1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 254 Subtarget.hasStdExtZbkb()) { 255 if (Subtarget.is64Bit()) { 256 setOperationAction(ISD::ROTL, MVT::i32, Custom); 257 setOperationAction(ISD::ROTR, MVT::i32, Custom); 258 } 259 } else { 260 setOperationAction(ISD::ROTL, XLenVT, Expand); 261 setOperationAction(ISD::ROTR, XLenVT, Expand); 262 } 263 264 if (Subtarget.hasStdExtZbp()) { 265 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 266 // more combining. 267 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 268 setOperationAction(ISD::BSWAP, XLenVT, Custom); 269 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 270 // BSWAP i8 doesn't exist. 271 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 272 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 273 274 if (Subtarget.is64Bit()) { 275 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 276 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 277 } 278 } else { 279 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 280 // pattern match it directly in isel. 281 setOperationAction(ISD::BSWAP, XLenVT, 282 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 283 ? Legal 284 : Expand); 285 // Zbkb can use rev8+brev8 to implement bitreverse. 286 setOperationAction(ISD::BITREVERSE, XLenVT, 287 Subtarget.hasStdExtZbkb() ? Custom : Expand); 288 } 289 290 if (Subtarget.hasStdExtZbb()) { 291 setOperationAction(ISD::SMIN, XLenVT, Legal); 292 setOperationAction(ISD::SMAX, XLenVT, Legal); 293 setOperationAction(ISD::UMIN, XLenVT, Legal); 294 setOperationAction(ISD::UMAX, XLenVT, Legal); 295 296 if (Subtarget.is64Bit()) { 297 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 298 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 299 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 300 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 301 } 302 } else { 303 setOperationAction(ISD::CTTZ, XLenVT, Expand); 304 setOperationAction(ISD::CTLZ, XLenVT, Expand); 305 setOperationAction(ISD::CTPOP, XLenVT, Expand); 306 307 if (Subtarget.is64Bit()) 308 setOperationAction(ISD::ABS, MVT::i32, Custom); 309 } 310 311 if (Subtarget.hasStdExtZbt()) { 312 setOperationAction(ISD::FSHL, XLenVT, Custom); 313 setOperationAction(ISD::FSHR, XLenVT, Custom); 314 setOperationAction(ISD::SELECT, XLenVT, Legal); 315 316 if (Subtarget.is64Bit()) { 317 setOperationAction(ISD::FSHL, MVT::i32, Custom); 318 setOperationAction(ISD::FSHR, MVT::i32, Custom); 319 } 320 } else { 321 setOperationAction(ISD::SELECT, XLenVT, Custom); 322 } 323 324 static constexpr ISD::NodeType FPLegalNodeTypes[] = { 325 ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT, 326 ISD::LLRINT, ISD::LROUND, ISD::LLROUND, 327 ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND, 328 ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD, 329 ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, 330 ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS}; 331 332 static const ISD::CondCode FPCCToExpand[] = { 333 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 334 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 335 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 336 337 static const ISD::NodeType FPOpToExpand[] = { 338 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 339 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 340 341 if (Subtarget.hasStdExtZfh()) 342 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 343 344 if (Subtarget.hasStdExtZfh()) { 345 for (auto NT : FPLegalNodeTypes) 346 setOperationAction(NT, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 348 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 349 for (auto CC : FPCCToExpand) 350 setCondCodeAction(CC, MVT::f16, Expand); 351 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 352 setOperationAction(ISD::SELECT, MVT::f16, Custom); 353 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 354 355 setOperationAction(ISD::FREM, MVT::f16, Promote); 356 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 357 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 358 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 359 setOperationAction(ISD::FRINT, MVT::f16, Promote); 360 setOperationAction(ISD::FROUND, MVT::f16, Promote); 361 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 362 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 363 setOperationAction(ISD::FPOW, MVT::f16, Promote); 364 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 365 setOperationAction(ISD::FCOS, MVT::f16, Promote); 366 setOperationAction(ISD::FSIN, MVT::f16, Promote); 367 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 368 setOperationAction(ISD::FEXP, MVT::f16, Promote); 369 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 370 setOperationAction(ISD::FLOG, MVT::f16, Promote); 371 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 372 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 373 374 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 375 // complete support for all operations in LegalizeDAG. 376 377 // We need to custom promote this. 378 if (Subtarget.is64Bit()) 379 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 380 } 381 382 if (Subtarget.hasStdExtF()) { 383 for (auto NT : FPLegalNodeTypes) 384 setOperationAction(NT, MVT::f32, Legal); 385 for (auto CC : FPCCToExpand) 386 setCondCodeAction(CC, MVT::f32, Expand); 387 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 388 setOperationAction(ISD::SELECT, MVT::f32, Custom); 389 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 390 for (auto Op : FPOpToExpand) 391 setOperationAction(Op, MVT::f32, Expand); 392 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 393 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 394 } 395 396 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 397 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 398 399 if (Subtarget.hasStdExtD()) { 400 for (auto NT : FPLegalNodeTypes) 401 setOperationAction(NT, MVT::f64, Legal); 402 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 403 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 404 for (auto CC : FPCCToExpand) 405 setCondCodeAction(CC, MVT::f64, Expand); 406 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 407 setOperationAction(ISD::SELECT, MVT::f64, Custom); 408 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 409 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 410 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 411 for (auto Op : FPOpToExpand) 412 setOperationAction(Op, MVT::f64, Expand); 413 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 414 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 415 } 416 417 if (Subtarget.is64Bit()) { 418 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 419 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 420 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 421 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 422 } 423 424 if (Subtarget.hasStdExtF()) { 425 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 426 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 427 428 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 429 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 430 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 431 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 432 433 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 434 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 435 } 436 437 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 438 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 439 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 440 setOperationAction(ISD::JumpTable, XLenVT, Custom); 441 442 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 443 444 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 445 // Unfortunately this can't be determined just from the ISA naming string. 446 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 447 Subtarget.is64Bit() ? Legal : Custom); 448 449 setOperationAction(ISD::TRAP, MVT::Other, Legal); 450 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 451 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 452 if (Subtarget.is64Bit()) 453 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 454 455 if (Subtarget.hasStdExtA()) { 456 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 457 setMinCmpXchgSizeInBits(32); 458 } else { 459 setMaxAtomicSizeInBitsSupported(0); 460 } 461 462 setBooleanContents(ZeroOrOneBooleanContent); 463 464 if (Subtarget.hasVInstructions()) { 465 setBooleanVectorContents(ZeroOrOneBooleanContent); 466 467 setOperationAction(ISD::VSCALE, XLenVT, Custom); 468 469 // RVV intrinsics may have illegal operands. 470 // We also need to custom legalize vmv.x.s. 471 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 472 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 473 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 474 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 475 if (Subtarget.is64Bit()) { 476 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 477 } else { 478 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 479 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 480 } 481 482 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 483 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 484 485 static const unsigned IntegerVPOps[] = { 486 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 487 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 488 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 489 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 490 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 491 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 492 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 493 ISD::VP_MERGE, ISD::VP_SELECT, ISD::VP_FPTOSI, 494 ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_SEXT, 495 ISD::VP_ZEXT, ISD::VP_TRUNC}; 496 497 static const unsigned FloatingPointVPOps[] = { 498 ISD::VP_FADD, ISD::VP_FSUB, 499 ISD::VP_FMUL, ISD::VP_FDIV, 500 ISD::VP_FNEG, ISD::VP_FMA, 501 ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 502 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, 503 ISD::VP_MERGE, ISD::VP_SELECT, 504 ISD::VP_SITOFP, ISD::VP_UITOFP, 505 ISD::VP_SETCC}; 506 507 if (!Subtarget.is64Bit()) { 508 // We must custom-lower certain vXi64 operations on RV32 due to the vector 509 // element type being illegal. 510 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 511 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 512 513 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 514 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 515 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 516 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 517 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 518 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 519 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 520 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 521 522 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 523 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 524 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 525 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 526 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 527 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 528 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 529 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 530 } 531 532 for (MVT VT : BoolVecVTs) { 533 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 534 535 // Mask VTs are custom-expanded into a series of standard nodes 536 setOperationAction(ISD::TRUNCATE, VT, Custom); 537 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 538 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 539 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 540 541 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 542 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 543 544 setOperationAction(ISD::SELECT, VT, Custom); 545 setOperationAction(ISD::SELECT_CC, VT, Expand); 546 setOperationAction(ISD::VSELECT, VT, Expand); 547 setOperationAction(ISD::VP_MERGE, VT, Expand); 548 setOperationAction(ISD::VP_SELECT, VT, Expand); 549 550 setOperationAction(ISD::VP_AND, VT, Custom); 551 setOperationAction(ISD::VP_OR, VT, Custom); 552 setOperationAction(ISD::VP_XOR, VT, Custom); 553 554 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 555 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 556 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 557 558 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 559 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 560 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 561 562 // RVV has native int->float & float->int conversions where the 563 // element type sizes are within one power-of-two of each other. Any 564 // wider distances between type sizes have to be lowered as sequences 565 // which progressively narrow the gap in stages. 566 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 567 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 568 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 569 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 570 571 // Expand all extending loads to types larger than this, and truncating 572 // stores from types larger than this. 573 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 574 setTruncStoreAction(OtherVT, VT, Expand); 575 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 576 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 577 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 578 } 579 580 setOperationAction(ISD::VP_FPTOSI, VT, Custom); 581 setOperationAction(ISD::VP_FPTOUI, VT, Custom); 582 setOperationAction(ISD::VP_TRUNC, VT, Custom); 583 } 584 585 for (MVT VT : IntVecVTs) { 586 if (VT.getVectorElementType() == MVT::i64 && 587 !Subtarget.hasVInstructionsI64()) 588 continue; 589 590 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 591 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 592 593 // Vectors implement MULHS/MULHU. 594 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 595 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 596 597 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 598 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) { 599 setOperationAction(ISD::MULHU, VT, Expand); 600 setOperationAction(ISD::MULHS, VT, Expand); 601 } 602 603 setOperationAction(ISD::SMIN, VT, Legal); 604 setOperationAction(ISD::SMAX, VT, Legal); 605 setOperationAction(ISD::UMIN, VT, Legal); 606 setOperationAction(ISD::UMAX, VT, Legal); 607 608 setOperationAction(ISD::ROTL, VT, Expand); 609 setOperationAction(ISD::ROTR, VT, Expand); 610 611 setOperationAction(ISD::CTTZ, VT, Expand); 612 setOperationAction(ISD::CTLZ, VT, Expand); 613 setOperationAction(ISD::CTPOP, VT, Expand); 614 615 setOperationAction(ISD::BSWAP, VT, Expand); 616 617 // Custom-lower extensions and truncations from/to mask types. 618 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 619 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 620 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 621 622 // RVV has native int->float & float->int conversions where the 623 // element type sizes are within one power-of-two of each other. Any 624 // wider distances between type sizes have to be lowered as sequences 625 // which progressively narrow the gap in stages. 626 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 627 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 628 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 629 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 630 631 setOperationAction(ISD::SADDSAT, VT, Legal); 632 setOperationAction(ISD::UADDSAT, VT, Legal); 633 setOperationAction(ISD::SSUBSAT, VT, Legal); 634 setOperationAction(ISD::USUBSAT, VT, Legal); 635 636 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 637 // nodes which truncate by one power of two at a time. 638 setOperationAction(ISD::TRUNCATE, VT, Custom); 639 640 // Custom-lower insert/extract operations to simplify patterns. 641 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 642 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 643 644 // Custom-lower reduction operations to set up the corresponding custom 645 // nodes' operands. 646 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 647 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 648 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 649 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 650 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 651 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 652 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 653 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 654 655 for (unsigned VPOpc : IntegerVPOps) 656 setOperationAction(VPOpc, VT, Custom); 657 658 setOperationAction(ISD::LOAD, VT, Custom); 659 setOperationAction(ISD::STORE, VT, Custom); 660 661 setOperationAction(ISD::MLOAD, VT, Custom); 662 setOperationAction(ISD::MSTORE, VT, Custom); 663 setOperationAction(ISD::MGATHER, VT, Custom); 664 setOperationAction(ISD::MSCATTER, VT, Custom); 665 666 setOperationAction(ISD::VP_LOAD, VT, Custom); 667 setOperationAction(ISD::VP_STORE, VT, Custom); 668 setOperationAction(ISD::VP_GATHER, VT, Custom); 669 setOperationAction(ISD::VP_SCATTER, VT, Custom); 670 671 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 672 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 673 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 674 675 setOperationAction(ISD::SELECT, VT, Custom); 676 setOperationAction(ISD::SELECT_CC, VT, Expand); 677 678 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 679 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 680 681 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 682 setTruncStoreAction(VT, OtherVT, Expand); 683 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 684 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 685 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 686 } 687 688 // Splice 689 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 690 691 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 692 // type that can represent the value exactly. 693 if (VT.getVectorElementType() != MVT::i64) { 694 MVT FloatEltVT = 695 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 696 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 697 if (isTypeLegal(FloatVT)) { 698 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 699 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 700 } 701 } 702 } 703 704 // Expand various CCs to best match the RVV ISA, which natively supports UNE 705 // but no other unordered comparisons, and supports all ordered comparisons 706 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 707 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 708 // and we pattern-match those back to the "original", swapping operands once 709 // more. This way we catch both operations and both "vf" and "fv" forms with 710 // fewer patterns. 711 static const ISD::CondCode VFPCCToExpand[] = { 712 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 713 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 714 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 715 }; 716 717 // Sets common operation actions on RVV floating-point vector types. 718 const auto SetCommonVFPActions = [&](MVT VT) { 719 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 720 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 721 // sizes are within one power-of-two of each other. Therefore conversions 722 // between vXf16 and vXf64 must be lowered as sequences which convert via 723 // vXf32. 724 setOperationAction(ISD::FP_ROUND, VT, Custom); 725 setOperationAction(ISD::FP_EXTEND, VT, Custom); 726 // Custom-lower insert/extract operations to simplify patterns. 727 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 728 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 729 // Expand various condition codes (explained above). 730 for (auto CC : VFPCCToExpand) 731 setCondCodeAction(CC, VT, Expand); 732 733 setOperationAction(ISD::FMINNUM, VT, Legal); 734 setOperationAction(ISD::FMAXNUM, VT, Legal); 735 736 setOperationAction(ISD::FTRUNC, VT, Custom); 737 setOperationAction(ISD::FCEIL, VT, Custom); 738 setOperationAction(ISD::FFLOOR, VT, Custom); 739 setOperationAction(ISD::FROUND, VT, Custom); 740 741 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 742 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 743 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 744 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 745 746 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 747 748 setOperationAction(ISD::LOAD, VT, Custom); 749 setOperationAction(ISD::STORE, VT, Custom); 750 751 setOperationAction(ISD::MLOAD, VT, Custom); 752 setOperationAction(ISD::MSTORE, VT, Custom); 753 setOperationAction(ISD::MGATHER, VT, Custom); 754 setOperationAction(ISD::MSCATTER, VT, Custom); 755 756 setOperationAction(ISD::VP_LOAD, VT, Custom); 757 setOperationAction(ISD::VP_STORE, VT, Custom); 758 setOperationAction(ISD::VP_GATHER, VT, Custom); 759 setOperationAction(ISD::VP_SCATTER, VT, Custom); 760 761 setOperationAction(ISD::SELECT, VT, Custom); 762 setOperationAction(ISD::SELECT_CC, VT, Expand); 763 764 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 765 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 766 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 767 768 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 769 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 770 771 for (unsigned VPOpc : FloatingPointVPOps) 772 setOperationAction(VPOpc, VT, Custom); 773 }; 774 775 // Sets common extload/truncstore actions on RVV floating-point vector 776 // types. 777 const auto SetCommonVFPExtLoadTruncStoreActions = 778 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 779 for (auto SmallVT : SmallerVTs) { 780 setTruncStoreAction(VT, SmallVT, Expand); 781 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 782 } 783 }; 784 785 if (Subtarget.hasVInstructionsF16()) 786 for (MVT VT : F16VecVTs) 787 SetCommonVFPActions(VT); 788 789 for (MVT VT : F32VecVTs) { 790 if (Subtarget.hasVInstructionsF32()) 791 SetCommonVFPActions(VT); 792 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 793 } 794 795 for (MVT VT : F64VecVTs) { 796 if (Subtarget.hasVInstructionsF64()) 797 SetCommonVFPActions(VT); 798 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 799 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 800 } 801 802 if (Subtarget.useRVVForFixedLengthVectors()) { 803 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 804 if (!useRVVForFixedLengthVectorVT(VT)) 805 continue; 806 807 // By default everything must be expanded. 808 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 809 setOperationAction(Op, VT, Expand); 810 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 811 setTruncStoreAction(VT, OtherVT, Expand); 812 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 813 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 814 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 815 } 816 817 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 818 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 819 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 820 821 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 822 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 823 824 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 825 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 826 827 setOperationAction(ISD::LOAD, VT, Custom); 828 setOperationAction(ISD::STORE, VT, Custom); 829 830 setOperationAction(ISD::SETCC, VT, Custom); 831 832 setOperationAction(ISD::SELECT, VT, Custom); 833 834 setOperationAction(ISD::TRUNCATE, VT, Custom); 835 836 setOperationAction(ISD::BITCAST, VT, Custom); 837 838 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 839 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 840 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 841 842 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 843 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 844 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 845 846 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 847 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 848 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 849 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 850 851 // Operations below are different for between masks and other vectors. 852 if (VT.getVectorElementType() == MVT::i1) { 853 setOperationAction(ISD::VP_AND, VT, Custom); 854 setOperationAction(ISD::VP_OR, VT, Custom); 855 setOperationAction(ISD::VP_XOR, VT, Custom); 856 setOperationAction(ISD::AND, VT, Custom); 857 setOperationAction(ISD::OR, VT, Custom); 858 setOperationAction(ISD::XOR, VT, Custom); 859 860 setOperationAction(ISD::VP_FPTOSI, VT, Custom); 861 setOperationAction(ISD::VP_FPTOUI, VT, Custom); 862 setOperationAction(ISD::VP_SETCC, VT, Custom); 863 setOperationAction(ISD::VP_TRUNC, VT, Custom); 864 continue; 865 } 866 867 // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to 868 // it before type legalization for i64 vectors on RV32. It will then be 869 // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle. 870 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 871 // improvements first. 872 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 873 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 874 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 875 } 876 877 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 878 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 879 880 setOperationAction(ISD::MLOAD, VT, Custom); 881 setOperationAction(ISD::MSTORE, VT, Custom); 882 setOperationAction(ISD::MGATHER, VT, Custom); 883 setOperationAction(ISD::MSCATTER, VT, Custom); 884 885 setOperationAction(ISD::VP_LOAD, VT, Custom); 886 setOperationAction(ISD::VP_STORE, VT, Custom); 887 setOperationAction(ISD::VP_GATHER, VT, Custom); 888 setOperationAction(ISD::VP_SCATTER, VT, Custom); 889 890 setOperationAction(ISD::ADD, VT, Custom); 891 setOperationAction(ISD::MUL, VT, Custom); 892 setOperationAction(ISD::SUB, VT, Custom); 893 setOperationAction(ISD::AND, VT, Custom); 894 setOperationAction(ISD::OR, VT, Custom); 895 setOperationAction(ISD::XOR, VT, Custom); 896 setOperationAction(ISD::SDIV, VT, Custom); 897 setOperationAction(ISD::SREM, VT, Custom); 898 setOperationAction(ISD::UDIV, VT, Custom); 899 setOperationAction(ISD::UREM, VT, Custom); 900 setOperationAction(ISD::SHL, VT, Custom); 901 setOperationAction(ISD::SRA, VT, Custom); 902 setOperationAction(ISD::SRL, VT, Custom); 903 904 setOperationAction(ISD::SMIN, VT, Custom); 905 setOperationAction(ISD::SMAX, VT, Custom); 906 setOperationAction(ISD::UMIN, VT, Custom); 907 setOperationAction(ISD::UMAX, VT, Custom); 908 setOperationAction(ISD::ABS, VT, Custom); 909 910 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 911 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) { 912 setOperationAction(ISD::MULHS, VT, Custom); 913 setOperationAction(ISD::MULHU, VT, Custom); 914 } 915 916 setOperationAction(ISD::SADDSAT, VT, Custom); 917 setOperationAction(ISD::UADDSAT, VT, Custom); 918 setOperationAction(ISD::SSUBSAT, VT, Custom); 919 setOperationAction(ISD::USUBSAT, VT, Custom); 920 921 setOperationAction(ISD::VSELECT, VT, Custom); 922 setOperationAction(ISD::SELECT_CC, VT, Expand); 923 924 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 925 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 926 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 927 928 // Custom-lower reduction operations to set up the corresponding custom 929 // nodes' operands. 930 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 931 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 932 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 933 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 934 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 935 936 for (unsigned VPOpc : IntegerVPOps) 937 setOperationAction(VPOpc, VT, Custom); 938 939 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 940 // type that can represent the value exactly. 941 if (VT.getVectorElementType() != MVT::i64) { 942 MVT FloatEltVT = 943 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 944 EVT FloatVT = 945 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 946 if (isTypeLegal(FloatVT)) { 947 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 948 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 949 } 950 } 951 } 952 953 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 954 if (!useRVVForFixedLengthVectorVT(VT)) 955 continue; 956 957 // By default everything must be expanded. 958 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 959 setOperationAction(Op, VT, Expand); 960 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 961 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 962 setTruncStoreAction(VT, OtherVT, Expand); 963 } 964 965 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 966 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 967 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 968 969 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 970 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 971 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 972 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 973 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 974 975 setOperationAction(ISD::LOAD, VT, Custom); 976 setOperationAction(ISD::STORE, VT, Custom); 977 setOperationAction(ISD::MLOAD, VT, Custom); 978 setOperationAction(ISD::MSTORE, VT, Custom); 979 setOperationAction(ISD::MGATHER, VT, Custom); 980 setOperationAction(ISD::MSCATTER, VT, Custom); 981 982 setOperationAction(ISD::VP_LOAD, VT, Custom); 983 setOperationAction(ISD::VP_STORE, VT, Custom); 984 setOperationAction(ISD::VP_GATHER, VT, Custom); 985 setOperationAction(ISD::VP_SCATTER, VT, Custom); 986 987 setOperationAction(ISD::FADD, VT, Custom); 988 setOperationAction(ISD::FSUB, VT, Custom); 989 setOperationAction(ISD::FMUL, VT, Custom); 990 setOperationAction(ISD::FDIV, VT, Custom); 991 setOperationAction(ISD::FNEG, VT, Custom); 992 setOperationAction(ISD::FABS, VT, Custom); 993 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 994 setOperationAction(ISD::FSQRT, VT, Custom); 995 setOperationAction(ISD::FMA, VT, Custom); 996 setOperationAction(ISD::FMINNUM, VT, Custom); 997 setOperationAction(ISD::FMAXNUM, VT, Custom); 998 999 setOperationAction(ISD::FP_ROUND, VT, Custom); 1000 setOperationAction(ISD::FP_EXTEND, VT, Custom); 1001 1002 setOperationAction(ISD::FTRUNC, VT, Custom); 1003 setOperationAction(ISD::FCEIL, VT, Custom); 1004 setOperationAction(ISD::FFLOOR, VT, Custom); 1005 setOperationAction(ISD::FROUND, VT, Custom); 1006 1007 for (auto CC : VFPCCToExpand) 1008 setCondCodeAction(CC, VT, Expand); 1009 1010 setOperationAction(ISD::VSELECT, VT, Custom); 1011 setOperationAction(ISD::SELECT, VT, Custom); 1012 setOperationAction(ISD::SELECT_CC, VT, Expand); 1013 1014 setOperationAction(ISD::BITCAST, VT, Custom); 1015 1016 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1017 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1018 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1019 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1020 1021 for (unsigned VPOpc : FloatingPointVPOps) 1022 setOperationAction(VPOpc, VT, Custom); 1023 } 1024 1025 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1026 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1027 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1028 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1029 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1030 if (Subtarget.hasStdExtZfh()) 1031 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1032 if (Subtarget.hasStdExtF()) 1033 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1034 if (Subtarget.hasStdExtD()) 1035 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1036 } 1037 } 1038 1039 // Function alignments. 1040 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1041 setMinFunctionAlignment(FunctionAlignment); 1042 setPrefFunctionAlignment(FunctionAlignment); 1043 1044 setMinimumJumpTableEntries(5); 1045 1046 // Jumps are expensive, compared to logic 1047 setJumpIsExpensive(); 1048 1049 setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND, 1050 ISD::OR, ISD::XOR}); 1051 1052 if (Subtarget.hasStdExtZbp()) 1053 setTargetDAGCombine({ISD::ROTL, ISD::ROTR}); 1054 if (Subtarget.hasStdExtZbkb()) 1055 setTargetDAGCombine(ISD::BITREVERSE); 1056 if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb()) 1057 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 1058 if (Subtarget.hasStdExtF()) 1059 setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT, 1060 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}); 1061 if (Subtarget.hasVInstructions()) 1062 setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER, 1063 ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL, 1064 ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR}); 1065 1066 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 1067 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 1068 } 1069 1070 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1071 LLVMContext &Context, 1072 EVT VT) const { 1073 if (!VT.isVector()) 1074 return getPointerTy(DL); 1075 if (Subtarget.hasVInstructions() && 1076 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1077 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1078 return VT.changeVectorElementTypeToInteger(); 1079 } 1080 1081 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1082 return Subtarget.getXLenVT(); 1083 } 1084 1085 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1086 const CallInst &I, 1087 MachineFunction &MF, 1088 unsigned Intrinsic) const { 1089 auto &DL = I.getModule()->getDataLayout(); 1090 switch (Intrinsic) { 1091 default: 1092 return false; 1093 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1094 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1095 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1096 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1097 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1098 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1099 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1100 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1101 case Intrinsic::riscv_masked_cmpxchg_i32: 1102 Info.opc = ISD::INTRINSIC_W_CHAIN; 1103 Info.memVT = MVT::i32; 1104 Info.ptrVal = I.getArgOperand(0); 1105 Info.offset = 0; 1106 Info.align = Align(4); 1107 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1108 MachineMemOperand::MOVolatile; 1109 return true; 1110 case Intrinsic::riscv_masked_strided_load: 1111 Info.opc = ISD::INTRINSIC_W_CHAIN; 1112 Info.ptrVal = I.getArgOperand(1); 1113 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1114 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1115 Info.size = MemoryLocation::UnknownSize; 1116 Info.flags |= MachineMemOperand::MOLoad; 1117 return true; 1118 case Intrinsic::riscv_masked_strided_store: 1119 Info.opc = ISD::INTRINSIC_VOID; 1120 Info.ptrVal = I.getArgOperand(1); 1121 Info.memVT = 1122 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1123 Info.align = Align( 1124 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1125 8); 1126 Info.size = MemoryLocation::UnknownSize; 1127 Info.flags |= MachineMemOperand::MOStore; 1128 return true; 1129 case Intrinsic::riscv_seg2_load: 1130 case Intrinsic::riscv_seg3_load: 1131 case Intrinsic::riscv_seg4_load: 1132 case Intrinsic::riscv_seg5_load: 1133 case Intrinsic::riscv_seg6_load: 1134 case Intrinsic::riscv_seg7_load: 1135 case Intrinsic::riscv_seg8_load: 1136 Info.opc = ISD::INTRINSIC_W_CHAIN; 1137 Info.ptrVal = I.getArgOperand(0); 1138 Info.memVT = 1139 getValueType(DL, I.getType()->getStructElementType(0)->getScalarType()); 1140 Info.align = 1141 Align(DL.getTypeSizeInBits( 1142 I.getType()->getStructElementType(0)->getScalarType()) / 1143 8); 1144 Info.size = MemoryLocation::UnknownSize; 1145 Info.flags |= MachineMemOperand::MOLoad; 1146 return true; 1147 } 1148 } 1149 1150 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1151 const AddrMode &AM, Type *Ty, 1152 unsigned AS, 1153 Instruction *I) const { 1154 // No global is ever allowed as a base. 1155 if (AM.BaseGV) 1156 return false; 1157 1158 // Require a 12-bit signed offset. 1159 if (!isInt<12>(AM.BaseOffs)) 1160 return false; 1161 1162 switch (AM.Scale) { 1163 case 0: // "r+i" or just "i", depending on HasBaseReg. 1164 break; 1165 case 1: 1166 if (!AM.HasBaseReg) // allow "r+i". 1167 break; 1168 return false; // disallow "r+r" or "r+r+i". 1169 default: 1170 return false; 1171 } 1172 1173 return true; 1174 } 1175 1176 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1177 return isInt<12>(Imm); 1178 } 1179 1180 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1181 return isInt<12>(Imm); 1182 } 1183 1184 // On RV32, 64-bit integers are split into their high and low parts and held 1185 // in two different registers, so the trunc is free since the low register can 1186 // just be used. 1187 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1188 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1189 return false; 1190 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1191 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1192 return (SrcBits == 64 && DestBits == 32); 1193 } 1194 1195 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1196 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1197 !SrcVT.isInteger() || !DstVT.isInteger()) 1198 return false; 1199 unsigned SrcBits = SrcVT.getSizeInBits(); 1200 unsigned DestBits = DstVT.getSizeInBits(); 1201 return (SrcBits == 64 && DestBits == 32); 1202 } 1203 1204 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1205 // Zexts are free if they can be combined with a load. 1206 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1207 // poorly with type legalization of compares preferring sext. 1208 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1209 EVT MemVT = LD->getMemoryVT(); 1210 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1211 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1212 LD->getExtensionType() == ISD::ZEXTLOAD)) 1213 return true; 1214 } 1215 1216 return TargetLowering::isZExtFree(Val, VT2); 1217 } 1218 1219 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1220 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1221 } 1222 1223 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const { 1224 return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32); 1225 } 1226 1227 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1228 return Subtarget.hasStdExtZbb(); 1229 } 1230 1231 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1232 return Subtarget.hasStdExtZbb(); 1233 } 1234 1235 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1236 EVT VT = Y.getValueType(); 1237 1238 // FIXME: Support vectors once we have tests. 1239 if (VT.isVector()) 1240 return false; 1241 1242 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1243 Subtarget.hasStdExtZbkb()) && 1244 !isa<ConstantSDNode>(Y); 1245 } 1246 1247 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const { 1248 // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position. 1249 auto *C = dyn_cast<ConstantSDNode>(Y); 1250 return C && C->getAPIntValue().ule(10); 1251 } 1252 1253 /// Check if sinking \p I's operands to I's basic block is profitable, because 1254 /// the operands can be folded into a target instruction, e.g. 1255 /// splats of scalars can fold into vector instructions. 1256 bool RISCVTargetLowering::shouldSinkOperands( 1257 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1258 using namespace llvm::PatternMatch; 1259 1260 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1261 return false; 1262 1263 auto IsSinker = [&](Instruction *I, int Operand) { 1264 switch (I->getOpcode()) { 1265 case Instruction::Add: 1266 case Instruction::Sub: 1267 case Instruction::Mul: 1268 case Instruction::And: 1269 case Instruction::Or: 1270 case Instruction::Xor: 1271 case Instruction::FAdd: 1272 case Instruction::FSub: 1273 case Instruction::FMul: 1274 case Instruction::FDiv: 1275 case Instruction::ICmp: 1276 case Instruction::FCmp: 1277 return true; 1278 case Instruction::Shl: 1279 case Instruction::LShr: 1280 case Instruction::AShr: 1281 case Instruction::UDiv: 1282 case Instruction::SDiv: 1283 case Instruction::URem: 1284 case Instruction::SRem: 1285 return Operand == 1; 1286 case Instruction::Call: 1287 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1288 switch (II->getIntrinsicID()) { 1289 case Intrinsic::fma: 1290 case Intrinsic::vp_fma: 1291 return Operand == 0 || Operand == 1; 1292 // FIXME: Our patterns can only match vx/vf instructions when the splat 1293 // it on the RHS, because TableGen doesn't recognize our VP operations 1294 // as commutative. 1295 case Intrinsic::vp_add: 1296 case Intrinsic::vp_mul: 1297 case Intrinsic::vp_and: 1298 case Intrinsic::vp_or: 1299 case Intrinsic::vp_xor: 1300 case Intrinsic::vp_fadd: 1301 case Intrinsic::vp_fmul: 1302 case Intrinsic::vp_shl: 1303 case Intrinsic::vp_lshr: 1304 case Intrinsic::vp_ashr: 1305 case Intrinsic::vp_udiv: 1306 case Intrinsic::vp_sdiv: 1307 case Intrinsic::vp_urem: 1308 case Intrinsic::vp_srem: 1309 return Operand == 1; 1310 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1311 // explicit patterns for both LHS and RHS (as 'vr' versions). 1312 case Intrinsic::vp_sub: 1313 case Intrinsic::vp_fsub: 1314 case Intrinsic::vp_fdiv: 1315 return Operand == 0 || Operand == 1; 1316 default: 1317 return false; 1318 } 1319 } 1320 return false; 1321 default: 1322 return false; 1323 } 1324 }; 1325 1326 for (auto OpIdx : enumerate(I->operands())) { 1327 if (!IsSinker(I, OpIdx.index())) 1328 continue; 1329 1330 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1331 // Make sure we are not already sinking this operand 1332 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1333 continue; 1334 1335 // We are looking for a splat that can be sunk. 1336 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1337 m_Undef(), m_ZeroMask()))) 1338 continue; 1339 1340 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1341 // and vector registers 1342 for (Use &U : Op->uses()) { 1343 Instruction *Insn = cast<Instruction>(U.getUser()); 1344 if (!IsSinker(Insn, U.getOperandNo())) 1345 return false; 1346 } 1347 1348 Ops.push_back(&Op->getOperandUse(0)); 1349 Ops.push_back(&OpIdx.value()); 1350 } 1351 return true; 1352 } 1353 1354 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1355 bool ForCodeSize) const { 1356 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1357 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1358 return false; 1359 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1360 return false; 1361 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1362 return false; 1363 return Imm.isZero(); 1364 } 1365 1366 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1367 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1368 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1369 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1370 } 1371 1372 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1373 CallingConv::ID CC, 1374 EVT VT) const { 1375 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1376 // We might still end up using a GPR but that will be decided based on ABI. 1377 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1378 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1379 return MVT::f32; 1380 1381 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1382 } 1383 1384 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1385 CallingConv::ID CC, 1386 EVT VT) const { 1387 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1388 // We might still end up using a GPR but that will be decided based on ABI. 1389 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1390 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1391 return 1; 1392 1393 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1394 } 1395 1396 // Changes the condition code and swaps operands if necessary, so the SetCC 1397 // operation matches one of the comparisons supported directly by branches 1398 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1399 // with 1/-1. 1400 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1401 ISD::CondCode &CC, SelectionDAG &DAG) { 1402 // Convert X > -1 to X >= 0. 1403 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1404 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1405 CC = ISD::SETGE; 1406 return; 1407 } 1408 // Convert X < 1 to 0 >= X. 1409 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1410 RHS = LHS; 1411 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1412 CC = ISD::SETGE; 1413 return; 1414 } 1415 1416 switch (CC) { 1417 default: 1418 break; 1419 case ISD::SETGT: 1420 case ISD::SETLE: 1421 case ISD::SETUGT: 1422 case ISD::SETULE: 1423 CC = ISD::getSetCCSwappedOperands(CC); 1424 std::swap(LHS, RHS); 1425 break; 1426 } 1427 } 1428 1429 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1430 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1431 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1432 if (VT.getVectorElementType() == MVT::i1) 1433 KnownSize *= 8; 1434 1435 switch (KnownSize) { 1436 default: 1437 llvm_unreachable("Invalid LMUL."); 1438 case 8: 1439 return RISCVII::VLMUL::LMUL_F8; 1440 case 16: 1441 return RISCVII::VLMUL::LMUL_F4; 1442 case 32: 1443 return RISCVII::VLMUL::LMUL_F2; 1444 case 64: 1445 return RISCVII::VLMUL::LMUL_1; 1446 case 128: 1447 return RISCVII::VLMUL::LMUL_2; 1448 case 256: 1449 return RISCVII::VLMUL::LMUL_4; 1450 case 512: 1451 return RISCVII::VLMUL::LMUL_8; 1452 } 1453 } 1454 1455 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1456 switch (LMul) { 1457 default: 1458 llvm_unreachable("Invalid LMUL."); 1459 case RISCVII::VLMUL::LMUL_F8: 1460 case RISCVII::VLMUL::LMUL_F4: 1461 case RISCVII::VLMUL::LMUL_F2: 1462 case RISCVII::VLMUL::LMUL_1: 1463 return RISCV::VRRegClassID; 1464 case RISCVII::VLMUL::LMUL_2: 1465 return RISCV::VRM2RegClassID; 1466 case RISCVII::VLMUL::LMUL_4: 1467 return RISCV::VRM4RegClassID; 1468 case RISCVII::VLMUL::LMUL_8: 1469 return RISCV::VRM8RegClassID; 1470 } 1471 } 1472 1473 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1474 RISCVII::VLMUL LMUL = getLMUL(VT); 1475 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1476 LMUL == RISCVII::VLMUL::LMUL_F4 || 1477 LMUL == RISCVII::VLMUL::LMUL_F2 || 1478 LMUL == RISCVII::VLMUL::LMUL_1) { 1479 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1480 "Unexpected subreg numbering"); 1481 return RISCV::sub_vrm1_0 + Index; 1482 } 1483 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1484 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1485 "Unexpected subreg numbering"); 1486 return RISCV::sub_vrm2_0 + Index; 1487 } 1488 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1489 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1490 "Unexpected subreg numbering"); 1491 return RISCV::sub_vrm4_0 + Index; 1492 } 1493 llvm_unreachable("Invalid vector type."); 1494 } 1495 1496 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1497 if (VT.getVectorElementType() == MVT::i1) 1498 return RISCV::VRRegClassID; 1499 return getRegClassIDForLMUL(getLMUL(VT)); 1500 } 1501 1502 // Attempt to decompose a subvector insert/extract between VecVT and 1503 // SubVecVT via subregister indices. Returns the subregister index that 1504 // can perform the subvector insert/extract with the given element index, as 1505 // well as the index corresponding to any leftover subvectors that must be 1506 // further inserted/extracted within the register class for SubVecVT. 1507 std::pair<unsigned, unsigned> 1508 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1509 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1510 const RISCVRegisterInfo *TRI) { 1511 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1512 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1513 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1514 "Register classes not ordered"); 1515 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1516 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1517 // Try to compose a subregister index that takes us from the incoming 1518 // LMUL>1 register class down to the outgoing one. At each step we half 1519 // the LMUL: 1520 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1521 // Note that this is not guaranteed to find a subregister index, such as 1522 // when we are extracting from one VR type to another. 1523 unsigned SubRegIdx = RISCV::NoSubRegister; 1524 for (const unsigned RCID : 1525 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1526 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1527 VecVT = VecVT.getHalfNumVectorElementsVT(); 1528 bool IsHi = 1529 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1530 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1531 getSubregIndexByMVT(VecVT, IsHi)); 1532 if (IsHi) 1533 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1534 } 1535 return {SubRegIdx, InsertExtractIdx}; 1536 } 1537 1538 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1539 // stores for those types. 1540 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1541 return !Subtarget.useRVVForFixedLengthVectors() || 1542 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1543 } 1544 1545 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1546 if (ScalarTy->isPointerTy()) 1547 return true; 1548 1549 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1550 ScalarTy->isIntegerTy(32)) 1551 return true; 1552 1553 if (ScalarTy->isIntegerTy(64)) 1554 return Subtarget.hasVInstructionsI64(); 1555 1556 if (ScalarTy->isHalfTy()) 1557 return Subtarget.hasVInstructionsF16(); 1558 if (ScalarTy->isFloatTy()) 1559 return Subtarget.hasVInstructionsF32(); 1560 if (ScalarTy->isDoubleTy()) 1561 return Subtarget.hasVInstructionsF64(); 1562 1563 return false; 1564 } 1565 1566 static SDValue getVLOperand(SDValue Op) { 1567 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1568 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1569 "Unexpected opcode"); 1570 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1571 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1572 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1573 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1574 if (!II) 1575 return SDValue(); 1576 return Op.getOperand(II->VLOperand + 1 + HasChain); 1577 } 1578 1579 static bool useRVVForFixedLengthVectorVT(MVT VT, 1580 const RISCVSubtarget &Subtarget) { 1581 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1582 if (!Subtarget.useRVVForFixedLengthVectors()) 1583 return false; 1584 1585 // We only support a set of vector types with a consistent maximum fixed size 1586 // across all supported vector element types to avoid legalization issues. 1587 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1588 // fixed-length vector type we support is 1024 bytes. 1589 if (VT.getFixedSizeInBits() > 1024 * 8) 1590 return false; 1591 1592 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1593 1594 MVT EltVT = VT.getVectorElementType(); 1595 1596 // Don't use RVV for vectors we cannot scalarize if required. 1597 switch (EltVT.SimpleTy) { 1598 // i1 is supported but has different rules. 1599 default: 1600 return false; 1601 case MVT::i1: 1602 // Masks can only use a single register. 1603 if (VT.getVectorNumElements() > MinVLen) 1604 return false; 1605 MinVLen /= 8; 1606 break; 1607 case MVT::i8: 1608 case MVT::i16: 1609 case MVT::i32: 1610 break; 1611 case MVT::i64: 1612 if (!Subtarget.hasVInstructionsI64()) 1613 return false; 1614 break; 1615 case MVT::f16: 1616 if (!Subtarget.hasVInstructionsF16()) 1617 return false; 1618 break; 1619 case MVT::f32: 1620 if (!Subtarget.hasVInstructionsF32()) 1621 return false; 1622 break; 1623 case MVT::f64: 1624 if (!Subtarget.hasVInstructionsF64()) 1625 return false; 1626 break; 1627 } 1628 1629 // Reject elements larger than ELEN. 1630 if (EltVT.getSizeInBits() > Subtarget.getELEN()) 1631 return false; 1632 1633 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1634 // Don't use RVV for types that don't fit. 1635 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1636 return false; 1637 1638 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1639 // the base fixed length RVV support in place. 1640 if (!VT.isPow2VectorType()) 1641 return false; 1642 1643 return true; 1644 } 1645 1646 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1647 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1648 } 1649 1650 // Return the largest legal scalable vector type that matches VT's element type. 1651 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1652 const RISCVSubtarget &Subtarget) { 1653 // This may be called before legal types are setup. 1654 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1655 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1656 "Expected legal fixed length vector!"); 1657 1658 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1659 unsigned MaxELen = Subtarget.getELEN(); 1660 1661 MVT EltVT = VT.getVectorElementType(); 1662 switch (EltVT.SimpleTy) { 1663 default: 1664 llvm_unreachable("unexpected element type for RVV container"); 1665 case MVT::i1: 1666 case MVT::i8: 1667 case MVT::i16: 1668 case MVT::i32: 1669 case MVT::i64: 1670 case MVT::f16: 1671 case MVT::f32: 1672 case MVT::f64: { 1673 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1674 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1675 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1676 unsigned NumElts = 1677 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1678 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1679 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1680 return MVT::getScalableVectorVT(EltVT, NumElts); 1681 } 1682 } 1683 } 1684 1685 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1686 const RISCVSubtarget &Subtarget) { 1687 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1688 Subtarget); 1689 } 1690 1691 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1692 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1693 } 1694 1695 // Grow V to consume an entire RVV register. 1696 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1697 const RISCVSubtarget &Subtarget) { 1698 assert(VT.isScalableVector() && 1699 "Expected to convert into a scalable vector!"); 1700 assert(V.getValueType().isFixedLengthVector() && 1701 "Expected a fixed length vector operand!"); 1702 SDLoc DL(V); 1703 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1704 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1705 } 1706 1707 // Shrink V so it's just big enough to maintain a VT's worth of data. 1708 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1709 const RISCVSubtarget &Subtarget) { 1710 assert(VT.isFixedLengthVector() && 1711 "Expected to convert into a fixed length vector!"); 1712 assert(V.getValueType().isScalableVector() && 1713 "Expected a scalable vector operand!"); 1714 SDLoc DL(V); 1715 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1716 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1717 } 1718 1719 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1720 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1721 // the vector type that it is contained in. 1722 static std::pair<SDValue, SDValue> 1723 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1724 const RISCVSubtarget &Subtarget) { 1725 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1726 MVT XLenVT = Subtarget.getXLenVT(); 1727 SDValue VL = VecVT.isFixedLengthVector() 1728 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1729 : DAG.getRegister(RISCV::X0, XLenVT); 1730 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1731 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1732 return {Mask, VL}; 1733 } 1734 1735 // As above but assuming the given type is a scalable vector type. 1736 static std::pair<SDValue, SDValue> 1737 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1738 const RISCVSubtarget &Subtarget) { 1739 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1740 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1741 } 1742 1743 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1744 // of either is (currently) supported. This can get us into an infinite loop 1745 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1746 // as a ..., etc. 1747 // Until either (or both) of these can reliably lower any node, reporting that 1748 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1749 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1750 // which is not desirable. 1751 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1752 EVT VT, unsigned DefinedValues) const { 1753 return false; 1754 } 1755 1756 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1757 const RISCVSubtarget &Subtarget) { 1758 // RISCV FP-to-int conversions saturate to the destination register size, but 1759 // don't produce 0 for nan. We can use a conversion instruction and fix the 1760 // nan case with a compare and a select. 1761 SDValue Src = Op.getOperand(0); 1762 1763 EVT DstVT = Op.getValueType(); 1764 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1765 1766 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1767 unsigned Opc; 1768 if (SatVT == DstVT) 1769 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1770 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1771 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1772 else 1773 return SDValue(); 1774 // FIXME: Support other SatVTs by clamping before or after the conversion. 1775 1776 SDLoc DL(Op); 1777 SDValue FpToInt = DAG.getNode( 1778 Opc, DL, DstVT, Src, 1779 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1780 1781 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1782 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1783 } 1784 1785 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1786 // and back. Taking care to avoid converting values that are nan or already 1787 // correct. 1788 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1789 // have FRM dependencies modeled yet. 1790 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1791 MVT VT = Op.getSimpleValueType(); 1792 assert(VT.isVector() && "Unexpected type"); 1793 1794 SDLoc DL(Op); 1795 1796 // Freeze the source since we are increasing the number of uses. 1797 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1798 1799 // Truncate to integer and convert back to FP. 1800 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1801 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1802 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1803 1804 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1805 1806 if (Op.getOpcode() == ISD::FCEIL) { 1807 // If the truncated value is the greater than or equal to the original 1808 // value, we've computed the ceil. Otherwise, we went the wrong way and 1809 // need to increase by 1. 1810 // FIXME: This should use a masked operation. Handle here or in isel? 1811 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1812 DAG.getConstantFP(1.0, DL, VT)); 1813 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1814 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1815 } else if (Op.getOpcode() == ISD::FFLOOR) { 1816 // If the truncated value is the less than or equal to the original value, 1817 // we've computed the floor. Otherwise, we went the wrong way and need to 1818 // decrease by 1. 1819 // FIXME: This should use a masked operation. Handle here or in isel? 1820 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1821 DAG.getConstantFP(1.0, DL, VT)); 1822 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1823 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1824 } 1825 1826 // Restore the original sign so that -0.0 is preserved. 1827 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1828 1829 // Determine the largest integer that can be represented exactly. This and 1830 // values larger than it don't have any fractional bits so don't need to 1831 // be converted. 1832 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1833 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1834 APFloat MaxVal = APFloat(FltSem); 1835 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1836 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1837 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1838 1839 // If abs(Src) was larger than MaxVal or nan, keep it. 1840 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1841 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1842 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1843 } 1844 1845 // ISD::FROUND is defined to round to nearest with ties rounding away from 0. 1846 // This mode isn't supported in vector hardware on RISCV. But as long as we 1847 // aren't compiling with trapping math, we can emulate this with 1848 // floor(X + copysign(nextafter(0.5, 0.0), X)). 1849 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM 1850 // dependencies modeled yet. 1851 // FIXME: Use masked operations to avoid final merge. 1852 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) { 1853 MVT VT = Op.getSimpleValueType(); 1854 assert(VT.isVector() && "Unexpected type"); 1855 1856 SDLoc DL(Op); 1857 1858 // Freeze the source since we are increasing the number of uses. 1859 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1860 1861 // We do the conversion on the absolute value and fix the sign at the end. 1862 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1863 1864 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1865 bool Ignored; 1866 APFloat Point5Pred = APFloat(0.5f); 1867 Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored); 1868 Point5Pred.next(/*nextDown*/ true); 1869 1870 // Add the adjustment. 1871 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs, 1872 DAG.getConstantFP(Point5Pred, DL, VT)); 1873 1874 // Truncate to integer and convert back to fp. 1875 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1876 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust); 1877 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1878 1879 // Restore the original sign. 1880 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1881 1882 // Determine the largest integer that can be represented exactly. This and 1883 // values larger than it don't have any fractional bits so don't need to 1884 // be converted. 1885 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1886 APFloat MaxVal = APFloat(FltSem); 1887 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1888 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1889 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1890 1891 // If abs(Src) was larger than MaxVal or nan, keep it. 1892 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1893 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1894 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1895 } 1896 1897 struct VIDSequence { 1898 int64_t StepNumerator; 1899 unsigned StepDenominator; 1900 int64_t Addend; 1901 }; 1902 1903 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1904 // to the (non-zero) step S and start value X. This can be then lowered as the 1905 // RVV sequence (VID * S) + X, for example. 1906 // The step S is represented as an integer numerator divided by a positive 1907 // denominator. Note that the implementation currently only identifies 1908 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1909 // cannot detect 2/3, for example. 1910 // Note that this method will also match potentially unappealing index 1911 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1912 // determine whether this is worth generating code for. 1913 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1914 unsigned NumElts = Op.getNumOperands(); 1915 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1916 if (!Op.getValueType().isInteger()) 1917 return None; 1918 1919 Optional<unsigned> SeqStepDenom; 1920 Optional<int64_t> SeqStepNum, SeqAddend; 1921 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1922 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1923 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1924 // Assume undef elements match the sequence; we just have to be careful 1925 // when interpolating across them. 1926 if (Op.getOperand(Idx).isUndef()) 1927 continue; 1928 // The BUILD_VECTOR must be all constants. 1929 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1930 return None; 1931 1932 uint64_t Val = Op.getConstantOperandVal(Idx) & 1933 maskTrailingOnes<uint64_t>(EltSizeInBits); 1934 1935 if (PrevElt) { 1936 // Calculate the step since the last non-undef element, and ensure 1937 // it's consistent across the entire sequence. 1938 unsigned IdxDiff = Idx - PrevElt->second; 1939 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1940 1941 // A zero-value value difference means that we're somewhere in the middle 1942 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1943 // step change before evaluating the sequence. 1944 if (ValDiff != 0) { 1945 int64_t Remainder = ValDiff % IdxDiff; 1946 // Normalize the step if it's greater than 1. 1947 if (Remainder != ValDiff) { 1948 // The difference must cleanly divide the element span. 1949 if (Remainder != 0) 1950 return None; 1951 ValDiff /= IdxDiff; 1952 IdxDiff = 1; 1953 } 1954 1955 if (!SeqStepNum) 1956 SeqStepNum = ValDiff; 1957 else if (ValDiff != SeqStepNum) 1958 return None; 1959 1960 if (!SeqStepDenom) 1961 SeqStepDenom = IdxDiff; 1962 else if (IdxDiff != *SeqStepDenom) 1963 return None; 1964 } 1965 } 1966 1967 // Record and/or check any addend. 1968 if (SeqStepNum && SeqStepDenom) { 1969 uint64_t ExpectedVal = 1970 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1971 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1972 if (!SeqAddend) 1973 SeqAddend = Addend; 1974 else if (SeqAddend != Addend) 1975 return None; 1976 } 1977 1978 // Record this non-undef element for later. 1979 if (!PrevElt || PrevElt->first != Val) 1980 PrevElt = std::make_pair(Val, Idx); 1981 } 1982 // We need to have logged both a step and an addend for this to count as 1983 // a legal index sequence. 1984 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1985 return None; 1986 1987 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1988 } 1989 1990 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT 1991 // and lower it as a VRGATHER_VX_VL from the source vector. 1992 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, 1993 SelectionDAG &DAG, 1994 const RISCVSubtarget &Subtarget) { 1995 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1996 return SDValue(); 1997 SDValue Vec = SplatVal.getOperand(0); 1998 // Only perform this optimization on vectors of the same size for simplicity. 1999 if (Vec.getValueType() != VT) 2000 return SDValue(); 2001 SDValue Idx = SplatVal.getOperand(1); 2002 // The index must be a legal type. 2003 if (Idx.getValueType() != Subtarget.getXLenVT()) 2004 return SDValue(); 2005 2006 MVT ContainerVT = VT; 2007 if (VT.isFixedLengthVector()) { 2008 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2009 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2010 } 2011 2012 SDValue Mask, VL; 2013 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2014 2015 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, 2016 Idx, Mask, VL); 2017 2018 if (!VT.isFixedLengthVector()) 2019 return Gather; 2020 2021 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2022 } 2023 2024 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 2025 const RISCVSubtarget &Subtarget) { 2026 MVT VT = Op.getSimpleValueType(); 2027 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 2028 2029 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2030 2031 SDLoc DL(Op); 2032 SDValue Mask, VL; 2033 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2034 2035 MVT XLenVT = Subtarget.getXLenVT(); 2036 unsigned NumElts = Op.getNumOperands(); 2037 2038 if (VT.getVectorElementType() == MVT::i1) { 2039 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 2040 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 2041 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 2042 } 2043 2044 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 2045 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 2046 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 2047 } 2048 2049 // Lower constant mask BUILD_VECTORs via an integer vector type, in 2050 // scalar integer chunks whose bit-width depends on the number of mask 2051 // bits and XLEN. 2052 // First, determine the most appropriate scalar integer type to use. This 2053 // is at most XLenVT, but may be shrunk to a smaller vector element type 2054 // according to the size of the final vector - use i8 chunks rather than 2055 // XLenVT if we're producing a v8i1. This results in more consistent 2056 // codegen across RV32 and RV64. 2057 unsigned NumViaIntegerBits = 2058 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 2059 NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN()); 2060 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 2061 // If we have to use more than one INSERT_VECTOR_ELT then this 2062 // optimization is likely to increase code size; avoid peforming it in 2063 // such a case. We can use a load from a constant pool in this case. 2064 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 2065 return SDValue(); 2066 // Now we can create our integer vector type. Note that it may be larger 2067 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2068 MVT IntegerViaVecVT = 2069 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2070 divideCeil(NumElts, NumViaIntegerBits)); 2071 2072 uint64_t Bits = 0; 2073 unsigned BitPos = 0, IntegerEltIdx = 0; 2074 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2075 2076 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2077 // Once we accumulate enough bits to fill our scalar type, insert into 2078 // our vector and clear our accumulated data. 2079 if (I != 0 && I % NumViaIntegerBits == 0) { 2080 if (NumViaIntegerBits <= 32) 2081 Bits = SignExtend64(Bits, 32); 2082 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2083 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2084 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2085 Bits = 0; 2086 BitPos = 0; 2087 IntegerEltIdx++; 2088 } 2089 SDValue V = Op.getOperand(I); 2090 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2091 Bits |= ((uint64_t)BitValue << BitPos); 2092 } 2093 2094 // Insert the (remaining) scalar value into position in our integer 2095 // vector type. 2096 if (NumViaIntegerBits <= 32) 2097 Bits = SignExtend64(Bits, 32); 2098 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2099 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2100 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2101 2102 if (NumElts < NumViaIntegerBits) { 2103 // If we're producing a smaller vector than our minimum legal integer 2104 // type, bitcast to the equivalent (known-legal) mask type, and extract 2105 // our final mask. 2106 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2107 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2108 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2109 DAG.getConstant(0, DL, XLenVT)); 2110 } else { 2111 // Else we must have produced an integer type with the same size as the 2112 // mask type; bitcast for the final result. 2113 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2114 Vec = DAG.getBitcast(VT, Vec); 2115 } 2116 2117 return Vec; 2118 } 2119 2120 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2121 // vector type, we have a legal equivalently-sized i8 type, so we can use 2122 // that. 2123 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2124 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2125 2126 SDValue WideVec; 2127 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2128 // For a splat, perform a scalar truncate before creating the wider 2129 // vector. 2130 assert(Splat.getValueType() == XLenVT && 2131 "Unexpected type for i1 splat value"); 2132 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2133 DAG.getConstant(1, DL, XLenVT)); 2134 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2135 } else { 2136 SmallVector<SDValue, 8> Ops(Op->op_values()); 2137 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2138 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2139 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2140 } 2141 2142 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2143 } 2144 2145 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2146 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) 2147 return Gather; 2148 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2149 : RISCVISD::VMV_V_X_VL; 2150 Splat = 2151 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); 2152 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2153 } 2154 2155 // Try and match index sequences, which we can lower to the vid instruction 2156 // with optional modifications. An all-undef vector is matched by 2157 // getSplatValue, above. 2158 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2159 int64_t StepNumerator = SimpleVID->StepNumerator; 2160 unsigned StepDenominator = SimpleVID->StepDenominator; 2161 int64_t Addend = SimpleVID->Addend; 2162 2163 assert(StepNumerator != 0 && "Invalid step"); 2164 bool Negate = false; 2165 int64_t SplatStepVal = StepNumerator; 2166 unsigned StepOpcode = ISD::MUL; 2167 if (StepNumerator != 1) { 2168 if (isPowerOf2_64(std::abs(StepNumerator))) { 2169 Negate = StepNumerator < 0; 2170 StepOpcode = ISD::SHL; 2171 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2172 } 2173 } 2174 2175 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2176 // threshold since it's the immediate value many RVV instructions accept. 2177 // There is no vmul.vi instruction so ensure multiply constant can fit in 2178 // a single addi instruction. 2179 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2180 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2181 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2182 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2183 // Convert right out of the scalable type so we can use standard ISD 2184 // nodes for the rest of the computation. If we used scalable types with 2185 // these, we'd lose the fixed-length vector info and generate worse 2186 // vsetvli code. 2187 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2188 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2189 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2190 SDValue SplatStep = DAG.getSplatBuildVector( 2191 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2192 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2193 } 2194 if (StepDenominator != 1) { 2195 SDValue SplatStep = DAG.getSplatBuildVector( 2196 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2197 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2198 } 2199 if (Addend != 0 || Negate) { 2200 SDValue SplatAddend = DAG.getSplatBuildVector( 2201 VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2202 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2203 } 2204 return VID; 2205 } 2206 } 2207 2208 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2209 // when re-interpreted as a vector with a larger element type. For example, 2210 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2211 // could be instead splat as 2212 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2213 // TODO: This optimization could also work on non-constant splats, but it 2214 // would require bit-manipulation instructions to construct the splat value. 2215 SmallVector<SDValue> Sequence; 2216 unsigned EltBitSize = VT.getScalarSizeInBits(); 2217 const auto *BV = cast<BuildVectorSDNode>(Op); 2218 if (VT.isInteger() && EltBitSize < 64 && 2219 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2220 BV->getRepeatedSequence(Sequence) && 2221 (Sequence.size() * EltBitSize) <= 64) { 2222 unsigned SeqLen = Sequence.size(); 2223 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2224 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2225 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2226 ViaIntVT == MVT::i64) && 2227 "Unexpected sequence type"); 2228 2229 unsigned EltIdx = 0; 2230 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2231 uint64_t SplatValue = 0; 2232 // Construct the amalgamated value which can be splatted as this larger 2233 // vector type. 2234 for (const auto &SeqV : Sequence) { 2235 if (!SeqV.isUndef()) 2236 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2237 << (EltIdx * EltBitSize)); 2238 EltIdx++; 2239 } 2240 2241 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2242 // achieve better constant materializion. 2243 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2244 SplatValue = SignExtend64(SplatValue, 32); 2245 2246 // Since we can't introduce illegal i64 types at this stage, we can only 2247 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2248 // way we can use RVV instructions to splat. 2249 assert((ViaIntVT.bitsLE(XLenVT) || 2250 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2251 "Unexpected bitcast sequence"); 2252 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2253 SDValue ViaVL = 2254 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2255 MVT ViaContainerVT = 2256 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2257 SDValue Splat = 2258 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2259 DAG.getUNDEF(ViaContainerVT), 2260 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2261 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2262 return DAG.getBitcast(VT, Splat); 2263 } 2264 } 2265 2266 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2267 // which constitute a large proportion of the elements. In such cases we can 2268 // splat a vector with the dominant element and make up the shortfall with 2269 // INSERT_VECTOR_ELTs. 2270 // Note that this includes vectors of 2 elements by association. The 2271 // upper-most element is the "dominant" one, allowing us to use a splat to 2272 // "insert" the upper element, and an insert of the lower element at position 2273 // 0, which improves codegen. 2274 SDValue DominantValue; 2275 unsigned MostCommonCount = 0; 2276 DenseMap<SDValue, unsigned> ValueCounts; 2277 unsigned NumUndefElts = 2278 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2279 2280 // Track the number of scalar loads we know we'd be inserting, estimated as 2281 // any non-zero floating-point constant. Other kinds of element are either 2282 // already in registers or are materialized on demand. The threshold at which 2283 // a vector load is more desirable than several scalar materializion and 2284 // vector-insertion instructions is not known. 2285 unsigned NumScalarLoads = 0; 2286 2287 for (SDValue V : Op->op_values()) { 2288 if (V.isUndef()) 2289 continue; 2290 2291 ValueCounts.insert(std::make_pair(V, 0)); 2292 unsigned &Count = ValueCounts[V]; 2293 2294 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2295 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2296 2297 // Is this value dominant? In case of a tie, prefer the highest element as 2298 // it's cheaper to insert near the beginning of a vector than it is at the 2299 // end. 2300 if (++Count >= MostCommonCount) { 2301 DominantValue = V; 2302 MostCommonCount = Count; 2303 } 2304 } 2305 2306 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2307 unsigned NumDefElts = NumElts - NumUndefElts; 2308 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2309 2310 // Don't perform this optimization when optimizing for size, since 2311 // materializing elements and inserting them tends to cause code bloat. 2312 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2313 ((MostCommonCount > DominantValueCountThreshold) || 2314 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2315 // Start by splatting the most common element. 2316 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2317 2318 DenseSet<SDValue> Processed{DominantValue}; 2319 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2320 for (const auto &OpIdx : enumerate(Op->ops())) { 2321 const SDValue &V = OpIdx.value(); 2322 if (V.isUndef() || !Processed.insert(V).second) 2323 continue; 2324 if (ValueCounts[V] == 1) { 2325 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2326 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2327 } else { 2328 // Blend in all instances of this value using a VSELECT, using a 2329 // mask where each bit signals whether that element is the one 2330 // we're after. 2331 SmallVector<SDValue> Ops; 2332 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2333 return DAG.getConstant(V == V1, DL, XLenVT); 2334 }); 2335 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2336 DAG.getBuildVector(SelMaskTy, DL, Ops), 2337 DAG.getSplatBuildVector(VT, DL, V), Vec); 2338 } 2339 } 2340 2341 return Vec; 2342 } 2343 2344 return SDValue(); 2345 } 2346 2347 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2348 SDValue Lo, SDValue Hi, SDValue VL, 2349 SelectionDAG &DAG) { 2350 if (!Passthru) 2351 Passthru = DAG.getUNDEF(VT); 2352 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2353 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2354 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2355 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2356 // node in order to try and match RVV vector/scalar instructions. 2357 if ((LoC >> 31) == HiC) 2358 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); 2359 2360 // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use 2361 // vmv.v.x whose EEW = 32 to lower it. 2362 auto *Const = dyn_cast<ConstantSDNode>(VL); 2363 if (LoC == HiC && Const && Const->isAllOnesValue()) { 2364 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2365 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2366 // access the subtarget here now. 2367 auto InterVec = DAG.getNode( 2368 RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo, 2369 DAG.getRegister(RISCV::X0, MVT::i32)); 2370 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2371 } 2372 } 2373 2374 // Fall back to a stack store and stride x0 vector load. 2375 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo, 2376 Hi, VL); 2377 } 2378 2379 // Called by type legalization to handle splat of i64 on RV32. 2380 // FIXME: We can optimize this when the type has sign or zero bits in one 2381 // of the halves. 2382 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2383 SDValue Scalar, SDValue VL, 2384 SelectionDAG &DAG) { 2385 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2386 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2387 DAG.getConstant(0, DL, MVT::i32)); 2388 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2389 DAG.getConstant(1, DL, MVT::i32)); 2390 return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG); 2391 } 2392 2393 // This function lowers a splat of a scalar operand Splat with the vector 2394 // length VL. It ensures the final sequence is type legal, which is useful when 2395 // lowering a splat after type legalization. 2396 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL, 2397 MVT VT, SDLoc DL, SelectionDAG &DAG, 2398 const RISCVSubtarget &Subtarget) { 2399 bool HasPassthru = Passthru && !Passthru.isUndef(); 2400 if (!HasPassthru && !Passthru) 2401 Passthru = DAG.getUNDEF(VT); 2402 if (VT.isFloatingPoint()) { 2403 // If VL is 1, we could use vfmv.s.f. 2404 if (isOneConstant(VL)) 2405 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL); 2406 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL); 2407 } 2408 2409 MVT XLenVT = Subtarget.getXLenVT(); 2410 2411 // Simplest case is that the operand needs to be promoted to XLenVT. 2412 if (Scalar.getValueType().bitsLE(XLenVT)) { 2413 // If the operand is a constant, sign extend to increase our chances 2414 // of being able to use a .vi instruction. ANY_EXTEND would become a 2415 // a zero extend and the simm5 check in isel would fail. 2416 // FIXME: Should we ignore the upper bits in isel instead? 2417 unsigned ExtOpc = 2418 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2419 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2420 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2421 // If VL is 1 and the scalar value won't benefit from immediate, we could 2422 // use vmv.s.x. 2423 if (isOneConstant(VL) && 2424 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2425 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL); 2426 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); 2427 } 2428 2429 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2430 "Unexpected scalar for splat lowering!"); 2431 2432 if (isOneConstant(VL) && isNullConstant(Scalar)) 2433 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, 2434 DAG.getConstant(0, DL, XLenVT), VL); 2435 2436 // Otherwise use the more complicated splatting algorithm. 2437 return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG); 2438 } 2439 2440 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2441 const RISCVSubtarget &Subtarget) { 2442 // We need to be able to widen elements to the next larger integer type. 2443 if (VT.getScalarSizeInBits() >= Subtarget.getELEN()) 2444 return false; 2445 2446 int Size = Mask.size(); 2447 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2448 2449 int Srcs[] = {-1, -1}; 2450 for (int i = 0; i != Size; ++i) { 2451 // Ignore undef elements. 2452 if (Mask[i] < 0) 2453 continue; 2454 2455 // Is this an even or odd element. 2456 int Pol = i % 2; 2457 2458 // Ensure we consistently use the same source for this element polarity. 2459 int Src = Mask[i] / Size; 2460 if (Srcs[Pol] < 0) 2461 Srcs[Pol] = Src; 2462 if (Srcs[Pol] != Src) 2463 return false; 2464 2465 // Make sure the element within the source is appropriate for this element 2466 // in the destination. 2467 int Elt = Mask[i] % Size; 2468 if (Elt != i / 2) 2469 return false; 2470 } 2471 2472 // We need to find a source for each polarity and they can't be the same. 2473 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2474 return false; 2475 2476 // Swap the sources if the second source was in the even polarity. 2477 SwapSources = Srcs[0] > Srcs[1]; 2478 2479 return true; 2480 } 2481 2482 /// Match shuffles that concatenate two vectors, rotate the concatenation, 2483 /// and then extract the original number of elements from the rotated result. 2484 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The 2485 /// returned rotation amount is for a rotate right, where elements move from 2486 /// higher elements to lower elements. \p LoSrc indicates the first source 2487 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector 2488 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be 2489 /// 0 or 1 if a rotation is found. 2490 /// 2491 /// NOTE: We talk about rotate to the right which matches how bit shift and 2492 /// rotate instructions are described where LSBs are on the right, but LLVM IR 2493 /// and the table below write vectors with the lowest elements on the left. 2494 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) { 2495 int Size = Mask.size(); 2496 2497 // We need to detect various ways of spelling a rotation: 2498 // [11, 12, 13, 14, 15, 0, 1, 2] 2499 // [-1, 12, 13, 14, -1, -1, 1, -1] 2500 // [-1, -1, -1, -1, -1, -1, 1, 2] 2501 // [ 3, 4, 5, 6, 7, 8, 9, 10] 2502 // [-1, 4, 5, 6, -1, -1, 9, -1] 2503 // [-1, 4, 5, 6, -1, -1, -1, -1] 2504 int Rotation = 0; 2505 LoSrc = -1; 2506 HiSrc = -1; 2507 for (int i = 0; i != Size; ++i) { 2508 int M = Mask[i]; 2509 if (M < 0) 2510 continue; 2511 2512 // Determine where a rotate vector would have started. 2513 int StartIdx = i - (M % Size); 2514 // The identity rotation isn't interesting, stop. 2515 if (StartIdx == 0) 2516 return -1; 2517 2518 // If we found the tail of a vector the rotation must be the missing 2519 // front. If we found the head of a vector, it must be how much of the 2520 // head. 2521 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; 2522 2523 if (Rotation == 0) 2524 Rotation = CandidateRotation; 2525 else if (Rotation != CandidateRotation) 2526 // The rotations don't match, so we can't match this mask. 2527 return -1; 2528 2529 // Compute which value this mask is pointing at. 2530 int MaskSrc = M < Size ? 0 : 1; 2531 2532 // Compute which of the two target values this index should be assigned to. 2533 // This reflects whether the high elements are remaining or the low elemnts 2534 // are remaining. 2535 int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc; 2536 2537 // Either set up this value if we've not encountered it before, or check 2538 // that it remains consistent. 2539 if (TargetSrc < 0) 2540 TargetSrc = MaskSrc; 2541 else if (TargetSrc != MaskSrc) 2542 // This may be a rotation, but it pulls from the inputs in some 2543 // unsupported interleaving. 2544 return -1; 2545 } 2546 2547 // Check that we successfully analyzed the mask, and normalize the results. 2548 assert(Rotation != 0 && "Failed to locate a viable rotation!"); 2549 assert((LoSrc >= 0 || HiSrc >= 0) && 2550 "Failed to find a rotated input vector!"); 2551 2552 return Rotation; 2553 } 2554 2555 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2556 const RISCVSubtarget &Subtarget) { 2557 SDValue V1 = Op.getOperand(0); 2558 SDValue V2 = Op.getOperand(1); 2559 SDLoc DL(Op); 2560 MVT XLenVT = Subtarget.getXLenVT(); 2561 MVT VT = Op.getSimpleValueType(); 2562 unsigned NumElts = VT.getVectorNumElements(); 2563 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2564 2565 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2566 2567 SDValue TrueMask, VL; 2568 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2569 2570 if (SVN->isSplat()) { 2571 const int Lane = SVN->getSplatIndex(); 2572 if (Lane >= 0) { 2573 MVT SVT = VT.getVectorElementType(); 2574 2575 // Turn splatted vector load into a strided load with an X0 stride. 2576 SDValue V = V1; 2577 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2578 // with undef. 2579 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2580 int Offset = Lane; 2581 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2582 int OpElements = 2583 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2584 V = V.getOperand(Offset / OpElements); 2585 Offset %= OpElements; 2586 } 2587 2588 // We need to ensure the load isn't atomic or volatile. 2589 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2590 auto *Ld = cast<LoadSDNode>(V); 2591 Offset *= SVT.getStoreSize(); 2592 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2593 TypeSize::Fixed(Offset), DL); 2594 2595 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2596 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2597 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2598 SDValue IntID = 2599 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2600 SDValue Ops[] = {Ld->getChain(), 2601 IntID, 2602 DAG.getUNDEF(ContainerVT), 2603 NewAddr, 2604 DAG.getRegister(RISCV::X0, XLenVT), 2605 VL}; 2606 SDValue NewLoad = DAG.getMemIntrinsicNode( 2607 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2608 DAG.getMachineFunction().getMachineMemOperand( 2609 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2610 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2611 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2612 } 2613 2614 // Otherwise use a scalar load and splat. This will give the best 2615 // opportunity to fold a splat into the operation. ISel can turn it into 2616 // the x0 strided load if we aren't able to fold away the select. 2617 if (SVT.isFloatingPoint()) 2618 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2619 Ld->getPointerInfo().getWithOffset(Offset), 2620 Ld->getOriginalAlign(), 2621 Ld->getMemOperand()->getFlags()); 2622 else 2623 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2624 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2625 Ld->getOriginalAlign(), 2626 Ld->getMemOperand()->getFlags()); 2627 DAG.makeEquivalentMemoryOrdering(Ld, V); 2628 2629 unsigned Opc = 2630 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2631 SDValue Splat = 2632 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL); 2633 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2634 } 2635 2636 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2637 assert(Lane < (int)NumElts && "Unexpected lane!"); 2638 SDValue Gather = 2639 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2640 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2641 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2642 } 2643 } 2644 2645 ArrayRef<int> Mask = SVN->getMask(); 2646 2647 // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may 2648 // be undef which can be handled with a single SLIDEDOWN/UP. 2649 int LoSrc, HiSrc; 2650 int Rotation = isElementRotate(LoSrc, HiSrc, Mask); 2651 if (Rotation > 0) { 2652 SDValue LoV, HiV; 2653 if (LoSrc >= 0) { 2654 LoV = LoSrc == 0 ? V1 : V2; 2655 LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget); 2656 } 2657 if (HiSrc >= 0) { 2658 HiV = HiSrc == 0 ? V1 : V2; 2659 HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget); 2660 } 2661 2662 // We found a rotation. We need to slide HiV down by Rotation. Then we need 2663 // to slide LoV up by (NumElts - Rotation). 2664 unsigned InvRotate = NumElts - Rotation; 2665 2666 SDValue Res = DAG.getUNDEF(ContainerVT); 2667 if (HiV) { 2668 // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN. 2669 // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it 2670 // causes multiple vsetvlis in some test cases such as lowering 2671 // reduce.mul 2672 SDValue DownVL = VL; 2673 if (LoV) 2674 DownVL = DAG.getConstant(InvRotate, DL, XLenVT); 2675 Res = 2676 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV, 2677 DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL); 2678 } 2679 if (LoV) 2680 Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV, 2681 DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL); 2682 2683 return convertFromScalableVector(VT, Res, DAG, Subtarget); 2684 } 2685 2686 // Detect an interleave shuffle and lower to 2687 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2688 bool SwapSources; 2689 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2690 // Swap sources if needed. 2691 if (SwapSources) 2692 std::swap(V1, V2); 2693 2694 // Extract the lower half of the vectors. 2695 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2696 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2697 DAG.getConstant(0, DL, XLenVT)); 2698 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2699 DAG.getConstant(0, DL, XLenVT)); 2700 2701 // Double the element width and halve the number of elements in an int type. 2702 unsigned EltBits = VT.getScalarSizeInBits(); 2703 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2704 MVT WideIntVT = 2705 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2706 // Convert this to a scalable vector. We need to base this on the 2707 // destination size to ensure there's always a type with a smaller LMUL. 2708 MVT WideIntContainerVT = 2709 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2710 2711 // Convert sources to scalable vectors with the same element count as the 2712 // larger type. 2713 MVT HalfContainerVT = MVT::getVectorVT( 2714 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2715 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2716 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2717 2718 // Cast sources to integer. 2719 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2720 MVT IntHalfVT = 2721 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2722 V1 = DAG.getBitcast(IntHalfVT, V1); 2723 V2 = DAG.getBitcast(IntHalfVT, V2); 2724 2725 // Freeze V2 since we use it twice and we need to be sure that the add and 2726 // multiply see the same value. 2727 V2 = DAG.getFreeze(V2); 2728 2729 // Recreate TrueMask using the widened type's element count. 2730 MVT MaskVT = 2731 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2732 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2733 2734 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2735 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2736 V2, TrueMask, VL); 2737 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2738 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2739 DAG.getUNDEF(IntHalfVT), 2740 DAG.getAllOnesConstant(DL, XLenVT)); 2741 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2742 V2, Multiplier, TrueMask, VL); 2743 // Add the new copies to our previous addition giving us 2^eltbits copies of 2744 // V2. This is equivalent to shifting V2 left by eltbits. This should 2745 // combine with the vwmulu.vv above to form vwmaccu.vv. 2746 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2747 TrueMask, VL); 2748 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2749 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2750 // vector VT. 2751 ContainerVT = 2752 MVT::getVectorVT(VT.getVectorElementType(), 2753 WideIntContainerVT.getVectorElementCount() * 2); 2754 Add = DAG.getBitcast(ContainerVT, Add); 2755 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2756 } 2757 2758 // Detect shuffles which can be re-expressed as vector selects; these are 2759 // shuffles in which each element in the destination is taken from an element 2760 // at the corresponding index in either source vectors. 2761 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2762 int MaskIndex = MaskIdx.value(); 2763 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2764 }); 2765 2766 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2767 2768 SmallVector<SDValue> MaskVals; 2769 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2770 // merged with a second vrgather. 2771 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2772 2773 // By default we preserve the original operand order, and use a mask to 2774 // select LHS as true and RHS as false. However, since RVV vector selects may 2775 // feature splats but only on the LHS, we may choose to invert our mask and 2776 // instead select between RHS and LHS. 2777 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2778 bool InvertMask = IsSelect == SwapOps; 2779 2780 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2781 // half. 2782 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2783 2784 // Now construct the mask that will be used by the vselect or blended 2785 // vrgather operation. For vrgathers, construct the appropriate indices into 2786 // each vector. 2787 for (int MaskIndex : Mask) { 2788 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2789 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2790 if (!IsSelect) { 2791 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2792 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2793 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2794 : DAG.getUNDEF(XLenVT)); 2795 GatherIndicesRHS.push_back( 2796 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2797 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2798 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2799 ++LHSIndexCounts[MaskIndex]; 2800 if (!IsLHSOrUndefIndex) 2801 ++RHSIndexCounts[MaskIndex - NumElts]; 2802 } 2803 } 2804 2805 if (SwapOps) { 2806 std::swap(V1, V2); 2807 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2808 } 2809 2810 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2811 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2812 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2813 2814 if (IsSelect) 2815 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2816 2817 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2818 // On such a large vector we're unable to use i8 as the index type. 2819 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2820 // may involve vector splitting if we're already at LMUL=8, or our 2821 // user-supplied maximum fixed-length LMUL. 2822 return SDValue(); 2823 } 2824 2825 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2826 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2827 MVT IndexVT = VT.changeTypeToInteger(); 2828 // Since we can't introduce illegal index types at this stage, use i16 and 2829 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2830 // than XLenVT. 2831 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2832 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2833 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2834 } 2835 2836 MVT IndexContainerVT = 2837 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2838 2839 SDValue Gather; 2840 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2841 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2842 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2843 Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG, 2844 Subtarget); 2845 } else { 2846 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2847 // If only one index is used, we can use a "splat" vrgather. 2848 // TODO: We can splat the most-common index and fix-up any stragglers, if 2849 // that's beneficial. 2850 if (LHSIndexCounts.size() == 1) { 2851 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2852 Gather = 2853 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2854 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2855 } else { 2856 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2857 LHSIndices = 2858 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2859 2860 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2861 TrueMask, VL); 2862 } 2863 } 2864 2865 // If a second vector operand is used by this shuffle, blend it in with an 2866 // additional vrgather. 2867 if (!V2.isUndef()) { 2868 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2869 // If only one index is used, we can use a "splat" vrgather. 2870 // TODO: We can splat the most-common index and fix-up any stragglers, if 2871 // that's beneficial. 2872 if (RHSIndexCounts.size() == 1) { 2873 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2874 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2875 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2876 } else { 2877 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2878 RHSIndices = 2879 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2880 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2881 VL); 2882 } 2883 2884 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2885 SelectMask = 2886 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2887 2888 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2889 Gather, VL); 2890 } 2891 2892 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2893 } 2894 2895 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 2896 // Support splats for any type. These should type legalize well. 2897 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 2898 return true; 2899 2900 // Only support legal VTs for other shuffles for now. 2901 if (!isTypeLegal(VT)) 2902 return false; 2903 2904 MVT SVT = VT.getSimpleVT(); 2905 2906 bool SwapSources; 2907 int LoSrc, HiSrc; 2908 return (isElementRotate(LoSrc, HiSrc, M) > 0) || 2909 isInterleaveShuffle(M, SVT, SwapSources, Subtarget); 2910 } 2911 2912 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2913 SDLoc DL, SelectionDAG &DAG, 2914 const RISCVSubtarget &Subtarget) { 2915 if (VT.isScalableVector()) 2916 return DAG.getFPExtendOrRound(Op, DL, VT); 2917 assert(VT.isFixedLengthVector() && 2918 "Unexpected value type for RVV FP extend/round lowering"); 2919 SDValue Mask, VL; 2920 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2921 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2922 ? RISCVISD::FP_EXTEND_VL 2923 : RISCVISD::FP_ROUND_VL; 2924 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2925 } 2926 2927 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2928 // the exponent. 2929 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2930 MVT VT = Op.getSimpleValueType(); 2931 unsigned EltSize = VT.getScalarSizeInBits(); 2932 SDValue Src = Op.getOperand(0); 2933 SDLoc DL(Op); 2934 2935 // We need a FP type that can represent the value. 2936 // TODO: Use f16 for i8 when possible? 2937 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2938 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2939 2940 // Legal types should have been checked in the RISCVTargetLowering 2941 // constructor. 2942 // TODO: Splitting may make sense in some cases. 2943 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2944 "Expected legal float type!"); 2945 2946 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2947 // The trailing zero count is equal to log2 of this single bit value. 2948 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2949 SDValue Neg = 2950 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2951 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2952 } 2953 2954 // We have a legal FP type, convert to it. 2955 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2956 // Bitcast to integer and shift the exponent to the LSB. 2957 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2958 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2959 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2960 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2961 DAG.getConstant(ShiftAmt, DL, IntVT)); 2962 // Truncate back to original type to allow vnsrl. 2963 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2964 // The exponent contains log2 of the value in biased form. 2965 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2966 2967 // For trailing zeros, we just need to subtract the bias. 2968 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2969 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2970 DAG.getConstant(ExponentBias, DL, VT)); 2971 2972 // For leading zeros, we need to remove the bias and convert from log2 to 2973 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2974 unsigned Adjust = ExponentBias + (EltSize - 1); 2975 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2976 } 2977 2978 // While RVV has alignment restrictions, we should always be able to load as a 2979 // legal equivalently-sized byte-typed vector instead. This method is 2980 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2981 // the load is already correctly-aligned, it returns SDValue(). 2982 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2983 SelectionDAG &DAG) const { 2984 auto *Load = cast<LoadSDNode>(Op); 2985 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2986 2987 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2988 Load->getMemoryVT(), 2989 *Load->getMemOperand())) 2990 return SDValue(); 2991 2992 SDLoc DL(Op); 2993 MVT VT = Op.getSimpleValueType(); 2994 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2995 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2996 "Unexpected unaligned RVV load type"); 2997 MVT NewVT = 2998 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2999 assert(NewVT.isValid() && 3000 "Expecting equally-sized RVV vector types to be legal"); 3001 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 3002 Load->getPointerInfo(), Load->getOriginalAlign(), 3003 Load->getMemOperand()->getFlags()); 3004 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 3005 } 3006 3007 // While RVV has alignment restrictions, we should always be able to store as a 3008 // legal equivalently-sized byte-typed vector instead. This method is 3009 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 3010 // returns SDValue() if the store is already correctly aligned. 3011 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 3012 SelectionDAG &DAG) const { 3013 auto *Store = cast<StoreSDNode>(Op); 3014 assert(Store && Store->getValue().getValueType().isVector() && 3015 "Expected vector store"); 3016 3017 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 3018 Store->getMemoryVT(), 3019 *Store->getMemOperand())) 3020 return SDValue(); 3021 3022 SDLoc DL(Op); 3023 SDValue StoredVal = Store->getValue(); 3024 MVT VT = StoredVal.getSimpleValueType(); 3025 unsigned EltSizeBits = VT.getScalarSizeInBits(); 3026 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 3027 "Unexpected unaligned RVV store type"); 3028 MVT NewVT = 3029 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 3030 assert(NewVT.isValid() && 3031 "Expecting equally-sized RVV vector types to be legal"); 3032 StoredVal = DAG.getBitcast(NewVT, StoredVal); 3033 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 3034 Store->getPointerInfo(), Store->getOriginalAlign(), 3035 Store->getMemOperand()->getFlags()); 3036 } 3037 3038 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 3039 SelectionDAG &DAG) const { 3040 switch (Op.getOpcode()) { 3041 default: 3042 report_fatal_error("unimplemented operand"); 3043 case ISD::GlobalAddress: 3044 return lowerGlobalAddress(Op, DAG); 3045 case ISD::BlockAddress: 3046 return lowerBlockAddress(Op, DAG); 3047 case ISD::ConstantPool: 3048 return lowerConstantPool(Op, DAG); 3049 case ISD::JumpTable: 3050 return lowerJumpTable(Op, DAG); 3051 case ISD::GlobalTLSAddress: 3052 return lowerGlobalTLSAddress(Op, DAG); 3053 case ISD::SELECT: 3054 return lowerSELECT(Op, DAG); 3055 case ISD::BRCOND: 3056 return lowerBRCOND(Op, DAG); 3057 case ISD::VASTART: 3058 return lowerVASTART(Op, DAG); 3059 case ISD::FRAMEADDR: 3060 return lowerFRAMEADDR(Op, DAG); 3061 case ISD::RETURNADDR: 3062 return lowerRETURNADDR(Op, DAG); 3063 case ISD::SHL_PARTS: 3064 return lowerShiftLeftParts(Op, DAG); 3065 case ISD::SRA_PARTS: 3066 return lowerShiftRightParts(Op, DAG, true); 3067 case ISD::SRL_PARTS: 3068 return lowerShiftRightParts(Op, DAG, false); 3069 case ISD::BITCAST: { 3070 SDLoc DL(Op); 3071 EVT VT = Op.getValueType(); 3072 SDValue Op0 = Op.getOperand(0); 3073 EVT Op0VT = Op0.getValueType(); 3074 MVT XLenVT = Subtarget.getXLenVT(); 3075 if (VT.isFixedLengthVector()) { 3076 // We can handle fixed length vector bitcasts with a simple replacement 3077 // in isel. 3078 if (Op0VT.isFixedLengthVector()) 3079 return Op; 3080 // When bitcasting from scalar to fixed-length vector, insert the scalar 3081 // into a one-element vector of the result type, and perform a vector 3082 // bitcast. 3083 if (!Op0VT.isVector()) { 3084 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 3085 if (!isTypeLegal(BVT)) 3086 return SDValue(); 3087 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 3088 DAG.getUNDEF(BVT), Op0, 3089 DAG.getConstant(0, DL, XLenVT))); 3090 } 3091 return SDValue(); 3092 } 3093 // Custom-legalize bitcasts from fixed-length vector types to scalar types 3094 // thus: bitcast the vector to a one-element vector type whose element type 3095 // is the same as the result type, and extract the first element. 3096 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 3097 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 3098 if (!isTypeLegal(BVT)) 3099 return SDValue(); 3100 SDValue BVec = DAG.getBitcast(BVT, Op0); 3101 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 3102 DAG.getConstant(0, DL, XLenVT)); 3103 } 3104 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 3105 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 3106 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 3107 return FPConv; 3108 } 3109 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 3110 Subtarget.hasStdExtF()) { 3111 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3112 SDValue FPConv = 3113 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 3114 return FPConv; 3115 } 3116 return SDValue(); 3117 } 3118 case ISD::INTRINSIC_WO_CHAIN: 3119 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3120 case ISD::INTRINSIC_W_CHAIN: 3121 return LowerINTRINSIC_W_CHAIN(Op, DAG); 3122 case ISD::INTRINSIC_VOID: 3123 return LowerINTRINSIC_VOID(Op, DAG); 3124 case ISD::BSWAP: 3125 case ISD::BITREVERSE: { 3126 MVT VT = Op.getSimpleValueType(); 3127 SDLoc DL(Op); 3128 if (Subtarget.hasStdExtZbp()) { 3129 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 3130 // Start with the maximum immediate value which is the bitwidth - 1. 3131 unsigned Imm = VT.getSizeInBits() - 1; 3132 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 3133 if (Op.getOpcode() == ISD::BSWAP) 3134 Imm &= ~0x7U; 3135 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 3136 DAG.getConstant(Imm, DL, VT)); 3137 } 3138 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 3139 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 3140 // Expand bitreverse to a bswap(rev8) followed by brev8. 3141 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 3142 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 3143 // as brev8 by an isel pattern. 3144 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 3145 DAG.getConstant(7, DL, VT)); 3146 } 3147 case ISD::FSHL: 3148 case ISD::FSHR: { 3149 MVT VT = Op.getSimpleValueType(); 3150 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 3151 SDLoc DL(Op); 3152 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 3153 // use log(XLen) bits. Mask the shift amount accordingly to prevent 3154 // accidentally setting the extra bit. 3155 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 3156 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 3157 DAG.getConstant(ShAmtWidth, DL, VT)); 3158 // fshl and fshr concatenate their operands in the same order. fsr and fsl 3159 // instruction use different orders. fshl will return its first operand for 3160 // shift of zero, fshr will return its second operand. fsl and fsr both 3161 // return rs1 so the ISD nodes need to have different operand orders. 3162 // Shift amount is in rs2. 3163 SDValue Op0 = Op.getOperand(0); 3164 SDValue Op1 = Op.getOperand(1); 3165 unsigned Opc = RISCVISD::FSL; 3166 if (Op.getOpcode() == ISD::FSHR) { 3167 std::swap(Op0, Op1); 3168 Opc = RISCVISD::FSR; 3169 } 3170 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3171 } 3172 case ISD::TRUNCATE: 3173 // Only custom-lower vector truncates 3174 if (!Op.getSimpleValueType().isVector()) 3175 return Op; 3176 return lowerVectorTruncLike(Op, DAG); 3177 case ISD::ANY_EXTEND: 3178 case ISD::ZERO_EXTEND: 3179 if (Op.getOperand(0).getValueType().isVector() && 3180 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3181 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3182 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3183 case ISD::SIGN_EXTEND: 3184 if (Op.getOperand(0).getValueType().isVector() && 3185 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3186 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3187 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3188 case ISD::SPLAT_VECTOR_PARTS: 3189 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3190 case ISD::INSERT_VECTOR_ELT: 3191 return lowerINSERT_VECTOR_ELT(Op, DAG); 3192 case ISD::EXTRACT_VECTOR_ELT: 3193 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3194 case ISD::VSCALE: { 3195 MVT VT = Op.getSimpleValueType(); 3196 SDLoc DL(Op); 3197 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3198 // We define our scalable vector types for lmul=1 to use a 64 bit known 3199 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3200 // vscale as VLENB / 8. 3201 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3202 if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock) 3203 report_fatal_error("Support for VLEN==32 is incomplete."); 3204 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3205 // We assume VLENB is a multiple of 8. We manually choose the best shift 3206 // here because SimplifyDemandedBits isn't always able to simplify it. 3207 uint64_t Val = Op.getConstantOperandVal(0); 3208 if (isPowerOf2_64(Val)) { 3209 uint64_t Log2 = Log2_64(Val); 3210 if (Log2 < 3) 3211 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3212 DAG.getConstant(3 - Log2, DL, VT)); 3213 if (Log2 > 3) 3214 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3215 DAG.getConstant(Log2 - 3, DL, VT)); 3216 return VLENB; 3217 } 3218 // If the multiplier is a multiple of 8, scale it down to avoid needing 3219 // to shift the VLENB value. 3220 if ((Val % 8) == 0) 3221 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3222 DAG.getConstant(Val / 8, DL, VT)); 3223 } 3224 3225 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3226 DAG.getConstant(3, DL, VT)); 3227 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3228 } 3229 case ISD::FPOWI: { 3230 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3231 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3232 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3233 Op.getOperand(1).getValueType() == MVT::i32) { 3234 SDLoc DL(Op); 3235 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3236 SDValue Powi = 3237 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3238 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3239 DAG.getIntPtrConstant(0, DL)); 3240 } 3241 return SDValue(); 3242 } 3243 case ISD::FP_EXTEND: { 3244 // RVV can only do fp_extend to types double the size as the source. We 3245 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3246 // via f32. 3247 SDLoc DL(Op); 3248 MVT VT = Op.getSimpleValueType(); 3249 SDValue Src = Op.getOperand(0); 3250 MVT SrcVT = Src.getSimpleValueType(); 3251 3252 // Prepare any fixed-length vector operands. 3253 MVT ContainerVT = VT; 3254 if (SrcVT.isFixedLengthVector()) { 3255 ContainerVT = getContainerForFixedLengthVector(VT); 3256 MVT SrcContainerVT = 3257 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3258 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3259 } 3260 3261 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3262 SrcVT.getVectorElementType() != MVT::f16) { 3263 // For scalable vectors, we only need to close the gap between 3264 // vXf16->vXf64. 3265 if (!VT.isFixedLengthVector()) 3266 return Op; 3267 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3268 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3269 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3270 } 3271 3272 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3273 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3274 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3275 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3276 3277 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3278 DL, DAG, Subtarget); 3279 if (VT.isFixedLengthVector()) 3280 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3281 return Extend; 3282 } 3283 case ISD::FP_ROUND: { 3284 // RVV can only do fp_round to types half the size as the source. We 3285 // custom-lower f64->f16 rounds via RVV's round-to-odd float 3286 // conversion instruction. 3287 SDLoc DL(Op); 3288 MVT VT = Op.getSimpleValueType(); 3289 SDValue Src = Op.getOperand(0); 3290 MVT SrcVT = Src.getSimpleValueType(); 3291 3292 // Prepare any fixed-length vector operands. 3293 MVT ContainerVT = VT; 3294 if (VT.isFixedLengthVector()) { 3295 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3296 ContainerVT = 3297 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3298 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3299 } 3300 3301 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 3302 SrcVT.getVectorElementType() != MVT::f64) { 3303 // For scalable vectors, we only need to close the gap between 3304 // vXf64<->vXf16. 3305 if (!VT.isFixedLengthVector()) 3306 return Op; 3307 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 3308 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3309 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3310 } 3311 3312 SDValue Mask, VL; 3313 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3314 3315 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3316 SDValue IntermediateRound = 3317 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3318 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3319 DL, DAG, Subtarget); 3320 3321 if (VT.isFixedLengthVector()) 3322 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3323 return Round; 3324 } 3325 case ISD::FP_TO_SINT: 3326 case ISD::FP_TO_UINT: 3327 case ISD::SINT_TO_FP: 3328 case ISD::UINT_TO_FP: { 3329 // RVV can only do fp<->int conversions to types half/double the size as 3330 // the source. We custom-lower any conversions that do two hops into 3331 // sequences. 3332 MVT VT = Op.getSimpleValueType(); 3333 if (!VT.isVector()) 3334 return Op; 3335 SDLoc DL(Op); 3336 SDValue Src = Op.getOperand(0); 3337 MVT EltVT = VT.getVectorElementType(); 3338 MVT SrcVT = Src.getSimpleValueType(); 3339 MVT SrcEltVT = SrcVT.getVectorElementType(); 3340 unsigned EltSize = EltVT.getSizeInBits(); 3341 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3342 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3343 "Unexpected vector element types"); 3344 3345 bool IsInt2FP = SrcEltVT.isInteger(); 3346 // Widening conversions 3347 if (EltSize > (2 * SrcEltSize)) { 3348 if (IsInt2FP) { 3349 // Do a regular integer sign/zero extension then convert to float. 3350 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), 3351 VT.getVectorElementCount()); 3352 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3353 ? ISD::ZERO_EXTEND 3354 : ISD::SIGN_EXTEND; 3355 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3356 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3357 } 3358 // FP2Int 3359 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3360 // Do one doubling fp_extend then complete the operation by converting 3361 // to int. 3362 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3363 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3364 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3365 } 3366 3367 // Narrowing conversions 3368 if (SrcEltSize > (2 * EltSize)) { 3369 if (IsInt2FP) { 3370 // One narrowing int_to_fp, then an fp_round. 3371 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3372 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3373 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3374 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3375 } 3376 // FP2Int 3377 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3378 // representable by the integer, the result is poison. 3379 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 3380 VT.getVectorElementCount()); 3381 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3382 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3383 } 3384 3385 // Scalable vectors can exit here. Patterns will handle equally-sized 3386 // conversions halving/doubling ones. 3387 if (!VT.isFixedLengthVector()) 3388 return Op; 3389 3390 // For fixed-length vectors we lower to a custom "VL" node. 3391 unsigned RVVOpc = 0; 3392 switch (Op.getOpcode()) { 3393 default: 3394 llvm_unreachable("Impossible opcode"); 3395 case ISD::FP_TO_SINT: 3396 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3397 break; 3398 case ISD::FP_TO_UINT: 3399 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3400 break; 3401 case ISD::SINT_TO_FP: 3402 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3403 break; 3404 case ISD::UINT_TO_FP: 3405 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3406 break; 3407 } 3408 3409 MVT ContainerVT, SrcContainerVT; 3410 // Derive the reference container type from the larger vector type. 3411 if (SrcEltSize > EltSize) { 3412 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3413 ContainerVT = 3414 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3415 } else { 3416 ContainerVT = getContainerForFixedLengthVector(VT); 3417 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3418 } 3419 3420 SDValue Mask, VL; 3421 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3422 3423 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3424 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3425 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3426 } 3427 case ISD::FP_TO_SINT_SAT: 3428 case ISD::FP_TO_UINT_SAT: 3429 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3430 case ISD::FTRUNC: 3431 case ISD::FCEIL: 3432 case ISD::FFLOOR: 3433 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3434 case ISD::FROUND: 3435 return lowerFROUND(Op, DAG); 3436 case ISD::VECREDUCE_ADD: 3437 case ISD::VECREDUCE_UMAX: 3438 case ISD::VECREDUCE_SMAX: 3439 case ISD::VECREDUCE_UMIN: 3440 case ISD::VECREDUCE_SMIN: 3441 return lowerVECREDUCE(Op, DAG); 3442 case ISD::VECREDUCE_AND: 3443 case ISD::VECREDUCE_OR: 3444 case ISD::VECREDUCE_XOR: 3445 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3446 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3447 return lowerVECREDUCE(Op, DAG); 3448 case ISD::VECREDUCE_FADD: 3449 case ISD::VECREDUCE_SEQ_FADD: 3450 case ISD::VECREDUCE_FMIN: 3451 case ISD::VECREDUCE_FMAX: 3452 return lowerFPVECREDUCE(Op, DAG); 3453 case ISD::VP_REDUCE_ADD: 3454 case ISD::VP_REDUCE_UMAX: 3455 case ISD::VP_REDUCE_SMAX: 3456 case ISD::VP_REDUCE_UMIN: 3457 case ISD::VP_REDUCE_SMIN: 3458 case ISD::VP_REDUCE_FADD: 3459 case ISD::VP_REDUCE_SEQ_FADD: 3460 case ISD::VP_REDUCE_FMIN: 3461 case ISD::VP_REDUCE_FMAX: 3462 return lowerVPREDUCE(Op, DAG); 3463 case ISD::VP_REDUCE_AND: 3464 case ISD::VP_REDUCE_OR: 3465 case ISD::VP_REDUCE_XOR: 3466 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3467 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3468 return lowerVPREDUCE(Op, DAG); 3469 case ISD::INSERT_SUBVECTOR: 3470 return lowerINSERT_SUBVECTOR(Op, DAG); 3471 case ISD::EXTRACT_SUBVECTOR: 3472 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3473 case ISD::STEP_VECTOR: 3474 return lowerSTEP_VECTOR(Op, DAG); 3475 case ISD::VECTOR_REVERSE: 3476 return lowerVECTOR_REVERSE(Op, DAG); 3477 case ISD::VECTOR_SPLICE: 3478 return lowerVECTOR_SPLICE(Op, DAG); 3479 case ISD::BUILD_VECTOR: 3480 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3481 case ISD::SPLAT_VECTOR: 3482 if (Op.getValueType().getVectorElementType() == MVT::i1) 3483 return lowerVectorMaskSplat(Op, DAG); 3484 return SDValue(); 3485 case ISD::VECTOR_SHUFFLE: 3486 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3487 case ISD::CONCAT_VECTORS: { 3488 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3489 // better than going through the stack, as the default expansion does. 3490 SDLoc DL(Op); 3491 MVT VT = Op.getSimpleValueType(); 3492 unsigned NumOpElts = 3493 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3494 SDValue Vec = DAG.getUNDEF(VT); 3495 for (const auto &OpIdx : enumerate(Op->ops())) { 3496 SDValue SubVec = OpIdx.value(); 3497 // Don't insert undef subvectors. 3498 if (SubVec.isUndef()) 3499 continue; 3500 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3501 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3502 } 3503 return Vec; 3504 } 3505 case ISD::LOAD: 3506 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3507 return V; 3508 if (Op.getValueType().isFixedLengthVector()) 3509 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3510 return Op; 3511 case ISD::STORE: 3512 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3513 return V; 3514 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3515 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3516 return Op; 3517 case ISD::MLOAD: 3518 case ISD::VP_LOAD: 3519 return lowerMaskedLoad(Op, DAG); 3520 case ISD::MSTORE: 3521 case ISD::VP_STORE: 3522 return lowerMaskedStore(Op, DAG); 3523 case ISD::SETCC: 3524 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3525 case ISD::ADD: 3526 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3527 case ISD::SUB: 3528 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3529 case ISD::MUL: 3530 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3531 case ISD::MULHS: 3532 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3533 case ISD::MULHU: 3534 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3535 case ISD::AND: 3536 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3537 RISCVISD::AND_VL); 3538 case ISD::OR: 3539 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3540 RISCVISD::OR_VL); 3541 case ISD::XOR: 3542 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3543 RISCVISD::XOR_VL); 3544 case ISD::SDIV: 3545 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3546 case ISD::SREM: 3547 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3548 case ISD::UDIV: 3549 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3550 case ISD::UREM: 3551 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3552 case ISD::SHL: 3553 case ISD::SRA: 3554 case ISD::SRL: 3555 if (Op.getSimpleValueType().isFixedLengthVector()) 3556 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3557 // This can be called for an i32 shift amount that needs to be promoted. 3558 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3559 "Unexpected custom legalisation"); 3560 return SDValue(); 3561 case ISD::SADDSAT: 3562 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3563 case ISD::UADDSAT: 3564 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3565 case ISD::SSUBSAT: 3566 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3567 case ISD::USUBSAT: 3568 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3569 case ISD::FADD: 3570 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3571 case ISD::FSUB: 3572 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3573 case ISD::FMUL: 3574 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3575 case ISD::FDIV: 3576 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3577 case ISD::FNEG: 3578 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3579 case ISD::FABS: 3580 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3581 case ISD::FSQRT: 3582 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3583 case ISD::FMA: 3584 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3585 case ISD::SMIN: 3586 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3587 case ISD::SMAX: 3588 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3589 case ISD::UMIN: 3590 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3591 case ISD::UMAX: 3592 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3593 case ISD::FMINNUM: 3594 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3595 case ISD::FMAXNUM: 3596 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3597 case ISD::ABS: 3598 return lowerABS(Op, DAG); 3599 case ISD::CTLZ_ZERO_UNDEF: 3600 case ISD::CTTZ_ZERO_UNDEF: 3601 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3602 case ISD::VSELECT: 3603 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3604 case ISD::FCOPYSIGN: 3605 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3606 case ISD::MGATHER: 3607 case ISD::VP_GATHER: 3608 return lowerMaskedGather(Op, DAG); 3609 case ISD::MSCATTER: 3610 case ISD::VP_SCATTER: 3611 return lowerMaskedScatter(Op, DAG); 3612 case ISD::FLT_ROUNDS_: 3613 return lowerGET_ROUNDING(Op, DAG); 3614 case ISD::SET_ROUNDING: 3615 return lowerSET_ROUNDING(Op, DAG); 3616 case ISD::VP_SELECT: 3617 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3618 case ISD::VP_MERGE: 3619 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3620 case ISD::VP_ADD: 3621 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3622 case ISD::VP_SUB: 3623 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3624 case ISD::VP_MUL: 3625 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3626 case ISD::VP_SDIV: 3627 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3628 case ISD::VP_UDIV: 3629 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3630 case ISD::VP_SREM: 3631 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3632 case ISD::VP_UREM: 3633 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3634 case ISD::VP_AND: 3635 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3636 case ISD::VP_OR: 3637 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3638 case ISD::VP_XOR: 3639 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3640 case ISD::VP_ASHR: 3641 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3642 case ISD::VP_LSHR: 3643 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3644 case ISD::VP_SHL: 3645 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3646 case ISD::VP_FADD: 3647 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3648 case ISD::VP_FSUB: 3649 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3650 case ISD::VP_FMUL: 3651 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3652 case ISD::VP_FDIV: 3653 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3654 case ISD::VP_FNEG: 3655 return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL); 3656 case ISD::VP_FMA: 3657 return lowerVPOp(Op, DAG, RISCVISD::FMA_VL); 3658 case ISD::VP_SEXT: 3659 case ISD::VP_ZEXT: 3660 if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) 3661 return lowerVPExtMaskOp(Op, DAG); 3662 return lowerVPOp(Op, DAG, 3663 Op.getOpcode() == ISD::VP_SEXT ? RISCVISD::VSEXT_VL 3664 : RISCVISD::VZEXT_VL); 3665 case ISD::VP_TRUNC: 3666 return lowerVectorTruncLike(Op, DAG); 3667 case ISD::VP_FPTOSI: 3668 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL); 3669 case ISD::VP_FPTOUI: 3670 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL); 3671 case ISD::VP_SITOFP: 3672 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL); 3673 case ISD::VP_UITOFP: 3674 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL); 3675 case ISD::VP_SETCC: 3676 return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL); 3677 } 3678 } 3679 3680 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3681 SelectionDAG &DAG, unsigned Flags) { 3682 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3683 } 3684 3685 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3686 SelectionDAG &DAG, unsigned Flags) { 3687 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3688 Flags); 3689 } 3690 3691 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3692 SelectionDAG &DAG, unsigned Flags) { 3693 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3694 N->getOffset(), Flags); 3695 } 3696 3697 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3698 SelectionDAG &DAG, unsigned Flags) { 3699 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3700 } 3701 3702 template <class NodeTy> 3703 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3704 bool IsLocal) const { 3705 SDLoc DL(N); 3706 EVT Ty = getPointerTy(DAG.getDataLayout()); 3707 3708 if (isPositionIndependent()) { 3709 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3710 if (IsLocal) 3711 // Use PC-relative addressing to access the symbol. This generates the 3712 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3713 // %pcrel_lo(auipc)). 3714 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3715 3716 // Use PC-relative addressing to access the GOT for this symbol, then load 3717 // the address from the GOT. This generates the pattern (PseudoLA sym), 3718 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3719 SDValue Load = 3720 SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3721 MachineFunction &MF = DAG.getMachineFunction(); 3722 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3723 MachinePointerInfo::getGOT(MF), 3724 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3725 MachineMemOperand::MOInvariant, 3726 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3727 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3728 return Load; 3729 } 3730 3731 switch (getTargetMachine().getCodeModel()) { 3732 default: 3733 report_fatal_error("Unsupported code model for lowering"); 3734 case CodeModel::Small: { 3735 // Generate a sequence for accessing addresses within the first 2 GiB of 3736 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3737 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3738 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3739 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3740 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3741 } 3742 case CodeModel::Medium: { 3743 // Generate a sequence for accessing addresses within any 2GiB range within 3744 // the address space. This generates the pattern (PseudoLLA sym), which 3745 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3746 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3747 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3748 } 3749 } 3750 } 3751 3752 template SDValue RISCVTargetLowering::getAddr<GlobalAddressSDNode>( 3753 GlobalAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3754 template SDValue RISCVTargetLowering::getAddr<BlockAddressSDNode>( 3755 BlockAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3756 template SDValue RISCVTargetLowering::getAddr<ConstantPoolSDNode>( 3757 ConstantPoolSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3758 template SDValue RISCVTargetLowering::getAddr<JumpTableSDNode>( 3759 JumpTableSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3760 3761 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3762 SelectionDAG &DAG) const { 3763 SDLoc DL(Op); 3764 EVT Ty = Op.getValueType(); 3765 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3766 int64_t Offset = N->getOffset(); 3767 MVT XLenVT = Subtarget.getXLenVT(); 3768 3769 const GlobalValue *GV = N->getGlobal(); 3770 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3771 SDValue Addr = getAddr(N, DAG, IsLocal); 3772 3773 // In order to maximise the opportunity for common subexpression elimination, 3774 // emit a separate ADD node for the global address offset instead of folding 3775 // it in the global address node. Later peephole optimisations may choose to 3776 // fold it back in when profitable. 3777 if (Offset != 0) 3778 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3779 DAG.getConstant(Offset, DL, XLenVT)); 3780 return Addr; 3781 } 3782 3783 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3784 SelectionDAG &DAG) const { 3785 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3786 3787 return getAddr(N, DAG); 3788 } 3789 3790 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3791 SelectionDAG &DAG) const { 3792 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3793 3794 return getAddr(N, DAG); 3795 } 3796 3797 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3798 SelectionDAG &DAG) const { 3799 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3800 3801 return getAddr(N, DAG); 3802 } 3803 3804 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3805 SelectionDAG &DAG, 3806 bool UseGOT) const { 3807 SDLoc DL(N); 3808 EVT Ty = getPointerTy(DAG.getDataLayout()); 3809 const GlobalValue *GV = N->getGlobal(); 3810 MVT XLenVT = Subtarget.getXLenVT(); 3811 3812 if (UseGOT) { 3813 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3814 // load the address from the GOT and add the thread pointer. This generates 3815 // the pattern (PseudoLA_TLS_IE sym), which expands to 3816 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3817 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3818 SDValue Load = 3819 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3820 MachineFunction &MF = DAG.getMachineFunction(); 3821 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3822 MachinePointerInfo::getGOT(MF), 3823 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3824 MachineMemOperand::MOInvariant, 3825 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3826 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3827 3828 // Add the thread pointer. 3829 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3830 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3831 } 3832 3833 // Generate a sequence for accessing the address relative to the thread 3834 // pointer, with the appropriate adjustment for the thread pointer offset. 3835 // This generates the pattern 3836 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3837 SDValue AddrHi = 3838 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3839 SDValue AddrAdd = 3840 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3841 SDValue AddrLo = 3842 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3843 3844 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3845 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3846 SDValue MNAdd = SDValue( 3847 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3848 0); 3849 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3850 } 3851 3852 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3853 SelectionDAG &DAG) const { 3854 SDLoc DL(N); 3855 EVT Ty = getPointerTy(DAG.getDataLayout()); 3856 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3857 const GlobalValue *GV = N->getGlobal(); 3858 3859 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3860 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3861 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3862 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3863 SDValue Load = 3864 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3865 3866 // Prepare argument list to generate call. 3867 ArgListTy Args; 3868 ArgListEntry Entry; 3869 Entry.Node = Load; 3870 Entry.Ty = CallTy; 3871 Args.push_back(Entry); 3872 3873 // Setup call to __tls_get_addr. 3874 TargetLowering::CallLoweringInfo CLI(DAG); 3875 CLI.setDebugLoc(DL) 3876 .setChain(DAG.getEntryNode()) 3877 .setLibCallee(CallingConv::C, CallTy, 3878 DAG.getExternalSymbol("__tls_get_addr", Ty), 3879 std::move(Args)); 3880 3881 return LowerCallTo(CLI).first; 3882 } 3883 3884 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3885 SelectionDAG &DAG) const { 3886 SDLoc DL(Op); 3887 EVT Ty = Op.getValueType(); 3888 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3889 int64_t Offset = N->getOffset(); 3890 MVT XLenVT = Subtarget.getXLenVT(); 3891 3892 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3893 3894 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3895 CallingConv::GHC) 3896 report_fatal_error("In GHC calling convention TLS is not supported"); 3897 3898 SDValue Addr; 3899 switch (Model) { 3900 case TLSModel::LocalExec: 3901 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3902 break; 3903 case TLSModel::InitialExec: 3904 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3905 break; 3906 case TLSModel::LocalDynamic: 3907 case TLSModel::GeneralDynamic: 3908 Addr = getDynamicTLSAddr(N, DAG); 3909 break; 3910 } 3911 3912 // In order to maximise the opportunity for common subexpression elimination, 3913 // emit a separate ADD node for the global address offset instead of folding 3914 // it in the global address node. Later peephole optimisations may choose to 3915 // fold it back in when profitable. 3916 if (Offset != 0) 3917 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3918 DAG.getConstant(Offset, DL, XLenVT)); 3919 return Addr; 3920 } 3921 3922 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3923 SDValue CondV = Op.getOperand(0); 3924 SDValue TrueV = Op.getOperand(1); 3925 SDValue FalseV = Op.getOperand(2); 3926 SDLoc DL(Op); 3927 MVT VT = Op.getSimpleValueType(); 3928 MVT XLenVT = Subtarget.getXLenVT(); 3929 3930 // Lower vector SELECTs to VSELECTs by splatting the condition. 3931 if (VT.isVector()) { 3932 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3933 SDValue CondSplat = VT.isScalableVector() 3934 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3935 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3936 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3937 } 3938 3939 // If the result type is XLenVT and CondV is the output of a SETCC node 3940 // which also operated on XLenVT inputs, then merge the SETCC node into the 3941 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3942 // compare+branch instructions. i.e.: 3943 // (select (setcc lhs, rhs, cc), truev, falsev) 3944 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3945 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3946 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3947 SDValue LHS = CondV.getOperand(0); 3948 SDValue RHS = CondV.getOperand(1); 3949 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3950 ISD::CondCode CCVal = CC->get(); 3951 3952 // Special case for a select of 2 constants that have a diffence of 1. 3953 // Normally this is done by DAGCombine, but if the select is introduced by 3954 // type legalization or op legalization, we miss it. Restricting to SETLT 3955 // case for now because that is what signed saturating add/sub need. 3956 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3957 // but we would probably want to swap the true/false values if the condition 3958 // is SETGE/SETLE to avoid an XORI. 3959 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3960 CCVal == ISD::SETLT) { 3961 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3962 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3963 if (TrueVal - 1 == FalseVal) 3964 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3965 if (TrueVal + 1 == FalseVal) 3966 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3967 } 3968 3969 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3970 3971 SDValue TargetCC = DAG.getCondCode(CCVal); 3972 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3973 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3974 } 3975 3976 // Otherwise: 3977 // (select condv, truev, falsev) 3978 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3979 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3980 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3981 3982 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3983 3984 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3985 } 3986 3987 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3988 SDValue CondV = Op.getOperand(1); 3989 SDLoc DL(Op); 3990 MVT XLenVT = Subtarget.getXLenVT(); 3991 3992 if (CondV.getOpcode() == ISD::SETCC && 3993 CondV.getOperand(0).getValueType() == XLenVT) { 3994 SDValue LHS = CondV.getOperand(0); 3995 SDValue RHS = CondV.getOperand(1); 3996 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3997 3998 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3999 4000 SDValue TargetCC = DAG.getCondCode(CCVal); 4001 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 4002 LHS, RHS, TargetCC, Op.getOperand(2)); 4003 } 4004 4005 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 4006 CondV, DAG.getConstant(0, DL, XLenVT), 4007 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 4008 } 4009 4010 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 4011 MachineFunction &MF = DAG.getMachineFunction(); 4012 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 4013 4014 SDLoc DL(Op); 4015 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 4016 getPointerTy(MF.getDataLayout())); 4017 4018 // vastart just stores the address of the VarArgsFrameIndex slot into the 4019 // memory location argument. 4020 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 4021 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 4022 MachinePointerInfo(SV)); 4023 } 4024 4025 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 4026 SelectionDAG &DAG) const { 4027 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4028 MachineFunction &MF = DAG.getMachineFunction(); 4029 MachineFrameInfo &MFI = MF.getFrameInfo(); 4030 MFI.setFrameAddressIsTaken(true); 4031 Register FrameReg = RI.getFrameRegister(MF); 4032 int XLenInBytes = Subtarget.getXLen() / 8; 4033 4034 EVT VT = Op.getValueType(); 4035 SDLoc DL(Op); 4036 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 4037 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4038 while (Depth--) { 4039 int Offset = -(XLenInBytes * 2); 4040 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 4041 DAG.getIntPtrConstant(Offset, DL)); 4042 FrameAddr = 4043 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 4044 } 4045 return FrameAddr; 4046 } 4047 4048 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 4049 SelectionDAG &DAG) const { 4050 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4051 MachineFunction &MF = DAG.getMachineFunction(); 4052 MachineFrameInfo &MFI = MF.getFrameInfo(); 4053 MFI.setReturnAddressIsTaken(true); 4054 MVT XLenVT = Subtarget.getXLenVT(); 4055 int XLenInBytes = Subtarget.getXLen() / 8; 4056 4057 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 4058 return SDValue(); 4059 4060 EVT VT = Op.getValueType(); 4061 SDLoc DL(Op); 4062 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4063 if (Depth) { 4064 int Off = -XLenInBytes; 4065 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 4066 SDValue Offset = DAG.getConstant(Off, DL, VT); 4067 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 4068 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 4069 MachinePointerInfo()); 4070 } 4071 4072 // Return the value of the return address register, marking it an implicit 4073 // live-in. 4074 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 4075 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 4076 } 4077 4078 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 4079 SelectionDAG &DAG) const { 4080 SDLoc DL(Op); 4081 SDValue Lo = Op.getOperand(0); 4082 SDValue Hi = Op.getOperand(1); 4083 SDValue Shamt = Op.getOperand(2); 4084 EVT VT = Lo.getValueType(); 4085 4086 // if Shamt-XLEN < 0: // Shamt < XLEN 4087 // Lo = Lo << Shamt 4088 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt)) 4089 // else: 4090 // Lo = 0 4091 // Hi = Lo << (Shamt-XLEN) 4092 4093 SDValue Zero = DAG.getConstant(0, DL, VT); 4094 SDValue One = DAG.getConstant(1, DL, VT); 4095 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4096 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4097 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4098 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4099 4100 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 4101 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 4102 SDValue ShiftRightLo = 4103 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 4104 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 4105 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 4106 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 4107 4108 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4109 4110 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 4111 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4112 4113 SDValue Parts[2] = {Lo, Hi}; 4114 return DAG.getMergeValues(Parts, DL); 4115 } 4116 4117 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 4118 bool IsSRA) const { 4119 SDLoc DL(Op); 4120 SDValue Lo = Op.getOperand(0); 4121 SDValue Hi = Op.getOperand(1); 4122 SDValue Shamt = Op.getOperand(2); 4123 EVT VT = Lo.getValueType(); 4124 4125 // SRA expansion: 4126 // if Shamt-XLEN < 0: // Shamt < XLEN 4127 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4128 // Hi = Hi >>s Shamt 4129 // else: 4130 // Lo = Hi >>s (Shamt-XLEN); 4131 // Hi = Hi >>s (XLEN-1) 4132 // 4133 // SRL expansion: 4134 // if Shamt-XLEN < 0: // Shamt < XLEN 4135 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4136 // Hi = Hi >>u Shamt 4137 // else: 4138 // Lo = Hi >>u (Shamt-XLEN); 4139 // Hi = 0; 4140 4141 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 4142 4143 SDValue Zero = DAG.getConstant(0, DL, VT); 4144 SDValue One = DAG.getConstant(1, DL, VT); 4145 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4146 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4147 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4148 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4149 4150 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 4151 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 4152 SDValue ShiftLeftHi = 4153 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 4154 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 4155 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 4156 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 4157 SDValue HiFalse = 4158 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 4159 4160 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4161 4162 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 4163 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4164 4165 SDValue Parts[2] = {Lo, Hi}; 4166 return DAG.getMergeValues(Parts, DL); 4167 } 4168 4169 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 4170 // legal equivalently-sized i8 type, so we can use that as a go-between. 4171 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 4172 SelectionDAG &DAG) const { 4173 SDLoc DL(Op); 4174 MVT VT = Op.getSimpleValueType(); 4175 SDValue SplatVal = Op.getOperand(0); 4176 // All-zeros or all-ones splats are handled specially. 4177 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4178 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4179 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4180 } 4181 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4182 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4183 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4184 } 4185 MVT XLenVT = Subtarget.getXLenVT(); 4186 assert(SplatVal.getValueType() == XLenVT && 4187 "Unexpected type for i1 splat value"); 4188 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4189 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4190 DAG.getConstant(1, DL, XLenVT)); 4191 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4192 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4193 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4194 } 4195 4196 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4197 // illegal (currently only vXi64 RV32). 4198 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4199 // them to VMV_V_X_VL. 4200 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4201 SelectionDAG &DAG) const { 4202 SDLoc DL(Op); 4203 MVT VecVT = Op.getSimpleValueType(); 4204 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4205 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4206 4207 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4208 SDValue Lo = Op.getOperand(0); 4209 SDValue Hi = Op.getOperand(1); 4210 4211 if (VecVT.isFixedLengthVector()) { 4212 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4213 SDLoc DL(Op); 4214 SDValue Mask, VL; 4215 std::tie(Mask, VL) = 4216 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4217 4218 SDValue Res = 4219 splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG); 4220 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4221 } 4222 4223 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4224 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4225 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4226 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4227 // node in order to try and match RVV vector/scalar instructions. 4228 if ((LoC >> 31) == HiC) 4229 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4230 Lo, DAG.getRegister(RISCV::X0, MVT::i32)); 4231 } 4232 4233 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4234 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4235 isa<ConstantSDNode>(Hi.getOperand(1)) && 4236 Hi.getConstantOperandVal(1) == 31) 4237 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo, 4238 DAG.getRegister(RISCV::X0, MVT::i32)); 4239 4240 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4241 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, 4242 DAG.getUNDEF(VecVT), Lo, Hi, 4243 DAG.getRegister(RISCV::X0, MVT::i32)); 4244 } 4245 4246 // Custom-lower extensions from mask vectors by using a vselect either with 1 4247 // for zero/any-extension or -1 for sign-extension: 4248 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4249 // Note that any-extension is lowered identically to zero-extension. 4250 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4251 int64_t ExtTrueVal) const { 4252 SDLoc DL(Op); 4253 MVT VecVT = Op.getSimpleValueType(); 4254 SDValue Src = Op.getOperand(0); 4255 // Only custom-lower extensions from mask types 4256 assert(Src.getValueType().isVector() && 4257 Src.getValueType().getVectorElementType() == MVT::i1); 4258 4259 if (VecVT.isScalableVector()) { 4260 SDValue SplatZero = DAG.getConstant(0, DL, VecVT); 4261 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT); 4262 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4263 } 4264 4265 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4266 MVT I1ContainerVT = 4267 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4268 4269 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4270 4271 SDValue Mask, VL; 4272 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4273 4274 MVT XLenVT = Subtarget.getXLenVT(); 4275 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4276 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4277 4278 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4279 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4280 SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4281 DAG.getUNDEF(ContainerVT), SplatTrueVal, VL); 4282 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4283 SplatTrueVal, SplatZero, VL); 4284 4285 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4286 } 4287 4288 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4289 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4290 MVT ExtVT = Op.getSimpleValueType(); 4291 // Only custom-lower extensions from fixed-length vector types. 4292 if (!ExtVT.isFixedLengthVector()) 4293 return Op; 4294 MVT VT = Op.getOperand(0).getSimpleValueType(); 4295 // Grab the canonical container type for the extended type. Infer the smaller 4296 // type from that to ensure the same number of vector elements, as we know 4297 // the LMUL will be sufficient to hold the smaller type. 4298 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4299 // Get the extended container type manually to ensure the same number of 4300 // vector elements between source and dest. 4301 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4302 ContainerExtVT.getVectorElementCount()); 4303 4304 SDValue Op1 = 4305 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4306 4307 SDLoc DL(Op); 4308 SDValue Mask, VL; 4309 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4310 4311 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4312 4313 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4314 } 4315 4316 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4317 // setcc operation: 4318 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4319 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op, 4320 SelectionDAG &DAG) const { 4321 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNC; 4322 SDLoc DL(Op); 4323 EVT MaskVT = Op.getValueType(); 4324 // Only expect to custom-lower truncations to mask types 4325 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4326 "Unexpected type for vector mask lowering"); 4327 SDValue Src = Op.getOperand(0); 4328 MVT VecVT = Src.getSimpleValueType(); 4329 SDValue Mask, VL; 4330 if (IsVPTrunc) { 4331 Mask = Op.getOperand(1); 4332 VL = Op.getOperand(2); 4333 } 4334 // If this is a fixed vector, we need to convert it to a scalable vector. 4335 MVT ContainerVT = VecVT; 4336 4337 if (VecVT.isFixedLengthVector()) { 4338 ContainerVT = getContainerForFixedLengthVector(VecVT); 4339 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4340 if (IsVPTrunc) { 4341 MVT MaskContainerVT = 4342 getContainerForFixedLengthVector(Mask.getSimpleValueType()); 4343 Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget); 4344 } 4345 } 4346 4347 if (!IsVPTrunc) { 4348 std::tie(Mask, VL) = 4349 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4350 } 4351 4352 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4353 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4354 4355 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4356 DAG.getUNDEF(ContainerVT), SplatOne, VL); 4357 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4358 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4359 4360 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4361 SDValue Trunc = 4362 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4363 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4364 DAG.getCondCode(ISD::SETNE), Mask, VL); 4365 if (MaskVT.isFixedLengthVector()) 4366 Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4367 return Trunc; 4368 } 4369 4370 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op, 4371 SelectionDAG &DAG) const { 4372 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNC; 4373 SDLoc DL(Op); 4374 4375 MVT VT = Op.getSimpleValueType(); 4376 // Only custom-lower vector truncates 4377 assert(VT.isVector() && "Unexpected type for vector truncate lowering"); 4378 4379 // Truncates to mask types are handled differently 4380 if (VT.getVectorElementType() == MVT::i1) 4381 return lowerVectorMaskTruncLike(Op, DAG); 4382 4383 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 4384 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 4385 // truncate by one power of two at a time. 4386 MVT DstEltVT = VT.getVectorElementType(); 4387 4388 SDValue Src = Op.getOperand(0); 4389 MVT SrcVT = Src.getSimpleValueType(); 4390 MVT SrcEltVT = SrcVT.getVectorElementType(); 4391 4392 assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) && 4393 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 4394 "Unexpected vector truncate lowering"); 4395 4396 MVT ContainerVT = SrcVT; 4397 SDValue Mask, VL; 4398 if (IsVPTrunc) { 4399 Mask = Op.getOperand(1); 4400 VL = Op.getOperand(2); 4401 } 4402 if (SrcVT.isFixedLengthVector()) { 4403 ContainerVT = getContainerForFixedLengthVector(SrcVT); 4404 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4405 if (IsVPTrunc) { 4406 MVT MaskVT = 4407 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4408 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4409 } 4410 } 4411 4412 SDValue Result = Src; 4413 if (!IsVPTrunc) { 4414 std::tie(Mask, VL) = 4415 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 4416 } 4417 4418 LLVMContext &Context = *DAG.getContext(); 4419 const ElementCount Count = ContainerVT.getVectorElementCount(); 4420 do { 4421 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 4422 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 4423 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 4424 Mask, VL); 4425 } while (SrcEltVT != DstEltVT); 4426 4427 if (SrcVT.isFixedLengthVector()) 4428 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4429 4430 return Result; 4431 } 4432 4433 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4434 // first position of a vector, and that vector is slid up to the insert index. 4435 // By limiting the active vector length to index+1 and merging with the 4436 // original vector (with an undisturbed tail policy for elements >= VL), we 4437 // achieve the desired result of leaving all elements untouched except the one 4438 // at VL-1, which is replaced with the desired value. 4439 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4440 SelectionDAG &DAG) const { 4441 SDLoc DL(Op); 4442 MVT VecVT = Op.getSimpleValueType(); 4443 SDValue Vec = Op.getOperand(0); 4444 SDValue Val = Op.getOperand(1); 4445 SDValue Idx = Op.getOperand(2); 4446 4447 if (VecVT.getVectorElementType() == MVT::i1) { 4448 // FIXME: For now we just promote to an i8 vector and insert into that, 4449 // but this is probably not optimal. 4450 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4451 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4452 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4453 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4454 } 4455 4456 MVT ContainerVT = VecVT; 4457 // If the operand is a fixed-length vector, convert to a scalable one. 4458 if (VecVT.isFixedLengthVector()) { 4459 ContainerVT = getContainerForFixedLengthVector(VecVT); 4460 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4461 } 4462 4463 MVT XLenVT = Subtarget.getXLenVT(); 4464 4465 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4466 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4467 // Even i64-element vectors on RV32 can be lowered without scalar 4468 // legalization if the most-significant 32 bits of the value are not affected 4469 // by the sign-extension of the lower 32 bits. 4470 // TODO: We could also catch sign extensions of a 32-bit value. 4471 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4472 const auto *CVal = cast<ConstantSDNode>(Val); 4473 if (isInt<32>(CVal->getSExtValue())) { 4474 IsLegalInsert = true; 4475 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4476 } 4477 } 4478 4479 SDValue Mask, VL; 4480 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4481 4482 SDValue ValInVec; 4483 4484 if (IsLegalInsert) { 4485 unsigned Opc = 4486 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4487 if (isNullConstant(Idx)) { 4488 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4489 if (!VecVT.isFixedLengthVector()) 4490 return Vec; 4491 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4492 } 4493 ValInVec = 4494 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4495 } else { 4496 // On RV32, i64-element vectors must be specially handled to place the 4497 // value at element 0, by using two vslide1up instructions in sequence on 4498 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4499 // this. 4500 SDValue One = DAG.getConstant(1, DL, XLenVT); 4501 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4502 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4503 MVT I32ContainerVT = 4504 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4505 SDValue I32Mask = 4506 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4507 // Limit the active VL to two. 4508 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4509 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4510 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4511 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, 4512 DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL); 4513 // First slide in the hi value, then the lo in underneath it. 4514 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4515 DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi, 4516 I32Mask, InsertI64VL); 4517 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4518 DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo, 4519 I32Mask, InsertI64VL); 4520 // Bitcast back to the right container type. 4521 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4522 } 4523 4524 // Now that the value is in a vector, slide it into position. 4525 SDValue InsertVL = 4526 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4527 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4528 ValInVec, Idx, Mask, InsertVL); 4529 if (!VecVT.isFixedLengthVector()) 4530 return Slideup; 4531 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4532 } 4533 4534 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4535 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4536 // types this is done using VMV_X_S to allow us to glean information about the 4537 // sign bits of the result. 4538 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4539 SelectionDAG &DAG) const { 4540 SDLoc DL(Op); 4541 SDValue Idx = Op.getOperand(1); 4542 SDValue Vec = Op.getOperand(0); 4543 EVT EltVT = Op.getValueType(); 4544 MVT VecVT = Vec.getSimpleValueType(); 4545 MVT XLenVT = Subtarget.getXLenVT(); 4546 4547 if (VecVT.getVectorElementType() == MVT::i1) { 4548 if (VecVT.isFixedLengthVector()) { 4549 unsigned NumElts = VecVT.getVectorNumElements(); 4550 if (NumElts >= 8) { 4551 MVT WideEltVT; 4552 unsigned WidenVecLen; 4553 SDValue ExtractElementIdx; 4554 SDValue ExtractBitIdx; 4555 unsigned MaxEEW = Subtarget.getELEN(); 4556 MVT LargestEltVT = MVT::getIntegerVT( 4557 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4558 if (NumElts <= LargestEltVT.getSizeInBits()) { 4559 assert(isPowerOf2_32(NumElts) && 4560 "the number of elements should be power of 2"); 4561 WideEltVT = MVT::getIntegerVT(NumElts); 4562 WidenVecLen = 1; 4563 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4564 ExtractBitIdx = Idx; 4565 } else { 4566 WideEltVT = LargestEltVT; 4567 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4568 // extract element index = index / element width 4569 ExtractElementIdx = DAG.getNode( 4570 ISD::SRL, DL, XLenVT, Idx, 4571 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4572 // mask bit index = index % element width 4573 ExtractBitIdx = DAG.getNode( 4574 ISD::AND, DL, XLenVT, Idx, 4575 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4576 } 4577 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4578 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4579 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4580 Vec, ExtractElementIdx); 4581 // Extract the bit from GPR. 4582 SDValue ShiftRight = 4583 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4584 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4585 DAG.getConstant(1, DL, XLenVT)); 4586 } 4587 } 4588 // Otherwise, promote to an i8 vector and extract from that. 4589 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4590 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4591 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4592 } 4593 4594 // If this is a fixed vector, we need to convert it to a scalable vector. 4595 MVT ContainerVT = VecVT; 4596 if (VecVT.isFixedLengthVector()) { 4597 ContainerVT = getContainerForFixedLengthVector(VecVT); 4598 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4599 } 4600 4601 // If the index is 0, the vector is already in the right position. 4602 if (!isNullConstant(Idx)) { 4603 // Use a VL of 1 to avoid processing more elements than we need. 4604 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4605 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4606 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4607 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4608 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4609 } 4610 4611 if (!EltVT.isInteger()) { 4612 // Floating-point extracts are handled in TableGen. 4613 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4614 DAG.getConstant(0, DL, XLenVT)); 4615 } 4616 4617 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4618 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4619 } 4620 4621 // Some RVV intrinsics may claim that they want an integer operand to be 4622 // promoted or expanded. 4623 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG, 4624 const RISCVSubtarget &Subtarget) { 4625 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4626 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4627 "Unexpected opcode"); 4628 4629 if (!Subtarget.hasVInstructions()) 4630 return SDValue(); 4631 4632 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4633 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4634 SDLoc DL(Op); 4635 4636 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4637 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4638 if (!II || !II->hasScalarOperand()) 4639 return SDValue(); 4640 4641 unsigned SplatOp = II->ScalarOperand + 1 + HasChain; 4642 assert(SplatOp < Op.getNumOperands()); 4643 4644 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4645 SDValue &ScalarOp = Operands[SplatOp]; 4646 MVT OpVT = ScalarOp.getSimpleValueType(); 4647 MVT XLenVT = Subtarget.getXLenVT(); 4648 4649 // If this isn't a scalar, or its type is XLenVT we're done. 4650 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4651 return SDValue(); 4652 4653 // Simplest case is that the operand needs to be promoted to XLenVT. 4654 if (OpVT.bitsLT(XLenVT)) { 4655 // If the operand is a constant, sign extend to increase our chances 4656 // of being able to use a .vi instruction. ANY_EXTEND would become a 4657 // a zero extend and the simm5 check in isel would fail. 4658 // FIXME: Should we ignore the upper bits in isel instead? 4659 unsigned ExtOpc = 4660 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4661 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4662 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4663 } 4664 4665 // Use the previous operand to get the vXi64 VT. The result might be a mask 4666 // VT for compares. Using the previous operand assumes that the previous 4667 // operand will never have a smaller element size than a scalar operand and 4668 // that a widening operation never uses SEW=64. 4669 // NOTE: If this fails the below assert, we can probably just find the 4670 // element count from any operand or result and use it to construct the VT. 4671 assert(II->ScalarOperand > 0 && "Unexpected splat operand!"); 4672 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4673 4674 // The more complex case is when the scalar is larger than XLenVT. 4675 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4676 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4677 4678 // If this is a sign-extended 32-bit value, we can truncate it and rely on the 4679 // instruction to sign-extend since SEW>XLEN. 4680 if (DAG.ComputeNumSignBits(ScalarOp) > 32) { 4681 ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp); 4682 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4683 } 4684 4685 switch (IntNo) { 4686 case Intrinsic::riscv_vslide1up: 4687 case Intrinsic::riscv_vslide1down: 4688 case Intrinsic::riscv_vslide1up_mask: 4689 case Intrinsic::riscv_vslide1down_mask: { 4690 // We need to special case these when the scalar is larger than XLen. 4691 unsigned NumOps = Op.getNumOperands(); 4692 bool IsMasked = NumOps == 7; 4693 4694 // Convert the vector source to the equivalent nxvXi32 vector. 4695 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4696 SDValue Vec = DAG.getBitcast(I32VT, Operands[2]); 4697 4698 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4699 DAG.getConstant(0, DL, XLenVT)); 4700 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4701 DAG.getConstant(1, DL, XLenVT)); 4702 4703 // Double the VL since we halved SEW. 4704 SDValue AVL = getVLOperand(Op); 4705 SDValue I32VL; 4706 4707 // Optimize for constant AVL 4708 if (isa<ConstantSDNode>(AVL)) { 4709 unsigned EltSize = VT.getScalarSizeInBits(); 4710 unsigned MinSize = VT.getSizeInBits().getKnownMinValue(); 4711 4712 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 4713 unsigned MaxVLMAX = 4714 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 4715 4716 unsigned VectorBitsMin = Subtarget.getRealMinVLen(); 4717 unsigned MinVLMAX = 4718 RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize); 4719 4720 uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue(); 4721 if (AVLInt <= MinVLMAX) { 4722 I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT); 4723 } else if (AVLInt >= 2 * MaxVLMAX) { 4724 // Just set vl to VLMAX in this situation 4725 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT); 4726 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4727 unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits()); 4728 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4729 SDValue SETVLMAX = DAG.getTargetConstant( 4730 Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32); 4731 I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW, 4732 LMUL); 4733 } else { 4734 // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl 4735 // is related to the hardware implementation. 4736 // So let the following code handle 4737 } 4738 } 4739 if (!I32VL) { 4740 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT); 4741 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4742 unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits()); 4743 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4744 SDValue SETVL = 4745 DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32); 4746 // Using vsetvli instruction to get actually used length which related to 4747 // the hardware implementation 4748 SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL, 4749 SEW, LMUL); 4750 I32VL = 4751 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4752 } 4753 4754 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4755 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, I32VL); 4756 4757 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4758 // instructions. 4759 SDValue Passthru; 4760 if (IsMasked) 4761 Passthru = DAG.getUNDEF(I32VT); 4762 else 4763 Passthru = DAG.getBitcast(I32VT, Operands[1]); 4764 4765 if (IntNo == Intrinsic::riscv_vslide1up || 4766 IntNo == Intrinsic::riscv_vslide1up_mask) { 4767 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4768 ScalarHi, I32Mask, I32VL); 4769 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4770 ScalarLo, I32Mask, I32VL); 4771 } else { 4772 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4773 ScalarLo, I32Mask, I32VL); 4774 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4775 ScalarHi, I32Mask, I32VL); 4776 } 4777 4778 // Convert back to nxvXi64. 4779 Vec = DAG.getBitcast(VT, Vec); 4780 4781 if (!IsMasked) 4782 return Vec; 4783 // Apply mask after the operation. 4784 SDValue Mask = Operands[NumOps - 3]; 4785 SDValue MaskedOff = Operands[1]; 4786 // Assume Policy operand is the last operand. 4787 uint64_t Policy = 4788 cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue(); 4789 // We don't need to select maskedoff if it's undef. 4790 if (MaskedOff.isUndef()) 4791 return Vec; 4792 // TAMU 4793 if (Policy == RISCVII::TAIL_AGNOSTIC) 4794 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, 4795 AVL); 4796 // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma. 4797 // It's fine because vmerge does not care mask policy. 4798 return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, 4799 AVL); 4800 } 4801 } 4802 4803 // We need to convert the scalar to a splat vector. 4804 SDValue VL = getVLOperand(Op); 4805 assert(VL.getValueType() == XLenVT); 4806 ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG); 4807 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4808 } 4809 4810 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4811 SelectionDAG &DAG) const { 4812 unsigned IntNo = Op.getConstantOperandVal(0); 4813 SDLoc DL(Op); 4814 MVT XLenVT = Subtarget.getXLenVT(); 4815 4816 switch (IntNo) { 4817 default: 4818 break; // Don't custom lower most intrinsics. 4819 case Intrinsic::thread_pointer: { 4820 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4821 return DAG.getRegister(RISCV::X4, PtrVT); 4822 } 4823 case Intrinsic::riscv_orc_b: 4824 case Intrinsic::riscv_brev8: { 4825 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4826 unsigned Opc = 4827 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4828 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4829 DAG.getConstant(7, DL, XLenVT)); 4830 } 4831 case Intrinsic::riscv_grev: 4832 case Intrinsic::riscv_gorc: { 4833 unsigned Opc = 4834 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4835 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4836 } 4837 case Intrinsic::riscv_zip: 4838 case Intrinsic::riscv_unzip: { 4839 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4840 // For i32 the immediate is 15. For i64 the immediate is 31. 4841 unsigned Opc = 4842 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4843 unsigned BitWidth = Op.getValueSizeInBits(); 4844 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4845 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4846 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4847 } 4848 case Intrinsic::riscv_shfl: 4849 case Intrinsic::riscv_unshfl: { 4850 unsigned Opc = 4851 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4852 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4853 } 4854 case Intrinsic::riscv_bcompress: 4855 case Intrinsic::riscv_bdecompress: { 4856 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4857 : RISCVISD::BDECOMPRESS; 4858 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4859 } 4860 case Intrinsic::riscv_bfp: 4861 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4862 Op.getOperand(2)); 4863 case Intrinsic::riscv_fsl: 4864 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4865 Op.getOperand(2), Op.getOperand(3)); 4866 case Intrinsic::riscv_fsr: 4867 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4868 Op.getOperand(2), Op.getOperand(3)); 4869 case Intrinsic::riscv_vmv_x_s: 4870 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4871 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4872 Op.getOperand(1)); 4873 case Intrinsic::riscv_vmv_v_x: 4874 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4875 Op.getOperand(3), Op.getSimpleValueType(), DL, DAG, 4876 Subtarget); 4877 case Intrinsic::riscv_vfmv_v_f: 4878 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4879 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4880 case Intrinsic::riscv_vmv_s_x: { 4881 SDValue Scalar = Op.getOperand(2); 4882 4883 if (Scalar.getValueType().bitsLE(XLenVT)) { 4884 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4885 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4886 Op.getOperand(1), Scalar, Op.getOperand(3)); 4887 } 4888 4889 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4890 4891 // This is an i64 value that lives in two scalar registers. We have to 4892 // insert this in a convoluted way. First we build vXi64 splat containing 4893 // the two values that we assemble using some bit math. Next we'll use 4894 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4895 // to merge element 0 from our splat into the source vector. 4896 // FIXME: This is probably not the best way to do this, but it is 4897 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4898 // point. 4899 // sw lo, (a0) 4900 // sw hi, 4(a0) 4901 // vlse vX, (a0) 4902 // 4903 // vid.v vVid 4904 // vmseq.vx mMask, vVid, 0 4905 // vmerge.vvm vDest, vSrc, vVal, mMask 4906 MVT VT = Op.getSimpleValueType(); 4907 SDValue Vec = Op.getOperand(1); 4908 SDValue VL = getVLOperand(Op); 4909 4910 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG); 4911 if (Op.getOperand(1).isUndef()) 4912 return SplattedVal; 4913 SDValue SplattedIdx = 4914 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 4915 DAG.getConstant(0, DL, MVT::i32), VL); 4916 4917 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4918 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4919 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4920 SDValue SelectCond = 4921 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4922 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4923 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4924 Vec, VL); 4925 } 4926 } 4927 4928 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4929 } 4930 4931 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4932 SelectionDAG &DAG) const { 4933 unsigned IntNo = Op.getConstantOperandVal(1); 4934 switch (IntNo) { 4935 default: 4936 break; 4937 case Intrinsic::riscv_masked_strided_load: { 4938 SDLoc DL(Op); 4939 MVT XLenVT = Subtarget.getXLenVT(); 4940 4941 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4942 // the selection of the masked intrinsics doesn't do this for us. 4943 SDValue Mask = Op.getOperand(5); 4944 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4945 4946 MVT VT = Op->getSimpleValueType(0); 4947 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4948 4949 SDValue PassThru = Op.getOperand(2); 4950 if (!IsUnmasked) { 4951 MVT MaskVT = 4952 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4953 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4954 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4955 } 4956 4957 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4958 4959 SDValue IntID = DAG.getTargetConstant( 4960 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4961 XLenVT); 4962 4963 auto *Load = cast<MemIntrinsicSDNode>(Op); 4964 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4965 if (IsUnmasked) 4966 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4967 else 4968 Ops.push_back(PassThru); 4969 Ops.push_back(Op.getOperand(3)); // Ptr 4970 Ops.push_back(Op.getOperand(4)); // Stride 4971 if (!IsUnmasked) 4972 Ops.push_back(Mask); 4973 Ops.push_back(VL); 4974 if (!IsUnmasked) { 4975 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4976 Ops.push_back(Policy); 4977 } 4978 4979 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4980 SDValue Result = 4981 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4982 Load->getMemoryVT(), Load->getMemOperand()); 4983 SDValue Chain = Result.getValue(1); 4984 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4985 return DAG.getMergeValues({Result, Chain}, DL); 4986 } 4987 case Intrinsic::riscv_seg2_load: 4988 case Intrinsic::riscv_seg3_load: 4989 case Intrinsic::riscv_seg4_load: 4990 case Intrinsic::riscv_seg5_load: 4991 case Intrinsic::riscv_seg6_load: 4992 case Intrinsic::riscv_seg7_load: 4993 case Intrinsic::riscv_seg8_load: { 4994 SDLoc DL(Op); 4995 static const Intrinsic::ID VlsegInts[7] = { 4996 Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, 4997 Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, 4998 Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, 4999 Intrinsic::riscv_vlseg8}; 5000 unsigned NF = Op->getNumValues() - 1; 5001 assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); 5002 MVT XLenVT = Subtarget.getXLenVT(); 5003 MVT VT = Op->getSimpleValueType(0); 5004 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5005 5006 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5007 SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT); 5008 auto *Load = cast<MemIntrinsicSDNode>(Op); 5009 SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT); 5010 ContainerVTs.push_back(MVT::Other); 5011 SDVTList VTs = DAG.getVTList(ContainerVTs); 5012 SDValue Result = 5013 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, 5014 {Load->getChain(), IntID, Op.getOperand(2), VL}, 5015 Load->getMemoryVT(), Load->getMemOperand()); 5016 SmallVector<SDValue, 9> Results; 5017 for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++) 5018 Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx), 5019 DAG, Subtarget)); 5020 Results.push_back(Result.getValue(NF)); 5021 return DAG.getMergeValues(Results, DL); 5022 } 5023 } 5024 5025 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 5026 } 5027 5028 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 5029 SelectionDAG &DAG) const { 5030 unsigned IntNo = Op.getConstantOperandVal(1); 5031 switch (IntNo) { 5032 default: 5033 break; 5034 case Intrinsic::riscv_masked_strided_store: { 5035 SDLoc DL(Op); 5036 MVT XLenVT = Subtarget.getXLenVT(); 5037 5038 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5039 // the selection of the masked intrinsics doesn't do this for us. 5040 SDValue Mask = Op.getOperand(5); 5041 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5042 5043 SDValue Val = Op.getOperand(2); 5044 MVT VT = Val.getSimpleValueType(); 5045 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5046 5047 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5048 if (!IsUnmasked) { 5049 MVT MaskVT = 5050 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5051 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5052 } 5053 5054 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5055 5056 SDValue IntID = DAG.getTargetConstant( 5057 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 5058 XLenVT); 5059 5060 auto *Store = cast<MemIntrinsicSDNode>(Op); 5061 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 5062 Ops.push_back(Val); 5063 Ops.push_back(Op.getOperand(3)); // Ptr 5064 Ops.push_back(Op.getOperand(4)); // Stride 5065 if (!IsUnmasked) 5066 Ops.push_back(Mask); 5067 Ops.push_back(VL); 5068 5069 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 5070 Ops, Store->getMemoryVT(), 5071 Store->getMemOperand()); 5072 } 5073 } 5074 5075 return SDValue(); 5076 } 5077 5078 static MVT getLMUL1VT(MVT VT) { 5079 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 5080 "Unexpected vector MVT"); 5081 return MVT::getScalableVectorVT( 5082 VT.getVectorElementType(), 5083 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 5084 } 5085 5086 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 5087 switch (ISDOpcode) { 5088 default: 5089 llvm_unreachable("Unhandled reduction"); 5090 case ISD::VECREDUCE_ADD: 5091 return RISCVISD::VECREDUCE_ADD_VL; 5092 case ISD::VECREDUCE_UMAX: 5093 return RISCVISD::VECREDUCE_UMAX_VL; 5094 case ISD::VECREDUCE_SMAX: 5095 return RISCVISD::VECREDUCE_SMAX_VL; 5096 case ISD::VECREDUCE_UMIN: 5097 return RISCVISD::VECREDUCE_UMIN_VL; 5098 case ISD::VECREDUCE_SMIN: 5099 return RISCVISD::VECREDUCE_SMIN_VL; 5100 case ISD::VECREDUCE_AND: 5101 return RISCVISD::VECREDUCE_AND_VL; 5102 case ISD::VECREDUCE_OR: 5103 return RISCVISD::VECREDUCE_OR_VL; 5104 case ISD::VECREDUCE_XOR: 5105 return RISCVISD::VECREDUCE_XOR_VL; 5106 } 5107 } 5108 5109 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 5110 SelectionDAG &DAG, 5111 bool IsVP) const { 5112 SDLoc DL(Op); 5113 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 5114 MVT VecVT = Vec.getSimpleValueType(); 5115 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 5116 Op.getOpcode() == ISD::VECREDUCE_OR || 5117 Op.getOpcode() == ISD::VECREDUCE_XOR || 5118 Op.getOpcode() == ISD::VP_REDUCE_AND || 5119 Op.getOpcode() == ISD::VP_REDUCE_OR || 5120 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 5121 "Unexpected reduction lowering"); 5122 5123 MVT XLenVT = Subtarget.getXLenVT(); 5124 assert(Op.getValueType() == XLenVT && 5125 "Expected reduction output to be legalized to XLenVT"); 5126 5127 MVT ContainerVT = VecVT; 5128 if (VecVT.isFixedLengthVector()) { 5129 ContainerVT = getContainerForFixedLengthVector(VecVT); 5130 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5131 } 5132 5133 SDValue Mask, VL; 5134 if (IsVP) { 5135 Mask = Op.getOperand(2); 5136 VL = Op.getOperand(3); 5137 } else { 5138 std::tie(Mask, VL) = 5139 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5140 } 5141 5142 unsigned BaseOpc; 5143 ISD::CondCode CC; 5144 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 5145 5146 switch (Op.getOpcode()) { 5147 default: 5148 llvm_unreachable("Unhandled reduction"); 5149 case ISD::VECREDUCE_AND: 5150 case ISD::VP_REDUCE_AND: { 5151 // vcpop ~x == 0 5152 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 5153 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 5154 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5155 CC = ISD::SETEQ; 5156 BaseOpc = ISD::AND; 5157 break; 5158 } 5159 case ISD::VECREDUCE_OR: 5160 case ISD::VP_REDUCE_OR: 5161 // vcpop x != 0 5162 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5163 CC = ISD::SETNE; 5164 BaseOpc = ISD::OR; 5165 break; 5166 case ISD::VECREDUCE_XOR: 5167 case ISD::VP_REDUCE_XOR: { 5168 // ((vcpop x) & 1) != 0 5169 SDValue One = DAG.getConstant(1, DL, XLenVT); 5170 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5171 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 5172 CC = ISD::SETNE; 5173 BaseOpc = ISD::XOR; 5174 break; 5175 } 5176 } 5177 5178 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 5179 5180 if (!IsVP) 5181 return SetCC; 5182 5183 // Now include the start value in the operation. 5184 // Note that we must return the start value when no elements are operated 5185 // upon. The vcpop instructions we've emitted in each case above will return 5186 // 0 for an inactive vector, and so we've already received the neutral value: 5187 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 5188 // can simply include the start value. 5189 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 5190 } 5191 5192 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 5193 SelectionDAG &DAG) const { 5194 SDLoc DL(Op); 5195 SDValue Vec = Op.getOperand(0); 5196 EVT VecEVT = Vec.getValueType(); 5197 5198 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 5199 5200 // Due to ordering in legalize types we may have a vector type that needs to 5201 // be split. Do that manually so we can get down to a legal type. 5202 while (getTypeAction(*DAG.getContext(), VecEVT) == 5203 TargetLowering::TypeSplitVector) { 5204 SDValue Lo, Hi; 5205 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 5206 VecEVT = Lo.getValueType(); 5207 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 5208 } 5209 5210 // TODO: The type may need to be widened rather than split. Or widened before 5211 // it can be split. 5212 if (!isTypeLegal(VecEVT)) 5213 return SDValue(); 5214 5215 MVT VecVT = VecEVT.getSimpleVT(); 5216 MVT VecEltVT = VecVT.getVectorElementType(); 5217 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 5218 5219 MVT ContainerVT = VecVT; 5220 if (VecVT.isFixedLengthVector()) { 5221 ContainerVT = getContainerForFixedLengthVector(VecVT); 5222 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5223 } 5224 5225 MVT M1VT = getLMUL1VT(ContainerVT); 5226 MVT XLenVT = Subtarget.getXLenVT(); 5227 5228 SDValue Mask, VL; 5229 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5230 5231 SDValue NeutralElem = 5232 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 5233 SDValue IdentitySplat = 5234 lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT), 5235 M1VT, DL, DAG, Subtarget); 5236 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 5237 IdentitySplat, Mask, VL); 5238 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5239 DAG.getConstant(0, DL, XLenVT)); 5240 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5241 } 5242 5243 // Given a reduction op, this function returns the matching reduction opcode, 5244 // the vector SDValue and the scalar SDValue required to lower this to a 5245 // RISCVISD node. 5246 static std::tuple<unsigned, SDValue, SDValue> 5247 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 5248 SDLoc DL(Op); 5249 auto Flags = Op->getFlags(); 5250 unsigned Opcode = Op.getOpcode(); 5251 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 5252 switch (Opcode) { 5253 default: 5254 llvm_unreachable("Unhandled reduction"); 5255 case ISD::VECREDUCE_FADD: { 5256 // Use positive zero if we can. It is cheaper to materialize. 5257 SDValue Zero = 5258 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 5259 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 5260 } 5261 case ISD::VECREDUCE_SEQ_FADD: 5262 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 5263 Op.getOperand(0)); 5264 case ISD::VECREDUCE_FMIN: 5265 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 5266 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5267 case ISD::VECREDUCE_FMAX: 5268 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 5269 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5270 } 5271 } 5272 5273 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 5274 SelectionDAG &DAG) const { 5275 SDLoc DL(Op); 5276 MVT VecEltVT = Op.getSimpleValueType(); 5277 5278 unsigned RVVOpcode; 5279 SDValue VectorVal, ScalarVal; 5280 std::tie(RVVOpcode, VectorVal, ScalarVal) = 5281 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 5282 MVT VecVT = VectorVal.getSimpleValueType(); 5283 5284 MVT ContainerVT = VecVT; 5285 if (VecVT.isFixedLengthVector()) { 5286 ContainerVT = getContainerForFixedLengthVector(VecVT); 5287 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 5288 } 5289 5290 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 5291 MVT XLenVT = Subtarget.getXLenVT(); 5292 5293 SDValue Mask, VL; 5294 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5295 5296 SDValue ScalarSplat = 5297 lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT), 5298 M1VT, DL, DAG, Subtarget); 5299 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 5300 VectorVal, ScalarSplat, Mask, VL); 5301 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5302 DAG.getConstant(0, DL, XLenVT)); 5303 } 5304 5305 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 5306 switch (ISDOpcode) { 5307 default: 5308 llvm_unreachable("Unhandled reduction"); 5309 case ISD::VP_REDUCE_ADD: 5310 return RISCVISD::VECREDUCE_ADD_VL; 5311 case ISD::VP_REDUCE_UMAX: 5312 return RISCVISD::VECREDUCE_UMAX_VL; 5313 case ISD::VP_REDUCE_SMAX: 5314 return RISCVISD::VECREDUCE_SMAX_VL; 5315 case ISD::VP_REDUCE_UMIN: 5316 return RISCVISD::VECREDUCE_UMIN_VL; 5317 case ISD::VP_REDUCE_SMIN: 5318 return RISCVISD::VECREDUCE_SMIN_VL; 5319 case ISD::VP_REDUCE_AND: 5320 return RISCVISD::VECREDUCE_AND_VL; 5321 case ISD::VP_REDUCE_OR: 5322 return RISCVISD::VECREDUCE_OR_VL; 5323 case ISD::VP_REDUCE_XOR: 5324 return RISCVISD::VECREDUCE_XOR_VL; 5325 case ISD::VP_REDUCE_FADD: 5326 return RISCVISD::VECREDUCE_FADD_VL; 5327 case ISD::VP_REDUCE_SEQ_FADD: 5328 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 5329 case ISD::VP_REDUCE_FMAX: 5330 return RISCVISD::VECREDUCE_FMAX_VL; 5331 case ISD::VP_REDUCE_FMIN: 5332 return RISCVISD::VECREDUCE_FMIN_VL; 5333 } 5334 } 5335 5336 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5337 SelectionDAG &DAG) const { 5338 SDLoc DL(Op); 5339 SDValue Vec = Op.getOperand(1); 5340 EVT VecEVT = Vec.getValueType(); 5341 5342 // TODO: The type may need to be widened rather than split. Or widened before 5343 // it can be split. 5344 if (!isTypeLegal(VecEVT)) 5345 return SDValue(); 5346 5347 MVT VecVT = VecEVT.getSimpleVT(); 5348 MVT VecEltVT = VecVT.getVectorElementType(); 5349 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5350 5351 MVT ContainerVT = VecVT; 5352 if (VecVT.isFixedLengthVector()) { 5353 ContainerVT = getContainerForFixedLengthVector(VecVT); 5354 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5355 } 5356 5357 SDValue VL = Op.getOperand(3); 5358 SDValue Mask = Op.getOperand(2); 5359 5360 MVT M1VT = getLMUL1VT(ContainerVT); 5361 MVT XLenVT = Subtarget.getXLenVT(); 5362 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5363 5364 SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0), 5365 DAG.getConstant(1, DL, XLenVT), M1VT, 5366 DL, DAG, Subtarget); 5367 SDValue Reduction = 5368 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5369 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5370 DAG.getConstant(0, DL, XLenVT)); 5371 if (!VecVT.isInteger()) 5372 return Elt0; 5373 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5374 } 5375 5376 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5377 SelectionDAG &DAG) const { 5378 SDValue Vec = Op.getOperand(0); 5379 SDValue SubVec = Op.getOperand(1); 5380 MVT VecVT = Vec.getSimpleValueType(); 5381 MVT SubVecVT = SubVec.getSimpleValueType(); 5382 5383 SDLoc DL(Op); 5384 MVT XLenVT = Subtarget.getXLenVT(); 5385 unsigned OrigIdx = Op.getConstantOperandVal(2); 5386 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5387 5388 // We don't have the ability to slide mask vectors up indexed by their i1 5389 // elements; the smallest we can do is i8. Often we are able to bitcast to 5390 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5391 // into a scalable one, we might not necessarily have enough scalable 5392 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5393 if (SubVecVT.getVectorElementType() == MVT::i1 && 5394 (OrigIdx != 0 || !Vec.isUndef())) { 5395 if (VecVT.getVectorMinNumElements() >= 8 && 5396 SubVecVT.getVectorMinNumElements() >= 8) { 5397 assert(OrigIdx % 8 == 0 && "Invalid index"); 5398 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5399 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5400 "Unexpected mask vector lowering"); 5401 OrigIdx /= 8; 5402 SubVecVT = 5403 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5404 SubVecVT.isScalableVector()); 5405 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5406 VecVT.isScalableVector()); 5407 Vec = DAG.getBitcast(VecVT, Vec); 5408 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5409 } else { 5410 // We can't slide this mask vector up indexed by its i1 elements. 5411 // This poses a problem when we wish to insert a scalable vector which 5412 // can't be re-expressed as a larger type. Just choose the slow path and 5413 // extend to a larger type, then truncate back down. 5414 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5415 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5416 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5417 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5418 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5419 Op.getOperand(2)); 5420 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5421 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5422 } 5423 } 5424 5425 // If the subvector vector is a fixed-length type, we cannot use subregister 5426 // manipulation to simplify the codegen; we don't know which register of a 5427 // LMUL group contains the specific subvector as we only know the minimum 5428 // register size. Therefore we must slide the vector group up the full 5429 // amount. 5430 if (SubVecVT.isFixedLengthVector()) { 5431 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5432 return Op; 5433 MVT ContainerVT = VecVT; 5434 if (VecVT.isFixedLengthVector()) { 5435 ContainerVT = getContainerForFixedLengthVector(VecVT); 5436 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5437 } 5438 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5439 DAG.getUNDEF(ContainerVT), SubVec, 5440 DAG.getConstant(0, DL, XLenVT)); 5441 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5442 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5443 return DAG.getBitcast(Op.getValueType(), SubVec); 5444 } 5445 SDValue Mask = 5446 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5447 // Set the vector length to only the number of elements we care about. Note 5448 // that for slideup this includes the offset. 5449 SDValue VL = 5450 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5451 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5452 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5453 SubVec, SlideupAmt, Mask, VL); 5454 if (VecVT.isFixedLengthVector()) 5455 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5456 return DAG.getBitcast(Op.getValueType(), Slideup); 5457 } 5458 5459 unsigned SubRegIdx, RemIdx; 5460 std::tie(SubRegIdx, RemIdx) = 5461 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5462 VecVT, SubVecVT, OrigIdx, TRI); 5463 5464 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5465 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5466 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5467 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5468 5469 // 1. If the Idx has been completely eliminated and this subvector's size is 5470 // a vector register or a multiple thereof, or the surrounding elements are 5471 // undef, then this is a subvector insert which naturally aligns to a vector 5472 // register. These can easily be handled using subregister manipulation. 5473 // 2. If the subvector is smaller than a vector register, then the insertion 5474 // must preserve the undisturbed elements of the register. We do this by 5475 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5476 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5477 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5478 // LMUL=1 type back into the larger vector (resolving to another subregister 5479 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5480 // to avoid allocating a large register group to hold our subvector. 5481 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5482 return Op; 5483 5484 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5485 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5486 // (in our case undisturbed). This means we can set up a subvector insertion 5487 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5488 // size of the subvector. 5489 MVT InterSubVT = VecVT; 5490 SDValue AlignedExtract = Vec; 5491 unsigned AlignedIdx = OrigIdx - RemIdx; 5492 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5493 InterSubVT = getLMUL1VT(VecVT); 5494 // Extract a subvector equal to the nearest full vector register type. This 5495 // should resolve to a EXTRACT_SUBREG instruction. 5496 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5497 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5498 } 5499 5500 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5501 // For scalable vectors this must be further multiplied by vscale. 5502 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5503 5504 SDValue Mask, VL; 5505 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5506 5507 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5508 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5509 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5510 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5511 5512 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5513 DAG.getUNDEF(InterSubVT), SubVec, 5514 DAG.getConstant(0, DL, XLenVT)); 5515 5516 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5517 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5518 5519 // If required, insert this subvector back into the correct vector register. 5520 // This should resolve to an INSERT_SUBREG instruction. 5521 if (VecVT.bitsGT(InterSubVT)) 5522 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5523 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5524 5525 // We might have bitcast from a mask type: cast back to the original type if 5526 // required. 5527 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5528 } 5529 5530 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5531 SelectionDAG &DAG) const { 5532 SDValue Vec = Op.getOperand(0); 5533 MVT SubVecVT = Op.getSimpleValueType(); 5534 MVT VecVT = Vec.getSimpleValueType(); 5535 5536 SDLoc DL(Op); 5537 MVT XLenVT = Subtarget.getXLenVT(); 5538 unsigned OrigIdx = Op.getConstantOperandVal(1); 5539 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5540 5541 // We don't have the ability to slide mask vectors down indexed by their i1 5542 // elements; the smallest we can do is i8. Often we are able to bitcast to 5543 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5544 // from a scalable one, we might not necessarily have enough scalable 5545 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5546 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5547 if (VecVT.getVectorMinNumElements() >= 8 && 5548 SubVecVT.getVectorMinNumElements() >= 8) { 5549 assert(OrigIdx % 8 == 0 && "Invalid index"); 5550 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5551 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5552 "Unexpected mask vector lowering"); 5553 OrigIdx /= 8; 5554 SubVecVT = 5555 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5556 SubVecVT.isScalableVector()); 5557 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5558 VecVT.isScalableVector()); 5559 Vec = DAG.getBitcast(VecVT, Vec); 5560 } else { 5561 // We can't slide this mask vector down, indexed by its i1 elements. 5562 // This poses a problem when we wish to extract a scalable vector which 5563 // can't be re-expressed as a larger type. Just choose the slow path and 5564 // extend to a larger type, then truncate back down. 5565 // TODO: We could probably improve this when extracting certain fixed 5566 // from fixed, where we can extract as i8 and shift the correct element 5567 // right to reach the desired subvector? 5568 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5569 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5570 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5571 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5572 Op.getOperand(1)); 5573 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5574 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5575 } 5576 } 5577 5578 // If the subvector vector is a fixed-length type, we cannot use subregister 5579 // manipulation to simplify the codegen; we don't know which register of a 5580 // LMUL group contains the specific subvector as we only know the minimum 5581 // register size. Therefore we must slide the vector group down the full 5582 // amount. 5583 if (SubVecVT.isFixedLengthVector()) { 5584 // With an index of 0 this is a cast-like subvector, which can be performed 5585 // with subregister operations. 5586 if (OrigIdx == 0) 5587 return Op; 5588 MVT ContainerVT = VecVT; 5589 if (VecVT.isFixedLengthVector()) { 5590 ContainerVT = getContainerForFixedLengthVector(VecVT); 5591 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5592 } 5593 SDValue Mask = 5594 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5595 // Set the vector length to only the number of elements we care about. This 5596 // avoids sliding down elements we're going to discard straight away. 5597 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5598 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5599 SDValue Slidedown = 5600 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5601 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5602 // Now we can use a cast-like subvector extract to get the result. 5603 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5604 DAG.getConstant(0, DL, XLenVT)); 5605 return DAG.getBitcast(Op.getValueType(), Slidedown); 5606 } 5607 5608 unsigned SubRegIdx, RemIdx; 5609 std::tie(SubRegIdx, RemIdx) = 5610 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5611 VecVT, SubVecVT, OrigIdx, TRI); 5612 5613 // If the Idx has been completely eliminated then this is a subvector extract 5614 // which naturally aligns to a vector register. These can easily be handled 5615 // using subregister manipulation. 5616 if (RemIdx == 0) 5617 return Op; 5618 5619 // Else we must shift our vector register directly to extract the subvector. 5620 // Do this using VSLIDEDOWN. 5621 5622 // If the vector type is an LMUL-group type, extract a subvector equal to the 5623 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5624 // instruction. 5625 MVT InterSubVT = VecVT; 5626 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5627 InterSubVT = getLMUL1VT(VecVT); 5628 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5629 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5630 } 5631 5632 // Slide this vector register down by the desired number of elements in order 5633 // to place the desired subvector starting at element 0. 5634 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5635 // For scalable vectors this must be further multiplied by vscale. 5636 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5637 5638 SDValue Mask, VL; 5639 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5640 SDValue Slidedown = 5641 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5642 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5643 5644 // Now the vector is in the right position, extract our final subvector. This 5645 // should resolve to a COPY. 5646 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5647 DAG.getConstant(0, DL, XLenVT)); 5648 5649 // We might have bitcast from a mask type: cast back to the original type if 5650 // required. 5651 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5652 } 5653 5654 // Lower step_vector to the vid instruction. Any non-identity step value must 5655 // be accounted for my manual expansion. 5656 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5657 SelectionDAG &DAG) const { 5658 SDLoc DL(Op); 5659 MVT VT = Op.getSimpleValueType(); 5660 MVT XLenVT = Subtarget.getXLenVT(); 5661 SDValue Mask, VL; 5662 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5663 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5664 uint64_t StepValImm = Op.getConstantOperandVal(0); 5665 if (StepValImm != 1) { 5666 if (isPowerOf2_64(StepValImm)) { 5667 SDValue StepVal = 5668 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 5669 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5670 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5671 } else { 5672 SDValue StepVal = lowerScalarSplat( 5673 SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), 5674 VL, VT, DL, DAG, Subtarget); 5675 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5676 } 5677 } 5678 return StepVec; 5679 } 5680 5681 // Implement vector_reverse using vrgather.vv with indices determined by 5682 // subtracting the id of each element from (VLMAX-1). This will convert 5683 // the indices like so: 5684 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5685 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5686 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5687 SelectionDAG &DAG) const { 5688 SDLoc DL(Op); 5689 MVT VecVT = Op.getSimpleValueType(); 5690 unsigned EltSize = VecVT.getScalarSizeInBits(); 5691 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5692 5693 unsigned MaxVLMAX = 0; 5694 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5695 if (VectorBitsMax != 0) 5696 MaxVLMAX = 5697 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 5698 5699 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5700 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5701 5702 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5703 // to use vrgatherei16.vv. 5704 // TODO: It's also possible to use vrgatherei16.vv for other types to 5705 // decrease register width for the index calculation. 5706 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5707 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5708 // Reverse each half, then reassemble them in reverse order. 5709 // NOTE: It's also possible that after splitting that VLMAX no longer 5710 // requires vrgatherei16.vv. 5711 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5712 SDValue Lo, Hi; 5713 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5714 EVT LoVT, HiVT; 5715 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5716 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5717 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5718 // Reassemble the low and high pieces reversed. 5719 // FIXME: This is a CONCAT_VECTORS. 5720 SDValue Res = 5721 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5722 DAG.getIntPtrConstant(0, DL)); 5723 return DAG.getNode( 5724 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5725 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5726 } 5727 5728 // Just promote the int type to i16 which will double the LMUL. 5729 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5730 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5731 } 5732 5733 MVT XLenVT = Subtarget.getXLenVT(); 5734 SDValue Mask, VL; 5735 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5736 5737 // Calculate VLMAX-1 for the desired SEW. 5738 unsigned MinElts = VecVT.getVectorMinNumElements(); 5739 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5740 DAG.getConstant(MinElts, DL, XLenVT)); 5741 SDValue VLMinus1 = 5742 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5743 5744 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5745 bool IsRV32E64 = 5746 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5747 SDValue SplatVL; 5748 if (!IsRV32E64) 5749 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5750 else 5751 SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), 5752 VLMinus1, DAG.getRegister(RISCV::X0, XLenVT)); 5753 5754 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5755 SDValue Indices = 5756 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5757 5758 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5759 } 5760 5761 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op, 5762 SelectionDAG &DAG) const { 5763 SDLoc DL(Op); 5764 SDValue V1 = Op.getOperand(0); 5765 SDValue V2 = Op.getOperand(1); 5766 MVT XLenVT = Subtarget.getXLenVT(); 5767 MVT VecVT = Op.getSimpleValueType(); 5768 5769 unsigned MinElts = VecVT.getVectorMinNumElements(); 5770 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5771 DAG.getConstant(MinElts, DL, XLenVT)); 5772 5773 int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue(); 5774 SDValue DownOffset, UpOffset; 5775 if (ImmValue >= 0) { 5776 // The operand is a TargetConstant, we need to rebuild it as a regular 5777 // constant. 5778 DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); 5779 UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset); 5780 } else { 5781 // The operand is a TargetConstant, we need to rebuild it as a regular 5782 // constant rather than negating the original operand. 5783 UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); 5784 DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset); 5785 } 5786 5787 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5788 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax); 5789 5790 SDValue SlideDown = 5791 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1, 5792 DownOffset, TrueMask, UpOffset); 5793 return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset, 5794 TrueMask, 5795 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT)); 5796 } 5797 5798 SDValue 5799 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5800 SelectionDAG &DAG) const { 5801 SDLoc DL(Op); 5802 auto *Load = cast<LoadSDNode>(Op); 5803 5804 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5805 Load->getMemoryVT(), 5806 *Load->getMemOperand()) && 5807 "Expecting a correctly-aligned load"); 5808 5809 MVT VT = Op.getSimpleValueType(); 5810 MVT XLenVT = Subtarget.getXLenVT(); 5811 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5812 5813 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5814 5815 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5816 SDValue IntID = DAG.getTargetConstant( 5817 IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT); 5818 SmallVector<SDValue, 4> Ops{Load->getChain(), IntID}; 5819 if (!IsMaskOp) 5820 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5821 Ops.push_back(Load->getBasePtr()); 5822 Ops.push_back(VL); 5823 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5824 SDValue NewLoad = 5825 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 5826 Load->getMemoryVT(), Load->getMemOperand()); 5827 5828 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5829 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5830 } 5831 5832 SDValue 5833 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5834 SelectionDAG &DAG) const { 5835 SDLoc DL(Op); 5836 auto *Store = cast<StoreSDNode>(Op); 5837 5838 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5839 Store->getMemoryVT(), 5840 *Store->getMemOperand()) && 5841 "Expecting a correctly-aligned store"); 5842 5843 SDValue StoreVal = Store->getValue(); 5844 MVT VT = StoreVal.getSimpleValueType(); 5845 MVT XLenVT = Subtarget.getXLenVT(); 5846 5847 // If the size less than a byte, we need to pad with zeros to make a byte. 5848 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5849 VT = MVT::v8i1; 5850 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5851 DAG.getConstant(0, DL, VT), StoreVal, 5852 DAG.getIntPtrConstant(0, DL)); 5853 } 5854 5855 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5856 5857 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5858 5859 SDValue NewValue = 5860 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5861 5862 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5863 SDValue IntID = DAG.getTargetConstant( 5864 IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT); 5865 return DAG.getMemIntrinsicNode( 5866 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 5867 {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL}, 5868 Store->getMemoryVT(), Store->getMemOperand()); 5869 } 5870 5871 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5872 SelectionDAG &DAG) const { 5873 SDLoc DL(Op); 5874 MVT VT = Op.getSimpleValueType(); 5875 5876 const auto *MemSD = cast<MemSDNode>(Op); 5877 EVT MemVT = MemSD->getMemoryVT(); 5878 MachineMemOperand *MMO = MemSD->getMemOperand(); 5879 SDValue Chain = MemSD->getChain(); 5880 SDValue BasePtr = MemSD->getBasePtr(); 5881 5882 SDValue Mask, PassThru, VL; 5883 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5884 Mask = VPLoad->getMask(); 5885 PassThru = DAG.getUNDEF(VT); 5886 VL = VPLoad->getVectorLength(); 5887 } else { 5888 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5889 Mask = MLoad->getMask(); 5890 PassThru = MLoad->getPassThru(); 5891 } 5892 5893 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5894 5895 MVT XLenVT = Subtarget.getXLenVT(); 5896 5897 MVT ContainerVT = VT; 5898 if (VT.isFixedLengthVector()) { 5899 ContainerVT = getContainerForFixedLengthVector(VT); 5900 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5901 if (!IsUnmasked) { 5902 MVT MaskVT = 5903 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5904 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5905 } 5906 } 5907 5908 if (!VL) 5909 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5910 5911 unsigned IntID = 5912 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5913 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5914 if (IsUnmasked) 5915 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5916 else 5917 Ops.push_back(PassThru); 5918 Ops.push_back(BasePtr); 5919 if (!IsUnmasked) 5920 Ops.push_back(Mask); 5921 Ops.push_back(VL); 5922 if (!IsUnmasked) 5923 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5924 5925 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5926 5927 SDValue Result = 5928 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5929 Chain = Result.getValue(1); 5930 5931 if (VT.isFixedLengthVector()) 5932 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5933 5934 return DAG.getMergeValues({Result, Chain}, DL); 5935 } 5936 5937 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5938 SelectionDAG &DAG) const { 5939 SDLoc DL(Op); 5940 5941 const auto *MemSD = cast<MemSDNode>(Op); 5942 EVT MemVT = MemSD->getMemoryVT(); 5943 MachineMemOperand *MMO = MemSD->getMemOperand(); 5944 SDValue Chain = MemSD->getChain(); 5945 SDValue BasePtr = MemSD->getBasePtr(); 5946 SDValue Val, Mask, VL; 5947 5948 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5949 Val = VPStore->getValue(); 5950 Mask = VPStore->getMask(); 5951 VL = VPStore->getVectorLength(); 5952 } else { 5953 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5954 Val = MStore->getValue(); 5955 Mask = MStore->getMask(); 5956 } 5957 5958 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5959 5960 MVT VT = Val.getSimpleValueType(); 5961 MVT XLenVT = Subtarget.getXLenVT(); 5962 5963 MVT ContainerVT = VT; 5964 if (VT.isFixedLengthVector()) { 5965 ContainerVT = getContainerForFixedLengthVector(VT); 5966 5967 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5968 if (!IsUnmasked) { 5969 MVT MaskVT = 5970 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5971 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5972 } 5973 } 5974 5975 if (!VL) 5976 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5977 5978 unsigned IntID = 5979 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5980 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5981 Ops.push_back(Val); 5982 Ops.push_back(BasePtr); 5983 if (!IsUnmasked) 5984 Ops.push_back(Mask); 5985 Ops.push_back(VL); 5986 5987 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5988 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5989 } 5990 5991 SDValue 5992 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5993 SelectionDAG &DAG) const { 5994 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5995 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5996 5997 MVT VT = Op.getSimpleValueType(); 5998 5999 SDValue Op1 = 6000 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 6001 SDValue Op2 = 6002 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 6003 6004 SDLoc DL(Op); 6005 SDValue VL = 6006 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 6007 6008 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6009 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6010 6011 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 6012 Op.getOperand(2), Mask, VL); 6013 6014 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 6015 } 6016 6017 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 6018 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 6019 MVT VT = Op.getSimpleValueType(); 6020 6021 if (VT.getVectorElementType() == MVT::i1) 6022 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 6023 6024 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 6025 } 6026 6027 SDValue 6028 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 6029 SelectionDAG &DAG) const { 6030 unsigned Opc; 6031 switch (Op.getOpcode()) { 6032 default: llvm_unreachable("Unexpected opcode!"); 6033 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 6034 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 6035 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 6036 } 6037 6038 return lowerToScalableOp(Op, DAG, Opc); 6039 } 6040 6041 // Lower vector ABS to smax(X, sub(0, X)). 6042 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 6043 SDLoc DL(Op); 6044 MVT VT = Op.getSimpleValueType(); 6045 SDValue X = Op.getOperand(0); 6046 6047 assert(VT.isFixedLengthVector() && "Unexpected type"); 6048 6049 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6050 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 6051 6052 SDValue Mask, VL; 6053 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6054 6055 SDValue SplatZero = DAG.getNode( 6056 RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 6057 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 6058 SDValue NegX = 6059 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 6060 SDValue Max = 6061 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 6062 6063 return convertFromScalableVector(VT, Max, DAG, Subtarget); 6064 } 6065 6066 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 6067 SDValue Op, SelectionDAG &DAG) const { 6068 SDLoc DL(Op); 6069 MVT VT = Op.getSimpleValueType(); 6070 SDValue Mag = Op.getOperand(0); 6071 SDValue Sign = Op.getOperand(1); 6072 assert(Mag.getValueType() == Sign.getValueType() && 6073 "Can only handle COPYSIGN with matching types."); 6074 6075 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6076 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 6077 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 6078 6079 SDValue Mask, VL; 6080 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6081 6082 SDValue CopySign = 6083 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 6084 6085 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 6086 } 6087 6088 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 6089 SDValue Op, SelectionDAG &DAG) const { 6090 MVT VT = Op.getSimpleValueType(); 6091 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6092 6093 MVT I1ContainerVT = 6094 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6095 6096 SDValue CC = 6097 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 6098 SDValue Op1 = 6099 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 6100 SDValue Op2 = 6101 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 6102 6103 SDLoc DL(Op); 6104 SDValue Mask, VL; 6105 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6106 6107 SDValue Select = 6108 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 6109 6110 return convertFromScalableVector(VT, Select, DAG, Subtarget); 6111 } 6112 6113 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 6114 unsigned NewOpc, 6115 bool HasMask) const { 6116 MVT VT = Op.getSimpleValueType(); 6117 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6118 6119 // Create list of operands by converting existing ones to scalable types. 6120 SmallVector<SDValue, 6> Ops; 6121 for (const SDValue &V : Op->op_values()) { 6122 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6123 6124 // Pass through non-vector operands. 6125 if (!V.getValueType().isVector()) { 6126 Ops.push_back(V); 6127 continue; 6128 } 6129 6130 // "cast" fixed length vector to a scalable vector. 6131 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 6132 "Only fixed length vectors are supported!"); 6133 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6134 } 6135 6136 SDLoc DL(Op); 6137 SDValue Mask, VL; 6138 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6139 if (HasMask) 6140 Ops.push_back(Mask); 6141 Ops.push_back(VL); 6142 6143 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 6144 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 6145 } 6146 6147 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 6148 // * Operands of each node are assumed to be in the same order. 6149 // * The EVL operand is promoted from i32 to i64 on RV64. 6150 // * Fixed-length vectors are converted to their scalable-vector container 6151 // types. 6152 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 6153 unsigned RISCVISDOpc) const { 6154 SDLoc DL(Op); 6155 MVT VT = Op.getSimpleValueType(); 6156 SmallVector<SDValue, 4> Ops; 6157 6158 for (const auto &OpIdx : enumerate(Op->ops())) { 6159 SDValue V = OpIdx.value(); 6160 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6161 // Pass through operands which aren't fixed-length vectors. 6162 if (!V.getValueType().isFixedLengthVector()) { 6163 Ops.push_back(V); 6164 continue; 6165 } 6166 // "cast" fixed length vector to a scalable vector. 6167 MVT OpVT = V.getSimpleValueType(); 6168 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 6169 assert(useRVVForFixedLengthVectorVT(OpVT) && 6170 "Only fixed length vectors are supported!"); 6171 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6172 } 6173 6174 if (!VT.isFixedLengthVector()) 6175 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 6176 6177 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6178 6179 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 6180 6181 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 6182 } 6183 6184 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op, 6185 SelectionDAG &DAG) const { 6186 SDLoc DL(Op); 6187 MVT VT = Op.getSimpleValueType(); 6188 6189 SDValue Src = Op.getOperand(0); 6190 // NOTE: Mask is dropped. 6191 SDValue VL = Op.getOperand(2); 6192 6193 MVT ContainerVT = VT; 6194 if (VT.isFixedLengthVector()) { 6195 ContainerVT = getContainerForFixedLengthVector(VT); 6196 MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6197 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 6198 } 6199 6200 MVT XLenVT = Subtarget.getXLenVT(); 6201 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 6202 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6203 DAG.getUNDEF(ContainerVT), Zero, VL); 6204 6205 SDValue SplatValue = 6206 DAG.getConstant(Op.getOpcode() == ISD::VP_ZEXT ? 1 : -1, DL, XLenVT); 6207 SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6208 DAG.getUNDEF(ContainerVT), SplatValue, VL); 6209 6210 SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src, 6211 Splat, ZeroSplat, VL); 6212 if (!VT.isFixedLengthVector()) 6213 return Result; 6214 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6215 } 6216 6217 // Lower Floating-Point/Integer Type-Convert VP SDNodes 6218 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG, 6219 unsigned RISCVISDOpc) const { 6220 SDLoc DL(Op); 6221 6222 SDValue Src = Op.getOperand(0); 6223 SDValue Mask = Op.getOperand(1); 6224 SDValue VL = Op.getOperand(2); 6225 6226 MVT DstVT = Op.getSimpleValueType(); 6227 MVT SrcVT = Src.getSimpleValueType(); 6228 if (DstVT.isFixedLengthVector()) { 6229 DstVT = getContainerForFixedLengthVector(DstVT); 6230 SrcVT = getContainerForFixedLengthVector(SrcVT); 6231 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 6232 MVT MaskVT = MVT::getVectorVT(MVT::i1, DstVT.getVectorElementCount()); 6233 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6234 } 6235 6236 unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL || 6237 RISCVISDOpc == RISCVISD::FP_TO_SINT_VL) 6238 ? RISCVISD::VSEXT_VL 6239 : RISCVISD::VZEXT_VL; 6240 6241 unsigned DstEltSize = DstVT.getScalarSizeInBits(); 6242 unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); 6243 6244 SDValue Result; 6245 if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion. 6246 if (SrcVT.isInteger()) { 6247 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6248 6249 // Do we need to do any pre-widening before converting? 6250 if (SrcEltSize == 1) { 6251 MVT IntVT = DstVT.changeVectorElementTypeToInteger(); 6252 MVT XLenVT = Subtarget.getXLenVT(); 6253 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 6254 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6255 DAG.getUNDEF(IntVT), Zero, VL); 6256 SDValue One = DAG.getConstant( 6257 RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT); 6258 SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6259 DAG.getUNDEF(IntVT), One, VL); 6260 Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat, 6261 ZeroSplat, VL); 6262 } else if (DstEltSize > (2 * SrcEltSize)) { 6263 // Widen before converting. 6264 MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2), 6265 DstVT.getVectorElementCount()); 6266 Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL); 6267 } 6268 6269 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 6270 } else { 6271 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6272 "Wrong input/output vector types"); 6273 6274 // Convert f16 to f32 then convert f32 to i64. 6275 if (DstEltSize > (2 * SrcEltSize)) { 6276 assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6277 MVT InterimFVT = 6278 MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6279 Src = 6280 DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL); 6281 } 6282 6283 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 6284 } 6285 } else { // Narrowing + Conversion 6286 if (SrcVT.isInteger()) { 6287 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6288 // First do a narrowing convert to an FP type half the size, then round 6289 // the FP type to a small FP type if needed. 6290 6291 MVT InterimFVT = DstVT; 6292 if (SrcEltSize > (2 * DstEltSize)) { 6293 assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!"); 6294 assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6295 InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6296 } 6297 6298 Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL); 6299 6300 if (InterimFVT != DstVT) { 6301 Src = Result; 6302 Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL); 6303 } 6304 } else { 6305 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6306 "Wrong input/output vector types"); 6307 // First do a narrowing conversion to an integer half the size, then 6308 // truncate if needed. 6309 6310 if (DstEltSize == 1) { 6311 // First convert to the same size integer, then convert to mask using 6312 // setcc. 6313 assert(SrcEltSize >= 16 && "Unexpected FP type!"); 6314 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize), 6315 DstVT.getVectorElementCount()); 6316 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 6317 6318 // Compare the integer result to 0. The integer should be 0 or 1/-1, 6319 // otherwise the conversion was undefined. 6320 MVT XLenVT = Subtarget.getXLenVT(); 6321 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 6322 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT, 6323 DAG.getUNDEF(InterimIVT), SplatZero); 6324 Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero, 6325 DAG.getCondCode(ISD::SETNE), Mask, VL); 6326 } else { 6327 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6328 DstVT.getVectorElementCount()); 6329 6330 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 6331 6332 while (InterimIVT != DstVT) { 6333 SrcEltSize /= 2; 6334 Src = Result; 6335 InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6336 DstVT.getVectorElementCount()); 6337 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT, 6338 Src, Mask, VL); 6339 } 6340 } 6341 } 6342 } 6343 6344 MVT VT = Op.getSimpleValueType(); 6345 if (!VT.isFixedLengthVector()) 6346 return Result; 6347 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6348 } 6349 6350 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 6351 unsigned MaskOpc, 6352 unsigned VecOpc) const { 6353 MVT VT = Op.getSimpleValueType(); 6354 if (VT.getVectorElementType() != MVT::i1) 6355 return lowerVPOp(Op, DAG, VecOpc); 6356 6357 // It is safe to drop mask parameter as masked-off elements are undef. 6358 SDValue Op1 = Op->getOperand(0); 6359 SDValue Op2 = Op->getOperand(1); 6360 SDValue VL = Op->getOperand(3); 6361 6362 MVT ContainerVT = VT; 6363 const bool IsFixed = VT.isFixedLengthVector(); 6364 if (IsFixed) { 6365 ContainerVT = getContainerForFixedLengthVector(VT); 6366 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6367 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6368 } 6369 6370 SDLoc DL(Op); 6371 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 6372 if (!IsFixed) 6373 return Val; 6374 return convertFromScalableVector(VT, Val, DAG, Subtarget); 6375 } 6376 6377 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 6378 // matched to a RVV indexed load. The RVV indexed load instructions only 6379 // support the "unsigned unscaled" addressing mode; indices are implicitly 6380 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6381 // signed or scaled indexing is extended to the XLEN value type and scaled 6382 // accordingly. 6383 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 6384 SelectionDAG &DAG) const { 6385 SDLoc DL(Op); 6386 MVT VT = Op.getSimpleValueType(); 6387 6388 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6389 EVT MemVT = MemSD->getMemoryVT(); 6390 MachineMemOperand *MMO = MemSD->getMemOperand(); 6391 SDValue Chain = MemSD->getChain(); 6392 SDValue BasePtr = MemSD->getBasePtr(); 6393 6394 ISD::LoadExtType LoadExtType; 6395 SDValue Index, Mask, PassThru, VL; 6396 6397 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 6398 Index = VPGN->getIndex(); 6399 Mask = VPGN->getMask(); 6400 PassThru = DAG.getUNDEF(VT); 6401 VL = VPGN->getVectorLength(); 6402 // VP doesn't support extending loads. 6403 LoadExtType = ISD::NON_EXTLOAD; 6404 } else { 6405 // Else it must be a MGATHER. 6406 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 6407 Index = MGN->getIndex(); 6408 Mask = MGN->getMask(); 6409 PassThru = MGN->getPassThru(); 6410 LoadExtType = MGN->getExtensionType(); 6411 } 6412 6413 MVT IndexVT = Index.getSimpleValueType(); 6414 MVT XLenVT = Subtarget.getXLenVT(); 6415 6416 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6417 "Unexpected VTs!"); 6418 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6419 // Targets have to explicitly opt-in for extending vector loads. 6420 assert(LoadExtType == ISD::NON_EXTLOAD && 6421 "Unexpected extending MGATHER/VP_GATHER"); 6422 (void)LoadExtType; 6423 6424 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6425 // the selection of the masked intrinsics doesn't do this for us. 6426 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6427 6428 MVT ContainerVT = VT; 6429 if (VT.isFixedLengthVector()) { 6430 // We need to use the larger of the result and index type to determine the 6431 // scalable type to use so we don't increase LMUL for any operand/result. 6432 if (VT.bitsGE(IndexVT)) { 6433 ContainerVT = getContainerForFixedLengthVector(VT); 6434 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6435 ContainerVT.getVectorElementCount()); 6436 } else { 6437 IndexVT = getContainerForFixedLengthVector(IndexVT); 6438 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 6439 IndexVT.getVectorElementCount()); 6440 } 6441 6442 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6443 6444 if (!IsUnmasked) { 6445 MVT MaskVT = 6446 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6447 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6448 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 6449 } 6450 } 6451 6452 if (!VL) 6453 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6454 6455 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6456 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6457 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6458 VL); 6459 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6460 TrueMask, VL); 6461 } 6462 6463 unsigned IntID = 6464 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 6465 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6466 if (IsUnmasked) 6467 Ops.push_back(DAG.getUNDEF(ContainerVT)); 6468 else 6469 Ops.push_back(PassThru); 6470 Ops.push_back(BasePtr); 6471 Ops.push_back(Index); 6472 if (!IsUnmasked) 6473 Ops.push_back(Mask); 6474 Ops.push_back(VL); 6475 if (!IsUnmasked) 6476 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 6477 6478 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 6479 SDValue Result = 6480 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 6481 Chain = Result.getValue(1); 6482 6483 if (VT.isFixedLengthVector()) 6484 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 6485 6486 return DAG.getMergeValues({Result, Chain}, DL); 6487 } 6488 6489 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 6490 // matched to a RVV indexed store. The RVV indexed store instructions only 6491 // support the "unsigned unscaled" addressing mode; indices are implicitly 6492 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6493 // signed or scaled indexing is extended to the XLEN value type and scaled 6494 // accordingly. 6495 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 6496 SelectionDAG &DAG) const { 6497 SDLoc DL(Op); 6498 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6499 EVT MemVT = MemSD->getMemoryVT(); 6500 MachineMemOperand *MMO = MemSD->getMemOperand(); 6501 SDValue Chain = MemSD->getChain(); 6502 SDValue BasePtr = MemSD->getBasePtr(); 6503 6504 bool IsTruncatingStore = false; 6505 SDValue Index, Mask, Val, VL; 6506 6507 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 6508 Index = VPSN->getIndex(); 6509 Mask = VPSN->getMask(); 6510 Val = VPSN->getValue(); 6511 VL = VPSN->getVectorLength(); 6512 // VP doesn't support truncating stores. 6513 IsTruncatingStore = false; 6514 } else { 6515 // Else it must be a MSCATTER. 6516 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 6517 Index = MSN->getIndex(); 6518 Mask = MSN->getMask(); 6519 Val = MSN->getValue(); 6520 IsTruncatingStore = MSN->isTruncatingStore(); 6521 } 6522 6523 MVT VT = Val.getSimpleValueType(); 6524 MVT IndexVT = Index.getSimpleValueType(); 6525 MVT XLenVT = Subtarget.getXLenVT(); 6526 6527 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6528 "Unexpected VTs!"); 6529 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6530 // Targets have to explicitly opt-in for extending vector loads and 6531 // truncating vector stores. 6532 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 6533 (void)IsTruncatingStore; 6534 6535 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6536 // the selection of the masked intrinsics doesn't do this for us. 6537 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6538 6539 MVT ContainerVT = VT; 6540 if (VT.isFixedLengthVector()) { 6541 // We need to use the larger of the value and index type to determine the 6542 // scalable type to use so we don't increase LMUL for any operand/result. 6543 if (VT.bitsGE(IndexVT)) { 6544 ContainerVT = getContainerForFixedLengthVector(VT); 6545 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6546 ContainerVT.getVectorElementCount()); 6547 } else { 6548 IndexVT = getContainerForFixedLengthVector(IndexVT); 6549 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 6550 IndexVT.getVectorElementCount()); 6551 } 6552 6553 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6554 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6555 6556 if (!IsUnmasked) { 6557 MVT MaskVT = 6558 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6559 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6560 } 6561 } 6562 6563 if (!VL) 6564 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6565 6566 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6567 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6568 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6569 VL); 6570 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6571 TrueMask, VL); 6572 } 6573 6574 unsigned IntID = 6575 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6576 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6577 Ops.push_back(Val); 6578 Ops.push_back(BasePtr); 6579 Ops.push_back(Index); 6580 if (!IsUnmasked) 6581 Ops.push_back(Mask); 6582 Ops.push_back(VL); 6583 6584 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6585 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6586 } 6587 6588 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6589 SelectionDAG &DAG) const { 6590 const MVT XLenVT = Subtarget.getXLenVT(); 6591 SDLoc DL(Op); 6592 SDValue Chain = Op->getOperand(0); 6593 SDValue SysRegNo = DAG.getTargetConstant( 6594 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6595 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6596 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6597 6598 // Encoding used for rounding mode in RISCV differs from that used in 6599 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6600 // table, which consists of a sequence of 4-bit fields, each representing 6601 // corresponding FLT_ROUNDS mode. 6602 static const int Table = 6603 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6604 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6605 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6606 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6607 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6608 6609 SDValue Shift = 6610 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6611 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6612 DAG.getConstant(Table, DL, XLenVT), Shift); 6613 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6614 DAG.getConstant(7, DL, XLenVT)); 6615 6616 return DAG.getMergeValues({Masked, Chain}, DL); 6617 } 6618 6619 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6620 SelectionDAG &DAG) const { 6621 const MVT XLenVT = Subtarget.getXLenVT(); 6622 SDLoc DL(Op); 6623 SDValue Chain = Op->getOperand(0); 6624 SDValue RMValue = Op->getOperand(1); 6625 SDValue SysRegNo = DAG.getTargetConstant( 6626 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6627 6628 // Encoding used for rounding mode in RISCV differs from that used in 6629 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6630 // a table, which consists of a sequence of 4-bit fields, each representing 6631 // corresponding RISCV mode. 6632 static const unsigned Table = 6633 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6634 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6635 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6636 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6637 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6638 6639 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6640 DAG.getConstant(2, DL, XLenVT)); 6641 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6642 DAG.getConstant(Table, DL, XLenVT), Shift); 6643 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6644 DAG.getConstant(0x7, DL, XLenVT)); 6645 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6646 RMValue); 6647 } 6648 6649 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6650 switch (IntNo) { 6651 default: 6652 llvm_unreachable("Unexpected Intrinsic"); 6653 case Intrinsic::riscv_bcompress: 6654 return RISCVISD::BCOMPRESSW; 6655 case Intrinsic::riscv_bdecompress: 6656 return RISCVISD::BDECOMPRESSW; 6657 case Intrinsic::riscv_bfp: 6658 return RISCVISD::BFPW; 6659 case Intrinsic::riscv_fsl: 6660 return RISCVISD::FSLW; 6661 case Intrinsic::riscv_fsr: 6662 return RISCVISD::FSRW; 6663 } 6664 } 6665 6666 // Converts the given intrinsic to a i64 operation with any extension. 6667 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6668 unsigned IntNo) { 6669 SDLoc DL(N); 6670 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6671 // Deal with the Instruction Operands 6672 SmallVector<SDValue, 3> NewOps; 6673 for (SDValue Op : drop_begin(N->ops())) 6674 // Promote the operand to i64 type 6675 NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op)); 6676 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps); 6677 // ReplaceNodeResults requires we maintain the same type for the return value. 6678 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6679 } 6680 6681 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6682 // form of the given Opcode. 6683 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6684 switch (Opcode) { 6685 default: 6686 llvm_unreachable("Unexpected opcode"); 6687 case ISD::SHL: 6688 return RISCVISD::SLLW; 6689 case ISD::SRA: 6690 return RISCVISD::SRAW; 6691 case ISD::SRL: 6692 return RISCVISD::SRLW; 6693 case ISD::SDIV: 6694 return RISCVISD::DIVW; 6695 case ISD::UDIV: 6696 return RISCVISD::DIVUW; 6697 case ISD::UREM: 6698 return RISCVISD::REMUW; 6699 case ISD::ROTL: 6700 return RISCVISD::ROLW; 6701 case ISD::ROTR: 6702 return RISCVISD::RORW; 6703 } 6704 } 6705 6706 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6707 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6708 // otherwise be promoted to i64, making it difficult to select the 6709 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6710 // type i8/i16/i32 is lost. 6711 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6712 unsigned ExtOpc = ISD::ANY_EXTEND) { 6713 SDLoc DL(N); 6714 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6715 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6716 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6717 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6718 // ReplaceNodeResults requires we maintain the same type for the return value. 6719 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6720 } 6721 6722 // Converts the given 32-bit operation to a i64 operation with signed extension 6723 // semantic to reduce the signed extension instructions. 6724 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6725 SDLoc DL(N); 6726 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6727 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6728 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6729 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6730 DAG.getValueType(MVT::i32)); 6731 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6732 } 6733 6734 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6735 SmallVectorImpl<SDValue> &Results, 6736 SelectionDAG &DAG) const { 6737 SDLoc DL(N); 6738 switch (N->getOpcode()) { 6739 default: 6740 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6741 case ISD::STRICT_FP_TO_SINT: 6742 case ISD::STRICT_FP_TO_UINT: 6743 case ISD::FP_TO_SINT: 6744 case ISD::FP_TO_UINT: { 6745 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6746 "Unexpected custom legalisation"); 6747 bool IsStrict = N->isStrictFPOpcode(); 6748 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6749 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6750 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6751 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6752 TargetLowering::TypeSoftenFloat) { 6753 if (!isTypeLegal(Op0.getValueType())) 6754 return; 6755 if (IsStrict) { 6756 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6757 : RISCVISD::STRICT_FCVT_WU_RV64; 6758 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6759 SDValue Res = DAG.getNode( 6760 Opc, DL, VTs, N->getOperand(0), Op0, 6761 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6762 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6763 Results.push_back(Res.getValue(1)); 6764 return; 6765 } 6766 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6767 SDValue Res = 6768 DAG.getNode(Opc, DL, MVT::i64, Op0, 6769 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6770 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6771 return; 6772 } 6773 // If the FP type needs to be softened, emit a library call using the 'si' 6774 // version. If we left it to default legalization we'd end up with 'di'. If 6775 // the FP type doesn't need to be softened just let generic type 6776 // legalization promote the result type. 6777 RTLIB::Libcall LC; 6778 if (IsSigned) 6779 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6780 else 6781 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6782 MakeLibCallOptions CallOptions; 6783 EVT OpVT = Op0.getValueType(); 6784 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6785 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6786 SDValue Result; 6787 std::tie(Result, Chain) = 6788 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6789 Results.push_back(Result); 6790 if (IsStrict) 6791 Results.push_back(Chain); 6792 break; 6793 } 6794 case ISD::READCYCLECOUNTER: { 6795 assert(!Subtarget.is64Bit() && 6796 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6797 6798 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6799 SDValue RCW = 6800 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6801 6802 Results.push_back( 6803 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6804 Results.push_back(RCW.getValue(2)); 6805 break; 6806 } 6807 case ISD::MUL: { 6808 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6809 unsigned XLen = Subtarget.getXLen(); 6810 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6811 if (Size > XLen) { 6812 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6813 SDValue LHS = N->getOperand(0); 6814 SDValue RHS = N->getOperand(1); 6815 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6816 6817 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6818 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6819 // We need exactly one side to be unsigned. 6820 if (LHSIsU == RHSIsU) 6821 return; 6822 6823 auto MakeMULPair = [&](SDValue S, SDValue U) { 6824 MVT XLenVT = Subtarget.getXLenVT(); 6825 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6826 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6827 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6828 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6829 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6830 }; 6831 6832 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6833 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6834 6835 // The other operand should be signed, but still prefer MULH when 6836 // possible. 6837 if (RHSIsU && LHSIsS && !RHSIsS) 6838 Results.push_back(MakeMULPair(LHS, RHS)); 6839 else if (LHSIsU && RHSIsS && !LHSIsS) 6840 Results.push_back(MakeMULPair(RHS, LHS)); 6841 6842 return; 6843 } 6844 LLVM_FALLTHROUGH; 6845 } 6846 case ISD::ADD: 6847 case ISD::SUB: 6848 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6849 "Unexpected custom legalisation"); 6850 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6851 break; 6852 case ISD::SHL: 6853 case ISD::SRA: 6854 case ISD::SRL: 6855 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6856 "Unexpected custom legalisation"); 6857 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6858 Results.push_back(customLegalizeToWOp(N, DAG)); 6859 break; 6860 } 6861 6862 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6863 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6864 // shift amount. 6865 if (N->getOpcode() == ISD::SHL) { 6866 SDLoc DL(N); 6867 SDValue NewOp0 = 6868 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6869 SDValue NewOp1 = 6870 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6871 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6872 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6873 DAG.getValueType(MVT::i32)); 6874 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6875 } 6876 6877 break; 6878 case ISD::ROTL: 6879 case ISD::ROTR: 6880 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6881 "Unexpected custom legalisation"); 6882 Results.push_back(customLegalizeToWOp(N, DAG)); 6883 break; 6884 case ISD::CTTZ: 6885 case ISD::CTTZ_ZERO_UNDEF: 6886 case ISD::CTLZ: 6887 case ISD::CTLZ_ZERO_UNDEF: { 6888 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6889 "Unexpected custom legalisation"); 6890 6891 SDValue NewOp0 = 6892 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6893 bool IsCTZ = 6894 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6895 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6896 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6897 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6898 return; 6899 } 6900 case ISD::SDIV: 6901 case ISD::UDIV: 6902 case ISD::UREM: { 6903 MVT VT = N->getSimpleValueType(0); 6904 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6905 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6906 "Unexpected custom legalisation"); 6907 // Don't promote division/remainder by constant since we should expand those 6908 // to multiply by magic constant. 6909 // FIXME: What if the expansion is disabled for minsize. 6910 if (N->getOperand(1).getOpcode() == ISD::Constant) 6911 return; 6912 6913 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6914 // the upper 32 bits. For other types we need to sign or zero extend 6915 // based on the opcode. 6916 unsigned ExtOpc = ISD::ANY_EXTEND; 6917 if (VT != MVT::i32) 6918 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6919 : ISD::ZERO_EXTEND; 6920 6921 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6922 break; 6923 } 6924 case ISD::UADDO: 6925 case ISD::USUBO: { 6926 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6927 "Unexpected custom legalisation"); 6928 bool IsAdd = N->getOpcode() == ISD::UADDO; 6929 // Create an ADDW or SUBW. 6930 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6931 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6932 SDValue Res = 6933 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6934 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6935 DAG.getValueType(MVT::i32)); 6936 6937 SDValue Overflow; 6938 if (IsAdd && isOneConstant(RHS)) { 6939 // Special case uaddo X, 1 overflowed if the addition result is 0. 6940 // FIXME: We can do this for any constant RHS by using (X + C) < C. 6941 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, 6942 DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ); 6943 } else { 6944 // Sign extend the LHS and perform an unsigned compare with the ADDW 6945 // result. Since the inputs are sign extended from i32, this is equivalent 6946 // to comparing the lower 32 bits. 6947 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6948 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6949 IsAdd ? ISD::SETULT : ISD::SETUGT); 6950 } 6951 6952 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6953 Results.push_back(Overflow); 6954 return; 6955 } 6956 case ISD::UADDSAT: 6957 case ISD::USUBSAT: { 6958 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6959 "Unexpected custom legalisation"); 6960 if (Subtarget.hasStdExtZbb()) { 6961 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6962 // sign extend allows overflow of the lower 32 bits to be detected on 6963 // the promoted size. 6964 SDValue LHS = 6965 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6966 SDValue RHS = 6967 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6968 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6969 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6970 return; 6971 } 6972 6973 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6974 // promotion for UADDO/USUBO. 6975 Results.push_back(expandAddSubSat(N, DAG)); 6976 return; 6977 } 6978 case ISD::ABS: { 6979 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6980 "Unexpected custom legalisation"); 6981 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6982 6983 // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y) 6984 6985 SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6986 6987 // Freeze the source so we can increase it's use count. 6988 Src = DAG.getFreeze(Src); 6989 6990 // Copy sign bit to all bits using the sraiw pattern. 6991 SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src, 6992 DAG.getValueType(MVT::i32)); 6993 SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill, 6994 DAG.getConstant(31, DL, MVT::i64)); 6995 6996 SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill); 6997 NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill); 6998 6999 // NOTE: The result is only required to be anyextended, but sext is 7000 // consistent with type legalization of sub. 7001 NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes, 7002 DAG.getValueType(MVT::i32)); 7003 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 7004 return; 7005 } 7006 case ISD::BITCAST: { 7007 EVT VT = N->getValueType(0); 7008 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 7009 SDValue Op0 = N->getOperand(0); 7010 EVT Op0VT = Op0.getValueType(); 7011 MVT XLenVT = Subtarget.getXLenVT(); 7012 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 7013 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 7014 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 7015 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 7016 Subtarget.hasStdExtF()) { 7017 SDValue FPConv = 7018 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 7019 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 7020 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 7021 isTypeLegal(Op0VT)) { 7022 // Custom-legalize bitcasts from fixed-length vector types to illegal 7023 // scalar types in order to improve codegen. Bitcast the vector to a 7024 // one-element vector type whose element type is the same as the result 7025 // type, and extract the first element. 7026 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 7027 if (isTypeLegal(BVT)) { 7028 SDValue BVec = DAG.getBitcast(BVT, Op0); 7029 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 7030 DAG.getConstant(0, DL, XLenVT))); 7031 } 7032 } 7033 break; 7034 } 7035 case RISCVISD::GREV: 7036 case RISCVISD::GORC: 7037 case RISCVISD::SHFL: { 7038 MVT VT = N->getSimpleValueType(0); 7039 MVT XLenVT = Subtarget.getXLenVT(); 7040 assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) && 7041 "Unexpected custom legalisation"); 7042 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 7043 assert((Subtarget.hasStdExtZbp() || 7044 (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV && 7045 N->getConstantOperandVal(1) == 7)) && 7046 "Unexpected extension"); 7047 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 7048 SDValue NewOp1 = 7049 DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1)); 7050 SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1); 7051 // ReplaceNodeResults requires we maintain the same type for the return 7052 // value. 7053 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes)); 7054 break; 7055 } 7056 case ISD::BSWAP: 7057 case ISD::BITREVERSE: { 7058 MVT VT = N->getSimpleValueType(0); 7059 MVT XLenVT = Subtarget.getXLenVT(); 7060 assert((VT == MVT::i8 || VT == MVT::i16 || 7061 (VT == MVT::i32 && Subtarget.is64Bit())) && 7062 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 7063 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 7064 unsigned Imm = VT.getSizeInBits() - 1; 7065 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 7066 if (N->getOpcode() == ISD::BSWAP) 7067 Imm &= ~0x7U; 7068 SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0, 7069 DAG.getConstant(Imm, DL, XLenVT)); 7070 // ReplaceNodeResults requires we maintain the same type for the return 7071 // value. 7072 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 7073 break; 7074 } 7075 case ISD::FSHL: 7076 case ISD::FSHR: { 7077 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7078 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 7079 SDValue NewOp0 = 7080 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 7081 SDValue NewOp1 = 7082 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7083 SDValue NewShAmt = 7084 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7085 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 7086 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 7087 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 7088 DAG.getConstant(0x1f, DL, MVT::i64)); 7089 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 7090 // instruction use different orders. fshl will return its first operand for 7091 // shift of zero, fshr will return its second operand. fsl and fsr both 7092 // return rs1 so the ISD nodes need to have different operand orders. 7093 // Shift amount is in rs2. 7094 unsigned Opc = RISCVISD::FSLW; 7095 if (N->getOpcode() == ISD::FSHR) { 7096 std::swap(NewOp0, NewOp1); 7097 Opc = RISCVISD::FSRW; 7098 } 7099 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 7100 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 7101 break; 7102 } 7103 case ISD::EXTRACT_VECTOR_ELT: { 7104 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 7105 // type is illegal (currently only vXi64 RV32). 7106 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 7107 // transferred to the destination register. We issue two of these from the 7108 // upper- and lower- halves of the SEW-bit vector element, slid down to the 7109 // first element. 7110 SDValue Vec = N->getOperand(0); 7111 SDValue Idx = N->getOperand(1); 7112 7113 // The vector type hasn't been legalized yet so we can't issue target 7114 // specific nodes if it needs legalization. 7115 // FIXME: We would manually legalize if it's important. 7116 if (!isTypeLegal(Vec.getValueType())) 7117 return; 7118 7119 MVT VecVT = Vec.getSimpleValueType(); 7120 7121 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 7122 VecVT.getVectorElementType() == MVT::i64 && 7123 "Unexpected EXTRACT_VECTOR_ELT legalization"); 7124 7125 // If this is a fixed vector, we need to convert it to a scalable vector. 7126 MVT ContainerVT = VecVT; 7127 if (VecVT.isFixedLengthVector()) { 7128 ContainerVT = getContainerForFixedLengthVector(VecVT); 7129 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 7130 } 7131 7132 MVT XLenVT = Subtarget.getXLenVT(); 7133 7134 // Use a VL of 1 to avoid processing more elements than we need. 7135 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 7136 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7137 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 7138 7139 // Unless the index is known to be 0, we must slide the vector down to get 7140 // the desired element into index 0. 7141 if (!isNullConstant(Idx)) { 7142 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 7143 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 7144 } 7145 7146 // Extract the lower XLEN bits of the correct vector element. 7147 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7148 7149 // To extract the upper XLEN bits of the vector element, shift the first 7150 // element right by 32 bits and re-extract the lower XLEN bits. 7151 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 7152 DAG.getUNDEF(ContainerVT), 7153 DAG.getConstant(32, DL, XLenVT), VL); 7154 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 7155 ThirtyTwoV, Mask, VL); 7156 7157 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7158 7159 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7160 break; 7161 } 7162 case ISD::INTRINSIC_WO_CHAIN: { 7163 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 7164 switch (IntNo) { 7165 default: 7166 llvm_unreachable( 7167 "Don't know how to custom type legalize this intrinsic!"); 7168 case Intrinsic::riscv_grev: 7169 case Intrinsic::riscv_gorc: { 7170 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7171 "Unexpected custom legalisation"); 7172 SDValue NewOp1 = 7173 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7174 SDValue NewOp2 = 7175 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7176 unsigned Opc = 7177 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 7178 // If the control is a constant, promote the node by clearing any extra 7179 // bits bits in the control. isel will form greviw/gorciw if the result is 7180 // sign extended. 7181 if (isa<ConstantSDNode>(NewOp2)) { 7182 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7183 DAG.getConstant(0x1f, DL, MVT::i64)); 7184 Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 7185 } 7186 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7187 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7188 break; 7189 } 7190 case Intrinsic::riscv_bcompress: 7191 case Intrinsic::riscv_bdecompress: 7192 case Intrinsic::riscv_bfp: 7193 case Intrinsic::riscv_fsl: 7194 case Intrinsic::riscv_fsr: { 7195 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7196 "Unexpected custom legalisation"); 7197 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 7198 break; 7199 } 7200 case Intrinsic::riscv_orc_b: { 7201 // Lower to the GORCI encoding for orc.b with the operand extended. 7202 SDValue NewOp = 7203 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7204 SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp, 7205 DAG.getConstant(7, DL, MVT::i64)); 7206 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7207 return; 7208 } 7209 case Intrinsic::riscv_shfl: 7210 case Intrinsic::riscv_unshfl: { 7211 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7212 "Unexpected custom legalisation"); 7213 SDValue NewOp1 = 7214 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7215 SDValue NewOp2 = 7216 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7217 unsigned Opc = 7218 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 7219 // There is no (UN)SHFLIW. If the control word is a constant, we can use 7220 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 7221 // will be shuffled the same way as the lower 32 bit half, but the two 7222 // halves won't cross. 7223 if (isa<ConstantSDNode>(NewOp2)) { 7224 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7225 DAG.getConstant(0xf, DL, MVT::i64)); 7226 Opc = 7227 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 7228 } 7229 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7230 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7231 break; 7232 } 7233 case Intrinsic::riscv_vmv_x_s: { 7234 EVT VT = N->getValueType(0); 7235 MVT XLenVT = Subtarget.getXLenVT(); 7236 if (VT.bitsLT(XLenVT)) { 7237 // Simple case just extract using vmv.x.s and truncate. 7238 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 7239 Subtarget.getXLenVT(), N->getOperand(1)); 7240 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 7241 return; 7242 } 7243 7244 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 7245 "Unexpected custom legalization"); 7246 7247 // We need to do the move in two steps. 7248 SDValue Vec = N->getOperand(1); 7249 MVT VecVT = Vec.getSimpleValueType(); 7250 7251 // First extract the lower XLEN bits of the element. 7252 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7253 7254 // To extract the upper XLEN bits of the vector element, shift the first 7255 // element right by 32 bits and re-extract the lower XLEN bits. 7256 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7257 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7258 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 7259 SDValue ThirtyTwoV = 7260 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 7261 DAG.getConstant(32, DL, XLenVT), VL); 7262 SDValue LShr32 = 7263 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 7264 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7265 7266 Results.push_back( 7267 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7268 break; 7269 } 7270 } 7271 break; 7272 } 7273 case ISD::VECREDUCE_ADD: 7274 case ISD::VECREDUCE_AND: 7275 case ISD::VECREDUCE_OR: 7276 case ISD::VECREDUCE_XOR: 7277 case ISD::VECREDUCE_SMAX: 7278 case ISD::VECREDUCE_UMAX: 7279 case ISD::VECREDUCE_SMIN: 7280 case ISD::VECREDUCE_UMIN: 7281 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 7282 Results.push_back(V); 7283 break; 7284 case ISD::VP_REDUCE_ADD: 7285 case ISD::VP_REDUCE_AND: 7286 case ISD::VP_REDUCE_OR: 7287 case ISD::VP_REDUCE_XOR: 7288 case ISD::VP_REDUCE_SMAX: 7289 case ISD::VP_REDUCE_UMAX: 7290 case ISD::VP_REDUCE_SMIN: 7291 case ISD::VP_REDUCE_UMIN: 7292 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 7293 Results.push_back(V); 7294 break; 7295 case ISD::FLT_ROUNDS_: { 7296 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 7297 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 7298 Results.push_back(Res.getValue(0)); 7299 Results.push_back(Res.getValue(1)); 7300 break; 7301 } 7302 } 7303 } 7304 7305 // A structure to hold one of the bit-manipulation patterns below. Together, a 7306 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 7307 // (or (and (shl x, 1), 0xAAAAAAAA), 7308 // (and (srl x, 1), 0x55555555)) 7309 struct RISCVBitmanipPat { 7310 SDValue Op; 7311 unsigned ShAmt; 7312 bool IsSHL; 7313 7314 bool formsPairWith(const RISCVBitmanipPat &Other) const { 7315 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 7316 } 7317 }; 7318 7319 // Matches patterns of the form 7320 // (and (shl x, C2), (C1 << C2)) 7321 // (and (srl x, C2), C1) 7322 // (shl (and x, C1), C2) 7323 // (srl (and x, (C1 << C2)), C2) 7324 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 7325 // The expected masks for each shift amount are specified in BitmanipMasks where 7326 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 7327 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 7328 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 7329 // XLen is 64. 7330 static Optional<RISCVBitmanipPat> 7331 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 7332 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 7333 "Unexpected number of masks"); 7334 Optional<uint64_t> Mask; 7335 // Optionally consume a mask around the shift operation. 7336 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 7337 Mask = Op.getConstantOperandVal(1); 7338 Op = Op.getOperand(0); 7339 } 7340 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 7341 return None; 7342 bool IsSHL = Op.getOpcode() == ISD::SHL; 7343 7344 if (!isa<ConstantSDNode>(Op.getOperand(1))) 7345 return None; 7346 uint64_t ShAmt = Op.getConstantOperandVal(1); 7347 7348 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7349 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 7350 return None; 7351 // If we don't have enough masks for 64 bit, then we must be trying to 7352 // match SHFL so we're only allowed to shift 1/4 of the width. 7353 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 7354 return None; 7355 7356 SDValue Src = Op.getOperand(0); 7357 7358 // The expected mask is shifted left when the AND is found around SHL 7359 // patterns. 7360 // ((x >> 1) & 0x55555555) 7361 // ((x << 1) & 0xAAAAAAAA) 7362 bool SHLExpMask = IsSHL; 7363 7364 if (!Mask) { 7365 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 7366 // the mask is all ones: consume that now. 7367 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 7368 Mask = Src.getConstantOperandVal(1); 7369 Src = Src.getOperand(0); 7370 // The expected mask is now in fact shifted left for SRL, so reverse the 7371 // decision. 7372 // ((x & 0xAAAAAAAA) >> 1) 7373 // ((x & 0x55555555) << 1) 7374 SHLExpMask = !SHLExpMask; 7375 } else { 7376 // Use a default shifted mask of all-ones if there's no AND, truncated 7377 // down to the expected width. This simplifies the logic later on. 7378 Mask = maskTrailingOnes<uint64_t>(Width); 7379 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 7380 } 7381 } 7382 7383 unsigned MaskIdx = Log2_32(ShAmt); 7384 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7385 7386 if (SHLExpMask) 7387 ExpMask <<= ShAmt; 7388 7389 if (Mask != ExpMask) 7390 return None; 7391 7392 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 7393 } 7394 7395 // Matches any of the following bit-manipulation patterns: 7396 // (and (shl x, 1), (0x55555555 << 1)) 7397 // (and (srl x, 1), 0x55555555) 7398 // (shl (and x, 0x55555555), 1) 7399 // (srl (and x, (0x55555555 << 1)), 1) 7400 // where the shift amount and mask may vary thus: 7401 // [1] = 0x55555555 / 0xAAAAAAAA 7402 // [2] = 0x33333333 / 0xCCCCCCCC 7403 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 7404 // [8] = 0x00FF00FF / 0xFF00FF00 7405 // [16] = 0x0000FFFF / 0xFFFFFFFF 7406 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 7407 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 7408 // These are the unshifted masks which we use to match bit-manipulation 7409 // patterns. They may be shifted left in certain circumstances. 7410 static const uint64_t BitmanipMasks[] = { 7411 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 7412 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 7413 7414 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7415 } 7416 7417 // Match the following pattern as a GREVI(W) operation 7418 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 7419 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 7420 const RISCVSubtarget &Subtarget) { 7421 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7422 EVT VT = Op.getValueType(); 7423 7424 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7425 auto LHS = matchGREVIPat(Op.getOperand(0)); 7426 auto RHS = matchGREVIPat(Op.getOperand(1)); 7427 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 7428 SDLoc DL(Op); 7429 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 7430 DAG.getConstant(LHS->ShAmt, DL, VT)); 7431 } 7432 } 7433 return SDValue(); 7434 } 7435 7436 // Matches any the following pattern as a GORCI(W) operation 7437 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 7438 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 7439 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 7440 // Note that with the variant of 3., 7441 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 7442 // the inner pattern will first be matched as GREVI and then the outer 7443 // pattern will be matched to GORC via the first rule above. 7444 // 4. (or (rotl/rotr x, bitwidth/2), x) 7445 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 7446 const RISCVSubtarget &Subtarget) { 7447 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7448 EVT VT = Op.getValueType(); 7449 7450 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7451 SDLoc DL(Op); 7452 SDValue Op0 = Op.getOperand(0); 7453 SDValue Op1 = Op.getOperand(1); 7454 7455 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 7456 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 7457 isa<ConstantSDNode>(Reverse.getOperand(1)) && 7458 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 7459 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 7460 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 7461 if ((Reverse.getOpcode() == ISD::ROTL || 7462 Reverse.getOpcode() == ISD::ROTR) && 7463 Reverse.getOperand(0) == X && 7464 isa<ConstantSDNode>(Reverse.getOperand(1))) { 7465 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 7466 if (RotAmt == (VT.getSizeInBits() / 2)) 7467 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 7468 DAG.getConstant(RotAmt, DL, VT)); 7469 } 7470 return SDValue(); 7471 }; 7472 7473 // Check for either commutable permutation of (or (GREVI x, shamt), x) 7474 if (SDValue V = MatchOROfReverse(Op0, Op1)) 7475 return V; 7476 if (SDValue V = MatchOROfReverse(Op1, Op0)) 7477 return V; 7478 7479 // OR is commutable so canonicalize its OR operand to the left 7480 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 7481 std::swap(Op0, Op1); 7482 if (Op0.getOpcode() != ISD::OR) 7483 return SDValue(); 7484 SDValue OrOp0 = Op0.getOperand(0); 7485 SDValue OrOp1 = Op0.getOperand(1); 7486 auto LHS = matchGREVIPat(OrOp0); 7487 // OR is commutable so swap the operands and try again: x might have been 7488 // on the left 7489 if (!LHS) { 7490 std::swap(OrOp0, OrOp1); 7491 LHS = matchGREVIPat(OrOp0); 7492 } 7493 auto RHS = matchGREVIPat(Op1); 7494 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 7495 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 7496 DAG.getConstant(LHS->ShAmt, DL, VT)); 7497 } 7498 } 7499 return SDValue(); 7500 } 7501 7502 // Matches any of the following bit-manipulation patterns: 7503 // (and (shl x, 1), (0x22222222 << 1)) 7504 // (and (srl x, 1), 0x22222222) 7505 // (shl (and x, 0x22222222), 1) 7506 // (srl (and x, (0x22222222 << 1)), 1) 7507 // where the shift amount and mask may vary thus: 7508 // [1] = 0x22222222 / 0x44444444 7509 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 7510 // [4] = 0x00F000F0 / 0x0F000F00 7511 // [8] = 0x0000FF00 / 0x00FF0000 7512 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 7513 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 7514 // These are the unshifted masks which we use to match bit-manipulation 7515 // patterns. They may be shifted left in certain circumstances. 7516 static const uint64_t BitmanipMasks[] = { 7517 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 7518 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 7519 7520 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7521 } 7522 7523 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 7524 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 7525 const RISCVSubtarget &Subtarget) { 7526 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7527 EVT VT = Op.getValueType(); 7528 7529 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 7530 return SDValue(); 7531 7532 SDValue Op0 = Op.getOperand(0); 7533 SDValue Op1 = Op.getOperand(1); 7534 7535 // Or is commutable so canonicalize the second OR to the LHS. 7536 if (Op0.getOpcode() != ISD::OR) 7537 std::swap(Op0, Op1); 7538 if (Op0.getOpcode() != ISD::OR) 7539 return SDValue(); 7540 7541 // We found an inner OR, so our operands are the operands of the inner OR 7542 // and the other operand of the outer OR. 7543 SDValue A = Op0.getOperand(0); 7544 SDValue B = Op0.getOperand(1); 7545 SDValue C = Op1; 7546 7547 auto Match1 = matchSHFLPat(A); 7548 auto Match2 = matchSHFLPat(B); 7549 7550 // If neither matched, we failed. 7551 if (!Match1 && !Match2) 7552 return SDValue(); 7553 7554 // We had at least one match. if one failed, try the remaining C operand. 7555 if (!Match1) { 7556 std::swap(A, C); 7557 Match1 = matchSHFLPat(A); 7558 if (!Match1) 7559 return SDValue(); 7560 } else if (!Match2) { 7561 std::swap(B, C); 7562 Match2 = matchSHFLPat(B); 7563 if (!Match2) 7564 return SDValue(); 7565 } 7566 assert(Match1 && Match2); 7567 7568 // Make sure our matches pair up. 7569 if (!Match1->formsPairWith(*Match2)) 7570 return SDValue(); 7571 7572 // All the remains is to make sure C is an AND with the same input, that masks 7573 // out the bits that are being shuffled. 7574 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7575 C.getOperand(0) != Match1->Op) 7576 return SDValue(); 7577 7578 uint64_t Mask = C.getConstantOperandVal(1); 7579 7580 static const uint64_t BitmanipMasks[] = { 7581 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7582 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7583 }; 7584 7585 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7586 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7587 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7588 7589 if (Mask != ExpMask) 7590 return SDValue(); 7591 7592 SDLoc DL(Op); 7593 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7594 DAG.getConstant(Match1->ShAmt, DL, VT)); 7595 } 7596 7597 // Optimize (add (shl x, c0), (shl y, c1)) -> 7598 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7599 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7600 const RISCVSubtarget &Subtarget) { 7601 // Perform this optimization only in the zba extension. 7602 if (!Subtarget.hasStdExtZba()) 7603 return SDValue(); 7604 7605 // Skip for vector types and larger types. 7606 EVT VT = N->getValueType(0); 7607 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7608 return SDValue(); 7609 7610 // The two operand nodes must be SHL and have no other use. 7611 SDValue N0 = N->getOperand(0); 7612 SDValue N1 = N->getOperand(1); 7613 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7614 !N0->hasOneUse() || !N1->hasOneUse()) 7615 return SDValue(); 7616 7617 // Check c0 and c1. 7618 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7619 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7620 if (!N0C || !N1C) 7621 return SDValue(); 7622 int64_t C0 = N0C->getSExtValue(); 7623 int64_t C1 = N1C->getSExtValue(); 7624 if (C0 <= 0 || C1 <= 0) 7625 return SDValue(); 7626 7627 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7628 int64_t Bits = std::min(C0, C1); 7629 int64_t Diff = std::abs(C0 - C1); 7630 if (Diff != 1 && Diff != 2 && Diff != 3) 7631 return SDValue(); 7632 7633 // Build nodes. 7634 SDLoc DL(N); 7635 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7636 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7637 SDValue NA0 = 7638 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7639 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7640 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7641 } 7642 7643 // Combine 7644 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7645 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7646 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7647 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7648 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7649 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7650 // The grev patterns represents BSWAP. 7651 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB 7652 // off the grev. 7653 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG, 7654 const RISCVSubtarget &Subtarget) { 7655 bool IsWInstruction = 7656 N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW; 7657 assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL || 7658 IsWInstruction) && 7659 "Unexpected opcode!"); 7660 SDValue Src = N->getOperand(0); 7661 EVT VT = N->getValueType(0); 7662 SDLoc DL(N); 7663 7664 if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV) 7665 return SDValue(); 7666 7667 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7668 !isa<ConstantSDNode>(Src.getOperand(1))) 7669 return SDValue(); 7670 7671 unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits(); 7672 assert(isPowerOf2_32(BitWidth) && "Expected a power of 2"); 7673 7674 // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for 7675 // RORW/ROLW. And the grev should be the encoding for bswap for this width. 7676 unsigned ShAmt1 = N->getConstantOperandVal(1); 7677 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7678 if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8)) 7679 return SDValue(); 7680 7681 Src = Src.getOperand(0); 7682 7683 // Toggle bit the MSB of the shift. 7684 unsigned CombinedShAmt = ShAmt1 ^ ShAmt2; 7685 if (CombinedShAmt == 0) 7686 return Src; 7687 7688 SDValue Res = DAG.getNode( 7689 RISCVISD::GREV, DL, VT, Src, 7690 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7691 if (!IsWInstruction) 7692 return Res; 7693 7694 // Sign extend the result to match the behavior of the rotate. This will be 7695 // selected to GREVIW in isel. 7696 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res, 7697 DAG.getValueType(MVT::i32)); 7698 } 7699 7700 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7701 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7702 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7703 // not undo itself, but they are redundant. 7704 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7705 bool IsGORC = N->getOpcode() == RISCVISD::GORC; 7706 assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode"); 7707 SDValue Src = N->getOperand(0); 7708 7709 if (Src.getOpcode() != N->getOpcode()) 7710 return SDValue(); 7711 7712 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7713 !isa<ConstantSDNode>(Src.getOperand(1))) 7714 return SDValue(); 7715 7716 unsigned ShAmt1 = N->getConstantOperandVal(1); 7717 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7718 Src = Src.getOperand(0); 7719 7720 unsigned CombinedShAmt; 7721 if (IsGORC) 7722 CombinedShAmt = ShAmt1 | ShAmt2; 7723 else 7724 CombinedShAmt = ShAmt1 ^ ShAmt2; 7725 7726 if (CombinedShAmt == 0) 7727 return Src; 7728 7729 SDLoc DL(N); 7730 return DAG.getNode( 7731 N->getOpcode(), DL, N->getValueType(0), Src, 7732 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7733 } 7734 7735 // Combine a constant select operand into its use: 7736 // 7737 // (and (select cond, -1, c), x) 7738 // -> (select cond, x, (and x, c)) [AllOnes=1] 7739 // (or (select cond, 0, c), x) 7740 // -> (select cond, x, (or x, c)) [AllOnes=0] 7741 // (xor (select cond, 0, c), x) 7742 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7743 // (add (select cond, 0, c), x) 7744 // -> (select cond, x, (add x, c)) [AllOnes=0] 7745 // (sub x, (select cond, 0, c)) 7746 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7747 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7748 SelectionDAG &DAG, bool AllOnes) { 7749 EVT VT = N->getValueType(0); 7750 7751 // Skip vectors. 7752 if (VT.isVector()) 7753 return SDValue(); 7754 7755 if ((Slct.getOpcode() != ISD::SELECT && 7756 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7757 !Slct.hasOneUse()) 7758 return SDValue(); 7759 7760 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7761 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7762 }; 7763 7764 bool SwapSelectOps; 7765 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7766 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7767 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7768 SDValue NonConstantVal; 7769 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7770 SwapSelectOps = false; 7771 NonConstantVal = FalseVal; 7772 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7773 SwapSelectOps = true; 7774 NonConstantVal = TrueVal; 7775 } else 7776 return SDValue(); 7777 7778 // Slct is now know to be the desired identity constant when CC is true. 7779 TrueVal = OtherOp; 7780 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7781 // Unless SwapSelectOps says the condition should be false. 7782 if (SwapSelectOps) 7783 std::swap(TrueVal, FalseVal); 7784 7785 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7786 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7787 {Slct.getOperand(0), Slct.getOperand(1), 7788 Slct.getOperand(2), TrueVal, FalseVal}); 7789 7790 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7791 {Slct.getOperand(0), TrueVal, FalseVal}); 7792 } 7793 7794 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7795 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7796 bool AllOnes) { 7797 SDValue N0 = N->getOperand(0); 7798 SDValue N1 = N->getOperand(1); 7799 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7800 return Result; 7801 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7802 return Result; 7803 return SDValue(); 7804 } 7805 7806 // Transform (add (mul x, c0), c1) -> 7807 // (add (mul (add x, c1/c0), c0), c1%c0). 7808 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7809 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7810 // to an infinite loop in DAGCombine if transformed. 7811 // Or transform (add (mul x, c0), c1) -> 7812 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7813 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7814 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7815 // lead to an infinite loop in DAGCombine if transformed. 7816 // Or transform (add (mul x, c0), c1) -> 7817 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7818 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7819 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7820 // lead to an infinite loop in DAGCombine if transformed. 7821 // Or transform (add (mul x, c0), c1) -> 7822 // (mul (add x, c1/c0), c0). 7823 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7824 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7825 const RISCVSubtarget &Subtarget) { 7826 // Skip for vector types and larger types. 7827 EVT VT = N->getValueType(0); 7828 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7829 return SDValue(); 7830 // The first operand node must be a MUL and has no other use. 7831 SDValue N0 = N->getOperand(0); 7832 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7833 return SDValue(); 7834 // Check if c0 and c1 match above conditions. 7835 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7836 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7837 if (!N0C || !N1C) 7838 return SDValue(); 7839 // If N0C has multiple uses it's possible one of the cases in 7840 // DAGCombiner::isMulAddWithConstProfitable will be true, which would result 7841 // in an infinite loop. 7842 if (!N0C->hasOneUse()) 7843 return SDValue(); 7844 int64_t C0 = N0C->getSExtValue(); 7845 int64_t C1 = N1C->getSExtValue(); 7846 int64_t CA, CB; 7847 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7848 return SDValue(); 7849 // Search for proper CA (non-zero) and CB that both are simm12. 7850 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7851 !isInt<12>(C0 * (C1 / C0))) { 7852 CA = C1 / C0; 7853 CB = C1 % C0; 7854 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7855 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7856 CA = C1 / C0 + 1; 7857 CB = C1 % C0 - C0; 7858 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7859 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7860 CA = C1 / C0 - 1; 7861 CB = C1 % C0 + C0; 7862 } else 7863 return SDValue(); 7864 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7865 SDLoc DL(N); 7866 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7867 DAG.getConstant(CA, DL, VT)); 7868 SDValue New1 = 7869 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7870 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7871 } 7872 7873 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7874 const RISCVSubtarget &Subtarget) { 7875 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7876 return V; 7877 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7878 return V; 7879 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7880 // (select lhs, rhs, cc, x, (add x, y)) 7881 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7882 } 7883 7884 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7885 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7886 // (select lhs, rhs, cc, x, (sub x, y)) 7887 SDValue N0 = N->getOperand(0); 7888 SDValue N1 = N->getOperand(1); 7889 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7890 } 7891 7892 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7893 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7894 // (select lhs, rhs, cc, x, (and x, y)) 7895 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7896 } 7897 7898 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7899 const RISCVSubtarget &Subtarget) { 7900 if (Subtarget.hasStdExtZbp()) { 7901 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7902 return GREV; 7903 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7904 return GORC; 7905 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7906 return SHFL; 7907 } 7908 7909 // fold (or (select cond, 0, y), x) -> 7910 // (select cond, x, (or x, y)) 7911 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7912 } 7913 7914 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7915 // fold (xor (select cond, 0, y), x) -> 7916 // (select cond, x, (xor x, y)) 7917 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7918 } 7919 7920 static SDValue 7921 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, 7922 const RISCVSubtarget &Subtarget) { 7923 SDValue Src = N->getOperand(0); 7924 EVT VT = N->getValueType(0); 7925 7926 // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X) 7927 if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7928 cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16)) 7929 return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT, 7930 Src.getOperand(0)); 7931 7932 // Fold (i64 (sext_inreg (abs X), i32)) -> 7933 // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits. 7934 // The (sext_inreg (neg X), i32) will be selected to negw by isel. This 7935 // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user 7936 // of the (i32 (abs X)) is a sext or setcc or something else that causes type 7937 // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have 7938 // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg 7939 // may get combined into an earlier operation so we need to use 7940 // ComputeNumSignBits. 7941 // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for 7942 // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so 7943 // we can't assume that X has 33 sign bits. We must check. 7944 if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() && 7945 Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 && 7946 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 && 7947 DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) { 7948 SDLoc DL(N); 7949 SDValue Freeze = DAG.getFreeze(Src.getOperand(0)); 7950 SDValue Neg = 7951 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze); 7952 Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg, 7953 DAG.getValueType(MVT::i32)); 7954 return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg); 7955 } 7956 7957 return SDValue(); 7958 } 7959 7960 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to 7961 // vwadd(u).vv/vx or vwsub(u).vv/vx. 7962 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG, 7963 bool Commute = false) { 7964 assert((N->getOpcode() == RISCVISD::ADD_VL || 7965 N->getOpcode() == RISCVISD::SUB_VL) && 7966 "Unexpected opcode"); 7967 bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL; 7968 SDValue Op0 = N->getOperand(0); 7969 SDValue Op1 = N->getOperand(1); 7970 if (Commute) 7971 std::swap(Op0, Op1); 7972 7973 MVT VT = N->getSimpleValueType(0); 7974 7975 // Determine the narrow size for a widening add/sub. 7976 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7977 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7978 VT.getVectorElementCount()); 7979 7980 SDValue Mask = N->getOperand(2); 7981 SDValue VL = N->getOperand(3); 7982 7983 SDLoc DL(N); 7984 7985 // If the RHS is a sext or zext, we can form a widening op. 7986 if ((Op1.getOpcode() == RISCVISD::VZEXT_VL || 7987 Op1.getOpcode() == RISCVISD::VSEXT_VL) && 7988 Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) { 7989 unsigned ExtOpc = Op1.getOpcode(); 7990 Op1 = Op1.getOperand(0); 7991 // Re-introduce narrower extends if needed. 7992 if (Op1.getValueType() != NarrowVT) 7993 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7994 7995 unsigned WOpc; 7996 if (ExtOpc == RISCVISD::VSEXT_VL) 7997 WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL; 7998 else 7999 WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL; 8000 8001 return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL); 8002 } 8003 8004 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar 8005 // sext/zext? 8006 8007 return SDValue(); 8008 } 8009 8010 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or 8011 // vwsub(u).vv/vx. 8012 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) { 8013 SDValue Op0 = N->getOperand(0); 8014 SDValue Op1 = N->getOperand(1); 8015 SDValue Mask = N->getOperand(2); 8016 SDValue VL = N->getOperand(3); 8017 8018 MVT VT = N->getSimpleValueType(0); 8019 MVT NarrowVT = Op1.getSimpleValueType(); 8020 unsigned NarrowSize = NarrowVT.getScalarSizeInBits(); 8021 8022 unsigned VOpc; 8023 switch (N->getOpcode()) { 8024 default: llvm_unreachable("Unexpected opcode"); 8025 case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break; 8026 case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break; 8027 case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break; 8028 case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break; 8029 } 8030 8031 bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL || 8032 N->getOpcode() == RISCVISD::VWSUB_W_VL; 8033 8034 SDLoc DL(N); 8035 8036 // If the LHS is a sext or zext, we can narrow this op to the same size as 8037 // the RHS. 8038 if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) || 8039 (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) && 8040 Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) { 8041 unsigned ExtOpc = Op0.getOpcode(); 8042 Op0 = Op0.getOperand(0); 8043 // Re-introduce narrower extends if needed. 8044 if (Op0.getValueType() != NarrowVT) 8045 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 8046 return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL); 8047 } 8048 8049 bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL || 8050 N->getOpcode() == RISCVISD::VWADDU_W_VL; 8051 8052 // Look for splats on the left hand side of a vwadd(u).wv. We might be able 8053 // to commute and use a vwadd(u).vx instead. 8054 if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL && 8055 Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) { 8056 Op0 = Op0.getOperand(1); 8057 8058 // See if have enough sign bits or zero bits in the scalar to use a 8059 // widening add/sub by splatting to smaller element size. 8060 unsigned EltBits = VT.getScalarSizeInBits(); 8061 unsigned ScalarBits = Op0.getValueSizeInBits(); 8062 // Make sure we're getting all element bits from the scalar register. 8063 // FIXME: Support implicit sign extension of vmv.v.x? 8064 if (ScalarBits < EltBits) 8065 return SDValue(); 8066 8067 if (IsSigned) { 8068 if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize)) 8069 return SDValue(); 8070 } else { 8071 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 8072 if (!DAG.MaskedValueIsZero(Op0, Mask)) 8073 return SDValue(); 8074 } 8075 8076 Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 8077 DAG.getUNDEF(NarrowVT), Op0, VL); 8078 return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL); 8079 } 8080 8081 return SDValue(); 8082 } 8083 8084 // Try to form VWMUL, VWMULU or VWMULSU. 8085 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 8086 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 8087 bool Commute) { 8088 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 8089 SDValue Op0 = N->getOperand(0); 8090 SDValue Op1 = N->getOperand(1); 8091 if (Commute) 8092 std::swap(Op0, Op1); 8093 8094 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 8095 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 8096 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 8097 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 8098 return SDValue(); 8099 8100 SDValue Mask = N->getOperand(2); 8101 SDValue VL = N->getOperand(3); 8102 8103 // Make sure the mask and VL match. 8104 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 8105 return SDValue(); 8106 8107 MVT VT = N->getSimpleValueType(0); 8108 8109 // Determine the narrow size for a widening multiply. 8110 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 8111 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 8112 VT.getVectorElementCount()); 8113 8114 SDLoc DL(N); 8115 8116 // See if the other operand is the same opcode. 8117 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 8118 if (!Op1.hasOneUse()) 8119 return SDValue(); 8120 8121 // Make sure the mask and VL match. 8122 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 8123 return SDValue(); 8124 8125 Op1 = Op1.getOperand(0); 8126 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 8127 // The operand is a splat of a scalar. 8128 8129 // The pasthru must be undef for tail agnostic 8130 if (!Op1.getOperand(0).isUndef()) 8131 return SDValue(); 8132 // The VL must be the same. 8133 if (Op1.getOperand(2) != VL) 8134 return SDValue(); 8135 8136 // Get the scalar value. 8137 Op1 = Op1.getOperand(1); 8138 8139 // See if have enough sign bits or zero bits in the scalar to use a 8140 // widening multiply by splatting to smaller element size. 8141 unsigned EltBits = VT.getScalarSizeInBits(); 8142 unsigned ScalarBits = Op1.getValueSizeInBits(); 8143 // Make sure we're getting all element bits from the scalar register. 8144 // FIXME: Support implicit sign extension of vmv.v.x? 8145 if (ScalarBits < EltBits) 8146 return SDValue(); 8147 8148 // If the LHS is a sign extend, try to use vwmul. 8149 if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) { 8150 // Can use vwmul. 8151 } else { 8152 // Otherwise try to use vwmulu or vwmulsu. 8153 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 8154 if (DAG.MaskedValueIsZero(Op1, Mask)) 8155 IsVWMULSU = IsSignExt; 8156 else 8157 return SDValue(); 8158 } 8159 8160 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 8161 DAG.getUNDEF(NarrowVT), Op1, VL); 8162 } else 8163 return SDValue(); 8164 8165 Op0 = Op0.getOperand(0); 8166 8167 // Re-introduce narrower extends if needed. 8168 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 8169 if (Op0.getValueType() != NarrowVT) 8170 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 8171 // vwmulsu requires second operand to be zero extended. 8172 ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc; 8173 if (Op1.getValueType() != NarrowVT) 8174 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 8175 8176 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 8177 if (!IsVWMULSU) 8178 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 8179 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 8180 } 8181 8182 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 8183 switch (Op.getOpcode()) { 8184 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 8185 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 8186 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 8187 case ISD::FCEIL: return RISCVFPRndMode::RUP; 8188 case ISD::FROUND: return RISCVFPRndMode::RMM; 8189 } 8190 8191 return RISCVFPRndMode::Invalid; 8192 } 8193 8194 // Fold 8195 // (fp_to_int (froundeven X)) -> fcvt X, rne 8196 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 8197 // (fp_to_int (ffloor X)) -> fcvt X, rdn 8198 // (fp_to_int (fceil X)) -> fcvt X, rup 8199 // (fp_to_int (fround X)) -> fcvt X, rmm 8200 static SDValue performFP_TO_INTCombine(SDNode *N, 8201 TargetLowering::DAGCombinerInfo &DCI, 8202 const RISCVSubtarget &Subtarget) { 8203 SelectionDAG &DAG = DCI.DAG; 8204 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8205 MVT XLenVT = Subtarget.getXLenVT(); 8206 8207 // Only handle XLen or i32 types. Other types narrower than XLen will 8208 // eventually be legalized to XLenVT. 8209 EVT VT = N->getValueType(0); 8210 if (VT != MVT::i32 && VT != XLenVT) 8211 return SDValue(); 8212 8213 SDValue Src = N->getOperand(0); 8214 8215 // Ensure the FP type is also legal. 8216 if (!TLI.isTypeLegal(Src.getValueType())) 8217 return SDValue(); 8218 8219 // Don't do this for f16 with Zfhmin and not Zfh. 8220 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8221 return SDValue(); 8222 8223 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8224 if (FRM == RISCVFPRndMode::Invalid) 8225 return SDValue(); 8226 8227 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 8228 8229 unsigned Opc; 8230 if (VT == XLenVT) 8231 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8232 else 8233 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8234 8235 SDLoc DL(N); 8236 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 8237 DAG.getTargetConstant(FRM, DL, XLenVT)); 8238 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 8239 } 8240 8241 // Fold 8242 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 8243 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 8244 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 8245 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 8246 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 8247 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 8248 TargetLowering::DAGCombinerInfo &DCI, 8249 const RISCVSubtarget &Subtarget) { 8250 SelectionDAG &DAG = DCI.DAG; 8251 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8252 MVT XLenVT = Subtarget.getXLenVT(); 8253 8254 // Only handle XLen types. Other types narrower than XLen will eventually be 8255 // legalized to XLenVT. 8256 EVT DstVT = N->getValueType(0); 8257 if (DstVT != XLenVT) 8258 return SDValue(); 8259 8260 SDValue Src = N->getOperand(0); 8261 8262 // Ensure the FP type is also legal. 8263 if (!TLI.isTypeLegal(Src.getValueType())) 8264 return SDValue(); 8265 8266 // Don't do this for f16 with Zfhmin and not Zfh. 8267 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8268 return SDValue(); 8269 8270 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 8271 8272 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8273 if (FRM == RISCVFPRndMode::Invalid) 8274 return SDValue(); 8275 8276 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 8277 8278 unsigned Opc; 8279 if (SatVT == DstVT) 8280 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8281 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 8282 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8283 else 8284 return SDValue(); 8285 // FIXME: Support other SatVTs by clamping before or after the conversion. 8286 8287 Src = Src.getOperand(0); 8288 8289 SDLoc DL(N); 8290 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 8291 DAG.getTargetConstant(FRM, DL, XLenVT)); 8292 8293 // RISCV FP-to-int conversions saturate to the destination register size, but 8294 // don't produce 0 for nan. 8295 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 8296 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 8297 } 8298 8299 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is 8300 // smaller than XLenVT. 8301 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG, 8302 const RISCVSubtarget &Subtarget) { 8303 assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); 8304 8305 SDValue Src = N->getOperand(0); 8306 if (Src.getOpcode() != ISD::BSWAP) 8307 return SDValue(); 8308 8309 EVT VT = N->getValueType(0); 8310 if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() || 8311 !isPowerOf2_32(VT.getSizeInBits())) 8312 return SDValue(); 8313 8314 SDLoc DL(N); 8315 return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0), 8316 DAG.getConstant(7, DL, VT)); 8317 } 8318 8319 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 8320 DAGCombinerInfo &DCI) const { 8321 SelectionDAG &DAG = DCI.DAG; 8322 8323 // Helper to call SimplifyDemandedBits on an operand of N where only some low 8324 // bits are demanded. N will be added to the Worklist if it was not deleted. 8325 // Caller should return SDValue(N, 0) if this returns true. 8326 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 8327 SDValue Op = N->getOperand(OpNo); 8328 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 8329 if (!SimplifyDemandedBits(Op, Mask, DCI)) 8330 return false; 8331 8332 if (N->getOpcode() != ISD::DELETED_NODE) 8333 DCI.AddToWorklist(N); 8334 return true; 8335 }; 8336 8337 switch (N->getOpcode()) { 8338 default: 8339 break; 8340 case RISCVISD::SplitF64: { 8341 SDValue Op0 = N->getOperand(0); 8342 // If the input to SplitF64 is just BuildPairF64 then the operation is 8343 // redundant. Instead, use BuildPairF64's operands directly. 8344 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 8345 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 8346 8347 if (Op0->isUndef()) { 8348 SDValue Lo = DAG.getUNDEF(MVT::i32); 8349 SDValue Hi = DAG.getUNDEF(MVT::i32); 8350 return DCI.CombineTo(N, Lo, Hi); 8351 } 8352 8353 SDLoc DL(N); 8354 8355 // It's cheaper to materialise two 32-bit integers than to load a double 8356 // from the constant pool and transfer it to integer registers through the 8357 // stack. 8358 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 8359 APInt V = C->getValueAPF().bitcastToAPInt(); 8360 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 8361 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 8362 return DCI.CombineTo(N, Lo, Hi); 8363 } 8364 8365 // This is a target-specific version of a DAGCombine performed in 8366 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8367 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8368 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8369 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8370 !Op0.getNode()->hasOneUse()) 8371 break; 8372 SDValue NewSplitF64 = 8373 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 8374 Op0.getOperand(0)); 8375 SDValue Lo = NewSplitF64.getValue(0); 8376 SDValue Hi = NewSplitF64.getValue(1); 8377 APInt SignBit = APInt::getSignMask(32); 8378 if (Op0.getOpcode() == ISD::FNEG) { 8379 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 8380 DAG.getConstant(SignBit, DL, MVT::i32)); 8381 return DCI.CombineTo(N, Lo, NewHi); 8382 } 8383 assert(Op0.getOpcode() == ISD::FABS); 8384 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 8385 DAG.getConstant(~SignBit, DL, MVT::i32)); 8386 return DCI.CombineTo(N, Lo, NewHi); 8387 } 8388 case RISCVISD::SLLW: 8389 case RISCVISD::SRAW: 8390 case RISCVISD::SRLW: { 8391 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8392 if (SimplifyDemandedLowBitsHelper(0, 32) || 8393 SimplifyDemandedLowBitsHelper(1, 5)) 8394 return SDValue(N, 0); 8395 8396 break; 8397 } 8398 case ISD::ROTR: 8399 case ISD::ROTL: 8400 case RISCVISD::RORW: 8401 case RISCVISD::ROLW: { 8402 if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) { 8403 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8404 if (SimplifyDemandedLowBitsHelper(0, 32) || 8405 SimplifyDemandedLowBitsHelper(1, 5)) 8406 return SDValue(N, 0); 8407 } 8408 8409 return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget); 8410 } 8411 case RISCVISD::CLZW: 8412 case RISCVISD::CTZW: { 8413 // Only the lower 32 bits of the first operand are read 8414 if (SimplifyDemandedLowBitsHelper(0, 32)) 8415 return SDValue(N, 0); 8416 break; 8417 } 8418 case RISCVISD::GREV: 8419 case RISCVISD::GORC: { 8420 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 8421 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8422 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8423 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 8424 return SDValue(N, 0); 8425 8426 return combineGREVI_GORCI(N, DAG); 8427 } 8428 case RISCVISD::GREVW: 8429 case RISCVISD::GORCW: { 8430 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8431 if (SimplifyDemandedLowBitsHelper(0, 32) || 8432 SimplifyDemandedLowBitsHelper(1, 5)) 8433 return SDValue(N, 0); 8434 8435 break; 8436 } 8437 case RISCVISD::SHFL: 8438 case RISCVISD::UNSHFL: { 8439 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 8440 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8441 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8442 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 8443 return SDValue(N, 0); 8444 8445 break; 8446 } 8447 case RISCVISD::SHFLW: 8448 case RISCVISD::UNSHFLW: { 8449 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 8450 if (SimplifyDemandedLowBitsHelper(0, 32) || 8451 SimplifyDemandedLowBitsHelper(1, 4)) 8452 return SDValue(N, 0); 8453 8454 break; 8455 } 8456 case RISCVISD::BCOMPRESSW: 8457 case RISCVISD::BDECOMPRESSW: { 8458 // Only the lower 32 bits of LHS and RHS are read. 8459 if (SimplifyDemandedLowBitsHelper(0, 32) || 8460 SimplifyDemandedLowBitsHelper(1, 32)) 8461 return SDValue(N, 0); 8462 8463 break; 8464 } 8465 case RISCVISD::FSR: 8466 case RISCVISD::FSL: 8467 case RISCVISD::FSRW: 8468 case RISCVISD::FSLW: { 8469 bool IsWInstruction = 8470 N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW; 8471 unsigned BitWidth = 8472 IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits(); 8473 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8474 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 8475 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1)) 8476 return SDValue(N, 0); 8477 8478 break; 8479 } 8480 case RISCVISD::FMV_X_ANYEXTH: 8481 case RISCVISD::FMV_X_ANYEXTW_RV64: { 8482 SDLoc DL(N); 8483 SDValue Op0 = N->getOperand(0); 8484 MVT VT = N->getSimpleValueType(0); 8485 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 8486 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 8487 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 8488 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 8489 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 8490 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8491 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 8492 assert(Op0.getOperand(0).getValueType() == VT && 8493 "Unexpected value type!"); 8494 return Op0.getOperand(0); 8495 } 8496 8497 // This is a target-specific version of a DAGCombine performed in 8498 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8499 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8500 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8501 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8502 !Op0.getNode()->hasOneUse()) 8503 break; 8504 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 8505 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 8506 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 8507 if (Op0.getOpcode() == ISD::FNEG) 8508 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 8509 DAG.getConstant(SignBit, DL, VT)); 8510 8511 assert(Op0.getOpcode() == ISD::FABS); 8512 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 8513 DAG.getConstant(~SignBit, DL, VT)); 8514 } 8515 case ISD::ADD: 8516 return performADDCombine(N, DAG, Subtarget); 8517 case ISD::SUB: 8518 return performSUBCombine(N, DAG); 8519 case ISD::AND: 8520 return performANDCombine(N, DAG); 8521 case ISD::OR: 8522 return performORCombine(N, DAG, Subtarget); 8523 case ISD::XOR: 8524 return performXORCombine(N, DAG); 8525 case ISD::SIGN_EXTEND_INREG: 8526 return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); 8527 case ISD::ZERO_EXTEND: 8528 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 8529 // type legalization. This is safe because fp_to_uint produces poison if 8530 // it overflows. 8531 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 8532 SDValue Src = N->getOperand(0); 8533 if (Src.getOpcode() == ISD::FP_TO_UINT && 8534 isTypeLegal(Src.getOperand(0).getValueType())) 8535 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 8536 Src.getOperand(0)); 8537 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 8538 isTypeLegal(Src.getOperand(1).getValueType())) { 8539 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 8540 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 8541 Src.getOperand(0), Src.getOperand(1)); 8542 DCI.CombineTo(N, Res); 8543 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 8544 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 8545 return SDValue(N, 0); // Return N so it doesn't get rechecked. 8546 } 8547 } 8548 return SDValue(); 8549 case RISCVISD::SELECT_CC: { 8550 // Transform 8551 SDValue LHS = N->getOperand(0); 8552 SDValue RHS = N->getOperand(1); 8553 SDValue TrueV = N->getOperand(3); 8554 SDValue FalseV = N->getOperand(4); 8555 8556 // If the True and False values are the same, we don't need a select_cc. 8557 if (TrueV == FalseV) 8558 return TrueV; 8559 8560 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 8561 if (!ISD::isIntEqualitySetCC(CCVal)) 8562 break; 8563 8564 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 8565 // (select_cc X, Y, lt, trueV, falseV) 8566 // Sometimes the setcc is introduced after select_cc has been formed. 8567 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8568 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8569 // If we're looking for eq 0 instead of ne 0, we need to invert the 8570 // condition. 8571 bool Invert = CCVal == ISD::SETEQ; 8572 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8573 if (Invert) 8574 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8575 8576 SDLoc DL(N); 8577 RHS = LHS.getOperand(1); 8578 LHS = LHS.getOperand(0); 8579 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8580 8581 SDValue TargetCC = DAG.getCondCode(CCVal); 8582 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8583 {LHS, RHS, TargetCC, TrueV, FalseV}); 8584 } 8585 8586 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 8587 // (select_cc X, Y, eq/ne, trueV, falseV) 8588 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8589 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 8590 {LHS.getOperand(0), LHS.getOperand(1), 8591 N->getOperand(2), TrueV, FalseV}); 8592 // (select_cc X, 1, setne, trueV, falseV) -> 8593 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 8594 // This can occur when legalizing some floating point comparisons. 8595 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8596 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8597 SDLoc DL(N); 8598 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8599 SDValue TargetCC = DAG.getCondCode(CCVal); 8600 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8601 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8602 {LHS, RHS, TargetCC, TrueV, FalseV}); 8603 } 8604 8605 break; 8606 } 8607 case RISCVISD::BR_CC: { 8608 SDValue LHS = N->getOperand(1); 8609 SDValue RHS = N->getOperand(2); 8610 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 8611 if (!ISD::isIntEqualitySetCC(CCVal)) 8612 break; 8613 8614 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 8615 // (br_cc X, Y, lt, dest) 8616 // Sometimes the setcc is introduced after br_cc has been formed. 8617 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8618 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8619 // If we're looking for eq 0 instead of ne 0, we need to invert the 8620 // condition. 8621 bool Invert = CCVal == ISD::SETEQ; 8622 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8623 if (Invert) 8624 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8625 8626 SDLoc DL(N); 8627 RHS = LHS.getOperand(1); 8628 LHS = LHS.getOperand(0); 8629 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8630 8631 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8632 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 8633 N->getOperand(4)); 8634 } 8635 8636 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 8637 // (br_cc X, Y, eq/ne, trueV, falseV) 8638 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8639 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 8640 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 8641 N->getOperand(3), N->getOperand(4)); 8642 8643 // (br_cc X, 1, setne, br_cc) -> 8644 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 8645 // This can occur when legalizing some floating point comparisons. 8646 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8647 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8648 SDLoc DL(N); 8649 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8650 SDValue TargetCC = DAG.getCondCode(CCVal); 8651 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8652 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8653 N->getOperand(0), LHS, RHS, TargetCC, 8654 N->getOperand(4)); 8655 } 8656 break; 8657 } 8658 case ISD::BITREVERSE: 8659 return performBITREVERSECombine(N, DAG, Subtarget); 8660 case ISD::FP_TO_SINT: 8661 case ISD::FP_TO_UINT: 8662 return performFP_TO_INTCombine(N, DCI, Subtarget); 8663 case ISD::FP_TO_SINT_SAT: 8664 case ISD::FP_TO_UINT_SAT: 8665 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 8666 case ISD::FCOPYSIGN: { 8667 EVT VT = N->getValueType(0); 8668 if (!VT.isVector()) 8669 break; 8670 // There is a form of VFSGNJ which injects the negated sign of its second 8671 // operand. Try and bubble any FNEG up after the extend/round to produce 8672 // this optimized pattern. Avoid modifying cases where FP_ROUND and 8673 // TRUNC=1. 8674 SDValue In2 = N->getOperand(1); 8675 // Avoid cases where the extend/round has multiple uses, as duplicating 8676 // those is typically more expensive than removing a fneg. 8677 if (!In2.hasOneUse()) 8678 break; 8679 if (In2.getOpcode() != ISD::FP_EXTEND && 8680 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 8681 break; 8682 In2 = In2.getOperand(0); 8683 if (In2.getOpcode() != ISD::FNEG) 8684 break; 8685 SDLoc DL(N); 8686 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 8687 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 8688 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 8689 } 8690 case ISD::MGATHER: 8691 case ISD::MSCATTER: 8692 case ISD::VP_GATHER: 8693 case ISD::VP_SCATTER: { 8694 if (!DCI.isBeforeLegalize()) 8695 break; 8696 SDValue Index, ScaleOp; 8697 bool IsIndexScaled = false; 8698 bool IsIndexSigned = false; 8699 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 8700 Index = VPGSN->getIndex(); 8701 ScaleOp = VPGSN->getScale(); 8702 IsIndexScaled = VPGSN->isIndexScaled(); 8703 IsIndexSigned = VPGSN->isIndexSigned(); 8704 } else { 8705 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 8706 Index = MGSN->getIndex(); 8707 ScaleOp = MGSN->getScale(); 8708 IsIndexScaled = MGSN->isIndexScaled(); 8709 IsIndexSigned = MGSN->isIndexSigned(); 8710 } 8711 EVT IndexVT = Index.getValueType(); 8712 MVT XLenVT = Subtarget.getXLenVT(); 8713 // RISCV indexed loads only support the "unsigned unscaled" addressing 8714 // mode, so anything else must be manually legalized. 8715 bool NeedsIdxLegalization = 8716 IsIndexScaled || 8717 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 8718 if (!NeedsIdxLegalization) 8719 break; 8720 8721 SDLoc DL(N); 8722 8723 // Any index legalization should first promote to XLenVT, so we don't lose 8724 // bits when scaling. This may create an illegal index type so we let 8725 // LLVM's legalization take care of the splitting. 8726 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 8727 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 8728 IndexVT = IndexVT.changeVectorElementType(XLenVT); 8729 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 8730 DL, IndexVT, Index); 8731 } 8732 8733 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 8734 if (IsIndexScaled && Scale != 1) { 8735 // Manually scale the indices by the element size. 8736 // TODO: Sanitize the scale operand here? 8737 // TODO: For VP nodes, should we use VP_SHL here? 8738 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 8739 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 8740 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 8741 } 8742 8743 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 8744 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 8745 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 8746 {VPGN->getChain(), VPGN->getBasePtr(), Index, 8747 VPGN->getScale(), VPGN->getMask(), 8748 VPGN->getVectorLength()}, 8749 VPGN->getMemOperand(), NewIndexTy); 8750 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 8751 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 8752 {VPSN->getChain(), VPSN->getValue(), 8753 VPSN->getBasePtr(), Index, VPSN->getScale(), 8754 VPSN->getMask(), VPSN->getVectorLength()}, 8755 VPSN->getMemOperand(), NewIndexTy); 8756 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 8757 return DAG.getMaskedGather( 8758 N->getVTList(), MGN->getMemoryVT(), DL, 8759 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 8760 MGN->getBasePtr(), Index, MGN->getScale()}, 8761 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 8762 const auto *MSN = cast<MaskedScatterSDNode>(N); 8763 return DAG.getMaskedScatter( 8764 N->getVTList(), MSN->getMemoryVT(), DL, 8765 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 8766 Index, MSN->getScale()}, 8767 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 8768 } 8769 case RISCVISD::SRA_VL: 8770 case RISCVISD::SRL_VL: 8771 case RISCVISD::SHL_VL: { 8772 SDValue ShAmt = N->getOperand(1); 8773 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8774 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8775 SDLoc DL(N); 8776 SDValue VL = N->getOperand(3); 8777 EVT VT = N->getValueType(0); 8778 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8779 ShAmt.getOperand(1), VL); 8780 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 8781 N->getOperand(2), N->getOperand(3)); 8782 } 8783 break; 8784 } 8785 case ISD::SRA: 8786 case ISD::SRL: 8787 case ISD::SHL: { 8788 SDValue ShAmt = N->getOperand(1); 8789 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8790 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8791 SDLoc DL(N); 8792 EVT VT = N->getValueType(0); 8793 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8794 ShAmt.getOperand(1), 8795 DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); 8796 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 8797 } 8798 break; 8799 } 8800 case RISCVISD::ADD_VL: 8801 if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false)) 8802 return V; 8803 return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true); 8804 case RISCVISD::SUB_VL: 8805 return combineADDSUB_VLToVWADDSUB_VL(N, DAG); 8806 case RISCVISD::VWADD_W_VL: 8807 case RISCVISD::VWADDU_W_VL: 8808 case RISCVISD::VWSUB_W_VL: 8809 case RISCVISD::VWSUBU_W_VL: 8810 return combineVWADD_W_VL_VWSUB_W_VL(N, DAG); 8811 case RISCVISD::MUL_VL: 8812 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 8813 return V; 8814 // Mul is commutative. 8815 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 8816 case ISD::STORE: { 8817 auto *Store = cast<StoreSDNode>(N); 8818 SDValue Val = Store->getValue(); 8819 // Combine store of vmv.x.s to vse with VL of 1. 8820 // FIXME: Support FP. 8821 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 8822 SDValue Src = Val.getOperand(0); 8823 EVT VecVT = Src.getValueType(); 8824 EVT MemVT = Store->getMemoryVT(); 8825 // The memory VT and the element type must match. 8826 if (VecVT.getVectorElementType() == MemVT) { 8827 SDLoc DL(N); 8828 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 8829 return DAG.getStoreVP( 8830 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 8831 DAG.getConstant(1, DL, MaskVT), 8832 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 8833 Store->getMemOperand(), Store->getAddressingMode(), 8834 Store->isTruncatingStore(), /*IsCompress*/ false); 8835 } 8836 } 8837 8838 break; 8839 } 8840 case ISD::SPLAT_VECTOR: { 8841 EVT VT = N->getValueType(0); 8842 // Only perform this combine on legal MVT types. 8843 if (!isTypeLegal(VT)) 8844 break; 8845 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, 8846 DAG, Subtarget)) 8847 return Gather; 8848 break; 8849 } 8850 case RISCVISD::VMV_V_X_VL: { 8851 // Tail agnostic VMV.V.X only demands the vector element bitwidth from the 8852 // scalar input. 8853 unsigned ScalarSize = N->getOperand(1).getValueSizeInBits(); 8854 unsigned EltWidth = N->getValueType(0).getScalarSizeInBits(); 8855 if (ScalarSize > EltWidth && N->getOperand(0).isUndef()) 8856 if (SimplifyDemandedLowBitsHelper(1, EltWidth)) 8857 return SDValue(N, 0); 8858 8859 break; 8860 } 8861 case ISD::INTRINSIC_WO_CHAIN: { 8862 unsigned IntNo = N->getConstantOperandVal(0); 8863 switch (IntNo) { 8864 // By default we do not combine any intrinsic. 8865 default: 8866 return SDValue(); 8867 case Intrinsic::riscv_vcpop: 8868 case Intrinsic::riscv_vcpop_mask: 8869 case Intrinsic::riscv_vfirst: 8870 case Intrinsic::riscv_vfirst_mask: { 8871 SDValue VL = N->getOperand(2); 8872 if (IntNo == Intrinsic::riscv_vcpop_mask || 8873 IntNo == Intrinsic::riscv_vfirst_mask) 8874 VL = N->getOperand(3); 8875 if (!isNullConstant(VL)) 8876 return SDValue(); 8877 // If VL is 0, vcpop -> li 0, vfirst -> li -1. 8878 SDLoc DL(N); 8879 EVT VT = N->getValueType(0); 8880 if (IntNo == Intrinsic::riscv_vfirst || 8881 IntNo == Intrinsic::riscv_vfirst_mask) 8882 return DAG.getConstant(-1, DL, VT); 8883 return DAG.getConstant(0, DL, VT); 8884 } 8885 } 8886 } 8887 } 8888 8889 return SDValue(); 8890 } 8891 8892 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 8893 const SDNode *N, CombineLevel Level) const { 8894 // The following folds are only desirable if `(OP _, c1 << c2)` can be 8895 // materialised in fewer instructions than `(OP _, c1)`: 8896 // 8897 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8898 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8899 SDValue N0 = N->getOperand(0); 8900 EVT Ty = N0.getValueType(); 8901 if (Ty.isScalarInteger() && 8902 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 8903 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 8904 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8905 if (C1 && C2) { 8906 const APInt &C1Int = C1->getAPIntValue(); 8907 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 8908 8909 // We can materialise `c1 << c2` into an add immediate, so it's "free", 8910 // and the combine should happen, to potentially allow further combines 8911 // later. 8912 if (ShiftedC1Int.getMinSignedBits() <= 64 && 8913 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 8914 return true; 8915 8916 // We can materialise `c1` in an add immediate, so it's "free", and the 8917 // combine should be prevented. 8918 if (C1Int.getMinSignedBits() <= 64 && 8919 isLegalAddImmediate(C1Int.getSExtValue())) 8920 return false; 8921 8922 // Neither constant will fit into an immediate, so find materialisation 8923 // costs. 8924 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 8925 Subtarget.getFeatureBits(), 8926 /*CompressionCost*/true); 8927 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 8928 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 8929 /*CompressionCost*/true); 8930 8931 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 8932 // combine should be prevented. 8933 if (C1Cost < ShiftedC1Cost) 8934 return false; 8935 } 8936 } 8937 return true; 8938 } 8939 8940 bool RISCVTargetLowering::targetShrinkDemandedConstant( 8941 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 8942 TargetLoweringOpt &TLO) const { 8943 // Delay this optimization as late as possible. 8944 if (!TLO.LegalOps) 8945 return false; 8946 8947 EVT VT = Op.getValueType(); 8948 if (VT.isVector()) 8949 return false; 8950 8951 // Only handle AND for now. 8952 if (Op.getOpcode() != ISD::AND) 8953 return false; 8954 8955 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8956 if (!C) 8957 return false; 8958 8959 const APInt &Mask = C->getAPIntValue(); 8960 8961 // Clear all non-demanded bits initially. 8962 APInt ShrunkMask = Mask & DemandedBits; 8963 8964 // Try to make a smaller immediate by setting undemanded bits. 8965 8966 APInt ExpandedMask = Mask | ~DemandedBits; 8967 8968 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 8969 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 8970 }; 8971 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 8972 if (NewMask == Mask) 8973 return true; 8974 SDLoc DL(Op); 8975 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 8976 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 8977 return TLO.CombineTo(Op, NewOp); 8978 }; 8979 8980 // If the shrunk mask fits in sign extended 12 bits, let the target 8981 // independent code apply it. 8982 if (ShrunkMask.isSignedIntN(12)) 8983 return false; 8984 8985 // Preserve (and X, 0xffff) when zext.h is supported. 8986 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 8987 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 8988 if (IsLegalMask(NewMask)) 8989 return UseMask(NewMask); 8990 } 8991 8992 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 8993 if (VT == MVT::i64) { 8994 APInt NewMask = APInt(64, 0xffffffff); 8995 if (IsLegalMask(NewMask)) 8996 return UseMask(NewMask); 8997 } 8998 8999 // For the remaining optimizations, we need to be able to make a negative 9000 // number through a combination of mask and undemanded bits. 9001 if (!ExpandedMask.isNegative()) 9002 return false; 9003 9004 // What is the fewest number of bits we need to represent the negative number. 9005 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 9006 9007 // Try to make a 12 bit negative immediate. If that fails try to make a 32 9008 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 9009 APInt NewMask = ShrunkMask; 9010 if (MinSignedBits <= 12) 9011 NewMask.setBitsFrom(11); 9012 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 9013 NewMask.setBitsFrom(31); 9014 else 9015 return false; 9016 9017 // Check that our new mask is a subset of the demanded mask. 9018 assert(IsLegalMask(NewMask)); 9019 return UseMask(NewMask); 9020 } 9021 9022 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) { 9023 static const uint64_t GREVMasks[] = { 9024 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 9025 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 9026 9027 for (unsigned Stage = 0; Stage != 6; ++Stage) { 9028 unsigned Shift = 1 << Stage; 9029 if (ShAmt & Shift) { 9030 uint64_t Mask = GREVMasks[Stage]; 9031 uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask); 9032 if (IsGORC) 9033 Res |= x; 9034 x = Res; 9035 } 9036 } 9037 9038 return x; 9039 } 9040 9041 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 9042 KnownBits &Known, 9043 const APInt &DemandedElts, 9044 const SelectionDAG &DAG, 9045 unsigned Depth) const { 9046 unsigned BitWidth = Known.getBitWidth(); 9047 unsigned Opc = Op.getOpcode(); 9048 assert((Opc >= ISD::BUILTIN_OP_END || 9049 Opc == ISD::INTRINSIC_WO_CHAIN || 9050 Opc == ISD::INTRINSIC_W_CHAIN || 9051 Opc == ISD::INTRINSIC_VOID) && 9052 "Should use MaskedValueIsZero if you don't know whether Op" 9053 " is a target node!"); 9054 9055 Known.resetAll(); 9056 switch (Opc) { 9057 default: break; 9058 case RISCVISD::SELECT_CC: { 9059 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 9060 // If we don't know any bits, early out. 9061 if (Known.isUnknown()) 9062 break; 9063 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 9064 9065 // Only known if known in both the LHS and RHS. 9066 Known = KnownBits::commonBits(Known, Known2); 9067 break; 9068 } 9069 case RISCVISD::REMUW: { 9070 KnownBits Known2; 9071 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 9072 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 9073 // We only care about the lower 32 bits. 9074 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 9075 // Restore the original width by sign extending. 9076 Known = Known.sext(BitWidth); 9077 break; 9078 } 9079 case RISCVISD::DIVUW: { 9080 KnownBits Known2; 9081 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 9082 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 9083 // We only care about the lower 32 bits. 9084 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 9085 // Restore the original width by sign extending. 9086 Known = Known.sext(BitWidth); 9087 break; 9088 } 9089 case RISCVISD::CTZW: { 9090 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9091 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 9092 unsigned LowBits = Log2_32(PossibleTZ) + 1; 9093 Known.Zero.setBitsFrom(LowBits); 9094 break; 9095 } 9096 case RISCVISD::CLZW: { 9097 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9098 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 9099 unsigned LowBits = Log2_32(PossibleLZ) + 1; 9100 Known.Zero.setBitsFrom(LowBits); 9101 break; 9102 } 9103 case RISCVISD::GREV: 9104 case RISCVISD::GORC: { 9105 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 9106 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9107 unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1); 9108 bool IsGORC = Op.getOpcode() == RISCVISD::GORC; 9109 // To compute zeros, we need to invert the value and invert it back after. 9110 Known.Zero = 9111 ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC); 9112 Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC); 9113 } 9114 break; 9115 } 9116 case RISCVISD::READ_VLENB: { 9117 // If we know the minimum VLen from Zvl extensions, we can use that to 9118 // determine the trailing zeros of VLENB. 9119 // FIXME: Limit to 128 bit vectors until we have more testing. 9120 unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8; 9121 if (MinVLenB > 0) 9122 Known.Zero.setLowBits(Log2_32(MinVLenB)); 9123 // We assume VLENB is no more than 65536 / 8 bytes. 9124 Known.Zero.setBitsFrom(14); 9125 break; 9126 } 9127 case ISD::INTRINSIC_W_CHAIN: 9128 case ISD::INTRINSIC_WO_CHAIN: { 9129 unsigned IntNo = 9130 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 9131 switch (IntNo) { 9132 default: 9133 // We can't do anything for most intrinsics. 9134 break; 9135 case Intrinsic::riscv_vsetvli: 9136 case Intrinsic::riscv_vsetvlimax: 9137 case Intrinsic::riscv_vsetvli_opt: 9138 case Intrinsic::riscv_vsetvlimax_opt: 9139 // Assume that VL output is positive and would fit in an int32_t. 9140 // TODO: VLEN might be capped at 16 bits in a future V spec update. 9141 if (BitWidth >= 32) 9142 Known.Zero.setBitsFrom(31); 9143 break; 9144 } 9145 break; 9146 } 9147 } 9148 } 9149 9150 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 9151 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 9152 unsigned Depth) const { 9153 switch (Op.getOpcode()) { 9154 default: 9155 break; 9156 case RISCVISD::SELECT_CC: { 9157 unsigned Tmp = 9158 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 9159 if (Tmp == 1) return 1; // Early out. 9160 unsigned Tmp2 = 9161 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 9162 return std::min(Tmp, Tmp2); 9163 } 9164 case RISCVISD::SLLW: 9165 case RISCVISD::SRAW: 9166 case RISCVISD::SRLW: 9167 case RISCVISD::DIVW: 9168 case RISCVISD::DIVUW: 9169 case RISCVISD::REMUW: 9170 case RISCVISD::ROLW: 9171 case RISCVISD::RORW: 9172 case RISCVISD::GREVW: 9173 case RISCVISD::GORCW: 9174 case RISCVISD::FSLW: 9175 case RISCVISD::FSRW: 9176 case RISCVISD::SHFLW: 9177 case RISCVISD::UNSHFLW: 9178 case RISCVISD::BCOMPRESSW: 9179 case RISCVISD::BDECOMPRESSW: 9180 case RISCVISD::BFPW: 9181 case RISCVISD::FCVT_W_RV64: 9182 case RISCVISD::FCVT_WU_RV64: 9183 case RISCVISD::STRICT_FCVT_W_RV64: 9184 case RISCVISD::STRICT_FCVT_WU_RV64: 9185 // TODO: As the result is sign-extended, this is conservatively correct. A 9186 // more precise answer could be calculated for SRAW depending on known 9187 // bits in the shift amount. 9188 return 33; 9189 case RISCVISD::SHFL: 9190 case RISCVISD::UNSHFL: { 9191 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 9192 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 9193 // will stay within the upper 32 bits. If there were more than 32 sign bits 9194 // before there will be at least 33 sign bits after. 9195 if (Op.getValueType() == MVT::i64 && 9196 isa<ConstantSDNode>(Op.getOperand(1)) && 9197 (Op.getConstantOperandVal(1) & 0x10) == 0) { 9198 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 9199 if (Tmp > 32) 9200 return 33; 9201 } 9202 break; 9203 } 9204 case RISCVISD::VMV_X_S: { 9205 // The number of sign bits of the scalar result is computed by obtaining the 9206 // element type of the input vector operand, subtracting its width from the 9207 // XLEN, and then adding one (sign bit within the element type). If the 9208 // element type is wider than XLen, the least-significant XLEN bits are 9209 // taken. 9210 unsigned XLen = Subtarget.getXLen(); 9211 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 9212 if (EltBits <= XLen) 9213 return XLen - EltBits + 1; 9214 break; 9215 } 9216 } 9217 9218 return 1; 9219 } 9220 9221 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 9222 MachineBasicBlock *BB) { 9223 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 9224 9225 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 9226 // Should the count have wrapped while it was being read, we need to try 9227 // again. 9228 // ... 9229 // read: 9230 // rdcycleh x3 # load high word of cycle 9231 // rdcycle x2 # load low word of cycle 9232 // rdcycleh x4 # load high word of cycle 9233 // bne x3, x4, read # check if high word reads match, otherwise try again 9234 // ... 9235 9236 MachineFunction &MF = *BB->getParent(); 9237 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9238 MachineFunction::iterator It = ++BB->getIterator(); 9239 9240 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9241 MF.insert(It, LoopMBB); 9242 9243 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9244 MF.insert(It, DoneMBB); 9245 9246 // Transfer the remainder of BB and its successor edges to DoneMBB. 9247 DoneMBB->splice(DoneMBB->begin(), BB, 9248 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9249 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 9250 9251 BB->addSuccessor(LoopMBB); 9252 9253 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9254 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9255 Register LoReg = MI.getOperand(0).getReg(); 9256 Register HiReg = MI.getOperand(1).getReg(); 9257 DebugLoc DL = MI.getDebugLoc(); 9258 9259 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 9260 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 9261 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9262 .addReg(RISCV::X0); 9263 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 9264 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 9265 .addReg(RISCV::X0); 9266 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 9267 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9268 .addReg(RISCV::X0); 9269 9270 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 9271 .addReg(HiReg) 9272 .addReg(ReadAgainReg) 9273 .addMBB(LoopMBB); 9274 9275 LoopMBB->addSuccessor(LoopMBB); 9276 LoopMBB->addSuccessor(DoneMBB); 9277 9278 MI.eraseFromParent(); 9279 9280 return DoneMBB; 9281 } 9282 9283 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 9284 MachineBasicBlock *BB) { 9285 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 9286 9287 MachineFunction &MF = *BB->getParent(); 9288 DebugLoc DL = MI.getDebugLoc(); 9289 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9290 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9291 Register LoReg = MI.getOperand(0).getReg(); 9292 Register HiReg = MI.getOperand(1).getReg(); 9293 Register SrcReg = MI.getOperand(2).getReg(); 9294 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 9295 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9296 9297 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 9298 RI); 9299 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9300 MachineMemOperand *MMOLo = 9301 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 9302 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9303 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 9304 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 9305 .addFrameIndex(FI) 9306 .addImm(0) 9307 .addMemOperand(MMOLo); 9308 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 9309 .addFrameIndex(FI) 9310 .addImm(4) 9311 .addMemOperand(MMOHi); 9312 MI.eraseFromParent(); // The pseudo instruction is gone now. 9313 return BB; 9314 } 9315 9316 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 9317 MachineBasicBlock *BB) { 9318 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 9319 "Unexpected instruction"); 9320 9321 MachineFunction &MF = *BB->getParent(); 9322 DebugLoc DL = MI.getDebugLoc(); 9323 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9324 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9325 Register DstReg = MI.getOperand(0).getReg(); 9326 Register LoReg = MI.getOperand(1).getReg(); 9327 Register HiReg = MI.getOperand(2).getReg(); 9328 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 9329 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9330 9331 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9332 MachineMemOperand *MMOLo = 9333 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 9334 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9335 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 9336 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9337 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 9338 .addFrameIndex(FI) 9339 .addImm(0) 9340 .addMemOperand(MMOLo); 9341 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9342 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 9343 .addFrameIndex(FI) 9344 .addImm(4) 9345 .addMemOperand(MMOHi); 9346 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 9347 MI.eraseFromParent(); // The pseudo instruction is gone now. 9348 return BB; 9349 } 9350 9351 static bool isSelectPseudo(MachineInstr &MI) { 9352 switch (MI.getOpcode()) { 9353 default: 9354 return false; 9355 case RISCV::Select_GPR_Using_CC_GPR: 9356 case RISCV::Select_FPR16_Using_CC_GPR: 9357 case RISCV::Select_FPR32_Using_CC_GPR: 9358 case RISCV::Select_FPR64_Using_CC_GPR: 9359 return true; 9360 } 9361 } 9362 9363 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 9364 unsigned RelOpcode, unsigned EqOpcode, 9365 const RISCVSubtarget &Subtarget) { 9366 DebugLoc DL = MI.getDebugLoc(); 9367 Register DstReg = MI.getOperand(0).getReg(); 9368 Register Src1Reg = MI.getOperand(1).getReg(); 9369 Register Src2Reg = MI.getOperand(2).getReg(); 9370 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 9371 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 9372 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 9373 9374 // Save the current FFLAGS. 9375 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 9376 9377 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 9378 .addReg(Src1Reg) 9379 .addReg(Src2Reg); 9380 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9381 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 9382 9383 // Restore the FFLAGS. 9384 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 9385 .addReg(SavedFFlags, RegState::Kill); 9386 9387 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 9388 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 9389 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 9390 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 9391 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9392 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 9393 9394 // Erase the pseudoinstruction. 9395 MI.eraseFromParent(); 9396 return BB; 9397 } 9398 9399 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 9400 MachineBasicBlock *BB, 9401 const RISCVSubtarget &Subtarget) { 9402 // To "insert" Select_* instructions, we actually have to insert the triangle 9403 // control-flow pattern. The incoming instructions know the destination vreg 9404 // to set, the condition code register to branch on, the true/false values to 9405 // select between, and the condcode to use to select the appropriate branch. 9406 // 9407 // We produce the following control flow: 9408 // HeadMBB 9409 // | \ 9410 // | IfFalseMBB 9411 // | / 9412 // TailMBB 9413 // 9414 // When we find a sequence of selects we attempt to optimize their emission 9415 // by sharing the control flow. Currently we only handle cases where we have 9416 // multiple selects with the exact same condition (same LHS, RHS and CC). 9417 // The selects may be interleaved with other instructions if the other 9418 // instructions meet some requirements we deem safe: 9419 // - They are debug instructions. Otherwise, 9420 // - They do not have side-effects, do not access memory and their inputs do 9421 // not depend on the results of the select pseudo-instructions. 9422 // The TrueV/FalseV operands of the selects cannot depend on the result of 9423 // previous selects in the sequence. 9424 // These conditions could be further relaxed. See the X86 target for a 9425 // related approach and more information. 9426 Register LHS = MI.getOperand(1).getReg(); 9427 Register RHS = MI.getOperand(2).getReg(); 9428 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 9429 9430 SmallVector<MachineInstr *, 4> SelectDebugValues; 9431 SmallSet<Register, 4> SelectDests; 9432 SelectDests.insert(MI.getOperand(0).getReg()); 9433 9434 MachineInstr *LastSelectPseudo = &MI; 9435 9436 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 9437 SequenceMBBI != E; ++SequenceMBBI) { 9438 if (SequenceMBBI->isDebugInstr()) 9439 continue; 9440 else if (isSelectPseudo(*SequenceMBBI)) { 9441 if (SequenceMBBI->getOperand(1).getReg() != LHS || 9442 SequenceMBBI->getOperand(2).getReg() != RHS || 9443 SequenceMBBI->getOperand(3).getImm() != CC || 9444 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 9445 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 9446 break; 9447 LastSelectPseudo = &*SequenceMBBI; 9448 SequenceMBBI->collectDebugValues(SelectDebugValues); 9449 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 9450 } else { 9451 if (SequenceMBBI->hasUnmodeledSideEffects() || 9452 SequenceMBBI->mayLoadOrStore()) 9453 break; 9454 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 9455 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 9456 })) 9457 break; 9458 } 9459 } 9460 9461 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 9462 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9463 DebugLoc DL = MI.getDebugLoc(); 9464 MachineFunction::iterator I = ++BB->getIterator(); 9465 9466 MachineBasicBlock *HeadMBB = BB; 9467 MachineFunction *F = BB->getParent(); 9468 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 9469 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 9470 9471 F->insert(I, IfFalseMBB); 9472 F->insert(I, TailMBB); 9473 9474 // Transfer debug instructions associated with the selects to TailMBB. 9475 for (MachineInstr *DebugInstr : SelectDebugValues) { 9476 TailMBB->push_back(DebugInstr->removeFromParent()); 9477 } 9478 9479 // Move all instructions after the sequence to TailMBB. 9480 TailMBB->splice(TailMBB->end(), HeadMBB, 9481 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 9482 // Update machine-CFG edges by transferring all successors of the current 9483 // block to the new block which will contain the Phi nodes for the selects. 9484 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 9485 // Set the successors for HeadMBB. 9486 HeadMBB->addSuccessor(IfFalseMBB); 9487 HeadMBB->addSuccessor(TailMBB); 9488 9489 // Insert appropriate branch. 9490 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 9491 .addReg(LHS) 9492 .addReg(RHS) 9493 .addMBB(TailMBB); 9494 9495 // IfFalseMBB just falls through to TailMBB. 9496 IfFalseMBB->addSuccessor(TailMBB); 9497 9498 // Create PHIs for all of the select pseudo-instructions. 9499 auto SelectMBBI = MI.getIterator(); 9500 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 9501 auto InsertionPoint = TailMBB->begin(); 9502 while (SelectMBBI != SelectEnd) { 9503 auto Next = std::next(SelectMBBI); 9504 if (isSelectPseudo(*SelectMBBI)) { 9505 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 9506 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 9507 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 9508 .addReg(SelectMBBI->getOperand(4).getReg()) 9509 .addMBB(HeadMBB) 9510 .addReg(SelectMBBI->getOperand(5).getReg()) 9511 .addMBB(IfFalseMBB); 9512 SelectMBBI->eraseFromParent(); 9513 } 9514 SelectMBBI = Next; 9515 } 9516 9517 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 9518 return TailMBB; 9519 } 9520 9521 MachineBasicBlock * 9522 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9523 MachineBasicBlock *BB) const { 9524 switch (MI.getOpcode()) { 9525 default: 9526 llvm_unreachable("Unexpected instr type to insert"); 9527 case RISCV::ReadCycleWide: 9528 assert(!Subtarget.is64Bit() && 9529 "ReadCycleWrite is only to be used on riscv32"); 9530 return emitReadCycleWidePseudo(MI, BB); 9531 case RISCV::Select_GPR_Using_CC_GPR: 9532 case RISCV::Select_FPR16_Using_CC_GPR: 9533 case RISCV::Select_FPR32_Using_CC_GPR: 9534 case RISCV::Select_FPR64_Using_CC_GPR: 9535 return emitSelectPseudo(MI, BB, Subtarget); 9536 case RISCV::BuildPairF64Pseudo: 9537 return emitBuildPairF64Pseudo(MI, BB); 9538 case RISCV::SplitF64Pseudo: 9539 return emitSplitF64Pseudo(MI, BB); 9540 case RISCV::PseudoQuietFLE_H: 9541 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 9542 case RISCV::PseudoQuietFLT_H: 9543 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 9544 case RISCV::PseudoQuietFLE_S: 9545 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 9546 case RISCV::PseudoQuietFLT_S: 9547 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 9548 case RISCV::PseudoQuietFLE_D: 9549 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 9550 case RISCV::PseudoQuietFLT_D: 9551 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 9552 } 9553 } 9554 9555 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 9556 SDNode *Node) const { 9557 // Add FRM dependency to any instructions with dynamic rounding mode. 9558 unsigned Opc = MI.getOpcode(); 9559 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 9560 if (Idx < 0) 9561 return; 9562 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 9563 return; 9564 // If the instruction already reads FRM, don't add another read. 9565 if (MI.readsRegister(RISCV::FRM)) 9566 return; 9567 MI.addOperand( 9568 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 9569 } 9570 9571 // Calling Convention Implementation. 9572 // The expectations for frontend ABI lowering vary from target to target. 9573 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 9574 // details, but this is a longer term goal. For now, we simply try to keep the 9575 // role of the frontend as simple and well-defined as possible. The rules can 9576 // be summarised as: 9577 // * Never split up large scalar arguments. We handle them here. 9578 // * If a hardfloat calling convention is being used, and the struct may be 9579 // passed in a pair of registers (fp+fp, int+fp), and both registers are 9580 // available, then pass as two separate arguments. If either the GPRs or FPRs 9581 // are exhausted, then pass according to the rule below. 9582 // * If a struct could never be passed in registers or directly in a stack 9583 // slot (as it is larger than 2*XLEN and the floating point rules don't 9584 // apply), then pass it using a pointer with the byval attribute. 9585 // * If a struct is less than 2*XLEN, then coerce to either a two-element 9586 // word-sized array or a 2*XLEN scalar (depending on alignment). 9587 // * The frontend can determine whether a struct is returned by reference or 9588 // not based on its size and fields. If it will be returned by reference, the 9589 // frontend must modify the prototype so a pointer with the sret annotation is 9590 // passed as the first argument. This is not necessary for large scalar 9591 // returns. 9592 // * Struct return values and varargs should be coerced to structs containing 9593 // register-size fields in the same situations they would be for fixed 9594 // arguments. 9595 9596 static const MCPhysReg ArgGPRs[] = { 9597 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 9598 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 9599 }; 9600 static const MCPhysReg ArgFPR16s[] = { 9601 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 9602 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 9603 }; 9604 static const MCPhysReg ArgFPR32s[] = { 9605 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 9606 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 9607 }; 9608 static const MCPhysReg ArgFPR64s[] = { 9609 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 9610 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 9611 }; 9612 // This is an interim calling convention and it may be changed in the future. 9613 static const MCPhysReg ArgVRs[] = { 9614 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 9615 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 9616 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 9617 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 9618 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 9619 RISCV::V20M2, RISCV::V22M2}; 9620 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 9621 RISCV::V20M4}; 9622 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 9623 9624 // Pass a 2*XLEN argument that has been split into two XLEN values through 9625 // registers or the stack as necessary. 9626 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 9627 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 9628 MVT ValVT2, MVT LocVT2, 9629 ISD::ArgFlagsTy ArgFlags2) { 9630 unsigned XLenInBytes = XLen / 8; 9631 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9632 // At least one half can be passed via register. 9633 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 9634 VA1.getLocVT(), CCValAssign::Full)); 9635 } else { 9636 // Both halves must be passed on the stack, with proper alignment. 9637 Align StackAlign = 9638 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 9639 State.addLoc( 9640 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 9641 State.AllocateStack(XLenInBytes, StackAlign), 9642 VA1.getLocVT(), CCValAssign::Full)); 9643 State.addLoc(CCValAssign::getMem( 9644 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9645 LocVT2, CCValAssign::Full)); 9646 return false; 9647 } 9648 9649 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9650 // The second half can also be passed via register. 9651 State.addLoc( 9652 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 9653 } else { 9654 // The second half is passed via the stack, without additional alignment. 9655 State.addLoc(CCValAssign::getMem( 9656 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9657 LocVT2, CCValAssign::Full)); 9658 } 9659 9660 return false; 9661 } 9662 9663 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 9664 Optional<unsigned> FirstMaskArgument, 9665 CCState &State, const RISCVTargetLowering &TLI) { 9666 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 9667 if (RC == &RISCV::VRRegClass) { 9668 // Assign the first mask argument to V0. 9669 // This is an interim calling convention and it may be changed in the 9670 // future. 9671 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 9672 return State.AllocateReg(RISCV::V0); 9673 return State.AllocateReg(ArgVRs); 9674 } 9675 if (RC == &RISCV::VRM2RegClass) 9676 return State.AllocateReg(ArgVRM2s); 9677 if (RC == &RISCV::VRM4RegClass) 9678 return State.AllocateReg(ArgVRM4s); 9679 if (RC == &RISCV::VRM8RegClass) 9680 return State.AllocateReg(ArgVRM8s); 9681 llvm_unreachable("Unhandled register class for ValueType"); 9682 } 9683 9684 // Implements the RISC-V calling convention. Returns true upon failure. 9685 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 9686 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 9687 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 9688 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 9689 Optional<unsigned> FirstMaskArgument) { 9690 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 9691 assert(XLen == 32 || XLen == 64); 9692 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 9693 9694 // Any return value split in to more than two values can't be returned 9695 // directly. Vectors are returned via the available vector registers. 9696 if (!LocVT.isVector() && IsRet && ValNo > 1) 9697 return true; 9698 9699 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 9700 // variadic argument, or if no F16/F32 argument registers are available. 9701 bool UseGPRForF16_F32 = true; 9702 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 9703 // variadic argument, or if no F64 argument registers are available. 9704 bool UseGPRForF64 = true; 9705 9706 switch (ABI) { 9707 default: 9708 llvm_unreachable("Unexpected ABI"); 9709 case RISCVABI::ABI_ILP32: 9710 case RISCVABI::ABI_LP64: 9711 break; 9712 case RISCVABI::ABI_ILP32F: 9713 case RISCVABI::ABI_LP64F: 9714 UseGPRForF16_F32 = !IsFixed; 9715 break; 9716 case RISCVABI::ABI_ILP32D: 9717 case RISCVABI::ABI_LP64D: 9718 UseGPRForF16_F32 = !IsFixed; 9719 UseGPRForF64 = !IsFixed; 9720 break; 9721 } 9722 9723 // FPR16, FPR32, and FPR64 alias each other. 9724 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 9725 UseGPRForF16_F32 = true; 9726 UseGPRForF64 = true; 9727 } 9728 9729 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 9730 // similar local variables rather than directly checking against the target 9731 // ABI. 9732 9733 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 9734 LocVT = XLenVT; 9735 LocInfo = CCValAssign::BCvt; 9736 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 9737 LocVT = MVT::i64; 9738 LocInfo = CCValAssign::BCvt; 9739 } 9740 9741 // If this is a variadic argument, the RISC-V calling convention requires 9742 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 9743 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 9744 // be used regardless of whether the original argument was split during 9745 // legalisation or not. The argument will not be passed by registers if the 9746 // original type is larger than 2*XLEN, so the register alignment rule does 9747 // not apply. 9748 unsigned TwoXLenInBytes = (2 * XLen) / 8; 9749 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 9750 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 9751 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 9752 // Skip 'odd' register if necessary. 9753 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 9754 State.AllocateReg(ArgGPRs); 9755 } 9756 9757 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 9758 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 9759 State.getPendingArgFlags(); 9760 9761 assert(PendingLocs.size() == PendingArgFlags.size() && 9762 "PendingLocs and PendingArgFlags out of sync"); 9763 9764 // Handle passing f64 on RV32D with a soft float ABI or when floating point 9765 // registers are exhausted. 9766 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 9767 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 9768 "Can't lower f64 if it is split"); 9769 // Depending on available argument GPRS, f64 may be passed in a pair of 9770 // GPRs, split between a GPR and the stack, or passed completely on the 9771 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 9772 // cases. 9773 Register Reg = State.AllocateReg(ArgGPRs); 9774 LocVT = MVT::i32; 9775 if (!Reg) { 9776 unsigned StackOffset = State.AllocateStack(8, Align(8)); 9777 State.addLoc( 9778 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9779 return false; 9780 } 9781 if (!State.AllocateReg(ArgGPRs)) 9782 State.AllocateStack(4, Align(4)); 9783 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9784 return false; 9785 } 9786 9787 // Fixed-length vectors are located in the corresponding scalable-vector 9788 // container types. 9789 if (ValVT.isFixedLengthVector()) 9790 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9791 9792 // Split arguments might be passed indirectly, so keep track of the pending 9793 // values. Split vectors are passed via a mix of registers and indirectly, so 9794 // treat them as we would any other argument. 9795 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 9796 LocVT = XLenVT; 9797 LocInfo = CCValAssign::Indirect; 9798 PendingLocs.push_back( 9799 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 9800 PendingArgFlags.push_back(ArgFlags); 9801 if (!ArgFlags.isSplitEnd()) { 9802 return false; 9803 } 9804 } 9805 9806 // If the split argument only had two elements, it should be passed directly 9807 // in registers or on the stack. 9808 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 9809 PendingLocs.size() <= 2) { 9810 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 9811 // Apply the normal calling convention rules to the first half of the 9812 // split argument. 9813 CCValAssign VA = PendingLocs[0]; 9814 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 9815 PendingLocs.clear(); 9816 PendingArgFlags.clear(); 9817 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 9818 ArgFlags); 9819 } 9820 9821 // Allocate to a register if possible, or else a stack slot. 9822 Register Reg; 9823 unsigned StoreSizeBytes = XLen / 8; 9824 Align StackAlign = Align(XLen / 8); 9825 9826 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 9827 Reg = State.AllocateReg(ArgFPR16s); 9828 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 9829 Reg = State.AllocateReg(ArgFPR32s); 9830 else if (ValVT == MVT::f64 && !UseGPRForF64) 9831 Reg = State.AllocateReg(ArgFPR64s); 9832 else if (ValVT.isVector()) { 9833 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 9834 if (!Reg) { 9835 // For return values, the vector must be passed fully via registers or 9836 // via the stack. 9837 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 9838 // but we're using all of them. 9839 if (IsRet) 9840 return true; 9841 // Try using a GPR to pass the address 9842 if ((Reg = State.AllocateReg(ArgGPRs))) { 9843 LocVT = XLenVT; 9844 LocInfo = CCValAssign::Indirect; 9845 } else if (ValVT.isScalableVector()) { 9846 LocVT = XLenVT; 9847 LocInfo = CCValAssign::Indirect; 9848 } else { 9849 // Pass fixed-length vectors on the stack. 9850 LocVT = ValVT; 9851 StoreSizeBytes = ValVT.getStoreSize(); 9852 // Align vectors to their element sizes, being careful for vXi1 9853 // vectors. 9854 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9855 } 9856 } 9857 } else { 9858 Reg = State.AllocateReg(ArgGPRs); 9859 } 9860 9861 unsigned StackOffset = 9862 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 9863 9864 // If we reach this point and PendingLocs is non-empty, we must be at the 9865 // end of a split argument that must be passed indirectly. 9866 if (!PendingLocs.empty()) { 9867 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 9868 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 9869 9870 for (auto &It : PendingLocs) { 9871 if (Reg) 9872 It.convertToReg(Reg); 9873 else 9874 It.convertToMem(StackOffset); 9875 State.addLoc(It); 9876 } 9877 PendingLocs.clear(); 9878 PendingArgFlags.clear(); 9879 return false; 9880 } 9881 9882 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 9883 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 9884 "Expected an XLenVT or vector types at this stage"); 9885 9886 if (Reg) { 9887 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9888 return false; 9889 } 9890 9891 // When a floating-point value is passed on the stack, no bit-conversion is 9892 // needed. 9893 if (ValVT.isFloatingPoint()) { 9894 LocVT = ValVT; 9895 LocInfo = CCValAssign::Full; 9896 } 9897 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9898 return false; 9899 } 9900 9901 template <typename ArgTy> 9902 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 9903 for (const auto &ArgIdx : enumerate(Args)) { 9904 MVT ArgVT = ArgIdx.value().VT; 9905 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 9906 return ArgIdx.index(); 9907 } 9908 return None; 9909 } 9910 9911 void RISCVTargetLowering::analyzeInputArgs( 9912 MachineFunction &MF, CCState &CCInfo, 9913 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 9914 RISCVCCAssignFn Fn) const { 9915 unsigned NumArgs = Ins.size(); 9916 FunctionType *FType = MF.getFunction().getFunctionType(); 9917 9918 Optional<unsigned> FirstMaskArgument; 9919 if (Subtarget.hasVInstructions()) 9920 FirstMaskArgument = preAssignMask(Ins); 9921 9922 for (unsigned i = 0; i != NumArgs; ++i) { 9923 MVT ArgVT = Ins[i].VT; 9924 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 9925 9926 Type *ArgTy = nullptr; 9927 if (IsRet) 9928 ArgTy = FType->getReturnType(); 9929 else if (Ins[i].isOrigArg()) 9930 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 9931 9932 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9933 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9934 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 9935 FirstMaskArgument)) { 9936 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 9937 << EVT(ArgVT).getEVTString() << '\n'); 9938 llvm_unreachable(nullptr); 9939 } 9940 } 9941 } 9942 9943 void RISCVTargetLowering::analyzeOutputArgs( 9944 MachineFunction &MF, CCState &CCInfo, 9945 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 9946 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 9947 unsigned NumArgs = Outs.size(); 9948 9949 Optional<unsigned> FirstMaskArgument; 9950 if (Subtarget.hasVInstructions()) 9951 FirstMaskArgument = preAssignMask(Outs); 9952 9953 for (unsigned i = 0; i != NumArgs; i++) { 9954 MVT ArgVT = Outs[i].VT; 9955 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9956 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 9957 9958 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9959 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9960 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 9961 FirstMaskArgument)) { 9962 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 9963 << EVT(ArgVT).getEVTString() << "\n"); 9964 llvm_unreachable(nullptr); 9965 } 9966 } 9967 } 9968 9969 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 9970 // values. 9971 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 9972 const CCValAssign &VA, const SDLoc &DL, 9973 const RISCVSubtarget &Subtarget) { 9974 switch (VA.getLocInfo()) { 9975 default: 9976 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9977 case CCValAssign::Full: 9978 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 9979 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 9980 break; 9981 case CCValAssign::BCvt: 9982 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9983 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 9984 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9985 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 9986 else 9987 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 9988 break; 9989 } 9990 return Val; 9991 } 9992 9993 // The caller is responsible for loading the full value if the argument is 9994 // passed with CCValAssign::Indirect. 9995 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 9996 const CCValAssign &VA, const SDLoc &DL, 9997 const RISCVTargetLowering &TLI) { 9998 MachineFunction &MF = DAG.getMachineFunction(); 9999 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10000 EVT LocVT = VA.getLocVT(); 10001 SDValue Val; 10002 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 10003 Register VReg = RegInfo.createVirtualRegister(RC); 10004 RegInfo.addLiveIn(VA.getLocReg(), VReg); 10005 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 10006 10007 if (VA.getLocInfo() == CCValAssign::Indirect) 10008 return Val; 10009 10010 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 10011 } 10012 10013 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 10014 const CCValAssign &VA, const SDLoc &DL, 10015 const RISCVSubtarget &Subtarget) { 10016 EVT LocVT = VA.getLocVT(); 10017 10018 switch (VA.getLocInfo()) { 10019 default: 10020 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10021 case CCValAssign::Full: 10022 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 10023 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 10024 break; 10025 case CCValAssign::BCvt: 10026 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 10027 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 10028 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 10029 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 10030 else 10031 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 10032 break; 10033 } 10034 return Val; 10035 } 10036 10037 // The caller is responsible for loading the full value if the argument is 10038 // passed with CCValAssign::Indirect. 10039 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 10040 const CCValAssign &VA, const SDLoc &DL) { 10041 MachineFunction &MF = DAG.getMachineFunction(); 10042 MachineFrameInfo &MFI = MF.getFrameInfo(); 10043 EVT LocVT = VA.getLocVT(); 10044 EVT ValVT = VA.getValVT(); 10045 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 10046 if (ValVT.isScalableVector()) { 10047 // When the value is a scalable vector, we save the pointer which points to 10048 // the scalable vector value in the stack. The ValVT will be the pointer 10049 // type, instead of the scalable vector type. 10050 ValVT = LocVT; 10051 } 10052 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 10053 /*IsImmutable=*/true); 10054 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 10055 SDValue Val; 10056 10057 ISD::LoadExtType ExtType; 10058 switch (VA.getLocInfo()) { 10059 default: 10060 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10061 case CCValAssign::Full: 10062 case CCValAssign::Indirect: 10063 case CCValAssign::BCvt: 10064 ExtType = ISD::NON_EXTLOAD; 10065 break; 10066 } 10067 Val = DAG.getExtLoad( 10068 ExtType, DL, LocVT, Chain, FIN, 10069 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 10070 return Val; 10071 } 10072 10073 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 10074 const CCValAssign &VA, const SDLoc &DL) { 10075 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 10076 "Unexpected VA"); 10077 MachineFunction &MF = DAG.getMachineFunction(); 10078 MachineFrameInfo &MFI = MF.getFrameInfo(); 10079 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10080 10081 if (VA.isMemLoc()) { 10082 // f64 is passed on the stack. 10083 int FI = 10084 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 10085 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 10086 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 10087 MachinePointerInfo::getFixedStack(MF, FI)); 10088 } 10089 10090 assert(VA.isRegLoc() && "Expected register VA assignment"); 10091 10092 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 10093 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 10094 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 10095 SDValue Hi; 10096 if (VA.getLocReg() == RISCV::X17) { 10097 // Second half of f64 is passed on the stack. 10098 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 10099 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 10100 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 10101 MachinePointerInfo::getFixedStack(MF, FI)); 10102 } else { 10103 // Second half of f64 is passed in another GPR. 10104 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 10105 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 10106 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 10107 } 10108 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 10109 } 10110 10111 // FastCC has less than 1% performance improvement for some particular 10112 // benchmark. But theoretically, it may has benenfit for some cases. 10113 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 10114 unsigned ValNo, MVT ValVT, MVT LocVT, 10115 CCValAssign::LocInfo LocInfo, 10116 ISD::ArgFlagsTy ArgFlags, CCState &State, 10117 bool IsFixed, bool IsRet, Type *OrigTy, 10118 const RISCVTargetLowering &TLI, 10119 Optional<unsigned> FirstMaskArgument) { 10120 10121 // X5 and X6 might be used for save-restore libcall. 10122 static const MCPhysReg GPRList[] = { 10123 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 10124 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 10125 RISCV::X29, RISCV::X30, RISCV::X31}; 10126 10127 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10128 if (unsigned Reg = State.AllocateReg(GPRList)) { 10129 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10130 return false; 10131 } 10132 } 10133 10134 if (LocVT == MVT::f16) { 10135 static const MCPhysReg FPR16List[] = { 10136 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 10137 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 10138 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 10139 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 10140 if (unsigned Reg = State.AllocateReg(FPR16List)) { 10141 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10142 return false; 10143 } 10144 } 10145 10146 if (LocVT == MVT::f32) { 10147 static const MCPhysReg FPR32List[] = { 10148 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 10149 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 10150 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 10151 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 10152 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10153 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10154 return false; 10155 } 10156 } 10157 10158 if (LocVT == MVT::f64) { 10159 static const MCPhysReg FPR64List[] = { 10160 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 10161 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 10162 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 10163 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 10164 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10165 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10166 return false; 10167 } 10168 } 10169 10170 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 10171 unsigned Offset4 = State.AllocateStack(4, Align(4)); 10172 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 10173 return false; 10174 } 10175 10176 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 10177 unsigned Offset5 = State.AllocateStack(8, Align(8)); 10178 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 10179 return false; 10180 } 10181 10182 if (LocVT.isVector()) { 10183 if (unsigned Reg = 10184 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 10185 // Fixed-length vectors are located in the corresponding scalable-vector 10186 // container types. 10187 if (ValVT.isFixedLengthVector()) 10188 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 10189 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10190 } else { 10191 // Try and pass the address via a "fast" GPR. 10192 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 10193 LocInfo = CCValAssign::Indirect; 10194 LocVT = TLI.getSubtarget().getXLenVT(); 10195 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 10196 } else if (ValVT.isFixedLengthVector()) { 10197 auto StackAlign = 10198 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 10199 unsigned StackOffset = 10200 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 10201 State.addLoc( 10202 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10203 } else { 10204 // Can't pass scalable vectors on the stack. 10205 return true; 10206 } 10207 } 10208 10209 return false; 10210 } 10211 10212 return true; // CC didn't match. 10213 } 10214 10215 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 10216 CCValAssign::LocInfo LocInfo, 10217 ISD::ArgFlagsTy ArgFlags, CCState &State) { 10218 10219 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10220 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 10221 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 10222 static const MCPhysReg GPRList[] = { 10223 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 10224 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 10225 if (unsigned Reg = State.AllocateReg(GPRList)) { 10226 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10227 return false; 10228 } 10229 } 10230 10231 if (LocVT == MVT::f32) { 10232 // Pass in STG registers: F1, ..., F6 10233 // fs0 ... fs5 10234 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 10235 RISCV::F18_F, RISCV::F19_F, 10236 RISCV::F20_F, RISCV::F21_F}; 10237 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10238 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10239 return false; 10240 } 10241 } 10242 10243 if (LocVT == MVT::f64) { 10244 // Pass in STG registers: D1, ..., D6 10245 // fs6 ... fs11 10246 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 10247 RISCV::F24_D, RISCV::F25_D, 10248 RISCV::F26_D, RISCV::F27_D}; 10249 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10250 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10251 return false; 10252 } 10253 } 10254 10255 report_fatal_error("No registers left in GHC calling convention"); 10256 return true; 10257 } 10258 10259 // Transform physical registers into virtual registers. 10260 SDValue RISCVTargetLowering::LowerFormalArguments( 10261 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 10262 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 10263 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 10264 10265 MachineFunction &MF = DAG.getMachineFunction(); 10266 10267 switch (CallConv) { 10268 default: 10269 report_fatal_error("Unsupported calling convention"); 10270 case CallingConv::C: 10271 case CallingConv::Fast: 10272 break; 10273 case CallingConv::GHC: 10274 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 10275 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 10276 report_fatal_error( 10277 "GHC calling convention requires the F and D instruction set extensions"); 10278 } 10279 10280 const Function &Func = MF.getFunction(); 10281 if (Func.hasFnAttribute("interrupt")) { 10282 if (!Func.arg_empty()) 10283 report_fatal_error( 10284 "Functions with the interrupt attribute cannot have arguments!"); 10285 10286 StringRef Kind = 10287 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10288 10289 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 10290 report_fatal_error( 10291 "Function interrupt attribute argument not supported!"); 10292 } 10293 10294 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10295 MVT XLenVT = Subtarget.getXLenVT(); 10296 unsigned XLenInBytes = Subtarget.getXLen() / 8; 10297 // Used with vargs to acumulate store chains. 10298 std::vector<SDValue> OutChains; 10299 10300 // Assign locations to all of the incoming arguments. 10301 SmallVector<CCValAssign, 16> ArgLocs; 10302 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10303 10304 if (CallConv == CallingConv::GHC) 10305 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 10306 else 10307 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 10308 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10309 : CC_RISCV); 10310 10311 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 10312 CCValAssign &VA = ArgLocs[i]; 10313 SDValue ArgValue; 10314 // Passing f64 on RV32D with a soft float ABI must be handled as a special 10315 // case. 10316 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 10317 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 10318 else if (VA.isRegLoc()) 10319 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 10320 else 10321 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 10322 10323 if (VA.getLocInfo() == CCValAssign::Indirect) { 10324 // If the original argument was split and passed by reference (e.g. i128 10325 // on RV32), we need to load all parts of it here (using the same 10326 // address). Vectors may be partly split to registers and partly to the 10327 // stack, in which case the base address is partly offset and subsequent 10328 // stores are relative to that. 10329 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 10330 MachinePointerInfo())); 10331 unsigned ArgIndex = Ins[i].OrigArgIndex; 10332 unsigned ArgPartOffset = Ins[i].PartOffset; 10333 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10334 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 10335 CCValAssign &PartVA = ArgLocs[i + 1]; 10336 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 10337 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10338 if (PartVA.getValVT().isScalableVector()) 10339 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10340 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 10341 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 10342 MachinePointerInfo())); 10343 ++i; 10344 } 10345 continue; 10346 } 10347 InVals.push_back(ArgValue); 10348 } 10349 10350 if (IsVarArg) { 10351 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 10352 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 10353 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 10354 MachineFrameInfo &MFI = MF.getFrameInfo(); 10355 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10356 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 10357 10358 // Offset of the first variable argument from stack pointer, and size of 10359 // the vararg save area. For now, the varargs save area is either zero or 10360 // large enough to hold a0-a7. 10361 int VaArgOffset, VarArgsSaveSize; 10362 10363 // If all registers are allocated, then all varargs must be passed on the 10364 // stack and we don't need to save any argregs. 10365 if (ArgRegs.size() == Idx) { 10366 VaArgOffset = CCInfo.getNextStackOffset(); 10367 VarArgsSaveSize = 0; 10368 } else { 10369 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 10370 VaArgOffset = -VarArgsSaveSize; 10371 } 10372 10373 // Record the frame index of the first variable argument 10374 // which is a value necessary to VASTART. 10375 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10376 RVFI->setVarArgsFrameIndex(FI); 10377 10378 // If saving an odd number of registers then create an extra stack slot to 10379 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 10380 // offsets to even-numbered registered remain 2*XLEN-aligned. 10381 if (Idx % 2) { 10382 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 10383 VarArgsSaveSize += XLenInBytes; 10384 } 10385 10386 // Copy the integer registers that may have been used for passing varargs 10387 // to the vararg save area. 10388 for (unsigned I = Idx; I < ArgRegs.size(); 10389 ++I, VaArgOffset += XLenInBytes) { 10390 const Register Reg = RegInfo.createVirtualRegister(RC); 10391 RegInfo.addLiveIn(ArgRegs[I], Reg); 10392 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 10393 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10394 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10395 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 10396 MachinePointerInfo::getFixedStack(MF, FI)); 10397 cast<StoreSDNode>(Store.getNode()) 10398 ->getMemOperand() 10399 ->setValue((Value *)nullptr); 10400 OutChains.push_back(Store); 10401 } 10402 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 10403 } 10404 10405 // All stores are grouped in one node to allow the matching between 10406 // the size of Ins and InVals. This only happens for vararg functions. 10407 if (!OutChains.empty()) { 10408 OutChains.push_back(Chain); 10409 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 10410 } 10411 10412 return Chain; 10413 } 10414 10415 /// isEligibleForTailCallOptimization - Check whether the call is eligible 10416 /// for tail call optimization. 10417 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 10418 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 10419 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 10420 const SmallVector<CCValAssign, 16> &ArgLocs) const { 10421 10422 auto &Callee = CLI.Callee; 10423 auto CalleeCC = CLI.CallConv; 10424 auto &Outs = CLI.Outs; 10425 auto &Caller = MF.getFunction(); 10426 auto CallerCC = Caller.getCallingConv(); 10427 10428 // Exception-handling functions need a special set of instructions to 10429 // indicate a return to the hardware. Tail-calling another function would 10430 // probably break this. 10431 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 10432 // should be expanded as new function attributes are introduced. 10433 if (Caller.hasFnAttribute("interrupt")) 10434 return false; 10435 10436 // Do not tail call opt if the stack is used to pass parameters. 10437 if (CCInfo.getNextStackOffset() != 0) 10438 return false; 10439 10440 // Do not tail call opt if any parameters need to be passed indirectly. 10441 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 10442 // passed indirectly. So the address of the value will be passed in a 10443 // register, or if not available, then the address is put on the stack. In 10444 // order to pass indirectly, space on the stack often needs to be allocated 10445 // in order to store the value. In this case the CCInfo.getNextStackOffset() 10446 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 10447 // are passed CCValAssign::Indirect. 10448 for (auto &VA : ArgLocs) 10449 if (VA.getLocInfo() == CCValAssign::Indirect) 10450 return false; 10451 10452 // Do not tail call opt if either caller or callee uses struct return 10453 // semantics. 10454 auto IsCallerStructRet = Caller.hasStructRetAttr(); 10455 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 10456 if (IsCallerStructRet || IsCalleeStructRet) 10457 return false; 10458 10459 // Externally-defined functions with weak linkage should not be 10460 // tail-called. The behaviour of branch instructions in this situation (as 10461 // used for tail calls) is implementation-defined, so we cannot rely on the 10462 // linker replacing the tail call with a return. 10463 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 10464 const GlobalValue *GV = G->getGlobal(); 10465 if (GV->hasExternalWeakLinkage()) 10466 return false; 10467 } 10468 10469 // The callee has to preserve all registers the caller needs to preserve. 10470 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10471 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 10472 if (CalleeCC != CallerCC) { 10473 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 10474 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 10475 return false; 10476 } 10477 10478 // Byval parameters hand the function a pointer directly into the stack area 10479 // we want to reuse during a tail call. Working around this *is* possible 10480 // but less efficient and uglier in LowerCall. 10481 for (auto &Arg : Outs) 10482 if (Arg.Flags.isByVal()) 10483 return false; 10484 10485 return true; 10486 } 10487 10488 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 10489 return DAG.getDataLayout().getPrefTypeAlign( 10490 VT.getTypeForEVT(*DAG.getContext())); 10491 } 10492 10493 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 10494 // and output parameter nodes. 10495 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 10496 SmallVectorImpl<SDValue> &InVals) const { 10497 SelectionDAG &DAG = CLI.DAG; 10498 SDLoc &DL = CLI.DL; 10499 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 10500 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 10501 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 10502 SDValue Chain = CLI.Chain; 10503 SDValue Callee = CLI.Callee; 10504 bool &IsTailCall = CLI.IsTailCall; 10505 CallingConv::ID CallConv = CLI.CallConv; 10506 bool IsVarArg = CLI.IsVarArg; 10507 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10508 MVT XLenVT = Subtarget.getXLenVT(); 10509 10510 MachineFunction &MF = DAG.getMachineFunction(); 10511 10512 // Analyze the operands of the call, assigning locations to each operand. 10513 SmallVector<CCValAssign, 16> ArgLocs; 10514 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10515 10516 if (CallConv == CallingConv::GHC) 10517 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 10518 else 10519 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 10520 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10521 : CC_RISCV); 10522 10523 // Check if it's really possible to do a tail call. 10524 if (IsTailCall) 10525 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 10526 10527 if (IsTailCall) 10528 ++NumTailCalls; 10529 else if (CLI.CB && CLI.CB->isMustTailCall()) 10530 report_fatal_error("failed to perform tail call elimination on a call " 10531 "site marked musttail"); 10532 10533 // Get a count of how many bytes are to be pushed on the stack. 10534 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 10535 10536 // Create local copies for byval args 10537 SmallVector<SDValue, 8> ByValArgs; 10538 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10539 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10540 if (!Flags.isByVal()) 10541 continue; 10542 10543 SDValue Arg = OutVals[i]; 10544 unsigned Size = Flags.getByValSize(); 10545 Align Alignment = Flags.getNonZeroByValAlign(); 10546 10547 int FI = 10548 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 10549 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10550 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 10551 10552 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 10553 /*IsVolatile=*/false, 10554 /*AlwaysInline=*/false, IsTailCall, 10555 MachinePointerInfo(), MachinePointerInfo()); 10556 ByValArgs.push_back(FIPtr); 10557 } 10558 10559 if (!IsTailCall) 10560 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 10561 10562 // Copy argument values to their designated locations. 10563 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 10564 SmallVector<SDValue, 8> MemOpChains; 10565 SDValue StackPtr; 10566 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 10567 CCValAssign &VA = ArgLocs[i]; 10568 SDValue ArgValue = OutVals[i]; 10569 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10570 10571 // Handle passing f64 on RV32D with a soft float ABI as a special case. 10572 bool IsF64OnRV32DSoftABI = 10573 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 10574 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 10575 SDValue SplitF64 = DAG.getNode( 10576 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 10577 SDValue Lo = SplitF64.getValue(0); 10578 SDValue Hi = SplitF64.getValue(1); 10579 10580 Register RegLo = VA.getLocReg(); 10581 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 10582 10583 if (RegLo == RISCV::X17) { 10584 // Second half of f64 is passed on the stack. 10585 // Work out the address of the stack slot. 10586 if (!StackPtr.getNode()) 10587 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10588 // Emit the store. 10589 MemOpChains.push_back( 10590 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 10591 } else { 10592 // Second half of f64 is passed in another GPR. 10593 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10594 Register RegHigh = RegLo + 1; 10595 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 10596 } 10597 continue; 10598 } 10599 10600 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 10601 // as any other MemLoc. 10602 10603 // Promote the value if needed. 10604 // For now, only handle fully promoted and indirect arguments. 10605 if (VA.getLocInfo() == CCValAssign::Indirect) { 10606 // Store the argument in a stack slot and pass its address. 10607 Align StackAlign = 10608 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 10609 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 10610 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 10611 // If the original argument was split (e.g. i128), we need 10612 // to store the required parts of it here (and pass just one address). 10613 // Vectors may be partly split to registers and partly to the stack, in 10614 // which case the base address is partly offset and subsequent stores are 10615 // relative to that. 10616 unsigned ArgIndex = Outs[i].OrigArgIndex; 10617 unsigned ArgPartOffset = Outs[i].PartOffset; 10618 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10619 // Calculate the total size to store. We don't have access to what we're 10620 // actually storing other than performing the loop and collecting the 10621 // info. 10622 SmallVector<std::pair<SDValue, SDValue>> Parts; 10623 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 10624 SDValue PartValue = OutVals[i + 1]; 10625 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 10626 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10627 EVT PartVT = PartValue.getValueType(); 10628 if (PartVT.isScalableVector()) 10629 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10630 StoredSize += PartVT.getStoreSize(); 10631 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 10632 Parts.push_back(std::make_pair(PartValue, Offset)); 10633 ++i; 10634 } 10635 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 10636 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 10637 MemOpChains.push_back( 10638 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 10639 MachinePointerInfo::getFixedStack(MF, FI))); 10640 for (const auto &Part : Parts) { 10641 SDValue PartValue = Part.first; 10642 SDValue PartOffset = Part.second; 10643 SDValue Address = 10644 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 10645 MemOpChains.push_back( 10646 DAG.getStore(Chain, DL, PartValue, Address, 10647 MachinePointerInfo::getFixedStack(MF, FI))); 10648 } 10649 ArgValue = SpillSlot; 10650 } else { 10651 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 10652 } 10653 10654 // Use local copy if it is a byval arg. 10655 if (Flags.isByVal()) 10656 ArgValue = ByValArgs[j++]; 10657 10658 if (VA.isRegLoc()) { 10659 // Queue up the argument copies and emit them at the end. 10660 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 10661 } else { 10662 assert(VA.isMemLoc() && "Argument not register or memory"); 10663 assert(!IsTailCall && "Tail call not allowed if stack is used " 10664 "for passing parameters"); 10665 10666 // Work out the address of the stack slot. 10667 if (!StackPtr.getNode()) 10668 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10669 SDValue Address = 10670 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 10671 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 10672 10673 // Emit the store. 10674 MemOpChains.push_back( 10675 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 10676 } 10677 } 10678 10679 // Join the stores, which are independent of one another. 10680 if (!MemOpChains.empty()) 10681 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 10682 10683 SDValue Glue; 10684 10685 // Build a sequence of copy-to-reg nodes, chained and glued together. 10686 for (auto &Reg : RegsToPass) { 10687 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 10688 Glue = Chain.getValue(1); 10689 } 10690 10691 // Validate that none of the argument registers have been marked as 10692 // reserved, if so report an error. Do the same for the return address if this 10693 // is not a tailcall. 10694 validateCCReservedRegs(RegsToPass, MF); 10695 if (!IsTailCall && 10696 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 10697 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10698 MF.getFunction(), 10699 "Return address register required, but has been reserved."}); 10700 10701 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 10702 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 10703 // split it and then direct call can be matched by PseudoCALL. 10704 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 10705 const GlobalValue *GV = S->getGlobal(); 10706 10707 unsigned OpFlags = RISCVII::MO_CALL; 10708 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 10709 OpFlags = RISCVII::MO_PLT; 10710 10711 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 10712 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 10713 unsigned OpFlags = RISCVII::MO_CALL; 10714 10715 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 10716 nullptr)) 10717 OpFlags = RISCVII::MO_PLT; 10718 10719 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 10720 } 10721 10722 // The first call operand is the chain and the second is the target address. 10723 SmallVector<SDValue, 8> Ops; 10724 Ops.push_back(Chain); 10725 Ops.push_back(Callee); 10726 10727 // Add argument registers to the end of the list so that they are 10728 // known live into the call. 10729 for (auto &Reg : RegsToPass) 10730 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 10731 10732 if (!IsTailCall) { 10733 // Add a register mask operand representing the call-preserved registers. 10734 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10735 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 10736 assert(Mask && "Missing call preserved mask for calling convention"); 10737 Ops.push_back(DAG.getRegisterMask(Mask)); 10738 } 10739 10740 // Glue the call to the argument copies, if any. 10741 if (Glue.getNode()) 10742 Ops.push_back(Glue); 10743 10744 // Emit the call. 10745 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10746 10747 if (IsTailCall) { 10748 MF.getFrameInfo().setHasTailCall(); 10749 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 10750 } 10751 10752 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 10753 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 10754 Glue = Chain.getValue(1); 10755 10756 // Mark the end of the call, which is glued to the call itself. 10757 Chain = DAG.getCALLSEQ_END(Chain, 10758 DAG.getConstant(NumBytes, DL, PtrVT, true), 10759 DAG.getConstant(0, DL, PtrVT, true), 10760 Glue, DL); 10761 Glue = Chain.getValue(1); 10762 10763 // Assign locations to each value returned by this call. 10764 SmallVector<CCValAssign, 16> RVLocs; 10765 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 10766 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 10767 10768 // Copy all of the result registers out of their specified physreg. 10769 for (auto &VA : RVLocs) { 10770 // Copy the value out 10771 SDValue RetValue = 10772 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 10773 // Glue the RetValue to the end of the call sequence 10774 Chain = RetValue.getValue(1); 10775 Glue = RetValue.getValue(2); 10776 10777 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10778 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 10779 SDValue RetValue2 = 10780 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 10781 Chain = RetValue2.getValue(1); 10782 Glue = RetValue2.getValue(2); 10783 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 10784 RetValue2); 10785 } 10786 10787 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 10788 10789 InVals.push_back(RetValue); 10790 } 10791 10792 return Chain; 10793 } 10794 10795 bool RISCVTargetLowering::CanLowerReturn( 10796 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 10797 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 10798 SmallVector<CCValAssign, 16> RVLocs; 10799 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 10800 10801 Optional<unsigned> FirstMaskArgument; 10802 if (Subtarget.hasVInstructions()) 10803 FirstMaskArgument = preAssignMask(Outs); 10804 10805 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10806 MVT VT = Outs[i].VT; 10807 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10808 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10809 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 10810 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 10811 *this, FirstMaskArgument)) 10812 return false; 10813 } 10814 return true; 10815 } 10816 10817 SDValue 10818 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 10819 bool IsVarArg, 10820 const SmallVectorImpl<ISD::OutputArg> &Outs, 10821 const SmallVectorImpl<SDValue> &OutVals, 10822 const SDLoc &DL, SelectionDAG &DAG) const { 10823 const MachineFunction &MF = DAG.getMachineFunction(); 10824 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10825 10826 // Stores the assignment of the return value to a location. 10827 SmallVector<CCValAssign, 16> RVLocs; 10828 10829 // Info about the registers and stack slot. 10830 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 10831 *DAG.getContext()); 10832 10833 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 10834 nullptr, CC_RISCV); 10835 10836 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 10837 report_fatal_error("GHC functions return void only"); 10838 10839 SDValue Glue; 10840 SmallVector<SDValue, 4> RetOps(1, Chain); 10841 10842 // Copy the result values into the output registers. 10843 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 10844 SDValue Val = OutVals[i]; 10845 CCValAssign &VA = RVLocs[i]; 10846 assert(VA.isRegLoc() && "Can only return in registers!"); 10847 10848 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10849 // Handle returning f64 on RV32D with a soft float ABI. 10850 assert(VA.isRegLoc() && "Expected return via registers"); 10851 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 10852 DAG.getVTList(MVT::i32, MVT::i32), Val); 10853 SDValue Lo = SplitF64.getValue(0); 10854 SDValue Hi = SplitF64.getValue(1); 10855 Register RegLo = VA.getLocReg(); 10856 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10857 Register RegHi = RegLo + 1; 10858 10859 if (STI.isRegisterReservedByUser(RegLo) || 10860 STI.isRegisterReservedByUser(RegHi)) 10861 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10862 MF.getFunction(), 10863 "Return value register required, but has been reserved."}); 10864 10865 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 10866 Glue = Chain.getValue(1); 10867 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 10868 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 10869 Glue = Chain.getValue(1); 10870 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 10871 } else { 10872 // Handle a 'normal' return. 10873 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 10874 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 10875 10876 if (STI.isRegisterReservedByUser(VA.getLocReg())) 10877 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10878 MF.getFunction(), 10879 "Return value register required, but has been reserved."}); 10880 10881 // Guarantee that all emitted copies are stuck together. 10882 Glue = Chain.getValue(1); 10883 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 10884 } 10885 } 10886 10887 RetOps[0] = Chain; // Update chain. 10888 10889 // Add the glue node if we have it. 10890 if (Glue.getNode()) { 10891 RetOps.push_back(Glue); 10892 } 10893 10894 unsigned RetOpc = RISCVISD::RET_FLAG; 10895 // Interrupt service routines use different return instructions. 10896 const Function &Func = DAG.getMachineFunction().getFunction(); 10897 if (Func.hasFnAttribute("interrupt")) { 10898 if (!Func.getReturnType()->isVoidTy()) 10899 report_fatal_error( 10900 "Functions with the interrupt attribute must have void return type!"); 10901 10902 MachineFunction &MF = DAG.getMachineFunction(); 10903 StringRef Kind = 10904 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10905 10906 if (Kind == "user") 10907 RetOpc = RISCVISD::URET_FLAG; 10908 else if (Kind == "supervisor") 10909 RetOpc = RISCVISD::SRET_FLAG; 10910 else 10911 RetOpc = RISCVISD::MRET_FLAG; 10912 } 10913 10914 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 10915 } 10916 10917 void RISCVTargetLowering::validateCCReservedRegs( 10918 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 10919 MachineFunction &MF) const { 10920 const Function &F = MF.getFunction(); 10921 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10922 10923 if (llvm::any_of(Regs, [&STI](auto Reg) { 10924 return STI.isRegisterReservedByUser(Reg.first); 10925 })) 10926 F.getContext().diagnose(DiagnosticInfoUnsupported{ 10927 F, "Argument register required, but has been reserved."}); 10928 } 10929 10930 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 10931 return CI->isTailCall(); 10932 } 10933 10934 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 10935 #define NODE_NAME_CASE(NODE) \ 10936 case RISCVISD::NODE: \ 10937 return "RISCVISD::" #NODE; 10938 // clang-format off 10939 switch ((RISCVISD::NodeType)Opcode) { 10940 case RISCVISD::FIRST_NUMBER: 10941 break; 10942 NODE_NAME_CASE(RET_FLAG) 10943 NODE_NAME_CASE(URET_FLAG) 10944 NODE_NAME_CASE(SRET_FLAG) 10945 NODE_NAME_CASE(MRET_FLAG) 10946 NODE_NAME_CASE(CALL) 10947 NODE_NAME_CASE(SELECT_CC) 10948 NODE_NAME_CASE(BR_CC) 10949 NODE_NAME_CASE(BuildPairF64) 10950 NODE_NAME_CASE(SplitF64) 10951 NODE_NAME_CASE(TAIL) 10952 NODE_NAME_CASE(MULHSU) 10953 NODE_NAME_CASE(SLLW) 10954 NODE_NAME_CASE(SRAW) 10955 NODE_NAME_CASE(SRLW) 10956 NODE_NAME_CASE(DIVW) 10957 NODE_NAME_CASE(DIVUW) 10958 NODE_NAME_CASE(REMUW) 10959 NODE_NAME_CASE(ROLW) 10960 NODE_NAME_CASE(RORW) 10961 NODE_NAME_CASE(CLZW) 10962 NODE_NAME_CASE(CTZW) 10963 NODE_NAME_CASE(FSLW) 10964 NODE_NAME_CASE(FSRW) 10965 NODE_NAME_CASE(FSL) 10966 NODE_NAME_CASE(FSR) 10967 NODE_NAME_CASE(FMV_H_X) 10968 NODE_NAME_CASE(FMV_X_ANYEXTH) 10969 NODE_NAME_CASE(FMV_X_SIGNEXTH) 10970 NODE_NAME_CASE(FMV_W_X_RV64) 10971 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 10972 NODE_NAME_CASE(FCVT_X) 10973 NODE_NAME_CASE(FCVT_XU) 10974 NODE_NAME_CASE(FCVT_W_RV64) 10975 NODE_NAME_CASE(FCVT_WU_RV64) 10976 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 10977 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 10978 NODE_NAME_CASE(READ_CYCLE_WIDE) 10979 NODE_NAME_CASE(GREV) 10980 NODE_NAME_CASE(GREVW) 10981 NODE_NAME_CASE(GORC) 10982 NODE_NAME_CASE(GORCW) 10983 NODE_NAME_CASE(SHFL) 10984 NODE_NAME_CASE(SHFLW) 10985 NODE_NAME_CASE(UNSHFL) 10986 NODE_NAME_CASE(UNSHFLW) 10987 NODE_NAME_CASE(BFP) 10988 NODE_NAME_CASE(BFPW) 10989 NODE_NAME_CASE(BCOMPRESS) 10990 NODE_NAME_CASE(BCOMPRESSW) 10991 NODE_NAME_CASE(BDECOMPRESS) 10992 NODE_NAME_CASE(BDECOMPRESSW) 10993 NODE_NAME_CASE(VMV_V_X_VL) 10994 NODE_NAME_CASE(VFMV_V_F_VL) 10995 NODE_NAME_CASE(VMV_X_S) 10996 NODE_NAME_CASE(VMV_S_X_VL) 10997 NODE_NAME_CASE(VFMV_S_F_VL) 10998 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 10999 NODE_NAME_CASE(READ_VLENB) 11000 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 11001 NODE_NAME_CASE(VSLIDEUP_VL) 11002 NODE_NAME_CASE(VSLIDE1UP_VL) 11003 NODE_NAME_CASE(VSLIDEDOWN_VL) 11004 NODE_NAME_CASE(VSLIDE1DOWN_VL) 11005 NODE_NAME_CASE(VID_VL) 11006 NODE_NAME_CASE(VFNCVT_ROD_VL) 11007 NODE_NAME_CASE(VECREDUCE_ADD_VL) 11008 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 11009 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 11010 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 11011 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 11012 NODE_NAME_CASE(VECREDUCE_AND_VL) 11013 NODE_NAME_CASE(VECREDUCE_OR_VL) 11014 NODE_NAME_CASE(VECREDUCE_XOR_VL) 11015 NODE_NAME_CASE(VECREDUCE_FADD_VL) 11016 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 11017 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 11018 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 11019 NODE_NAME_CASE(ADD_VL) 11020 NODE_NAME_CASE(AND_VL) 11021 NODE_NAME_CASE(MUL_VL) 11022 NODE_NAME_CASE(OR_VL) 11023 NODE_NAME_CASE(SDIV_VL) 11024 NODE_NAME_CASE(SHL_VL) 11025 NODE_NAME_CASE(SREM_VL) 11026 NODE_NAME_CASE(SRA_VL) 11027 NODE_NAME_CASE(SRL_VL) 11028 NODE_NAME_CASE(SUB_VL) 11029 NODE_NAME_CASE(UDIV_VL) 11030 NODE_NAME_CASE(UREM_VL) 11031 NODE_NAME_CASE(XOR_VL) 11032 NODE_NAME_CASE(SADDSAT_VL) 11033 NODE_NAME_CASE(UADDSAT_VL) 11034 NODE_NAME_CASE(SSUBSAT_VL) 11035 NODE_NAME_CASE(USUBSAT_VL) 11036 NODE_NAME_CASE(FADD_VL) 11037 NODE_NAME_CASE(FSUB_VL) 11038 NODE_NAME_CASE(FMUL_VL) 11039 NODE_NAME_CASE(FDIV_VL) 11040 NODE_NAME_CASE(FNEG_VL) 11041 NODE_NAME_CASE(FABS_VL) 11042 NODE_NAME_CASE(FSQRT_VL) 11043 NODE_NAME_CASE(FMA_VL) 11044 NODE_NAME_CASE(FCOPYSIGN_VL) 11045 NODE_NAME_CASE(SMIN_VL) 11046 NODE_NAME_CASE(SMAX_VL) 11047 NODE_NAME_CASE(UMIN_VL) 11048 NODE_NAME_CASE(UMAX_VL) 11049 NODE_NAME_CASE(FMINNUM_VL) 11050 NODE_NAME_CASE(FMAXNUM_VL) 11051 NODE_NAME_CASE(MULHS_VL) 11052 NODE_NAME_CASE(MULHU_VL) 11053 NODE_NAME_CASE(FP_TO_SINT_VL) 11054 NODE_NAME_CASE(FP_TO_UINT_VL) 11055 NODE_NAME_CASE(SINT_TO_FP_VL) 11056 NODE_NAME_CASE(UINT_TO_FP_VL) 11057 NODE_NAME_CASE(FP_EXTEND_VL) 11058 NODE_NAME_CASE(FP_ROUND_VL) 11059 NODE_NAME_CASE(VWMUL_VL) 11060 NODE_NAME_CASE(VWMULU_VL) 11061 NODE_NAME_CASE(VWMULSU_VL) 11062 NODE_NAME_CASE(VWADD_VL) 11063 NODE_NAME_CASE(VWADDU_VL) 11064 NODE_NAME_CASE(VWSUB_VL) 11065 NODE_NAME_CASE(VWSUBU_VL) 11066 NODE_NAME_CASE(VWADD_W_VL) 11067 NODE_NAME_CASE(VWADDU_W_VL) 11068 NODE_NAME_CASE(VWSUB_W_VL) 11069 NODE_NAME_CASE(VWSUBU_W_VL) 11070 NODE_NAME_CASE(SETCC_VL) 11071 NODE_NAME_CASE(VSELECT_VL) 11072 NODE_NAME_CASE(VP_MERGE_VL) 11073 NODE_NAME_CASE(VMAND_VL) 11074 NODE_NAME_CASE(VMOR_VL) 11075 NODE_NAME_CASE(VMXOR_VL) 11076 NODE_NAME_CASE(VMCLR_VL) 11077 NODE_NAME_CASE(VMSET_VL) 11078 NODE_NAME_CASE(VRGATHER_VX_VL) 11079 NODE_NAME_CASE(VRGATHER_VV_VL) 11080 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 11081 NODE_NAME_CASE(VSEXT_VL) 11082 NODE_NAME_CASE(VZEXT_VL) 11083 NODE_NAME_CASE(VCPOP_VL) 11084 NODE_NAME_CASE(READ_CSR) 11085 NODE_NAME_CASE(WRITE_CSR) 11086 NODE_NAME_CASE(SWAP_CSR) 11087 } 11088 // clang-format on 11089 return nullptr; 11090 #undef NODE_NAME_CASE 11091 } 11092 11093 /// getConstraintType - Given a constraint letter, return the type of 11094 /// constraint it is for this target. 11095 RISCVTargetLowering::ConstraintType 11096 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 11097 if (Constraint.size() == 1) { 11098 switch (Constraint[0]) { 11099 default: 11100 break; 11101 case 'f': 11102 return C_RegisterClass; 11103 case 'I': 11104 case 'J': 11105 case 'K': 11106 return C_Immediate; 11107 case 'A': 11108 return C_Memory; 11109 case 'S': // A symbolic address 11110 return C_Other; 11111 } 11112 } else { 11113 if (Constraint == "vr" || Constraint == "vm") 11114 return C_RegisterClass; 11115 } 11116 return TargetLowering::getConstraintType(Constraint); 11117 } 11118 11119 std::pair<unsigned, const TargetRegisterClass *> 11120 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11121 StringRef Constraint, 11122 MVT VT) const { 11123 // First, see if this is a constraint that directly corresponds to a 11124 // RISCV register class. 11125 if (Constraint.size() == 1) { 11126 switch (Constraint[0]) { 11127 case 'r': 11128 // TODO: Support fixed vectors up to XLen for P extension? 11129 if (VT.isVector()) 11130 break; 11131 return std::make_pair(0U, &RISCV::GPRRegClass); 11132 case 'f': 11133 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 11134 return std::make_pair(0U, &RISCV::FPR16RegClass); 11135 if (Subtarget.hasStdExtF() && VT == MVT::f32) 11136 return std::make_pair(0U, &RISCV::FPR32RegClass); 11137 if (Subtarget.hasStdExtD() && VT == MVT::f64) 11138 return std::make_pair(0U, &RISCV::FPR64RegClass); 11139 break; 11140 default: 11141 break; 11142 } 11143 } else if (Constraint == "vr") { 11144 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 11145 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11146 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 11147 return std::make_pair(0U, RC); 11148 } 11149 } else if (Constraint == "vm") { 11150 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 11151 return std::make_pair(0U, &RISCV::VMV0RegClass); 11152 } 11153 11154 // Clang will correctly decode the usage of register name aliases into their 11155 // official names. However, other frontends like `rustc` do not. This allows 11156 // users of these frontends to use the ABI names for registers in LLVM-style 11157 // register constraints. 11158 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 11159 .Case("{zero}", RISCV::X0) 11160 .Case("{ra}", RISCV::X1) 11161 .Case("{sp}", RISCV::X2) 11162 .Case("{gp}", RISCV::X3) 11163 .Case("{tp}", RISCV::X4) 11164 .Case("{t0}", RISCV::X5) 11165 .Case("{t1}", RISCV::X6) 11166 .Case("{t2}", RISCV::X7) 11167 .Cases("{s0}", "{fp}", RISCV::X8) 11168 .Case("{s1}", RISCV::X9) 11169 .Case("{a0}", RISCV::X10) 11170 .Case("{a1}", RISCV::X11) 11171 .Case("{a2}", RISCV::X12) 11172 .Case("{a3}", RISCV::X13) 11173 .Case("{a4}", RISCV::X14) 11174 .Case("{a5}", RISCV::X15) 11175 .Case("{a6}", RISCV::X16) 11176 .Case("{a7}", RISCV::X17) 11177 .Case("{s2}", RISCV::X18) 11178 .Case("{s3}", RISCV::X19) 11179 .Case("{s4}", RISCV::X20) 11180 .Case("{s5}", RISCV::X21) 11181 .Case("{s6}", RISCV::X22) 11182 .Case("{s7}", RISCV::X23) 11183 .Case("{s8}", RISCV::X24) 11184 .Case("{s9}", RISCV::X25) 11185 .Case("{s10}", RISCV::X26) 11186 .Case("{s11}", RISCV::X27) 11187 .Case("{t3}", RISCV::X28) 11188 .Case("{t4}", RISCV::X29) 11189 .Case("{t5}", RISCV::X30) 11190 .Case("{t6}", RISCV::X31) 11191 .Default(RISCV::NoRegister); 11192 if (XRegFromAlias != RISCV::NoRegister) 11193 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 11194 11195 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 11196 // TableGen record rather than the AsmName to choose registers for InlineAsm 11197 // constraints, plus we want to match those names to the widest floating point 11198 // register type available, manually select floating point registers here. 11199 // 11200 // The second case is the ABI name of the register, so that frontends can also 11201 // use the ABI names in register constraint lists. 11202 if (Subtarget.hasStdExtF()) { 11203 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 11204 .Cases("{f0}", "{ft0}", RISCV::F0_F) 11205 .Cases("{f1}", "{ft1}", RISCV::F1_F) 11206 .Cases("{f2}", "{ft2}", RISCV::F2_F) 11207 .Cases("{f3}", "{ft3}", RISCV::F3_F) 11208 .Cases("{f4}", "{ft4}", RISCV::F4_F) 11209 .Cases("{f5}", "{ft5}", RISCV::F5_F) 11210 .Cases("{f6}", "{ft6}", RISCV::F6_F) 11211 .Cases("{f7}", "{ft7}", RISCV::F7_F) 11212 .Cases("{f8}", "{fs0}", RISCV::F8_F) 11213 .Cases("{f9}", "{fs1}", RISCV::F9_F) 11214 .Cases("{f10}", "{fa0}", RISCV::F10_F) 11215 .Cases("{f11}", "{fa1}", RISCV::F11_F) 11216 .Cases("{f12}", "{fa2}", RISCV::F12_F) 11217 .Cases("{f13}", "{fa3}", RISCV::F13_F) 11218 .Cases("{f14}", "{fa4}", RISCV::F14_F) 11219 .Cases("{f15}", "{fa5}", RISCV::F15_F) 11220 .Cases("{f16}", "{fa6}", RISCV::F16_F) 11221 .Cases("{f17}", "{fa7}", RISCV::F17_F) 11222 .Cases("{f18}", "{fs2}", RISCV::F18_F) 11223 .Cases("{f19}", "{fs3}", RISCV::F19_F) 11224 .Cases("{f20}", "{fs4}", RISCV::F20_F) 11225 .Cases("{f21}", "{fs5}", RISCV::F21_F) 11226 .Cases("{f22}", "{fs6}", RISCV::F22_F) 11227 .Cases("{f23}", "{fs7}", RISCV::F23_F) 11228 .Cases("{f24}", "{fs8}", RISCV::F24_F) 11229 .Cases("{f25}", "{fs9}", RISCV::F25_F) 11230 .Cases("{f26}", "{fs10}", RISCV::F26_F) 11231 .Cases("{f27}", "{fs11}", RISCV::F27_F) 11232 .Cases("{f28}", "{ft8}", RISCV::F28_F) 11233 .Cases("{f29}", "{ft9}", RISCV::F29_F) 11234 .Cases("{f30}", "{ft10}", RISCV::F30_F) 11235 .Cases("{f31}", "{ft11}", RISCV::F31_F) 11236 .Default(RISCV::NoRegister); 11237 if (FReg != RISCV::NoRegister) { 11238 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 11239 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 11240 unsigned RegNo = FReg - RISCV::F0_F; 11241 unsigned DReg = RISCV::F0_D + RegNo; 11242 return std::make_pair(DReg, &RISCV::FPR64RegClass); 11243 } 11244 if (VT == MVT::f32 || VT == MVT::Other) 11245 return std::make_pair(FReg, &RISCV::FPR32RegClass); 11246 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 11247 unsigned RegNo = FReg - RISCV::F0_F; 11248 unsigned HReg = RISCV::F0_H + RegNo; 11249 return std::make_pair(HReg, &RISCV::FPR16RegClass); 11250 } 11251 } 11252 } 11253 11254 if (Subtarget.hasVInstructions()) { 11255 Register VReg = StringSwitch<Register>(Constraint.lower()) 11256 .Case("{v0}", RISCV::V0) 11257 .Case("{v1}", RISCV::V1) 11258 .Case("{v2}", RISCV::V2) 11259 .Case("{v3}", RISCV::V3) 11260 .Case("{v4}", RISCV::V4) 11261 .Case("{v5}", RISCV::V5) 11262 .Case("{v6}", RISCV::V6) 11263 .Case("{v7}", RISCV::V7) 11264 .Case("{v8}", RISCV::V8) 11265 .Case("{v9}", RISCV::V9) 11266 .Case("{v10}", RISCV::V10) 11267 .Case("{v11}", RISCV::V11) 11268 .Case("{v12}", RISCV::V12) 11269 .Case("{v13}", RISCV::V13) 11270 .Case("{v14}", RISCV::V14) 11271 .Case("{v15}", RISCV::V15) 11272 .Case("{v16}", RISCV::V16) 11273 .Case("{v17}", RISCV::V17) 11274 .Case("{v18}", RISCV::V18) 11275 .Case("{v19}", RISCV::V19) 11276 .Case("{v20}", RISCV::V20) 11277 .Case("{v21}", RISCV::V21) 11278 .Case("{v22}", RISCV::V22) 11279 .Case("{v23}", RISCV::V23) 11280 .Case("{v24}", RISCV::V24) 11281 .Case("{v25}", RISCV::V25) 11282 .Case("{v26}", RISCV::V26) 11283 .Case("{v27}", RISCV::V27) 11284 .Case("{v28}", RISCV::V28) 11285 .Case("{v29}", RISCV::V29) 11286 .Case("{v30}", RISCV::V30) 11287 .Case("{v31}", RISCV::V31) 11288 .Default(RISCV::NoRegister); 11289 if (VReg != RISCV::NoRegister) { 11290 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 11291 return std::make_pair(VReg, &RISCV::VMRegClass); 11292 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 11293 return std::make_pair(VReg, &RISCV::VRRegClass); 11294 for (const auto *RC : 11295 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11296 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 11297 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 11298 return std::make_pair(VReg, RC); 11299 } 11300 } 11301 } 11302 } 11303 11304 std::pair<Register, const TargetRegisterClass *> Res = 11305 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11306 11307 // If we picked one of the Zfinx register classes, remap it to the GPR class. 11308 // FIXME: When Zfinx is supported in CodeGen this will need to take the 11309 // Subtarget into account. 11310 if (Res.second == &RISCV::GPRF16RegClass || 11311 Res.second == &RISCV::GPRF32RegClass || 11312 Res.second == &RISCV::GPRF64RegClass) 11313 return std::make_pair(Res.first, &RISCV::GPRRegClass); 11314 11315 return Res; 11316 } 11317 11318 unsigned 11319 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 11320 // Currently only support length 1 constraints. 11321 if (ConstraintCode.size() == 1) { 11322 switch (ConstraintCode[0]) { 11323 case 'A': 11324 return InlineAsm::Constraint_A; 11325 default: 11326 break; 11327 } 11328 } 11329 11330 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 11331 } 11332 11333 void RISCVTargetLowering::LowerAsmOperandForConstraint( 11334 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 11335 SelectionDAG &DAG) const { 11336 // Currently only support length 1 constraints. 11337 if (Constraint.length() == 1) { 11338 switch (Constraint[0]) { 11339 case 'I': 11340 // Validate & create a 12-bit signed immediate operand. 11341 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11342 uint64_t CVal = C->getSExtValue(); 11343 if (isInt<12>(CVal)) 11344 Ops.push_back( 11345 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11346 } 11347 return; 11348 case 'J': 11349 // Validate & create an integer zero operand. 11350 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 11351 if (C->getZExtValue() == 0) 11352 Ops.push_back( 11353 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 11354 return; 11355 case 'K': 11356 // Validate & create a 5-bit unsigned immediate operand. 11357 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11358 uint64_t CVal = C->getZExtValue(); 11359 if (isUInt<5>(CVal)) 11360 Ops.push_back( 11361 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11362 } 11363 return; 11364 case 'S': 11365 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 11366 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 11367 GA->getValueType(0))); 11368 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 11369 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 11370 BA->getValueType(0))); 11371 } 11372 return; 11373 default: 11374 break; 11375 } 11376 } 11377 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11378 } 11379 11380 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11381 Instruction *Inst, 11382 AtomicOrdering Ord) const { 11383 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 11384 return Builder.CreateFence(Ord); 11385 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 11386 return Builder.CreateFence(AtomicOrdering::Release); 11387 return nullptr; 11388 } 11389 11390 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11391 Instruction *Inst, 11392 AtomicOrdering Ord) const { 11393 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 11394 return Builder.CreateFence(AtomicOrdering::Acquire); 11395 return nullptr; 11396 } 11397 11398 TargetLowering::AtomicExpansionKind 11399 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 11400 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 11401 // point operations can't be used in an lr/sc sequence without breaking the 11402 // forward-progress guarantee. 11403 if (AI->isFloatingPointOperation()) 11404 return AtomicExpansionKind::CmpXChg; 11405 11406 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 11407 if (Size == 8 || Size == 16) 11408 return AtomicExpansionKind::MaskedIntrinsic; 11409 return AtomicExpansionKind::None; 11410 } 11411 11412 static Intrinsic::ID 11413 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 11414 if (XLen == 32) { 11415 switch (BinOp) { 11416 default: 11417 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11418 case AtomicRMWInst::Xchg: 11419 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 11420 case AtomicRMWInst::Add: 11421 return Intrinsic::riscv_masked_atomicrmw_add_i32; 11422 case AtomicRMWInst::Sub: 11423 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 11424 case AtomicRMWInst::Nand: 11425 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 11426 case AtomicRMWInst::Max: 11427 return Intrinsic::riscv_masked_atomicrmw_max_i32; 11428 case AtomicRMWInst::Min: 11429 return Intrinsic::riscv_masked_atomicrmw_min_i32; 11430 case AtomicRMWInst::UMax: 11431 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 11432 case AtomicRMWInst::UMin: 11433 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 11434 } 11435 } 11436 11437 if (XLen == 64) { 11438 switch (BinOp) { 11439 default: 11440 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11441 case AtomicRMWInst::Xchg: 11442 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 11443 case AtomicRMWInst::Add: 11444 return Intrinsic::riscv_masked_atomicrmw_add_i64; 11445 case AtomicRMWInst::Sub: 11446 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 11447 case AtomicRMWInst::Nand: 11448 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 11449 case AtomicRMWInst::Max: 11450 return Intrinsic::riscv_masked_atomicrmw_max_i64; 11451 case AtomicRMWInst::Min: 11452 return Intrinsic::riscv_masked_atomicrmw_min_i64; 11453 case AtomicRMWInst::UMax: 11454 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 11455 case AtomicRMWInst::UMin: 11456 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 11457 } 11458 } 11459 11460 llvm_unreachable("Unexpected XLen\n"); 11461 } 11462 11463 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 11464 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 11465 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 11466 unsigned XLen = Subtarget.getXLen(); 11467 Value *Ordering = 11468 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 11469 Type *Tys[] = {AlignedAddr->getType()}; 11470 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 11471 AI->getModule(), 11472 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 11473 11474 if (XLen == 64) { 11475 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 11476 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11477 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 11478 } 11479 11480 Value *Result; 11481 11482 // Must pass the shift amount needed to sign extend the loaded value prior 11483 // to performing a signed comparison for min/max. ShiftAmt is the number of 11484 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 11485 // is the number of bits to left+right shift the value in order to 11486 // sign-extend. 11487 if (AI->getOperation() == AtomicRMWInst::Min || 11488 AI->getOperation() == AtomicRMWInst::Max) { 11489 const DataLayout &DL = AI->getModule()->getDataLayout(); 11490 unsigned ValWidth = 11491 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 11492 Value *SextShamt = 11493 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 11494 Result = Builder.CreateCall(LrwOpScwLoop, 11495 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 11496 } else { 11497 Result = 11498 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 11499 } 11500 11501 if (XLen == 64) 11502 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11503 return Result; 11504 } 11505 11506 TargetLowering::AtomicExpansionKind 11507 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 11508 AtomicCmpXchgInst *CI) const { 11509 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 11510 if (Size == 8 || Size == 16) 11511 return AtomicExpansionKind::MaskedIntrinsic; 11512 return AtomicExpansionKind::None; 11513 } 11514 11515 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 11516 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 11517 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 11518 unsigned XLen = Subtarget.getXLen(); 11519 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 11520 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 11521 if (XLen == 64) { 11522 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 11523 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 11524 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11525 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 11526 } 11527 Type *Tys[] = {AlignedAddr->getType()}; 11528 Function *MaskedCmpXchg = 11529 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 11530 Value *Result = Builder.CreateCall( 11531 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 11532 if (XLen == 64) 11533 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11534 return Result; 11535 } 11536 11537 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 11538 return false; 11539 } 11540 11541 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 11542 EVT VT) const { 11543 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 11544 return false; 11545 11546 switch (FPVT.getSimpleVT().SimpleTy) { 11547 case MVT::f16: 11548 return Subtarget.hasStdExtZfh(); 11549 case MVT::f32: 11550 return Subtarget.hasStdExtF(); 11551 case MVT::f64: 11552 return Subtarget.hasStdExtD(); 11553 default: 11554 return false; 11555 } 11556 } 11557 11558 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 11559 // If we are using the small code model, we can reduce size of jump table 11560 // entry to 4 bytes. 11561 if (Subtarget.is64Bit() && !isPositionIndependent() && 11562 getTargetMachine().getCodeModel() == CodeModel::Small) { 11563 return MachineJumpTableInfo::EK_Custom32; 11564 } 11565 return TargetLowering::getJumpTableEncoding(); 11566 } 11567 11568 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 11569 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 11570 unsigned uid, MCContext &Ctx) const { 11571 assert(Subtarget.is64Bit() && !isPositionIndependent() && 11572 getTargetMachine().getCodeModel() == CodeModel::Small); 11573 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 11574 } 11575 11576 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 11577 EVT VT) const { 11578 VT = VT.getScalarType(); 11579 11580 if (!VT.isSimple()) 11581 return false; 11582 11583 switch (VT.getSimpleVT().SimpleTy) { 11584 case MVT::f16: 11585 return Subtarget.hasStdExtZfh(); 11586 case MVT::f32: 11587 return Subtarget.hasStdExtF(); 11588 case MVT::f64: 11589 return Subtarget.hasStdExtD(); 11590 default: 11591 break; 11592 } 11593 11594 return false; 11595 } 11596 11597 Register RISCVTargetLowering::getExceptionPointerRegister( 11598 const Constant *PersonalityFn) const { 11599 return RISCV::X10; 11600 } 11601 11602 Register RISCVTargetLowering::getExceptionSelectorRegister( 11603 const Constant *PersonalityFn) const { 11604 return RISCV::X11; 11605 } 11606 11607 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 11608 // Return false to suppress the unnecessary extensions if the LibCall 11609 // arguments or return value is f32 type for LP64 ABI. 11610 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 11611 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 11612 return false; 11613 11614 return true; 11615 } 11616 11617 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 11618 if (Subtarget.is64Bit() && Type == MVT::i32) 11619 return true; 11620 11621 return IsSigned; 11622 } 11623 11624 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 11625 SDValue C) const { 11626 // Check integral scalar types. 11627 if (VT.isScalarInteger()) { 11628 // Omit the optimization if the sub target has the M extension and the data 11629 // size exceeds XLen. 11630 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 11631 return false; 11632 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 11633 // Break the MUL to a SLLI and an ADD/SUB. 11634 const APInt &Imm = ConstNode->getAPIntValue(); 11635 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 11636 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 11637 return true; 11638 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 11639 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 11640 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 11641 (Imm - 8).isPowerOf2())) 11642 return true; 11643 // Omit the following optimization if the sub target has the M extension 11644 // and the data size >= XLen. 11645 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 11646 return false; 11647 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 11648 // a pair of LUI/ADDI. 11649 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 11650 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 11651 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 11652 (1 - ImmS).isPowerOf2()) 11653 return true; 11654 } 11655 } 11656 } 11657 11658 return false; 11659 } 11660 11661 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode, 11662 SDValue ConstNode) const { 11663 // Let the DAGCombiner decide for vectors. 11664 EVT VT = AddNode.getValueType(); 11665 if (VT.isVector()) 11666 return true; 11667 11668 // Let the DAGCombiner decide for larger types. 11669 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 11670 return true; 11671 11672 // It is worse if c1 is simm12 while c1*c2 is not. 11673 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 11674 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 11675 const APInt &C1 = C1Node->getAPIntValue(); 11676 const APInt &C2 = C2Node->getAPIntValue(); 11677 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 11678 return false; 11679 11680 // Default to true and let the DAGCombiner decide. 11681 return true; 11682 } 11683 11684 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 11685 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 11686 bool *Fast) const { 11687 if (!VT.isVector()) 11688 return false; 11689 11690 EVT ElemVT = VT.getVectorElementType(); 11691 if (Alignment >= ElemVT.getStoreSize()) { 11692 if (Fast) 11693 *Fast = true; 11694 return true; 11695 } 11696 11697 return false; 11698 } 11699 11700 bool RISCVTargetLowering::splitValueIntoRegisterParts( 11701 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 11702 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 11703 bool IsABIRegCopy = CC.hasValue(); 11704 EVT ValueVT = Val.getValueType(); 11705 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11706 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 11707 // and cast to f32. 11708 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 11709 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 11710 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 11711 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 11712 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 11713 Parts[0] = Val; 11714 return true; 11715 } 11716 11717 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11718 LLVMContext &Context = *DAG.getContext(); 11719 EVT ValueEltVT = ValueVT.getVectorElementType(); 11720 EVT PartEltVT = PartVT.getVectorElementType(); 11721 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11722 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11723 if (PartVTBitSize % ValueVTBitSize == 0) { 11724 assert(PartVTBitSize >= ValueVTBitSize); 11725 // If the element types are different, bitcast to the same element type of 11726 // PartVT first. 11727 // Give an example here, we want copy a <vscale x 1 x i8> value to 11728 // <vscale x 4 x i16>. 11729 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 11730 // subvector, then we can bitcast to <vscale x 4 x i16>. 11731 if (ValueEltVT != PartEltVT) { 11732 if (PartVTBitSize > ValueVTBitSize) { 11733 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11734 assert(Count != 0 && "The number of element should not be zero."); 11735 EVT SameEltTypeVT = 11736 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11737 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 11738 DAG.getUNDEF(SameEltTypeVT), Val, 11739 DAG.getVectorIdxConstant(0, DL)); 11740 } 11741 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 11742 } else { 11743 Val = 11744 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 11745 Val, DAG.getVectorIdxConstant(0, DL)); 11746 } 11747 Parts[0] = Val; 11748 return true; 11749 } 11750 } 11751 return false; 11752 } 11753 11754 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 11755 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 11756 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 11757 bool IsABIRegCopy = CC.hasValue(); 11758 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11759 SDValue Val = Parts[0]; 11760 11761 // Cast the f32 to i32, truncate to i16, and cast back to f16. 11762 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 11763 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 11764 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 11765 return Val; 11766 } 11767 11768 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11769 LLVMContext &Context = *DAG.getContext(); 11770 SDValue Val = Parts[0]; 11771 EVT ValueEltVT = ValueVT.getVectorElementType(); 11772 EVT PartEltVT = PartVT.getVectorElementType(); 11773 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11774 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11775 if (PartVTBitSize % ValueVTBitSize == 0) { 11776 assert(PartVTBitSize >= ValueVTBitSize); 11777 EVT SameEltTypeVT = ValueVT; 11778 // If the element types are different, convert it to the same element type 11779 // of PartVT. 11780 // Give an example here, we want copy a <vscale x 1 x i8> value from 11781 // <vscale x 4 x i16>. 11782 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 11783 // then we can extract <vscale x 1 x i8>. 11784 if (ValueEltVT != PartEltVT) { 11785 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11786 assert(Count != 0 && "The number of element should not be zero."); 11787 SameEltTypeVT = 11788 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11789 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 11790 } 11791 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 11792 DAG.getVectorIdxConstant(0, DL)); 11793 return Val; 11794 } 11795 } 11796 return SDValue(); 11797 } 11798 11799 SDValue 11800 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11801 SelectionDAG &DAG, 11802 SmallVectorImpl<SDNode *> &Created) const { 11803 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 11804 if (isIntDivCheap(N->getValueType(0), Attr)) 11805 return SDValue(N, 0); // Lower SDIV as SDIV 11806 11807 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 11808 "Unexpected divisor!"); 11809 11810 // Conditional move is needed, so do the transformation iff Zbt is enabled. 11811 if (!Subtarget.hasStdExtZbt()) 11812 return SDValue(); 11813 11814 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 11815 // Besides, more critical path instructions will be generated when dividing 11816 // by 2. So we keep using the original DAGs for these cases. 11817 unsigned Lg2 = Divisor.countTrailingZeros(); 11818 if (Lg2 == 1 || Lg2 >= 12) 11819 return SDValue(); 11820 11821 // fold (sdiv X, pow2) 11822 EVT VT = N->getValueType(0); 11823 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 11824 return SDValue(); 11825 11826 SDLoc DL(N); 11827 SDValue N0 = N->getOperand(0); 11828 SDValue Zero = DAG.getConstant(0, DL, VT); 11829 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 11830 11831 // Add (N0 < 0) ? Pow2 - 1 : 0; 11832 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 11833 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 11834 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 11835 11836 Created.push_back(Cmp.getNode()); 11837 Created.push_back(Add.getNode()); 11838 Created.push_back(Sel.getNode()); 11839 11840 // Divide by pow2. 11841 SDValue SRA = 11842 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 11843 11844 // If we're dividing by a positive value, we're done. Otherwise, we must 11845 // negate the result. 11846 if (Divisor.isNonNegative()) 11847 return SRA; 11848 11849 Created.push_back(SRA.getNode()); 11850 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 11851 } 11852 11853 #define GET_REGISTER_MATCHER 11854 #include "RISCVGenAsmMatcher.inc" 11855 11856 Register 11857 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 11858 const MachineFunction &MF) const { 11859 Register Reg = MatchRegisterAltName(RegName); 11860 if (Reg == RISCV::NoRegister) 11861 Reg = MatchRegisterName(RegName); 11862 if (Reg == RISCV::NoRegister) 11863 report_fatal_error( 11864 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 11865 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 11866 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 11867 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 11868 StringRef(RegName) + "\".")); 11869 return Reg; 11870 } 11871 11872 namespace llvm { 11873 namespace RISCVVIntrinsicsTable { 11874 11875 #define GET_RISCVVIntrinsicsTable_IMPL 11876 #include "RISCVGenSearchableTables.inc" 11877 11878 } // namespace RISCVVIntrinsicsTable 11879 11880 } // namespace llvm 11881