set the vector length to only the number of elements we care about. This
5462     // avoids sliding down elements we're going to discard straight away.
5463     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5464     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5465     SDValue Slidedown =
5466         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5467                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5468     // Now we can use a cast-like subvector extract to get the result.
5469     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5470                             DAG.getConstant(0, DL, XLenVT));
5471     return DAG.getBitcast(Op.getValueType(), Slidedown);
5472   }
5473 
5474   unsigned SubRegIdx, RemIdx;
5475   std::tie(SubRegIdx, RemIdx) =
5476       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5477           VecVT, SubVecVT, OrigIdx, TRI);
5478 
5479   // If the Idx has been completely eliminated then this is a subvector extract
5480   // which naturally aligns to a vector register. These can easily be handled
5481   // using subregister manipulation.
5482   if (RemIdx == 0)
5483     return Op;
5484 
5485   // Else we must shift our vector register directly to extract the subvector.
5486   // Do this using VSLIDEDOWN.
5487 
5488   // If the vector type is an LMUL-group type, extract a subvector equal to the
5489   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5490   // instruction.
5491   MVT InterSubVT = VecVT;
5492   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5493     InterSubVT = getLMUL1VT(VecVT);
5494     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5495                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5496   }
5497 
5498   // Slide this vector register down by the desired number of elements in order
5499   // to place the desired subvector starting at element 0.
5500   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5501   // For scalable vectors this must be further multiplied by vscale.
5502   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5503 
5504   SDValue Mask, VL;
5505   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5506   SDValue Slidedown =
5507       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5508                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5509 
5510   // Now the vector is in the right position, extract our final subvector. This
5511   // should resolve to a COPY.
5512   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5513                           DAG.getConstant(0, DL, XLenVT));
5514 
5515   // We might have bitcast from a mask type: cast back to the original type if
5516   // required.
5517   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5518 }
5519 
5520 // Lower step_vector to the vid instruction. Any non-identity step value must
5521 // be accounted for my manual expansion.
5522 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5523                                               SelectionDAG &DAG) const {
5524   SDLoc DL(Op);
5525   MVT VT = Op.getSimpleValueType();
5526   MVT XLenVT = Subtarget.getXLenVT();
5527   SDValue Mask, VL;
5528   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5529   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5530   uint64_t StepValImm = Op.getConstantOperandVal(0);
5531   if (StepValImm != 1) {
5532     if (isPowerOf2_64(StepValImm)) {
5533       SDValue StepVal =
5534           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5535                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5536       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5537     } else {
5538       SDValue StepVal = lowerScalarSplat(
5539           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5540           VL, VT, DL, DAG, Subtarget);
5541       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5542     }
5543   }
5544   return StepVec;
5545 }
5546 
5547 // Implement vector_reverse using vrgather.vv with indices determined by
5548 // subtracting the id of each element from (VLMAX-1). This will convert
5549 // the indices like so:
5550 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5551 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5552 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5553                                                  SelectionDAG &DAG) const {
5554   SDLoc DL(Op);
5555   MVT VecVT = Op.getSimpleValueType();
5556   unsigned EltSize = VecVT.getScalarSizeInBits();
5557   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5558 
5559   unsigned MaxVLMAX = 0;
5560   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5561   if (VectorBitsMax != 0)
5562     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
5563 
5564   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5565   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5566 
5567   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5568   // to use vrgatherei16.vv.
5569   // TODO: It's also possible to use vrgatherei16.vv for other types to
5570   // decrease register width for the index calculation.
5571   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5572     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5573     // Reverse each half, then reassemble them in reverse order.
5574     // NOTE: It's also possible that after splitting that VLMAX no longer
5575     // requires vrgatherei16.vv.
5576     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5577       SDValue Lo, Hi;
5578       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5579       EVT LoVT, HiVT;
5580       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5581       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5582       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5583       // Reassemble the low and high pieces reversed.
5584       // FIXME: This is a CONCAT_VECTORS.
5585       SDValue Res =
5586           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5587                       DAG.getIntPtrConstant(0, DL));
5588       return DAG.getNode(
5589           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5590           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5591     }
5592 
5593     // Just promote the int type to i16 which will double the LMUL.
5594     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5595     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5596   }
5597 
5598   MVT XLenVT = Subtarget.getXLenVT();
5599   SDValue Mask, VL;
5600   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5601 
5602   // Calculate VLMAX-1 for the desired SEW.
5603   unsigned MinElts = VecVT.getVectorMinNumElements();
5604   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5605                               DAG.getConstant(MinElts, DL, XLenVT));
5606   SDValue VLMinus1 =
5607       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5608 
5609   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5610   bool IsRV32E64 =
5611       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5612   SDValue SplatVL;
5613   if (!IsRV32E64)
5614     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5615   else
5616     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5617                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5618 
5619   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5620   SDValue Indices =
5621       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5622 
5623   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5624 }
5625 
5626 SDValue
5627 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5628                                                      SelectionDAG &DAG) const {
5629   SDLoc DL(Op);
5630   auto *Load = cast<LoadSDNode>(Op);
5631 
5632   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5633                                         Load->getMemoryVT(),
5634                                         *Load->getMemOperand()) &&
5635          "Expecting a correctly-aligned load");
5636 
5637   MVT VT = Op.getSimpleValueType();
5638   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5639 
5640   SDValue VL =
5641       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5642 
5643   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5644   SDValue NewLoad = DAG.getMemIntrinsicNode(
5645       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
5646       Load->getMemoryVT(), Load->getMemOperand());
5647 
5648   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5649   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5650 }
5651 
5652 SDValue
5653 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5654                                                       SelectionDAG &DAG) const {
5655   SDLoc DL(Op);
5656   auto *Store = cast<StoreSDNode>(Op);
5657 
5658   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5659                                         Store->getMemoryVT(),
5660                                         *Store->getMemOperand()) &&
5661          "Expecting a correctly-aligned store");
5662 
5663   SDValue StoreVal = Store->getValue();
5664   MVT VT = StoreVal.getSimpleValueType();
5665 
5666   // If the size less than a byte, we need to pad with zeros to make a byte.
5667   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5668     VT = MVT::v8i1;
5669     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5670                            DAG.getConstant(0, DL, VT), StoreVal,
5671                            DAG.getIntPtrConstant(0, DL));
5672   }
5673 
5674   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5675 
5676   SDValue VL =
5677       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5678 
5679   SDValue NewValue =
5680       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5681   return DAG.getMemIntrinsicNode(
5682       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
5683       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
5684       Store->getMemoryVT(), Store->getMemOperand());
5685 }
5686 
5687 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5688                                              SelectionDAG &DAG) const {
5689   SDLoc DL(Op);
5690   MVT VT = Op.getSimpleValueType();
5691 
5692   const auto *MemSD = cast<MemSDNode>(Op);
5693   EVT MemVT = MemSD->getMemoryVT();
5694   MachineMemOperand *MMO = MemSD->getMemOperand();
5695   SDValue Chain = MemSD->getChain();
5696   SDValue BasePtr = MemSD->getBasePtr();
5697 
5698   SDValue Mask, PassThru, VL;
5699   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5700     Mask = VPLoad->getMask();
5701     PassThru = DAG.getUNDEF(VT);
5702     VL = VPLoad->getVectorLength();
5703   } else {
5704     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5705     Mask = MLoad->getMask();
5706     PassThru = MLoad->getPassThru();
5707   }
5708 
5709   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5710 
5711   MVT XLenVT = Subtarget.getXLenVT();
5712 
5713   MVT ContainerVT = VT;
5714   if (VT.isFixedLengthVector()) {
5715     ContainerVT = getContainerForFixedLengthVector(VT);
5716     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5717     if (!IsUnmasked) {
5718       MVT MaskVT =
5719           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5720       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5721     }
5722   }
5723 
5724   if (!VL)
5725     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5726 
5727   unsigned IntID =
5728       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5729   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5730   if (IsUnmasked)
5731     Ops.push_back(DAG.getUNDEF(ContainerVT));
5732   else
5733     Ops.push_back(PassThru);
5734   Ops.push_back(BasePtr);
5735   if (!IsUnmasked)
5736     Ops.push_back(Mask);
5737   Ops.push_back(VL);
5738   if (!IsUnmasked)
5739     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5740 
5741   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5742 
5743   SDValue Result =
5744       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5745   Chain = Result.getValue(1);
5746 
5747   if (VT.isFixedLengthVector())
5748     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5749 
5750   return DAG.getMergeValues({Result, Chain}, DL);
5751 }
5752 
5753 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5754                                               SelectionDAG &DAG) const {
5755   SDLoc DL(Op);
5756 
5757   const auto *MemSD = cast<MemSDNode>(Op);
5758   EVT MemVT = MemSD->getMemoryVT();
5759   MachineMemOperand *MMO = MemSD->getMemOperand();
5760   SDValue Chain = MemSD->getChain();
5761   SDValue BasePtr = MemSD->getBasePtr();
5762   SDValue Val, Mask, VL;
5763 
5764   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5765     Val = VPStore->getValue();
5766     Mask = VPStore->getMask();
5767     VL = VPStore->getVectorLength();
5768   } else {
5769     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5770     Val = MStore->getValue();
5771     Mask = MStore->getMask();
5772   }
5773 
5774   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5775 
5776   MVT VT = Val.getSimpleValueType();
5777   MVT XLenVT = Subtarget.getXLenVT();
5778 
5779   MVT ContainerVT = VT;
5780   if (VT.isFixedLengthVector()) {
5781     ContainerVT = getContainerForFixedLengthVector(VT);
5782 
5783     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5784     if (!IsUnmasked) {
5785       MVT MaskVT =
5786           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5787       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5788     }
5789   }
5790 
5791   if (!VL)
5792     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5793 
5794   unsigned IntID =
5795       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5796   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5797   Ops.push_back(Val);
5798   Ops.push_back(BasePtr);
5799   if (!IsUnmasked)
5800     Ops.push_back(Mask);
5801   Ops.push_back(VL);
5802 
5803   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5804                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5805 }
5806 
5807 SDValue
5808 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5809                                                       SelectionDAG &DAG) const {
5810   MVT InVT = Op.getOperand(0).getSimpleValueType();
5811   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5812 
5813   MVT VT = Op.getSimpleValueType();
5814 
5815   SDValue Op1 =
5816       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5817   SDValue Op2 =
5818       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5819 
5820   SDLoc DL(Op);
5821   SDValue VL =
5822       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5823 
5824   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5825   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5826 
5827   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5828                             Op.getOperand(2), Mask, VL);
5829 
5830   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5831 }
5832 
5833 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5834     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5835   MVT VT = Op.getSimpleValueType();
5836 
5837   if (VT.getVectorElementType() == MVT::i1)
5838     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5839 
5840   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5841 }
5842 
5843 SDValue
5844 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5845                                                       SelectionDAG &DAG) const {
5846   unsigned Opc;
5847   switch (Op.getOpcode()) {
5848   default: llvm_unreachable("Unexpected opcode!");
5849   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5850   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5851   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5852   }
5853 
5854   return lowerToScalableOp(Op, DAG, Opc);
5855 }
5856 
5857 // Lower vector ABS to smax(X, sub(0, X)).
5858 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5859   SDLoc DL(Op);
5860   MVT VT = Op.getSimpleValueType();
5861   SDValue X = Op.getOperand(0);
5862 
5863   assert(VT.isFixedLengthVector() && "Unexpected type");
5864 
5865   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5866   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5867 
5868   SDValue Mask, VL;
5869   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5870 
5871   SDValue SplatZero = DAG.getNode(
5872       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
5873       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5874   SDValue NegX =
5875       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5876   SDValue Max =
5877       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5878 
5879   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5880 }
5881 
5882 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5883     SDValue Op, SelectionDAG &DAG) const {
5884   SDLoc DL(Op);
5885   MVT VT = Op.getSimpleValueType();
5886   SDValue Mag = Op.getOperand(0);
5887   SDValue Sign = Op.getOperand(1);
5888   assert(Mag.getValueType() == Sign.getValueType() &&
5889          "Can only handle COPYSIGN with matching types.");
5890 
5891   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5892   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5893   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5894 
5895   SDValue Mask, VL;
5896   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5897 
5898   SDValue CopySign =
5899       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5900 
5901   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5902 }
5903 
5904 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5905     SDValue Op, SelectionDAG &DAG) const {
5906   MVT VT = Op.getSimpleValueType();
5907   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5908 
5909   MVT I1ContainerVT =
5910       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5911 
5912   SDValue CC =
5913       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5914   SDValue Op1 =
5915       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5916   SDValue Op2 =
5917       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5918 
5919   SDLoc DL(Op);
5920   SDValue Mask, VL;
5921   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5922 
5923   SDValue Select =
5924       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5925 
5926   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5927 }
5928 
5929 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5930                                                unsigned NewOpc,
5931                                                bool HasMask) const {
5932   MVT VT = Op.getSimpleValueType();
5933   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5934 
5935   // Create list of operands by converting existing ones to scalable types.
5936   SmallVector<SDValue, 6> Ops;
5937   for (const SDValue &V : Op->op_values()) {
5938     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5939 
5940     // Pass through non-vector operands.
5941     if (!V.getValueType().isVector()) {
5942       Ops.push_back(V);
5943       continue;
5944     }
5945 
5946     // "cast" fixed length vector to a scalable vector.
5947     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
5948            "Only fixed length vectors are supported!");
5949     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5950   }
5951 
5952   SDLoc DL(Op);
5953   SDValue Mask, VL;
5954   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5955   if (HasMask)
5956     Ops.push_back(Mask);
5957   Ops.push_back(VL);
5958 
5959   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
5960   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
5961 }
5962 
5963 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
5964 // * Operands of each node are assumed to be in the same order.
5965 // * The EVL operand is promoted from i32 to i64 on RV64.
5966 // * Fixed-length vectors are converted to their scalable-vector container
5967 //   types.
5968 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
5969                                        unsigned RISCVISDOpc) const {
5970   SDLoc DL(Op);
5971   MVT VT = Op.getSimpleValueType();
5972   SmallVector<SDValue, 4> Ops;
5973 
5974   for (const auto &OpIdx : enumerate(Op->ops())) {
5975     SDValue V = OpIdx.value();
5976     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5977     // Pass through operands which aren't fixed-length vectors.
5978     if (!V.getValueType().isFixedLengthVector()) {
5979       Ops.push_back(V);
5980       continue;
5981     }
5982     // "cast" fixed length vector to a scalable vector.
5983     MVT OpVT = V.getSimpleValueType();
5984     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
5985     assert(useRVVForFixedLengthVectorVT(OpVT) &&
5986            "Only fixed length vectors are supported!");
5987     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5988   }
5989 
5990   if (!VT.isFixedLengthVector())
5991     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
5992 
5993   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5994 
5995   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
5996 
5997   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
5998 }
5999 
6000 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6001                                             unsigned MaskOpc,
6002                                             unsigned VecOpc) const {
6003   MVT VT = Op.getSimpleValueType();
6004   if (VT.getVectorElementType() != MVT::i1)
6005     return lowerVPOp(Op, DAG, VecOpc);
6006 
6007   // It is safe to drop mask parameter as masked-off elements are undef.
6008   SDValue Op1 = Op->getOperand(0);
6009   SDValue Op2 = Op->getOperand(1);
6010   SDValue VL = Op->getOperand(3);
6011 
6012   MVT ContainerVT = VT;
6013   const bool IsFixed = VT.isFixedLengthVector();
6014   if (IsFixed) {
6015     ContainerVT = getContainerForFixedLengthVector(VT);
6016     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6017     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6018   }
6019 
6020   SDLoc DL(Op);
6021   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6022   if (!IsFixed)
6023     return Val;
6024   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6025 }
6026 
6027 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6028 // matched to a RVV indexed load. The RVV indexed load instructions only
6029 // support the "unsigned unscaled" addressing mode; indices are implicitly
6030 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6031 // signed or scaled indexing is extended to the XLEN value type and scaled
6032 // accordingly.
6033 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6034                                                SelectionDAG &DAG) const {
6035   SDLoc DL(Op);
6036   MVT VT = Op.getSimpleValueType();
6037 
6038   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6039   EVT MemVT = MemSD->getMemoryVT();
6040   MachineMemOperand *MMO = MemSD->getMemOperand();
6041   SDValue Chain = MemSD->getChain();
6042   SDValue BasePtr = MemSD->getBasePtr();
6043 
6044   ISD::LoadExtType LoadExtType;
6045   SDValue Index, Mask, PassThru, VL;
6046 
6047   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6048     Index = VPGN->getIndex();
6049     Mask = VPGN->getMask();
6050     PassThru = DAG.getUNDEF(VT);
6051     VL = VPGN->getVectorLength();
6052     // VP doesn't support extending loads.
6053     LoadExtType = ISD::NON_EXTLOAD;
6054   } else {
6055     // Else it must be a MGATHER.
6056     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6057     Index = MGN->getIndex();
6058     Mask = MGN->getMask();
6059     PassThru = MGN->getPassThru();
6060     LoadExtType = MGN->getExtensionType();
6061   }
6062 
6063   MVT IndexVT = Index.getSimpleValueType();
6064   MVT XLenVT = Subtarget.getXLenVT();
6065 
6066   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6067          "Unexpected VTs!");
6068   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6069   // Targets have to explicitly opt-in for extending vector loads.
6070   assert(LoadExtType == ISD::NON_EXTLOAD &&
6071          "Unexpected extending MGATHER/VP_GATHER");
6072   (void)LoadExtType;
6073 
6074   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6075   // the selection of the masked intrinsics doesn't do this for us.
6076   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6077 
6078   MVT ContainerVT = VT;
6079   if (VT.isFixedLengthVector()) {
6080     // We need to use the larger of the result and index type to determine the
6081     // scalable type to use so we don't increase LMUL for any operand/result.
6082     if (VT.bitsGE(IndexVT)) {
6083       ContainerVT = getContainerForFixedLengthVector(VT);
6084       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6085                                  ContainerVT.getVectorElementCount());
6086     } else {
6087       IndexVT = getContainerForFixedLengthVector(IndexVT);
6088       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
6089                                      IndexVT.getVectorElementCount());
6090     }
6091 
6092     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6093 
6094     if (!IsUnmasked) {
6095       MVT MaskVT =
6096           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6097       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6098       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6099     }
6100   }
6101 
6102   if (!VL)
6103     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6104 
6105   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6106     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6107     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6108                                    VL);
6109     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6110                         TrueMask, VL);
6111   }
6112 
6113   unsigned IntID =
6114       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6115   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6116   if (IsUnmasked)
6117     Ops.push_back(DAG.getUNDEF(ContainerVT));
6118   else
6119     Ops.push_back(PassThru);
6120   Ops.push_back(BasePtr);
6121   Ops.push_back(Index);
6122   if (!IsUnmasked)
6123     Ops.push_back(Mask);
6124   Ops.push_back(VL);
6125   if (!IsUnmasked)
6126     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6127 
6128   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6129   SDValue Result =
6130       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6131   Chain = Result.getValue(1);
6132 
6133   if (VT.isFixedLengthVector())
6134     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6135 
6136   return DAG.getMergeValues({Result, Chain}, DL);
6137 }
6138 
6139 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6140 // matched to a RVV indexed store. The RVV indexed store instructions only
6141 // support the "unsigned unscaled" addressing mode; indices are implicitly
6142 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6143 // signed or scaled indexing is extended to the XLEN value type and scaled
6144 // accordingly.
6145 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6146                                                 SelectionDAG &DAG) const {
6147   SDLoc DL(Op);
6148   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6149   EVT MemVT = MemSD->getMemoryVT();
6150   MachineMemOperand *MMO = MemSD->getMemOperand();
6151   SDValue Chain = MemSD->getChain();
6152   SDValue BasePtr = MemSD->getBasePtr();
6153 
6154   bool IsTruncatingStore = false;
6155   SDValue Index, Mask, Val, VL;
6156 
6157   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6158     Index = VPSN->getIndex();
6159     Mask = VPSN->getMask();
6160     Val = VPSN->getValue();
6161     VL = VPSN->getVectorLength();
6162     // VP doesn't support truncating stores.
6163     IsTruncatingStore = false;
6164   } else {
6165     // Else it must be a MSCATTER.
6166     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6167     Index = MSN->getIndex();
6168     Mask = MSN->getMask();
6169     Val = MSN->getValue();
6170     IsTruncatingStore = MSN->isTruncatingStore();
6171   }
6172 
6173   MVT VT = Val.getSimpleValueType();
6174   MVT IndexVT = Index.getSimpleValueType();
6175   MVT XLenVT = Subtarget.getXLenVT();
6176 
6177   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6178          "Unexpected VTs!");
6179   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6180   // Targets have to explicitly opt-in for extending vector loads and
6181   // truncating vector stores.
6182   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6183   (void)IsTruncatingStore;
6184 
6185   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6186   // the selection of the masked intrinsics doesn't do this for us.
6187   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6188 
6189   MVT ContainerVT = VT;
6190   if (VT.isFixedLengthVector()) {
6191     // We need to use the larger of the value and index type to determine the
6192     // scalable type to use so we don't increase LMUL for any operand/result.
6193     if (VT.bitsGE(IndexVT)) {
6194       ContainerVT = getContainerForFixedLengthVector(VT);
6195       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6196                                  ContainerVT.getVectorElementCount());
6197     } else {
6198       IndexVT = getContainerForFixedLengthVector(IndexVT);
6199       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
6200                                      IndexVT.getVectorElementCount());
6201     }
6202 
6203     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6204     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6205 
6206     if (!IsUnmasked) {
6207       MVT MaskVT =
6208           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6209       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6210     }
6211   }
6212 
6213   if (!VL)
6214     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6215 
6216   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6217     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6218     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6219                                    VL);
6220     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6221                         TrueMask, VL);
6222   }
6223 
6224   unsigned IntID =
6225       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6226   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6227   Ops.push_back(Val);
6228   Ops.push_back(BasePtr);
6229   Ops.push_back(Index);
6230   if (!IsUnmasked)
6231     Ops.push_back(Mask);
6232   Ops.push_back(VL);
6233 
6234   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6235                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6236 }
6237 
6238 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6239                                                SelectionDAG &DAG) const {
6240   const MVT XLenVT = Subtarget.getXLenVT();
6241   SDLoc DL(Op);
6242   SDValue Chain = Op->getOperand(0);
6243   SDValue SysRegNo = DAG.getTargetConstant(
6244       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6245   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6246   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6247 
6248   // Encoding used for rounding mode in RISCV differs from that used in
6249   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6250   // table, which consists of a sequence of 4-bit fields, each representing
6251   // corresponding FLT_ROUNDS mode.
6252   static const int Table =
6253       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6254       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6255       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6256       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6257       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6258 
6259   SDValue Shift =
6260       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6261   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6262                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6263   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6264                                DAG.getConstant(7, DL, XLenVT));
6265 
6266   return DAG.getMergeValues({Masked, Chain}, DL);
6267 }
6268 
6269 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6270                                                SelectionDAG &DAG) const {
6271   const MVT XLenVT = Subtarget.getXLenVT();
6272   SDLoc DL(Op);
6273   SDValue Chain = Op->getOperand(0);
6274   SDValue RMValue = Op->getOperand(1);
6275   SDValue SysRegNo = DAG.getTargetConstant(
6276       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6277 
6278   // Encoding used for rounding mode in RISCV differs from that used in
6279   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6280   // a table, which consists of a sequence of 4-bit fields, each representing
6281   // corresponding RISCV mode.
6282   static const unsigned Table =
6283       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6284       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6285       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6286       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6287       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6288 
6289   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6290                               DAG.getConstant(2, DL, XLenVT));
6291   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6292                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6293   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6294                         DAG.getConstant(0x7, DL, XLenVT));
6295   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6296                      RMValue);
6297 }
6298 
6299 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6300   switch (IntNo) {
6301   default:
6302     llvm_unreachable("Unexpected Intrinsic");
6303   case Intrinsic::riscv_grev:
6304     return RISCVISD::GREVW;
6305   case Intrinsic::riscv_gorc:
6306     return RISCVISD::GORCW;
6307   case Intrinsic::riscv_bcompress:
6308     return RISCVISD::BCOMPRESSW;
6309   case Intrinsic::riscv_bdecompress:
6310     return RISCVISD::BDECOMPRESSW;
6311   case Intrinsic::riscv_bfp:
6312     return RISCVISD::BFPW;
6313   case Intrinsic::riscv_fsl:
6314     return RISCVISD::FSLW;
6315   case Intrinsic::riscv_fsr:
6316     return RISCVISD::FSRW;
6317   }
6318 }
6319 
6320 // Converts the given intrinsic to a i64 operation with any extension.
6321 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6322                                          unsigned IntNo) {
6323   SDLoc DL(N);
6324   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6325   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6326   SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6327   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2);
6328   // ReplaceNodeResults requires we maintain the same type for the return value.
6329   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6330 }
6331 
6332 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6333 // form of the given Opcode.
6334 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6335   switch (Opcode) {
6336   default:
6337     llvm_unreachable("Unexpected opcode");
6338   case ISD::SHL:
6339     return RISCVISD::SLLW;
6340   case ISD::SRA:
6341     return RISCVISD::SRAW;
6342   case ISD::SRL:
6343     return RISCVISD::SRLW;
6344   case ISD::SDIV:
6345     return RISCVISD::DIVW;
6346   case ISD::UDIV:
6347     return RISCVISD::DIVUW;
6348   case ISD::UREM:
6349     return RISCVISD::REMUW;
6350   case ISD::ROTL:
6351     return RISCVISD::ROLW;
6352   case ISD::ROTR:
6353     return RISCVISD::RORW;
6354   case RISCVISD::GREV:
6355     return RISCVISD::GREVW;
6356   case RISCVISD::GORC:
6357     return RISCVISD::GORCW;
6358   }
6359 }
6360 
6361 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6362 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6363 // otherwise be promoted to i64, making it difficult to select the
6364 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6365 // type i8/i16/i32 is lost.
6366 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6367                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6368   SDLoc DL(N);
6369   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6370   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6371   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6372   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6373   // ReplaceNodeResults requires we maintain the same type for the return value.
6374   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6375 }
6376 
6377 // Converts the given 32-bit operation to a i64 operation with signed extension
6378 // semantic to reduce the signed extension instructions.
6379 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6380   SDLoc DL(N);
6381   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6382   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6383   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6384   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6385                                DAG.getValueType(MVT::i32));
6386   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6387 }
6388 
6389 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6390                                              SmallVectorImpl<SDValue> &Results,
6391                                              SelectionDAG &DAG) const {
6392   SDLoc DL(N);
6393   switch (N->getOpcode()) {
6394   default:
6395     llvm_unreachable("Don't know how to custom type legalize this operation!");
6396   case ISD::STRICT_FP_TO_SINT:
6397   case ISD::STRICT_FP_TO_UINT:
6398   case ISD::FP_TO_SINT:
6399   case ISD::FP_TO_UINT: {
6400     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6401            "Unexpected custom legalisation");
6402     bool IsStrict = N->isStrictFPOpcode();
6403     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6404                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6405     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6406     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6407         TargetLowering::TypeSoftenFloat) {
6408       if (!isTypeLegal(Op0.getValueType()))
6409         return;
6410       if (IsStrict) {
6411         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6412                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6413         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6414         SDValue Res = DAG.getNode(
6415             Opc, DL, VTs, N->getOperand(0), Op0,
6416             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6417         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6418         Results.push_back(Res.getValue(1));
6419         return;
6420       }
6421       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6422       SDValue Res =
6423           DAG.getNode(Opc, DL, MVT::i64, Op0,
6424                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6425       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6426       return;
6427     }
6428     // If the FP type needs to be softened, emit a library call using the 'si'
6429     // version. If we left it to default legalization we'd end up with 'di'. If
6430     // the FP type doesn't need to be softened just let generic type
6431     // legalization promote the result type.
6432     RTLIB::Libcall LC;
6433     if (IsSigned)
6434       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6435     else
6436       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6437     MakeLibCallOptions CallOptions;
6438     EVT OpVT = Op0.getValueType();
6439     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6440     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6441     SDValue Result;
6442     std::tie(Result, Chain) =
6443         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6444     Results.push_back(Result);
6445     if (IsStrict)
6446       Results.push_back(Chain);
6447     break;
6448   }
6449   case ISD::READCYCLECOUNTER: {
6450     assert(!Subtarget.is64Bit() &&
6451            "READCYCLECOUNTER only has custom type legalization on riscv32");
6452 
6453     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6454     SDValue RCW =
6455         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6456 
6457     Results.push_back(
6458         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6459     Results.push_back(RCW.getValue(2));
6460     break;
6461   }
6462   case ISD::MUL: {
6463     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6464     unsigned XLen = Subtarget.getXLen();
6465     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6466     if (Size > XLen) {
6467       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6468       SDValue LHS = N->getOperand(0);
6469       SDValue RHS = N->getOperand(1);
6470       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6471 
6472       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6473       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6474       // We need exactly one side to be unsigned.
6475       if (LHSIsU == RHSIsU)
6476         return;
6477 
6478       auto MakeMULPair = [&](SDValue S, SDValue U) {
6479         MVT XLenVT = Subtarget.getXLenVT();
6480         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6481         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6482         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6483         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6484         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6485       };
6486 
6487       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6488       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6489 
6490       // The other operand should be signed, but still prefer MULH when
6491       // possible.
6492       if (RHSIsU && LHSIsS && !RHSIsS)
6493         Results.push_back(MakeMULPair(LHS, RHS));
6494       else if (LHSIsU && RHSIsS && !LHSIsS)
6495         Results.push_back(MakeMULPair(RHS, LHS));
6496 
6497       return;
6498     }
6499     LLVM_FALLTHROUGH;
6500   }
6501   case ISD::ADD:
6502   case ISD::SUB:
6503     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6504            "Unexpected custom legalisation");
6505     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6506     break;
6507   case ISD::SHL:
6508   case ISD::SRA:
6509   case ISD::SRL:
6510     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6511            "Unexpected custom legalisation");
6512     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6513       Results.push_back(customLegalizeToWOp(N, DAG));
6514       break;
6515     }
6516 
6517     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6518     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6519     // shift amount.
6520     if (N->getOpcode() == ISD::SHL) {
6521       SDLoc DL(N);
6522       SDValue NewOp0 =
6523           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6524       SDValue NewOp1 =
6525           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6526       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6527       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6528                                    DAG.getValueType(MVT::i32));
6529       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6530     }
6531 
6532     break;
6533   case ISD::ROTL:
6534   case ISD::ROTR:
6535     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6536            "Unexpected custom legalisation");
6537     Results.push_back(customLegalizeToWOp(N, DAG));
6538     break;
6539   case ISD::CTTZ:
6540   case ISD::CTTZ_ZERO_UNDEF:
6541   case ISD::CTLZ:
6542   case ISD::CTLZ_ZERO_UNDEF: {
6543     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6544            "Unexpected custom legalisation");
6545 
6546     SDValue NewOp0 =
6547         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6548     bool IsCTZ =
6549         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6550     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6551     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6552     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6553     return;
6554   }
6555   case ISD::SDIV:
6556   case ISD::UDIV:
6557   case ISD::UREM: {
6558     MVT VT = N->getSimpleValueType(0);
6559     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6560            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6561            "Unexpected custom legalisation");
6562     // Don't promote division/remainder by constant since we should expand those
6563     // to multiply by magic constant.
6564     // FIXME: What if the expansion is disabled for minsize.
6565     if (N->getOperand(1).getOpcode() == ISD::Constant)
6566       return;
6567 
6568     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6569     // the upper 32 bits. For other types we need to sign or zero extend
6570     // based on the opcode.
6571     unsigned ExtOpc = ISD::ANY_EXTEND;
6572     if (VT != MVT::i32)
6573       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6574                                            : ISD::ZERO_EXTEND;
6575 
6576     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6577     break;
6578   }
6579   case ISD::UADDO:
6580   case ISD::USUBO: {
6581     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6582            "Unexpected custom legalisation");
6583     bool IsAdd = N->getOpcode() == ISD::UADDO;
6584     // Create an ADDW or SUBW.
6585     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6586     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6587     SDValue Res =
6588         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6589     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6590                       DAG.getValueType(MVT::i32));
6591 
6592     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
6593     // Since the inputs are sign extended from i32, this is equivalent to
6594     // comparing the lower 32 bits.
6595     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6596     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6597                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
6598 
6599     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6600     Results.push_back(Overflow);
6601     return;
6602   }
6603   case ISD::UADDSAT:
6604   case ISD::USUBSAT: {
6605     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6606            "Unexpected custom legalisation");
6607     if (Subtarget.hasStdExtZbb()) {
6608       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6609       // sign extend allows overflow of the lower 32 bits to be detected on
6610       // the promoted size.
6611       SDValue LHS =
6612           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6613       SDValue RHS =
6614           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6615       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6616       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6617       return;
6618     }
6619 
6620     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6621     // promotion for UADDO/USUBO.
6622     Results.push_back(expandAddSubSat(N, DAG));
6623     return;
6624   }
6625   case ISD::BITCAST: {
6626     EVT VT = N->getValueType(0);
6627     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6628     SDValue Op0 = N->getOperand(0);
6629     EVT Op0VT = Op0.getValueType();
6630     MVT XLenVT = Subtarget.getXLenVT();
6631     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6632       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6633       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6634     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6635                Subtarget.hasStdExtF()) {
6636       SDValue FPConv =
6637           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6638       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6639     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6640                isTypeLegal(Op0VT)) {
6641       // Custom-legalize bitcasts from fixed-length vector types to illegal
6642       // scalar types in order to improve codegen. Bitcast the vector to a
6643       // one-element vector type whose element type is the same as the result
6644       // type, and extract the first element.
6645       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6646       if (isTypeLegal(BVT)) {
6647         SDValue BVec = DAG.getBitcast(BVT, Op0);
6648         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6649                                       DAG.getConstant(0, DL, XLenVT)));
6650       }
6651     }
6652     break;
6653   }
6654   case RISCVISD::GREV:
6655   case RISCVISD::GORC: {
6656     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6657            "Unexpected custom legalisation");
6658     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6659     // This is similar to customLegalizeToWOp, except that we pass the second
6660     // operand (a TargetConstant) straight through: it is already of type
6661     // XLenVT.
6662     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6663     SDValue NewOp0 =
6664         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6665     SDValue NewOp1 =
6666         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6667     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6668     // ReplaceNodeResults requires we maintain the same type for the return
6669     // value.
6670     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6671     break;
6672   }
6673   case RISCVISD::SHFL: {
6674     // There is no SHFLIW instruction, but we can just promote the operation.
6675     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6676            "Unexpected custom legalisation");
6677     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6678     SDValue NewOp0 =
6679         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6680     SDValue NewOp1 =
6681         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6682     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
6683     // ReplaceNodeResults requires we maintain the same type for the return
6684     // value.
6685     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6686     break;
6687   }
6688   case ISD::BSWAP:
6689   case ISD::BITREVERSE: {
6690     MVT VT = N->getSimpleValueType(0);
6691     MVT XLenVT = Subtarget.getXLenVT();
6692     assert((VT == MVT::i8 || VT == MVT::i16 ||
6693             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6694            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6695     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6696     unsigned Imm = VT.getSizeInBits() - 1;
6697     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6698     if (N->getOpcode() == ISD::BSWAP)
6699       Imm &= ~0x7U;
6700     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
6701     SDValue GREVI =
6702         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
6703     // ReplaceNodeResults requires we maintain the same type for the return
6704     // value.
6705     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6706     break;
6707   }
6708   case ISD::FSHL:
6709   case ISD::FSHR: {
6710     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6711            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6712     SDValue NewOp0 =
6713         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6714     SDValue NewOp1 =
6715         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6716     SDValue NewShAmt =
6717         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6718     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6719     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
6720     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
6721                            DAG.getConstant(0x1f, DL, MVT::i64));
6722     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
6723     // instruction use different orders. fshl will return its first operand for
6724     // shift of zero, fshr will return its second operand. fsl and fsr both
6725     // return rs1 so the ISD nodes need to have different operand orders.
6726     // Shift amount is in rs2.
6727     unsigned Opc = RISCVISD::FSLW;
6728     if (N->getOpcode() == ISD::FSHR) {
6729       std::swap(NewOp0, NewOp1);
6730       Opc = RISCVISD::FSRW;
6731     }
6732     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
6733     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6734     break;
6735   }
6736   case ISD::EXTRACT_VECTOR_ELT: {
6737     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
6738     // type is illegal (currently only vXi64 RV32).
6739     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
6740     // transferred to the destination register. We issue two of these from the
6741     // upper- and lower- halves of the SEW-bit vector element, slid down to the
6742     // first element.
6743     SDValue Vec = N->getOperand(0);
6744     SDValue Idx = N->getOperand(1);
6745 
6746     // The vector type hasn't been legalized yet so we can't issue target
6747     // specific nodes if it needs legalization.
6748     // FIXME: We would manually legalize if it's important.
6749     if (!isTypeLegal(Vec.getValueType()))
6750       return;
6751 
6752     MVT VecVT = Vec.getSimpleValueType();
6753 
6754     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
6755            VecVT.getVectorElementType() == MVT::i64 &&
6756            "Unexpected EXTRACT_VECTOR_ELT legalization");
6757 
6758     // If this is a fixed vector, we need to convert it to a scalable vector.
6759     MVT ContainerVT = VecVT;
6760     if (VecVT.isFixedLengthVector()) {
6761       ContainerVT = getContainerForFixedLengthVector(VecVT);
6762       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6763     }
6764 
6765     MVT XLenVT = Subtarget.getXLenVT();
6766 
6767     // Use a VL of 1 to avoid processing more elements than we need.
6768     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6769     SDValue VL = DAG.getConstant(1, DL, XLenVT);
6770     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6771 
6772     // Unless the index is known to be 0, we must slide the vector down to get
6773     // the desired element into index 0.
6774     if (!isNullConstant(Idx)) {
6775       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
6776                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
6777     }
6778 
6779     // Extract the lower XLEN bits of the correct vector element.
6780     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6781 
6782     // To extract the upper XLEN bits of the vector element, shift the first
6783     // element right by 32 bits and re-extract the lower XLEN bits.
6784     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6785                                      DAG.getUNDEF(ContainerVT),
6786                                      DAG.getConstant(32, DL, XLenVT), VL);
6787     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
6788                                  ThirtyTwoV, Mask, VL);
6789 
6790     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6791 
6792     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6793     break;
6794   }
6795   case ISD::INTRINSIC_WO_CHAIN: {
6796     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6797     switch (IntNo) {
6798     default:
6799       llvm_unreachable(
6800           "Don't know how to custom type legalize this intrinsic!");
6801     case Intrinsic::riscv_grev:
6802     case Intrinsic::riscv_gorc:
6803     case Intrinsic::riscv_bcompress:
6804     case Intrinsic::riscv_bdecompress:
6805     case Intrinsic::riscv_bfp: {
6806       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6807              "Unexpected custom legalisation");
6808       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
6809       break;
6810     }
6811     case Intrinsic::riscv_fsl:
6812     case Intrinsic::riscv_fsr: {
6813       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6814              "Unexpected custom legalisation");
6815       SDValue NewOp1 =
6816           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6817       SDValue NewOp2 =
6818           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6819       SDValue NewOp3 =
6820           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3));
6821       unsigned Opc = getRISCVWOpcodeByIntr(IntNo);
6822       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3);
6823       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6824       break;
6825     }
6826     case Intrinsic::riscv_orc_b: {
6827       // Lower to the GORCI encoding for orc.b with the operand extended.
6828       SDValue NewOp =
6829           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6830       // If Zbp is enabled, use GORCIW which will sign extend the result.
6831       unsigned Opc =
6832           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
6833       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
6834                                 DAG.getConstant(7, DL, MVT::i64));
6835       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6836       return;
6837     }
6838     case Intrinsic::riscv_shfl:
6839     case Intrinsic::riscv_unshfl: {
6840       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6841              "Unexpected custom legalisation");
6842       SDValue NewOp1 =
6843           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6844       SDValue NewOp2 =
6845           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6846       unsigned Opc =
6847           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
6848       // There is no (UN)SHFLIW. If the control word is a constant, we can use
6849       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
6850       // will be shuffled the same way as the lower 32 bit half, but the two
6851       // halves won't cross.
6852       if (isa<ConstantSDNode>(NewOp2)) {
6853         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6854                              DAG.getConstant(0xf, DL, MVT::i64));
6855         Opc =
6856             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
6857       }
6858       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6859       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6860       break;
6861     }
6862     case Intrinsic::riscv_vmv_x_s: {
6863       EVT VT = N->getValueType(0);
6864       MVT XLenVT = Subtarget.getXLenVT();
6865       if (VT.bitsLT(XLenVT)) {
6866         // Simple case just extract using vmv.x.s and truncate.
6867         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
6868                                       Subtarget.getXLenVT(), N->getOperand(1));
6869         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
6870         return;
6871       }
6872 
6873       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
6874              "Unexpected custom legalization");
6875 
6876       // We need to do the move in two steps.
6877       SDValue Vec = N->getOperand(1);
6878       MVT VecVT = Vec.getSimpleValueType();
6879 
6880       // First extract the lower XLEN bits of the element.
6881       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6882 
6883       // To extract the upper XLEN bits of the vector element, shift the first
6884       // element right by 32 bits and re-extract the lower XLEN bits.
6885       SDValue VL = DAG.getConstant(1, DL, XLenVT);
6886       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
6887       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6888       SDValue ThirtyTwoV =
6889           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
6890                       DAG.getConstant(32, DL, XLenVT), VL);
6891       SDValue LShr32 =
6892           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
6893       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6894 
6895       Results.push_back(
6896           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6897       break;
6898     }
6899     }
6900     break;
6901   }
6902   case ISD::VECREDUCE_ADD:
6903   case ISD::VECREDUCE_AND:
6904   case ISD::VECREDUCE_OR:
6905   case ISD::VECREDUCE_XOR:
6906   case ISD::VECREDUCE_SMAX:
6907   case ISD::VECREDUCE_UMAX:
6908   case ISD::VECREDUCE_SMIN:
6909   case ISD::VECREDUCE_UMIN:
6910     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
6911       Results.push_back(V);
6912     break;
6913   case ISD::VP_REDUCE_ADD:
6914   case ISD::VP_REDUCE_AND:
6915   case ISD::VP_REDUCE_OR:
6916   case ISD::VP_REDUCE_XOR:
6917   case ISD::VP_REDUCE_SMAX:
6918   case ISD::VP_REDUCE_UMAX:
6919   case ISD::VP_REDUCE_SMIN:
6920   case ISD::VP_REDUCE_UMIN:
6921     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
6922       Results.push_back(V);
6923     break;
6924   case ISD::FLT_ROUNDS_: {
6925     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
6926     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
6927     Results.push_back(Res.getValue(0));
6928     Results.push_back(Res.getValue(1));
6929     break;
6930   }
6931   }
6932 }
6933 
6934 // A structure to hold one of the bit-manipulation patterns below. Together, a
6935 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
6936 //   (or (and (shl x, 1), 0xAAAAAAAA),
6937 //       (and (srl x, 1), 0x55555555))
6938 struct RISCVBitmanipPat {
6939   SDValue Op;
6940   unsigned ShAmt;
6941   bool IsSHL;
6942 
6943   bool formsPairWith(const RISCVBitmanipPat &Other) const {
6944     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
6945   }
6946 };
6947 
6948 // Matches patterns of the form
6949 //   (and (shl x, C2), (C1 << C2))
6950 //   (and (srl x, C2), C1)
6951 //   (shl (and x, C1), C2)
6952 //   (srl (and x, (C1 << C2)), C2)
6953 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
6954 // The expected masks for each shift amount are specified in BitmanipMasks where
6955 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
6956 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
6957 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
6958 // XLen is 64.
6959 static Optional<RISCVBitmanipPat>
6960 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
6961   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
6962          "Unexpected number of masks");
6963   Optional<uint64_t> Mask;
6964   // Optionally consume a mask around the shift operation.
6965   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
6966     Mask = Op.getConstantOperandVal(1);
6967     Op = Op.getOperand(0);
6968   }
6969   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
6970     return None;
6971   bool IsSHL = Op.getOpcode() == ISD::SHL;
6972 
6973   if (!isa<ConstantSDNode>(Op.getOperand(1)))
6974     return None;
6975   uint64_t ShAmt = Op.getConstantOperandVal(1);
6976 
6977   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6978   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
6979     return None;
6980   // If we don't have enough masks for 64 bit, then we must be trying to
6981   // match SHFL so we're only allowed to shift 1/4 of the width.
6982   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
6983     return None;
6984 
6985   SDValue Src = Op.getOperand(0);
6986 
6987   // The expected mask is shifted left when the AND is found around SHL
6988   // patterns.
6989   //   ((x >> 1) & 0x55555555)
6990   //   ((x << 1) & 0xAAAAAAAA)
6991   bool SHLExpMask = IsSHL;
6992 
6993   if (!Mask) {
6994     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
6995     // the mask is all ones: consume that now.
6996     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
6997       Mask = Src.getConstantOperandVal(1);
6998       Src = Src.getOperand(0);
6999       // The expected mask is now in fact shifted left for SRL, so reverse the
7000       // decision.
7001       //   ((x & 0xAAAAAAAA) >> 1)
7002       //   ((x & 0x55555555) << 1)
7003       SHLExpMask = !SHLExpMask;
7004     } else {
7005       // Use a default shifted mask of all-ones if there's no AND, truncated
7006       // down to the expected width. This simplifies the logic later on.
7007       Mask = maskTrailingOnes<uint64_t>(Width);
7008       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7009     }
7010   }
7011 
7012   unsigned MaskIdx = Log2_32(ShAmt);
7013   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7014 
7015   if (SHLExpMask)
7016     ExpMask <<= ShAmt;
7017 
7018   if (Mask != ExpMask)
7019     return None;
7020 
7021   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7022 }
7023 
7024 // Matches any of the following bit-manipulation patterns:
7025 //   (and (shl x, 1), (0x55555555 << 1))
7026 //   (and (srl x, 1), 0x55555555)
7027 //   (shl (and x, 0x55555555), 1)
7028 //   (srl (and x, (0x55555555 << 1)), 1)
7029 // where the shift amount and mask may vary thus:
7030 //   [1]  = 0x55555555 / 0xAAAAAAAA
7031 //   [2]  = 0x33333333 / 0xCCCCCCCC
7032 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7033 //   [8]  = 0x00FF00FF / 0xFF00FF00
7034 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7035 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7036 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7037   // These are the unshifted masks which we use to match bit-manipulation
7038   // patterns. They may be shifted left in certain circumstances.
7039   static const uint64_t BitmanipMasks[] = {
7040       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7041       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7042 
7043   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7044 }
7045 
7046 // Match the following pattern as a GREVI(W) operation
7047 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7048 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7049                                const RISCVSubtarget &Subtarget) {
7050   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7051   EVT VT = Op.getValueType();
7052 
7053   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7054     auto LHS = matchGREVIPat(Op.getOperand(0));
7055     auto RHS = matchGREVIPat(Op.getOperand(1));
7056     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7057       SDLoc DL(Op);
7058       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7059                          DAG.getConstant(LHS->ShAmt, DL, VT));
7060     }
7061   }
7062   return SDValue();
7063 }
7064 
7065 // Matches any the following pattern as a GORCI(W) operation
7066 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7067 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7068 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7069 // Note that with the variant of 3.,
7070 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7071 // the inner pattern will first be matched as GREVI and then the outer
7072 // pattern will be matched to GORC via the first rule above.
7073 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7074 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7075                                const RISCVSubtarget &Subtarget) {
7076   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7077   EVT VT = Op.getValueType();
7078 
7079   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7080     SDLoc DL(Op);
7081     SDValue Op0 = Op.getOperand(0);
7082     SDValue Op1 = Op.getOperand(1);
7083 
7084     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7085       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7086           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7087           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7088         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7089       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7090       if ((Reverse.getOpcode() == ISD::ROTL ||
7091            Reverse.getOpcode() == ISD::ROTR) &&
7092           Reverse.getOperand(0) == X &&
7093           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7094         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7095         if (RotAmt == (VT.getSizeInBits() / 2))
7096           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7097                              DAG.getConstant(RotAmt, DL, VT));
7098       }
7099       return SDValue();
7100     };
7101 
7102     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7103     if (SDValue V = MatchOROfReverse(Op0, Op1))
7104       return V;
7105     if (SDValue V = MatchOROfReverse(Op1, Op0))
7106       return V;
7107 
7108     // OR is commutable so canonicalize its OR operand to the left
7109     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7110       std::swap(Op0, Op1);
7111     if (Op0.getOpcode() != ISD::OR)
7112       return SDValue();
7113     SDValue OrOp0 = Op0.getOperand(0);
7114     SDValue OrOp1 = Op0.getOperand(1);
7115     auto LHS = matchGREVIPat(OrOp0);
7116     // OR is commutable so swap the operands and try again: x might have been
7117     // on the left
7118     if (!LHS) {
7119       std::swap(OrOp0, OrOp1);
7120       LHS = matchGREVIPat(OrOp0);
7121     }
7122     auto RHS = matchGREVIPat(Op1);
7123     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7124       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7125                          DAG.getConstant(LHS->ShAmt, DL, VT));
7126     }
7127   }
7128   return SDValue();
7129 }
7130 
7131 // Matches any of the following bit-manipulation patterns:
7132 //   (and (shl x, 1), (0x22222222 << 1))
7133 //   (and (srl x, 1), 0x22222222)
7134 //   (shl (and x, 0x22222222), 1)
7135 //   (srl (and x, (0x22222222 << 1)), 1)
7136 // where the shift amount and mask may vary thus:
7137 //   [1]  = 0x22222222 / 0x44444444
7138 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7139 //   [4]  = 0x00F000F0 / 0x0F000F00
7140 //   [8]  = 0x0000FF00 / 0x00FF0000
7141 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7142 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7143   // These are the unshifted masks which we use to match bit-manipulation
7144   // patterns. They may be shifted left in certain circumstances.
7145   static const uint64_t BitmanipMasks[] = {
7146       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7147       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7148 
7149   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7150 }
7151 
7152 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7153 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7154                                const RISCVSubtarget &Subtarget) {
7155   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7156   EVT VT = Op.getValueType();
7157 
7158   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7159     return SDValue();
7160 
7161   SDValue Op0 = Op.getOperand(0);
7162   SDValue Op1 = Op.getOperand(1);
7163 
7164   // Or is commutable so canonicalize the second OR to the LHS.
7165   if (Op0.getOpcode() != ISD::OR)
7166     std::swap(Op0, Op1);
7167   if (Op0.getOpcode() != ISD::OR)
7168     return SDValue();
7169 
7170   // We found an inner OR, so our operands are the operands of the inner OR
7171   // and the other operand of the outer OR.
7172   SDValue A = Op0.getOperand(0);
7173   SDValue B = Op0.getOperand(1);
7174   SDValue C = Op1;
7175 
7176   auto Match1 = matchSHFLPat(A);
7177   auto Match2 = matchSHFLPat(B);
7178 
7179   // If neither matched, we failed.
7180   if (!Match1 && !Match2)
7181     return SDValue();
7182 
7183   // We had at least one match. if one failed, try the remaining C operand.
7184   if (!Match1) {
7185     std::swap(A, C);
7186     Match1 = matchSHFLPat(A);
7187     if (!Match1)
7188       return SDValue();
7189   } else if (!Match2) {
7190     std::swap(B, C);
7191     Match2 = matchSHFLPat(B);
7192     if (!Match2)
7193       return SDValue();
7194   }
7195   assert(Match1 && Match2);
7196 
7197   // Make sure our matches pair up.
7198   if (!Match1->formsPairWith(*Match2))
7199     return SDValue();
7200 
7201   // All the remains is to make sure C is an AND with the same input, that masks
7202   // out the bits that are being shuffled.
7203   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7204       C.getOperand(0) != Match1->Op)
7205     return SDValue();
7206 
7207   uint64_t Mask = C.getConstantOperandVal(1);
7208 
7209   static const uint64_t BitmanipMasks[] = {
7210       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7211       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7212   };
7213 
7214   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7215   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7216   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7217 
7218   if (Mask != ExpMask)
7219     return SDValue();
7220 
7221   SDLoc DL(Op);
7222   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7223                      DAG.getConstant(Match1->ShAmt, DL, VT));
7224 }
7225 
7226 // Optimize (add (shl x, c0), (shl y, c1)) ->
7227 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7228 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7229                                   const RISCVSubtarget &Subtarget) {
7230   // Perform this optimization only in the zba extension.
7231   if (!Subtarget.hasStdExtZba())
7232     return SDValue();
7233 
7234   // Skip for vector types and larger types.
7235   EVT VT = N->getValueType(0);
7236   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7237     return SDValue();
7238 
7239   // The two operand nodes must be SHL and have no other use.
7240   SDValue N0 = N->getOperand(0);
7241   SDValue N1 = N->getOperand(1);
7242   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7243       !N0->hasOneUse() || !N1->hasOneUse())
7244     return SDValue();
7245 
7246   // Check c0 and c1.
7247   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7248   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7249   if (!N0C || !N1C)
7250     return SDValue();
7251   int64_t C0 = N0C->getSExtValue();
7252   int64_t C1 = N1C->getSExtValue();
7253   if (C0 <= 0 || C1 <= 0)
7254     return SDValue();
7255 
7256   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7257   int64_t Bits = std::min(C0, C1);
7258   int64_t Diff = std::abs(C0 - C1);
7259   if (Diff != 1 && Diff != 2 && Diff != 3)
7260     return SDValue();
7261 
7262   // Build nodes.
7263   SDLoc DL(N);
7264   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7265   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7266   SDValue NA0 =
7267       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7268   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7269   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7270 }
7271 
7272 // Combine
7273 // ROTR ((GREV x, 24), 16) -> (GREVI x, 8)
7274 // ROTL ((GREV x, 24), 16) -> (GREVI x, 8)
7275 // RORW ((GREVW x, 24), 16) -> (GREVIW x, 8)
7276 // ROLW ((GREVW x, 24), 16) -> (GREVIW x, 8)
7277 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG) {
7278   SDValue Src = N->getOperand(0);
7279   SDLoc DL(N);
7280   unsigned Opc;
7281 
7282   if ((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL) &&
7283       Src.getOpcode() == RISCVISD::GREV)
7284     Opc = RISCVISD::GREV;
7285   else if ((N->getOpcode() == RISCVISD::RORW ||
7286             N->getOpcode() == RISCVISD::ROLW) &&
7287            Src.getOpcode() == RISCVISD::GREVW)
7288     Opc = RISCVISD::GREVW;
7289   else
7290     return SDValue();
7291 
7292   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7293       !isa<ConstantSDNode>(Src.getOperand(1)))
7294     return SDValue();
7295 
7296   unsigned ShAmt1 = N->getConstantOperandVal(1);
7297   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7298   if (ShAmt1 != 16 && ShAmt2 != 24)
7299     return SDValue();
7300 
7301   Src = Src.getOperand(0);
7302   return DAG.getNode(Opc, DL, N->getValueType(0), Src,
7303                      DAG.getConstant(8, DL, N->getOperand(1).getValueType()));
7304 }
7305 
7306 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7307 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7308 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7309 // not undo itself, but they are redundant.
7310 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7311   SDValue Src = N->getOperand(0);
7312 
7313   if (Src.getOpcode() != N->getOpcode())
7314     return SDValue();
7315 
7316   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7317       !isa<ConstantSDNode>(Src.getOperand(1)))
7318     return SDValue();
7319 
7320   unsigned ShAmt1 = N->getConstantOperandVal(1);
7321   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7322   Src = Src.getOperand(0);
7323 
7324   unsigned CombinedShAmt;
7325   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
7326     CombinedShAmt = ShAmt1 | ShAmt2;
7327   else
7328     CombinedShAmt = ShAmt1 ^ ShAmt2;
7329 
7330   if (CombinedShAmt == 0)
7331     return Src;
7332 
7333   SDLoc DL(N);
7334   return DAG.getNode(
7335       N->getOpcode(), DL, N->getValueType(0), Src,
7336       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7337 }
7338 
7339 // Combine a constant select operand into its use:
7340 //
7341 // (and (select cond, -1, c), x)
7342 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7343 // (or  (select cond, 0, c), x)
7344 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7345 // (xor (select cond, 0, c), x)
7346 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7347 // (add (select cond, 0, c), x)
7348 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7349 // (sub x, (select cond, 0, c))
7350 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7351 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7352                                    SelectionDAG &DAG, bool AllOnes) {
7353   EVT VT = N->getValueType(0);
7354 
7355   // Skip vectors.
7356   if (VT.isVector())
7357     return SDValue();
7358 
7359   if ((Slct.getOpcode() != ISD::SELECT &&
7360        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7361       !Slct.hasOneUse())
7362     return SDValue();
7363 
7364   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7365     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7366   };
7367 
7368   bool SwapSelectOps;
7369   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7370   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7371   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7372   SDValue NonConstantVal;
7373   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7374     SwapSelectOps = false;
7375     NonConstantVal = FalseVal;
7376   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7377     SwapSelectOps = true;
7378     NonConstantVal = TrueVal;
7379   } else
7380     return SDValue();
7381 
7382   // Slct is now know to be the desired identity constant when CC is true.
7383   TrueVal = OtherOp;
7384   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7385   // Unless SwapSelectOps says the condition should be false.
7386   if (SwapSelectOps)
7387     std::swap(TrueVal, FalseVal);
7388 
7389   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7390     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7391                        {Slct.getOperand(0), Slct.getOperand(1),
7392                         Slct.getOperand(2), TrueVal, FalseVal});
7393 
7394   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7395                      {Slct.getOperand(0), TrueVal, FalseVal});
7396 }
7397 
7398 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7399 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7400                                               bool AllOnes) {
7401   SDValue N0 = N->getOperand(0);
7402   SDValue N1 = N->getOperand(1);
7403   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7404     return Result;
7405   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7406     return Result;
7407   return SDValue();
7408 }
7409 
7410 // Transform (add (mul x, c0), c1) ->
7411 //           (add (mul (add x, c1/c0), c0), c1%c0).
7412 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7413 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7414 // to an infinite loop in DAGCombine if transformed.
7415 // Or transform (add (mul x, c0), c1) ->
7416 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7417 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7418 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7419 // lead to an infinite loop in DAGCombine if transformed.
7420 // Or transform (add (mul x, c0), c1) ->
7421 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7422 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7423 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7424 // lead to an infinite loop in DAGCombine if transformed.
7425 // Or transform (add (mul x, c0), c1) ->
7426 //              (mul (add x, c1/c0), c0).
7427 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7428 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7429                                      const RISCVSubtarget &Subtarget) {
7430   // Skip for vector types and larger types.
7431   EVT VT = N->getValueType(0);
7432   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7433     return SDValue();
7434   // The first operand node must be a MUL and has no other use.
7435   SDValue N0 = N->getOperand(0);
7436   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7437     return SDValue();
7438   // Check if c0 and c1 match above conditions.
7439   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7440   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7441   if (!N0C || !N1C)
7442     return SDValue();
7443   // If N0C has multiple uses it's possible one of the cases in
7444   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7445   // in an infinite loop.
7446   if (!N0C->hasOneUse())
7447     return SDValue();
7448   int64_t C0 = N0C->getSExtValue();
7449   int64_t C1 = N1C->getSExtValue();
7450   int64_t CA, CB;
7451   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7452     return SDValue();
7453   // Search for proper CA (non-zero) and CB that both are simm12.
7454   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7455       !isInt<12>(C0 * (C1 / C0))) {
7456     CA = C1 / C0;
7457     CB = C1 % C0;
7458   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7459              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7460     CA = C1 / C0 + 1;
7461     CB = C1 % C0 - C0;
7462   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7463              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7464     CA = C1 / C0 - 1;
7465     CB = C1 % C0 + C0;
7466   } else
7467     return SDValue();
7468   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7469   SDLoc DL(N);
7470   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7471                              DAG.getConstant(CA, DL, VT));
7472   SDValue New1 =
7473       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7474   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7475 }
7476 
7477 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7478                                  const RISCVSubtarget &Subtarget) {
7479   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7480     return V;
7481   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7482     return V;
7483   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7484   //      (select lhs, rhs, cc, x, (add x, y))
7485   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7486 }
7487 
7488 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7489   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7490   //      (select lhs, rhs, cc, x, (sub x, y))
7491   SDValue N0 = N->getOperand(0);
7492   SDValue N1 = N->getOperand(1);
7493   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7494 }
7495 
7496 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
7497   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7498   //      (select lhs, rhs, cc, x, (and x, y))
7499   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7500 }
7501 
7502 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7503                                 const RISCVSubtarget &Subtarget) {
7504   if (Subtarget.hasStdExtZbp()) {
7505     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7506       return GREV;
7507     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7508       return GORC;
7509     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
7510       return SHFL;
7511   }
7512 
7513   // fold (or (select cond, 0, y), x) ->
7514   //      (select cond, x, (or x, y))
7515   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7516 }
7517 
7518 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
7519   // fold (xor (select cond, 0, y), x) ->
7520   //      (select cond, x, (xor x, y))
7521   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7522 }
7523 
7524 static SDValue performSIGN_EXTEND_INREG(SDNode *N, SelectionDAG &DAG) {
7525   SDValue Src = N->getOperand(0);
7526 
7527   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
7528   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7529       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
7530     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), N->getValueType(0),
7531                        Src.getOperand(0));
7532 
7533   return SDValue();
7534 }
7535 
7536 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
7537 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
7538 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
7539 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
7540 // ADDW/SUBW/MULW.
7541 static SDValue performANY_EXTENDCombine(SDNode *N,
7542                                         TargetLowering::DAGCombinerInfo &DCI,
7543                                         const RISCVSubtarget &Subtarget) {
7544   if (!Subtarget.is64Bit())
7545     return SDValue();
7546 
7547   SelectionDAG &DAG = DCI.DAG;
7548 
7549   SDValue Src = N->getOperand(0);
7550   EVT VT = N->getValueType(0);
7551   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
7552     return SDValue();
7553 
7554   // The opcode must be one that can implicitly sign_extend.
7555   // FIXME: Additional opcodes.
7556   switch (Src.getOpcode()) {
7557   default:
7558     return SDValue();
7559   case ISD::MUL:
7560     if (!Subtarget.hasStdExtM())
7561       return SDValue();
7562     LLVM_FALLTHROUGH;
7563   case ISD::ADD:
7564   case ISD::SUB:
7565     break;
7566   }
7567 
7568   // Only handle cases where the result is used by a CopyToReg. That likely
7569   // means the value is a liveout of the basic block. This helps prevent
7570   // infinite combine loops like PR51206.
7571   if (none_of(N->uses(),
7572               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
7573     return SDValue();
7574 
7575   SmallVector<SDNode *, 4> SetCCs;
7576   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
7577                             UE = Src.getNode()->use_end();
7578        UI != UE; ++UI) {
7579     SDNode *User = *UI;
7580     if (User == N)
7581       continue;
7582     if (UI.getUse().getResNo() != Src.getResNo())
7583       continue;
7584     // All i32 setccs are legalized by sign extending operands.
7585     if (User->getOpcode() == ISD::SETCC) {
7586       SetCCs.push_back(User);
7587       continue;
7588     }
7589     // We don't know if we can extend this user.
7590     break;
7591   }
7592 
7593   // If we don't have any SetCCs, this isn't worthwhile.
7594   if (SetCCs.empty())
7595     return SDValue();
7596 
7597   SDLoc DL(N);
7598   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
7599   DCI.CombineTo(N, SExt);
7600 
7601   // Promote all the setccs.
7602   for (SDNode *SetCC : SetCCs) {
7603     SmallVector<SDValue, 4> Ops;
7604 
7605     for (unsigned j = 0; j != 2; ++j) {
7606       SDValue SOp = SetCC->getOperand(j);
7607       if (SOp == Src)
7608         Ops.push_back(SExt);
7609       else
7610         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
7611     }
7612 
7613     Ops.push_back(SetCC->getOperand(2));
7614     DCI.CombineTo(SetCC,
7615                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
7616   }
7617   return SDValue(N, 0);
7618 }
7619 
7620 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
7621 // vwadd(u).vv/vx or vwsub(u).vv/vx.
7622 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
7623                                              bool Commute = false) {
7624   assert((N->getOpcode() == RISCVISD::ADD_VL ||
7625           N->getOpcode() == RISCVISD::SUB_VL) &&
7626          "Unexpected opcode");
7627   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
7628   SDValue Op0 = N->getOperand(0);
7629   SDValue Op1 = N->getOperand(1);
7630   if (Commute)
7631     std::swap(Op0, Op1);
7632 
7633   MVT VT = N->getSimpleValueType(0);
7634 
7635   // Determine the narrow size for a widening add/sub.
7636   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7637   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7638                                   VT.getVectorElementCount());
7639 
7640   SDValue Mask = N->getOperand(2);
7641   SDValue VL = N->getOperand(3);
7642 
7643   SDLoc DL(N);
7644 
7645   // If the RHS is a sext or zext, we can form a widening op.
7646   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
7647        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
7648       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
7649     unsigned ExtOpc = Op1.getOpcode();
7650     Op1 = Op1.getOperand(0);
7651     // Re-introduce narrower extends if needed.
7652     if (Op1.getValueType() != NarrowVT)
7653       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7654 
7655     unsigned WOpc;
7656     if (ExtOpc == RISCVISD::VSEXT_VL)
7657       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
7658     else
7659       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
7660 
7661     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
7662   }
7663 
7664   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
7665   // sext/zext?
7666 
7667   return SDValue();
7668 }
7669 
7670 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
7671 // vwsub(u).vv/vx.
7672 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
7673   SDValue Op0 = N->getOperand(0);
7674   SDValue Op1 = N->getOperand(1);
7675   SDValue Mask = N->getOperand(2);
7676   SDValue VL = N->getOperand(3);
7677 
7678   MVT VT = N->getSimpleValueType(0);
7679   MVT NarrowVT = Op1.getSimpleValueType();
7680   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
7681 
7682   unsigned VOpc;
7683   switch (N->getOpcode()) {
7684   default: llvm_unreachable("Unexpected opcode");
7685   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
7686   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
7687   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
7688   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
7689   }
7690 
7691   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7692                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
7693 
7694   SDLoc DL(N);
7695 
7696   // If the LHS is a sext or zext, we can narrow this op to the same size as
7697   // the RHS.
7698   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
7699        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
7700       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
7701     unsigned ExtOpc = Op0.getOpcode();
7702     Op0 = Op0.getOperand(0);
7703     // Re-introduce narrower extends if needed.
7704     if (Op0.getValueType() != NarrowVT)
7705       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7706     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
7707   }
7708 
7709   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7710                N->getOpcode() == RISCVISD::VWADDU_W_VL;
7711 
7712   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
7713   // to commute and use a vwadd(u).vx instead.
7714   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
7715       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
7716     Op0 = Op0.getOperand(1);
7717 
7718     // See if have enough sign bits or zero bits in the scalar to use a
7719     // widening add/sub by splatting to smaller element size.
7720     unsigned EltBits = VT.getScalarSizeInBits();
7721     unsigned ScalarBits = Op0.getValueSizeInBits();
7722     // Make sure we're getting all element bits from the scalar register.
7723     // FIXME: Support implicit sign extension of vmv.v.x?
7724     if (ScalarBits < EltBits)
7725       return SDValue();
7726 
7727     if (IsSigned) {
7728       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
7729         return SDValue();
7730     } else {
7731       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7732       if (!DAG.MaskedValueIsZero(Op0, Mask))
7733         return SDValue();
7734     }
7735 
7736     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7737                       DAG.getUNDEF(NarrowVT), Op0, VL);
7738     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
7739   }
7740 
7741   return SDValue();
7742 }
7743 
7744 // Try to form VWMUL, VWMULU or VWMULSU.
7745 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
7746 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
7747                                        bool Commute) {
7748   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
7749   SDValue Op0 = N->getOperand(0);
7750   SDValue Op1 = N->getOperand(1);
7751   if (Commute)
7752     std::swap(Op0, Op1);
7753 
7754   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
7755   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
7756   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
7757   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
7758     return SDValue();
7759 
7760   SDValue Mask = N->getOperand(2);
7761   SDValue VL = N->getOperand(3);
7762 
7763   // Make sure the mask and VL match.
7764   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
7765     return SDValue();
7766 
7767   MVT VT = N->getSimpleValueType(0);
7768 
7769   // Determine the narrow size for a widening multiply.
7770   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7771   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7772                                   VT.getVectorElementCount());
7773 
7774   SDLoc DL(N);
7775 
7776   // See if the other operand is the same opcode.
7777   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
7778     if (!Op1.hasOneUse())
7779       return SDValue();
7780 
7781     // Make sure the mask and VL match.
7782     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
7783       return SDValue();
7784 
7785     Op1 = Op1.getOperand(0);
7786   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
7787     // The operand is a splat of a scalar.
7788 
7789     // The pasthru must be undef for tail agnostic
7790     if (!Op1.getOperand(0).isUndef())
7791       return SDValue();
7792     // The VL must be the same.
7793     if (Op1.getOperand(2) != VL)
7794       return SDValue();
7795 
7796     // Get the scalar value.
7797     Op1 = Op1.getOperand(1);
7798 
7799     // See if have enough sign bits or zero bits in the scalar to use a
7800     // widening multiply by splatting to smaller element size.
7801     unsigned EltBits = VT.getScalarSizeInBits();
7802     unsigned ScalarBits = Op1.getValueSizeInBits();
7803     // Make sure we're getting all element bits from the scalar register.
7804     // FIXME: Support implicit sign extension of vmv.v.x?
7805     if (ScalarBits < EltBits)
7806       return SDValue();
7807 
7808     // If the LHS is a sign extend, try to use vwmul.
7809     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
7810       // Can use vwmul.
7811     } else {
7812       // Otherwise try to use vwmulu or vwmulsu.
7813       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7814       if (DAG.MaskedValueIsZero(Op1, Mask))
7815         IsVWMULSU = IsSignExt;
7816       else
7817         return SDValue();
7818     }
7819 
7820     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7821                       DAG.getUNDEF(NarrowVT), Op1, VL);
7822   } else
7823     return SDValue();
7824 
7825   Op0 = Op0.getOperand(0);
7826 
7827   // Re-introduce narrower extends if needed.
7828   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
7829   if (Op0.getValueType() != NarrowVT)
7830     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7831   // vwmulsu requires second operand to be zero extended.
7832   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
7833   if (Op1.getValueType() != NarrowVT)
7834     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7835 
7836   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
7837   if (!IsVWMULSU)
7838     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
7839   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
7840 }
7841 
7842 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
7843   switch (Op.getOpcode()) {
7844   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
7845   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
7846   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
7847   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
7848   case ISD::FROUND:     return RISCVFPRndMode::RMM;
7849   }
7850 
7851   return RISCVFPRndMode::Invalid;
7852 }
7853 
7854 // Fold
7855 //   (fp_to_int (froundeven X)) -> fcvt X, rne
7856 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
7857 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
7858 //   (fp_to_int (fceil X))      -> fcvt X, rup
7859 //   (fp_to_int (fround X))     -> fcvt X, rmm
7860 static SDValue performFP_TO_INTCombine(SDNode *N,
7861                                        TargetLowering::DAGCombinerInfo &DCI,
7862                                        const RISCVSubtarget &Subtarget) {
7863   SelectionDAG &DAG = DCI.DAG;
7864   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7865   MVT XLenVT = Subtarget.getXLenVT();
7866 
7867   // Only handle XLen or i32 types. Other types narrower than XLen will
7868   // eventually be legalized to XLenVT.
7869   EVT VT = N->getValueType(0);
7870   if (VT != MVT::i32 && VT != XLenVT)
7871     return SDValue();
7872 
7873   SDValue Src = N->getOperand(0);
7874 
7875   // Ensure the FP type is also legal.
7876   if (!TLI.isTypeLegal(Src.getValueType()))
7877     return SDValue();
7878 
7879   // Don't do this for f16 with Zfhmin and not Zfh.
7880   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
7881     return SDValue();
7882 
7883   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
7884   if (FRM == RISCVFPRndMode::Invalid)
7885     return SDValue();
7886 
7887   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
7888 
7889   unsigned Opc;
7890   if (VT == XLenVT)
7891     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
7892   else
7893     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
7894 
7895   SDLoc DL(N);
7896   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
7897                                 DAG.getTargetConstant(FRM, DL, XLenVT));
7898   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
7899 }
7900 
7901 // Fold
7902 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
7903 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
7904 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
7905 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
7906 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
7907 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
7908                                        TargetLowering::DAGCombinerInfo &DCI,
7909                                        const RISCVSubtarget &Subtarget) {
7910   SelectionDAG &DAG = DCI.DAG;
7911   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7912   MVT XLenVT = Subtarget.getXLenVT();
7913 
7914   // Only handle XLen types. Other types narrower than XLen will eventually be
7915   // legalized to XLenVT.
7916   EVT DstVT = N->getValueType(0);
7917   if (DstVT != XLenVT)
7918     return SDValue();
7919 
7920   SDValue Src = N->getOperand(0);
7921 
7922   // Ensure the FP type is also legal.
7923   if (!TLI.isTypeLegal(Src.getValueType()))
7924     return SDValue();
7925 
7926   // Don't do this for f16 with Zfhmin and not Zfh.
7927   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
7928     return SDValue();
7929 
7930   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
7931 
7932   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
7933   if (FRM == RISCVFPRndMode::Invalid)
7934     return SDValue();
7935 
7936   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
7937 
7938   unsigned Opc;
7939   if (SatVT == DstVT)
7940     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
7941   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
7942     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
7943   else
7944     return SDValue();
7945   // FIXME: Support other SatVTs by clamping before or after the conversion.
7946 
7947   Src = Src.getOperand(0);
7948 
7949   SDLoc DL(N);
7950   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
7951                                 DAG.getTargetConstant(FRM, DL, XLenVT));
7952 
7953   // RISCV FP-to-int conversions saturate to the destination register size, but
7954   // don't produce 0 for nan.
7955   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
7956   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
7957 }
7958 
7959 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
7960                                                DAGCombinerInfo &DCI) const {
7961   SelectionDAG &DAG = DCI.DAG;
7962 
7963   // Helper to call SimplifyDemandedBits on an operand of N where only some low
7964   // bits are demanded. N will be added to the Worklist if it was not deleted.
7965   // Caller should return SDValue(N, 0) if this returns true.
7966   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
7967     SDValue Op = N->getOperand(OpNo);
7968     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
7969     if (!SimplifyDemandedBits(Op, Mask, DCI))
7970       return false;
7971 
7972     if (N->getOpcode() != ISD::DELETED_NODE)
7973       DCI.AddToWorklist(N);
7974     return true;
7975   };
7976 
7977   switch (N->getOpcode()) {
7978   default:
7979     break;
7980   case RISCVISD::SplitF64: {
7981     SDValue Op0 = N->getOperand(0);
7982     // If the input to SplitF64 is just BuildPairF64 then the operation is
7983     // redundant. Instead, use BuildPairF64's operands directly.
7984     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
7985       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
7986 
7987     if (Op0->isUndef()) {
7988       SDValue Lo = DAG.getUNDEF(MVT::i32);
7989       SDValue Hi = DAG.getUNDEF(MVT::i32);
7990       return DCI.CombineTo(N, Lo, Hi);
7991     }
7992 
7993     SDLoc DL(N);
7994 
7995     // It's cheaper to materialise two 32-bit integers than to load a double
7996     // from the constant pool and transfer it to integer registers through the
7997     // stack.
7998     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
7999       APInt V = C->getValueAPF().bitcastToAPInt();
8000       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8001       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8002       return DCI.CombineTo(N, Lo, Hi);
8003     }
8004 
8005     // This is a target-specific version of a DAGCombine performed in
8006     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8007     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8008     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8009     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8010         !Op0.getNode()->hasOneUse())
8011       break;
8012     SDValue NewSplitF64 =
8013         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8014                     Op0.getOperand(0));
8015     SDValue Lo = NewSplitF64.getValue(0);
8016     SDValue Hi = NewSplitF64.getValue(1);
8017     APInt SignBit = APInt::getSignMask(32);
8018     if (Op0.getOpcode() == ISD::FNEG) {
8019       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8020                                   DAG.getConstant(SignBit, DL, MVT::i32));
8021       return DCI.CombineTo(N, Lo, NewHi);
8022     }
8023     assert(Op0.getOpcode() == ISD::FABS);
8024     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8025                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8026     return DCI.CombineTo(N, Lo, NewHi);
8027   }
8028   case RISCVISD::SLLW:
8029   case RISCVISD::SRAW:
8030   case RISCVISD::SRLW:
8031   case RISCVISD::ROLW:
8032   case RISCVISD::RORW: {
8033     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8034     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8035         SimplifyDemandedLowBitsHelper(1, 5))
8036       return SDValue(N, 0);
8037 
8038     return combineROTR_ROTL_RORW_ROLW(N, DAG);
8039   }
8040   case ISD::ROTR:
8041   case ISD::ROTL:
8042     return combineROTR_ROTL_RORW_ROLW(N, DAG);
8043   case RISCVISD::CLZW:
8044   case RISCVISD::CTZW: {
8045     // Only the lower 32 bits of the first operand are read
8046     if (SimplifyDemandedLowBitsHelper(0, 32))
8047       return SDValue(N, 0);
8048     break;
8049   }
8050   case RISCVISD::GREV:
8051   case RISCVISD::GORC: {
8052     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8053     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8054     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8055     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8056       return SDValue(N, 0);
8057 
8058     return combineGREVI_GORCI(N, DAG);
8059   }
8060   case RISCVISD::GREVW:
8061   case RISCVISD::GORCW: {
8062     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8063     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8064         SimplifyDemandedLowBitsHelper(1, 5))
8065       return SDValue(N, 0);
8066 
8067     return combineGREVI_GORCI(N, DAG);
8068   }
8069   case RISCVISD::SHFL:
8070   case RISCVISD::UNSHFL: {
8071     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8072     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8073     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8074     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8075       return SDValue(N, 0);
8076 
8077     break;
8078   }
8079   case RISCVISD::SHFLW:
8080   case RISCVISD::UNSHFLW: {
8081     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8082     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8083         SimplifyDemandedLowBitsHelper(1, 4))
8084       return SDValue(N, 0);
8085 
8086     break;
8087   }
8088   case RISCVISD::BCOMPRESSW:
8089   case RISCVISD::BDECOMPRESSW: {
8090     // Only the lower 32 bits of LHS and RHS are read.
8091     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8092         SimplifyDemandedLowBitsHelper(1, 32))
8093       return SDValue(N, 0);
8094 
8095     break;
8096   }
8097   case RISCVISD::FMV_X_ANYEXTH:
8098   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8099     SDLoc DL(N);
8100     SDValue Op0 = N->getOperand(0);
8101     MVT VT = N->getSimpleValueType(0);
8102     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8103     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8104     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8105     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8106          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8107         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8108          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8109       assert(Op0.getOperand(0).getValueType() == VT &&
8110              "Unexpected value type!");
8111       return Op0.getOperand(0);
8112     }
8113 
8114     // This is a target-specific version of a DAGCombine performed in
8115     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8116     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8117     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8118     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8119         !Op0.getNode()->hasOneUse())
8120       break;
8121     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8122     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8123     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
8124     if (Op0.getOpcode() == ISD::FNEG)
8125       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8126                          DAG.getConstant(SignBit, DL, VT));
8127 
8128     assert(Op0.getOpcode() == ISD::FABS);
8129     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8130                        DAG.getConstant(~SignBit, DL, VT));
8131   }
8132   case ISD::ADD:
8133     return performADDCombine(N, DAG, Subtarget);
8134   case ISD::SUB:
8135     return performSUBCombine(N, DAG);
8136   case ISD::AND:
8137     return performANDCombine(N, DAG);
8138   case ISD::OR:
8139     return performORCombine(N, DAG, Subtarget);
8140   case ISD::XOR:
8141     return performXORCombine(N, DAG);
8142   case ISD::SIGN_EXTEND_INREG:
8143     return performSIGN_EXTEND_INREG(N, DAG);
8144   case ISD::ANY_EXTEND:
8145     return performANY_EXTENDCombine(N, DCI, Subtarget);
8146   case ISD::ZERO_EXTEND:
8147     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8148     // type legalization. This is safe because fp_to_uint produces poison if
8149     // it overflows.
8150     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8151       SDValue Src = N->getOperand(0);
8152       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8153           isTypeLegal(Src.getOperand(0).getValueType()))
8154         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8155                            Src.getOperand(0));
8156       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8157           isTypeLegal(Src.getOperand(1).getValueType())) {
8158         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8159         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8160                                   Src.getOperand(0), Src.getOperand(1));
8161         DCI.CombineTo(N, Res);
8162         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8163         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8164         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8165       }
8166     }
8167     return SDValue();
8168   case RISCVISD::SELECT_CC: {
8169     // Transform
8170     SDValue LHS = N->getOperand(0);
8171     SDValue RHS = N->getOperand(1);
8172     SDValue TrueV = N->getOperand(3);
8173     SDValue FalseV = N->getOperand(4);
8174 
8175     // If the True and False values are the same, we don't need a select_cc.
8176     if (TrueV == FalseV)
8177       return TrueV;
8178 
8179     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8180     if (!ISD::isIntEqualitySetCC(CCVal))
8181       break;
8182 
8183     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8184     //      (select_cc X, Y, lt, trueV, falseV)
8185     // Sometimes the setcc is introduced after select_cc has been formed.
8186     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8187         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8188       // If we're looking for eq 0 instead of ne 0, we need to invert the
8189       // condition.
8190       bool Invert = CCVal == ISD::SETEQ;
8191       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8192       if (Invert)
8193         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8194 
8195       SDLoc DL(N);
8196       RHS = LHS.getOperand(1);
8197       LHS = LHS.getOperand(0);
8198       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8199 
8200       SDValue TargetCC = DAG.getCondCode(CCVal);
8201       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8202                          {LHS, RHS, TargetCC, TrueV, FalseV});
8203     }
8204 
8205     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8206     //      (select_cc X, Y, eq/ne, trueV, falseV)
8207     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8208       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8209                          {LHS.getOperand(0), LHS.getOperand(1),
8210                           N->getOperand(2), TrueV, FalseV});
8211     // (select_cc X, 1, setne, trueV, falseV) ->
8212     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8213     // This can occur when legalizing some floating point comparisons.
8214     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8215     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8216       SDLoc DL(N);
8217       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8218       SDValue TargetCC = DAG.getCondCode(CCVal);
8219       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8220       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8221                          {LHS, RHS, TargetCC, TrueV, FalseV});
8222     }
8223 
8224     break;
8225   }
8226   case RISCVISD::BR_CC: {
8227     SDValue LHS = N->getOperand(1);
8228     SDValue RHS = N->getOperand(2);
8229     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8230     if (!ISD::isIntEqualitySetCC(CCVal))
8231       break;
8232 
8233     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8234     //      (br_cc X, Y, lt, dest)
8235     // Sometimes the setcc is introduced after br_cc has been formed.
8236     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8237         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8238       // If we're looking for eq 0 instead of ne 0, we need to invert the
8239       // condition.
8240       bool Invert = CCVal == ISD::SETEQ;
8241       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8242       if (Invert)
8243         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8244 
8245       SDLoc DL(N);
8246       RHS = LHS.getOperand(1);
8247       LHS = LHS.getOperand(0);
8248       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8249 
8250       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8251                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8252                          N->getOperand(4));
8253     }
8254 
8255     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8256     //      (br_cc X, Y, eq/ne, trueV, falseV)
8257     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8258       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8259                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8260                          N->getOperand(3), N->getOperand(4));
8261 
8262     // (br_cc X, 1, setne, br_cc) ->
8263     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8264     // This can occur when legalizing some floating point comparisons.
8265     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8266     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8267       SDLoc DL(N);
8268       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8269       SDValue TargetCC = DAG.getCondCode(CCVal);
8270       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8271       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8272                          N->getOperand(0), LHS, RHS, TargetCC,
8273                          N->getOperand(4));
8274     }
8275     break;
8276   }
8277   case ISD::FP_TO_SINT:
8278   case ISD::FP_TO_UINT:
8279     return performFP_TO_INTCombine(N, DCI, Subtarget);
8280   case ISD::FP_TO_SINT_SAT:
8281   case ISD::FP_TO_UINT_SAT:
8282     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8283   case ISD::FCOPYSIGN: {
8284     EVT VT = N->getValueType(0);
8285     if (!VT.isVector())
8286       break;
8287     // There is a form of VFSGNJ which injects the negated sign of its second
8288     // operand. Try and bubble any FNEG up after the extend/round to produce
8289     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8290     // TRUNC=1.
8291     SDValue In2 = N->getOperand(1);
8292     // Avoid cases where the extend/round has multiple uses, as duplicating
8293     // those is typically more expensive than removing a fneg.
8294     if (!In2.hasOneUse())
8295       break;
8296     if (In2.getOpcode() != ISD::FP_EXTEND &&
8297         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8298       break;
8299     In2 = In2.getOperand(0);
8300     if (In2.getOpcode() != ISD::FNEG)
8301       break;
8302     SDLoc DL(N);
8303     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8304     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8305                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8306   }
8307   case ISD::MGATHER:
8308   case ISD::MSCATTER:
8309   case ISD::VP_GATHER:
8310   case ISD::VP_SCATTER: {
8311     if (!DCI.isBeforeLegalize())
8312       break;
8313     SDValue Index, ScaleOp;
8314     bool IsIndexScaled = false;
8315     bool IsIndexSigned = false;
8316     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8317       Index = VPGSN->getIndex();
8318       ScaleOp = VPGSN->getScale();
8319       IsIndexScaled = VPGSN->isIndexScaled();
8320       IsIndexSigned = VPGSN->isIndexSigned();
8321     } else {
8322       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8323       Index = MGSN->getIndex();
8324       ScaleOp = MGSN->getScale();
8325       IsIndexScaled = MGSN->isIndexScaled();
8326       IsIndexSigned = MGSN->isIndexSigned();
8327     }
8328     EVT IndexVT = Index.getValueType();
8329     MVT XLenVT = Subtarget.getXLenVT();
8330     // RISCV indexed loads only support the "unsigned unscaled" addressing
8331     // mode, so anything else must be manually legalized.
8332     bool NeedsIdxLegalization =
8333         IsIndexScaled ||
8334         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8335     if (!NeedsIdxLegalization)
8336       break;
8337 
8338     SDLoc DL(N);
8339 
8340     // Any index legalization should first promote to XLenVT, so we don't lose
8341     // bits when scaling. This may create an illegal index type so we let
8342     // LLVM's legalization take care of the splitting.
8343     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8344     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8345       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8346       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8347                           DL, IndexVT, Index);
8348     }
8349 
8350     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8351     if (IsIndexScaled && Scale != 1) {
8352       // Manually scale the indices by the element size.
8353       // TODO: Sanitize the scale operand here?
8354       // TODO: For VP nodes, should we use VP_SHL here?
8355       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8356       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8357       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8358     }
8359 
8360     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
8361     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8362       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8363                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8364                               VPGN->getScale(), VPGN->getMask(),
8365                               VPGN->getVectorLength()},
8366                              VPGN->getMemOperand(), NewIndexTy);
8367     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8368       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8369                               {VPSN->getChain(), VPSN->getValue(),
8370                                VPSN->getBasePtr(), Index, VPSN->getScale(),
8371                                VPSN->getMask(), VPSN->getVectorLength()},
8372                               VPSN->getMemOperand(), NewIndexTy);
8373     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8374       return DAG.getMaskedGather(
8375           N->getVTList(), MGN->getMemoryVT(), DL,
8376           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8377            MGN->getBasePtr(), Index, MGN->getScale()},
8378           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8379     const auto *MSN = cast<MaskedScatterSDNode>(N);
8380     return DAG.getMaskedScatter(
8381         N->getVTList(), MSN->getMemoryVT(), DL,
8382         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8383          Index, MSN->getScale()},
8384         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8385   }
8386   case RISCVISD::SRA_VL:
8387   case RISCVISD::SRL_VL:
8388   case RISCVISD::SHL_VL: {
8389     SDValue ShAmt = N->getOperand(1);
8390     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8391       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8392       SDLoc DL(N);
8393       SDValue VL = N->getOperand(3);
8394       EVT VT = N->getValueType(0);
8395       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8396                           ShAmt.getOperand(1), VL);
8397       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8398                          N->getOperand(2), N->getOperand(3));
8399     }
8400     break;
8401   }
8402   case ISD::SRA:
8403   case ISD::SRL:
8404   case ISD::SHL: {
8405     SDValue ShAmt = N->getOperand(1);
8406     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8407       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8408       SDLoc DL(N);
8409       EVT VT = N->getValueType(0);
8410       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8411                           ShAmt.getOperand(1),
8412                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8413       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8414     }
8415     break;
8416   }
8417   case RISCVISD::ADD_VL:
8418     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8419       return V;
8420     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8421   case RISCVISD::SUB_VL:
8422     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8423   case RISCVISD::VWADD_W_VL:
8424   case RISCVISD::VWADDU_W_VL:
8425   case RISCVISD::VWSUB_W_VL:
8426   case RISCVISD::VWSUBU_W_VL:
8427     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8428   case RISCVISD::MUL_VL:
8429     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8430       return V;
8431     // Mul is commutative.
8432     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8433   case ISD::STORE: {
8434     auto *Store = cast<StoreSDNode>(N);
8435     SDValue Val = Store->getValue();
8436     // Combine store of vmv.x.s to vse with VL of 1.
8437     // FIXME: Support FP.
8438     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8439       SDValue Src = Val.getOperand(0);
8440       EVT VecVT = Src.getValueType();
8441       EVT MemVT = Store->getMemoryVT();
8442       // The memory VT and the element type must match.
8443       if (VecVT.getVectorElementType() == MemVT) {
8444         SDLoc DL(N);
8445         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
8446         return DAG.getStoreVP(
8447             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8448             DAG.getConstant(1, DL, MaskVT),
8449             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8450             Store->getMemOperand(), Store->getAddressingMode(),
8451             Store->isTruncatingStore(), /*IsCompress*/ false);
8452       }
8453     }
8454 
8455     break;
8456   }
8457   case ISD::SPLAT_VECTOR: {
8458     EVT VT = N->getValueType(0);
8459     // Only perform this combine on legal MVT types.
8460     if (!isTypeLegal(VT))
8461       break;
8462     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8463                                          DAG, Subtarget))
8464       return Gather;
8465     break;
8466   }
8467   case RISCVISD::VMV_V_X_VL: {
8468     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
8469     // scalar input.
8470     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
8471     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8472     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
8473       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
8474         return SDValue(N, 0);
8475 
8476     break;
8477   }
8478   case ISD::INTRINSIC_WO_CHAIN: {
8479     unsigned IntNo = N->getConstantOperandVal(0);
8480     switch (IntNo) {
8481       // By default we do not combine any intrinsic.
8482     default:
8483       return SDValue();
8484     case Intrinsic::riscv_vcpop:
8485     case Intrinsic::riscv_vcpop_mask:
8486     case Intrinsic::riscv_vfirst:
8487     case Intrinsic::riscv_vfirst_mask: {
8488       SDValue VL = N->getOperand(2);
8489       if (IntNo == Intrinsic::riscv_vcpop_mask ||
8490           IntNo == Intrinsic::riscv_vfirst_mask)
8491         VL = N->getOperand(3);
8492       if (!isNullConstant(VL))
8493         return SDValue();
8494       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
8495       SDLoc DL(N);
8496       EVT VT = N->getValueType(0);
8497       if (IntNo == Intrinsic::riscv_vfirst ||
8498           IntNo == Intrinsic::riscv_vfirst_mask)
8499         return DAG.getConstant(-1, DL, VT);
8500       return DAG.getConstant(0, DL, VT);
8501     }
8502     }
8503   }
8504   }
8505 
8506   return SDValue();
8507 }
8508 
8509 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
8510     const SDNode *N, CombineLevel Level) const {
8511   // The following folds are only desirable if `(OP _, c1 << c2)` can be
8512   // materialised in fewer instructions than `(OP _, c1)`:
8513   //
8514   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8515   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8516   SDValue N0 = N->getOperand(0);
8517   EVT Ty = N0.getValueType();
8518   if (Ty.isScalarInteger() &&
8519       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
8520     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8521     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
8522     if (C1 && C2) {
8523       const APInt &C1Int = C1->getAPIntValue();
8524       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
8525 
8526       // We can materialise `c1 << c2` into an add immediate, so it's "free",
8527       // and the combine should happen, to potentially allow further combines
8528       // later.
8529       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
8530           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
8531         return true;
8532 
8533       // We can materialise `c1` in an add immediate, so it's "free", and the
8534       // combine should be prevented.
8535       if (C1Int.getMinSignedBits() <= 64 &&
8536           isLegalAddImmediate(C1Int.getSExtValue()))
8537         return false;
8538 
8539       // Neither constant will fit into an immediate, so find materialisation
8540       // costs.
8541       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
8542                                               Subtarget.getFeatureBits(),
8543                                               /*CompressionCost*/true);
8544       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
8545           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
8546           /*CompressionCost*/true);
8547 
8548       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
8549       // combine should be prevented.
8550       if (C1Cost < ShiftedC1Cost)
8551         return false;
8552     }
8553   }
8554   return true;
8555 }
8556 
8557 bool RISCVTargetLowering::targetShrinkDemandedConstant(
8558     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
8559     TargetLoweringOpt &TLO) const {
8560   // Delay this optimization as late as possible.
8561   if (!TLO.LegalOps)
8562     return false;
8563 
8564   EVT VT = Op.getValueType();
8565   if (VT.isVector())
8566     return false;
8567 
8568   // Only handle AND for now.
8569   if (Op.getOpcode() != ISD::AND)
8570     return false;
8571 
8572   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8573   if (!C)
8574     return false;
8575 
8576   const APInt &Mask = C->getAPIntValue();
8577 
8578   // Clear all non-demanded bits initially.
8579   APInt ShrunkMask = Mask & DemandedBits;
8580 
8581   // Try to make a smaller immediate by setting undemanded bits.
8582 
8583   APInt ExpandedMask = Mask | ~DemandedBits;
8584 
8585   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
8586     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
8587   };
8588   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
8589     if (NewMask == Mask)
8590       return true;
8591     SDLoc DL(Op);
8592     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
8593     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
8594     return TLO.CombineTo(Op, NewOp);
8595   };
8596 
8597   // If the shrunk mask fits in sign extended 12 bits, let the target
8598   // independent code apply it.
8599   if (ShrunkMask.isSignedIntN(12))
8600     return false;
8601 
8602   // Preserve (and X, 0xffff) when zext.h is supported.
8603   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
8604     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
8605     if (IsLegalMask(NewMask))
8606       return UseMask(NewMask);
8607   }
8608 
8609   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
8610   if (VT == MVT::i64) {
8611     APInt NewMask = APInt(64, 0xffffffff);
8612     if (IsLegalMask(NewMask))
8613       return UseMask(NewMask);
8614   }
8615 
8616   // For the remaining optimizations, we need to be able to make a negative
8617   // number through a combination of mask and undemanded bits.
8618   if (!ExpandedMask.isNegative())
8619     return false;
8620 
8621   // What is the fewest number of bits we need to represent the negative number.
8622   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
8623 
8624   // Try to make a 12 bit negative immediate. If that fails try to make a 32
8625   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
8626   APInt NewMask = ShrunkMask;
8627   if (MinSignedBits <= 12)
8628     NewMask.setBitsFrom(11);
8629   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
8630     NewMask.setBitsFrom(31);
8631   else
8632     return false;
8633 
8634   // Check that our new mask is a subset of the demanded mask.
8635   assert(IsLegalMask(NewMask));
8636   return UseMask(NewMask);
8637 }
8638 
8639 static void computeGREV(APInt &Src, unsigned ShAmt) {
8640   ShAmt &= Src.getBitWidth() - 1;
8641   uint64_t x = Src.getZExtValue();
8642   if (ShAmt & 1)
8643     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
8644   if (ShAmt & 2)
8645     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
8646   if (ShAmt & 4)
8647     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
8648   if (ShAmt & 8)
8649     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
8650   if (ShAmt & 16)
8651     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
8652   if (ShAmt & 32)
8653     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
8654   Src = x;
8655 }
8656 
8657 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8658                                                         KnownBits &Known,
8659                                                         const APInt &DemandedElts,
8660                                                         const SelectionDAG &DAG,
8661                                                         unsigned Depth) const {
8662   unsigned BitWidth = Known.getBitWidth();
8663   unsigned Opc = Op.getOpcode();
8664   assert((Opc >= ISD::BUILTIN_OP_END ||
8665           Opc == ISD::INTRINSIC_WO_CHAIN ||
8666           Opc == ISD::INTRINSIC_W_CHAIN ||
8667           Opc == ISD::INTRINSIC_VOID) &&
8668          "Should use MaskedValueIsZero if you don't know whether Op"
8669          " is a target node!");
8670 
8671   Known.resetAll();
8672   switch (Opc) {
8673   default: break;
8674   case RISCVISD::SELECT_CC: {
8675     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
8676     // If we don't know any bits, early out.
8677     if (Known.isUnknown())
8678       break;
8679     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
8680 
8681     // Only known if known in both the LHS and RHS.
8682     Known = KnownBits::commonBits(Known, Known2);
8683     break;
8684   }
8685   case RISCVISD::REMUW: {
8686     KnownBits Known2;
8687     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8688     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8689     // We only care about the lower 32 bits.
8690     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
8691     // Restore the original width by sign extending.
8692     Known = Known.sext(BitWidth);
8693     break;
8694   }
8695   case RISCVISD::DIVUW: {
8696     KnownBits Known2;
8697     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8698     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8699     // We only care about the lower 32 bits.
8700     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
8701     // Restore the original width by sign extending.
8702     Known = Known.sext(BitWidth);
8703     break;
8704   }
8705   case RISCVISD::CTZW: {
8706     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8707     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
8708     unsigned LowBits = Log2_32(PossibleTZ) + 1;
8709     Known.Zero.setBitsFrom(LowBits);
8710     break;
8711   }
8712   case RISCVISD::CLZW: {
8713     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8714     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
8715     unsigned LowBits = Log2_32(PossibleLZ) + 1;
8716     Known.Zero.setBitsFrom(LowBits);
8717     break;
8718   }
8719   case RISCVISD::GREV:
8720   case RISCVISD::GREVW: {
8721     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8722       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8723       if (Opc == RISCVISD::GREVW)
8724         Known = Known.trunc(32);
8725       unsigned ShAmt = C->getZExtValue();
8726       computeGREV(Known.Zero, ShAmt);
8727       computeGREV(Known.One, ShAmt);
8728       if (Opc == RISCVISD::GREVW)
8729         Known = Known.sext(BitWidth);
8730     }
8731     break;
8732   }
8733   case RISCVISD::READ_VLENB: {
8734     // If we know the minimum VLen from Zvl extensions, we can use that to
8735     // determine the trailing zeros of VLENB.
8736     // FIXME: Limit to 128 bit vectors until we have more testing.
8737     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
8738     if (MinVLenB > 0)
8739       Known.Zero.setLowBits(Log2_32(MinVLenB));
8740     // We assume VLENB is no more than 65536 / 8 bytes.
8741     Known.Zero.setBitsFrom(14);
8742     break;
8743   }
8744   case ISD::INTRINSIC_W_CHAIN:
8745   case ISD::INTRINSIC_WO_CHAIN: {
8746     unsigned IntNo =
8747         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
8748     switch (IntNo) {
8749     default:
8750       // We can't do anything for most intrinsics.
8751       break;
8752     case Intrinsic::riscv_vsetvli:
8753     case Intrinsic::riscv_vsetvlimax:
8754     case Intrinsic::riscv_vsetvli_opt:
8755     case Intrinsic::riscv_vsetvlimax_opt:
8756       // Assume that VL output is positive and would fit in an int32_t.
8757       // TODO: VLEN might be capped at 16 bits in a future V spec update.
8758       if (BitWidth >= 32)
8759         Known.Zero.setBitsFrom(31);
8760       break;
8761     }
8762     break;
8763   }
8764   }
8765 }
8766 
8767 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
8768     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
8769     unsigned Depth) const {
8770   switch (Op.getOpcode()) {
8771   default:
8772     break;
8773   case RISCVISD::SELECT_CC: {
8774     unsigned Tmp =
8775         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
8776     if (Tmp == 1) return 1;  // Early out.
8777     unsigned Tmp2 =
8778         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
8779     return std::min(Tmp, Tmp2);
8780   }
8781   case RISCVISD::SLLW:
8782   case RISCVISD::SRAW:
8783   case RISCVISD::SRLW:
8784   case RISCVISD::DIVW:
8785   case RISCVISD::DIVUW:
8786   case RISCVISD::REMUW:
8787   case RISCVISD::ROLW:
8788   case RISCVISD::RORW:
8789   case RISCVISD::GREVW:
8790   case RISCVISD::GORCW:
8791   case RISCVISD::FSLW:
8792   case RISCVISD::FSRW:
8793   case RISCVISD::SHFLW:
8794   case RISCVISD::UNSHFLW:
8795   case RISCVISD::BCOMPRESSW:
8796   case RISCVISD::BDECOMPRESSW:
8797   case RISCVISD::BFPW:
8798   case RISCVISD::FCVT_W_RV64:
8799   case RISCVISD::FCVT_WU_RV64:
8800   case RISCVISD::STRICT_FCVT_W_RV64:
8801   case RISCVISD::STRICT_FCVT_WU_RV64:
8802     // TODO: As the result is sign-extended, this is conservatively correct. A
8803     // more precise answer could be calculated for SRAW depending on known
8804     // bits in the shift amount.
8805     return 33;
8806   case RISCVISD::SHFL:
8807   case RISCVISD::UNSHFL: {
8808     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
8809     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
8810     // will stay within the upper 32 bits. If there were more than 32 sign bits
8811     // before there will be at least 33 sign bits after.
8812     if (Op.getValueType() == MVT::i64 &&
8813         isa<ConstantSDNode>(Op.getOperand(1)) &&
8814         (Op.getConstantOperandVal(1) & 0x10) == 0) {
8815       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
8816       if (Tmp > 32)
8817         return 33;
8818     }
8819     break;
8820   }
8821   case RISCVISD::VMV_X_S: {
8822     // The number of sign bits of the scalar result is computed by obtaining the
8823     // element type of the input vector operand, subtracting its width from the
8824     // XLEN, and then adding one (sign bit within the element type). If the
8825     // element type is wider than XLen, the least-significant XLEN bits are
8826     // taken.
8827     unsigned XLen = Subtarget.getXLen();
8828     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
8829     if (EltBits <= XLen)
8830       return XLen - EltBits + 1;
8831     break;
8832   }
8833   }
8834 
8835   return 1;
8836 }
8837 
8838 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
8839                                                   MachineBasicBlock *BB) {
8840   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
8841 
8842   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
8843   // Should the count have wrapped while it was being read, we need to try
8844   // again.
8845   // ...
8846   // read:
8847   // rdcycleh x3 # load high word of cycle
8848   // rdcycle  x2 # load low word of cycle
8849   // rdcycleh x4 # load high word of cycle
8850   // bne x3, x4, read # check if high word reads match, otherwise try again
8851   // ...
8852 
8853   MachineFunction &MF = *BB->getParent();
8854   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8855   MachineFunction::iterator It = ++BB->getIterator();
8856 
8857   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
8858   MF.insert(It, LoopMBB);
8859 
8860   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
8861   MF.insert(It, DoneMBB);
8862 
8863   // Transfer the remainder of BB and its successor edges to DoneMBB.
8864   DoneMBB->splice(DoneMBB->begin(), BB,
8865                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8866   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
8867 
8868   BB->addSuccessor(LoopMBB);
8869 
8870   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8871   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8872   Register LoReg = MI.getOperand(0).getReg();
8873   Register HiReg = MI.getOperand(1).getReg();
8874   DebugLoc DL = MI.getDebugLoc();
8875 
8876   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
8877   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
8878       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
8879       .addReg(RISCV::X0);
8880   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
8881       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
8882       .addReg(RISCV::X0);
8883   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
8884       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
8885       .addReg(RISCV::X0);
8886 
8887   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
8888       .addReg(HiReg)
8889       .addReg(ReadAgainReg)
8890       .addMBB(LoopMBB);
8891 
8892   LoopMBB->addSuccessor(LoopMBB);
8893   LoopMBB->addSuccessor(DoneMBB);
8894 
8895   MI.eraseFromParent();
8896 
8897   return DoneMBB;
8898 }
8899 
8900 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
8901                                              MachineBasicBlock *BB) {
8902   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
8903 
8904   MachineFunction &MF = *BB->getParent();
8905   DebugLoc DL = MI.getDebugLoc();
8906   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8907   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8908   Register LoReg = MI.getOperand(0).getReg();
8909   Register HiReg = MI.getOperand(1).getReg();
8910   Register SrcReg = MI.getOperand(2).getReg();
8911   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
8912   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8913 
8914   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
8915                           RI);
8916   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8917   MachineMemOperand *MMOLo =
8918       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
8919   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
8920       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
8921   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
8922       .addFrameIndex(FI)
8923       .addImm(0)
8924       .addMemOperand(MMOLo);
8925   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
8926       .addFrameIndex(FI)
8927       .addImm(4)
8928       .addMemOperand(MMOHi);
8929   MI.eraseFromParent(); // The pseudo instruction is gone now.
8930   return BB;
8931 }
8932 
8933 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
8934                                                  MachineBasicBlock *BB) {
8935   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
8936          "Unexpected instruction");
8937 
8938   MachineFunction &MF = *BB->getParent();
8939   DebugLoc DL = MI.getDebugLoc();
8940   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8941   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8942   Register DstReg = MI.getOperand(0).getReg();
8943   Register LoReg = MI.getOperand(1).getReg();
8944   Register HiReg = MI.getOperand(2).getReg();
8945   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
8946   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8947 
8948   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8949   MachineMemOperand *MMOLo =
8950       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
8951   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
8952       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
8953   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
8954       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
8955       .addFrameIndex(FI)
8956       .addImm(0)
8957       .addMemOperand(MMOLo);
8958   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
8959       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
8960       .addFrameIndex(FI)
8961       .addImm(4)
8962       .addMemOperand(MMOHi);
8963   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
8964   MI.eraseFromParent(); // The pseudo instruction is gone now.
8965   return BB;
8966 }
8967 
8968 static bool isSelectPseudo(MachineInstr &MI) {
8969   switch (MI.getOpcode()) {
8970   default:
8971     return false;
8972   case RISCV::Select_GPR_Using_CC_GPR:
8973   case RISCV::Select_FPR16_Using_CC_GPR:
8974   case RISCV::Select_FPR32_Using_CC_GPR:
8975   case RISCV::Select_FPR64_Using_CC_GPR:
8976     return true;
8977   }
8978 }
8979 
8980 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
8981                                         unsigned RelOpcode, unsigned EqOpcode,
8982                                         const RISCVSubtarget &Subtarget) {
8983   DebugLoc DL = MI.getDebugLoc();
8984   Register DstReg = MI.getOperand(0).getReg();
8985   Register Src1Reg = MI.getOperand(1).getReg();
8986   Register Src2Reg = MI.getOperand(2).getReg();
8987   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
8988   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
8989   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
8990 
8991   // Save the current FFLAGS.
8992   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
8993 
8994   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
8995                  .addReg(Src1Reg)
8996                  .addReg(Src2Reg);
8997   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
8998     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
8999 
9000   // Restore the FFLAGS.
9001   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9002       .addReg(SavedFFlags, RegState::Kill);
9003 
9004   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9005   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9006                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9007                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9008   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9009     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9010 
9011   // Erase the pseudoinstruction.
9012   MI.eraseFromParent();
9013   return BB;
9014 }
9015 
9016 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9017                                            MachineBasicBlock *BB,
9018                                            const RISCVSubtarget &Subtarget) {
9019   // To "insert" Select_* instructions, we actually have to insert the triangle
9020   // control-flow pattern.  The incoming instructions know the destination vreg
9021   // to set, the condition code register to branch on, the true/false values to
9022   // select between, and the condcode to use to select the appropriate branch.
9023   //
9024   // We produce the following control flow:
9025   //     HeadMBB
9026   //     |  \
9027   //     |  IfFalseMBB
9028   //     | /
9029   //    TailMBB
9030   //
9031   // When we find a sequence of selects we attempt to optimize their emission
9032   // by sharing the control flow. Currently we only handle cases where we have
9033   // multiple selects with the exact same condition (same LHS, RHS and CC).
9034   // The selects may be interleaved with other instructions if the other
9035   // instructions meet some requirements we deem safe:
9036   // - They are debug instructions. Otherwise,
9037   // - They do not have side-effects, do not access memory and their inputs do
9038   //   not depend on the results of the select pseudo-instructions.
9039   // The TrueV/FalseV operands of the selects cannot depend on the result of
9040   // previous selects in the sequence.
9041   // These conditions could be further relaxed. See the X86 target for a
9042   // related approach and more information.
9043   Register LHS = MI.getOperand(1).getReg();
9044   Register RHS = MI.getOperand(2).getReg();
9045   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9046 
9047   SmallVector<MachineInstr *, 4> SelectDebugValues;
9048   SmallSet<Register, 4> SelectDests;
9049   SelectDests.insert(MI.getOperand(0).getReg());
9050 
9051   MachineInstr *LastSelectPseudo = &MI;
9052 
9053   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9054        SequenceMBBI != E; ++SequenceMBBI) {
9055     if (SequenceMBBI->isDebugInstr())
9056       continue;
9057     else if (isSelectPseudo(*SequenceMBBI)) {
9058       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9059           SequenceMBBI->getOperand(2).getReg() != RHS ||
9060           SequenceMBBI->getOperand(3).getImm() != CC ||
9061           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9062           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9063         break;
9064       LastSelectPseudo = &*SequenceMBBI;
9065       SequenceMBBI->collectDebugValues(SelectDebugValues);
9066       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9067     } else {
9068       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9069           SequenceMBBI->mayLoadOrStore())
9070         break;
9071       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9072             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9073           }))
9074         break;
9075     }
9076   }
9077 
9078   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9079   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9080   DebugLoc DL = MI.getDebugLoc();
9081   MachineFunction::iterator I = ++BB->getIterator();
9082 
9083   MachineBasicBlock *HeadMBB = BB;
9084   MachineFunction *F = BB->getParent();
9085   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9086   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9087 
9088   F->insert(I, IfFalseMBB);
9089   F->insert(I, TailMBB);
9090 
9091   // Transfer debug instructions associated with the selects to TailMBB.
9092   for (MachineInstr *DebugInstr : SelectDebugValues) {
9093     TailMBB->push_back(DebugInstr->removeFromParent());
9094   }
9095 
9096   // Move all instructions after the sequence to TailMBB.
9097   TailMBB->splice(TailMBB->end(), HeadMBB,
9098                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9099   // Update machine-CFG edges by transferring all successors of the current
9100   // block to the new block which will contain the Phi nodes for the selects.
9101   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9102   // Set the successors for HeadMBB.
9103   HeadMBB->addSuccessor(IfFalseMBB);
9104   HeadMBB->addSuccessor(TailMBB);
9105 
9106   // Insert appropriate branch.
9107   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9108     .addReg(LHS)
9109     .addReg(RHS)
9110     .addMBB(TailMBB);
9111 
9112   // IfFalseMBB just falls through to TailMBB.
9113   IfFalseMBB->addSuccessor(TailMBB);
9114 
9115   // Create PHIs for all of the select pseudo-instructions.
9116   auto SelectMBBI = MI.getIterator();
9117   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9118   auto InsertionPoint = TailMBB->begin();
9119   while (SelectMBBI != SelectEnd) {
9120     auto Next = std::next(SelectMBBI);
9121     if (isSelectPseudo(*SelectMBBI)) {
9122       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9123       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9124               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9125           .addReg(SelectMBBI->getOperand(4).getReg())
9126           .addMBB(HeadMBB)
9127           .addReg(SelectMBBI->getOperand(5).getReg())
9128           .addMBB(IfFalseMBB);
9129       SelectMBBI->eraseFromParent();
9130     }
9131     SelectMBBI = Next;
9132   }
9133 
9134   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9135   return TailMBB;
9136 }
9137 
9138 MachineBasicBlock *
9139 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9140                                                  MachineBasicBlock *BB) const {
9141   switch (MI.getOpcode()) {
9142   default:
9143     llvm_unreachable("Unexpected instr type to insert");
9144   case RISCV::ReadCycleWide:
9145     assert(!Subtarget.is64Bit() &&
9146            "ReadCycleWrite is only to be used on riscv32");
9147     return emitReadCycleWidePseudo(MI, BB);
9148   case RISCV::Select_GPR_Using_CC_GPR:
9149   case RISCV::Select_FPR16_Using_CC_GPR:
9150   case RISCV::Select_FPR32_Using_CC_GPR:
9151   case RISCV::Select_FPR64_Using_CC_GPR:
9152     return emitSelectPseudo(MI, BB, Subtarget);
9153   case RISCV::BuildPairF64Pseudo:
9154     return emitBuildPairF64Pseudo(MI, BB);
9155   case RISCV::SplitF64Pseudo:
9156     return emitSplitF64Pseudo(MI, BB);
9157   case RISCV::PseudoQuietFLE_H:
9158     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9159   case RISCV::PseudoQuietFLT_H:
9160     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9161   case RISCV::PseudoQuietFLE_S:
9162     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9163   case RISCV::PseudoQuietFLT_S:
9164     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9165   case RISCV::PseudoQuietFLE_D:
9166     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9167   case RISCV::PseudoQuietFLT_D:
9168     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9169   }
9170 }
9171 
9172 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9173                                                         SDNode *Node) const {
9174   // Add FRM dependency to any instructions with dynamic rounding mode.
9175   unsigned Opc = MI.getOpcode();
9176   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9177   if (Idx < 0)
9178     return;
9179   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9180     return;
9181   // If the instruction already reads FRM, don't add another read.
9182   if (MI.readsRegister(RISCV::FRM))
9183     return;
9184   MI.addOperand(
9185       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9186 }
9187 
9188 // Calling Convention Implementation.
9189 // The expectations for frontend ABI lowering vary from target to target.
9190 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9191 // details, but this is a longer term goal. For now, we simply try to keep the
9192 // role of the frontend as simple and well-defined as possible. The rules can
9193 // be summarised as:
9194 // * Never split up large scalar arguments. We handle them here.
9195 // * If a hardfloat calling convention is being used, and the struct may be
9196 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9197 // available, then pass as two separate arguments. If either the GPRs or FPRs
9198 // are exhausted, then pass according to the rule below.
9199 // * If a struct could never be passed in registers or directly in a stack
9200 // slot (as it is larger than 2*XLEN and the floating point rules don't
9201 // apply), then pass it using a pointer with the byval attribute.
9202 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9203 // word-sized array or a 2*XLEN scalar (depending on alignment).
9204 // * The frontend can determine whether a struct is returned by reference or
9205 // not based on its size and fields. If it will be returned by reference, the
9206 // frontend must modify the prototype so a pointer with the sret annotation is
9207 // passed as the first argument. This is not necessary for large scalar
9208 // returns.
9209 // * Struct return values and varargs should be coerced to structs containing
9210 // register-size fields in the same situations they would be for fixed
9211 // arguments.
9212 
9213 static const MCPhysReg ArgGPRs[] = {
9214   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9215   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9216 };
9217 static const MCPhysReg ArgFPR16s[] = {
9218   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9219   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9220 };
9221 static const MCPhysReg ArgFPR32s[] = {
9222   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9223   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9224 };
9225 static const MCPhysReg ArgFPR64s[] = {
9226   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9227   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9228 };
9229 // This is an interim calling convention and it may be changed in the future.
9230 static const MCPhysReg ArgVRs[] = {
9231     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9232     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9233     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9234 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9235                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9236                                      RISCV::V20M2, RISCV::V22M2};
9237 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9238                                      RISCV::V20M4};
9239 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9240 
9241 // Pass a 2*XLEN argument that has been split into two XLEN values through
9242 // registers or the stack as necessary.
9243 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9244                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9245                                 MVT ValVT2, MVT LocVT2,
9246                                 ISD::ArgFlagsTy ArgFlags2) {
9247   unsigned XLenInBytes = XLen / 8;
9248   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9249     // At least one half can be passed via register.
9250     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9251                                      VA1.getLocVT(), CCValAssign::Full));
9252   } else {
9253     // Both halves must be passed on the stack, with proper alignment.
9254     Align StackAlign =
9255         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9256     State.addLoc(
9257         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9258                             State.AllocateStack(XLenInBytes, StackAlign),
9259                             VA1.getLocVT(), CCValAssign::Full));
9260     State.addLoc(CCValAssign::getMem(
9261         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9262         LocVT2, CCValAssign::Full));
9263     return false;
9264   }
9265 
9266   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9267     // The second half can also be passed via register.
9268     State.addLoc(
9269         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9270   } else {
9271     // The second half is passed via the stack, without additional alignment.
9272     State.addLoc(CCValAssign::getMem(
9273         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9274         LocVT2, CCValAssign::Full));
9275   }
9276 
9277   return false;
9278 }
9279 
9280 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9281                                Optional<unsigned> FirstMaskArgument,
9282                                CCState &State, const RISCVTargetLowering &TLI) {
9283   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9284   if (RC == &RISCV::VRRegClass) {
9285     // Assign the first mask argument to V0.
9286     // This is an interim calling convention and it may be changed in the
9287     // future.
9288     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9289       return State.AllocateReg(RISCV::V0);
9290     return State.AllocateReg(ArgVRs);
9291   }
9292   if (RC == &RISCV::VRM2RegClass)
9293     return State.AllocateReg(ArgVRM2s);
9294   if (RC == &RISCV::VRM4RegClass)
9295     return State.AllocateReg(ArgVRM4s);
9296   if (RC == &RISCV::VRM8RegClass)
9297     return State.AllocateReg(ArgVRM8s);
9298   llvm_unreachable("Unhandled register class for ValueType");
9299 }
9300 
9301 // Implements the RISC-V calling convention. Returns true upon failure.
9302 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9303                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9304                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9305                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9306                      Optional<unsigned> FirstMaskArgument) {
9307   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9308   assert(XLen == 32 || XLen == 64);
9309   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9310 
9311   // Any return value split in to more than two values can't be returned
9312   // directly. Vectors are returned via the available vector registers.
9313   if (!LocVT.isVector() && IsRet && ValNo > 1)
9314     return true;
9315 
9316   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9317   // variadic argument, or if no F16/F32 argument registers are available.
9318   bool UseGPRForF16_F32 = true;
9319   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9320   // variadic argument, or if no F64 argument registers are available.
9321   bool UseGPRForF64 = true;
9322 
9323   switch (ABI) {
9324   default:
9325     llvm_unreachable("Unexpected ABI");
9326   case RISCVABI::ABI_ILP32:
9327   case RISCVABI::ABI_LP64:
9328     break;
9329   case RISCVABI::ABI_ILP32F:
9330   case RISCVABI::ABI_LP64F:
9331     UseGPRForF16_F32 = !IsFixed;
9332     break;
9333   case RISCVABI::ABI_ILP32D:
9334   case RISCVABI::ABI_LP64D:
9335     UseGPRForF16_F32 = !IsFixed;
9336     UseGPRForF64 = !IsFixed;
9337     break;
9338   }
9339 
9340   // FPR16, FPR32, and FPR64 alias each other.
9341   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9342     UseGPRForF16_F32 = true;
9343     UseGPRForF64 = true;
9344   }
9345 
9346   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9347   // similar local variables rather than directly checking against the target
9348   // ABI.
9349 
9350   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9351     LocVT = XLenVT;
9352     LocInfo = CCValAssign::BCvt;
9353   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9354     LocVT = MVT::i64;
9355     LocInfo = CCValAssign::BCvt;
9356   }
9357 
9358   // If this is a variadic argument, the RISC-V calling convention requires
9359   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9360   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9361   // be used regardless of whether the original argument was split during
9362   // legalisation or not. The argument will not be passed by registers if the
9363   // original type is larger than 2*XLEN, so the register alignment rule does
9364   // not apply.
9365   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9366   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9367       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9368     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9369     // Skip 'odd' register if necessary.
9370     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9371       State.AllocateReg(ArgGPRs);
9372   }
9373 
9374   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9375   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9376       State.getPendingArgFlags();
9377 
9378   assert(PendingLocs.size() == PendingArgFlags.size() &&
9379          "PendingLocs and PendingArgFlags out of sync");
9380 
9381   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9382   // registers are exhausted.
9383   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9384     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9385            "Can't lower f64 if it is split");
9386     // Depending on available argument GPRS, f64 may be passed in a pair of
9387     // GPRs, split between a GPR and the stack, or passed completely on the
9388     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9389     // cases.
9390     Register Reg = State.AllocateReg(ArgGPRs);
9391     LocVT = MVT::i32;
9392     if (!Reg) {
9393       unsigned StackOffset = State.AllocateStack(8, Align(8));
9394       State.addLoc(
9395           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9396       return false;
9397     }
9398     if (!State.AllocateReg(ArgGPRs))
9399       State.AllocateStack(4, Align(4));
9400     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9401     return false;
9402   }
9403 
9404   // Fixed-length vectors are located in the corresponding scalable-vector
9405   // container types.
9406   if (ValVT.isFixedLengthVector())
9407     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9408 
9409   // Split arguments might be passed indirectly, so keep track of the pending
9410   // values. Split vectors are passed via a mix of registers and indirectly, so
9411   // treat them as we would any other argument.
9412   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9413     LocVT = XLenVT;
9414     LocInfo = CCValAssign::Indirect;
9415     PendingLocs.push_back(
9416         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9417     PendingArgFlags.push_back(ArgFlags);
9418     if (!ArgFlags.isSplitEnd()) {
9419       return false;
9420     }
9421   }
9422 
9423   // If the split argument only had two elements, it should be passed directly
9424   // in registers or on the stack.
9425   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9426       PendingLocs.size() <= 2) {
9427     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9428     // Apply the normal calling convention rules to the first half of the
9429     // split argument.
9430     CCValAssign VA = PendingLocs[0];
9431     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9432     PendingLocs.clear();
9433     PendingArgFlags.clear();
9434     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9435                                ArgFlags);
9436   }
9437 
9438   // Allocate to a register if possible, or else a stack slot.
9439   Register Reg;
9440   unsigned StoreSizeBytes = XLen / 8;
9441   Align StackAlign = Align(XLen / 8);
9442 
9443   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9444     Reg = State.AllocateReg(ArgFPR16s);
9445   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9446     Reg = State.AllocateReg(ArgFPR32s);
9447   else if (ValVT == MVT::f64 && !UseGPRForF64)
9448     Reg = State.AllocateReg(ArgFPR64s);
9449   else if (ValVT.isVector()) {
9450     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9451     if (!Reg) {
9452       // For return values, the vector must be passed fully via registers or
9453       // via the stack.
9454       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9455       // but we're using all of them.
9456       if (IsRet)
9457         return true;
9458       // Try using a GPR to pass the address
9459       if ((Reg = State.AllocateReg(ArgGPRs))) {
9460         LocVT = XLenVT;
9461         LocInfo = CCValAssign::Indirect;
9462       } else if (ValVT.isScalableVector()) {
9463         LocVT = XLenVT;
9464         LocInfo = CCValAssign::Indirect;
9465       } else {
9466         // Pass fixed-length vectors on the stack.
9467         LocVT = ValVT;
9468         StoreSizeBytes = ValVT.getStoreSize();
9469         // Align vectors to their element sizes, being careful for vXi1
9470         // vectors.
9471         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9472       }
9473     }
9474   } else {
9475     Reg = State.AllocateReg(ArgGPRs);
9476   }
9477 
9478   unsigned StackOffset =
9479       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9480 
9481   // If we reach this point and PendingLocs is non-empty, we must be at the
9482   // end of a split argument that must be passed indirectly.
9483   if (!PendingLocs.empty()) {
9484     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9485     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9486 
9487     for (auto &It : PendingLocs) {
9488       if (Reg)
9489         It.convertToReg(Reg);
9490       else
9491         It.convertToMem(StackOffset);
9492       State.addLoc(It);
9493     }
9494     PendingLocs.clear();
9495     PendingArgFlags.clear();
9496     return false;
9497   }
9498 
9499   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
9500           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
9501          "Expected an XLenVT or vector types at this stage");
9502 
9503   if (Reg) {
9504     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9505     return false;
9506   }
9507 
9508   // When a floating-point value is passed on the stack, no bit-conversion is
9509   // needed.
9510   if (ValVT.isFloatingPoint()) {
9511     LocVT = ValVT;
9512     LocInfo = CCValAssign::Full;
9513   }
9514   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9515   return false;
9516 }
9517 
9518 template <typename ArgTy>
9519 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
9520   for (const auto &ArgIdx : enumerate(Args)) {
9521     MVT ArgVT = ArgIdx.value().VT;
9522     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
9523       return ArgIdx.index();
9524   }
9525   return None;
9526 }
9527 
9528 void RISCVTargetLowering::analyzeInputArgs(
9529     MachineFunction &MF, CCState &CCInfo,
9530     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
9531     RISCVCCAssignFn Fn) const {
9532   unsigned NumArgs = Ins.size();
9533   FunctionType *FType = MF.getFunction().getFunctionType();
9534 
9535   Optional<unsigned> FirstMaskArgument;
9536   if (Subtarget.hasVInstructions())
9537     FirstMaskArgument = preAssignMask(Ins);
9538 
9539   for (unsigned i = 0; i != NumArgs; ++i) {
9540     MVT ArgVT = Ins[i].VT;
9541     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
9542 
9543     Type *ArgTy = nullptr;
9544     if (IsRet)
9545       ArgTy = FType->getReturnType();
9546     else if (Ins[i].isOrigArg())
9547       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
9548 
9549     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9550     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9551            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
9552            FirstMaskArgument)) {
9553       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
9554                         << EVT(ArgVT).getEVTString() << '\n');
9555       llvm_unreachable(nullptr);
9556     }
9557   }
9558 }
9559 
9560 void RISCVTargetLowering::analyzeOutputArgs(
9561     MachineFunction &MF, CCState &CCInfo,
9562     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
9563     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
9564   unsigned NumArgs = Outs.size();
9565 
9566   Optional<unsigned> FirstMaskArgument;
9567   if (Subtarget.hasVInstructions())
9568     FirstMaskArgument = preAssignMask(Outs);
9569 
9570   for (unsigned i = 0; i != NumArgs; i++) {
9571     MVT ArgVT = Outs[i].VT;
9572     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9573     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
9574 
9575     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9576     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9577            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
9578            FirstMaskArgument)) {
9579       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
9580                         << EVT(ArgVT).getEVTString() << "\n");
9581       llvm_unreachable(nullptr);
9582     }
9583   }
9584 }
9585 
9586 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
9587 // values.
9588 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
9589                                    const CCValAssign &VA, const SDLoc &DL,
9590                                    const RISCVSubtarget &Subtarget) {
9591   switch (VA.getLocInfo()) {
9592   default:
9593     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9594   case CCValAssign::Full:
9595     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
9596       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
9597     break;
9598   case CCValAssign::BCvt:
9599     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9600       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
9601     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9602       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
9603     else
9604       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
9605     break;
9606   }
9607   return Val;
9608 }
9609 
9610 // The caller is responsible for loading the full value if the argument is
9611 // passed with CCValAssign::Indirect.
9612 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
9613                                 const CCValAssign &VA, const SDLoc &DL,
9614                                 const RISCVTargetLowering &TLI) {
9615   MachineFunction &MF = DAG.getMachineFunction();
9616   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9617   EVT LocVT = VA.getLocVT();
9618   SDValue Val;
9619   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
9620   Register VReg = RegInfo.createVirtualRegister(RC);
9621   RegInfo.addLiveIn(VA.getLocReg(), VReg);
9622   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
9623 
9624   if (VA.getLocInfo() == CCValAssign::Indirect)
9625     return Val;
9626 
9627   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
9628 }
9629 
9630 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
9631                                    const CCValAssign &VA, const SDLoc &DL,
9632                                    const RISCVSubtarget &Subtarget) {
9633   EVT LocVT = VA.getLocVT();
9634 
9635   switch (VA.getLocInfo()) {
9636   default:
9637     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9638   case CCValAssign::Full:
9639     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
9640       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
9641     break;
9642   case CCValAssign::BCvt:
9643     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9644       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
9645     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9646       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
9647     else
9648       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
9649     break;
9650   }
9651   return Val;
9652 }
9653 
9654 // The caller is responsible for loading the full value if the argument is
9655 // passed with CCValAssign::Indirect.
9656 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
9657                                 const CCValAssign &VA, const SDLoc &DL) {
9658   MachineFunction &MF = DAG.getMachineFunction();
9659   MachineFrameInfo &MFI = MF.getFrameInfo();
9660   EVT LocVT = VA.getLocVT();
9661   EVT ValVT = VA.getValVT();
9662   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
9663   if (ValVT.isScalableVector()) {
9664     // When the value is a scalable vector, we save the pointer which points to
9665     // the scalable vector value in the stack. The ValVT will be the pointer
9666     // type, instead of the scalable vector type.
9667     ValVT = LocVT;
9668   }
9669   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
9670                                  /*IsImmutable=*/true);
9671   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
9672   SDValue Val;
9673 
9674   ISD::LoadExtType ExtType;
9675   switch (VA.getLocInfo()) {
9676   default:
9677     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9678   case CCValAssign::Full:
9679   case CCValAssign::Indirect:
9680   case CCValAssign::BCvt:
9681     ExtType = ISD::NON_EXTLOAD;
9682     break;
9683   }
9684   Val = DAG.getExtLoad(
9685       ExtType, DL, LocVT, Chain, FIN,
9686       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
9687   return Val;
9688 }
9689 
9690 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
9691                                        const CCValAssign &VA, const SDLoc &DL) {
9692   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
9693          "Unexpected VA");
9694   MachineFunction &MF = DAG.getMachineFunction();
9695   MachineFrameInfo &MFI = MF.getFrameInfo();
9696   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9697 
9698   if (VA.isMemLoc()) {
9699     // f64 is passed on the stack.
9700     int FI =
9701         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
9702     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9703     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
9704                        MachinePointerInfo::getFixedStack(MF, FI));
9705   }
9706 
9707   assert(VA.isRegLoc() && "Expected register VA assignment");
9708 
9709   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9710   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
9711   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
9712   SDValue Hi;
9713   if (VA.getLocReg() == RISCV::X17) {
9714     // Second half of f64 is passed on the stack.
9715     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
9716     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9717     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
9718                      MachinePointerInfo::getFixedStack(MF, FI));
9719   } else {
9720     // Second half of f64 is passed in another GPR.
9721     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9722     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
9723     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
9724   }
9725   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
9726 }
9727 
9728 // FastCC has less than 1% performance improvement for some particular
9729 // benchmark. But theoretically, it may has benenfit for some cases.
9730 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
9731                             unsigned ValNo, MVT ValVT, MVT LocVT,
9732                             CCValAssign::LocInfo LocInfo,
9733                             ISD::ArgFlagsTy ArgFlags, CCState &State,
9734                             bool IsFixed, bool IsRet, Type *OrigTy,
9735                             const RISCVTargetLowering &TLI,
9736                             Optional<unsigned> FirstMaskArgument) {
9737 
9738   // X5 and X6 might be used for save-restore libcall.
9739   static const MCPhysReg GPRList[] = {
9740       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
9741       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
9742       RISCV::X29, RISCV::X30, RISCV::X31};
9743 
9744   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9745     if (unsigned Reg = State.AllocateReg(GPRList)) {
9746       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9747       return false;
9748     }
9749   }
9750 
9751   if (LocVT == MVT::f16) {
9752     static const MCPhysReg FPR16List[] = {
9753         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
9754         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
9755         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
9756         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
9757     if (unsigned Reg = State.AllocateReg(FPR16List)) {
9758       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9759       return false;
9760     }
9761   }
9762 
9763   if (LocVT == MVT::f32) {
9764     static const MCPhysReg FPR32List[] = {
9765         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
9766         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
9767         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
9768         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
9769     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9770       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9771       return false;
9772     }
9773   }
9774 
9775   if (LocVT == MVT::f64) {
9776     static const MCPhysReg FPR64List[] = {
9777         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
9778         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
9779         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
9780         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
9781     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9782       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9783       return false;
9784     }
9785   }
9786 
9787   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
9788     unsigned Offset4 = State.AllocateStack(4, Align(4));
9789     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
9790     return false;
9791   }
9792 
9793   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
9794     unsigned Offset5 = State.AllocateStack(8, Align(8));
9795     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
9796     return false;
9797   }
9798 
9799   if (LocVT.isVector()) {
9800     if (unsigned Reg =
9801             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
9802       // Fixed-length vectors are located in the corresponding scalable-vector
9803       // container types.
9804       if (ValVT.isFixedLengthVector())
9805         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9806       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9807     } else {
9808       // Try and pass the address via a "fast" GPR.
9809       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
9810         LocInfo = CCValAssign::Indirect;
9811         LocVT = TLI.getSubtarget().getXLenVT();
9812         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
9813       } else if (ValVT.isFixedLengthVector()) {
9814         auto StackAlign =
9815             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9816         unsigned StackOffset =
9817             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
9818         State.addLoc(
9819             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9820       } else {
9821         // Can't pass scalable vectors on the stack.
9822         return true;
9823       }
9824     }
9825 
9826     return false;
9827   }
9828 
9829   return true; // CC didn't match.
9830 }
9831 
9832 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
9833                          CCValAssign::LocInfo LocInfo,
9834                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
9835 
9836   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9837     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
9838     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
9839     static const MCPhysReg GPRList[] = {
9840         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
9841         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
9842     if (unsigned Reg = State.AllocateReg(GPRList)) {
9843       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9844       return false;
9845     }
9846   }
9847 
9848   if (LocVT == MVT::f32) {
9849     // Pass in STG registers: F1, ..., F6
9850     //                        fs0 ... fs5
9851     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
9852                                           RISCV::F18_F, RISCV::F19_F,
9853                                           RISCV::F20_F, RISCV::F21_F};
9854     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9855       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9856       return false;
9857     }
9858   }
9859 
9860   if (LocVT == MVT::f64) {
9861     // Pass in STG registers: D1, ..., D6
9862     //                        fs6 ... fs11
9863     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
9864                                           RISCV::F24_D, RISCV::F25_D,
9865                                           RISCV::F26_D, RISCV::F27_D};
9866     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9867       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9868       return false;
9869     }
9870   }
9871 
9872   report_fatal_error("No registers left in GHC calling convention");
9873   return true;
9874 }
9875 
9876 // Transform physical registers into virtual registers.
9877 SDValue RISCVTargetLowering::LowerFormalArguments(
9878     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
9879     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
9880     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
9881 
9882   MachineFunction &MF = DAG.getMachineFunction();
9883 
9884   switch (CallConv) {
9885   default:
9886     report_fatal_error("Unsupported calling convention");
9887   case CallingConv::C:
9888   case CallingConv::Fast:
9889     break;
9890   case CallingConv::GHC:
9891     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
9892         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
9893       report_fatal_error(
9894         "GHC calling convention requires the F and D instruction set extensions");
9895   }
9896 
9897   const Function &Func = MF.getFunction();
9898   if (Func.hasFnAttribute("interrupt")) {
9899     if (!Func.arg_empty())
9900       report_fatal_error(
9901         "Functions with the interrupt attribute cannot have arguments!");
9902 
9903     StringRef Kind =
9904       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9905 
9906     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
9907       report_fatal_error(
9908         "Function interrupt attribute argument not supported!");
9909   }
9910 
9911   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9912   MVT XLenVT = Subtarget.getXLenVT();
9913   unsigned XLenInBytes = Subtarget.getXLen() / 8;
9914   // Used with vargs to acumulate store chains.
9915   std::vector<SDValue> OutChains;
9916 
9917   // Assign locations to all of the incoming arguments.
9918   SmallVector<CCValAssign, 16> ArgLocs;
9919   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
9920 
9921   if (CallConv == CallingConv::GHC)
9922     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
9923   else
9924     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
9925                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
9926                                                    : CC_RISCV);
9927 
9928   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
9929     CCValAssign &VA = ArgLocs[i];
9930     SDValue ArgValue;
9931     // Passing f64 on RV32D with a soft float ABI must be handled as a special
9932     // case.
9933     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
9934       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
9935     else if (VA.isRegLoc())
9936       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
9937     else
9938       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
9939 
9940     if (VA.getLocInfo() == CCValAssign::Indirect) {
9941       // If the original argument was split and passed by reference (e.g. i128
9942       // on RV32), we need to load all parts of it here (using the same
9943       // address). Vectors may be partly split to registers and partly to the
9944       // stack, in which case the base address is partly offset and subsequent
9945       // stores are relative to that.
9946       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
9947                                    MachinePointerInfo()));
9948       unsigned ArgIndex = Ins[i].OrigArgIndex;
9949       unsigned ArgPartOffset = Ins[i].PartOffset;
9950       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
9951       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
9952         CCValAssign &PartVA = ArgLocs[i + 1];
9953         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
9954         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
9955         if (PartVA.getValVT().isScalableVector())
9956           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
9957         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
9958         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
9959                                      MachinePointerInfo()));
9960         ++i;
9961       }
9962       continue;
9963     }
9964     InVals.push_back(ArgValue);
9965   }
9966 
9967   if (IsVarArg) {
9968     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
9969     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
9970     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
9971     MachineFrameInfo &MFI = MF.getFrameInfo();
9972     MachineRegisterInfo &RegInfo = MF.getRegInfo();
9973     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
9974 
9975     // Offset of the first variable argument from stack pointer, and size of
9976     // the vararg save area. For now, the varargs save area is either zero or
9977     // large enough to hold a0-a7.
9978     int VaArgOffset, VarArgsSaveSize;
9979 
9980     // If all registers are allocated, then all varargs must be passed on the
9981     // stack and we don't need to save any argregs.
9982     if (ArgRegs.size() == Idx) {
9983       VaArgOffset = CCInfo.getNextStackOffset();
9984       VarArgsSaveSize = 0;
9985     } else {
9986       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
9987       VaArgOffset = -VarArgsSaveSize;
9988     }
9989 
9990     // Record the frame index of the first variable argument
9991     // which is a value necessary to VASTART.
9992     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
9993     RVFI->setVarArgsFrameIndex(FI);
9994 
9995     // If saving an odd number of registers then create an extra stack slot to
9996     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
9997     // offsets to even-numbered registered remain 2*XLEN-aligned.
9998     if (Idx % 2) {
9999       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10000       VarArgsSaveSize += XLenInBytes;
10001     }
10002 
10003     // Copy the integer registers that may have been used for passing varargs
10004     // to the vararg save area.
10005     for (unsigned I = Idx; I < ArgRegs.size();
10006          ++I, VaArgOffset += XLenInBytes) {
10007       const Register Reg = RegInfo.createVirtualRegister(RC);
10008       RegInfo.addLiveIn(ArgRegs[I], Reg);
10009       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10010       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10011       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10012       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10013                                    MachinePointerInfo::getFixedStack(MF, FI));
10014       cast<StoreSDNode>(Store.getNode())
10015           ->getMemOperand()
10016           ->setValue((Value *)nullptr);
10017       OutChains.push_back(Store);
10018     }
10019     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10020   }
10021 
10022   // All stores are grouped in one node to allow the matching between
10023   // the size of Ins and InVals. This only happens for vararg functions.
10024   if (!OutChains.empty()) {
10025     OutChains.push_back(Chain);
10026     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10027   }
10028 
10029   return Chain;
10030 }
10031 
10032 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10033 /// for tail call optimization.
10034 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10035 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10036     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10037     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10038 
10039   auto &Callee = CLI.Callee;
10040   auto CalleeCC = CLI.CallConv;
10041   auto &Outs = CLI.Outs;
10042   auto &Caller = MF.getFunction();
10043   auto CallerCC = Caller.getCallingConv();
10044 
10045   // Exception-handling functions need a special set of instructions to
10046   // indicate a return to the hardware. Tail-calling another function would
10047   // probably break this.
10048   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10049   // should be expanded as new function attributes are introduced.
10050   if (Caller.hasFnAttribute("interrupt"))
10051     return false;
10052 
10053   // Do not tail call opt if the stack is used to pass parameters.
10054   if (CCInfo.getNextStackOffset() != 0)
10055     return false;
10056 
10057   // Do not tail call opt if any parameters need to be passed indirectly.
10058   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10059   // passed indirectly. So the address of the value will be passed in a
10060   // register, or if not available, then the address is put on the stack. In
10061   // order to pass indirectly, space on the stack often needs to be allocated
10062   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10063   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10064   // are passed CCValAssign::Indirect.
10065   for (auto &VA : ArgLocs)
10066     if (VA.getLocInfo() == CCValAssign::Indirect)
10067       return false;
10068 
10069   // Do not tail call opt if either caller or callee uses struct return
10070   // semantics.
10071   auto IsCallerStructRet = Caller.hasStructRetAttr();
10072   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10073   if (IsCallerStructRet || IsCalleeStructRet)
10074     return false;
10075 
10076   // Externally-defined functions with weak linkage should not be
10077   // tail-called. The behaviour of branch instructions in this situation (as
10078   // used for tail calls) is implementation-defined, so we cannot rely on the
10079   // linker replacing the tail call with a return.
10080   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10081     const GlobalValue *GV = G->getGlobal();
10082     if (GV->hasExternalWeakLinkage())
10083       return false;
10084   }
10085 
10086   // The callee has to preserve all registers the caller needs to preserve.
10087   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10088   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10089   if (CalleeCC != CallerCC) {
10090     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10091     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10092       return false;
10093   }
10094 
10095   // Byval parameters hand the function a pointer directly into the stack area
10096   // we want to reuse during a tail call. Working around this *is* possible
10097   // but less efficient and uglier in LowerCall.
10098   for (auto &Arg : Outs)
10099     if (Arg.Flags.isByVal())
10100       return false;
10101 
10102   return true;
10103 }
10104 
10105 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10106   return DAG.getDataLayout().getPrefTypeAlign(
10107       VT.getTypeForEVT(*DAG.getContext()));
10108 }
10109 
10110 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10111 // and output parameter nodes.
10112 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10113                                        SmallVectorImpl<SDValue> &InVals) const {
10114   SelectionDAG &DAG = CLI.DAG;
10115   SDLoc &DL = CLI.DL;
10116   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10117   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10118   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10119   SDValue Chain = CLI.Chain;
10120   SDValue Callee = CLI.Callee;
10121   bool &IsTailCall = CLI.IsTailCall;
10122   CallingConv::ID CallConv = CLI.CallConv;
10123   bool IsVarArg = CLI.IsVarArg;
10124   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10125   MVT XLenVT = Subtarget.getXLenVT();
10126 
10127   MachineFunction &MF = DAG.getMachineFunction();
10128 
10129   // Analyze the operands of the call, assigning locations to each operand.
10130   SmallVector<CCValAssign, 16> ArgLocs;
10131   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10132 
10133   if (CallConv == CallingConv::GHC)
10134     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10135   else
10136     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10137                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10138                                                     : CC_RISCV);
10139 
10140   // Check if it's really possible to do a tail call.
10141   if (IsTailCall)
10142     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10143 
10144   if (IsTailCall)
10145     ++NumTailCalls;
10146   else if (CLI.CB && CLI.CB->isMustTailCall())
10147     report_fatal_error("failed to perform tail call elimination on a call "
10148                        "site marked musttail");
10149 
10150   // Get a count of how many bytes are to be pushed on the stack.
10151   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10152 
10153   // Create local copies for byval args
10154   SmallVector<SDValue, 8> ByValArgs;
10155   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10156     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10157     if (!Flags.isByVal())
10158       continue;
10159 
10160     SDValue Arg = OutVals[i];
10161     unsigned Size = Flags.getByValSize();
10162     Align Alignment = Flags.getNonZeroByValAlign();
10163 
10164     int FI =
10165         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10166     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10167     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10168 
10169     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10170                           /*IsVolatile=*/false,
10171                           /*AlwaysInline=*/false, IsTailCall,
10172                           MachinePointerInfo(), MachinePointerInfo());
10173     ByValArgs.push_back(FIPtr);
10174   }
10175 
10176   if (!IsTailCall)
10177     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10178 
10179   // Copy argument values to their designated locations.
10180   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10181   SmallVector<SDValue, 8> MemOpChains;
10182   SDValue StackPtr;
10183   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10184     CCValAssign &VA = ArgLocs[i];
10185     SDValue ArgValue = OutVals[i];
10186     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10187 
10188     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10189     bool IsF64OnRV32DSoftABI =
10190         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10191     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10192       SDValue SplitF64 = DAG.getNode(
10193           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10194       SDValue Lo = SplitF64.getValue(0);
10195       SDValue Hi = SplitF64.getValue(1);
10196 
10197       Register RegLo = VA.getLocReg();
10198       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10199 
10200       if (RegLo == RISCV::X17) {
10201         // Second half of f64 is passed on the stack.
10202         // Work out the address of the stack slot.
10203         if (!StackPtr.getNode())
10204           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10205         // Emit the store.
10206         MemOpChains.push_back(
10207             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10208       } else {
10209         // Second half of f64 is passed in another GPR.
10210         assert(RegLo < RISCV::X31 && "Invalid register pair");
10211         Register RegHigh = RegLo + 1;
10212         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10213       }
10214       continue;
10215     }
10216 
10217     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10218     // as any other MemLoc.
10219 
10220     // Promote the value if needed.
10221     // For now, only handle fully promoted and indirect arguments.
10222     if (VA.getLocInfo() == CCValAssign::Indirect) {
10223       // Store the argument in a stack slot and pass its address.
10224       Align StackAlign =
10225           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10226                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10227       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10228       // If the original argument was split (e.g. i128), we need
10229       // to store the required parts of it here (and pass just one address).
10230       // Vectors may be partly split to registers and partly to the stack, in
10231       // which case the base address is partly offset and subsequent stores are
10232       // relative to that.
10233       unsigned ArgIndex = Outs[i].OrigArgIndex;
10234       unsigned ArgPartOffset = Outs[i].PartOffset;
10235       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10236       // Calculate the total size to store. We don't have access to what we're
10237       // actually storing other than performing the loop and collecting the
10238       // info.
10239       SmallVector<std::pair<SDValue, SDValue>> Parts;
10240       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10241         SDValue PartValue = OutVals[i + 1];
10242         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10243         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10244         EVT PartVT = PartValue.getValueType();
10245         if (PartVT.isScalableVector())
10246           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10247         StoredSize += PartVT.getStoreSize();
10248         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10249         Parts.push_back(std::make_pair(PartValue, Offset));
10250         ++i;
10251       }
10252       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10253       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10254       MemOpChains.push_back(
10255           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10256                        MachinePointerInfo::getFixedStack(MF, FI)));
10257       for (const auto &Part : Parts) {
10258         SDValue PartValue = Part.first;
10259         SDValue PartOffset = Part.second;
10260         SDValue Address =
10261             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10262         MemOpChains.push_back(
10263             DAG.getStore(Chain, DL, PartValue, Address,
10264                          MachinePointerInfo::getFixedStack(MF, FI)));
10265       }
10266       ArgValue = SpillSlot;
10267     } else {
10268       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10269     }
10270 
10271     // Use local copy if it is a byval arg.
10272     if (Flags.isByVal())
10273       ArgValue = ByValArgs[j++];
10274 
10275     if (VA.isRegLoc()) {
10276       // Queue up the argument copies and emit them at the end.
10277       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10278     } else {
10279       assert(VA.isMemLoc() && "Argument not register or memory");
10280       assert(!IsTailCall && "Tail call not allowed if stack is used "
10281                             "for passing parameters");
10282 
10283       // Work out the address of the stack slot.
10284       if (!StackPtr.getNode())
10285         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10286       SDValue Address =
10287           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10288                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10289 
10290       // Emit the store.
10291       MemOpChains.push_back(
10292           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10293     }
10294   }
10295 
10296   // Join the stores, which are independent of one another.
10297   if (!MemOpChains.empty())
10298     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10299 
10300   SDValue Glue;
10301 
10302   // Build a sequence of copy-to-reg nodes, chained and glued together.
10303   for (auto &Reg : RegsToPass) {
10304     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10305     Glue = Chain.getValue(1);
10306   }
10307 
10308   // Validate that none of the argument registers have been marked as
10309   // reserved, if so report an error. Do the same for the return address if this
10310   // is not a tailcall.
10311   validateCCReservedRegs(RegsToPass, MF);
10312   if (!IsTailCall &&
10313       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10314     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10315         MF.getFunction(),
10316         "Return address register required, but has been reserved."});
10317 
10318   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10319   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10320   // split it and then direct call can be matched by PseudoCALL.
10321   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10322     const GlobalValue *GV = S->getGlobal();
10323 
10324     unsigned OpFlags = RISCVII::MO_CALL;
10325     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10326       OpFlags = RISCVII::MO_PLT;
10327 
10328     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10329   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10330     unsigned OpFlags = RISCVII::MO_CALL;
10331 
10332     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10333                                                  nullptr))
10334       OpFlags = RISCVII::MO_PLT;
10335 
10336     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10337   }
10338 
10339   // The first call operand is the chain and the second is the target address.
10340   SmallVector<SDValue, 8> Ops;
10341   Ops.push_back(Chain);
10342   Ops.push_back(Callee);
10343 
10344   // Add argument registers to the end of the list so that they are
10345   // known live into the call.
10346   for (auto &Reg : RegsToPass)
10347     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10348 
10349   if (!IsTailCall) {
10350     // Add a register mask operand representing the call-preserved registers.
10351     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10352     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10353     assert(Mask && "Missing call preserved mask for calling convention");
10354     Ops.push_back(DAG.getRegisterMask(Mask));
10355   }
10356 
10357   // Glue the call to the argument copies, if any.
10358   if (Glue.getNode())
10359     Ops.push_back(Glue);
10360 
10361   // Emit the call.
10362   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10363 
10364   if (IsTailCall) {
10365     MF.getFrameInfo().setHasTailCall();
10366     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10367   }
10368 
10369   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10370   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10371   Glue = Chain.getValue(1);
10372 
10373   // Mark the end of the call, which is glued to the call itself.
10374   Chain = DAG.getCALLSEQ_END(Chain,
10375                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10376                              DAG.getConstant(0, DL, PtrVT, true),
10377                              Glue, DL);
10378   Glue = Chain.getValue(1);
10379 
10380   // Assign locations to each value returned by this call.
10381   SmallVector<CCValAssign, 16> RVLocs;
10382   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10383   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10384 
10385   // Copy all of the result registers out of their specified physreg.
10386   for (auto &VA : RVLocs) {
10387     // Copy the value out
10388     SDValue RetValue =
10389         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10390     // Glue the RetValue to the end of the call sequence
10391     Chain = RetValue.getValue(1);
10392     Glue = RetValue.getValue(2);
10393 
10394     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10395       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10396       SDValue RetValue2 =
10397           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10398       Chain = RetValue2.getValue(1);
10399       Glue = RetValue2.getValue(2);
10400       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10401                              RetValue2);
10402     }
10403 
10404     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10405 
10406     InVals.push_back(RetValue);
10407   }
10408 
10409   return Chain;
10410 }
10411 
10412 bool RISCVTargetLowering::CanLowerReturn(
10413     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10414     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10415   SmallVector<CCValAssign, 16> RVLocs;
10416   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10417 
10418   Optional<unsigned> FirstMaskArgument;
10419   if (Subtarget.hasVInstructions())
10420     FirstMaskArgument = preAssignMask(Outs);
10421 
10422   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10423     MVT VT = Outs[i].VT;
10424     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10425     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10426     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10427                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10428                  *this, FirstMaskArgument))
10429       return false;
10430   }
10431   return true;
10432 }
10433 
10434 SDValue
10435 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10436                                  bool IsVarArg,
10437                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10438                                  const SmallVectorImpl<SDValue> &OutVals,
10439                                  const SDLoc &DL, SelectionDAG &DAG) const {
10440   const MachineFunction &MF = DAG.getMachineFunction();
10441   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10442 
10443   // Stores the assignment of the return value to a location.
10444   SmallVector<CCValAssign, 16> RVLocs;
10445 
10446   // Info about the registers and stack slot.
10447   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10448                  *DAG.getContext());
10449 
10450   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10451                     nullptr, CC_RISCV);
10452 
10453   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10454     report_fatal_error("GHC functions return void only");
10455 
10456   SDValue Glue;
10457   SmallVector<SDValue, 4> RetOps(1, Chain);
10458 
10459   // Copy the result values into the output registers.
10460   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10461     SDValue Val = OutVals[i];
10462     CCValAssign &VA = RVLocs[i];
10463     assert(VA.isRegLoc() && "Can only return in registers!");
10464 
10465     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10466       // Handle returning f64 on RV32D with a soft float ABI.
10467       assert(VA.isRegLoc() && "Expected return via registers");
10468       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10469                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10470       SDValue Lo = SplitF64.getValue(0);
10471       SDValue Hi = SplitF64.getValue(1);
10472       Register RegLo = VA.getLocReg();
10473       assert(RegLo < RISCV::X31 && "Invalid register pair");
10474       Register RegHi = RegLo + 1;
10475 
10476       if (STI.isRegisterReservedByUser(RegLo) ||
10477           STI.isRegisterReservedByUser(RegHi))
10478         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10479             MF.getFunction(),
10480             "Return value register required, but has been reserved."});
10481 
10482       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10483       Glue = Chain.getValue(1);
10484       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10485       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10486       Glue = Chain.getValue(1);
10487       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10488     } else {
10489       // Handle a 'normal' return.
10490       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10491       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10492 
10493       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10494         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10495             MF.getFunction(),
10496             "Return value register required, but has been reserved."});
10497 
10498       // Guarantee that all emitted copies are stuck together.
10499       Glue = Chain.getValue(1);
10500       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
10501     }
10502   }
10503 
10504   RetOps[0] = Chain; // Update chain.
10505 
10506   // Add the glue node if we have it.
10507   if (Glue.getNode()) {
10508     RetOps.push_back(Glue);
10509   }
10510 
10511   unsigned RetOpc = RISCVISD::RET_FLAG;
10512   // Interrupt service routines use different return instructions.
10513   const Function &Func = DAG.getMachineFunction().getFunction();
10514   if (Func.hasFnAttribute("interrupt")) {
10515     if (!Func.getReturnType()->isVoidTy())
10516       report_fatal_error(
10517           "Functions with the interrupt attribute must have void return type!");
10518 
10519     MachineFunction &MF = DAG.getMachineFunction();
10520     StringRef Kind =
10521       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10522 
10523     if (Kind == "user")
10524       RetOpc = RISCVISD::URET_FLAG;
10525     else if (Kind == "supervisor")
10526       RetOpc = RISCVISD::SRET_FLAG;
10527     else
10528       RetOpc = RISCVISD::MRET_FLAG;
10529   }
10530 
10531   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
10532 }
10533 
10534 void RISCVTargetLowering::validateCCReservedRegs(
10535     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
10536     MachineFunction &MF) const {
10537   const Function &F = MF.getFunction();
10538   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10539 
10540   if (llvm::any_of(Regs, [&STI](auto Reg) {
10541         return STI.isRegisterReservedByUser(Reg.first);
10542       }))
10543     F.getContext().diagnose(DiagnosticInfoUnsupported{
10544         F, "Argument register required, but has been reserved."});
10545 }
10546 
10547 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
10548   return CI->isTailCall();
10549 }
10550 
10551 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
10552 #define NODE_NAME_CASE(NODE)                                                   \
10553   case RISCVISD::NODE:                                                         \
10554     return "RISCVISD::" #NODE;
10555   // clang-format off
10556   switch ((RISCVISD::NodeType)Opcode) {
10557   case RISCVISD::FIRST_NUMBER:
10558     break;
10559   NODE_NAME_CASE(RET_FLAG)
10560   NODE_NAME_CASE(URET_FLAG)
10561   NODE_NAME_CASE(SRET_FLAG)
10562   NODE_NAME_CASE(MRET_FLAG)
10563   NODE_NAME_CASE(CALL)
10564   NODE_NAME_CASE(SELECT_CC)
10565   NODE_NAME_CASE(BR_CC)
10566   NODE_NAME_CASE(BuildPairF64)
10567   NODE_NAME_CASE(SplitF64)
10568   NODE_NAME_CASE(TAIL)
10569   NODE_NAME_CASE(MULHSU)
10570   NODE_NAME_CASE(SLLW)
10571   NODE_NAME_CASE(SRAW)
10572   NODE_NAME_CASE(SRLW)
10573   NODE_NAME_CASE(DIVW)
10574   NODE_NAME_CASE(DIVUW)
10575   NODE_NAME_CASE(REMUW)
10576   NODE_NAME_CASE(ROLW)
10577   NODE_NAME_CASE(RORW)
10578   NODE_NAME_CASE(CLZW)
10579   NODE_NAME_CASE(CTZW)
10580   NODE_NAME_CASE(FSLW)
10581   NODE_NAME_CASE(FSRW)
10582   NODE_NAME_CASE(FSL)
10583   NODE_NAME_CASE(FSR)
10584   NODE_NAME_CASE(FMV_H_X)
10585   NODE_NAME_CASE(FMV_X_ANYEXTH)
10586   NODE_NAME_CASE(FMV_X_SIGNEXTH)
10587   NODE_NAME_CASE(FMV_W_X_RV64)
10588   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
10589   NODE_NAME_CASE(FCVT_X)
10590   NODE_NAME_CASE(FCVT_XU)
10591   NODE_NAME_CASE(FCVT_W_RV64)
10592   NODE_NAME_CASE(FCVT_WU_RV64)
10593   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
10594   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
10595   NODE_NAME_CASE(READ_CYCLE_WIDE)
10596   NODE_NAME_CASE(GREV)
10597   NODE_NAME_CASE(GREVW)
10598   NODE_NAME_CASE(GORC)
10599   NODE_NAME_CASE(GORCW)
10600   NODE_NAME_CASE(SHFL)
10601   NODE_NAME_CASE(SHFLW)
10602   NODE_NAME_CASE(UNSHFL)
10603   NODE_NAME_CASE(UNSHFLW)
10604   NODE_NAME_CASE(BFP)
10605   NODE_NAME_CASE(BFPW)
10606   NODE_NAME_CASE(BCOMPRESS)
10607   NODE_NAME_CASE(BCOMPRESSW)
10608   NODE_NAME_CASE(BDECOMPRESS)
10609   NODE_NAME_CASE(BDECOMPRESSW)
10610   NODE_NAME_CASE(VMV_V_X_VL)
10611   NODE_NAME_CASE(VFMV_V_F_VL)
10612   NODE_NAME_CASE(VMV_X_S)
10613   NODE_NAME_CASE(VMV_S_X_VL)
10614   NODE_NAME_CASE(VFMV_S_F_VL)
10615   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
10616   NODE_NAME_CASE(READ_VLENB)
10617   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
10618   NODE_NAME_CASE(VSLIDEUP_VL)
10619   NODE_NAME_CASE(VSLIDE1UP_VL)
10620   NODE_NAME_CASE(VSLIDEDOWN_VL)
10621   NODE_NAME_CASE(VSLIDE1DOWN_VL)
10622   NODE_NAME_CASE(VID_VL)
10623   NODE_NAME_CASE(VFNCVT_ROD_VL)
10624   NODE_NAME_CASE(VECREDUCE_ADD_VL)
10625   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
10626   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
10627   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
10628   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
10629   NODE_NAME_CASE(VECREDUCE_AND_VL)
10630   NODE_NAME_CASE(VECREDUCE_OR_VL)
10631   NODE_NAME_CASE(VECREDUCE_XOR_VL)
10632   NODE_NAME_CASE(VECREDUCE_FADD_VL)
10633   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
10634   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
10635   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
10636   NODE_NAME_CASE(ADD_VL)
10637   NODE_NAME_CASE(AND_VL)
10638   NODE_NAME_CASE(MUL_VL)
10639   NODE_NAME_CASE(OR_VL)
10640   NODE_NAME_CASE(SDIV_VL)
10641   NODE_NAME_CASE(SHL_VL)
10642   NODE_NAME_CASE(SREM_VL)
10643   NODE_NAME_CASE(SRA_VL)
10644   NODE_NAME_CASE(SRL_VL)
10645   NODE_NAME_CASE(SUB_VL)
10646   NODE_NAME_CASE(UDIV_VL)
10647   NODE_NAME_CASE(UREM_VL)
10648   NODE_NAME_CASE(XOR_VL)
10649   NODE_NAME_CASE(SADDSAT_VL)
10650   NODE_NAME_CASE(UADDSAT_VL)
10651   NODE_NAME_CASE(SSUBSAT_VL)
10652   NODE_NAME_CASE(USUBSAT_VL)
10653   NODE_NAME_CASE(FADD_VL)
10654   NODE_NAME_CASE(FSUB_VL)
10655   NODE_NAME_CASE(FMUL_VL)
10656   NODE_NAME_CASE(FDIV_VL)
10657   NODE_NAME_CASE(FNEG_VL)
10658   NODE_NAME_CASE(FABS_VL)
10659   NODE_NAME_CASE(FSQRT_VL)
10660   NODE_NAME_CASE(FMA_VL)
10661   NODE_NAME_CASE(FCOPYSIGN_VL)
10662   NODE_NAME_CASE(SMIN_VL)
10663   NODE_NAME_CASE(SMAX_VL)
10664   NODE_NAME_CASE(UMIN_VL)
10665   NODE_NAME_CASE(UMAX_VL)
10666   NODE_NAME_CASE(FMINNUM_VL)
10667   NODE_NAME_CASE(FMAXNUM_VL)
10668   NODE_NAME_CASE(MULHS_VL)
10669   NODE_NAME_CASE(MULHU_VL)
10670   NODE_NAME_CASE(FP_TO_SINT_VL)
10671   NODE_NAME_CASE(FP_TO_UINT_VL)
10672   NODE_NAME_CASE(SINT_TO_FP_VL)
10673   NODE_NAME_CASE(UINT_TO_FP_VL)
10674   NODE_NAME_CASE(FP_EXTEND_VL)
10675   NODE_NAME_CASE(FP_ROUND_VL)
10676   NODE_NAME_CASE(VWMUL_VL)
10677   NODE_NAME_CASE(VWMULU_VL)
10678   NODE_NAME_CASE(VWMULSU_VL)
10679   NODE_NAME_CASE(VWADD_VL)
10680   NODE_NAME_CASE(VWADDU_VL)
10681   NODE_NAME_CASE(VWSUB_VL)
10682   NODE_NAME_CASE(VWSUBU_VL)
10683   NODE_NAME_CASE(VWADD_W_VL)
10684   NODE_NAME_CASE(VWADDU_W_VL)
10685   NODE_NAME_CASE(VWSUB_W_VL)
10686   NODE_NAME_CASE(VWSUBU_W_VL)
10687   NODE_NAME_CASE(SETCC_VL)
10688   NODE_NAME_CASE(VSELECT_VL)
10689   NODE_NAME_CASE(VP_MERGE_VL)
10690   NODE_NAME_CASE(VMAND_VL)
10691   NODE_NAME_CASE(VMOR_VL)
10692   NODE_NAME_CASE(VMXOR_VL)
10693   NODE_NAME_CASE(VMCLR_VL)
10694   NODE_NAME_CASE(VMSET_VL)
10695   NODE_NAME_CASE(VRGATHER_VX_VL)
10696   NODE_NAME_CASE(VRGATHER_VV_VL)
10697   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
10698   NODE_NAME_CASE(VSEXT_VL)
10699   NODE_NAME_CASE(VZEXT_VL)
10700   NODE_NAME_CASE(VCPOP_VL)
10701   NODE_NAME_CASE(VLE_VL)
10702   NODE_NAME_CASE(VSE_VL)
10703   NODE_NAME_CASE(READ_CSR)
10704   NODE_NAME_CASE(WRITE_CSR)
10705   NODE_NAME_CASE(SWAP_CSR)
10706   }
10707   // clang-format on
10708   return nullptr;
10709 #undef NODE_NAME_CASE
10710 }
10711 
10712 /// getConstraintType - Given a constraint letter, return the type of
10713 /// constraint it is for this target.
10714 RISCVTargetLowering::ConstraintType
10715 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
10716   if (Constraint.size() == 1) {
10717     switch (Constraint[0]) {
10718     default:
10719       break;
10720     case 'f':
10721       return C_RegisterClass;
10722     case 'I':
10723     case 'J':
10724     case 'K':
10725       return C_Immediate;
10726     case 'A':
10727       return C_Memory;
10728     case 'S': // A symbolic address
10729       return C_Other;
10730     }
10731   } else {
10732     if (Constraint == "vr" || Constraint == "vm")
10733       return C_RegisterClass;
10734   }
10735   return TargetLowering::getConstraintType(Constraint);
10736 }
10737 
10738 std::pair<unsigned, const TargetRegisterClass *>
10739 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10740                                                   StringRef Constraint,
10741                                                   MVT VT) const {
10742   // First, see if this is a constraint that directly corresponds to a
10743   // RISCV register class.
10744   if (Constraint.size() == 1) {
10745     switch (Constraint[0]) {
10746     case 'r':
10747       // TODO: Support fixed vectors up to XLen for P extension?
10748       if (VT.isVector())
10749         break;
10750       return std::make_pair(0U, &RISCV::GPRRegClass);
10751     case 'f':
10752       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
10753         return std::make_pair(0U, &RISCV::FPR16RegClass);
10754       if (Subtarget.hasStdExtF() && VT == MVT::f32)
10755         return std::make_pair(0U, &RISCV::FPR32RegClass);
10756       if (Subtarget.hasStdExtD() && VT == MVT::f64)
10757         return std::make_pair(0U, &RISCV::FPR64RegClass);
10758       break;
10759     default:
10760       break;
10761     }
10762   } else if (Constraint == "vr") {
10763     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
10764                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10765       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
10766         return std::make_pair(0U, RC);
10767     }
10768   } else if (Constraint == "vm") {
10769     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
10770       return std::make_pair(0U, &RISCV::VMV0RegClass);
10771   }
10772 
10773   // Clang will correctly decode the usage of register name aliases into their
10774   // official names. However, other frontends like `rustc` do not. This allows
10775   // users of these frontends to use the ABI names for registers in LLVM-style
10776   // register constraints.
10777   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
10778                                .Case("{zero}", RISCV::X0)
10779                                .Case("{ra}", RISCV::X1)
10780                                .Case("{sp}", RISCV::X2)
10781                                .Case("{gp}", RISCV::X3)
10782                                .Case("{tp}", RISCV::X4)
10783                                .Case("{t0}", RISCV::X5)
10784                                .Case("{t1}", RISCV::X6)
10785                                .Case("{t2}", RISCV::X7)
10786                                .Cases("{s0}", "{fp}", RISCV::X8)
10787                                .Case("{s1}", RISCV::X9)
10788                                .Case("{a0}", RISCV::X10)
10789                                .Case("{a1}", RISCV::X11)
10790                                .Case("{a2}", RISCV::X12)
10791                                .Case("{a3}", RISCV::X13)
10792                                .Case("{a4}", RISCV::X14)
10793                                .Case("{a5}", RISCV::X15)
10794                                .Case("{a6}", RISCV::X16)
10795                                .Case("{a7}", RISCV::X17)
10796                                .Case("{s2}", RISCV::X18)
10797                                .Case("{s3}", RISCV::X19)
10798                                .Case("{s4}", RISCV::X20)
10799                                .Case("{s5}", RISCV::X21)
10800                                .Case("{s6}", RISCV::X22)
10801                                .Case("{s7}", RISCV::X23)
10802                                .Case("{s8}", RISCV::X24)
10803                                .Case("{s9}", RISCV::X25)
10804                                .Case("{s10}", RISCV::X26)
10805                                .Case("{s11}", RISCV::X27)
10806                                .Case("{t3}", RISCV::X28)
10807                                .Case("{t4}", RISCV::X29)
10808                                .Case("{t5}", RISCV::X30)
10809                                .Case("{t6}", RISCV::X31)
10810                                .Default(RISCV::NoRegister);
10811   if (XRegFromAlias != RISCV::NoRegister)
10812     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
10813 
10814   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
10815   // TableGen record rather than the AsmName to choose registers for InlineAsm
10816   // constraints, plus we want to match those names to the widest floating point
10817   // register type available, manually select floating point registers here.
10818   //
10819   // The second case is the ABI name of the register, so that frontends can also
10820   // use the ABI names in register constraint lists.
10821   if (Subtarget.hasStdExtF()) {
10822     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
10823                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
10824                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
10825                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
10826                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
10827                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
10828                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
10829                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
10830                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
10831                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
10832                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
10833                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
10834                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
10835                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
10836                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
10837                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
10838                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
10839                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
10840                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
10841                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
10842                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
10843                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
10844                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
10845                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
10846                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
10847                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
10848                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
10849                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
10850                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
10851                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
10852                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
10853                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
10854                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
10855                         .Default(RISCV::NoRegister);
10856     if (FReg != RISCV::NoRegister) {
10857       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
10858       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
10859         unsigned RegNo = FReg - RISCV::F0_F;
10860         unsigned DReg = RISCV::F0_D + RegNo;
10861         return std::make_pair(DReg, &RISCV::FPR64RegClass);
10862       }
10863       if (VT == MVT::f32 || VT == MVT::Other)
10864         return std::make_pair(FReg, &RISCV::FPR32RegClass);
10865       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
10866         unsigned RegNo = FReg - RISCV::F0_F;
10867         unsigned HReg = RISCV::F0_H + RegNo;
10868         return std::make_pair(HReg, &RISCV::FPR16RegClass);
10869       }
10870     }
10871   }
10872 
10873   if (Subtarget.hasVInstructions()) {
10874     Register VReg = StringSwitch<Register>(Constraint.lower())
10875                         .Case("{v0}", RISCV::V0)
10876                         .Case("{v1}", RISCV::V1)
10877                         .Case("{v2}", RISCV::V2)
10878                         .Case("{v3}", RISCV::V3)
10879                         .Case("{v4}", RISCV::V4)
10880                         .Case("{v5}", RISCV::V5)
10881                         .Case("{v6}", RISCV::V6)
10882                         .Case("{v7}", RISCV::V7)
10883                         .Case("{v8}", RISCV::V8)
10884                         .Case("{v9}", RISCV::V9)
10885                         .Case("{v10}", RISCV::V10)
10886                         .Case("{v11}", RISCV::V11)
10887                         .Case("{v12}", RISCV::V12)
10888                         .Case("{v13}", RISCV::V13)
10889                         .Case("{v14}", RISCV::V14)
10890                         .Case("{v15}", RISCV::V15)
10891                         .Case("{v16}", RISCV::V16)
10892                         .Case("{v17}", RISCV::V17)
10893                         .Case("{v18}", RISCV::V18)
10894                         .Case("{v19}", RISCV::V19)
10895                         .Case("{v20}", RISCV::V20)
10896                         .Case("{v21}", RISCV::V21)
10897                         .Case("{v22}", RISCV::V22)
10898                         .Case("{v23}", RISCV::V23)
10899                         .Case("{v24}", RISCV::V24)
10900                         .Case("{v25}", RISCV::V25)
10901                         .Case("{v26}", RISCV::V26)
10902                         .Case("{v27}", RISCV::V27)
10903                         .Case("{v28}", RISCV::V28)
10904                         .Case("{v29}", RISCV::V29)
10905                         .Case("{v30}", RISCV::V30)
10906                         .Case("{v31}", RISCV::V31)
10907                         .Default(RISCV::NoRegister);
10908     if (VReg != RISCV::NoRegister) {
10909       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
10910         return std::make_pair(VReg, &RISCV::VMRegClass);
10911       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
10912         return std::make_pair(VReg, &RISCV::VRRegClass);
10913       for (const auto *RC :
10914            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10915         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
10916           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
10917           return std::make_pair(VReg, RC);
10918         }
10919       }
10920     }
10921   }
10922 
10923   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10924 }
10925 
10926 unsigned
10927 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
10928   // Currently only support length 1 constraints.
10929   if (ConstraintCode.size() == 1) {
10930     switch (ConstraintCode[0]) {
10931     case 'A':
10932       return InlineAsm::Constraint_A;
10933     default:
10934       break;
10935     }
10936   }
10937 
10938   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
10939 }
10940 
10941 void RISCVTargetLowering::LowerAsmOperandForConstraint(
10942     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
10943     SelectionDAG &DAG) const {
10944   // Currently only support length 1 constraints.
10945   if (Constraint.length() == 1) {
10946     switch (Constraint[0]) {
10947     case 'I':
10948       // Validate & create a 12-bit signed immediate operand.
10949       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
10950         uint64_t CVal = C->getSExtValue();
10951         if (isInt<12>(CVal))
10952           Ops.push_back(
10953               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
10954       }
10955       return;
10956     case 'J':
10957       // Validate & create an integer zero operand.
10958       if (auto *C = dyn_cast<ConstantSDNode>(Op))
10959         if (C->getZExtValue() == 0)
10960           Ops.push_back(
10961               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
10962       return;
10963     case 'K':
10964       // Validate & create a 5-bit unsigned immediate operand.
10965       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
10966         uint64_t CVal = C->getZExtValue();
10967         if (isUInt<5>(CVal))
10968           Ops.push_back(
10969               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
10970       }
10971       return;
10972     case 'S':
10973       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
10974         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
10975                                                  GA->getValueType(0)));
10976       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
10977         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
10978                                                 BA->getValueType(0)));
10979       }
10980       return;
10981     default:
10982       break;
10983     }
10984   }
10985   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10986 }
10987 
10988 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
10989                                                    Instruction *Inst,
10990                                                    AtomicOrdering Ord) const {
10991   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
10992     return Builder.CreateFence(Ord);
10993   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
10994     return Builder.CreateFence(AtomicOrdering::Release);
10995   return nullptr;
10996 }
10997 
10998 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
10999                                                     Instruction *Inst,
11000                                                     AtomicOrdering Ord) const {
11001   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11002     return Builder.CreateFence(AtomicOrdering::Acquire);
11003   return nullptr;
11004 }
11005 
11006 TargetLowering::AtomicExpansionKind
11007 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11008   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11009   // point operations can't be used in an lr/sc sequence without breaking the
11010   // forward-progress guarantee.
11011   if (AI->isFloatingPointOperation())
11012     return AtomicExpansionKind::CmpXChg;
11013 
11014   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11015   if (Size == 8 || Size == 16)
11016     return AtomicExpansionKind::MaskedIntrinsic;
11017   return AtomicExpansionKind::None;
11018 }
11019 
11020 static Intrinsic::ID
11021 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11022   if (XLen == 32) {
11023     switch (BinOp) {
11024     default:
11025       llvm_unreachable("Unexpected AtomicRMW BinOp");
11026     case AtomicRMWInst::Xchg:
11027       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11028     case AtomicRMWInst::Add:
11029       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11030     case AtomicRMWInst::Sub:
11031       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11032     case AtomicRMWInst::Nand:
11033       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11034     case AtomicRMWInst::Max:
11035       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11036     case AtomicRMWInst::Min:
11037       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11038     case AtomicRMWInst::UMax:
11039       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11040     case AtomicRMWInst::UMin:
11041       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11042     }
11043   }
11044 
11045   if (XLen == 64) {
11046     switch (BinOp) {
11047     default:
11048       llvm_unreachable("Unexpected AtomicRMW BinOp");
11049     case AtomicRMWInst::Xchg:
11050       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11051     case AtomicRMWInst::Add:
11052       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11053     case AtomicRMWInst::Sub:
11054       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11055     case AtomicRMWInst::Nand:
11056       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11057     case AtomicRMWInst::Max:
11058       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11059     case AtomicRMWInst::Min:
11060       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11061     case AtomicRMWInst::UMax:
11062       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11063     case AtomicRMWInst::UMin:
11064       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11065     }
11066   }
11067 
11068   llvm_unreachable("Unexpected XLen\n");
11069 }
11070 
11071 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11072     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11073     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11074   unsigned XLen = Subtarget.getXLen();
11075   Value *Ordering =
11076       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11077   Type *Tys[] = {AlignedAddr->getType()};
11078   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11079       AI->getModule(),
11080       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11081 
11082   if (XLen == 64) {
11083     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11084     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11085     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11086   }
11087 
11088   Value *Result;
11089 
11090   // Must pass the shift amount needed to sign extend the loaded value prior
11091   // to performing a signed comparison for min/max. ShiftAmt is the number of
11092   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11093   // is the number of bits to left+right shift the value in order to
11094   // sign-extend.
11095   if (AI->getOperation() == AtomicRMWInst::Min ||
11096       AI->getOperation() == AtomicRMWInst::Max) {
11097     const DataLayout &DL = AI->getModule()->getDataLayout();
11098     unsigned ValWidth =
11099         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11100     Value *SextShamt =
11101         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11102     Result = Builder.CreateCall(LrwOpScwLoop,
11103                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11104   } else {
11105     Result =
11106         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11107   }
11108 
11109   if (XLen == 64)
11110     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11111   return Result;
11112 }
11113 
11114 TargetLowering::AtomicExpansionKind
11115 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11116     AtomicCmpXchgInst *CI) const {
11117   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11118   if (Size == 8 || Size == 16)
11119     return AtomicExpansionKind::MaskedIntrinsic;
11120   return AtomicExpansionKind::None;
11121 }
11122 
11123 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11124     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11125     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11126   unsigned XLen = Subtarget.getXLen();
11127   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11128   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11129   if (XLen == 64) {
11130     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11131     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11132     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11133     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11134   }
11135   Type *Tys[] = {AlignedAddr->getType()};
11136   Function *MaskedCmpXchg =
11137       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11138   Value *Result = Builder.CreateCall(
11139       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11140   if (XLen == 64)
11141     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11142   return Result;
11143 }
11144 
11145 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
11146   return false;
11147 }
11148 
11149 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11150                                                EVT VT) const {
11151   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11152     return false;
11153 
11154   switch (FPVT.getSimpleVT().SimpleTy) {
11155   case MVT::f16:
11156     return Subtarget.hasStdExtZfh();
11157   case MVT::f32:
11158     return Subtarget.hasStdExtF();
11159   case MVT::f64:
11160     return Subtarget.hasStdExtD();
11161   default:
11162     return false;
11163   }
11164 }
11165 
11166 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11167   // If we are using the small code model, we can reduce size of jump table
11168   // entry to 4 bytes.
11169   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11170       getTargetMachine().getCodeModel() == CodeModel::Small) {
11171     return MachineJumpTableInfo::EK_Custom32;
11172   }
11173   return TargetLowering::getJumpTableEncoding();
11174 }
11175 
11176 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11177     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11178     unsigned uid, MCContext &Ctx) const {
11179   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11180          getTargetMachine().getCodeModel() == CodeModel::Small);
11181   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11182 }
11183 
11184 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11185                                                      EVT VT) const {
11186   VT = VT.getScalarType();
11187 
11188   if (!VT.isSimple())
11189     return false;
11190 
11191   switch (VT.getSimpleVT().SimpleTy) {
11192   case MVT::f16:
11193     return Subtarget.hasStdExtZfh();
11194   case MVT::f32:
11195     return Subtarget.hasStdExtF();
11196   case MVT::f64:
11197     return Subtarget.hasStdExtD();
11198   default:
11199     break;
11200   }
11201 
11202   return false;
11203 }
11204 
11205 Register RISCVTargetLowering::getExceptionPointerRegister(
11206     const Constant *PersonalityFn) const {
11207   return RISCV::X10;
11208 }
11209 
11210 Register RISCVTargetLowering::getExceptionSelectorRegister(
11211     const Constant *PersonalityFn) const {
11212   return RISCV::X11;
11213 }
11214 
11215 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11216   // Return false to suppress the unnecessary extensions if the LibCall
11217   // arguments or return value is f32 type for LP64 ABI.
11218   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11219   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11220     return false;
11221 
11222   return true;
11223 }
11224 
11225 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11226   if (Subtarget.is64Bit() && Type == MVT::i32)
11227     return true;
11228 
11229   return IsSigned;
11230 }
11231 
11232 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11233                                                  SDValue C) const {
11234   // Check integral scalar types.
11235   if (VT.isScalarInteger()) {
11236     // Omit the optimization if the sub target has the M extension and the data
11237     // size exceeds XLen.
11238     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11239       return false;
11240     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11241       // Break the MUL to a SLLI and an ADD/SUB.
11242       const APInt &Imm = ConstNode->getAPIntValue();
11243       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11244           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11245         return true;
11246       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11247       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11248           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11249            (Imm - 8).isPowerOf2()))
11250         return true;
11251       // Omit the following optimization if the sub target has the M extension
11252       // and the data size >= XLen.
11253       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11254         return false;
11255       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11256       // a pair of LUI/ADDI.
11257       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11258         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11259         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11260             (1 - ImmS).isPowerOf2())
11261         return true;
11262       }
11263     }
11264   }
11265 
11266   return false;
11267 }
11268 
11269 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11270                                                       SDValue ConstNode) const {
11271   // Let the DAGCombiner decide for vectors.
11272   EVT VT = AddNode.getValueType();
11273   if (VT.isVector())
11274     return true;
11275 
11276   // Let the DAGCombiner decide for larger types.
11277   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11278     return true;
11279 
11280   // It is worse if c1 is simm12 while c1*c2 is not.
11281   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11282   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11283   const APInt &C1 = C1Node->getAPIntValue();
11284   const APInt &C2 = C2Node->getAPIntValue();
11285   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11286     return false;
11287 
11288   // Default to true and let the DAGCombiner decide.
11289   return true;
11290 }
11291 
11292 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11293     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11294     bool *Fast) const {
11295   if (!VT.isVector())
11296     return false;
11297 
11298   EVT ElemVT = VT.getVectorElementType();
11299   if (Alignment >= ElemVT.getStoreSize()) {
11300     if (Fast)
11301       *Fast = true;
11302     return true;
11303   }
11304 
11305   return false;
11306 }
11307 
11308 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11309     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11310     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11311   bool IsABIRegCopy = CC.hasValue();
11312   EVT ValueVT = Val.getValueType();
11313   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11314     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11315     // and cast to f32.
11316     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11317     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11318     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11319                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11320     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11321     Parts[0] = Val;
11322     return true;
11323   }
11324 
11325   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11326     LLVMContext &Context = *DAG.getContext();
11327     EVT ValueEltVT = ValueVT.getVectorElementType();
11328     EVT PartEltVT = PartVT.getVectorElementType();
11329     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11330     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11331     if (PartVTBitSize % ValueVTBitSize == 0) {
11332       assert(PartVTBitSize >= ValueVTBitSize);
11333       // If the element types are different, bitcast to the same element type of
11334       // PartVT first.
11335       // Give an example here, we want copy a <vscale x 1 x i8> value to
11336       // <vscale x 4 x i16>.
11337       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11338       // subvector, then we can bitcast to <vscale x 4 x i16>.
11339       if (ValueEltVT != PartEltVT) {
11340         if (PartVTBitSize > ValueVTBitSize) {
11341           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11342           assert(Count != 0 && "The number of element should not be zero.");
11343           EVT SameEltTypeVT =
11344               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11345           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11346                             DAG.getUNDEF(SameEltTypeVT), Val,
11347                             DAG.getVectorIdxConstant(0, DL));
11348         }
11349         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11350       } else {
11351         Val =
11352             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11353                         Val, DAG.getVectorIdxConstant(0, DL));
11354       }
11355       Parts[0] = Val;
11356       return true;
11357     }
11358   }
11359   return false;
11360 }
11361 
11362 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11363     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11364     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11365   bool IsABIRegCopy = CC.hasValue();
11366   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11367     SDValue Val = Parts[0];
11368 
11369     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11370     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11371     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11372     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11373     return Val;
11374   }
11375 
11376   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11377     LLVMContext &Context = *DAG.getContext();
11378     SDValue Val = Parts[0];
11379     EVT ValueEltVT = ValueVT.getVectorElementType();
11380     EVT PartEltVT = PartVT.getVectorElementType();
11381     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11382     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11383     if (PartVTBitSize % ValueVTBitSize == 0) {
11384       assert(PartVTBitSize >= ValueVTBitSize);
11385       EVT SameEltTypeVT = ValueVT;
11386       // If the element types are different, convert it to the same element type
11387       // of PartVT.
11388       // Give an example here, we want copy a <vscale x 1 x i8> value from
11389       // <vscale x 4 x i16>.
11390       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11391       // then we can extract <vscale x 1 x i8>.
11392       if (ValueEltVT != PartEltVT) {
11393         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11394         assert(Count != 0 && "The number of element should not be zero.");
11395         SameEltTypeVT =
11396             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11397         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11398       }
11399       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11400                         DAG.getVectorIdxConstant(0, DL));
11401       return Val;
11402     }
11403   }
11404   return SDValue();
11405 }
11406 
11407 SDValue
11408 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11409                                    SelectionDAG &DAG,
11410                                    SmallVectorImpl<SDNode *> &Created) const {
11411   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11412   if (isIntDivCheap(N->getValueType(0), Attr))
11413     return SDValue(N, 0); // Lower SDIV as SDIV
11414 
11415   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11416          "Unexpected divisor!");
11417 
11418   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11419   if (!Subtarget.hasStdExtZbt())
11420     return SDValue();
11421 
11422   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11423   // Besides, more critical path instructions will be generated when dividing
11424   // by 2. So we keep using the original DAGs for these cases.
11425   unsigned Lg2 = Divisor.countTrailingZeros();
11426   if (Lg2 == 1 || Lg2 >= 12)
11427     return SDValue();
11428 
11429   // fold (sdiv X, pow2)
11430   EVT VT = N->getValueType(0);
11431   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11432     return SDValue();
11433 
11434   SDLoc DL(N);
11435   SDValue N0 = N->getOperand(0);
11436   SDValue Zero = DAG.getConstant(0, DL, VT);
11437   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11438 
11439   // Add (N0 < 0) ? Pow2 - 1 : 0;
11440   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11441   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11442   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11443 
11444   Created.push_back(Cmp.getNode());
11445   Created.push_back(Add.getNode());
11446   Created.push_back(Sel.getNode());
11447 
11448   // Divide by pow2.
11449   SDValue SRA =
11450       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11451 
11452   // If we're dividing by a positive value, we're done.  Otherwise, we must
11453   // negate the result.
11454   if (Divisor.isNonNegative())
11455     return SRA;
11456 
11457   Created.push_back(SRA.getNode());
11458   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11459 }
11460 
11461 #define GET_REGISTER_MATCHER
11462 #include "RISCVGenAsmMatcher.inc"
11463 
11464 Register
11465 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11466                                        const MachineFunction &MF) const {
11467   Register Reg = MatchRegisterAltName(RegName);
11468   if (Reg == RISCV::NoRegister)
11469     Reg = MatchRegisterName(RegName);
11470   if (Reg == RISCV::NoRegister)
11471     report_fatal_error(
11472         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11473   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11474   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11475     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11476                              StringRef(RegName) + "\"."));
11477   return Reg;
11478 }
11479 
11480 namespace llvm {
11481 namespace RISCVVIntrinsicsTable {
11482 
11483 #define GET_RISCVVIntrinsicsTable_IMPL
11484 #include "RISCVGenSearchableTables.inc"
11485 
11486 } // namespace RISCVVIntrinsicsTable
11487 
11488 } // namespace llvm
11489