1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "riscv-lower" 44 45 STATISTIC(NumTailCalls, "Number of tail calls"); 46 47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 48 const RISCVSubtarget &STI) 49 : TargetLowering(TM), Subtarget(STI) { 50 51 if (Subtarget.isRV32E()) 52 report_fatal_error("Codegen not yet implemented for RV32E"); 53 54 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 55 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 56 57 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 58 !Subtarget.hasStdExtF()) { 59 errs() << "Hard-float 'f' ABI can't be used for a target that " 60 "doesn't support the F instruction set extension (ignoring " 61 "target-abi)\n"; 62 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 63 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 64 !Subtarget.hasStdExtD()) { 65 errs() << "Hard-float 'd' ABI can't be used for a target that " 66 "doesn't support the D instruction set extension (ignoring " 67 "target-abi)\n"; 68 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 69 } 70 71 switch (ABI) { 72 default: 73 report_fatal_error("Don't know how to lower this ABI"); 74 case RISCVABI::ABI_ILP32: 75 case RISCVABI::ABI_ILP32F: 76 case RISCVABI::ABI_ILP32D: 77 case RISCVABI::ABI_LP64: 78 case RISCVABI::ABI_LP64F: 79 case RISCVABI::ABI_LP64D: 80 break; 81 } 82 83 MVT XLenVT = Subtarget.getXLenVT(); 84 85 // Set up the register classes. 86 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 87 88 if (Subtarget.hasStdExtZfh()) 89 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 90 if (Subtarget.hasStdExtF()) 91 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 92 if (Subtarget.hasStdExtD()) 93 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 94 95 static const MVT::SimpleValueType BoolVecVTs[] = { 96 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 97 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 98 static const MVT::SimpleValueType IntVecVTs[] = { 99 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 100 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 101 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 102 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 103 MVT::nxv4i64, MVT::nxv8i64}; 104 static const MVT::SimpleValueType F16VecVTs[] = { 105 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 106 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 107 static const MVT::SimpleValueType F32VecVTs[] = { 108 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 109 static const MVT::SimpleValueType F64VecVTs[] = { 110 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 111 112 if (Subtarget.hasVInstructions()) { 113 auto addRegClassForRVV = [this](MVT VT) { 114 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 115 assert(Size <= 512 && isPowerOf2_32(Size)); 116 const TargetRegisterClass *RC; 117 if (Size <= 64) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 128) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 256) 122 RC = &RISCV::VRM4RegClass; 123 else 124 RC = &RISCV::VRM8RegClass; 125 126 addRegisterClass(VT, RC); 127 }; 128 129 for (MVT VT : BoolVecVTs) 130 addRegClassForRVV(VT); 131 for (MVT VT : IntVecVTs) { 132 if (VT.getVectorElementType() == MVT::i64 && 133 !Subtarget.hasVInstructionsI64()) 134 continue; 135 addRegClassForRVV(VT); 136 } 137 138 if (Subtarget.hasVInstructionsF16()) 139 for (MVT VT : F16VecVTs) 140 addRegClassForRVV(VT); 141 142 if (Subtarget.hasVInstructionsF32()) 143 for (MVT VT : F32VecVTs) 144 addRegClassForRVV(VT); 145 146 if (Subtarget.hasVInstructionsF64()) 147 for (MVT VT : F64VecVTs) 148 addRegClassForRVV(VT); 149 150 if (Subtarget.useRVVForFixedLengthVectors()) { 151 auto addRegClassForFixedVectors = [this](MVT VT) { 152 MVT ContainerVT = getContainerForFixedLengthVector(VT); 153 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 154 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 155 addRegisterClass(VT, TRI.getRegClass(RCID)); 156 }; 157 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 158 if (useRVVForFixedLengthVectorVT(VT)) 159 addRegClassForFixedVectors(VT); 160 161 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 162 if (useRVVForFixedLengthVectorVT(VT)) 163 addRegClassForFixedVectors(VT); 164 } 165 } 166 167 // Compute derived properties from the register classes. 168 computeRegisterProperties(STI.getRegisterInfo()); 169 170 setStackPointerRegisterToSaveRestore(RISCV::X2); 171 172 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 173 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 174 175 // TODO: add all necessary setOperationAction calls. 176 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 177 178 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 179 setOperationAction(ISD::BR_CC, XLenVT, Expand); 180 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 181 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 182 183 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 184 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 185 186 setOperationAction(ISD::VASTART, MVT::Other, Custom); 187 setOperationAction(ISD::VAARG, MVT::Other, Expand); 188 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 189 setOperationAction(ISD::VAEND, MVT::Other, Expand); 190 191 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 192 if (!Subtarget.hasStdExtZbb()) { 193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 195 } 196 197 if (Subtarget.is64Bit()) { 198 setOperationAction(ISD::ADD, MVT::i32, Custom); 199 setOperationAction(ISD::SUB, MVT::i32, Custom); 200 setOperationAction(ISD::SHL, MVT::i32, Custom); 201 setOperationAction(ISD::SRA, MVT::i32, Custom); 202 setOperationAction(ISD::SRL, MVT::i32, Custom); 203 204 setOperationAction(ISD::UADDO, MVT::i32, Custom); 205 setOperationAction(ISD::USUBO, MVT::i32, Custom); 206 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 207 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 208 } else { 209 setLibcallName(RTLIB::SHL_I128, nullptr); 210 setLibcallName(RTLIB::SRL_I128, nullptr); 211 setLibcallName(RTLIB::SRA_I128, nullptr); 212 setLibcallName(RTLIB::MUL_I128, nullptr); 213 setLibcallName(RTLIB::MULO_I64, nullptr); 214 } 215 216 if (!Subtarget.hasStdExtM()) { 217 setOperationAction(ISD::MUL, XLenVT, Expand); 218 setOperationAction(ISD::MULHS, XLenVT, Expand); 219 setOperationAction(ISD::MULHU, XLenVT, Expand); 220 setOperationAction(ISD::SDIV, XLenVT, Expand); 221 setOperationAction(ISD::UDIV, XLenVT, Expand); 222 setOperationAction(ISD::SREM, XLenVT, Expand); 223 setOperationAction(ISD::UREM, XLenVT, Expand); 224 } else { 225 if (Subtarget.is64Bit()) { 226 setOperationAction(ISD::MUL, MVT::i32, Custom); 227 setOperationAction(ISD::MUL, MVT::i128, Custom); 228 229 setOperationAction(ISD::SDIV, MVT::i8, Custom); 230 setOperationAction(ISD::UDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UREM, MVT::i8, Custom); 232 setOperationAction(ISD::SDIV, MVT::i16, Custom); 233 setOperationAction(ISD::UDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UREM, MVT::i16, Custom); 235 setOperationAction(ISD::SDIV, MVT::i32, Custom); 236 setOperationAction(ISD::UDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UREM, MVT::i32, Custom); 238 } else { 239 setOperationAction(ISD::MUL, MVT::i64, Custom); 240 } 241 } 242 243 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 244 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 246 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 247 248 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 249 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 251 252 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 253 if (Subtarget.is64Bit()) { 254 setOperationAction(ISD::ROTL, MVT::i32, Custom); 255 setOperationAction(ISD::ROTR, MVT::i32, Custom); 256 } 257 } else { 258 setOperationAction(ISD::ROTL, XLenVT, Expand); 259 setOperationAction(ISD::ROTR, XLenVT, Expand); 260 } 261 262 if (Subtarget.hasStdExtZbp()) { 263 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 264 // more combining. 265 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 266 setOperationAction(ISD::BSWAP, XLenVT, Custom); 267 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 268 // BSWAP i8 doesn't exist. 269 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 270 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 271 272 if (Subtarget.is64Bit()) { 273 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 274 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 275 } 276 } else { 277 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 278 // pattern match it directly in isel. 279 setOperationAction(ISD::BSWAP, XLenVT, 280 Subtarget.hasStdExtZbb() ? Legal : Expand); 281 } 282 283 if (Subtarget.hasStdExtZbb()) { 284 setOperationAction(ISD::SMIN, XLenVT, Legal); 285 setOperationAction(ISD::SMAX, XLenVT, Legal); 286 setOperationAction(ISD::UMIN, XLenVT, Legal); 287 setOperationAction(ISD::UMAX, XLenVT, Legal); 288 289 if (Subtarget.is64Bit()) { 290 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 291 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 292 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 294 } 295 } else { 296 setOperationAction(ISD::CTTZ, XLenVT, Expand); 297 setOperationAction(ISD::CTLZ, XLenVT, Expand); 298 setOperationAction(ISD::CTPOP, XLenVT, Expand); 299 } 300 301 if (Subtarget.hasStdExtZbt()) { 302 setOperationAction(ISD::FSHL, XLenVT, Custom); 303 setOperationAction(ISD::FSHR, XLenVT, Custom); 304 setOperationAction(ISD::SELECT, XLenVT, Legal); 305 306 if (Subtarget.is64Bit()) { 307 setOperationAction(ISD::FSHL, MVT::i32, Custom); 308 setOperationAction(ISD::FSHR, MVT::i32, Custom); 309 } 310 } else { 311 setOperationAction(ISD::SELECT, XLenVT, Custom); 312 } 313 314 static const ISD::CondCode FPCCToExpand[] = { 315 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 316 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 317 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 318 319 static const ISD::NodeType FPOpToExpand[] = { 320 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 321 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 322 323 if (Subtarget.hasStdExtZfh()) 324 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 325 326 if (Subtarget.hasStdExtZfh()) { 327 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 328 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 329 setOperationAction(ISD::LRINT, MVT::f16, Legal); 330 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LROUND, MVT::f16, Legal); 332 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 333 for (auto CC : FPCCToExpand) 334 setCondCodeAction(CC, MVT::f16, Expand); 335 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 336 setOperationAction(ISD::SELECT, MVT::f16, Custom); 337 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 338 for (auto Op : FPOpToExpand) 339 setOperationAction(Op, MVT::f16, Expand); 340 } 341 342 if (Subtarget.hasStdExtF()) { 343 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 344 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 345 setOperationAction(ISD::LRINT, MVT::f32, Legal); 346 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 347 setOperationAction(ISD::LROUND, MVT::f32, Legal); 348 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 349 for (auto CC : FPCCToExpand) 350 setCondCodeAction(CC, MVT::f32, Expand); 351 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 352 setOperationAction(ISD::SELECT, MVT::f32, Custom); 353 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 354 for (auto Op : FPOpToExpand) 355 setOperationAction(Op, MVT::f32, Expand); 356 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 357 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 358 } 359 360 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 361 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 362 363 if (Subtarget.hasStdExtD()) { 364 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 365 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 366 setOperationAction(ISD::LRINT, MVT::f64, Legal); 367 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 368 setOperationAction(ISD::LROUND, MVT::f64, Legal); 369 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 370 for (auto CC : FPCCToExpand) 371 setCondCodeAction(CC, MVT::f64, Expand); 372 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 373 setOperationAction(ISD::SELECT, MVT::f64, Custom); 374 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 375 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 376 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 377 for (auto Op : FPOpToExpand) 378 setOperationAction(Op, MVT::f64, Expand); 379 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 380 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 381 } 382 383 if (Subtarget.is64Bit()) { 384 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 385 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 386 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 387 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 388 } 389 390 if (Subtarget.hasStdExtF()) { 391 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 392 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 393 394 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 395 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 396 } 397 398 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 399 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 400 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 401 setOperationAction(ISD::JumpTable, XLenVT, Custom); 402 403 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 404 405 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 406 // Unfortunately this can't be determined just from the ISA naming string. 407 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 408 Subtarget.is64Bit() ? Legal : Custom); 409 410 setOperationAction(ISD::TRAP, MVT::Other, Legal); 411 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 412 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 413 if (Subtarget.is64Bit()) 414 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 415 416 if (Subtarget.hasStdExtA()) { 417 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 418 setMinCmpXchgSizeInBits(32); 419 } else { 420 setMaxAtomicSizeInBitsSupported(0); 421 } 422 423 setBooleanContents(ZeroOrOneBooleanContent); 424 425 if (Subtarget.hasVInstructions()) { 426 setBooleanVectorContents(ZeroOrOneBooleanContent); 427 428 setOperationAction(ISD::VSCALE, XLenVT, Custom); 429 430 // RVV intrinsics may have illegal operands. 431 // We also need to custom legalize vmv.x.s. 432 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 433 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 434 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 435 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 436 if (Subtarget.is64Bit()) { 437 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 438 } else { 439 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 440 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 441 } 442 443 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 444 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 445 446 static const unsigned IntegerVPOps[] = { 447 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 448 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 449 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 450 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 451 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 452 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 453 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN}; 454 455 static const unsigned FloatingPointVPOps[] = { 456 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 457 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 458 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX}; 459 460 if (!Subtarget.is64Bit()) { 461 // We must custom-lower certain vXi64 operations on RV32 due to the vector 462 // element type being illegal. 463 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 464 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 465 466 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 467 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 468 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 469 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 470 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 471 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 472 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 473 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 474 475 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 476 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 477 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 478 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 479 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 480 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 481 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 482 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 483 } 484 485 for (MVT VT : BoolVecVTs) { 486 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 487 488 // Mask VTs are custom-expanded into a series of standard nodes 489 setOperationAction(ISD::TRUNCATE, VT, Custom); 490 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 491 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 492 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 493 494 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 495 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 496 497 setOperationAction(ISD::SELECT, VT, Custom); 498 setOperationAction(ISD::SELECT_CC, VT, Expand); 499 setOperationAction(ISD::VSELECT, VT, Expand); 500 501 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 502 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 503 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 504 505 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 506 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 507 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 508 509 // RVV has native int->float & float->int conversions where the 510 // element type sizes are within one power-of-two of each other. Any 511 // wider distances between type sizes have to be lowered as sequences 512 // which progressively narrow the gap in stages. 513 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 514 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 515 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 516 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 517 518 // Expand all extending loads to types larger than this, and truncating 519 // stores from types larger than this. 520 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 521 setTruncStoreAction(OtherVT, VT, Expand); 522 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 523 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 524 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 525 } 526 } 527 528 for (MVT VT : IntVecVTs) { 529 if (VT.getVectorElementType() == MVT::i64 && 530 !Subtarget.hasVInstructionsI64()) 531 continue; 532 533 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 534 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 535 536 // Vectors implement MULHS/MULHU. 537 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 538 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 539 540 setOperationAction(ISD::SMIN, VT, Legal); 541 setOperationAction(ISD::SMAX, VT, Legal); 542 setOperationAction(ISD::UMIN, VT, Legal); 543 setOperationAction(ISD::UMAX, VT, Legal); 544 545 setOperationAction(ISD::ROTL, VT, Expand); 546 setOperationAction(ISD::ROTR, VT, Expand); 547 548 setOperationAction(ISD::CTTZ, VT, Expand); 549 setOperationAction(ISD::CTLZ, VT, Expand); 550 setOperationAction(ISD::CTPOP, VT, Expand); 551 552 setOperationAction(ISD::BSWAP, VT, Expand); 553 554 // Custom-lower extensions and truncations from/to mask types. 555 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 556 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 557 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 558 559 // RVV has native int->float & float->int conversions where the 560 // element type sizes are within one power-of-two of each other. Any 561 // wider distances between type sizes have to be lowered as sequences 562 // which progressively narrow the gap in stages. 563 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 564 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 565 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 566 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 567 568 setOperationAction(ISD::SADDSAT, VT, Legal); 569 setOperationAction(ISD::UADDSAT, VT, Legal); 570 setOperationAction(ISD::SSUBSAT, VT, Legal); 571 setOperationAction(ISD::USUBSAT, VT, Legal); 572 573 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 574 // nodes which truncate by one power of two at a time. 575 setOperationAction(ISD::TRUNCATE, VT, Custom); 576 577 // Custom-lower insert/extract operations to simplify patterns. 578 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 579 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 580 581 // Custom-lower reduction operations to set up the corresponding custom 582 // nodes' operands. 583 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 584 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 585 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 586 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 587 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 588 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 589 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 590 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 591 592 for (unsigned VPOpc : IntegerVPOps) 593 setOperationAction(VPOpc, VT, Custom); 594 595 setOperationAction(ISD::LOAD, VT, Custom); 596 setOperationAction(ISD::STORE, VT, Custom); 597 598 setOperationAction(ISD::MLOAD, VT, Custom); 599 setOperationAction(ISD::MSTORE, VT, Custom); 600 setOperationAction(ISD::MGATHER, VT, Custom); 601 setOperationAction(ISD::MSCATTER, VT, Custom); 602 603 setOperationAction(ISD::VP_LOAD, VT, Custom); 604 setOperationAction(ISD::VP_STORE, VT, Custom); 605 setOperationAction(ISD::VP_GATHER, VT, Custom); 606 setOperationAction(ISD::VP_SCATTER, VT, Custom); 607 608 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 609 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 610 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 611 612 setOperationAction(ISD::SELECT, VT, Custom); 613 setOperationAction(ISD::SELECT_CC, VT, Expand); 614 615 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 616 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 617 618 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 619 setTruncStoreAction(VT, OtherVT, Expand); 620 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 621 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 622 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 623 } 624 } 625 626 // Expand various CCs to best match the RVV ISA, which natively supports UNE 627 // but no other unordered comparisons, and supports all ordered comparisons 628 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 629 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 630 // and we pattern-match those back to the "original", swapping operands once 631 // more. This way we catch both operations and both "vf" and "fv" forms with 632 // fewer patterns. 633 static const ISD::CondCode VFPCCToExpand[] = { 634 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 635 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 636 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 637 }; 638 639 // Sets common operation actions on RVV floating-point vector types. 640 const auto SetCommonVFPActions = [&](MVT VT) { 641 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 642 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 643 // sizes are within one power-of-two of each other. Therefore conversions 644 // between vXf16 and vXf64 must be lowered as sequences which convert via 645 // vXf32. 646 setOperationAction(ISD::FP_ROUND, VT, Custom); 647 setOperationAction(ISD::FP_EXTEND, VT, Custom); 648 // Custom-lower insert/extract operations to simplify patterns. 649 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 650 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 651 // Expand various condition codes (explained above). 652 for (auto CC : VFPCCToExpand) 653 setCondCodeAction(CC, VT, Expand); 654 655 setOperationAction(ISD::FMINNUM, VT, Legal); 656 setOperationAction(ISD::FMAXNUM, VT, Legal); 657 658 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 659 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 660 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 661 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 662 663 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 664 665 setOperationAction(ISD::LOAD, VT, Custom); 666 setOperationAction(ISD::STORE, VT, Custom); 667 668 setOperationAction(ISD::MLOAD, VT, Custom); 669 setOperationAction(ISD::MSTORE, VT, Custom); 670 setOperationAction(ISD::MGATHER, VT, Custom); 671 setOperationAction(ISD::MSCATTER, VT, Custom); 672 673 setOperationAction(ISD::VP_LOAD, VT, Custom); 674 setOperationAction(ISD::VP_STORE, VT, Custom); 675 setOperationAction(ISD::VP_GATHER, VT, Custom); 676 setOperationAction(ISD::VP_SCATTER, VT, Custom); 677 678 setOperationAction(ISD::SELECT, VT, Custom); 679 setOperationAction(ISD::SELECT_CC, VT, Expand); 680 681 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 682 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 683 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 684 685 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 686 687 for (unsigned VPOpc : FloatingPointVPOps) 688 setOperationAction(VPOpc, VT, Custom); 689 }; 690 691 // Sets common extload/truncstore actions on RVV floating-point vector 692 // types. 693 const auto SetCommonVFPExtLoadTruncStoreActions = 694 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 695 for (auto SmallVT : SmallerVTs) { 696 setTruncStoreAction(VT, SmallVT, Expand); 697 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 698 } 699 }; 700 701 if (Subtarget.hasVInstructionsF16()) 702 for (MVT VT : F16VecVTs) 703 SetCommonVFPActions(VT); 704 705 for (MVT VT : F32VecVTs) { 706 if (Subtarget.hasVInstructionsF32()) 707 SetCommonVFPActions(VT); 708 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 709 } 710 711 for (MVT VT : F64VecVTs) { 712 if (Subtarget.hasVInstructionsF64()) 713 SetCommonVFPActions(VT); 714 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 715 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 716 } 717 718 if (Subtarget.useRVVForFixedLengthVectors()) { 719 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 720 if (!useRVVForFixedLengthVectorVT(VT)) 721 continue; 722 723 // By default everything must be expanded. 724 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 725 setOperationAction(Op, VT, Expand); 726 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 727 setTruncStoreAction(VT, OtherVT, Expand); 728 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 729 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 730 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 731 } 732 733 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 734 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 735 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 736 737 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 738 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 739 740 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 741 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 742 743 setOperationAction(ISD::LOAD, VT, Custom); 744 setOperationAction(ISD::STORE, VT, Custom); 745 746 setOperationAction(ISD::SETCC, VT, Custom); 747 748 setOperationAction(ISD::SELECT, VT, Custom); 749 750 setOperationAction(ISD::TRUNCATE, VT, Custom); 751 752 setOperationAction(ISD::BITCAST, VT, Custom); 753 754 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 755 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 756 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 757 758 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 759 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 760 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 761 762 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 763 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 764 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 765 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 766 767 // Operations below are different for between masks and other vectors. 768 if (VT.getVectorElementType() == MVT::i1) { 769 setOperationAction(ISD::AND, VT, Custom); 770 setOperationAction(ISD::OR, VT, Custom); 771 setOperationAction(ISD::XOR, VT, Custom); 772 continue; 773 } 774 775 // Use SPLAT_VECTOR to prevent type legalization from destroying the 776 // splats when type legalizing i64 scalar on RV32. 777 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 778 // improvements first. 779 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 780 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 781 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 782 } 783 784 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 785 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 786 787 setOperationAction(ISD::MLOAD, VT, Custom); 788 setOperationAction(ISD::MSTORE, VT, Custom); 789 setOperationAction(ISD::MGATHER, VT, Custom); 790 setOperationAction(ISD::MSCATTER, VT, Custom); 791 792 setOperationAction(ISD::VP_LOAD, VT, Custom); 793 setOperationAction(ISD::VP_STORE, VT, Custom); 794 setOperationAction(ISD::VP_GATHER, VT, Custom); 795 setOperationAction(ISD::VP_SCATTER, VT, Custom); 796 797 setOperationAction(ISD::ADD, VT, Custom); 798 setOperationAction(ISD::MUL, VT, Custom); 799 setOperationAction(ISD::SUB, VT, Custom); 800 setOperationAction(ISD::AND, VT, Custom); 801 setOperationAction(ISD::OR, VT, Custom); 802 setOperationAction(ISD::XOR, VT, Custom); 803 setOperationAction(ISD::SDIV, VT, Custom); 804 setOperationAction(ISD::SREM, VT, Custom); 805 setOperationAction(ISD::UDIV, VT, Custom); 806 setOperationAction(ISD::UREM, VT, Custom); 807 setOperationAction(ISD::SHL, VT, Custom); 808 setOperationAction(ISD::SRA, VT, Custom); 809 setOperationAction(ISD::SRL, VT, Custom); 810 811 setOperationAction(ISD::SMIN, VT, Custom); 812 setOperationAction(ISD::SMAX, VT, Custom); 813 setOperationAction(ISD::UMIN, VT, Custom); 814 setOperationAction(ISD::UMAX, VT, Custom); 815 setOperationAction(ISD::ABS, VT, Custom); 816 817 setOperationAction(ISD::MULHS, VT, Custom); 818 setOperationAction(ISD::MULHU, VT, Custom); 819 820 setOperationAction(ISD::SADDSAT, VT, Custom); 821 setOperationAction(ISD::UADDSAT, VT, Custom); 822 setOperationAction(ISD::SSUBSAT, VT, Custom); 823 setOperationAction(ISD::USUBSAT, VT, Custom); 824 825 setOperationAction(ISD::VSELECT, VT, Custom); 826 setOperationAction(ISD::SELECT_CC, VT, Expand); 827 828 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 829 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 830 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 831 832 // Custom-lower reduction operations to set up the corresponding custom 833 // nodes' operands. 834 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 835 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 836 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 837 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 838 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 839 840 for (unsigned VPOpc : IntegerVPOps) 841 setOperationAction(VPOpc, VT, Custom); 842 } 843 844 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 845 if (!useRVVForFixedLengthVectorVT(VT)) 846 continue; 847 848 // By default everything must be expanded. 849 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 850 setOperationAction(Op, VT, Expand); 851 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 852 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 853 setTruncStoreAction(VT, OtherVT, Expand); 854 } 855 856 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 857 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 858 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 859 860 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 861 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 862 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 863 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 864 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 865 866 setOperationAction(ISD::LOAD, VT, Custom); 867 setOperationAction(ISD::STORE, VT, Custom); 868 setOperationAction(ISD::MLOAD, VT, Custom); 869 setOperationAction(ISD::MSTORE, VT, Custom); 870 setOperationAction(ISD::MGATHER, VT, Custom); 871 setOperationAction(ISD::MSCATTER, VT, Custom); 872 873 setOperationAction(ISD::VP_LOAD, VT, Custom); 874 setOperationAction(ISD::VP_STORE, VT, Custom); 875 setOperationAction(ISD::VP_GATHER, VT, Custom); 876 setOperationAction(ISD::VP_SCATTER, VT, Custom); 877 878 setOperationAction(ISD::FADD, VT, Custom); 879 setOperationAction(ISD::FSUB, VT, Custom); 880 setOperationAction(ISD::FMUL, VT, Custom); 881 setOperationAction(ISD::FDIV, VT, Custom); 882 setOperationAction(ISD::FNEG, VT, Custom); 883 setOperationAction(ISD::FABS, VT, Custom); 884 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 885 setOperationAction(ISD::FSQRT, VT, Custom); 886 setOperationAction(ISD::FMA, VT, Custom); 887 setOperationAction(ISD::FMINNUM, VT, Custom); 888 setOperationAction(ISD::FMAXNUM, VT, Custom); 889 890 setOperationAction(ISD::FP_ROUND, VT, Custom); 891 setOperationAction(ISD::FP_EXTEND, VT, Custom); 892 893 for (auto CC : VFPCCToExpand) 894 setCondCodeAction(CC, VT, Expand); 895 896 setOperationAction(ISD::VSELECT, VT, Custom); 897 setOperationAction(ISD::SELECT, VT, Custom); 898 setOperationAction(ISD::SELECT_CC, VT, Expand); 899 900 setOperationAction(ISD::BITCAST, VT, Custom); 901 902 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 903 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 904 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 905 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 906 907 for (unsigned VPOpc : FloatingPointVPOps) 908 setOperationAction(VPOpc, VT, Custom); 909 } 910 911 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 912 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 913 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 914 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 915 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 916 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 917 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 918 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 919 } 920 } 921 922 // Function alignments. 923 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 924 setMinFunctionAlignment(FunctionAlignment); 925 setPrefFunctionAlignment(FunctionAlignment); 926 927 setMinimumJumpTableEntries(5); 928 929 // Jumps are expensive, compared to logic 930 setJumpIsExpensive(); 931 932 // We can use any register for comparisons 933 setHasMultipleConditionRegisters(); 934 935 setTargetDAGCombine(ISD::ADD); 936 setTargetDAGCombine(ISD::SUB); 937 setTargetDAGCombine(ISD::AND); 938 setTargetDAGCombine(ISD::OR); 939 setTargetDAGCombine(ISD::XOR); 940 setTargetDAGCombine(ISD::ANY_EXTEND); 941 setTargetDAGCombine(ISD::ZERO_EXTEND); 942 if (Subtarget.hasVInstructions()) { 943 setTargetDAGCombine(ISD::FCOPYSIGN); 944 setTargetDAGCombine(ISD::MGATHER); 945 setTargetDAGCombine(ISD::MSCATTER); 946 setTargetDAGCombine(ISD::VP_GATHER); 947 setTargetDAGCombine(ISD::VP_SCATTER); 948 setTargetDAGCombine(ISD::SRA); 949 setTargetDAGCombine(ISD::SRL); 950 setTargetDAGCombine(ISD::SHL); 951 setTargetDAGCombine(ISD::STORE); 952 } 953 } 954 955 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 956 LLVMContext &Context, 957 EVT VT) const { 958 if (!VT.isVector()) 959 return getPointerTy(DL); 960 if (Subtarget.hasVInstructions() && 961 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 962 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 963 return VT.changeVectorElementTypeToInteger(); 964 } 965 966 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 967 return Subtarget.getXLenVT(); 968 } 969 970 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 971 const CallInst &I, 972 MachineFunction &MF, 973 unsigned Intrinsic) const { 974 auto &DL = I.getModule()->getDataLayout(); 975 switch (Intrinsic) { 976 default: 977 return false; 978 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 979 case Intrinsic::riscv_masked_atomicrmw_add_i32: 980 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 981 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 982 case Intrinsic::riscv_masked_atomicrmw_max_i32: 983 case Intrinsic::riscv_masked_atomicrmw_min_i32: 984 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 985 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 986 case Intrinsic::riscv_masked_cmpxchg_i32: { 987 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 988 Info.opc = ISD::INTRINSIC_W_CHAIN; 989 Info.memVT = MVT::getVT(PtrTy->getElementType()); 990 Info.ptrVal = I.getArgOperand(0); 991 Info.offset = 0; 992 Info.align = Align(4); 993 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 994 MachineMemOperand::MOVolatile; 995 return true; 996 } 997 case Intrinsic::riscv_masked_strided_load: 998 Info.opc = ISD::INTRINSIC_W_CHAIN; 999 Info.ptrVal = I.getArgOperand(1); 1000 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1001 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1002 Info.size = MemoryLocation::UnknownSize; 1003 Info.flags |= MachineMemOperand::MOLoad; 1004 return true; 1005 case Intrinsic::riscv_masked_strided_store: 1006 Info.opc = ISD::INTRINSIC_VOID; 1007 Info.ptrVal = I.getArgOperand(1); 1008 Info.memVT = 1009 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1010 Info.align = Align( 1011 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1012 8); 1013 Info.size = MemoryLocation::UnknownSize; 1014 Info.flags |= MachineMemOperand::MOStore; 1015 return true; 1016 } 1017 } 1018 1019 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1020 const AddrMode &AM, Type *Ty, 1021 unsigned AS, 1022 Instruction *I) const { 1023 // No global is ever allowed as a base. 1024 if (AM.BaseGV) 1025 return false; 1026 1027 // Require a 12-bit signed offset. 1028 if (!isInt<12>(AM.BaseOffs)) 1029 return false; 1030 1031 switch (AM.Scale) { 1032 case 0: // "r+i" or just "i", depending on HasBaseReg. 1033 break; 1034 case 1: 1035 if (!AM.HasBaseReg) // allow "r+i". 1036 break; 1037 return false; // disallow "r+r" or "r+r+i". 1038 default: 1039 return false; 1040 } 1041 1042 return true; 1043 } 1044 1045 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1046 return isInt<12>(Imm); 1047 } 1048 1049 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1050 return isInt<12>(Imm); 1051 } 1052 1053 // On RV32, 64-bit integers are split into their high and low parts and held 1054 // in two different registers, so the trunc is free since the low register can 1055 // just be used. 1056 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1057 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1058 return false; 1059 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1060 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1061 return (SrcBits == 64 && DestBits == 32); 1062 } 1063 1064 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1065 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1066 !SrcVT.isInteger() || !DstVT.isInteger()) 1067 return false; 1068 unsigned SrcBits = SrcVT.getSizeInBits(); 1069 unsigned DestBits = DstVT.getSizeInBits(); 1070 return (SrcBits == 64 && DestBits == 32); 1071 } 1072 1073 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1074 // Zexts are free if they can be combined with a load. 1075 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1076 EVT MemVT = LD->getMemoryVT(); 1077 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 1078 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 1079 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1080 LD->getExtensionType() == ISD::ZEXTLOAD)) 1081 return true; 1082 } 1083 1084 return TargetLowering::isZExtFree(Val, VT2); 1085 } 1086 1087 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1088 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1089 } 1090 1091 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1092 return Subtarget.hasStdExtZbb(); 1093 } 1094 1095 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1096 return Subtarget.hasStdExtZbb(); 1097 } 1098 1099 /// Check if sinking \p I's operands to I's basic block is profitable, because 1100 /// the operands can be folded into a target instruction, e.g. 1101 /// splats of scalars can fold into vector instructions. 1102 bool RISCVTargetLowering::shouldSinkOperands( 1103 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1104 using namespace llvm::PatternMatch; 1105 1106 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1107 return false; 1108 1109 auto IsSinker = [&](Instruction *I, int Operand) { 1110 switch (I->getOpcode()) { 1111 case Instruction::Add: 1112 case Instruction::Sub: 1113 case Instruction::Mul: 1114 case Instruction::And: 1115 case Instruction::Or: 1116 case Instruction::Xor: 1117 case Instruction::FAdd: 1118 case Instruction::FSub: 1119 case Instruction::FMul: 1120 case Instruction::FDiv: 1121 case Instruction::ICmp: 1122 case Instruction::FCmp: 1123 return true; 1124 case Instruction::Shl: 1125 case Instruction::LShr: 1126 case Instruction::AShr: 1127 return Operand == 1; 1128 case Instruction::Call: 1129 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1130 switch (II->getIntrinsicID()) { 1131 case Intrinsic::fma: 1132 return Operand == 0 || Operand == 1; 1133 default: 1134 return false; 1135 } 1136 } 1137 return false; 1138 default: 1139 return false; 1140 } 1141 }; 1142 1143 for (auto OpIdx : enumerate(I->operands())) { 1144 if (!IsSinker(I, OpIdx.index())) 1145 continue; 1146 1147 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1148 // Make sure we are not already sinking this operand 1149 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1150 continue; 1151 1152 // We are looking for a splat that can be sunk. 1153 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1154 m_Undef(), m_ZeroMask()))) 1155 continue; 1156 1157 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1158 // and vector registers 1159 for (Use &U : Op->uses()) { 1160 Instruction *Insn = cast<Instruction>(U.getUser()); 1161 if (!IsSinker(Insn, U.getOperandNo())) 1162 return false; 1163 } 1164 1165 Ops.push_back(&Op->getOperandUse(0)); 1166 Ops.push_back(&OpIdx.value()); 1167 } 1168 return true; 1169 } 1170 1171 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1172 bool ForCodeSize) const { 1173 if (VT == MVT::f16 && !Subtarget.hasStdExtZfhmin()) 1174 return false; 1175 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1176 return false; 1177 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1178 return false; 1179 if (Imm.isNegZero()) 1180 return false; 1181 return Imm.isZero(); 1182 } 1183 1184 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1185 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1186 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1187 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1188 } 1189 1190 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1191 CallingConv::ID CC, 1192 EVT VT) const { 1193 // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled. 1194 // We might still end up using a GPR but that will be decided based on ABI. 1195 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin()) 1196 return MVT::f32; 1197 1198 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1199 } 1200 1201 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1202 CallingConv::ID CC, 1203 EVT VT) const { 1204 // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled. 1205 // We might still end up using a GPR but that will be decided based on ABI. 1206 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin()) 1207 return 1; 1208 1209 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1210 } 1211 1212 // Changes the condition code and swaps operands if necessary, so the SetCC 1213 // operation matches one of the comparisons supported directly by branches 1214 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1215 // with 1/-1. 1216 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1217 ISD::CondCode &CC, SelectionDAG &DAG) { 1218 // Convert X > -1 to X >= 0. 1219 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1220 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1221 CC = ISD::SETGE; 1222 return; 1223 } 1224 // Convert X < 1 to 0 >= X. 1225 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1226 RHS = LHS; 1227 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1228 CC = ISD::SETGE; 1229 return; 1230 } 1231 1232 switch (CC) { 1233 default: 1234 break; 1235 case ISD::SETGT: 1236 case ISD::SETLE: 1237 case ISD::SETUGT: 1238 case ISD::SETULE: 1239 CC = ISD::getSetCCSwappedOperands(CC); 1240 std::swap(LHS, RHS); 1241 break; 1242 } 1243 } 1244 1245 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1246 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1247 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1248 if (VT.getVectorElementType() == MVT::i1) 1249 KnownSize *= 8; 1250 1251 switch (KnownSize) { 1252 default: 1253 llvm_unreachable("Invalid LMUL."); 1254 case 8: 1255 return RISCVII::VLMUL::LMUL_F8; 1256 case 16: 1257 return RISCVII::VLMUL::LMUL_F4; 1258 case 32: 1259 return RISCVII::VLMUL::LMUL_F2; 1260 case 64: 1261 return RISCVII::VLMUL::LMUL_1; 1262 case 128: 1263 return RISCVII::VLMUL::LMUL_2; 1264 case 256: 1265 return RISCVII::VLMUL::LMUL_4; 1266 case 512: 1267 return RISCVII::VLMUL::LMUL_8; 1268 } 1269 } 1270 1271 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1272 switch (LMul) { 1273 default: 1274 llvm_unreachable("Invalid LMUL."); 1275 case RISCVII::VLMUL::LMUL_F8: 1276 case RISCVII::VLMUL::LMUL_F4: 1277 case RISCVII::VLMUL::LMUL_F2: 1278 case RISCVII::VLMUL::LMUL_1: 1279 return RISCV::VRRegClassID; 1280 case RISCVII::VLMUL::LMUL_2: 1281 return RISCV::VRM2RegClassID; 1282 case RISCVII::VLMUL::LMUL_4: 1283 return RISCV::VRM4RegClassID; 1284 case RISCVII::VLMUL::LMUL_8: 1285 return RISCV::VRM8RegClassID; 1286 } 1287 } 1288 1289 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1290 RISCVII::VLMUL LMUL = getLMUL(VT); 1291 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1292 LMUL == RISCVII::VLMUL::LMUL_F4 || 1293 LMUL == RISCVII::VLMUL::LMUL_F2 || 1294 LMUL == RISCVII::VLMUL::LMUL_1) { 1295 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1296 "Unexpected subreg numbering"); 1297 return RISCV::sub_vrm1_0 + Index; 1298 } 1299 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1300 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1301 "Unexpected subreg numbering"); 1302 return RISCV::sub_vrm2_0 + Index; 1303 } 1304 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1305 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1306 "Unexpected subreg numbering"); 1307 return RISCV::sub_vrm4_0 + Index; 1308 } 1309 llvm_unreachable("Invalid vector type."); 1310 } 1311 1312 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1313 if (VT.getVectorElementType() == MVT::i1) 1314 return RISCV::VRRegClassID; 1315 return getRegClassIDForLMUL(getLMUL(VT)); 1316 } 1317 1318 // Attempt to decompose a subvector insert/extract between VecVT and 1319 // SubVecVT via subregister indices. Returns the subregister index that 1320 // can perform the subvector insert/extract with the given element index, as 1321 // well as the index corresponding to any leftover subvectors that must be 1322 // further inserted/extracted within the register class for SubVecVT. 1323 std::pair<unsigned, unsigned> 1324 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1325 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1326 const RISCVRegisterInfo *TRI) { 1327 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1328 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1329 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1330 "Register classes not ordered"); 1331 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1332 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1333 // Try to compose a subregister index that takes us from the incoming 1334 // LMUL>1 register class down to the outgoing one. At each step we half 1335 // the LMUL: 1336 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1337 // Note that this is not guaranteed to find a subregister index, such as 1338 // when we are extracting from one VR type to another. 1339 unsigned SubRegIdx = RISCV::NoSubRegister; 1340 for (const unsigned RCID : 1341 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1342 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1343 VecVT = VecVT.getHalfNumVectorElementsVT(); 1344 bool IsHi = 1345 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1346 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1347 getSubregIndexByMVT(VecVT, IsHi)); 1348 if (IsHi) 1349 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1350 } 1351 return {SubRegIdx, InsertExtractIdx}; 1352 } 1353 1354 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1355 // stores for those types. 1356 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1357 return !Subtarget.useRVVForFixedLengthVectors() || 1358 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1359 } 1360 1361 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1362 if (ScalarTy->isPointerTy()) 1363 return true; 1364 1365 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1366 ScalarTy->isIntegerTy(32)) 1367 return true; 1368 1369 if (ScalarTy->isIntegerTy(64)) 1370 return Subtarget.hasVInstructionsI64(); 1371 1372 if (ScalarTy->isHalfTy()) 1373 return Subtarget.hasVInstructionsF16(); 1374 if (ScalarTy->isFloatTy()) 1375 return Subtarget.hasVInstructionsF32(); 1376 if (ScalarTy->isDoubleTy()) 1377 return Subtarget.hasVInstructionsF64(); 1378 1379 return false; 1380 } 1381 1382 static bool useRVVForFixedLengthVectorVT(MVT VT, 1383 const RISCVSubtarget &Subtarget) { 1384 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1385 if (!Subtarget.useRVVForFixedLengthVectors()) 1386 return false; 1387 1388 // We only support a set of vector types with a consistent maximum fixed size 1389 // across all supported vector element types to avoid legalization issues. 1390 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1391 // fixed-length vector type we support is 1024 bytes. 1392 if (VT.getFixedSizeInBits() > 1024 * 8) 1393 return false; 1394 1395 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1396 1397 MVT EltVT = VT.getVectorElementType(); 1398 1399 // Don't use RVV for vectors we cannot scalarize if required. 1400 switch (EltVT.SimpleTy) { 1401 // i1 is supported but has different rules. 1402 default: 1403 return false; 1404 case MVT::i1: 1405 // Masks can only use a single register. 1406 if (VT.getVectorNumElements() > MinVLen) 1407 return false; 1408 MinVLen /= 8; 1409 break; 1410 case MVT::i8: 1411 case MVT::i16: 1412 case MVT::i32: 1413 break; 1414 case MVT::i64: 1415 if (!Subtarget.hasVInstructionsI64()) 1416 return false; 1417 break; 1418 case MVT::f16: 1419 if (!Subtarget.hasVInstructionsF16()) 1420 return false; 1421 break; 1422 case MVT::f32: 1423 if (!Subtarget.hasVInstructionsF32()) 1424 return false; 1425 break; 1426 case MVT::f64: 1427 if (!Subtarget.hasVInstructionsF64()) 1428 return false; 1429 break; 1430 } 1431 1432 // Reject elements larger than ELEN. 1433 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1434 return false; 1435 1436 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1437 // Don't use RVV for types that don't fit. 1438 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1439 return false; 1440 1441 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1442 // the base fixed length RVV support in place. 1443 if (!VT.isPow2VectorType()) 1444 return false; 1445 1446 return true; 1447 } 1448 1449 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1450 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1451 } 1452 1453 // Return the largest legal scalable vector type that matches VT's element type. 1454 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1455 const RISCVSubtarget &Subtarget) { 1456 // This may be called before legal types are setup. 1457 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1458 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1459 "Expected legal fixed length vector!"); 1460 1461 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1462 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1463 1464 MVT EltVT = VT.getVectorElementType(); 1465 switch (EltVT.SimpleTy) { 1466 default: 1467 llvm_unreachable("unexpected element type for RVV container"); 1468 case MVT::i1: 1469 case MVT::i8: 1470 case MVT::i16: 1471 case MVT::i32: 1472 case MVT::i64: 1473 case MVT::f16: 1474 case MVT::f32: 1475 case MVT::f64: { 1476 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1477 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1478 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1479 unsigned NumElts = 1480 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1481 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1482 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1483 return MVT::getScalableVectorVT(EltVT, NumElts); 1484 } 1485 } 1486 } 1487 1488 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1489 const RISCVSubtarget &Subtarget) { 1490 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1491 Subtarget); 1492 } 1493 1494 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1495 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1496 } 1497 1498 // Grow V to consume an entire RVV register. 1499 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1500 const RISCVSubtarget &Subtarget) { 1501 assert(VT.isScalableVector() && 1502 "Expected to convert into a scalable vector!"); 1503 assert(V.getValueType().isFixedLengthVector() && 1504 "Expected a fixed length vector operand!"); 1505 SDLoc DL(V); 1506 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1507 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1508 } 1509 1510 // Shrink V so it's just big enough to maintain a VT's worth of data. 1511 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1512 const RISCVSubtarget &Subtarget) { 1513 assert(VT.isFixedLengthVector() && 1514 "Expected to convert into a fixed length vector!"); 1515 assert(V.getValueType().isScalableVector() && 1516 "Expected a scalable vector operand!"); 1517 SDLoc DL(V); 1518 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1519 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1520 } 1521 1522 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1523 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1524 // the vector type that it is contained in. 1525 static std::pair<SDValue, SDValue> 1526 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1527 const RISCVSubtarget &Subtarget) { 1528 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1529 MVT XLenVT = Subtarget.getXLenVT(); 1530 SDValue VL = VecVT.isFixedLengthVector() 1531 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1532 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1533 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1534 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1535 return {Mask, VL}; 1536 } 1537 1538 // As above but assuming the given type is a scalable vector type. 1539 static std::pair<SDValue, SDValue> 1540 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1541 const RISCVSubtarget &Subtarget) { 1542 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1543 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1544 } 1545 1546 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1547 // of either is (currently) supported. This can get us into an infinite loop 1548 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1549 // as a ..., etc. 1550 // Until either (or both) of these can reliably lower any node, reporting that 1551 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1552 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1553 // which is not desirable. 1554 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1555 EVT VT, unsigned DefinedValues) const { 1556 return false; 1557 } 1558 1559 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1560 // Only splats are currently supported. 1561 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1562 return true; 1563 1564 return false; 1565 } 1566 1567 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1568 // RISCV FP-to-int conversions saturate to the destination register size, but 1569 // don't produce 0 for nan. We can use a conversion instruction and fix the 1570 // nan case with a compare and a select. 1571 SDValue Src = Op.getOperand(0); 1572 1573 EVT DstVT = Op.getValueType(); 1574 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1575 1576 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1577 unsigned Opc; 1578 if (SatVT == DstVT) 1579 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1580 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1581 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1582 else 1583 return SDValue(); 1584 // FIXME: Support other SatVTs by clamping before or after the conversion. 1585 1586 SDLoc DL(Op); 1587 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1588 1589 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1590 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1591 } 1592 1593 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1594 const RISCVSubtarget &Subtarget) { 1595 MVT VT = Op.getSimpleValueType(); 1596 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1597 1598 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1599 1600 SDLoc DL(Op); 1601 SDValue Mask, VL; 1602 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1603 1604 unsigned Opc = 1605 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1606 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1607 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1608 } 1609 1610 struct VIDSequence { 1611 int64_t StepNumerator; 1612 unsigned StepDenominator; 1613 int64_t Addend; 1614 }; 1615 1616 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1617 // to the (non-zero) step S and start value X. This can be then lowered as the 1618 // RVV sequence (VID * S) + X, for example. 1619 // The step S is represented as an integer numerator divided by a positive 1620 // denominator. Note that the implementation currently only identifies 1621 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1622 // cannot detect 2/3, for example. 1623 // Note that this method will also match potentially unappealing index 1624 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1625 // determine whether this is worth generating code for. 1626 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1627 unsigned NumElts = Op.getNumOperands(); 1628 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1629 if (!Op.getValueType().isInteger()) 1630 return None; 1631 1632 Optional<unsigned> SeqStepDenom; 1633 Optional<int64_t> SeqStepNum, SeqAddend; 1634 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1635 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1636 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1637 // Assume undef elements match the sequence; we just have to be careful 1638 // when interpolating across them. 1639 if (Op.getOperand(Idx).isUndef()) 1640 continue; 1641 // The BUILD_VECTOR must be all constants. 1642 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1643 return None; 1644 1645 uint64_t Val = Op.getConstantOperandVal(Idx) & 1646 maskTrailingOnes<uint64_t>(EltSizeInBits); 1647 1648 if (PrevElt) { 1649 // Calculate the step since the last non-undef element, and ensure 1650 // it's consistent across the entire sequence. 1651 unsigned IdxDiff = Idx - PrevElt->second; 1652 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1653 1654 // A zero-value value difference means that we're somewhere in the middle 1655 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1656 // step change before evaluating the sequence. 1657 if (ValDiff != 0) { 1658 int64_t Remainder = ValDiff % IdxDiff; 1659 // Normalize the step if it's greater than 1. 1660 if (Remainder != ValDiff) { 1661 // The difference must cleanly divide the element span. 1662 if (Remainder != 0) 1663 return None; 1664 ValDiff /= IdxDiff; 1665 IdxDiff = 1; 1666 } 1667 1668 if (!SeqStepNum) 1669 SeqStepNum = ValDiff; 1670 else if (ValDiff != SeqStepNum) 1671 return None; 1672 1673 if (!SeqStepDenom) 1674 SeqStepDenom = IdxDiff; 1675 else if (IdxDiff != *SeqStepDenom) 1676 return None; 1677 } 1678 } 1679 1680 // Record and/or check any addend. 1681 if (SeqStepNum && SeqStepDenom) { 1682 uint64_t ExpectedVal = 1683 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1684 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1685 if (!SeqAddend) 1686 SeqAddend = Addend; 1687 else if (SeqAddend != Addend) 1688 return None; 1689 } 1690 1691 // Record this non-undef element for later. 1692 if (!PrevElt || PrevElt->first != Val) 1693 PrevElt = std::make_pair(Val, Idx); 1694 } 1695 // We need to have logged both a step and an addend for this to count as 1696 // a legal index sequence. 1697 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1698 return None; 1699 1700 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1701 } 1702 1703 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1704 const RISCVSubtarget &Subtarget) { 1705 MVT VT = Op.getSimpleValueType(); 1706 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1707 1708 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1709 1710 SDLoc DL(Op); 1711 SDValue Mask, VL; 1712 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1713 1714 MVT XLenVT = Subtarget.getXLenVT(); 1715 unsigned NumElts = Op.getNumOperands(); 1716 1717 if (VT.getVectorElementType() == MVT::i1) { 1718 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1719 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1720 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1721 } 1722 1723 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1724 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1725 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1726 } 1727 1728 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1729 // scalar integer chunks whose bit-width depends on the number of mask 1730 // bits and XLEN. 1731 // First, determine the most appropriate scalar integer type to use. This 1732 // is at most XLenVT, but may be shrunk to a smaller vector element type 1733 // according to the size of the final vector - use i8 chunks rather than 1734 // XLenVT if we're producing a v8i1. This results in more consistent 1735 // codegen across RV32 and RV64. 1736 unsigned NumViaIntegerBits = 1737 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1738 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1739 // If we have to use more than one INSERT_VECTOR_ELT then this 1740 // optimization is likely to increase code size; avoid peforming it in 1741 // such a case. We can use a load from a constant pool in this case. 1742 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1743 return SDValue(); 1744 // Now we can create our integer vector type. Note that it may be larger 1745 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1746 MVT IntegerViaVecVT = 1747 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1748 divideCeil(NumElts, NumViaIntegerBits)); 1749 1750 uint64_t Bits = 0; 1751 unsigned BitPos = 0, IntegerEltIdx = 0; 1752 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1753 1754 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1755 // Once we accumulate enough bits to fill our scalar type, insert into 1756 // our vector and clear our accumulated data. 1757 if (I != 0 && I % NumViaIntegerBits == 0) { 1758 if (NumViaIntegerBits <= 32) 1759 Bits = SignExtend64(Bits, 32); 1760 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1761 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1762 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1763 Bits = 0; 1764 BitPos = 0; 1765 IntegerEltIdx++; 1766 } 1767 SDValue V = Op.getOperand(I); 1768 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1769 Bits |= ((uint64_t)BitValue << BitPos); 1770 } 1771 1772 // Insert the (remaining) scalar value into position in our integer 1773 // vector type. 1774 if (NumViaIntegerBits <= 32) 1775 Bits = SignExtend64(Bits, 32); 1776 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1777 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1778 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1779 1780 if (NumElts < NumViaIntegerBits) { 1781 // If we're producing a smaller vector than our minimum legal integer 1782 // type, bitcast to the equivalent (known-legal) mask type, and extract 1783 // our final mask. 1784 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1785 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1786 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1787 DAG.getConstant(0, DL, XLenVT)); 1788 } else { 1789 // Else we must have produced an integer type with the same size as the 1790 // mask type; bitcast for the final result. 1791 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1792 Vec = DAG.getBitcast(VT, Vec); 1793 } 1794 1795 return Vec; 1796 } 1797 1798 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1799 // vector type, we have a legal equivalently-sized i8 type, so we can use 1800 // that. 1801 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1802 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1803 1804 SDValue WideVec; 1805 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1806 // For a splat, perform a scalar truncate before creating the wider 1807 // vector. 1808 assert(Splat.getValueType() == XLenVT && 1809 "Unexpected type for i1 splat value"); 1810 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1811 DAG.getConstant(1, DL, XLenVT)); 1812 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1813 } else { 1814 SmallVector<SDValue, 8> Ops(Op->op_values()); 1815 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1816 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1817 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1818 } 1819 1820 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1821 } 1822 1823 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1824 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1825 : RISCVISD::VMV_V_X_VL; 1826 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1827 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1828 } 1829 1830 // Try and match index sequences, which we can lower to the vid instruction 1831 // with optional modifications. An all-undef vector is matched by 1832 // getSplatValue, above. 1833 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1834 int64_t StepNumerator = SimpleVID->StepNumerator; 1835 unsigned StepDenominator = SimpleVID->StepDenominator; 1836 int64_t Addend = SimpleVID->Addend; 1837 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1838 // threshold since it's the immediate value many RVV instructions accept. 1839 if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) && 1840 isInt<5>(Addend)) { 1841 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1842 // Convert right out of the scalable type so we can use standard ISD 1843 // nodes for the rest of the computation. If we used scalable types with 1844 // these, we'd lose the fixed-length vector info and generate worse 1845 // vsetvli code. 1846 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 1847 assert(StepNumerator != 0 && "Invalid step"); 1848 bool Negate = false; 1849 if (StepNumerator != 1) { 1850 int64_t SplatStepVal = StepNumerator; 1851 unsigned Opcode = ISD::MUL; 1852 if (isPowerOf2_64(std::abs(StepNumerator))) { 1853 Negate = StepNumerator < 0; 1854 Opcode = ISD::SHL; 1855 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1856 } 1857 SDValue SplatStep = DAG.getSplatVector( 1858 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 1859 VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep); 1860 } 1861 if (StepDenominator != 1) { 1862 SDValue SplatStep = DAG.getSplatVector( 1863 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 1864 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 1865 } 1866 if (Addend != 0 || Negate) { 1867 SDValue SplatAddend = 1868 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 1869 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 1870 } 1871 return VID; 1872 } 1873 } 1874 1875 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1876 // when re-interpreted as a vector with a larger element type. For example, 1877 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1878 // could be instead splat as 1879 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1880 // TODO: This optimization could also work on non-constant splats, but it 1881 // would require bit-manipulation instructions to construct the splat value. 1882 SmallVector<SDValue> Sequence; 1883 unsigned EltBitSize = VT.getScalarSizeInBits(); 1884 const auto *BV = cast<BuildVectorSDNode>(Op); 1885 if (VT.isInteger() && EltBitSize < 64 && 1886 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1887 BV->getRepeatedSequence(Sequence) && 1888 (Sequence.size() * EltBitSize) <= 64) { 1889 unsigned SeqLen = Sequence.size(); 1890 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1891 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1892 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1893 ViaIntVT == MVT::i64) && 1894 "Unexpected sequence type"); 1895 1896 unsigned EltIdx = 0; 1897 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1898 uint64_t SplatValue = 0; 1899 // Construct the amalgamated value which can be splatted as this larger 1900 // vector type. 1901 for (const auto &SeqV : Sequence) { 1902 if (!SeqV.isUndef()) 1903 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1904 << (EltIdx * EltBitSize)); 1905 EltIdx++; 1906 } 1907 1908 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1909 // achieve better constant materializion. 1910 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1911 SplatValue = SignExtend64(SplatValue, 32); 1912 1913 // Since we can't introduce illegal i64 types at this stage, we can only 1914 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1915 // way we can use RVV instructions to splat. 1916 assert((ViaIntVT.bitsLE(XLenVT) || 1917 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1918 "Unexpected bitcast sequence"); 1919 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1920 SDValue ViaVL = 1921 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1922 MVT ViaContainerVT = 1923 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1924 SDValue Splat = 1925 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1926 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1927 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1928 return DAG.getBitcast(VT, Splat); 1929 } 1930 } 1931 1932 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1933 // which constitute a large proportion of the elements. In such cases we can 1934 // splat a vector with the dominant element and make up the shortfall with 1935 // INSERT_VECTOR_ELTs. 1936 // Note that this includes vectors of 2 elements by association. The 1937 // upper-most element is the "dominant" one, allowing us to use a splat to 1938 // "insert" the upper element, and an insert of the lower element at position 1939 // 0, which improves codegen. 1940 SDValue DominantValue; 1941 unsigned MostCommonCount = 0; 1942 DenseMap<SDValue, unsigned> ValueCounts; 1943 unsigned NumUndefElts = 1944 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1945 1946 // Track the number of scalar loads we know we'd be inserting, estimated as 1947 // any non-zero floating-point constant. Other kinds of element are either 1948 // already in registers or are materialized on demand. The threshold at which 1949 // a vector load is more desirable than several scalar materializion and 1950 // vector-insertion instructions is not known. 1951 unsigned NumScalarLoads = 0; 1952 1953 for (SDValue V : Op->op_values()) { 1954 if (V.isUndef()) 1955 continue; 1956 1957 ValueCounts.insert(std::make_pair(V, 0)); 1958 unsigned &Count = ValueCounts[V]; 1959 1960 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 1961 NumScalarLoads += !CFP->isExactlyValue(+0.0); 1962 1963 // Is this value dominant? In case of a tie, prefer the highest element as 1964 // it's cheaper to insert near the beginning of a vector than it is at the 1965 // end. 1966 if (++Count >= MostCommonCount) { 1967 DominantValue = V; 1968 MostCommonCount = Count; 1969 } 1970 } 1971 1972 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1973 unsigned NumDefElts = NumElts - NumUndefElts; 1974 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1975 1976 // Don't perform this optimization when optimizing for size, since 1977 // materializing elements and inserting them tends to cause code bloat. 1978 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 1979 ((MostCommonCount > DominantValueCountThreshold) || 1980 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1981 // Start by splatting the most common element. 1982 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1983 1984 DenseSet<SDValue> Processed{DominantValue}; 1985 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1986 for (const auto &OpIdx : enumerate(Op->ops())) { 1987 const SDValue &V = OpIdx.value(); 1988 if (V.isUndef() || !Processed.insert(V).second) 1989 continue; 1990 if (ValueCounts[V] == 1) { 1991 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1992 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1993 } else { 1994 // Blend in all instances of this value using a VSELECT, using a 1995 // mask where each bit signals whether that element is the one 1996 // we're after. 1997 SmallVector<SDValue> Ops; 1998 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1999 return DAG.getConstant(V == V1, DL, XLenVT); 2000 }); 2001 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2002 DAG.getBuildVector(SelMaskTy, DL, Ops), 2003 DAG.getSplatBuildVector(VT, DL, V), Vec); 2004 } 2005 } 2006 2007 return Vec; 2008 } 2009 2010 return SDValue(); 2011 } 2012 2013 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2014 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2015 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2016 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2017 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2018 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2019 // node in order to try and match RVV vector/scalar instructions. 2020 if ((LoC >> 31) == HiC) 2021 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2022 } 2023 2024 // Fall back to a stack store and stride x0 vector load. 2025 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2026 } 2027 2028 // Called by type legalization to handle splat of i64 on RV32. 2029 // FIXME: We can optimize this when the type has sign or zero bits in one 2030 // of the halves. 2031 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2032 SDValue VL, SelectionDAG &DAG) { 2033 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2034 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2035 DAG.getConstant(0, DL, MVT::i32)); 2036 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2037 DAG.getConstant(1, DL, MVT::i32)); 2038 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2039 } 2040 2041 // This function lowers a splat of a scalar operand Splat with the vector 2042 // length VL. It ensures the final sequence is type legal, which is useful when 2043 // lowering a splat after type legalization. 2044 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2045 SelectionDAG &DAG, 2046 const RISCVSubtarget &Subtarget) { 2047 if (VT.isFloatingPoint()) 2048 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2049 2050 MVT XLenVT = Subtarget.getXLenVT(); 2051 2052 // Simplest case is that the operand needs to be promoted to XLenVT. 2053 if (Scalar.getValueType().bitsLE(XLenVT)) { 2054 // If the operand is a constant, sign extend to increase our chances 2055 // of being able to use a .vi instruction. ANY_EXTEND would become a 2056 // a zero extend and the simm5 check in isel would fail. 2057 // FIXME: Should we ignore the upper bits in isel instead? 2058 unsigned ExtOpc = 2059 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2060 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2061 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2062 } 2063 2064 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2065 "Unexpected scalar for splat lowering!"); 2066 2067 // Otherwise use the more complicated splatting algorithm. 2068 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2069 } 2070 2071 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2072 const RISCVSubtarget &Subtarget) { 2073 SDValue V1 = Op.getOperand(0); 2074 SDValue V2 = Op.getOperand(1); 2075 SDLoc DL(Op); 2076 MVT XLenVT = Subtarget.getXLenVT(); 2077 MVT VT = Op.getSimpleValueType(); 2078 unsigned NumElts = VT.getVectorNumElements(); 2079 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2080 2081 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2082 2083 SDValue TrueMask, VL; 2084 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2085 2086 if (SVN->isSplat()) { 2087 const int Lane = SVN->getSplatIndex(); 2088 if (Lane >= 0) { 2089 MVT SVT = VT.getVectorElementType(); 2090 2091 // Turn splatted vector load into a strided load with an X0 stride. 2092 SDValue V = V1; 2093 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2094 // with undef. 2095 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2096 int Offset = Lane; 2097 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2098 int OpElements = 2099 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2100 V = V.getOperand(Offset / OpElements); 2101 Offset %= OpElements; 2102 } 2103 2104 // We need to ensure the load isn't atomic or volatile. 2105 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2106 auto *Ld = cast<LoadSDNode>(V); 2107 Offset *= SVT.getStoreSize(); 2108 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2109 TypeSize::Fixed(Offset), DL); 2110 2111 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2112 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2113 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2114 SDValue IntID = 2115 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2116 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2117 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2118 SDValue NewLoad = DAG.getMemIntrinsicNode( 2119 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2120 DAG.getMachineFunction().getMachineMemOperand( 2121 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2122 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2123 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2124 } 2125 2126 // Otherwise use a scalar load and splat. This will give the best 2127 // opportunity to fold a splat into the operation. ISel can turn it into 2128 // the x0 strided load if we aren't able to fold away the select. 2129 if (SVT.isFloatingPoint()) 2130 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2131 Ld->getPointerInfo().getWithOffset(Offset), 2132 Ld->getOriginalAlign(), 2133 Ld->getMemOperand()->getFlags()); 2134 else 2135 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2136 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2137 Ld->getOriginalAlign(), 2138 Ld->getMemOperand()->getFlags()); 2139 DAG.makeEquivalentMemoryOrdering(Ld, V); 2140 2141 unsigned Opc = 2142 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2143 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2144 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2145 } 2146 2147 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2148 assert(Lane < (int)NumElts && "Unexpected lane!"); 2149 SDValue Gather = 2150 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2151 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2152 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2153 } 2154 } 2155 2156 // Detect shuffles which can be re-expressed as vector selects; these are 2157 // shuffles in which each element in the destination is taken from an element 2158 // at the corresponding index in either source vectors. 2159 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2160 int MaskIndex = MaskIdx.value(); 2161 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2162 }); 2163 2164 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2165 2166 SmallVector<SDValue> MaskVals; 2167 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2168 // merged with a second vrgather. 2169 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2170 2171 // By default we preserve the original operand order, and use a mask to 2172 // select LHS as true and RHS as false. However, since RVV vector selects may 2173 // feature splats but only on the LHS, we may choose to invert our mask and 2174 // instead select between RHS and LHS. 2175 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2176 bool InvertMask = IsSelect == SwapOps; 2177 2178 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2179 // half. 2180 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2181 2182 // Now construct the mask that will be used by the vselect or blended 2183 // vrgather operation. For vrgathers, construct the appropriate indices into 2184 // each vector. 2185 for (int MaskIndex : SVN->getMask()) { 2186 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2187 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2188 if (!IsSelect) { 2189 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2190 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2191 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2192 : DAG.getUNDEF(XLenVT)); 2193 GatherIndicesRHS.push_back( 2194 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2195 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2196 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2197 ++LHSIndexCounts[MaskIndex]; 2198 if (!IsLHSOrUndefIndex) 2199 ++RHSIndexCounts[MaskIndex - NumElts]; 2200 } 2201 } 2202 2203 if (SwapOps) { 2204 std::swap(V1, V2); 2205 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2206 } 2207 2208 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2209 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2210 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2211 2212 if (IsSelect) 2213 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2214 2215 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2216 // On such a large vector we're unable to use i8 as the index type. 2217 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2218 // may involve vector splitting if we're already at LMUL=8, or our 2219 // user-supplied maximum fixed-length LMUL. 2220 return SDValue(); 2221 } 2222 2223 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2224 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2225 MVT IndexVT = VT.changeTypeToInteger(); 2226 // Since we can't introduce illegal index types at this stage, use i16 and 2227 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2228 // than XLenVT. 2229 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2230 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2231 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2232 } 2233 2234 MVT IndexContainerVT = 2235 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2236 2237 SDValue Gather; 2238 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2239 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2240 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2241 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2242 } else { 2243 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2244 // If only one index is used, we can use a "splat" vrgather. 2245 // TODO: We can splat the most-common index and fix-up any stragglers, if 2246 // that's beneficial. 2247 if (LHSIndexCounts.size() == 1) { 2248 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2249 Gather = 2250 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2251 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2252 } else { 2253 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2254 LHSIndices = 2255 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2256 2257 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2258 TrueMask, VL); 2259 } 2260 } 2261 2262 // If a second vector operand is used by this shuffle, blend it in with an 2263 // additional vrgather. 2264 if (!V2.isUndef()) { 2265 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2266 // If only one index is used, we can use a "splat" vrgather. 2267 // TODO: We can splat the most-common index and fix-up any stragglers, if 2268 // that's beneficial. 2269 if (RHSIndexCounts.size() == 1) { 2270 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2271 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2272 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2273 } else { 2274 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2275 RHSIndices = 2276 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2277 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2278 VL); 2279 } 2280 2281 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2282 SelectMask = 2283 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2284 2285 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2286 Gather, VL); 2287 } 2288 2289 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2290 } 2291 2292 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2293 SDLoc DL, SelectionDAG &DAG, 2294 const RISCVSubtarget &Subtarget) { 2295 if (VT.isScalableVector()) 2296 return DAG.getFPExtendOrRound(Op, DL, VT); 2297 assert(VT.isFixedLengthVector() && 2298 "Unexpected value type for RVV FP extend/round lowering"); 2299 SDValue Mask, VL; 2300 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2301 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2302 ? RISCVISD::FP_EXTEND_VL 2303 : RISCVISD::FP_ROUND_VL; 2304 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2305 } 2306 2307 // While RVV has alignment restrictions, we should always be able to load as a 2308 // legal equivalently-sized byte-typed vector instead. This method is 2309 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2310 // the load is already correctly-aligned, it returns SDValue(). 2311 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2312 SelectionDAG &DAG) const { 2313 auto *Load = cast<LoadSDNode>(Op); 2314 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2315 2316 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2317 Load->getMemoryVT(), 2318 *Load->getMemOperand())) 2319 return SDValue(); 2320 2321 SDLoc DL(Op); 2322 MVT VT = Op.getSimpleValueType(); 2323 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2324 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2325 "Unexpected unaligned RVV load type"); 2326 MVT NewVT = 2327 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2328 assert(NewVT.isValid() && 2329 "Expecting equally-sized RVV vector types to be legal"); 2330 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2331 Load->getPointerInfo(), Load->getOriginalAlign(), 2332 Load->getMemOperand()->getFlags()); 2333 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2334 } 2335 2336 // While RVV has alignment restrictions, we should always be able to store as a 2337 // legal equivalently-sized byte-typed vector instead. This method is 2338 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2339 // returns SDValue() if the store is already correctly aligned. 2340 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2341 SelectionDAG &DAG) const { 2342 auto *Store = cast<StoreSDNode>(Op); 2343 assert(Store && Store->getValue().getValueType().isVector() && 2344 "Expected vector store"); 2345 2346 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2347 Store->getMemoryVT(), 2348 *Store->getMemOperand())) 2349 return SDValue(); 2350 2351 SDLoc DL(Op); 2352 SDValue StoredVal = Store->getValue(); 2353 MVT VT = StoredVal.getSimpleValueType(); 2354 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2355 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2356 "Unexpected unaligned RVV store type"); 2357 MVT NewVT = 2358 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2359 assert(NewVT.isValid() && 2360 "Expecting equally-sized RVV vector types to be legal"); 2361 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2362 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2363 Store->getPointerInfo(), Store->getOriginalAlign(), 2364 Store->getMemOperand()->getFlags()); 2365 } 2366 2367 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2368 SelectionDAG &DAG) const { 2369 switch (Op.getOpcode()) { 2370 default: 2371 report_fatal_error("unimplemented operand"); 2372 case ISD::GlobalAddress: 2373 return lowerGlobalAddress(Op, DAG); 2374 case ISD::BlockAddress: 2375 return lowerBlockAddress(Op, DAG); 2376 case ISD::ConstantPool: 2377 return lowerConstantPool(Op, DAG); 2378 case ISD::JumpTable: 2379 return lowerJumpTable(Op, DAG); 2380 case ISD::GlobalTLSAddress: 2381 return lowerGlobalTLSAddress(Op, DAG); 2382 case ISD::SELECT: 2383 return lowerSELECT(Op, DAG); 2384 case ISD::BRCOND: 2385 return lowerBRCOND(Op, DAG); 2386 case ISD::VASTART: 2387 return lowerVASTART(Op, DAG); 2388 case ISD::FRAMEADDR: 2389 return lowerFRAMEADDR(Op, DAG); 2390 case ISD::RETURNADDR: 2391 return lowerRETURNADDR(Op, DAG); 2392 case ISD::SHL_PARTS: 2393 return lowerShiftLeftParts(Op, DAG); 2394 case ISD::SRA_PARTS: 2395 return lowerShiftRightParts(Op, DAG, true); 2396 case ISD::SRL_PARTS: 2397 return lowerShiftRightParts(Op, DAG, false); 2398 case ISD::BITCAST: { 2399 SDLoc DL(Op); 2400 EVT VT = Op.getValueType(); 2401 SDValue Op0 = Op.getOperand(0); 2402 EVT Op0VT = Op0.getValueType(); 2403 MVT XLenVT = Subtarget.getXLenVT(); 2404 if (VT.isFixedLengthVector()) { 2405 // We can handle fixed length vector bitcasts with a simple replacement 2406 // in isel. 2407 if (Op0VT.isFixedLengthVector()) 2408 return Op; 2409 // When bitcasting from scalar to fixed-length vector, insert the scalar 2410 // into a one-element vector of the result type, and perform a vector 2411 // bitcast. 2412 if (!Op0VT.isVector()) { 2413 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2414 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2415 DAG.getUNDEF(BVT), Op0, 2416 DAG.getConstant(0, DL, XLenVT))); 2417 } 2418 return SDValue(); 2419 } 2420 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2421 // thus: bitcast the vector to a one-element vector type whose element type 2422 // is the same as the result type, and extract the first element. 2423 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2424 LLVMContext &Context = *DAG.getContext(); 2425 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 2426 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2427 DAG.getConstant(0, DL, XLenVT)); 2428 } 2429 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2430 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2431 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2432 return FPConv; 2433 } 2434 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2435 Subtarget.hasStdExtF()) { 2436 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2437 SDValue FPConv = 2438 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2439 return FPConv; 2440 } 2441 return SDValue(); 2442 } 2443 case ISD::INTRINSIC_WO_CHAIN: 2444 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2445 case ISD::INTRINSIC_W_CHAIN: 2446 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2447 case ISD::INTRINSIC_VOID: 2448 return LowerINTRINSIC_VOID(Op, DAG); 2449 case ISD::BSWAP: 2450 case ISD::BITREVERSE: { 2451 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2452 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2453 MVT VT = Op.getSimpleValueType(); 2454 SDLoc DL(Op); 2455 // Start with the maximum immediate value which is the bitwidth - 1. 2456 unsigned Imm = VT.getSizeInBits() - 1; 2457 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2458 if (Op.getOpcode() == ISD::BSWAP) 2459 Imm &= ~0x7U; 2460 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2461 DAG.getConstant(Imm, DL, VT)); 2462 } 2463 case ISD::FSHL: 2464 case ISD::FSHR: { 2465 MVT VT = Op.getSimpleValueType(); 2466 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2467 SDLoc DL(Op); 2468 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2469 return Op; 2470 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2471 // use log(XLen) bits. Mask the shift amount accordingly. 2472 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2473 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2474 DAG.getConstant(ShAmtWidth, DL, VT)); 2475 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2476 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2477 } 2478 case ISD::TRUNCATE: { 2479 SDLoc DL(Op); 2480 MVT VT = Op.getSimpleValueType(); 2481 // Only custom-lower vector truncates 2482 if (!VT.isVector()) 2483 return Op; 2484 2485 // Truncates to mask types are handled differently 2486 if (VT.getVectorElementType() == MVT::i1) 2487 return lowerVectorMaskTrunc(Op, DAG); 2488 2489 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2490 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2491 // truncate by one power of two at a time. 2492 MVT DstEltVT = VT.getVectorElementType(); 2493 2494 SDValue Src = Op.getOperand(0); 2495 MVT SrcVT = Src.getSimpleValueType(); 2496 MVT SrcEltVT = SrcVT.getVectorElementType(); 2497 2498 assert(DstEltVT.bitsLT(SrcEltVT) && 2499 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2500 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2501 "Unexpected vector truncate lowering"); 2502 2503 MVT ContainerVT = SrcVT; 2504 if (SrcVT.isFixedLengthVector()) { 2505 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2506 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2507 } 2508 2509 SDValue Result = Src; 2510 SDValue Mask, VL; 2511 std::tie(Mask, VL) = 2512 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2513 LLVMContext &Context = *DAG.getContext(); 2514 const ElementCount Count = ContainerVT.getVectorElementCount(); 2515 do { 2516 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2517 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2518 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2519 Mask, VL); 2520 } while (SrcEltVT != DstEltVT); 2521 2522 if (SrcVT.isFixedLengthVector()) 2523 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2524 2525 return Result; 2526 } 2527 case ISD::ANY_EXTEND: 2528 case ISD::ZERO_EXTEND: 2529 if (Op.getOperand(0).getValueType().isVector() && 2530 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2531 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2532 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2533 case ISD::SIGN_EXTEND: 2534 if (Op.getOperand(0).getValueType().isVector() && 2535 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2536 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2537 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2538 case ISD::SPLAT_VECTOR_PARTS: 2539 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2540 case ISD::INSERT_VECTOR_ELT: 2541 return lowerINSERT_VECTOR_ELT(Op, DAG); 2542 case ISD::EXTRACT_VECTOR_ELT: 2543 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2544 case ISD::VSCALE: { 2545 MVT VT = Op.getSimpleValueType(); 2546 SDLoc DL(Op); 2547 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2548 // We define our scalable vector types for lmul=1 to use a 64 bit known 2549 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2550 // vscale as VLENB / 8. 2551 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2552 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2553 // We assume VLENB is a multiple of 8. We manually choose the best shift 2554 // here because SimplifyDemandedBits isn't always able to simplify it. 2555 uint64_t Val = Op.getConstantOperandVal(0); 2556 if (isPowerOf2_64(Val)) { 2557 uint64_t Log2 = Log2_64(Val); 2558 if (Log2 < 3) 2559 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2560 DAG.getConstant(3 - Log2, DL, VT)); 2561 if (Log2 > 3) 2562 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2563 DAG.getConstant(Log2 - 3, DL, VT)); 2564 return VLENB; 2565 } 2566 // If the multiplier is a multiple of 8, scale it down to avoid needing 2567 // to shift the VLENB value. 2568 if ((Val % 8) == 0) 2569 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2570 DAG.getConstant(Val / 8, DL, VT)); 2571 } 2572 2573 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2574 DAG.getConstant(3, DL, VT)); 2575 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2576 } 2577 case ISD::FP_EXTEND: { 2578 // RVV can only do fp_extend to types double the size as the source. We 2579 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2580 // via f32. 2581 SDLoc DL(Op); 2582 MVT VT = Op.getSimpleValueType(); 2583 SDValue Src = Op.getOperand(0); 2584 MVT SrcVT = Src.getSimpleValueType(); 2585 2586 // Prepare any fixed-length vector operands. 2587 MVT ContainerVT = VT; 2588 if (SrcVT.isFixedLengthVector()) { 2589 ContainerVT = getContainerForFixedLengthVector(VT); 2590 MVT SrcContainerVT = 2591 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2592 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2593 } 2594 2595 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2596 SrcVT.getVectorElementType() != MVT::f16) { 2597 // For scalable vectors, we only need to close the gap between 2598 // vXf16->vXf64. 2599 if (!VT.isFixedLengthVector()) 2600 return Op; 2601 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2602 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2603 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2604 } 2605 2606 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2607 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2608 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2609 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2610 2611 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2612 DL, DAG, Subtarget); 2613 if (VT.isFixedLengthVector()) 2614 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2615 return Extend; 2616 } 2617 case ISD::FP_ROUND: { 2618 // RVV can only do fp_round to types half the size as the source. We 2619 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2620 // conversion instruction. 2621 SDLoc DL(Op); 2622 MVT VT = Op.getSimpleValueType(); 2623 SDValue Src = Op.getOperand(0); 2624 MVT SrcVT = Src.getSimpleValueType(); 2625 2626 // Prepare any fixed-length vector operands. 2627 MVT ContainerVT = VT; 2628 if (VT.isFixedLengthVector()) { 2629 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2630 ContainerVT = 2631 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2632 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2633 } 2634 2635 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2636 SrcVT.getVectorElementType() != MVT::f64) { 2637 // For scalable vectors, we only need to close the gap between 2638 // vXf64<->vXf16. 2639 if (!VT.isFixedLengthVector()) 2640 return Op; 2641 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2642 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2643 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2644 } 2645 2646 SDValue Mask, VL; 2647 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2648 2649 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2650 SDValue IntermediateRound = 2651 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2652 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2653 DL, DAG, Subtarget); 2654 2655 if (VT.isFixedLengthVector()) 2656 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2657 return Round; 2658 } 2659 case ISD::FP_TO_SINT: 2660 case ISD::FP_TO_UINT: 2661 case ISD::SINT_TO_FP: 2662 case ISD::UINT_TO_FP: { 2663 // RVV can only do fp<->int conversions to types half/double the size as 2664 // the source. We custom-lower any conversions that do two hops into 2665 // sequences. 2666 MVT VT = Op.getSimpleValueType(); 2667 if (!VT.isVector()) 2668 return Op; 2669 SDLoc DL(Op); 2670 SDValue Src = Op.getOperand(0); 2671 MVT EltVT = VT.getVectorElementType(); 2672 MVT SrcVT = Src.getSimpleValueType(); 2673 MVT SrcEltVT = SrcVT.getVectorElementType(); 2674 unsigned EltSize = EltVT.getSizeInBits(); 2675 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2676 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2677 "Unexpected vector element types"); 2678 2679 bool IsInt2FP = SrcEltVT.isInteger(); 2680 // Widening conversions 2681 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2682 if (IsInt2FP) { 2683 // Do a regular integer sign/zero extension then convert to float. 2684 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2685 VT.getVectorElementCount()); 2686 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2687 ? ISD::ZERO_EXTEND 2688 : ISD::SIGN_EXTEND; 2689 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2690 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2691 } 2692 // FP2Int 2693 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2694 // Do one doubling fp_extend then complete the operation by converting 2695 // to int. 2696 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2697 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2698 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2699 } 2700 2701 // Narrowing conversions 2702 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2703 if (IsInt2FP) { 2704 // One narrowing int_to_fp, then an fp_round. 2705 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2706 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2707 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2708 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2709 } 2710 // FP2Int 2711 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2712 // representable by the integer, the result is poison. 2713 MVT IVecVT = 2714 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2715 VT.getVectorElementCount()); 2716 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2717 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2718 } 2719 2720 // Scalable vectors can exit here. Patterns will handle equally-sized 2721 // conversions halving/doubling ones. 2722 if (!VT.isFixedLengthVector()) 2723 return Op; 2724 2725 // For fixed-length vectors we lower to a custom "VL" node. 2726 unsigned RVVOpc = 0; 2727 switch (Op.getOpcode()) { 2728 default: 2729 llvm_unreachable("Impossible opcode"); 2730 case ISD::FP_TO_SINT: 2731 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2732 break; 2733 case ISD::FP_TO_UINT: 2734 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2735 break; 2736 case ISD::SINT_TO_FP: 2737 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2738 break; 2739 case ISD::UINT_TO_FP: 2740 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2741 break; 2742 } 2743 2744 MVT ContainerVT, SrcContainerVT; 2745 // Derive the reference container type from the larger vector type. 2746 if (SrcEltSize > EltSize) { 2747 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2748 ContainerVT = 2749 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2750 } else { 2751 ContainerVT = getContainerForFixedLengthVector(VT); 2752 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2753 } 2754 2755 SDValue Mask, VL; 2756 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2757 2758 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2759 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2760 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2761 } 2762 case ISD::FP_TO_SINT_SAT: 2763 case ISD::FP_TO_UINT_SAT: 2764 return lowerFP_TO_INT_SAT(Op, DAG); 2765 case ISD::VECREDUCE_ADD: 2766 case ISD::VECREDUCE_UMAX: 2767 case ISD::VECREDUCE_SMAX: 2768 case ISD::VECREDUCE_UMIN: 2769 case ISD::VECREDUCE_SMIN: 2770 return lowerVECREDUCE(Op, DAG); 2771 case ISD::VECREDUCE_AND: 2772 case ISD::VECREDUCE_OR: 2773 case ISD::VECREDUCE_XOR: 2774 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2775 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 2776 return lowerVECREDUCE(Op, DAG); 2777 case ISD::VECREDUCE_FADD: 2778 case ISD::VECREDUCE_SEQ_FADD: 2779 case ISD::VECREDUCE_FMIN: 2780 case ISD::VECREDUCE_FMAX: 2781 return lowerFPVECREDUCE(Op, DAG); 2782 case ISD::VP_REDUCE_ADD: 2783 case ISD::VP_REDUCE_UMAX: 2784 case ISD::VP_REDUCE_SMAX: 2785 case ISD::VP_REDUCE_UMIN: 2786 case ISD::VP_REDUCE_SMIN: 2787 case ISD::VP_REDUCE_FADD: 2788 case ISD::VP_REDUCE_SEQ_FADD: 2789 case ISD::VP_REDUCE_FMIN: 2790 case ISD::VP_REDUCE_FMAX: 2791 return lowerVPREDUCE(Op, DAG); 2792 case ISD::VP_REDUCE_AND: 2793 case ISD::VP_REDUCE_OR: 2794 case ISD::VP_REDUCE_XOR: 2795 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 2796 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 2797 return lowerVPREDUCE(Op, DAG); 2798 case ISD::INSERT_SUBVECTOR: 2799 return lowerINSERT_SUBVECTOR(Op, DAG); 2800 case ISD::EXTRACT_SUBVECTOR: 2801 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2802 case ISD::STEP_VECTOR: 2803 return lowerSTEP_VECTOR(Op, DAG); 2804 case ISD::VECTOR_REVERSE: 2805 return lowerVECTOR_REVERSE(Op, DAG); 2806 case ISD::BUILD_VECTOR: 2807 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2808 case ISD::SPLAT_VECTOR: 2809 if (Op.getValueType().getVectorElementType() == MVT::i1) 2810 return lowerVectorMaskSplat(Op, DAG); 2811 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2812 case ISD::VECTOR_SHUFFLE: 2813 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2814 case ISD::CONCAT_VECTORS: { 2815 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2816 // better than going through the stack, as the default expansion does. 2817 SDLoc DL(Op); 2818 MVT VT = Op.getSimpleValueType(); 2819 unsigned NumOpElts = 2820 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2821 SDValue Vec = DAG.getUNDEF(VT); 2822 for (const auto &OpIdx : enumerate(Op->ops())) 2823 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2824 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2825 return Vec; 2826 } 2827 case ISD::LOAD: 2828 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2829 return V; 2830 if (Op.getValueType().isFixedLengthVector()) 2831 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2832 return Op; 2833 case ISD::STORE: 2834 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2835 return V; 2836 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2837 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2838 return Op; 2839 case ISD::MLOAD: 2840 case ISD::VP_LOAD: 2841 return lowerMaskedLoad(Op, DAG); 2842 case ISD::MSTORE: 2843 case ISD::VP_STORE: 2844 return lowerMaskedStore(Op, DAG); 2845 case ISD::SETCC: 2846 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2847 case ISD::ADD: 2848 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2849 case ISD::SUB: 2850 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2851 case ISD::MUL: 2852 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2853 case ISD::MULHS: 2854 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2855 case ISD::MULHU: 2856 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2857 case ISD::AND: 2858 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2859 RISCVISD::AND_VL); 2860 case ISD::OR: 2861 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2862 RISCVISD::OR_VL); 2863 case ISD::XOR: 2864 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2865 RISCVISD::XOR_VL); 2866 case ISD::SDIV: 2867 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2868 case ISD::SREM: 2869 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2870 case ISD::UDIV: 2871 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2872 case ISD::UREM: 2873 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2874 case ISD::SHL: 2875 case ISD::SRA: 2876 case ISD::SRL: 2877 if (Op.getSimpleValueType().isFixedLengthVector()) 2878 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2879 // This can be called for an i32 shift amount that needs to be promoted. 2880 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2881 "Unexpected custom legalisation"); 2882 return SDValue(); 2883 case ISD::SADDSAT: 2884 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 2885 case ISD::UADDSAT: 2886 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 2887 case ISD::SSUBSAT: 2888 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 2889 case ISD::USUBSAT: 2890 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 2891 case ISD::FADD: 2892 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2893 case ISD::FSUB: 2894 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2895 case ISD::FMUL: 2896 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2897 case ISD::FDIV: 2898 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2899 case ISD::FNEG: 2900 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2901 case ISD::FABS: 2902 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2903 case ISD::FSQRT: 2904 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2905 case ISD::FMA: 2906 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2907 case ISD::SMIN: 2908 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2909 case ISD::SMAX: 2910 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2911 case ISD::UMIN: 2912 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2913 case ISD::UMAX: 2914 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2915 case ISD::FMINNUM: 2916 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2917 case ISD::FMAXNUM: 2918 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2919 case ISD::ABS: 2920 return lowerABS(Op, DAG); 2921 case ISD::VSELECT: 2922 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2923 case ISD::FCOPYSIGN: 2924 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2925 case ISD::MGATHER: 2926 case ISD::VP_GATHER: 2927 return lowerMaskedGather(Op, DAG); 2928 case ISD::MSCATTER: 2929 case ISD::VP_SCATTER: 2930 return lowerMaskedScatter(Op, DAG); 2931 case ISD::FLT_ROUNDS_: 2932 return lowerGET_ROUNDING(Op, DAG); 2933 case ISD::SET_ROUNDING: 2934 return lowerSET_ROUNDING(Op, DAG); 2935 case ISD::VP_ADD: 2936 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2937 case ISD::VP_SUB: 2938 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2939 case ISD::VP_MUL: 2940 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2941 case ISD::VP_SDIV: 2942 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2943 case ISD::VP_UDIV: 2944 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2945 case ISD::VP_SREM: 2946 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2947 case ISD::VP_UREM: 2948 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2949 case ISD::VP_AND: 2950 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2951 case ISD::VP_OR: 2952 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2953 case ISD::VP_XOR: 2954 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2955 case ISD::VP_ASHR: 2956 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2957 case ISD::VP_LSHR: 2958 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2959 case ISD::VP_SHL: 2960 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2961 case ISD::VP_FADD: 2962 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2963 case ISD::VP_FSUB: 2964 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2965 case ISD::VP_FMUL: 2966 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2967 case ISD::VP_FDIV: 2968 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2969 } 2970 } 2971 2972 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2973 SelectionDAG &DAG, unsigned Flags) { 2974 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2975 } 2976 2977 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2978 SelectionDAG &DAG, unsigned Flags) { 2979 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2980 Flags); 2981 } 2982 2983 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2984 SelectionDAG &DAG, unsigned Flags) { 2985 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2986 N->getOffset(), Flags); 2987 } 2988 2989 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2990 SelectionDAG &DAG, unsigned Flags) { 2991 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2992 } 2993 2994 template <class NodeTy> 2995 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2996 bool IsLocal) const { 2997 SDLoc DL(N); 2998 EVT Ty = getPointerTy(DAG.getDataLayout()); 2999 3000 if (isPositionIndependent()) { 3001 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3002 if (IsLocal) 3003 // Use PC-relative addressing to access the symbol. This generates the 3004 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3005 // %pcrel_lo(auipc)). 3006 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3007 3008 // Use PC-relative addressing to access the GOT for this symbol, then load 3009 // the address from the GOT. This generates the pattern (PseudoLA sym), 3010 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3011 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3012 } 3013 3014 switch (getTargetMachine().getCodeModel()) { 3015 default: 3016 report_fatal_error("Unsupported code model for lowering"); 3017 case CodeModel::Small: { 3018 // Generate a sequence for accessing addresses within the first 2 GiB of 3019 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3020 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3021 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3022 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3023 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3024 } 3025 case CodeModel::Medium: { 3026 // Generate a sequence for accessing addresses within any 2GiB range within 3027 // the address space. This generates the pattern (PseudoLLA sym), which 3028 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3029 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3030 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3031 } 3032 } 3033 } 3034 3035 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3036 SelectionDAG &DAG) const { 3037 SDLoc DL(Op); 3038 EVT Ty = Op.getValueType(); 3039 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3040 int64_t Offset = N->getOffset(); 3041 MVT XLenVT = Subtarget.getXLenVT(); 3042 3043 const GlobalValue *GV = N->getGlobal(); 3044 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3045 SDValue Addr = getAddr(N, DAG, IsLocal); 3046 3047 // In order to maximise the opportunity for common subexpression elimination, 3048 // emit a separate ADD node for the global address offset instead of folding 3049 // it in the global address node. Later peephole optimisations may choose to 3050 // fold it back in when profitable. 3051 if (Offset != 0) 3052 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3053 DAG.getConstant(Offset, DL, XLenVT)); 3054 return Addr; 3055 } 3056 3057 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3058 SelectionDAG &DAG) const { 3059 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3060 3061 return getAddr(N, DAG); 3062 } 3063 3064 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3065 SelectionDAG &DAG) const { 3066 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3067 3068 return getAddr(N, DAG); 3069 } 3070 3071 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3072 SelectionDAG &DAG) const { 3073 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3074 3075 return getAddr(N, DAG); 3076 } 3077 3078 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3079 SelectionDAG &DAG, 3080 bool UseGOT) const { 3081 SDLoc DL(N); 3082 EVT Ty = getPointerTy(DAG.getDataLayout()); 3083 const GlobalValue *GV = N->getGlobal(); 3084 MVT XLenVT = Subtarget.getXLenVT(); 3085 3086 if (UseGOT) { 3087 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3088 // load the address from the GOT and add the thread pointer. This generates 3089 // the pattern (PseudoLA_TLS_IE sym), which expands to 3090 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3091 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3092 SDValue Load = 3093 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3094 3095 // Add the thread pointer. 3096 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3097 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3098 } 3099 3100 // Generate a sequence for accessing the address relative to the thread 3101 // pointer, with the appropriate adjustment for the thread pointer offset. 3102 // This generates the pattern 3103 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3104 SDValue AddrHi = 3105 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3106 SDValue AddrAdd = 3107 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3108 SDValue AddrLo = 3109 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3110 3111 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3112 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3113 SDValue MNAdd = SDValue( 3114 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3115 0); 3116 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3117 } 3118 3119 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3120 SelectionDAG &DAG) const { 3121 SDLoc DL(N); 3122 EVT Ty = getPointerTy(DAG.getDataLayout()); 3123 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3124 const GlobalValue *GV = N->getGlobal(); 3125 3126 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3127 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3128 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3129 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3130 SDValue Load = 3131 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3132 3133 // Prepare argument list to generate call. 3134 ArgListTy Args; 3135 ArgListEntry Entry; 3136 Entry.Node = Load; 3137 Entry.Ty = CallTy; 3138 Args.push_back(Entry); 3139 3140 // Setup call to __tls_get_addr. 3141 TargetLowering::CallLoweringInfo CLI(DAG); 3142 CLI.setDebugLoc(DL) 3143 .setChain(DAG.getEntryNode()) 3144 .setLibCallee(CallingConv::C, CallTy, 3145 DAG.getExternalSymbol("__tls_get_addr", Ty), 3146 std::move(Args)); 3147 3148 return LowerCallTo(CLI).first; 3149 } 3150 3151 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3152 SelectionDAG &DAG) const { 3153 SDLoc DL(Op); 3154 EVT Ty = Op.getValueType(); 3155 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3156 int64_t Offset = N->getOffset(); 3157 MVT XLenVT = Subtarget.getXLenVT(); 3158 3159 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3160 3161 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3162 CallingConv::GHC) 3163 report_fatal_error("In GHC calling convention TLS is not supported"); 3164 3165 SDValue Addr; 3166 switch (Model) { 3167 case TLSModel::LocalExec: 3168 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3169 break; 3170 case TLSModel::InitialExec: 3171 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3172 break; 3173 case TLSModel::LocalDynamic: 3174 case TLSModel::GeneralDynamic: 3175 Addr = getDynamicTLSAddr(N, DAG); 3176 break; 3177 } 3178 3179 // In order to maximise the opportunity for common subexpression elimination, 3180 // emit a separate ADD node for the global address offset instead of folding 3181 // it in the global address node. Later peephole optimisations may choose to 3182 // fold it back in when profitable. 3183 if (Offset != 0) 3184 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3185 DAG.getConstant(Offset, DL, XLenVT)); 3186 return Addr; 3187 } 3188 3189 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3190 SDValue CondV = Op.getOperand(0); 3191 SDValue TrueV = Op.getOperand(1); 3192 SDValue FalseV = Op.getOperand(2); 3193 SDLoc DL(Op); 3194 MVT VT = Op.getSimpleValueType(); 3195 MVT XLenVT = Subtarget.getXLenVT(); 3196 3197 // Lower vector SELECTs to VSELECTs by splatting the condition. 3198 if (VT.isVector()) { 3199 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3200 SDValue CondSplat = VT.isScalableVector() 3201 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3202 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3203 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3204 } 3205 3206 // If the result type is XLenVT and CondV is the output of a SETCC node 3207 // which also operated on XLenVT inputs, then merge the SETCC node into the 3208 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3209 // compare+branch instructions. i.e.: 3210 // (select (setcc lhs, rhs, cc), truev, falsev) 3211 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3212 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3213 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3214 SDValue LHS = CondV.getOperand(0); 3215 SDValue RHS = CondV.getOperand(1); 3216 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3217 ISD::CondCode CCVal = CC->get(); 3218 3219 // Special case for a select of 2 constants that have a diffence of 1. 3220 // Normally this is done by DAGCombine, but if the select is introduced by 3221 // type legalization or op legalization, we miss it. Restricting to SETLT 3222 // case for now because that is what signed saturating add/sub need. 3223 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3224 // but we would probably want to swap the true/false values if the condition 3225 // is SETGE/SETLE to avoid an XORI. 3226 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3227 CCVal == ISD::SETLT) { 3228 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3229 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3230 if (TrueVal - 1 == FalseVal) 3231 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3232 if (TrueVal + 1 == FalseVal) 3233 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3234 } 3235 3236 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3237 3238 SDValue TargetCC = DAG.getCondCode(CCVal); 3239 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3240 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3241 } 3242 3243 // Otherwise: 3244 // (select condv, truev, falsev) 3245 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3246 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3247 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3248 3249 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3250 3251 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3252 } 3253 3254 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3255 SDValue CondV = Op.getOperand(1); 3256 SDLoc DL(Op); 3257 MVT XLenVT = Subtarget.getXLenVT(); 3258 3259 if (CondV.getOpcode() == ISD::SETCC && 3260 CondV.getOperand(0).getValueType() == XLenVT) { 3261 SDValue LHS = CondV.getOperand(0); 3262 SDValue RHS = CondV.getOperand(1); 3263 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3264 3265 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3266 3267 SDValue TargetCC = DAG.getCondCode(CCVal); 3268 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3269 LHS, RHS, TargetCC, Op.getOperand(2)); 3270 } 3271 3272 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3273 CondV, DAG.getConstant(0, DL, XLenVT), 3274 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3275 } 3276 3277 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3278 MachineFunction &MF = DAG.getMachineFunction(); 3279 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3280 3281 SDLoc DL(Op); 3282 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3283 getPointerTy(MF.getDataLayout())); 3284 3285 // vastart just stores the address of the VarArgsFrameIndex slot into the 3286 // memory location argument. 3287 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3288 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3289 MachinePointerInfo(SV)); 3290 } 3291 3292 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3293 SelectionDAG &DAG) const { 3294 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3295 MachineFunction &MF = DAG.getMachineFunction(); 3296 MachineFrameInfo &MFI = MF.getFrameInfo(); 3297 MFI.setFrameAddressIsTaken(true); 3298 Register FrameReg = RI.getFrameRegister(MF); 3299 int XLenInBytes = Subtarget.getXLen() / 8; 3300 3301 EVT VT = Op.getValueType(); 3302 SDLoc DL(Op); 3303 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3304 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3305 while (Depth--) { 3306 int Offset = -(XLenInBytes * 2); 3307 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3308 DAG.getIntPtrConstant(Offset, DL)); 3309 FrameAddr = 3310 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3311 } 3312 return FrameAddr; 3313 } 3314 3315 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3316 SelectionDAG &DAG) const { 3317 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3318 MachineFunction &MF = DAG.getMachineFunction(); 3319 MachineFrameInfo &MFI = MF.getFrameInfo(); 3320 MFI.setReturnAddressIsTaken(true); 3321 MVT XLenVT = Subtarget.getXLenVT(); 3322 int XLenInBytes = Subtarget.getXLen() / 8; 3323 3324 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3325 return SDValue(); 3326 3327 EVT VT = Op.getValueType(); 3328 SDLoc DL(Op); 3329 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3330 if (Depth) { 3331 int Off = -XLenInBytes; 3332 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3333 SDValue Offset = DAG.getConstant(Off, DL, VT); 3334 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3335 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3336 MachinePointerInfo()); 3337 } 3338 3339 // Return the value of the return address register, marking it an implicit 3340 // live-in. 3341 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3342 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3343 } 3344 3345 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3346 SelectionDAG &DAG) const { 3347 SDLoc DL(Op); 3348 SDValue Lo = Op.getOperand(0); 3349 SDValue Hi = Op.getOperand(1); 3350 SDValue Shamt = Op.getOperand(2); 3351 EVT VT = Lo.getValueType(); 3352 3353 // if Shamt-XLEN < 0: // Shamt < XLEN 3354 // Lo = Lo << Shamt 3355 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3356 // else: 3357 // Lo = 0 3358 // Hi = Lo << (Shamt-XLEN) 3359 3360 SDValue Zero = DAG.getConstant(0, DL, VT); 3361 SDValue One = DAG.getConstant(1, DL, VT); 3362 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3363 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3364 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3365 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3366 3367 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3368 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3369 SDValue ShiftRightLo = 3370 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3371 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3372 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3373 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3374 3375 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3376 3377 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3378 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3379 3380 SDValue Parts[2] = {Lo, Hi}; 3381 return DAG.getMergeValues(Parts, DL); 3382 } 3383 3384 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3385 bool IsSRA) const { 3386 SDLoc DL(Op); 3387 SDValue Lo = Op.getOperand(0); 3388 SDValue Hi = Op.getOperand(1); 3389 SDValue Shamt = Op.getOperand(2); 3390 EVT VT = Lo.getValueType(); 3391 3392 // SRA expansion: 3393 // if Shamt-XLEN < 0: // Shamt < XLEN 3394 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3395 // Hi = Hi >>s Shamt 3396 // else: 3397 // Lo = Hi >>s (Shamt-XLEN); 3398 // Hi = Hi >>s (XLEN-1) 3399 // 3400 // SRL expansion: 3401 // if Shamt-XLEN < 0: // Shamt < XLEN 3402 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3403 // Hi = Hi >>u Shamt 3404 // else: 3405 // Lo = Hi >>u (Shamt-XLEN); 3406 // Hi = 0; 3407 3408 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3409 3410 SDValue Zero = DAG.getConstant(0, DL, VT); 3411 SDValue One = DAG.getConstant(1, DL, VT); 3412 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3413 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3414 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3415 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3416 3417 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3418 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3419 SDValue ShiftLeftHi = 3420 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3421 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3422 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3423 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3424 SDValue HiFalse = 3425 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3426 3427 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3428 3429 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3430 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3431 3432 SDValue Parts[2] = {Lo, Hi}; 3433 return DAG.getMergeValues(Parts, DL); 3434 } 3435 3436 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3437 // legal equivalently-sized i8 type, so we can use that as a go-between. 3438 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3439 SelectionDAG &DAG) const { 3440 SDLoc DL(Op); 3441 MVT VT = Op.getSimpleValueType(); 3442 SDValue SplatVal = Op.getOperand(0); 3443 // All-zeros or all-ones splats are handled specially. 3444 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3445 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3446 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3447 } 3448 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3449 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3450 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3451 } 3452 MVT XLenVT = Subtarget.getXLenVT(); 3453 assert(SplatVal.getValueType() == XLenVT && 3454 "Unexpected type for i1 splat value"); 3455 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3456 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3457 DAG.getConstant(1, DL, XLenVT)); 3458 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3459 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3460 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3461 } 3462 3463 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3464 // illegal (currently only vXi64 RV32). 3465 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3466 // them to SPLAT_VECTOR_I64 3467 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3468 SelectionDAG &DAG) const { 3469 SDLoc DL(Op); 3470 MVT VecVT = Op.getSimpleValueType(); 3471 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3472 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3473 3474 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3475 SDValue Lo = Op.getOperand(0); 3476 SDValue Hi = Op.getOperand(1); 3477 3478 if (VecVT.isFixedLengthVector()) { 3479 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3480 SDLoc DL(Op); 3481 SDValue Mask, VL; 3482 std::tie(Mask, VL) = 3483 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3484 3485 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3486 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3487 } 3488 3489 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3490 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3491 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3492 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3493 // node in order to try and match RVV vector/scalar instructions. 3494 if ((LoC >> 31) == HiC) 3495 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3496 } 3497 3498 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3499 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3500 isa<ConstantSDNode>(Hi.getOperand(1)) && 3501 Hi.getConstantOperandVal(1) == 31) 3502 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3503 3504 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3505 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3506 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3507 } 3508 3509 // Custom-lower extensions from mask vectors by using a vselect either with 1 3510 // for zero/any-extension or -1 for sign-extension: 3511 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3512 // Note that any-extension is lowered identically to zero-extension. 3513 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3514 int64_t ExtTrueVal) const { 3515 SDLoc DL(Op); 3516 MVT VecVT = Op.getSimpleValueType(); 3517 SDValue Src = Op.getOperand(0); 3518 // Only custom-lower extensions from mask types 3519 assert(Src.getValueType().isVector() && 3520 Src.getValueType().getVectorElementType() == MVT::i1); 3521 3522 MVT XLenVT = Subtarget.getXLenVT(); 3523 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3524 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3525 3526 if (VecVT.isScalableVector()) { 3527 // Be careful not to introduce illegal scalar types at this stage, and be 3528 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3529 // illegal and must be expanded. Since we know that the constants are 3530 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3531 bool IsRV32E64 = 3532 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3533 3534 if (!IsRV32E64) { 3535 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3536 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3537 } else { 3538 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3539 SplatTrueVal = 3540 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3541 } 3542 3543 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3544 } 3545 3546 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3547 MVT I1ContainerVT = 3548 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3549 3550 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3551 3552 SDValue Mask, VL; 3553 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3554 3555 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3556 SplatTrueVal = 3557 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3558 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3559 SplatTrueVal, SplatZero, VL); 3560 3561 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3562 } 3563 3564 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3565 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3566 MVT ExtVT = Op.getSimpleValueType(); 3567 // Only custom-lower extensions from fixed-length vector types. 3568 if (!ExtVT.isFixedLengthVector()) 3569 return Op; 3570 MVT VT = Op.getOperand(0).getSimpleValueType(); 3571 // Grab the canonical container type for the extended type. Infer the smaller 3572 // type from that to ensure the same number of vector elements, as we know 3573 // the LMUL will be sufficient to hold the smaller type. 3574 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3575 // Get the extended container type manually to ensure the same number of 3576 // vector elements between source and dest. 3577 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3578 ContainerExtVT.getVectorElementCount()); 3579 3580 SDValue Op1 = 3581 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3582 3583 SDLoc DL(Op); 3584 SDValue Mask, VL; 3585 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3586 3587 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3588 3589 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3590 } 3591 3592 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3593 // setcc operation: 3594 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3595 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3596 SelectionDAG &DAG) const { 3597 SDLoc DL(Op); 3598 EVT MaskVT = Op.getValueType(); 3599 // Only expect to custom-lower truncations to mask types 3600 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3601 "Unexpected type for vector mask lowering"); 3602 SDValue Src = Op.getOperand(0); 3603 MVT VecVT = Src.getSimpleValueType(); 3604 3605 // If this is a fixed vector, we need to convert it to a scalable vector. 3606 MVT ContainerVT = VecVT; 3607 if (VecVT.isFixedLengthVector()) { 3608 ContainerVT = getContainerForFixedLengthVector(VecVT); 3609 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3610 } 3611 3612 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3613 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3614 3615 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3616 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3617 3618 if (VecVT.isScalableVector()) { 3619 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3620 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3621 } 3622 3623 SDValue Mask, VL; 3624 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3625 3626 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3627 SDValue Trunc = 3628 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3629 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3630 DAG.getCondCode(ISD::SETNE), Mask, VL); 3631 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3632 } 3633 3634 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3635 // first position of a vector, and that vector is slid up to the insert index. 3636 // By limiting the active vector length to index+1 and merging with the 3637 // original vector (with an undisturbed tail policy for elements >= VL), we 3638 // achieve the desired result of leaving all elements untouched except the one 3639 // at VL-1, which is replaced with the desired value. 3640 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3641 SelectionDAG &DAG) const { 3642 SDLoc DL(Op); 3643 MVT VecVT = Op.getSimpleValueType(); 3644 SDValue Vec = Op.getOperand(0); 3645 SDValue Val = Op.getOperand(1); 3646 SDValue Idx = Op.getOperand(2); 3647 3648 if (VecVT.getVectorElementType() == MVT::i1) { 3649 // FIXME: For now we just promote to an i8 vector and insert into that, 3650 // but this is probably not optimal. 3651 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3652 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3653 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3654 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3655 } 3656 3657 MVT ContainerVT = VecVT; 3658 // If the operand is a fixed-length vector, convert to a scalable one. 3659 if (VecVT.isFixedLengthVector()) { 3660 ContainerVT = getContainerForFixedLengthVector(VecVT); 3661 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3662 } 3663 3664 MVT XLenVT = Subtarget.getXLenVT(); 3665 3666 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3667 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3668 // Even i64-element vectors on RV32 can be lowered without scalar 3669 // legalization if the most-significant 32 bits of the value are not affected 3670 // by the sign-extension of the lower 32 bits. 3671 // TODO: We could also catch sign extensions of a 32-bit value. 3672 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3673 const auto *CVal = cast<ConstantSDNode>(Val); 3674 if (isInt<32>(CVal->getSExtValue())) { 3675 IsLegalInsert = true; 3676 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3677 } 3678 } 3679 3680 SDValue Mask, VL; 3681 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3682 3683 SDValue ValInVec; 3684 3685 if (IsLegalInsert) { 3686 unsigned Opc = 3687 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3688 if (isNullConstant(Idx)) { 3689 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3690 if (!VecVT.isFixedLengthVector()) 3691 return Vec; 3692 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3693 } 3694 ValInVec = 3695 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3696 } else { 3697 // On RV32, i64-element vectors must be specially handled to place the 3698 // value at element 0, by using two vslide1up instructions in sequence on 3699 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3700 // this. 3701 SDValue One = DAG.getConstant(1, DL, XLenVT); 3702 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3703 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3704 MVT I32ContainerVT = 3705 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3706 SDValue I32Mask = 3707 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3708 // Limit the active VL to two. 3709 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3710 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3711 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3712 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3713 InsertI64VL); 3714 // First slide in the hi value, then the lo in underneath it. 3715 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3716 ValHi, I32Mask, InsertI64VL); 3717 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3718 ValLo, I32Mask, InsertI64VL); 3719 // Bitcast back to the right container type. 3720 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3721 } 3722 3723 // Now that the value is in a vector, slide it into position. 3724 SDValue InsertVL = 3725 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3726 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3727 ValInVec, Idx, Mask, InsertVL); 3728 if (!VecVT.isFixedLengthVector()) 3729 return Slideup; 3730 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3731 } 3732 3733 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3734 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3735 // types this is done using VMV_X_S to allow us to glean information about the 3736 // sign bits of the result. 3737 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3738 SelectionDAG &DAG) const { 3739 SDLoc DL(Op); 3740 SDValue Idx = Op.getOperand(1); 3741 SDValue Vec = Op.getOperand(0); 3742 EVT EltVT = Op.getValueType(); 3743 MVT VecVT = Vec.getSimpleValueType(); 3744 MVT XLenVT = Subtarget.getXLenVT(); 3745 3746 if (VecVT.getVectorElementType() == MVT::i1) { 3747 // FIXME: For now we just promote to an i8 vector and extract from that, 3748 // but this is probably not optimal. 3749 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3750 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3751 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3752 } 3753 3754 // If this is a fixed vector, we need to convert it to a scalable vector. 3755 MVT ContainerVT = VecVT; 3756 if (VecVT.isFixedLengthVector()) { 3757 ContainerVT = getContainerForFixedLengthVector(VecVT); 3758 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3759 } 3760 3761 // If the index is 0, the vector is already in the right position. 3762 if (!isNullConstant(Idx)) { 3763 // Use a VL of 1 to avoid processing more elements than we need. 3764 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3765 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3766 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3767 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3768 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3769 } 3770 3771 if (!EltVT.isInteger()) { 3772 // Floating-point extracts are handled in TableGen. 3773 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3774 DAG.getConstant(0, DL, XLenVT)); 3775 } 3776 3777 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3778 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3779 } 3780 3781 // Some RVV intrinsics may claim that they want an integer operand to be 3782 // promoted or expanded. 3783 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3784 const RISCVSubtarget &Subtarget) { 3785 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3786 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3787 "Unexpected opcode"); 3788 3789 if (!Subtarget.hasVInstructions()) 3790 return SDValue(); 3791 3792 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3793 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3794 SDLoc DL(Op); 3795 3796 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3797 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3798 if (!II || !II->SplatOperand) 3799 return SDValue(); 3800 3801 unsigned SplatOp = II->SplatOperand + HasChain; 3802 assert(SplatOp < Op.getNumOperands()); 3803 3804 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3805 SDValue &ScalarOp = Operands[SplatOp]; 3806 MVT OpVT = ScalarOp.getSimpleValueType(); 3807 MVT XLenVT = Subtarget.getXLenVT(); 3808 3809 // If this isn't a scalar, or its type is XLenVT we're done. 3810 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3811 return SDValue(); 3812 3813 // Simplest case is that the operand needs to be promoted to XLenVT. 3814 if (OpVT.bitsLT(XLenVT)) { 3815 // If the operand is a constant, sign extend to increase our chances 3816 // of being able to use a .vi instruction. ANY_EXTEND would become a 3817 // a zero extend and the simm5 check in isel would fail. 3818 // FIXME: Should we ignore the upper bits in isel instead? 3819 unsigned ExtOpc = 3820 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3821 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3822 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3823 } 3824 3825 // Use the previous operand to get the vXi64 VT. The result might be a mask 3826 // VT for compares. Using the previous operand assumes that the previous 3827 // operand will never have a smaller element size than a scalar operand and 3828 // that a widening operation never uses SEW=64. 3829 // NOTE: If this fails the below assert, we can probably just find the 3830 // element count from any operand or result and use it to construct the VT. 3831 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3832 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3833 3834 // The more complex case is when the scalar is larger than XLenVT. 3835 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3836 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3837 3838 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3839 // on the instruction to sign-extend since SEW>XLEN. 3840 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3841 if (isInt<32>(CVal->getSExtValue())) { 3842 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3843 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3844 } 3845 } 3846 3847 // We need to convert the scalar to a splat vector. 3848 // FIXME: Can we implicitly truncate the scalar if it is known to 3849 // be sign extended? 3850 // VL should be the last operand. 3851 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3852 assert(VL.getValueType() == XLenVT); 3853 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3854 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3855 } 3856 3857 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3858 SelectionDAG &DAG) const { 3859 unsigned IntNo = Op.getConstantOperandVal(0); 3860 SDLoc DL(Op); 3861 MVT XLenVT = Subtarget.getXLenVT(); 3862 3863 switch (IntNo) { 3864 default: 3865 break; // Don't custom lower most intrinsics. 3866 case Intrinsic::thread_pointer: { 3867 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3868 return DAG.getRegister(RISCV::X4, PtrVT); 3869 } 3870 case Intrinsic::riscv_orc_b: 3871 // Lower to the GORCI encoding for orc.b. 3872 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3873 DAG.getConstant(7, DL, XLenVT)); 3874 case Intrinsic::riscv_grev: 3875 case Intrinsic::riscv_gorc: { 3876 unsigned Opc = 3877 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3878 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3879 } 3880 case Intrinsic::riscv_shfl: 3881 case Intrinsic::riscv_unshfl: { 3882 unsigned Opc = 3883 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3884 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3885 } 3886 case Intrinsic::riscv_bcompress: 3887 case Intrinsic::riscv_bdecompress: { 3888 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3889 : RISCVISD::BDECOMPRESS; 3890 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3891 } 3892 case Intrinsic::riscv_vmv_x_s: 3893 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3894 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3895 Op.getOperand(1)); 3896 case Intrinsic::riscv_vmv_v_x: 3897 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3898 Op.getSimpleValueType(), DL, DAG, Subtarget); 3899 case Intrinsic::riscv_vfmv_v_f: 3900 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3901 Op.getOperand(1), Op.getOperand(2)); 3902 case Intrinsic::riscv_vmv_s_x: { 3903 SDValue Scalar = Op.getOperand(2); 3904 3905 if (Scalar.getValueType().bitsLE(XLenVT)) { 3906 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3907 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3908 Op.getOperand(1), Scalar, Op.getOperand(3)); 3909 } 3910 3911 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3912 3913 // This is an i64 value that lives in two scalar registers. We have to 3914 // insert this in a convoluted way. First we build vXi64 splat containing 3915 // the/ two values that we assemble using some bit math. Next we'll use 3916 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3917 // to merge element 0 from our splat into the source vector. 3918 // FIXME: This is probably not the best way to do this, but it is 3919 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3920 // point. 3921 // sw lo, (a0) 3922 // sw hi, 4(a0) 3923 // vlse vX, (a0) 3924 // 3925 // vid.v vVid 3926 // vmseq.vx mMask, vVid, 0 3927 // vmerge.vvm vDest, vSrc, vVal, mMask 3928 MVT VT = Op.getSimpleValueType(); 3929 SDValue Vec = Op.getOperand(1); 3930 SDValue VL = Op.getOperand(3); 3931 3932 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3933 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3934 DAG.getConstant(0, DL, MVT::i32), VL); 3935 3936 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3937 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3938 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3939 SDValue SelectCond = 3940 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3941 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3942 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3943 Vec, VL); 3944 } 3945 case Intrinsic::riscv_vslide1up: 3946 case Intrinsic::riscv_vslide1down: 3947 case Intrinsic::riscv_vslide1up_mask: 3948 case Intrinsic::riscv_vslide1down_mask: { 3949 // We need to special case these when the scalar is larger than XLen. 3950 unsigned NumOps = Op.getNumOperands(); 3951 bool IsMasked = NumOps == 7; 3952 unsigned OpOffset = IsMasked ? 1 : 0; 3953 SDValue Scalar = Op.getOperand(2 + OpOffset); 3954 if (Scalar.getValueType().bitsLE(XLenVT)) 3955 break; 3956 3957 // Splatting a sign extended constant is fine. 3958 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3959 if (isInt<32>(CVal->getSExtValue())) 3960 break; 3961 3962 MVT VT = Op.getSimpleValueType(); 3963 assert(VT.getVectorElementType() == MVT::i64 && 3964 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3965 3966 // Convert the vector source to the equivalent nxvXi32 vector. 3967 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3968 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3969 3970 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3971 DAG.getConstant(0, DL, XLenVT)); 3972 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3973 DAG.getConstant(1, DL, XLenVT)); 3974 3975 // Double the VL since we halved SEW. 3976 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 3977 SDValue I32VL = 3978 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3979 3980 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3981 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3982 3983 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3984 // instructions. 3985 if (IntNo == Intrinsic::riscv_vslide1up || 3986 IntNo == Intrinsic::riscv_vslide1up_mask) { 3987 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3988 I32Mask, I32VL); 3989 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3990 I32Mask, I32VL); 3991 } else { 3992 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3993 I32Mask, I32VL); 3994 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3995 I32Mask, I32VL); 3996 } 3997 3998 // Convert back to nxvXi64. 3999 Vec = DAG.getBitcast(VT, Vec); 4000 4001 if (!IsMasked) 4002 return Vec; 4003 4004 // Apply mask after the operation. 4005 SDValue Mask = Op.getOperand(NumOps - 3); 4006 SDValue MaskedOff = Op.getOperand(1); 4007 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4008 } 4009 } 4010 4011 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4012 } 4013 4014 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4015 SelectionDAG &DAG) const { 4016 unsigned IntNo = Op.getConstantOperandVal(1); 4017 switch (IntNo) { 4018 default: 4019 break; 4020 case Intrinsic::riscv_masked_strided_load: { 4021 SDLoc DL(Op); 4022 MVT XLenVT = Subtarget.getXLenVT(); 4023 4024 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4025 // the selection of the masked intrinsics doesn't do this for us. 4026 SDValue Mask = Op.getOperand(5); 4027 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4028 4029 MVT VT = Op->getSimpleValueType(0); 4030 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4031 4032 SDValue PassThru = Op.getOperand(2); 4033 if (!IsUnmasked) { 4034 MVT MaskVT = 4035 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4036 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4037 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4038 } 4039 4040 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4041 4042 SDValue IntID = DAG.getTargetConstant( 4043 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4044 XLenVT); 4045 4046 auto *Load = cast<MemIntrinsicSDNode>(Op); 4047 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4048 if (!IsUnmasked) 4049 Ops.push_back(PassThru); 4050 Ops.push_back(Op.getOperand(3)); // Ptr 4051 Ops.push_back(Op.getOperand(4)); // Stride 4052 if (!IsUnmasked) 4053 Ops.push_back(Mask); 4054 Ops.push_back(VL); 4055 if (!IsUnmasked) { 4056 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4057 Ops.push_back(Policy); 4058 } 4059 4060 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4061 SDValue Result = 4062 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4063 Load->getMemoryVT(), Load->getMemOperand()); 4064 SDValue Chain = Result.getValue(1); 4065 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4066 return DAG.getMergeValues({Result, Chain}, DL); 4067 } 4068 } 4069 4070 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4071 } 4072 4073 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4074 SelectionDAG &DAG) const { 4075 unsigned IntNo = Op.getConstantOperandVal(1); 4076 switch (IntNo) { 4077 default: 4078 break; 4079 case Intrinsic::riscv_masked_strided_store: { 4080 SDLoc DL(Op); 4081 MVT XLenVT = Subtarget.getXLenVT(); 4082 4083 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4084 // the selection of the masked intrinsics doesn't do this for us. 4085 SDValue Mask = Op.getOperand(5); 4086 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4087 4088 SDValue Val = Op.getOperand(2); 4089 MVT VT = Val.getSimpleValueType(); 4090 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4091 4092 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4093 if (!IsUnmasked) { 4094 MVT MaskVT = 4095 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4096 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4097 } 4098 4099 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4100 4101 SDValue IntID = DAG.getTargetConstant( 4102 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4103 XLenVT); 4104 4105 auto *Store = cast<MemIntrinsicSDNode>(Op); 4106 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4107 Ops.push_back(Val); 4108 Ops.push_back(Op.getOperand(3)); // Ptr 4109 Ops.push_back(Op.getOperand(4)); // Stride 4110 if (!IsUnmasked) 4111 Ops.push_back(Mask); 4112 Ops.push_back(VL); 4113 4114 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4115 Ops, Store->getMemoryVT(), 4116 Store->getMemOperand()); 4117 } 4118 } 4119 4120 return SDValue(); 4121 } 4122 4123 static MVT getLMUL1VT(MVT VT) { 4124 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4125 "Unexpected vector MVT"); 4126 return MVT::getScalableVectorVT( 4127 VT.getVectorElementType(), 4128 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4129 } 4130 4131 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4132 switch (ISDOpcode) { 4133 default: 4134 llvm_unreachable("Unhandled reduction"); 4135 case ISD::VECREDUCE_ADD: 4136 return RISCVISD::VECREDUCE_ADD_VL; 4137 case ISD::VECREDUCE_UMAX: 4138 return RISCVISD::VECREDUCE_UMAX_VL; 4139 case ISD::VECREDUCE_SMAX: 4140 return RISCVISD::VECREDUCE_SMAX_VL; 4141 case ISD::VECREDUCE_UMIN: 4142 return RISCVISD::VECREDUCE_UMIN_VL; 4143 case ISD::VECREDUCE_SMIN: 4144 return RISCVISD::VECREDUCE_SMIN_VL; 4145 case ISD::VECREDUCE_AND: 4146 return RISCVISD::VECREDUCE_AND_VL; 4147 case ISD::VECREDUCE_OR: 4148 return RISCVISD::VECREDUCE_OR_VL; 4149 case ISD::VECREDUCE_XOR: 4150 return RISCVISD::VECREDUCE_XOR_VL; 4151 } 4152 } 4153 4154 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4155 SelectionDAG &DAG, 4156 bool IsVP) const { 4157 SDLoc DL(Op); 4158 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4159 MVT VecVT = Vec.getSimpleValueType(); 4160 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4161 Op.getOpcode() == ISD::VECREDUCE_OR || 4162 Op.getOpcode() == ISD::VECREDUCE_XOR || 4163 Op.getOpcode() == ISD::VP_REDUCE_AND || 4164 Op.getOpcode() == ISD::VP_REDUCE_OR || 4165 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4166 "Unexpected reduction lowering"); 4167 4168 MVT XLenVT = Subtarget.getXLenVT(); 4169 assert(Op.getValueType() == XLenVT && 4170 "Expected reduction output to be legalized to XLenVT"); 4171 4172 MVT ContainerVT = VecVT; 4173 if (VecVT.isFixedLengthVector()) { 4174 ContainerVT = getContainerForFixedLengthVector(VecVT); 4175 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4176 } 4177 4178 SDValue Mask, VL; 4179 if (IsVP) { 4180 Mask = Op.getOperand(2); 4181 VL = Op.getOperand(3); 4182 } else { 4183 std::tie(Mask, VL) = 4184 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4185 } 4186 4187 unsigned BaseOpc; 4188 ISD::CondCode CC; 4189 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4190 4191 switch (Op.getOpcode()) { 4192 default: 4193 llvm_unreachable("Unhandled reduction"); 4194 case ISD::VECREDUCE_AND: 4195 case ISD::VP_REDUCE_AND: { 4196 // vcpop ~x == 0 4197 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4198 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4199 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4200 CC = ISD::SETEQ; 4201 BaseOpc = ISD::AND; 4202 break; 4203 } 4204 case ISD::VECREDUCE_OR: 4205 case ISD::VP_REDUCE_OR: 4206 // vcpop x != 0 4207 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4208 CC = ISD::SETNE; 4209 BaseOpc = ISD::OR; 4210 break; 4211 case ISD::VECREDUCE_XOR: 4212 case ISD::VP_REDUCE_XOR: { 4213 // ((vcpop x) & 1) != 0 4214 SDValue One = DAG.getConstant(1, DL, XLenVT); 4215 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4216 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4217 CC = ISD::SETNE; 4218 BaseOpc = ISD::XOR; 4219 break; 4220 } 4221 } 4222 4223 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4224 4225 if (!IsVP) 4226 return SetCC; 4227 4228 // Now include the start value in the operation. 4229 // Note that we must return the start value when no elements are operated 4230 // upon. The vcpop instructions we've emitted in each case above will return 4231 // 0 for an inactive vector, and so we've already received the neutral value: 4232 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4233 // can simply include the start value. 4234 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4235 } 4236 4237 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4238 SelectionDAG &DAG) const { 4239 SDLoc DL(Op); 4240 SDValue Vec = Op.getOperand(0); 4241 EVT VecEVT = Vec.getValueType(); 4242 4243 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4244 4245 // Due to ordering in legalize types we may have a vector type that needs to 4246 // be split. Do that manually so we can get down to a legal type. 4247 while (getTypeAction(*DAG.getContext(), VecEVT) == 4248 TargetLowering::TypeSplitVector) { 4249 SDValue Lo, Hi; 4250 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4251 VecEVT = Lo.getValueType(); 4252 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4253 } 4254 4255 // TODO: The type may need to be widened rather than split. Or widened before 4256 // it can be split. 4257 if (!isTypeLegal(VecEVT)) 4258 return SDValue(); 4259 4260 MVT VecVT = VecEVT.getSimpleVT(); 4261 MVT VecEltVT = VecVT.getVectorElementType(); 4262 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4263 4264 MVT ContainerVT = VecVT; 4265 if (VecVT.isFixedLengthVector()) { 4266 ContainerVT = getContainerForFixedLengthVector(VecVT); 4267 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4268 } 4269 4270 MVT M1VT = getLMUL1VT(ContainerVT); 4271 4272 SDValue Mask, VL; 4273 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4274 4275 // FIXME: This is a VLMAX splat which might be too large and can prevent 4276 // vsetvli removal. 4277 SDValue NeutralElem = 4278 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4279 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 4280 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4281 IdentitySplat, Mask, VL); 4282 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4283 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4284 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4285 } 4286 4287 // Given a reduction op, this function returns the matching reduction opcode, 4288 // the vector SDValue and the scalar SDValue required to lower this to a 4289 // RISCVISD node. 4290 static std::tuple<unsigned, SDValue, SDValue> 4291 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4292 SDLoc DL(Op); 4293 auto Flags = Op->getFlags(); 4294 unsigned Opcode = Op.getOpcode(); 4295 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4296 switch (Opcode) { 4297 default: 4298 llvm_unreachable("Unhandled reduction"); 4299 case ISD::VECREDUCE_FADD: 4300 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 4301 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4302 case ISD::VECREDUCE_SEQ_FADD: 4303 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4304 Op.getOperand(0)); 4305 case ISD::VECREDUCE_FMIN: 4306 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4307 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4308 case ISD::VECREDUCE_FMAX: 4309 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4310 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4311 } 4312 } 4313 4314 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4315 SelectionDAG &DAG) const { 4316 SDLoc DL(Op); 4317 MVT VecEltVT = Op.getSimpleValueType(); 4318 4319 unsigned RVVOpcode; 4320 SDValue VectorVal, ScalarVal; 4321 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4322 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4323 MVT VecVT = VectorVal.getSimpleValueType(); 4324 4325 MVT ContainerVT = VecVT; 4326 if (VecVT.isFixedLengthVector()) { 4327 ContainerVT = getContainerForFixedLengthVector(VecVT); 4328 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4329 } 4330 4331 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4332 4333 SDValue Mask, VL; 4334 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4335 4336 // FIXME: This is a VLMAX splat which might be too large and can prevent 4337 // vsetvli removal. 4338 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 4339 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4340 VectorVal, ScalarSplat, Mask, VL); 4341 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4342 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4343 } 4344 4345 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4346 switch (ISDOpcode) { 4347 default: 4348 llvm_unreachable("Unhandled reduction"); 4349 case ISD::VP_REDUCE_ADD: 4350 return RISCVISD::VECREDUCE_ADD_VL; 4351 case ISD::VP_REDUCE_UMAX: 4352 return RISCVISD::VECREDUCE_UMAX_VL; 4353 case ISD::VP_REDUCE_SMAX: 4354 return RISCVISD::VECREDUCE_SMAX_VL; 4355 case ISD::VP_REDUCE_UMIN: 4356 return RISCVISD::VECREDUCE_UMIN_VL; 4357 case ISD::VP_REDUCE_SMIN: 4358 return RISCVISD::VECREDUCE_SMIN_VL; 4359 case ISD::VP_REDUCE_AND: 4360 return RISCVISD::VECREDUCE_AND_VL; 4361 case ISD::VP_REDUCE_OR: 4362 return RISCVISD::VECREDUCE_OR_VL; 4363 case ISD::VP_REDUCE_XOR: 4364 return RISCVISD::VECREDUCE_XOR_VL; 4365 case ISD::VP_REDUCE_FADD: 4366 return RISCVISD::VECREDUCE_FADD_VL; 4367 case ISD::VP_REDUCE_SEQ_FADD: 4368 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4369 case ISD::VP_REDUCE_FMAX: 4370 return RISCVISD::VECREDUCE_FMAX_VL; 4371 case ISD::VP_REDUCE_FMIN: 4372 return RISCVISD::VECREDUCE_FMIN_VL; 4373 } 4374 } 4375 4376 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4377 SelectionDAG &DAG) const { 4378 SDLoc DL(Op); 4379 SDValue Vec = Op.getOperand(1); 4380 EVT VecEVT = Vec.getValueType(); 4381 4382 // TODO: The type may need to be widened rather than split. Or widened before 4383 // it can be split. 4384 if (!isTypeLegal(VecEVT)) 4385 return SDValue(); 4386 4387 MVT VecVT = VecEVT.getSimpleVT(); 4388 MVT VecEltVT = VecVT.getVectorElementType(); 4389 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4390 4391 MVT ContainerVT = VecVT; 4392 if (VecVT.isFixedLengthVector()) { 4393 ContainerVT = getContainerForFixedLengthVector(VecVT); 4394 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4395 } 4396 4397 SDValue VL = Op.getOperand(3); 4398 SDValue Mask = Op.getOperand(2); 4399 4400 MVT M1VT = getLMUL1VT(ContainerVT); 4401 MVT XLenVT = Subtarget.getXLenVT(); 4402 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4403 4404 // FIXME: This is a VLMAX splat which might be too large and can prevent 4405 // vsetvli removal. 4406 SDValue StartSplat = DAG.getSplatVector(M1VT, DL, Op.getOperand(0)); 4407 SDValue Reduction = 4408 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4409 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4410 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4411 if (!VecVT.isInteger()) 4412 return Elt0; 4413 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4414 } 4415 4416 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4417 SelectionDAG &DAG) const { 4418 SDValue Vec = Op.getOperand(0); 4419 SDValue SubVec = Op.getOperand(1); 4420 MVT VecVT = Vec.getSimpleValueType(); 4421 MVT SubVecVT = SubVec.getSimpleValueType(); 4422 4423 SDLoc DL(Op); 4424 MVT XLenVT = Subtarget.getXLenVT(); 4425 unsigned OrigIdx = Op.getConstantOperandVal(2); 4426 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4427 4428 // We don't have the ability to slide mask vectors up indexed by their i1 4429 // elements; the smallest we can do is i8. Often we are able to bitcast to 4430 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4431 // into a scalable one, we might not necessarily have enough scalable 4432 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4433 if (SubVecVT.getVectorElementType() == MVT::i1 && 4434 (OrigIdx != 0 || !Vec.isUndef())) { 4435 if (VecVT.getVectorMinNumElements() >= 8 && 4436 SubVecVT.getVectorMinNumElements() >= 8) { 4437 assert(OrigIdx % 8 == 0 && "Invalid index"); 4438 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4439 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4440 "Unexpected mask vector lowering"); 4441 OrigIdx /= 8; 4442 SubVecVT = 4443 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4444 SubVecVT.isScalableVector()); 4445 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4446 VecVT.isScalableVector()); 4447 Vec = DAG.getBitcast(VecVT, Vec); 4448 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4449 } else { 4450 // We can't slide this mask vector up indexed by its i1 elements. 4451 // This poses a problem when we wish to insert a scalable vector which 4452 // can't be re-expressed as a larger type. Just choose the slow path and 4453 // extend to a larger type, then truncate back down. 4454 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4455 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4456 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4457 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4458 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4459 Op.getOperand(2)); 4460 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4461 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4462 } 4463 } 4464 4465 // If the subvector vector is a fixed-length type, we cannot use subregister 4466 // manipulation to simplify the codegen; we don't know which register of a 4467 // LMUL group contains the specific subvector as we only know the minimum 4468 // register size. Therefore we must slide the vector group up the full 4469 // amount. 4470 if (SubVecVT.isFixedLengthVector()) { 4471 if (OrigIdx == 0 && Vec.isUndef()) 4472 return Op; 4473 MVT ContainerVT = VecVT; 4474 if (VecVT.isFixedLengthVector()) { 4475 ContainerVT = getContainerForFixedLengthVector(VecVT); 4476 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4477 } 4478 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4479 DAG.getUNDEF(ContainerVT), SubVec, 4480 DAG.getConstant(0, DL, XLenVT)); 4481 SDValue Mask = 4482 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4483 // Set the vector length to only the number of elements we care about. Note 4484 // that for slideup this includes the offset. 4485 SDValue VL = 4486 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4487 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4488 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4489 SubVec, SlideupAmt, Mask, VL); 4490 if (VecVT.isFixedLengthVector()) 4491 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4492 return DAG.getBitcast(Op.getValueType(), Slideup); 4493 } 4494 4495 unsigned SubRegIdx, RemIdx; 4496 std::tie(SubRegIdx, RemIdx) = 4497 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4498 VecVT, SubVecVT, OrigIdx, TRI); 4499 4500 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4501 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4502 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4503 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4504 4505 // 1. If the Idx has been completely eliminated and this subvector's size is 4506 // a vector register or a multiple thereof, or the surrounding elements are 4507 // undef, then this is a subvector insert which naturally aligns to a vector 4508 // register. These can easily be handled using subregister manipulation. 4509 // 2. If the subvector is smaller than a vector register, then the insertion 4510 // must preserve the undisturbed elements of the register. We do this by 4511 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4512 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4513 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4514 // LMUL=1 type back into the larger vector (resolving to another subregister 4515 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4516 // to avoid allocating a large register group to hold our subvector. 4517 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4518 return Op; 4519 4520 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4521 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4522 // (in our case undisturbed). This means we can set up a subvector insertion 4523 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4524 // size of the subvector. 4525 MVT InterSubVT = VecVT; 4526 SDValue AlignedExtract = Vec; 4527 unsigned AlignedIdx = OrigIdx - RemIdx; 4528 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4529 InterSubVT = getLMUL1VT(VecVT); 4530 // Extract a subvector equal to the nearest full vector register type. This 4531 // should resolve to a EXTRACT_SUBREG instruction. 4532 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4533 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4534 } 4535 4536 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4537 // For scalable vectors this must be further multiplied by vscale. 4538 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4539 4540 SDValue Mask, VL; 4541 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4542 4543 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4544 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4545 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4546 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4547 4548 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4549 DAG.getUNDEF(InterSubVT), SubVec, 4550 DAG.getConstant(0, DL, XLenVT)); 4551 4552 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4553 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4554 4555 // If required, insert this subvector back into the correct vector register. 4556 // This should resolve to an INSERT_SUBREG instruction. 4557 if (VecVT.bitsGT(InterSubVT)) 4558 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4559 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4560 4561 // We might have bitcast from a mask type: cast back to the original type if 4562 // required. 4563 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4564 } 4565 4566 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4567 SelectionDAG &DAG) const { 4568 SDValue Vec = Op.getOperand(0); 4569 MVT SubVecVT = Op.getSimpleValueType(); 4570 MVT VecVT = Vec.getSimpleValueType(); 4571 4572 SDLoc DL(Op); 4573 MVT XLenVT = Subtarget.getXLenVT(); 4574 unsigned OrigIdx = Op.getConstantOperandVal(1); 4575 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4576 4577 // We don't have the ability to slide mask vectors down indexed by their i1 4578 // elements; the smallest we can do is i8. Often we are able to bitcast to 4579 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4580 // from a scalable one, we might not necessarily have enough scalable 4581 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4582 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4583 if (VecVT.getVectorMinNumElements() >= 8 && 4584 SubVecVT.getVectorMinNumElements() >= 8) { 4585 assert(OrigIdx % 8 == 0 && "Invalid index"); 4586 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4587 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4588 "Unexpected mask vector lowering"); 4589 OrigIdx /= 8; 4590 SubVecVT = 4591 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4592 SubVecVT.isScalableVector()); 4593 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4594 VecVT.isScalableVector()); 4595 Vec = DAG.getBitcast(VecVT, Vec); 4596 } else { 4597 // We can't slide this mask vector down, indexed by its i1 elements. 4598 // This poses a problem when we wish to extract a scalable vector which 4599 // can't be re-expressed as a larger type. Just choose the slow path and 4600 // extend to a larger type, then truncate back down. 4601 // TODO: We could probably improve this when extracting certain fixed 4602 // from fixed, where we can extract as i8 and shift the correct element 4603 // right to reach the desired subvector? 4604 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4605 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4606 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4607 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4608 Op.getOperand(1)); 4609 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4610 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4611 } 4612 } 4613 4614 // If the subvector vector is a fixed-length type, we cannot use subregister 4615 // manipulation to simplify the codegen; we don't know which register of a 4616 // LMUL group contains the specific subvector as we only know the minimum 4617 // register size. Therefore we must slide the vector group down the full 4618 // amount. 4619 if (SubVecVT.isFixedLengthVector()) { 4620 // With an index of 0 this is a cast-like subvector, which can be performed 4621 // with subregister operations. 4622 if (OrigIdx == 0) 4623 return Op; 4624 MVT ContainerVT = VecVT; 4625 if (VecVT.isFixedLengthVector()) { 4626 ContainerVT = getContainerForFixedLengthVector(VecVT); 4627 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4628 } 4629 SDValue Mask = 4630 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4631 // Set the vector length to only the number of elements we care about. This 4632 // avoids sliding down elements we're going to discard straight away. 4633 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4634 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4635 SDValue Slidedown = 4636 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4637 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4638 // Now we can use a cast-like subvector extract to get the result. 4639 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4640 DAG.getConstant(0, DL, XLenVT)); 4641 return DAG.getBitcast(Op.getValueType(), Slidedown); 4642 } 4643 4644 unsigned SubRegIdx, RemIdx; 4645 std::tie(SubRegIdx, RemIdx) = 4646 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4647 VecVT, SubVecVT, OrigIdx, TRI); 4648 4649 // If the Idx has been completely eliminated then this is a subvector extract 4650 // which naturally aligns to a vector register. These can easily be handled 4651 // using subregister manipulation. 4652 if (RemIdx == 0) 4653 return Op; 4654 4655 // Else we must shift our vector register directly to extract the subvector. 4656 // Do this using VSLIDEDOWN. 4657 4658 // If the vector type is an LMUL-group type, extract a subvector equal to the 4659 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4660 // instruction. 4661 MVT InterSubVT = VecVT; 4662 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4663 InterSubVT = getLMUL1VT(VecVT); 4664 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4665 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4666 } 4667 4668 // Slide this vector register down by the desired number of elements in order 4669 // to place the desired subvector starting at element 0. 4670 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4671 // For scalable vectors this must be further multiplied by vscale. 4672 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4673 4674 SDValue Mask, VL; 4675 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4676 SDValue Slidedown = 4677 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4678 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4679 4680 // Now the vector is in the right position, extract our final subvector. This 4681 // should resolve to a COPY. 4682 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4683 DAG.getConstant(0, DL, XLenVT)); 4684 4685 // We might have bitcast from a mask type: cast back to the original type if 4686 // required. 4687 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4688 } 4689 4690 // Lower step_vector to the vid instruction. Any non-identity step value must 4691 // be accounted for my manual expansion. 4692 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4693 SelectionDAG &DAG) const { 4694 SDLoc DL(Op); 4695 MVT VT = Op.getSimpleValueType(); 4696 MVT XLenVT = Subtarget.getXLenVT(); 4697 SDValue Mask, VL; 4698 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4699 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4700 uint64_t StepValImm = Op.getConstantOperandVal(0); 4701 if (StepValImm != 1) { 4702 if (isPowerOf2_64(StepValImm)) { 4703 SDValue StepVal = 4704 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4705 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4706 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4707 } else { 4708 SDValue StepVal = lowerScalarSplat( 4709 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4710 DL, DAG, Subtarget); 4711 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4712 } 4713 } 4714 return StepVec; 4715 } 4716 4717 // Implement vector_reverse using vrgather.vv with indices determined by 4718 // subtracting the id of each element from (VLMAX-1). This will convert 4719 // the indices like so: 4720 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4721 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4722 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4723 SelectionDAG &DAG) const { 4724 SDLoc DL(Op); 4725 MVT VecVT = Op.getSimpleValueType(); 4726 unsigned EltSize = VecVT.getScalarSizeInBits(); 4727 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4728 4729 unsigned MaxVLMAX = 0; 4730 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4731 if (VectorBitsMax != 0) 4732 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4733 4734 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4735 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4736 4737 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4738 // to use vrgatherei16.vv. 4739 // TODO: It's also possible to use vrgatherei16.vv for other types to 4740 // decrease register width for the index calculation. 4741 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4742 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4743 // Reverse each half, then reassemble them in reverse order. 4744 // NOTE: It's also possible that after splitting that VLMAX no longer 4745 // requires vrgatherei16.vv. 4746 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4747 SDValue Lo, Hi; 4748 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4749 EVT LoVT, HiVT; 4750 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4751 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4752 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4753 // Reassemble the low and high pieces reversed. 4754 // FIXME: This is a CONCAT_VECTORS. 4755 SDValue Res = 4756 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4757 DAG.getIntPtrConstant(0, DL)); 4758 return DAG.getNode( 4759 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4760 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4761 } 4762 4763 // Just promote the int type to i16 which will double the LMUL. 4764 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4765 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4766 } 4767 4768 MVT XLenVT = Subtarget.getXLenVT(); 4769 SDValue Mask, VL; 4770 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4771 4772 // Calculate VLMAX-1 for the desired SEW. 4773 unsigned MinElts = VecVT.getVectorMinNumElements(); 4774 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4775 DAG.getConstant(MinElts, DL, XLenVT)); 4776 SDValue VLMinus1 = 4777 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4778 4779 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4780 bool IsRV32E64 = 4781 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4782 SDValue SplatVL; 4783 if (!IsRV32E64) 4784 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4785 else 4786 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4787 4788 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4789 SDValue Indices = 4790 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4791 4792 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4793 } 4794 4795 SDValue 4796 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4797 SelectionDAG &DAG) const { 4798 SDLoc DL(Op); 4799 auto *Load = cast<LoadSDNode>(Op); 4800 4801 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4802 Load->getMemoryVT(), 4803 *Load->getMemOperand()) && 4804 "Expecting a correctly-aligned load"); 4805 4806 MVT VT = Op.getSimpleValueType(); 4807 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4808 4809 SDValue VL = 4810 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4811 4812 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4813 SDValue NewLoad = DAG.getMemIntrinsicNode( 4814 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4815 Load->getMemoryVT(), Load->getMemOperand()); 4816 4817 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4818 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4819 } 4820 4821 SDValue 4822 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4823 SelectionDAG &DAG) const { 4824 SDLoc DL(Op); 4825 auto *Store = cast<StoreSDNode>(Op); 4826 4827 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4828 Store->getMemoryVT(), 4829 *Store->getMemOperand()) && 4830 "Expecting a correctly-aligned store"); 4831 4832 SDValue StoreVal = Store->getValue(); 4833 MVT VT = StoreVal.getSimpleValueType(); 4834 4835 // If the size less than a byte, we need to pad with zeros to make a byte. 4836 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4837 VT = MVT::v8i1; 4838 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4839 DAG.getConstant(0, DL, VT), StoreVal, 4840 DAG.getIntPtrConstant(0, DL)); 4841 } 4842 4843 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4844 4845 SDValue VL = 4846 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4847 4848 SDValue NewValue = 4849 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4850 return DAG.getMemIntrinsicNode( 4851 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4852 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4853 Store->getMemoryVT(), Store->getMemOperand()); 4854 } 4855 4856 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 4857 SelectionDAG &DAG) const { 4858 SDLoc DL(Op); 4859 MVT VT = Op.getSimpleValueType(); 4860 4861 const auto *MemSD = cast<MemSDNode>(Op); 4862 EVT MemVT = MemSD->getMemoryVT(); 4863 MachineMemOperand *MMO = MemSD->getMemOperand(); 4864 SDValue Chain = MemSD->getChain(); 4865 SDValue BasePtr = MemSD->getBasePtr(); 4866 4867 SDValue Mask, PassThru, VL; 4868 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 4869 Mask = VPLoad->getMask(); 4870 PassThru = DAG.getUNDEF(VT); 4871 VL = VPLoad->getVectorLength(); 4872 } else { 4873 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 4874 Mask = MLoad->getMask(); 4875 PassThru = MLoad->getPassThru(); 4876 } 4877 4878 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4879 4880 MVT XLenVT = Subtarget.getXLenVT(); 4881 4882 MVT ContainerVT = VT; 4883 if (VT.isFixedLengthVector()) { 4884 ContainerVT = getContainerForFixedLengthVector(VT); 4885 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4886 if (!IsUnmasked) { 4887 MVT MaskVT = 4888 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4889 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4890 } 4891 } 4892 4893 if (!VL) 4894 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4895 4896 unsigned IntID = 4897 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 4898 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4899 if (!IsUnmasked) 4900 Ops.push_back(PassThru); 4901 Ops.push_back(BasePtr); 4902 if (!IsUnmasked) 4903 Ops.push_back(Mask); 4904 Ops.push_back(VL); 4905 if (!IsUnmasked) 4906 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 4907 4908 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4909 4910 SDValue Result = 4911 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 4912 Chain = Result.getValue(1); 4913 4914 if (VT.isFixedLengthVector()) 4915 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4916 4917 return DAG.getMergeValues({Result, Chain}, DL); 4918 } 4919 4920 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 4921 SelectionDAG &DAG) const { 4922 SDLoc DL(Op); 4923 4924 const auto *MemSD = cast<MemSDNode>(Op); 4925 EVT MemVT = MemSD->getMemoryVT(); 4926 MachineMemOperand *MMO = MemSD->getMemOperand(); 4927 SDValue Chain = MemSD->getChain(); 4928 SDValue BasePtr = MemSD->getBasePtr(); 4929 SDValue Val, Mask, VL; 4930 4931 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 4932 Val = VPStore->getValue(); 4933 Mask = VPStore->getMask(); 4934 VL = VPStore->getVectorLength(); 4935 } else { 4936 const auto *MStore = cast<MaskedStoreSDNode>(Op); 4937 Val = MStore->getValue(); 4938 Mask = MStore->getMask(); 4939 } 4940 4941 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4942 4943 MVT VT = Val.getSimpleValueType(); 4944 MVT XLenVT = Subtarget.getXLenVT(); 4945 4946 MVT ContainerVT = VT; 4947 if (VT.isFixedLengthVector()) { 4948 ContainerVT = getContainerForFixedLengthVector(VT); 4949 4950 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4951 if (!IsUnmasked) { 4952 MVT MaskVT = 4953 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4954 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4955 } 4956 } 4957 4958 if (!VL) 4959 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4960 4961 unsigned IntID = 4962 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 4963 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4964 Ops.push_back(Val); 4965 Ops.push_back(BasePtr); 4966 if (!IsUnmasked) 4967 Ops.push_back(Mask); 4968 Ops.push_back(VL); 4969 4970 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 4971 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 4972 } 4973 4974 SDValue 4975 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4976 SelectionDAG &DAG) const { 4977 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4978 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4979 4980 MVT VT = Op.getSimpleValueType(); 4981 4982 SDValue Op1 = 4983 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4984 SDValue Op2 = 4985 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4986 4987 SDLoc DL(Op); 4988 SDValue VL = 4989 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4990 4991 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4992 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4993 4994 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4995 Op.getOperand(2), Mask, VL); 4996 4997 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4998 } 4999 5000 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5001 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5002 MVT VT = Op.getSimpleValueType(); 5003 5004 if (VT.getVectorElementType() == MVT::i1) 5005 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5006 5007 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5008 } 5009 5010 SDValue 5011 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5012 SelectionDAG &DAG) const { 5013 unsigned Opc; 5014 switch (Op.getOpcode()) { 5015 default: llvm_unreachable("Unexpected opcode!"); 5016 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5017 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5018 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5019 } 5020 5021 return lowerToScalableOp(Op, DAG, Opc); 5022 } 5023 5024 // Lower vector ABS to smax(X, sub(0, X)). 5025 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5026 SDLoc DL(Op); 5027 MVT VT = Op.getSimpleValueType(); 5028 SDValue X = Op.getOperand(0); 5029 5030 assert(VT.isFixedLengthVector() && "Unexpected type"); 5031 5032 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5033 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5034 5035 SDValue Mask, VL; 5036 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5037 5038 SDValue SplatZero = 5039 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5040 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5041 SDValue NegX = 5042 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5043 SDValue Max = 5044 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5045 5046 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5047 } 5048 5049 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5050 SDValue Op, SelectionDAG &DAG) const { 5051 SDLoc DL(Op); 5052 MVT VT = Op.getSimpleValueType(); 5053 SDValue Mag = Op.getOperand(0); 5054 SDValue Sign = Op.getOperand(1); 5055 assert(Mag.getValueType() == Sign.getValueType() && 5056 "Can only handle COPYSIGN with matching types."); 5057 5058 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5059 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5060 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5061 5062 SDValue Mask, VL; 5063 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5064 5065 SDValue CopySign = 5066 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5067 5068 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5069 } 5070 5071 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5072 SDValue Op, SelectionDAG &DAG) const { 5073 MVT VT = Op.getSimpleValueType(); 5074 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5075 5076 MVT I1ContainerVT = 5077 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5078 5079 SDValue CC = 5080 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5081 SDValue Op1 = 5082 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5083 SDValue Op2 = 5084 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5085 5086 SDLoc DL(Op); 5087 SDValue Mask, VL; 5088 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5089 5090 SDValue Select = 5091 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5092 5093 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5094 } 5095 5096 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5097 unsigned NewOpc, 5098 bool HasMask) const { 5099 MVT VT = Op.getSimpleValueType(); 5100 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5101 5102 // Create list of operands by converting existing ones to scalable types. 5103 SmallVector<SDValue, 6> Ops; 5104 for (const SDValue &V : Op->op_values()) { 5105 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5106 5107 // Pass through non-vector operands. 5108 if (!V.getValueType().isVector()) { 5109 Ops.push_back(V); 5110 continue; 5111 } 5112 5113 // "cast" fixed length vector to a scalable vector. 5114 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5115 "Only fixed length vectors are supported!"); 5116 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5117 } 5118 5119 SDLoc DL(Op); 5120 SDValue Mask, VL; 5121 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5122 if (HasMask) 5123 Ops.push_back(Mask); 5124 Ops.push_back(VL); 5125 5126 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5127 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5128 } 5129 5130 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5131 // * Operands of each node are assumed to be in the same order. 5132 // * The EVL operand is promoted from i32 to i64 on RV64. 5133 // * Fixed-length vectors are converted to their scalable-vector container 5134 // types. 5135 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5136 unsigned RISCVISDOpc) const { 5137 SDLoc DL(Op); 5138 MVT VT = Op.getSimpleValueType(); 5139 SmallVector<SDValue, 4> Ops; 5140 5141 for (const auto &OpIdx : enumerate(Op->ops())) { 5142 SDValue V = OpIdx.value(); 5143 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5144 // Pass through operands which aren't fixed-length vectors. 5145 if (!V.getValueType().isFixedLengthVector()) { 5146 Ops.push_back(V); 5147 continue; 5148 } 5149 // "cast" fixed length vector to a scalable vector. 5150 MVT OpVT = V.getSimpleValueType(); 5151 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5152 assert(useRVVForFixedLengthVectorVT(OpVT) && 5153 "Only fixed length vectors are supported!"); 5154 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5155 } 5156 5157 if (!VT.isFixedLengthVector()) 5158 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5159 5160 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5161 5162 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5163 5164 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5165 } 5166 5167 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5168 // matched to a RVV indexed load. The RVV indexed load instructions only 5169 // support the "unsigned unscaled" addressing mode; indices are implicitly 5170 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5171 // signed or scaled indexing is extended to the XLEN value type and scaled 5172 // accordingly. 5173 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5174 SelectionDAG &DAG) const { 5175 SDLoc DL(Op); 5176 MVT VT = Op.getSimpleValueType(); 5177 5178 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5179 EVT MemVT = MemSD->getMemoryVT(); 5180 MachineMemOperand *MMO = MemSD->getMemOperand(); 5181 SDValue Chain = MemSD->getChain(); 5182 SDValue BasePtr = MemSD->getBasePtr(); 5183 5184 ISD::LoadExtType LoadExtType; 5185 SDValue Index, Mask, PassThru, VL; 5186 5187 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5188 Index = VPGN->getIndex(); 5189 Mask = VPGN->getMask(); 5190 PassThru = DAG.getUNDEF(VT); 5191 VL = VPGN->getVectorLength(); 5192 // VP doesn't support extending loads. 5193 LoadExtType = ISD::NON_EXTLOAD; 5194 } else { 5195 // Else it must be a MGATHER. 5196 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5197 Index = MGN->getIndex(); 5198 Mask = MGN->getMask(); 5199 PassThru = MGN->getPassThru(); 5200 LoadExtType = MGN->getExtensionType(); 5201 } 5202 5203 MVT IndexVT = Index.getSimpleValueType(); 5204 MVT XLenVT = Subtarget.getXLenVT(); 5205 5206 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5207 "Unexpected VTs!"); 5208 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5209 // Targets have to explicitly opt-in for extending vector loads. 5210 assert(LoadExtType == ISD::NON_EXTLOAD && 5211 "Unexpected extending MGATHER/VP_GATHER"); 5212 (void)LoadExtType; 5213 5214 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5215 // the selection of the masked intrinsics doesn't do this for us. 5216 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5217 5218 MVT ContainerVT = VT; 5219 if (VT.isFixedLengthVector()) { 5220 // We need to use the larger of the result and index type to determine the 5221 // scalable type to use so we don't increase LMUL for any operand/result. 5222 if (VT.bitsGE(IndexVT)) { 5223 ContainerVT = getContainerForFixedLengthVector(VT); 5224 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5225 ContainerVT.getVectorElementCount()); 5226 } else { 5227 IndexVT = getContainerForFixedLengthVector(IndexVT); 5228 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5229 IndexVT.getVectorElementCount()); 5230 } 5231 5232 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5233 5234 if (!IsUnmasked) { 5235 MVT MaskVT = 5236 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5237 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5238 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5239 } 5240 } 5241 5242 if (!VL) 5243 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5244 5245 unsigned IntID = 5246 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5247 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5248 if (!IsUnmasked) 5249 Ops.push_back(PassThru); 5250 Ops.push_back(BasePtr); 5251 Ops.push_back(Index); 5252 if (!IsUnmasked) 5253 Ops.push_back(Mask); 5254 Ops.push_back(VL); 5255 if (!IsUnmasked) 5256 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5257 5258 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5259 SDValue Result = 5260 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5261 Chain = Result.getValue(1); 5262 5263 if (VT.isFixedLengthVector()) 5264 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5265 5266 return DAG.getMergeValues({Result, Chain}, DL); 5267 } 5268 5269 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5270 // matched to a RVV indexed store. The RVV indexed store instructions only 5271 // support the "unsigned unscaled" addressing mode; indices are implicitly 5272 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5273 // signed or scaled indexing is extended to the XLEN value type and scaled 5274 // accordingly. 5275 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5276 SelectionDAG &DAG) const { 5277 SDLoc DL(Op); 5278 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5279 EVT MemVT = MemSD->getMemoryVT(); 5280 MachineMemOperand *MMO = MemSD->getMemOperand(); 5281 SDValue Chain = MemSD->getChain(); 5282 SDValue BasePtr = MemSD->getBasePtr(); 5283 5284 bool IsTruncatingStore = false; 5285 SDValue Index, Mask, Val, VL; 5286 5287 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5288 Index = VPSN->getIndex(); 5289 Mask = VPSN->getMask(); 5290 Val = VPSN->getValue(); 5291 VL = VPSN->getVectorLength(); 5292 // VP doesn't support truncating stores. 5293 IsTruncatingStore = false; 5294 } else { 5295 // Else it must be a MSCATTER. 5296 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5297 Index = MSN->getIndex(); 5298 Mask = MSN->getMask(); 5299 Val = MSN->getValue(); 5300 IsTruncatingStore = MSN->isTruncatingStore(); 5301 } 5302 5303 MVT VT = Val.getSimpleValueType(); 5304 MVT IndexVT = Index.getSimpleValueType(); 5305 MVT XLenVT = Subtarget.getXLenVT(); 5306 5307 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5308 "Unexpected VTs!"); 5309 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5310 // Targets have to explicitly opt-in for extending vector loads and 5311 // truncating vector stores. 5312 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5313 (void)IsTruncatingStore; 5314 5315 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5316 // the selection of the masked intrinsics doesn't do this for us. 5317 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5318 5319 MVT ContainerVT = VT; 5320 if (VT.isFixedLengthVector()) { 5321 // We need to use the larger of the value and index type to determine the 5322 // scalable type to use so we don't increase LMUL for any operand/result. 5323 if (VT.bitsGE(IndexVT)) { 5324 ContainerVT = getContainerForFixedLengthVector(VT); 5325 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5326 ContainerVT.getVectorElementCount()); 5327 } else { 5328 IndexVT = getContainerForFixedLengthVector(IndexVT); 5329 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5330 IndexVT.getVectorElementCount()); 5331 } 5332 5333 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5334 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5335 5336 if (!IsUnmasked) { 5337 MVT MaskVT = 5338 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5339 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5340 } 5341 } 5342 5343 if (!VL) 5344 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5345 5346 unsigned IntID = 5347 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5348 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5349 Ops.push_back(Val); 5350 Ops.push_back(BasePtr); 5351 Ops.push_back(Index); 5352 if (!IsUnmasked) 5353 Ops.push_back(Mask); 5354 Ops.push_back(VL); 5355 5356 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5357 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5358 } 5359 5360 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5361 SelectionDAG &DAG) const { 5362 const MVT XLenVT = Subtarget.getXLenVT(); 5363 SDLoc DL(Op); 5364 SDValue Chain = Op->getOperand(0); 5365 SDValue SysRegNo = DAG.getTargetConstant( 5366 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5367 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5368 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5369 5370 // Encoding used for rounding mode in RISCV differs from that used in 5371 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5372 // table, which consists of a sequence of 4-bit fields, each representing 5373 // corresponding FLT_ROUNDS mode. 5374 static const int Table = 5375 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5376 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5377 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5378 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5379 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5380 5381 SDValue Shift = 5382 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5383 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5384 DAG.getConstant(Table, DL, XLenVT), Shift); 5385 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5386 DAG.getConstant(7, DL, XLenVT)); 5387 5388 return DAG.getMergeValues({Masked, Chain}, DL); 5389 } 5390 5391 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5392 SelectionDAG &DAG) const { 5393 const MVT XLenVT = Subtarget.getXLenVT(); 5394 SDLoc DL(Op); 5395 SDValue Chain = Op->getOperand(0); 5396 SDValue RMValue = Op->getOperand(1); 5397 SDValue SysRegNo = DAG.getTargetConstant( 5398 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5399 5400 // Encoding used for rounding mode in RISCV differs from that used in 5401 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5402 // a table, which consists of a sequence of 4-bit fields, each representing 5403 // corresponding RISCV mode. 5404 static const unsigned Table = 5405 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5406 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5407 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5408 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5409 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5410 5411 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5412 DAG.getConstant(2, DL, XLenVT)); 5413 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5414 DAG.getConstant(Table, DL, XLenVT), Shift); 5415 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5416 DAG.getConstant(0x7, DL, XLenVT)); 5417 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5418 RMValue); 5419 } 5420 5421 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5422 // form of the given Opcode. 5423 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5424 switch (Opcode) { 5425 default: 5426 llvm_unreachable("Unexpected opcode"); 5427 case ISD::SHL: 5428 return RISCVISD::SLLW; 5429 case ISD::SRA: 5430 return RISCVISD::SRAW; 5431 case ISD::SRL: 5432 return RISCVISD::SRLW; 5433 case ISD::SDIV: 5434 return RISCVISD::DIVW; 5435 case ISD::UDIV: 5436 return RISCVISD::DIVUW; 5437 case ISD::UREM: 5438 return RISCVISD::REMUW; 5439 case ISD::ROTL: 5440 return RISCVISD::ROLW; 5441 case ISD::ROTR: 5442 return RISCVISD::RORW; 5443 case RISCVISD::GREV: 5444 return RISCVISD::GREVW; 5445 case RISCVISD::GORC: 5446 return RISCVISD::GORCW; 5447 } 5448 } 5449 5450 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5451 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5452 // otherwise be promoted to i64, making it difficult to select the 5453 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5454 // type i8/i16/i32 is lost. 5455 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5456 unsigned ExtOpc = ISD::ANY_EXTEND) { 5457 SDLoc DL(N); 5458 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5459 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5460 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5461 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5462 // ReplaceNodeResults requires we maintain the same type for the return value. 5463 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5464 } 5465 5466 // Converts the given 32-bit operation to a i64 operation with signed extension 5467 // semantic to reduce the signed extension instructions. 5468 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5469 SDLoc DL(N); 5470 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5471 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5472 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5473 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5474 DAG.getValueType(MVT::i32)); 5475 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5476 } 5477 5478 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5479 SmallVectorImpl<SDValue> &Results, 5480 SelectionDAG &DAG) const { 5481 SDLoc DL(N); 5482 switch (N->getOpcode()) { 5483 default: 5484 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5485 case ISD::STRICT_FP_TO_SINT: 5486 case ISD::STRICT_FP_TO_UINT: 5487 case ISD::FP_TO_SINT: 5488 case ISD::FP_TO_UINT: { 5489 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5490 "Unexpected custom legalisation"); 5491 bool IsStrict = N->isStrictFPOpcode(); 5492 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5493 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5494 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5495 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5496 TargetLowering::TypeSoftenFloat) { 5497 // FIXME: Support strict FP. 5498 if (IsStrict) 5499 return; 5500 if (!isTypeLegal(Op0.getValueType())) 5501 return; 5502 unsigned Opc = 5503 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 5504 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 5505 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5506 return; 5507 } 5508 // If the FP type needs to be softened, emit a library call using the 'si' 5509 // version. If we left it to default legalization we'd end up with 'di'. If 5510 // the FP type doesn't need to be softened just let generic type 5511 // legalization promote the result type. 5512 RTLIB::Libcall LC; 5513 if (IsSigned) 5514 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5515 else 5516 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5517 MakeLibCallOptions CallOptions; 5518 EVT OpVT = Op0.getValueType(); 5519 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5520 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5521 SDValue Result; 5522 std::tie(Result, Chain) = 5523 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5524 Results.push_back(Result); 5525 if (IsStrict) 5526 Results.push_back(Chain); 5527 break; 5528 } 5529 case ISD::READCYCLECOUNTER: { 5530 assert(!Subtarget.is64Bit() && 5531 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5532 5533 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5534 SDValue RCW = 5535 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5536 5537 Results.push_back( 5538 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5539 Results.push_back(RCW.getValue(2)); 5540 break; 5541 } 5542 case ISD::MUL: { 5543 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5544 unsigned XLen = Subtarget.getXLen(); 5545 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5546 if (Size > XLen) { 5547 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5548 SDValue LHS = N->getOperand(0); 5549 SDValue RHS = N->getOperand(1); 5550 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5551 5552 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5553 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5554 // We need exactly one side to be unsigned. 5555 if (LHSIsU == RHSIsU) 5556 return; 5557 5558 auto MakeMULPair = [&](SDValue S, SDValue U) { 5559 MVT XLenVT = Subtarget.getXLenVT(); 5560 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5561 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5562 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5563 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5564 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5565 }; 5566 5567 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5568 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5569 5570 // The other operand should be signed, but still prefer MULH when 5571 // possible. 5572 if (RHSIsU && LHSIsS && !RHSIsS) 5573 Results.push_back(MakeMULPair(LHS, RHS)); 5574 else if (LHSIsU && RHSIsS && !LHSIsS) 5575 Results.push_back(MakeMULPair(RHS, LHS)); 5576 5577 return; 5578 } 5579 LLVM_FALLTHROUGH; 5580 } 5581 case ISD::ADD: 5582 case ISD::SUB: 5583 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5584 "Unexpected custom legalisation"); 5585 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5586 break; 5587 case ISD::SHL: 5588 case ISD::SRA: 5589 case ISD::SRL: 5590 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5591 "Unexpected custom legalisation"); 5592 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5593 Results.push_back(customLegalizeToWOp(N, DAG)); 5594 break; 5595 } 5596 5597 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5598 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5599 // shift amount. 5600 if (N->getOpcode() == ISD::SHL) { 5601 SDLoc DL(N); 5602 SDValue NewOp0 = 5603 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5604 SDValue NewOp1 = 5605 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5606 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5607 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5608 DAG.getValueType(MVT::i32)); 5609 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5610 } 5611 5612 break; 5613 case ISD::ROTL: 5614 case ISD::ROTR: 5615 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5616 "Unexpected custom legalisation"); 5617 Results.push_back(customLegalizeToWOp(N, DAG)); 5618 break; 5619 case ISD::CTTZ: 5620 case ISD::CTTZ_ZERO_UNDEF: 5621 case ISD::CTLZ: 5622 case ISD::CTLZ_ZERO_UNDEF: { 5623 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5624 "Unexpected custom legalisation"); 5625 5626 SDValue NewOp0 = 5627 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5628 bool IsCTZ = 5629 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5630 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5631 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5632 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5633 return; 5634 } 5635 case ISD::SDIV: 5636 case ISD::UDIV: 5637 case ISD::UREM: { 5638 MVT VT = N->getSimpleValueType(0); 5639 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5640 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5641 "Unexpected custom legalisation"); 5642 // Don't promote division/remainder by constant since we should expand those 5643 // to multiply by magic constant. 5644 // FIXME: What if the expansion is disabled for minsize. 5645 if (N->getOperand(1).getOpcode() == ISD::Constant) 5646 return; 5647 5648 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5649 // the upper 32 bits. For other types we need to sign or zero extend 5650 // based on the opcode. 5651 unsigned ExtOpc = ISD::ANY_EXTEND; 5652 if (VT != MVT::i32) 5653 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5654 : ISD::ZERO_EXTEND; 5655 5656 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5657 break; 5658 } 5659 case ISD::UADDO: 5660 case ISD::USUBO: { 5661 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5662 "Unexpected custom legalisation"); 5663 bool IsAdd = N->getOpcode() == ISD::UADDO; 5664 // Create an ADDW or SUBW. 5665 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5666 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5667 SDValue Res = 5668 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5669 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5670 DAG.getValueType(MVT::i32)); 5671 5672 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5673 // Since the inputs are sign extended from i32, this is equivalent to 5674 // comparing the lower 32 bits. 5675 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5676 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5677 IsAdd ? ISD::SETULT : ISD::SETUGT); 5678 5679 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5680 Results.push_back(Overflow); 5681 return; 5682 } 5683 case ISD::UADDSAT: 5684 case ISD::USUBSAT: { 5685 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5686 "Unexpected custom legalisation"); 5687 if (Subtarget.hasStdExtZbb()) { 5688 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5689 // sign extend allows overflow of the lower 32 bits to be detected on 5690 // the promoted size. 5691 SDValue LHS = 5692 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5693 SDValue RHS = 5694 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5695 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5696 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5697 return; 5698 } 5699 5700 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5701 // promotion for UADDO/USUBO. 5702 Results.push_back(expandAddSubSat(N, DAG)); 5703 return; 5704 } 5705 case ISD::BITCAST: { 5706 EVT VT = N->getValueType(0); 5707 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5708 SDValue Op0 = N->getOperand(0); 5709 EVT Op0VT = Op0.getValueType(); 5710 MVT XLenVT = Subtarget.getXLenVT(); 5711 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5712 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5713 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5714 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5715 Subtarget.hasStdExtF()) { 5716 SDValue FPConv = 5717 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5718 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5719 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5720 isTypeLegal(Op0VT)) { 5721 // Custom-legalize bitcasts from fixed-length vector types to illegal 5722 // scalar types in order to improve codegen. Bitcast the vector to a 5723 // one-element vector type whose element type is the same as the result 5724 // type, and extract the first element. 5725 LLVMContext &Context = *DAG.getContext(); 5726 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 5727 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5728 DAG.getConstant(0, DL, XLenVT))); 5729 } 5730 break; 5731 } 5732 case RISCVISD::GREV: 5733 case RISCVISD::GORC: { 5734 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5735 "Unexpected custom legalisation"); 5736 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5737 // This is similar to customLegalizeToWOp, except that we pass the second 5738 // operand (a TargetConstant) straight through: it is already of type 5739 // XLenVT. 5740 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5741 SDValue NewOp0 = 5742 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5743 SDValue NewOp1 = 5744 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5745 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5746 // ReplaceNodeResults requires we maintain the same type for the return 5747 // value. 5748 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5749 break; 5750 } 5751 case RISCVISD::SHFL: { 5752 // There is no SHFLIW instruction, but we can just promote the operation. 5753 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5754 "Unexpected custom legalisation"); 5755 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5756 SDValue NewOp0 = 5757 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5758 SDValue NewOp1 = 5759 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5760 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5761 // ReplaceNodeResults requires we maintain the same type for the return 5762 // value. 5763 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5764 break; 5765 } 5766 case ISD::BSWAP: 5767 case ISD::BITREVERSE: { 5768 MVT VT = N->getSimpleValueType(0); 5769 MVT XLenVT = Subtarget.getXLenVT(); 5770 assert((VT == MVT::i8 || VT == MVT::i16 || 5771 (VT == MVT::i32 && Subtarget.is64Bit())) && 5772 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5773 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5774 unsigned Imm = VT.getSizeInBits() - 1; 5775 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5776 if (N->getOpcode() == ISD::BSWAP) 5777 Imm &= ~0x7U; 5778 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5779 SDValue GREVI = 5780 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5781 // ReplaceNodeResults requires we maintain the same type for the return 5782 // value. 5783 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5784 break; 5785 } 5786 case ISD::FSHL: 5787 case ISD::FSHR: { 5788 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5789 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5790 SDValue NewOp0 = 5791 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5792 SDValue NewOp1 = 5793 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5794 SDValue NewOp2 = 5795 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5796 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5797 // Mask the shift amount to 5 bits. 5798 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5799 DAG.getConstant(0x1f, DL, MVT::i64)); 5800 unsigned Opc = 5801 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5802 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5803 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5804 break; 5805 } 5806 case ISD::EXTRACT_VECTOR_ELT: { 5807 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5808 // type is illegal (currently only vXi64 RV32). 5809 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5810 // transferred to the destination register. We issue two of these from the 5811 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5812 // first element. 5813 SDValue Vec = N->getOperand(0); 5814 SDValue Idx = N->getOperand(1); 5815 5816 // The vector type hasn't been legalized yet so we can't issue target 5817 // specific nodes if it needs legalization. 5818 // FIXME: We would manually legalize if it's important. 5819 if (!isTypeLegal(Vec.getValueType())) 5820 return; 5821 5822 MVT VecVT = Vec.getSimpleValueType(); 5823 5824 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5825 VecVT.getVectorElementType() == MVT::i64 && 5826 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5827 5828 // If this is a fixed vector, we need to convert it to a scalable vector. 5829 MVT ContainerVT = VecVT; 5830 if (VecVT.isFixedLengthVector()) { 5831 ContainerVT = getContainerForFixedLengthVector(VecVT); 5832 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5833 } 5834 5835 MVT XLenVT = Subtarget.getXLenVT(); 5836 5837 // Use a VL of 1 to avoid processing more elements than we need. 5838 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5839 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5840 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5841 5842 // Unless the index is known to be 0, we must slide the vector down to get 5843 // the desired element into index 0. 5844 if (!isNullConstant(Idx)) { 5845 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5846 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5847 } 5848 5849 // Extract the lower XLEN bits of the correct vector element. 5850 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5851 5852 // To extract the upper XLEN bits of the vector element, shift the first 5853 // element right by 32 bits and re-extract the lower XLEN bits. 5854 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5855 DAG.getConstant(32, DL, XLenVT), VL); 5856 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5857 ThirtyTwoV, Mask, VL); 5858 5859 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5860 5861 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5862 break; 5863 } 5864 case ISD::INTRINSIC_WO_CHAIN: { 5865 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5866 switch (IntNo) { 5867 default: 5868 llvm_unreachable( 5869 "Don't know how to custom type legalize this intrinsic!"); 5870 case Intrinsic::riscv_orc_b: { 5871 // Lower to the GORCI encoding for orc.b with the operand extended. 5872 SDValue NewOp = 5873 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5874 // If Zbp is enabled, use GORCIW which will sign extend the result. 5875 unsigned Opc = 5876 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5877 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5878 DAG.getConstant(7, DL, MVT::i64)); 5879 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5880 return; 5881 } 5882 case Intrinsic::riscv_grev: 5883 case Intrinsic::riscv_gorc: { 5884 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5885 "Unexpected custom legalisation"); 5886 SDValue NewOp1 = 5887 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5888 SDValue NewOp2 = 5889 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5890 unsigned Opc = 5891 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5892 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5893 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5894 break; 5895 } 5896 case Intrinsic::riscv_shfl: 5897 case Intrinsic::riscv_unshfl: { 5898 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5899 "Unexpected custom legalisation"); 5900 SDValue NewOp1 = 5901 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5902 SDValue NewOp2 = 5903 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5904 unsigned Opc = 5905 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5906 if (isa<ConstantSDNode>(N->getOperand(2))) { 5907 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5908 DAG.getConstant(0xf, DL, MVT::i64)); 5909 Opc = 5910 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5911 } 5912 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5913 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5914 break; 5915 } 5916 case Intrinsic::riscv_bcompress: 5917 case Intrinsic::riscv_bdecompress: { 5918 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5919 "Unexpected custom legalisation"); 5920 SDValue NewOp1 = 5921 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5922 SDValue NewOp2 = 5923 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5924 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5925 ? RISCVISD::BCOMPRESSW 5926 : RISCVISD::BDECOMPRESSW; 5927 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5928 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5929 break; 5930 } 5931 case Intrinsic::riscv_vmv_x_s: { 5932 EVT VT = N->getValueType(0); 5933 MVT XLenVT = Subtarget.getXLenVT(); 5934 if (VT.bitsLT(XLenVT)) { 5935 // Simple case just extract using vmv.x.s and truncate. 5936 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5937 Subtarget.getXLenVT(), N->getOperand(1)); 5938 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5939 return; 5940 } 5941 5942 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5943 "Unexpected custom legalization"); 5944 5945 // We need to do the move in two steps. 5946 SDValue Vec = N->getOperand(1); 5947 MVT VecVT = Vec.getSimpleValueType(); 5948 5949 // First extract the lower XLEN bits of the element. 5950 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5951 5952 // To extract the upper XLEN bits of the vector element, shift the first 5953 // element right by 32 bits and re-extract the lower XLEN bits. 5954 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5955 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5956 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5957 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5958 DAG.getConstant(32, DL, XLenVT), VL); 5959 SDValue LShr32 = 5960 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5961 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5962 5963 Results.push_back( 5964 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5965 break; 5966 } 5967 } 5968 break; 5969 } 5970 case ISD::VECREDUCE_ADD: 5971 case ISD::VECREDUCE_AND: 5972 case ISD::VECREDUCE_OR: 5973 case ISD::VECREDUCE_XOR: 5974 case ISD::VECREDUCE_SMAX: 5975 case ISD::VECREDUCE_UMAX: 5976 case ISD::VECREDUCE_SMIN: 5977 case ISD::VECREDUCE_UMIN: 5978 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5979 Results.push_back(V); 5980 break; 5981 case ISD::VP_REDUCE_ADD: 5982 case ISD::VP_REDUCE_AND: 5983 case ISD::VP_REDUCE_OR: 5984 case ISD::VP_REDUCE_XOR: 5985 case ISD::VP_REDUCE_SMAX: 5986 case ISD::VP_REDUCE_UMAX: 5987 case ISD::VP_REDUCE_SMIN: 5988 case ISD::VP_REDUCE_UMIN: 5989 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 5990 Results.push_back(V); 5991 break; 5992 case ISD::FLT_ROUNDS_: { 5993 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5994 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5995 Results.push_back(Res.getValue(0)); 5996 Results.push_back(Res.getValue(1)); 5997 break; 5998 } 5999 } 6000 } 6001 6002 // A structure to hold one of the bit-manipulation patterns below. Together, a 6003 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6004 // (or (and (shl x, 1), 0xAAAAAAAA), 6005 // (and (srl x, 1), 0x55555555)) 6006 struct RISCVBitmanipPat { 6007 SDValue Op; 6008 unsigned ShAmt; 6009 bool IsSHL; 6010 6011 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6012 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6013 } 6014 }; 6015 6016 // Matches patterns of the form 6017 // (and (shl x, C2), (C1 << C2)) 6018 // (and (srl x, C2), C1) 6019 // (shl (and x, C1), C2) 6020 // (srl (and x, (C1 << C2)), C2) 6021 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6022 // The expected masks for each shift amount are specified in BitmanipMasks where 6023 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6024 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6025 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6026 // XLen is 64. 6027 static Optional<RISCVBitmanipPat> 6028 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6029 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6030 "Unexpected number of masks"); 6031 Optional<uint64_t> Mask; 6032 // Optionally consume a mask around the shift operation. 6033 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6034 Mask = Op.getConstantOperandVal(1); 6035 Op = Op.getOperand(0); 6036 } 6037 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6038 return None; 6039 bool IsSHL = Op.getOpcode() == ISD::SHL; 6040 6041 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6042 return None; 6043 uint64_t ShAmt = Op.getConstantOperandVal(1); 6044 6045 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6046 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6047 return None; 6048 // If we don't have enough masks for 64 bit, then we must be trying to 6049 // match SHFL so we're only allowed to shift 1/4 of the width. 6050 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6051 return None; 6052 6053 SDValue Src = Op.getOperand(0); 6054 6055 // The expected mask is shifted left when the AND is found around SHL 6056 // patterns. 6057 // ((x >> 1) & 0x55555555) 6058 // ((x << 1) & 0xAAAAAAAA) 6059 bool SHLExpMask = IsSHL; 6060 6061 if (!Mask) { 6062 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6063 // the mask is all ones: consume that now. 6064 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6065 Mask = Src.getConstantOperandVal(1); 6066 Src = Src.getOperand(0); 6067 // The expected mask is now in fact shifted left for SRL, so reverse the 6068 // decision. 6069 // ((x & 0xAAAAAAAA) >> 1) 6070 // ((x & 0x55555555) << 1) 6071 SHLExpMask = !SHLExpMask; 6072 } else { 6073 // Use a default shifted mask of all-ones if there's no AND, truncated 6074 // down to the expected width. This simplifies the logic later on. 6075 Mask = maskTrailingOnes<uint64_t>(Width); 6076 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6077 } 6078 } 6079 6080 unsigned MaskIdx = Log2_32(ShAmt); 6081 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6082 6083 if (SHLExpMask) 6084 ExpMask <<= ShAmt; 6085 6086 if (Mask != ExpMask) 6087 return None; 6088 6089 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6090 } 6091 6092 // Matches any of the following bit-manipulation patterns: 6093 // (and (shl x, 1), (0x55555555 << 1)) 6094 // (and (srl x, 1), 0x55555555) 6095 // (shl (and x, 0x55555555), 1) 6096 // (srl (and x, (0x55555555 << 1)), 1) 6097 // where the shift amount and mask may vary thus: 6098 // [1] = 0x55555555 / 0xAAAAAAAA 6099 // [2] = 0x33333333 / 0xCCCCCCCC 6100 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6101 // [8] = 0x00FF00FF / 0xFF00FF00 6102 // [16] = 0x0000FFFF / 0xFFFFFFFF 6103 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6104 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6105 // These are the unshifted masks which we use to match bit-manipulation 6106 // patterns. They may be shifted left in certain circumstances. 6107 static const uint64_t BitmanipMasks[] = { 6108 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6109 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6110 6111 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6112 } 6113 6114 // Match the following pattern as a GREVI(W) operation 6115 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6116 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6117 const RISCVSubtarget &Subtarget) { 6118 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6119 EVT VT = Op.getValueType(); 6120 6121 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6122 auto LHS = matchGREVIPat(Op.getOperand(0)); 6123 auto RHS = matchGREVIPat(Op.getOperand(1)); 6124 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6125 SDLoc DL(Op); 6126 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6127 DAG.getConstant(LHS->ShAmt, DL, VT)); 6128 } 6129 } 6130 return SDValue(); 6131 } 6132 6133 // Matches any the following pattern as a GORCI(W) operation 6134 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6135 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6136 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6137 // Note that with the variant of 3., 6138 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6139 // the inner pattern will first be matched as GREVI and then the outer 6140 // pattern will be matched to GORC via the first rule above. 6141 // 4. (or (rotl/rotr x, bitwidth/2), x) 6142 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6143 const RISCVSubtarget &Subtarget) { 6144 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6145 EVT VT = Op.getValueType(); 6146 6147 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6148 SDLoc DL(Op); 6149 SDValue Op0 = Op.getOperand(0); 6150 SDValue Op1 = Op.getOperand(1); 6151 6152 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6153 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6154 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6155 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6156 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6157 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6158 if ((Reverse.getOpcode() == ISD::ROTL || 6159 Reverse.getOpcode() == ISD::ROTR) && 6160 Reverse.getOperand(0) == X && 6161 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6162 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6163 if (RotAmt == (VT.getSizeInBits() / 2)) 6164 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6165 DAG.getConstant(RotAmt, DL, VT)); 6166 } 6167 return SDValue(); 6168 }; 6169 6170 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6171 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6172 return V; 6173 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6174 return V; 6175 6176 // OR is commutable so canonicalize its OR operand to the left 6177 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6178 std::swap(Op0, Op1); 6179 if (Op0.getOpcode() != ISD::OR) 6180 return SDValue(); 6181 SDValue OrOp0 = Op0.getOperand(0); 6182 SDValue OrOp1 = Op0.getOperand(1); 6183 auto LHS = matchGREVIPat(OrOp0); 6184 // OR is commutable so swap the operands and try again: x might have been 6185 // on the left 6186 if (!LHS) { 6187 std::swap(OrOp0, OrOp1); 6188 LHS = matchGREVIPat(OrOp0); 6189 } 6190 auto RHS = matchGREVIPat(Op1); 6191 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6192 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6193 DAG.getConstant(LHS->ShAmt, DL, VT)); 6194 } 6195 } 6196 return SDValue(); 6197 } 6198 6199 // Matches any of the following bit-manipulation patterns: 6200 // (and (shl x, 1), (0x22222222 << 1)) 6201 // (and (srl x, 1), 0x22222222) 6202 // (shl (and x, 0x22222222), 1) 6203 // (srl (and x, (0x22222222 << 1)), 1) 6204 // where the shift amount and mask may vary thus: 6205 // [1] = 0x22222222 / 0x44444444 6206 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6207 // [4] = 0x00F000F0 / 0x0F000F00 6208 // [8] = 0x0000FF00 / 0x00FF0000 6209 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6210 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6211 // These are the unshifted masks which we use to match bit-manipulation 6212 // patterns. They may be shifted left in certain circumstances. 6213 static const uint64_t BitmanipMasks[] = { 6214 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6215 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6216 6217 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6218 } 6219 6220 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6221 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6222 const RISCVSubtarget &Subtarget) { 6223 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6224 EVT VT = Op.getValueType(); 6225 6226 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6227 return SDValue(); 6228 6229 SDValue Op0 = Op.getOperand(0); 6230 SDValue Op1 = Op.getOperand(1); 6231 6232 // Or is commutable so canonicalize the second OR to the LHS. 6233 if (Op0.getOpcode() != ISD::OR) 6234 std::swap(Op0, Op1); 6235 if (Op0.getOpcode() != ISD::OR) 6236 return SDValue(); 6237 6238 // We found an inner OR, so our operands are the operands of the inner OR 6239 // and the other operand of the outer OR. 6240 SDValue A = Op0.getOperand(0); 6241 SDValue B = Op0.getOperand(1); 6242 SDValue C = Op1; 6243 6244 auto Match1 = matchSHFLPat(A); 6245 auto Match2 = matchSHFLPat(B); 6246 6247 // If neither matched, we failed. 6248 if (!Match1 && !Match2) 6249 return SDValue(); 6250 6251 // We had at least one match. if one failed, try the remaining C operand. 6252 if (!Match1) { 6253 std::swap(A, C); 6254 Match1 = matchSHFLPat(A); 6255 if (!Match1) 6256 return SDValue(); 6257 } else if (!Match2) { 6258 std::swap(B, C); 6259 Match2 = matchSHFLPat(B); 6260 if (!Match2) 6261 return SDValue(); 6262 } 6263 assert(Match1 && Match2); 6264 6265 // Make sure our matches pair up. 6266 if (!Match1->formsPairWith(*Match2)) 6267 return SDValue(); 6268 6269 // All the remains is to make sure C is an AND with the same input, that masks 6270 // out the bits that are being shuffled. 6271 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6272 C.getOperand(0) != Match1->Op) 6273 return SDValue(); 6274 6275 uint64_t Mask = C.getConstantOperandVal(1); 6276 6277 static const uint64_t BitmanipMasks[] = { 6278 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6279 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6280 }; 6281 6282 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6283 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6284 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6285 6286 if (Mask != ExpMask) 6287 return SDValue(); 6288 6289 SDLoc DL(Op); 6290 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6291 DAG.getConstant(Match1->ShAmt, DL, VT)); 6292 } 6293 6294 // Optimize (add (shl x, c0), (shl y, c1)) -> 6295 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6296 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6297 const RISCVSubtarget &Subtarget) { 6298 // Perform this optimization only in the zba extension. 6299 if (!Subtarget.hasStdExtZba()) 6300 return SDValue(); 6301 6302 // Skip for vector types and larger types. 6303 EVT VT = N->getValueType(0); 6304 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6305 return SDValue(); 6306 6307 // The two operand nodes must be SHL and have no other use. 6308 SDValue N0 = N->getOperand(0); 6309 SDValue N1 = N->getOperand(1); 6310 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6311 !N0->hasOneUse() || !N1->hasOneUse()) 6312 return SDValue(); 6313 6314 // Check c0 and c1. 6315 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6316 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6317 if (!N0C || !N1C) 6318 return SDValue(); 6319 int64_t C0 = N0C->getSExtValue(); 6320 int64_t C1 = N1C->getSExtValue(); 6321 if (C0 <= 0 || C1 <= 0) 6322 return SDValue(); 6323 6324 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6325 int64_t Bits = std::min(C0, C1); 6326 int64_t Diff = std::abs(C0 - C1); 6327 if (Diff != 1 && Diff != 2 && Diff != 3) 6328 return SDValue(); 6329 6330 // Build nodes. 6331 SDLoc DL(N); 6332 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6333 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6334 SDValue NA0 = 6335 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6336 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6337 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6338 } 6339 6340 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6341 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6342 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6343 // not undo itself, but they are redundant. 6344 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6345 SDValue Src = N->getOperand(0); 6346 6347 if (Src.getOpcode() != N->getOpcode()) 6348 return SDValue(); 6349 6350 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6351 !isa<ConstantSDNode>(Src.getOperand(1))) 6352 return SDValue(); 6353 6354 unsigned ShAmt1 = N->getConstantOperandVal(1); 6355 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6356 Src = Src.getOperand(0); 6357 6358 unsigned CombinedShAmt; 6359 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6360 CombinedShAmt = ShAmt1 | ShAmt2; 6361 else 6362 CombinedShAmt = ShAmt1 ^ ShAmt2; 6363 6364 if (CombinedShAmt == 0) 6365 return Src; 6366 6367 SDLoc DL(N); 6368 return DAG.getNode( 6369 N->getOpcode(), DL, N->getValueType(0), Src, 6370 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6371 } 6372 6373 // Combine a constant select operand into its use: 6374 // 6375 // (and (select cond, -1, c), x) 6376 // -> (select cond, x, (and x, c)) [AllOnes=1] 6377 // (or (select cond, 0, c), x) 6378 // -> (select cond, x, (or x, c)) [AllOnes=0] 6379 // (xor (select cond, 0, c), x) 6380 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6381 // (add (select cond, 0, c), x) 6382 // -> (select cond, x, (add x, c)) [AllOnes=0] 6383 // (sub x, (select cond, 0, c)) 6384 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6385 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6386 SelectionDAG &DAG, bool AllOnes) { 6387 EVT VT = N->getValueType(0); 6388 6389 // Skip vectors. 6390 if (VT.isVector()) 6391 return SDValue(); 6392 6393 if ((Slct.getOpcode() != ISD::SELECT && 6394 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6395 !Slct.hasOneUse()) 6396 return SDValue(); 6397 6398 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6399 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6400 }; 6401 6402 bool SwapSelectOps; 6403 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6404 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6405 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6406 SDValue NonConstantVal; 6407 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6408 SwapSelectOps = false; 6409 NonConstantVal = FalseVal; 6410 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6411 SwapSelectOps = true; 6412 NonConstantVal = TrueVal; 6413 } else 6414 return SDValue(); 6415 6416 // Slct is now know to be the desired identity constant when CC is true. 6417 TrueVal = OtherOp; 6418 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6419 // Unless SwapSelectOps says the condition should be false. 6420 if (SwapSelectOps) 6421 std::swap(TrueVal, FalseVal); 6422 6423 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6424 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6425 {Slct.getOperand(0), Slct.getOperand(1), 6426 Slct.getOperand(2), TrueVal, FalseVal}); 6427 6428 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6429 {Slct.getOperand(0), TrueVal, FalseVal}); 6430 } 6431 6432 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6433 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6434 bool AllOnes) { 6435 SDValue N0 = N->getOperand(0); 6436 SDValue N1 = N->getOperand(1); 6437 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6438 return Result; 6439 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6440 return Result; 6441 return SDValue(); 6442 } 6443 6444 // Transform (add (mul x, c0), c1) -> 6445 // (add (mul (add x, c1/c0), c0), c1%c0). 6446 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 6447 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 6448 // to an infinite loop in DAGCombine if transformed. 6449 // Or transform (add (mul x, c0), c1) -> 6450 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 6451 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 6452 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 6453 // lead to an infinite loop in DAGCombine if transformed. 6454 // Or transform (add (mul x, c0), c1) -> 6455 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 6456 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 6457 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 6458 // lead to an infinite loop in DAGCombine if transformed. 6459 // Or transform (add (mul x, c0), c1) -> 6460 // (mul (add x, c1/c0), c0). 6461 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6462 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6463 const RISCVSubtarget &Subtarget) { 6464 // Skip for vector types and larger types. 6465 EVT VT = N->getValueType(0); 6466 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6467 return SDValue(); 6468 // The first operand node must be a MUL and has no other use. 6469 SDValue N0 = N->getOperand(0); 6470 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6471 return SDValue(); 6472 // Check if c0 and c1 match above conditions. 6473 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6474 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6475 if (!N0C || !N1C) 6476 return SDValue(); 6477 int64_t C0 = N0C->getSExtValue(); 6478 int64_t C1 = N1C->getSExtValue(); 6479 int64_t CA, CB; 6480 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 6481 return SDValue(); 6482 // Search for proper CA (non-zero) and CB that both are simm12. 6483 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 6484 !isInt<12>(C0 * (C1 / C0))) { 6485 CA = C1 / C0; 6486 CB = C1 % C0; 6487 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 6488 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 6489 CA = C1 / C0 + 1; 6490 CB = C1 % C0 - C0; 6491 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 6492 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 6493 CA = C1 / C0 - 1; 6494 CB = C1 % C0 + C0; 6495 } else 6496 return SDValue(); 6497 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6498 SDLoc DL(N); 6499 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6500 DAG.getConstant(CA, DL, VT)); 6501 SDValue New1 = 6502 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6503 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 6504 } 6505 6506 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6507 const RISCVSubtarget &Subtarget) { 6508 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6509 return V; 6510 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6511 return V; 6512 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6513 // (select lhs, rhs, cc, x, (add x, y)) 6514 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6515 } 6516 6517 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6518 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6519 // (select lhs, rhs, cc, x, (sub x, y)) 6520 SDValue N0 = N->getOperand(0); 6521 SDValue N1 = N->getOperand(1); 6522 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6523 } 6524 6525 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6526 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6527 // (select lhs, rhs, cc, x, (and x, y)) 6528 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6529 } 6530 6531 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6532 const RISCVSubtarget &Subtarget) { 6533 if (Subtarget.hasStdExtZbp()) { 6534 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6535 return GREV; 6536 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6537 return GORC; 6538 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6539 return SHFL; 6540 } 6541 6542 // fold (or (select cond, 0, y), x) -> 6543 // (select cond, x, (or x, y)) 6544 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6545 } 6546 6547 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6548 // fold (xor (select cond, 0, y), x) -> 6549 // (select cond, x, (xor x, y)) 6550 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6551 } 6552 6553 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6554 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6555 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6556 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6557 // ADDW/SUBW/MULW. 6558 static SDValue performANY_EXTENDCombine(SDNode *N, 6559 TargetLowering::DAGCombinerInfo &DCI, 6560 const RISCVSubtarget &Subtarget) { 6561 if (!Subtarget.is64Bit()) 6562 return SDValue(); 6563 6564 SelectionDAG &DAG = DCI.DAG; 6565 6566 SDValue Src = N->getOperand(0); 6567 EVT VT = N->getValueType(0); 6568 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6569 return SDValue(); 6570 6571 // The opcode must be one that can implicitly sign_extend. 6572 // FIXME: Additional opcodes. 6573 switch (Src.getOpcode()) { 6574 default: 6575 return SDValue(); 6576 case ISD::MUL: 6577 if (!Subtarget.hasStdExtM()) 6578 return SDValue(); 6579 LLVM_FALLTHROUGH; 6580 case ISD::ADD: 6581 case ISD::SUB: 6582 break; 6583 } 6584 6585 // Only handle cases where the result is used by a CopyToReg. That likely 6586 // means the value is a liveout of the basic block. This helps prevent 6587 // infinite combine loops like PR51206. 6588 if (none_of(N->uses(), 6589 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6590 return SDValue(); 6591 6592 SmallVector<SDNode *, 4> SetCCs; 6593 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6594 UE = Src.getNode()->use_end(); 6595 UI != UE; ++UI) { 6596 SDNode *User = *UI; 6597 if (User == N) 6598 continue; 6599 if (UI.getUse().getResNo() != Src.getResNo()) 6600 continue; 6601 // All i32 setccs are legalized by sign extending operands. 6602 if (User->getOpcode() == ISD::SETCC) { 6603 SetCCs.push_back(User); 6604 continue; 6605 } 6606 // We don't know if we can extend this user. 6607 break; 6608 } 6609 6610 // If we don't have any SetCCs, this isn't worthwhile. 6611 if (SetCCs.empty()) 6612 return SDValue(); 6613 6614 SDLoc DL(N); 6615 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6616 DCI.CombineTo(N, SExt); 6617 6618 // Promote all the setccs. 6619 for (SDNode *SetCC : SetCCs) { 6620 SmallVector<SDValue, 4> Ops; 6621 6622 for (unsigned j = 0; j != 2; ++j) { 6623 SDValue SOp = SetCC->getOperand(j); 6624 if (SOp == Src) 6625 Ops.push_back(SExt); 6626 else 6627 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6628 } 6629 6630 Ops.push_back(SetCC->getOperand(2)); 6631 DCI.CombineTo(SetCC, 6632 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6633 } 6634 return SDValue(N, 0); 6635 } 6636 6637 // Try to form VWMUL or VWMULU. 6638 // FIXME: Support VWMULSU. 6639 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1, 6640 SelectionDAG &DAG) { 6641 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 6642 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6643 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6644 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 6645 return SDValue(); 6646 6647 SDValue Mask = N->getOperand(2); 6648 SDValue VL = N->getOperand(3); 6649 6650 // Make sure the mask and VL match. 6651 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 6652 return SDValue(); 6653 6654 MVT VT = N->getSimpleValueType(0); 6655 6656 // Determine the narrow size for a widening multiply. 6657 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 6658 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 6659 VT.getVectorElementCount()); 6660 6661 SDLoc DL(N); 6662 6663 // See if the other operand is the same opcode. 6664 if (Op0.getOpcode() == Op1.getOpcode()) { 6665 if (!Op1.hasOneUse()) 6666 return SDValue(); 6667 6668 // Make sure the mask and VL match. 6669 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 6670 return SDValue(); 6671 6672 Op1 = Op1.getOperand(0); 6673 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 6674 // The operand is a splat of a scalar. 6675 6676 // The VL must be the same. 6677 if (Op1.getOperand(1) != VL) 6678 return SDValue(); 6679 6680 // Get the scalar value. 6681 Op1 = Op1.getOperand(0); 6682 6683 // See if have enough sign bits or zero bits in the scalar to use a 6684 // widening multiply by splatting to smaller element size. 6685 unsigned EltBits = VT.getScalarSizeInBits(); 6686 unsigned ScalarBits = Op1.getValueSizeInBits(); 6687 // Make sure we're getting all element bits from the scalar register. 6688 // FIXME: Support implicit sign extension of vmv.v.x? 6689 if (ScalarBits < EltBits) 6690 return SDValue(); 6691 6692 if (IsSignExt) { 6693 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 6694 return SDValue(); 6695 } else { 6696 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 6697 if (!DAG.MaskedValueIsZero(Op1, Mask)) 6698 return SDValue(); 6699 } 6700 6701 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 6702 } else 6703 return SDValue(); 6704 6705 Op0 = Op0.getOperand(0); 6706 6707 // Re-introduce narrower extends if needed. 6708 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6709 if (Op0.getValueType() != NarrowVT) 6710 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6711 if (Op1.getValueType() != NarrowVT) 6712 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6713 6714 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6715 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6716 } 6717 6718 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 6719 DAGCombinerInfo &DCI) const { 6720 SelectionDAG &DAG = DCI.DAG; 6721 6722 // Helper to call SimplifyDemandedBits on an operand of N where only some low 6723 // bits are demanded. N will be added to the Worklist if it was not deleted. 6724 // Caller should return SDValue(N, 0) if this returns true. 6725 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 6726 SDValue Op = N->getOperand(OpNo); 6727 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 6728 if (!SimplifyDemandedBits(Op, Mask, DCI)) 6729 return false; 6730 6731 if (N->getOpcode() != ISD::DELETED_NODE) 6732 DCI.AddToWorklist(N); 6733 return true; 6734 }; 6735 6736 switch (N->getOpcode()) { 6737 default: 6738 break; 6739 case RISCVISD::SplitF64: { 6740 SDValue Op0 = N->getOperand(0); 6741 // If the input to SplitF64 is just BuildPairF64 then the operation is 6742 // redundant. Instead, use BuildPairF64's operands directly. 6743 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 6744 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 6745 6746 SDLoc DL(N); 6747 6748 // It's cheaper to materialise two 32-bit integers than to load a double 6749 // from the constant pool and transfer it to integer registers through the 6750 // stack. 6751 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6752 APInt V = C->getValueAPF().bitcastToAPInt(); 6753 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6754 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6755 return DCI.CombineTo(N, Lo, Hi); 6756 } 6757 6758 // This is a target-specific version of a DAGCombine performed in 6759 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6760 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6761 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6762 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6763 !Op0.getNode()->hasOneUse()) 6764 break; 6765 SDValue NewSplitF64 = 6766 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 6767 Op0.getOperand(0)); 6768 SDValue Lo = NewSplitF64.getValue(0); 6769 SDValue Hi = NewSplitF64.getValue(1); 6770 APInt SignBit = APInt::getSignMask(32); 6771 if (Op0.getOpcode() == ISD::FNEG) { 6772 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 6773 DAG.getConstant(SignBit, DL, MVT::i32)); 6774 return DCI.CombineTo(N, Lo, NewHi); 6775 } 6776 assert(Op0.getOpcode() == ISD::FABS); 6777 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 6778 DAG.getConstant(~SignBit, DL, MVT::i32)); 6779 return DCI.CombineTo(N, Lo, NewHi); 6780 } 6781 case RISCVISD::SLLW: 6782 case RISCVISD::SRAW: 6783 case RISCVISD::SRLW: 6784 case RISCVISD::ROLW: 6785 case RISCVISD::RORW: { 6786 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6787 if (SimplifyDemandedLowBitsHelper(0, 32) || 6788 SimplifyDemandedLowBitsHelper(1, 5)) 6789 return SDValue(N, 0); 6790 break; 6791 } 6792 case RISCVISD::CLZW: 6793 case RISCVISD::CTZW: { 6794 // Only the lower 32 bits of the first operand are read 6795 if (SimplifyDemandedLowBitsHelper(0, 32)) 6796 return SDValue(N, 0); 6797 break; 6798 } 6799 case RISCVISD::FSL: 6800 case RISCVISD::FSR: { 6801 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 6802 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 6803 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6804 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 6805 return SDValue(N, 0); 6806 break; 6807 } 6808 case RISCVISD::FSLW: 6809 case RISCVISD::FSRW: { 6810 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 6811 // read. 6812 if (SimplifyDemandedLowBitsHelper(0, 32) || 6813 SimplifyDemandedLowBitsHelper(1, 32) || 6814 SimplifyDemandedLowBitsHelper(2, 6)) 6815 return SDValue(N, 0); 6816 break; 6817 } 6818 case RISCVISD::GREV: 6819 case RISCVISD::GORC: { 6820 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 6821 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6822 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6823 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 6824 return SDValue(N, 0); 6825 6826 return combineGREVI_GORCI(N, DCI.DAG); 6827 } 6828 case RISCVISD::GREVW: 6829 case RISCVISD::GORCW: { 6830 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6831 if (SimplifyDemandedLowBitsHelper(0, 32) || 6832 SimplifyDemandedLowBitsHelper(1, 5)) 6833 return SDValue(N, 0); 6834 6835 return combineGREVI_GORCI(N, DCI.DAG); 6836 } 6837 case RISCVISD::SHFL: 6838 case RISCVISD::UNSHFL: { 6839 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 6840 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6841 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6842 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 6843 return SDValue(N, 0); 6844 6845 break; 6846 } 6847 case RISCVISD::SHFLW: 6848 case RISCVISD::UNSHFLW: { 6849 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 6850 SDValue LHS = N->getOperand(0); 6851 SDValue RHS = N->getOperand(1); 6852 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 6853 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 6854 if (SimplifyDemandedLowBitsHelper(0, 32) || 6855 SimplifyDemandedLowBitsHelper(1, 4)) 6856 return SDValue(N, 0); 6857 6858 break; 6859 } 6860 case RISCVISD::BCOMPRESSW: 6861 case RISCVISD::BDECOMPRESSW: { 6862 // Only the lower 32 bits of LHS and RHS are read. 6863 if (SimplifyDemandedLowBitsHelper(0, 32) || 6864 SimplifyDemandedLowBitsHelper(1, 32)) 6865 return SDValue(N, 0); 6866 6867 break; 6868 } 6869 case RISCVISD::FMV_X_ANYEXTH: 6870 case RISCVISD::FMV_X_ANYEXTW_RV64: { 6871 SDLoc DL(N); 6872 SDValue Op0 = N->getOperand(0); 6873 MVT VT = N->getSimpleValueType(0); 6874 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 6875 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 6876 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 6877 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 6878 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 6879 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 6880 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 6881 assert(Op0.getOperand(0).getValueType() == VT && 6882 "Unexpected value type!"); 6883 return Op0.getOperand(0); 6884 } 6885 6886 // This is a target-specific version of a DAGCombine performed in 6887 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6888 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6889 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6890 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6891 !Op0.getNode()->hasOneUse()) 6892 break; 6893 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 6894 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 6895 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 6896 if (Op0.getOpcode() == ISD::FNEG) 6897 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 6898 DAG.getConstant(SignBit, DL, VT)); 6899 6900 assert(Op0.getOpcode() == ISD::FABS); 6901 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 6902 DAG.getConstant(~SignBit, DL, VT)); 6903 } 6904 case ISD::ADD: 6905 return performADDCombine(N, DAG, Subtarget); 6906 case ISD::SUB: 6907 return performSUBCombine(N, DAG); 6908 case ISD::AND: 6909 return performANDCombine(N, DAG); 6910 case ISD::OR: 6911 return performORCombine(N, DAG, Subtarget); 6912 case ISD::XOR: 6913 return performXORCombine(N, DAG); 6914 case ISD::ANY_EXTEND: 6915 return performANY_EXTENDCombine(N, DCI, Subtarget); 6916 case ISD::ZERO_EXTEND: 6917 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 6918 // type legalization. This is safe because fp_to_uint produces poison if 6919 // it overflows. 6920 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 6921 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 6922 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 6923 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 6924 N->getOperand(0).getOperand(0)); 6925 return SDValue(); 6926 case RISCVISD::SELECT_CC: { 6927 // Transform 6928 SDValue LHS = N->getOperand(0); 6929 SDValue RHS = N->getOperand(1); 6930 SDValue TrueV = N->getOperand(3); 6931 SDValue FalseV = N->getOperand(4); 6932 6933 // If the True and False values are the same, we don't need a select_cc. 6934 if (TrueV == FalseV) 6935 return TrueV; 6936 6937 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 6938 if (!ISD::isIntEqualitySetCC(CCVal)) 6939 break; 6940 6941 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 6942 // (select_cc X, Y, lt, trueV, falseV) 6943 // Sometimes the setcc is introduced after select_cc has been formed. 6944 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6945 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6946 // If we're looking for eq 0 instead of ne 0, we need to invert the 6947 // condition. 6948 bool Invert = CCVal == ISD::SETEQ; 6949 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6950 if (Invert) 6951 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6952 6953 SDLoc DL(N); 6954 RHS = LHS.getOperand(1); 6955 LHS = LHS.getOperand(0); 6956 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6957 6958 SDValue TargetCC = DAG.getCondCode(CCVal); 6959 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6960 {LHS, RHS, TargetCC, TrueV, FalseV}); 6961 } 6962 6963 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 6964 // (select_cc X, Y, eq/ne, trueV, falseV) 6965 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6966 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 6967 {LHS.getOperand(0), LHS.getOperand(1), 6968 N->getOperand(2), TrueV, FalseV}); 6969 // (select_cc X, 1, setne, trueV, falseV) -> 6970 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 6971 // This can occur when legalizing some floating point comparisons. 6972 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6973 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6974 SDLoc DL(N); 6975 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6976 SDValue TargetCC = DAG.getCondCode(CCVal); 6977 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6978 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6979 {LHS, RHS, TargetCC, TrueV, FalseV}); 6980 } 6981 6982 break; 6983 } 6984 case RISCVISD::BR_CC: { 6985 SDValue LHS = N->getOperand(1); 6986 SDValue RHS = N->getOperand(2); 6987 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 6988 if (!ISD::isIntEqualitySetCC(CCVal)) 6989 break; 6990 6991 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 6992 // (br_cc X, Y, lt, dest) 6993 // Sometimes the setcc is introduced after br_cc has been formed. 6994 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6995 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6996 // If we're looking for eq 0 instead of ne 0, we need to invert the 6997 // condition. 6998 bool Invert = CCVal == ISD::SETEQ; 6999 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7000 if (Invert) 7001 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7002 7003 SDLoc DL(N); 7004 RHS = LHS.getOperand(1); 7005 LHS = LHS.getOperand(0); 7006 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7007 7008 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7009 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7010 N->getOperand(4)); 7011 } 7012 7013 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7014 // (br_cc X, Y, eq/ne, trueV, falseV) 7015 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7016 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7017 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7018 N->getOperand(3), N->getOperand(4)); 7019 7020 // (br_cc X, 1, setne, br_cc) -> 7021 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7022 // This can occur when legalizing some floating point comparisons. 7023 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7024 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7025 SDLoc DL(N); 7026 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7027 SDValue TargetCC = DAG.getCondCode(CCVal); 7028 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7029 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7030 N->getOperand(0), LHS, RHS, TargetCC, 7031 N->getOperand(4)); 7032 } 7033 break; 7034 } 7035 case ISD::FCOPYSIGN: { 7036 EVT VT = N->getValueType(0); 7037 if (!VT.isVector()) 7038 break; 7039 // There is a form of VFSGNJ which injects the negated sign of its second 7040 // operand. Try and bubble any FNEG up after the extend/round to produce 7041 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7042 // TRUNC=1. 7043 SDValue In2 = N->getOperand(1); 7044 // Avoid cases where the extend/round has multiple uses, as duplicating 7045 // those is typically more expensive than removing a fneg. 7046 if (!In2.hasOneUse()) 7047 break; 7048 if (In2.getOpcode() != ISD::FP_EXTEND && 7049 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7050 break; 7051 In2 = In2.getOperand(0); 7052 if (In2.getOpcode() != ISD::FNEG) 7053 break; 7054 SDLoc DL(N); 7055 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7056 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7057 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7058 } 7059 case ISD::MGATHER: 7060 case ISD::MSCATTER: 7061 case ISD::VP_GATHER: 7062 case ISD::VP_SCATTER: { 7063 if (!DCI.isBeforeLegalize()) 7064 break; 7065 SDValue Index, ScaleOp; 7066 bool IsIndexScaled = false; 7067 bool IsIndexSigned = false; 7068 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7069 Index = VPGSN->getIndex(); 7070 ScaleOp = VPGSN->getScale(); 7071 IsIndexScaled = VPGSN->isIndexScaled(); 7072 IsIndexSigned = VPGSN->isIndexSigned(); 7073 } else { 7074 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7075 Index = MGSN->getIndex(); 7076 ScaleOp = MGSN->getScale(); 7077 IsIndexScaled = MGSN->isIndexScaled(); 7078 IsIndexSigned = MGSN->isIndexSigned(); 7079 } 7080 EVT IndexVT = Index.getValueType(); 7081 MVT XLenVT = Subtarget.getXLenVT(); 7082 // RISCV indexed loads only support the "unsigned unscaled" addressing 7083 // mode, so anything else must be manually legalized. 7084 bool NeedsIdxLegalization = 7085 IsIndexScaled || 7086 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7087 if (!NeedsIdxLegalization) 7088 break; 7089 7090 SDLoc DL(N); 7091 7092 // Any index legalization should first promote to XLenVT, so we don't lose 7093 // bits when scaling. This may create an illegal index type so we let 7094 // LLVM's legalization take care of the splitting. 7095 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7096 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7097 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7098 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7099 DL, IndexVT, Index); 7100 } 7101 7102 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7103 if (IsIndexScaled && Scale != 1) { 7104 // Manually scale the indices by the element size. 7105 // TODO: Sanitize the scale operand here? 7106 // TODO: For VP nodes, should we use VP_SHL here? 7107 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7108 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7109 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7110 } 7111 7112 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7113 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7114 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7115 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7116 VPGN->getScale(), VPGN->getMask(), 7117 VPGN->getVectorLength()}, 7118 VPGN->getMemOperand(), NewIndexTy); 7119 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7120 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7121 {VPSN->getChain(), VPSN->getValue(), 7122 VPSN->getBasePtr(), Index, VPSN->getScale(), 7123 VPSN->getMask(), VPSN->getVectorLength()}, 7124 VPSN->getMemOperand(), NewIndexTy); 7125 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7126 return DAG.getMaskedGather( 7127 N->getVTList(), MGN->getMemoryVT(), DL, 7128 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7129 MGN->getBasePtr(), Index, MGN->getScale()}, 7130 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7131 const auto *MSN = cast<MaskedScatterSDNode>(N); 7132 return DAG.getMaskedScatter( 7133 N->getVTList(), MSN->getMemoryVT(), DL, 7134 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7135 Index, MSN->getScale()}, 7136 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7137 } 7138 case RISCVISD::SRA_VL: 7139 case RISCVISD::SRL_VL: 7140 case RISCVISD::SHL_VL: { 7141 SDValue ShAmt = N->getOperand(1); 7142 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7143 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7144 SDLoc DL(N); 7145 SDValue VL = N->getOperand(3); 7146 EVT VT = N->getValueType(0); 7147 ShAmt = 7148 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7149 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7150 N->getOperand(2), N->getOperand(3)); 7151 } 7152 break; 7153 } 7154 case ISD::SRA: 7155 case ISD::SRL: 7156 case ISD::SHL: { 7157 SDValue ShAmt = N->getOperand(1); 7158 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7159 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7160 SDLoc DL(N); 7161 EVT VT = N->getValueType(0); 7162 ShAmt = 7163 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7164 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7165 } 7166 break; 7167 } 7168 case RISCVISD::MUL_VL: { 7169 SDValue Op0 = N->getOperand(0); 7170 SDValue Op1 = N->getOperand(1); 7171 if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG)) 7172 return V; 7173 if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG)) 7174 return V; 7175 return SDValue(); 7176 } 7177 case ISD::STORE: { 7178 auto *Store = cast<StoreSDNode>(N); 7179 SDValue Val = Store->getValue(); 7180 // Combine store of vmv.x.s to vse with VL of 1. 7181 // FIXME: Support FP. 7182 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7183 SDValue Src = Val.getOperand(0); 7184 EVT VecVT = Src.getValueType(); 7185 EVT MemVT = Store->getMemoryVT(); 7186 // The memory VT and the element type must match. 7187 if (VecVT.getVectorElementType() == MemVT) { 7188 SDLoc DL(N); 7189 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7190 return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(), 7191 DAG.getConstant(1, DL, MaskVT), 7192 DAG.getConstant(1, DL, Subtarget.getXLenVT()), 7193 Store->getPointerInfo(), 7194 Store->getOriginalAlign(), 7195 Store->getMemOperand()->getFlags()); 7196 } 7197 } 7198 7199 break; 7200 } 7201 } 7202 7203 return SDValue(); 7204 } 7205 7206 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7207 const SDNode *N, CombineLevel Level) const { 7208 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7209 // materialised in fewer instructions than `(OP _, c1)`: 7210 // 7211 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7212 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7213 SDValue N0 = N->getOperand(0); 7214 EVT Ty = N0.getValueType(); 7215 if (Ty.isScalarInteger() && 7216 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7217 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7218 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7219 if (C1 && C2) { 7220 const APInt &C1Int = C1->getAPIntValue(); 7221 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7222 7223 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7224 // and the combine should happen, to potentially allow further combines 7225 // later. 7226 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7227 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7228 return true; 7229 7230 // We can materialise `c1` in an add immediate, so it's "free", and the 7231 // combine should be prevented. 7232 if (C1Int.getMinSignedBits() <= 64 && 7233 isLegalAddImmediate(C1Int.getSExtValue())) 7234 return false; 7235 7236 // Neither constant will fit into an immediate, so find materialisation 7237 // costs. 7238 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7239 Subtarget.getFeatureBits(), 7240 /*CompressionCost*/true); 7241 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7242 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7243 /*CompressionCost*/true); 7244 7245 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7246 // combine should be prevented. 7247 if (C1Cost < ShiftedC1Cost) 7248 return false; 7249 } 7250 } 7251 return true; 7252 } 7253 7254 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7255 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7256 TargetLoweringOpt &TLO) const { 7257 // Delay this optimization as late as possible. 7258 if (!TLO.LegalOps) 7259 return false; 7260 7261 EVT VT = Op.getValueType(); 7262 if (VT.isVector()) 7263 return false; 7264 7265 // Only handle AND for now. 7266 if (Op.getOpcode() != ISD::AND) 7267 return false; 7268 7269 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7270 if (!C) 7271 return false; 7272 7273 const APInt &Mask = C->getAPIntValue(); 7274 7275 // Clear all non-demanded bits initially. 7276 APInt ShrunkMask = Mask & DemandedBits; 7277 7278 // Try to make a smaller immediate by setting undemanded bits. 7279 7280 APInt ExpandedMask = Mask | ~DemandedBits; 7281 7282 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7283 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7284 }; 7285 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7286 if (NewMask == Mask) 7287 return true; 7288 SDLoc DL(Op); 7289 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7290 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7291 return TLO.CombineTo(Op, NewOp); 7292 }; 7293 7294 // If the shrunk mask fits in sign extended 12 bits, let the target 7295 // independent code apply it. 7296 if (ShrunkMask.isSignedIntN(12)) 7297 return false; 7298 7299 // Preserve (and X, 0xffff) when zext.h is supported. 7300 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7301 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7302 if (IsLegalMask(NewMask)) 7303 return UseMask(NewMask); 7304 } 7305 7306 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7307 if (VT == MVT::i64) { 7308 APInt NewMask = APInt(64, 0xffffffff); 7309 if (IsLegalMask(NewMask)) 7310 return UseMask(NewMask); 7311 } 7312 7313 // For the remaining optimizations, we need to be able to make a negative 7314 // number through a combination of mask and undemanded bits. 7315 if (!ExpandedMask.isNegative()) 7316 return false; 7317 7318 // What is the fewest number of bits we need to represent the negative number. 7319 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7320 7321 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7322 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7323 APInt NewMask = ShrunkMask; 7324 if (MinSignedBits <= 12) 7325 NewMask.setBitsFrom(11); 7326 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7327 NewMask.setBitsFrom(31); 7328 else 7329 return false; 7330 7331 // Sanity check that our new mask is a subset of the demanded mask. 7332 assert(IsLegalMask(NewMask)); 7333 return UseMask(NewMask); 7334 } 7335 7336 static void computeGREV(APInt &Src, unsigned ShAmt) { 7337 ShAmt &= Src.getBitWidth() - 1; 7338 uint64_t x = Src.getZExtValue(); 7339 if (ShAmt & 1) 7340 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7341 if (ShAmt & 2) 7342 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7343 if (ShAmt & 4) 7344 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7345 if (ShAmt & 8) 7346 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7347 if (ShAmt & 16) 7348 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7349 if (ShAmt & 32) 7350 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7351 Src = x; 7352 } 7353 7354 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7355 KnownBits &Known, 7356 const APInt &DemandedElts, 7357 const SelectionDAG &DAG, 7358 unsigned Depth) const { 7359 unsigned BitWidth = Known.getBitWidth(); 7360 unsigned Opc = Op.getOpcode(); 7361 assert((Opc >= ISD::BUILTIN_OP_END || 7362 Opc == ISD::INTRINSIC_WO_CHAIN || 7363 Opc == ISD::INTRINSIC_W_CHAIN || 7364 Opc == ISD::INTRINSIC_VOID) && 7365 "Should use MaskedValueIsZero if you don't know whether Op" 7366 " is a target node!"); 7367 7368 Known.resetAll(); 7369 switch (Opc) { 7370 default: break; 7371 case RISCVISD::SELECT_CC: { 7372 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7373 // If we don't know any bits, early out. 7374 if (Known.isUnknown()) 7375 break; 7376 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7377 7378 // Only known if known in both the LHS and RHS. 7379 Known = KnownBits::commonBits(Known, Known2); 7380 break; 7381 } 7382 case RISCVISD::REMUW: { 7383 KnownBits Known2; 7384 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7385 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7386 // We only care about the lower 32 bits. 7387 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7388 // Restore the original width by sign extending. 7389 Known = Known.sext(BitWidth); 7390 break; 7391 } 7392 case RISCVISD::DIVUW: { 7393 KnownBits Known2; 7394 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7395 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7396 // We only care about the lower 32 bits. 7397 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7398 // Restore the original width by sign extending. 7399 Known = Known.sext(BitWidth); 7400 break; 7401 } 7402 case RISCVISD::CTZW: { 7403 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7404 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7405 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7406 Known.Zero.setBitsFrom(LowBits); 7407 break; 7408 } 7409 case RISCVISD::CLZW: { 7410 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7411 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7412 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7413 Known.Zero.setBitsFrom(LowBits); 7414 break; 7415 } 7416 case RISCVISD::GREV: 7417 case RISCVISD::GREVW: { 7418 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7419 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7420 if (Opc == RISCVISD::GREVW) 7421 Known = Known.trunc(32); 7422 unsigned ShAmt = C->getZExtValue(); 7423 computeGREV(Known.Zero, ShAmt); 7424 computeGREV(Known.One, ShAmt); 7425 if (Opc == RISCVISD::GREVW) 7426 Known = Known.sext(BitWidth); 7427 } 7428 break; 7429 } 7430 case RISCVISD::READ_VLENB: 7431 // We assume VLENB is at least 16 bytes. 7432 Known.Zero.setLowBits(4); 7433 // We assume VLENB is no more than 65536 / 8 bytes. 7434 Known.Zero.setBitsFrom(14); 7435 break; 7436 case ISD::INTRINSIC_W_CHAIN: { 7437 unsigned IntNo = Op.getConstantOperandVal(1); 7438 switch (IntNo) { 7439 default: 7440 // We can't do anything for most intrinsics. 7441 break; 7442 case Intrinsic::riscv_vsetvli: 7443 case Intrinsic::riscv_vsetvlimax: 7444 // Assume that VL output is positive and would fit in an int32_t. 7445 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7446 if (BitWidth >= 32) 7447 Known.Zero.setBitsFrom(31); 7448 break; 7449 } 7450 break; 7451 } 7452 } 7453 } 7454 7455 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7456 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7457 unsigned Depth) const { 7458 switch (Op.getOpcode()) { 7459 default: 7460 break; 7461 case RISCVISD::SELECT_CC: { 7462 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7463 if (Tmp == 1) return 1; // Early out. 7464 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7465 return std::min(Tmp, Tmp2); 7466 } 7467 case RISCVISD::SLLW: 7468 case RISCVISD::SRAW: 7469 case RISCVISD::SRLW: 7470 case RISCVISD::DIVW: 7471 case RISCVISD::DIVUW: 7472 case RISCVISD::REMUW: 7473 case RISCVISD::ROLW: 7474 case RISCVISD::RORW: 7475 case RISCVISD::GREVW: 7476 case RISCVISD::GORCW: 7477 case RISCVISD::FSLW: 7478 case RISCVISD::FSRW: 7479 case RISCVISD::SHFLW: 7480 case RISCVISD::UNSHFLW: 7481 case RISCVISD::BCOMPRESSW: 7482 case RISCVISD::BDECOMPRESSW: 7483 case RISCVISD::FCVT_W_RTZ_RV64: 7484 case RISCVISD::FCVT_WU_RTZ_RV64: 7485 // TODO: As the result is sign-extended, this is conservatively correct. A 7486 // more precise answer could be calculated for SRAW depending on known 7487 // bits in the shift amount. 7488 return 33; 7489 case RISCVISD::SHFL: 7490 case RISCVISD::UNSHFL: { 7491 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7492 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7493 // will stay within the upper 32 bits. If there were more than 32 sign bits 7494 // before there will be at least 33 sign bits after. 7495 if (Op.getValueType() == MVT::i64 && 7496 isa<ConstantSDNode>(Op.getOperand(1)) && 7497 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7498 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7499 if (Tmp > 32) 7500 return 33; 7501 } 7502 break; 7503 } 7504 case RISCVISD::VMV_X_S: 7505 // The number of sign bits of the scalar result is computed by obtaining the 7506 // element type of the input vector operand, subtracting its width from the 7507 // XLEN, and then adding one (sign bit within the element type). If the 7508 // element type is wider than XLen, the least-significant XLEN bits are 7509 // taken. 7510 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7511 return 1; 7512 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 7513 } 7514 7515 return 1; 7516 } 7517 7518 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 7519 MachineBasicBlock *BB) { 7520 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 7521 7522 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 7523 // Should the count have wrapped while it was being read, we need to try 7524 // again. 7525 // ... 7526 // read: 7527 // rdcycleh x3 # load high word of cycle 7528 // rdcycle x2 # load low word of cycle 7529 // rdcycleh x4 # load high word of cycle 7530 // bne x3, x4, read # check if high word reads match, otherwise try again 7531 // ... 7532 7533 MachineFunction &MF = *BB->getParent(); 7534 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7535 MachineFunction::iterator It = ++BB->getIterator(); 7536 7537 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7538 MF.insert(It, LoopMBB); 7539 7540 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7541 MF.insert(It, DoneMBB); 7542 7543 // Transfer the remainder of BB and its successor edges to DoneMBB. 7544 DoneMBB->splice(DoneMBB->begin(), BB, 7545 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7546 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 7547 7548 BB->addSuccessor(LoopMBB); 7549 7550 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7551 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7552 Register LoReg = MI.getOperand(0).getReg(); 7553 Register HiReg = MI.getOperand(1).getReg(); 7554 DebugLoc DL = MI.getDebugLoc(); 7555 7556 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 7557 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 7558 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7559 .addReg(RISCV::X0); 7560 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 7561 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 7562 .addReg(RISCV::X0); 7563 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7564 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7565 .addReg(RISCV::X0); 7566 7567 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 7568 .addReg(HiReg) 7569 .addReg(ReadAgainReg) 7570 .addMBB(LoopMBB); 7571 7572 LoopMBB->addSuccessor(LoopMBB); 7573 LoopMBB->addSuccessor(DoneMBB); 7574 7575 MI.eraseFromParent(); 7576 7577 return DoneMBB; 7578 } 7579 7580 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 7581 MachineBasicBlock *BB) { 7582 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 7583 7584 MachineFunction &MF = *BB->getParent(); 7585 DebugLoc DL = MI.getDebugLoc(); 7586 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7587 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7588 Register LoReg = MI.getOperand(0).getReg(); 7589 Register HiReg = MI.getOperand(1).getReg(); 7590 Register SrcReg = MI.getOperand(2).getReg(); 7591 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 7592 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7593 7594 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 7595 RI); 7596 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7597 MachineMemOperand *MMOLo = 7598 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 7599 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7600 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 7601 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 7602 .addFrameIndex(FI) 7603 .addImm(0) 7604 .addMemOperand(MMOLo); 7605 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 7606 .addFrameIndex(FI) 7607 .addImm(4) 7608 .addMemOperand(MMOHi); 7609 MI.eraseFromParent(); // The pseudo instruction is gone now. 7610 return BB; 7611 } 7612 7613 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 7614 MachineBasicBlock *BB) { 7615 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 7616 "Unexpected instruction"); 7617 7618 MachineFunction &MF = *BB->getParent(); 7619 DebugLoc DL = MI.getDebugLoc(); 7620 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7621 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7622 Register DstReg = MI.getOperand(0).getReg(); 7623 Register LoReg = MI.getOperand(1).getReg(); 7624 Register HiReg = MI.getOperand(2).getReg(); 7625 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7626 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7627 7628 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7629 MachineMemOperand *MMOLo = 7630 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7631 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7632 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7633 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7634 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7635 .addFrameIndex(FI) 7636 .addImm(0) 7637 .addMemOperand(MMOLo); 7638 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7639 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7640 .addFrameIndex(FI) 7641 .addImm(4) 7642 .addMemOperand(MMOHi); 7643 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7644 MI.eraseFromParent(); // The pseudo instruction is gone now. 7645 return BB; 7646 } 7647 7648 static bool isSelectPseudo(MachineInstr &MI) { 7649 switch (MI.getOpcode()) { 7650 default: 7651 return false; 7652 case RISCV::Select_GPR_Using_CC_GPR: 7653 case RISCV::Select_FPR16_Using_CC_GPR: 7654 case RISCV::Select_FPR32_Using_CC_GPR: 7655 case RISCV::Select_FPR64_Using_CC_GPR: 7656 return true; 7657 } 7658 } 7659 7660 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7661 MachineBasicBlock *BB, 7662 const RISCVSubtarget &Subtarget) { 7663 // To "insert" Select_* instructions, we actually have to insert the triangle 7664 // control-flow pattern. The incoming instructions know the destination vreg 7665 // to set, the condition code register to branch on, the true/false values to 7666 // select between, and the condcode to use to select the appropriate branch. 7667 // 7668 // We produce the following control flow: 7669 // HeadMBB 7670 // | \ 7671 // | IfFalseMBB 7672 // | / 7673 // TailMBB 7674 // 7675 // When we find a sequence of selects we attempt to optimize their emission 7676 // by sharing the control flow. Currently we only handle cases where we have 7677 // multiple selects with the exact same condition (same LHS, RHS and CC). 7678 // The selects may be interleaved with other instructions if the other 7679 // instructions meet some requirements we deem safe: 7680 // - They are debug instructions. Otherwise, 7681 // - They do not have side-effects, do not access memory and their inputs do 7682 // not depend on the results of the select pseudo-instructions. 7683 // The TrueV/FalseV operands of the selects cannot depend on the result of 7684 // previous selects in the sequence. 7685 // These conditions could be further relaxed. See the X86 target for a 7686 // related approach and more information. 7687 Register LHS = MI.getOperand(1).getReg(); 7688 Register RHS = MI.getOperand(2).getReg(); 7689 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 7690 7691 SmallVector<MachineInstr *, 4> SelectDebugValues; 7692 SmallSet<Register, 4> SelectDests; 7693 SelectDests.insert(MI.getOperand(0).getReg()); 7694 7695 MachineInstr *LastSelectPseudo = &MI; 7696 7697 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 7698 SequenceMBBI != E; ++SequenceMBBI) { 7699 if (SequenceMBBI->isDebugInstr()) 7700 continue; 7701 else if (isSelectPseudo(*SequenceMBBI)) { 7702 if (SequenceMBBI->getOperand(1).getReg() != LHS || 7703 SequenceMBBI->getOperand(2).getReg() != RHS || 7704 SequenceMBBI->getOperand(3).getImm() != CC || 7705 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 7706 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 7707 break; 7708 LastSelectPseudo = &*SequenceMBBI; 7709 SequenceMBBI->collectDebugValues(SelectDebugValues); 7710 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 7711 } else { 7712 if (SequenceMBBI->hasUnmodeledSideEffects() || 7713 SequenceMBBI->mayLoadOrStore()) 7714 break; 7715 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 7716 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 7717 })) 7718 break; 7719 } 7720 } 7721 7722 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 7723 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7724 DebugLoc DL = MI.getDebugLoc(); 7725 MachineFunction::iterator I = ++BB->getIterator(); 7726 7727 MachineBasicBlock *HeadMBB = BB; 7728 MachineFunction *F = BB->getParent(); 7729 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 7730 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 7731 7732 F->insert(I, IfFalseMBB); 7733 F->insert(I, TailMBB); 7734 7735 // Transfer debug instructions associated with the selects to TailMBB. 7736 for (MachineInstr *DebugInstr : SelectDebugValues) { 7737 TailMBB->push_back(DebugInstr->removeFromParent()); 7738 } 7739 7740 // Move all instructions after the sequence to TailMBB. 7741 TailMBB->splice(TailMBB->end(), HeadMBB, 7742 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 7743 // Update machine-CFG edges by transferring all successors of the current 7744 // block to the new block which will contain the Phi nodes for the selects. 7745 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 7746 // Set the successors for HeadMBB. 7747 HeadMBB->addSuccessor(IfFalseMBB); 7748 HeadMBB->addSuccessor(TailMBB); 7749 7750 // Insert appropriate branch. 7751 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 7752 .addReg(LHS) 7753 .addReg(RHS) 7754 .addMBB(TailMBB); 7755 7756 // IfFalseMBB just falls through to TailMBB. 7757 IfFalseMBB->addSuccessor(TailMBB); 7758 7759 // Create PHIs for all of the select pseudo-instructions. 7760 auto SelectMBBI = MI.getIterator(); 7761 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 7762 auto InsertionPoint = TailMBB->begin(); 7763 while (SelectMBBI != SelectEnd) { 7764 auto Next = std::next(SelectMBBI); 7765 if (isSelectPseudo(*SelectMBBI)) { 7766 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 7767 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 7768 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 7769 .addReg(SelectMBBI->getOperand(4).getReg()) 7770 .addMBB(HeadMBB) 7771 .addReg(SelectMBBI->getOperand(5).getReg()) 7772 .addMBB(IfFalseMBB); 7773 SelectMBBI->eraseFromParent(); 7774 } 7775 SelectMBBI = Next; 7776 } 7777 7778 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7779 return TailMBB; 7780 } 7781 7782 MachineBasicBlock * 7783 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 7784 MachineBasicBlock *BB) const { 7785 switch (MI.getOpcode()) { 7786 default: 7787 llvm_unreachable("Unexpected instr type to insert"); 7788 case RISCV::ReadCycleWide: 7789 assert(!Subtarget.is64Bit() && 7790 "ReadCycleWrite is only to be used on riscv32"); 7791 return emitReadCycleWidePseudo(MI, BB); 7792 case RISCV::Select_GPR_Using_CC_GPR: 7793 case RISCV::Select_FPR16_Using_CC_GPR: 7794 case RISCV::Select_FPR32_Using_CC_GPR: 7795 case RISCV::Select_FPR64_Using_CC_GPR: 7796 return emitSelectPseudo(MI, BB, Subtarget); 7797 case RISCV::BuildPairF64Pseudo: 7798 return emitBuildPairF64Pseudo(MI, BB); 7799 case RISCV::SplitF64Pseudo: 7800 return emitSplitF64Pseudo(MI, BB); 7801 } 7802 } 7803 7804 // Calling Convention Implementation. 7805 // The expectations for frontend ABI lowering vary from target to target. 7806 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 7807 // details, but this is a longer term goal. For now, we simply try to keep the 7808 // role of the frontend as simple and well-defined as possible. The rules can 7809 // be summarised as: 7810 // * Never split up large scalar arguments. We handle them here. 7811 // * If a hardfloat calling convention is being used, and the struct may be 7812 // passed in a pair of registers (fp+fp, int+fp), and both registers are 7813 // available, then pass as two separate arguments. If either the GPRs or FPRs 7814 // are exhausted, then pass according to the rule below. 7815 // * If a struct could never be passed in registers or directly in a stack 7816 // slot (as it is larger than 2*XLEN and the floating point rules don't 7817 // apply), then pass it using a pointer with the byval attribute. 7818 // * If a struct is less than 2*XLEN, then coerce to either a two-element 7819 // word-sized array or a 2*XLEN scalar (depending on alignment). 7820 // * The frontend can determine whether a struct is returned by reference or 7821 // not based on its size and fields. If it will be returned by reference, the 7822 // frontend must modify the prototype so a pointer with the sret annotation is 7823 // passed as the first argument. This is not necessary for large scalar 7824 // returns. 7825 // * Struct return values and varargs should be coerced to structs containing 7826 // register-size fields in the same situations they would be for fixed 7827 // arguments. 7828 7829 static const MCPhysReg ArgGPRs[] = { 7830 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 7831 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 7832 }; 7833 static const MCPhysReg ArgFPR16s[] = { 7834 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 7835 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 7836 }; 7837 static const MCPhysReg ArgFPR32s[] = { 7838 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 7839 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 7840 }; 7841 static const MCPhysReg ArgFPR64s[] = { 7842 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 7843 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 7844 }; 7845 // This is an interim calling convention and it may be changed in the future. 7846 static const MCPhysReg ArgVRs[] = { 7847 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 7848 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 7849 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 7850 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 7851 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 7852 RISCV::V20M2, RISCV::V22M2}; 7853 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 7854 RISCV::V20M4}; 7855 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 7856 7857 // Pass a 2*XLEN argument that has been split into two XLEN values through 7858 // registers or the stack as necessary. 7859 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 7860 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 7861 MVT ValVT2, MVT LocVT2, 7862 ISD::ArgFlagsTy ArgFlags2) { 7863 unsigned XLenInBytes = XLen / 8; 7864 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7865 // At least one half can be passed via register. 7866 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 7867 VA1.getLocVT(), CCValAssign::Full)); 7868 } else { 7869 // Both halves must be passed on the stack, with proper alignment. 7870 Align StackAlign = 7871 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 7872 State.addLoc( 7873 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 7874 State.AllocateStack(XLenInBytes, StackAlign), 7875 VA1.getLocVT(), CCValAssign::Full)); 7876 State.addLoc(CCValAssign::getMem( 7877 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7878 LocVT2, CCValAssign::Full)); 7879 return false; 7880 } 7881 7882 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7883 // The second half can also be passed via register. 7884 State.addLoc( 7885 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 7886 } else { 7887 // The second half is passed via the stack, without additional alignment. 7888 State.addLoc(CCValAssign::getMem( 7889 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7890 LocVT2, CCValAssign::Full)); 7891 } 7892 7893 return false; 7894 } 7895 7896 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 7897 Optional<unsigned> FirstMaskArgument, 7898 CCState &State, const RISCVTargetLowering &TLI) { 7899 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 7900 if (RC == &RISCV::VRRegClass) { 7901 // Assign the first mask argument to V0. 7902 // This is an interim calling convention and it may be changed in the 7903 // future. 7904 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 7905 return State.AllocateReg(RISCV::V0); 7906 return State.AllocateReg(ArgVRs); 7907 } 7908 if (RC == &RISCV::VRM2RegClass) 7909 return State.AllocateReg(ArgVRM2s); 7910 if (RC == &RISCV::VRM4RegClass) 7911 return State.AllocateReg(ArgVRM4s); 7912 if (RC == &RISCV::VRM8RegClass) 7913 return State.AllocateReg(ArgVRM8s); 7914 llvm_unreachable("Unhandled register class for ValueType"); 7915 } 7916 7917 // Implements the RISC-V calling convention. Returns true upon failure. 7918 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 7919 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 7920 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 7921 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 7922 Optional<unsigned> FirstMaskArgument) { 7923 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 7924 assert(XLen == 32 || XLen == 64); 7925 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 7926 7927 // Any return value split in to more than two values can't be returned 7928 // directly. Vectors are returned via the available vector registers. 7929 if (!LocVT.isVector() && IsRet && ValNo > 1) 7930 return true; 7931 7932 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 7933 // variadic argument, or if no F16/F32 argument registers are available. 7934 bool UseGPRForF16_F32 = true; 7935 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 7936 // variadic argument, or if no F64 argument registers are available. 7937 bool UseGPRForF64 = true; 7938 7939 switch (ABI) { 7940 default: 7941 llvm_unreachable("Unexpected ABI"); 7942 case RISCVABI::ABI_ILP32: 7943 case RISCVABI::ABI_LP64: 7944 break; 7945 case RISCVABI::ABI_ILP32F: 7946 case RISCVABI::ABI_LP64F: 7947 UseGPRForF16_F32 = !IsFixed; 7948 break; 7949 case RISCVABI::ABI_ILP32D: 7950 case RISCVABI::ABI_LP64D: 7951 UseGPRForF16_F32 = !IsFixed; 7952 UseGPRForF64 = !IsFixed; 7953 break; 7954 } 7955 7956 // FPR16, FPR32, and FPR64 alias each other. 7957 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 7958 UseGPRForF16_F32 = true; 7959 UseGPRForF64 = true; 7960 } 7961 7962 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 7963 // similar local variables rather than directly checking against the target 7964 // ABI. 7965 7966 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 7967 LocVT = XLenVT; 7968 LocInfo = CCValAssign::BCvt; 7969 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 7970 LocVT = MVT::i64; 7971 LocInfo = CCValAssign::BCvt; 7972 } 7973 7974 // If this is a variadic argument, the RISC-V calling convention requires 7975 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 7976 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 7977 // be used regardless of whether the original argument was split during 7978 // legalisation or not. The argument will not be passed by registers if the 7979 // original type is larger than 2*XLEN, so the register alignment rule does 7980 // not apply. 7981 unsigned TwoXLenInBytes = (2 * XLen) / 8; 7982 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 7983 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 7984 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 7985 // Skip 'odd' register if necessary. 7986 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 7987 State.AllocateReg(ArgGPRs); 7988 } 7989 7990 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 7991 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 7992 State.getPendingArgFlags(); 7993 7994 assert(PendingLocs.size() == PendingArgFlags.size() && 7995 "PendingLocs and PendingArgFlags out of sync"); 7996 7997 // Handle passing f64 on RV32D with a soft float ABI or when floating point 7998 // registers are exhausted. 7999 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8000 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8001 "Can't lower f64 if it is split"); 8002 // Depending on available argument GPRS, f64 may be passed in a pair of 8003 // GPRs, split between a GPR and the stack, or passed completely on the 8004 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8005 // cases. 8006 Register Reg = State.AllocateReg(ArgGPRs); 8007 LocVT = MVT::i32; 8008 if (!Reg) { 8009 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8010 State.addLoc( 8011 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8012 return false; 8013 } 8014 if (!State.AllocateReg(ArgGPRs)) 8015 State.AllocateStack(4, Align(4)); 8016 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8017 return false; 8018 } 8019 8020 // Fixed-length vectors are located in the corresponding scalable-vector 8021 // container types. 8022 if (ValVT.isFixedLengthVector()) 8023 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8024 8025 // Split arguments might be passed indirectly, so keep track of the pending 8026 // values. Split vectors are passed via a mix of registers and indirectly, so 8027 // treat them as we would any other argument. 8028 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8029 LocVT = XLenVT; 8030 LocInfo = CCValAssign::Indirect; 8031 PendingLocs.push_back( 8032 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8033 PendingArgFlags.push_back(ArgFlags); 8034 if (!ArgFlags.isSplitEnd()) { 8035 return false; 8036 } 8037 } 8038 8039 // If the split argument only had two elements, it should be passed directly 8040 // in registers or on the stack. 8041 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8042 PendingLocs.size() <= 2) { 8043 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8044 // Apply the normal calling convention rules to the first half of the 8045 // split argument. 8046 CCValAssign VA = PendingLocs[0]; 8047 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8048 PendingLocs.clear(); 8049 PendingArgFlags.clear(); 8050 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8051 ArgFlags); 8052 } 8053 8054 // Allocate to a register if possible, or else a stack slot. 8055 Register Reg; 8056 unsigned StoreSizeBytes = XLen / 8; 8057 Align StackAlign = Align(XLen / 8); 8058 8059 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8060 Reg = State.AllocateReg(ArgFPR16s); 8061 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8062 Reg = State.AllocateReg(ArgFPR32s); 8063 else if (ValVT == MVT::f64 && !UseGPRForF64) 8064 Reg = State.AllocateReg(ArgFPR64s); 8065 else if (ValVT.isVector()) { 8066 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8067 if (!Reg) { 8068 // For return values, the vector must be passed fully via registers or 8069 // via the stack. 8070 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8071 // but we're using all of them. 8072 if (IsRet) 8073 return true; 8074 // Try using a GPR to pass the address 8075 if ((Reg = State.AllocateReg(ArgGPRs))) { 8076 LocVT = XLenVT; 8077 LocInfo = CCValAssign::Indirect; 8078 } else if (ValVT.isScalableVector()) { 8079 report_fatal_error("Unable to pass scalable vector types on the stack"); 8080 } else { 8081 // Pass fixed-length vectors on the stack. 8082 LocVT = ValVT; 8083 StoreSizeBytes = ValVT.getStoreSize(); 8084 // Align vectors to their element sizes, being careful for vXi1 8085 // vectors. 8086 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8087 } 8088 } 8089 } else { 8090 Reg = State.AllocateReg(ArgGPRs); 8091 } 8092 8093 unsigned StackOffset = 8094 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8095 8096 // If we reach this point and PendingLocs is non-empty, we must be at the 8097 // end of a split argument that must be passed indirectly. 8098 if (!PendingLocs.empty()) { 8099 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8100 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8101 8102 for (auto &It : PendingLocs) { 8103 if (Reg) 8104 It.convertToReg(Reg); 8105 else 8106 It.convertToMem(StackOffset); 8107 State.addLoc(It); 8108 } 8109 PendingLocs.clear(); 8110 PendingArgFlags.clear(); 8111 return false; 8112 } 8113 8114 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8115 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8116 "Expected an XLenVT or vector types at this stage"); 8117 8118 if (Reg) { 8119 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8120 return false; 8121 } 8122 8123 // When a floating-point value is passed on the stack, no bit-conversion is 8124 // needed. 8125 if (ValVT.isFloatingPoint()) { 8126 LocVT = ValVT; 8127 LocInfo = CCValAssign::Full; 8128 } 8129 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8130 return false; 8131 } 8132 8133 template <typename ArgTy> 8134 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8135 for (const auto &ArgIdx : enumerate(Args)) { 8136 MVT ArgVT = ArgIdx.value().VT; 8137 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8138 return ArgIdx.index(); 8139 } 8140 return None; 8141 } 8142 8143 void RISCVTargetLowering::analyzeInputArgs( 8144 MachineFunction &MF, CCState &CCInfo, 8145 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8146 RISCVCCAssignFn Fn) const { 8147 unsigned NumArgs = Ins.size(); 8148 FunctionType *FType = MF.getFunction().getFunctionType(); 8149 8150 Optional<unsigned> FirstMaskArgument; 8151 if (Subtarget.hasVInstructions()) 8152 FirstMaskArgument = preAssignMask(Ins); 8153 8154 for (unsigned i = 0; i != NumArgs; ++i) { 8155 MVT ArgVT = Ins[i].VT; 8156 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8157 8158 Type *ArgTy = nullptr; 8159 if (IsRet) 8160 ArgTy = FType->getReturnType(); 8161 else if (Ins[i].isOrigArg()) 8162 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8163 8164 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8165 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8166 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8167 FirstMaskArgument)) { 8168 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8169 << EVT(ArgVT).getEVTString() << '\n'); 8170 llvm_unreachable(nullptr); 8171 } 8172 } 8173 } 8174 8175 void RISCVTargetLowering::analyzeOutputArgs( 8176 MachineFunction &MF, CCState &CCInfo, 8177 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8178 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8179 unsigned NumArgs = Outs.size(); 8180 8181 Optional<unsigned> FirstMaskArgument; 8182 if (Subtarget.hasVInstructions()) 8183 FirstMaskArgument = preAssignMask(Outs); 8184 8185 for (unsigned i = 0; i != NumArgs; i++) { 8186 MVT ArgVT = Outs[i].VT; 8187 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8188 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8189 8190 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8191 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8192 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8193 FirstMaskArgument)) { 8194 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8195 << EVT(ArgVT).getEVTString() << "\n"); 8196 llvm_unreachable(nullptr); 8197 } 8198 } 8199 } 8200 8201 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8202 // values. 8203 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8204 const CCValAssign &VA, const SDLoc &DL, 8205 const RISCVSubtarget &Subtarget) { 8206 switch (VA.getLocInfo()) { 8207 default: 8208 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8209 case CCValAssign::Full: 8210 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8211 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8212 break; 8213 case CCValAssign::BCvt: 8214 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8215 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8216 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8217 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8218 else 8219 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8220 break; 8221 } 8222 return Val; 8223 } 8224 8225 // The caller is responsible for loading the full value if the argument is 8226 // passed with CCValAssign::Indirect. 8227 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8228 const CCValAssign &VA, const SDLoc &DL, 8229 const RISCVTargetLowering &TLI) { 8230 MachineFunction &MF = DAG.getMachineFunction(); 8231 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8232 EVT LocVT = VA.getLocVT(); 8233 SDValue Val; 8234 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8235 Register VReg = RegInfo.createVirtualRegister(RC); 8236 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8237 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8238 8239 if (VA.getLocInfo() == CCValAssign::Indirect) 8240 return Val; 8241 8242 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8243 } 8244 8245 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8246 const CCValAssign &VA, const SDLoc &DL, 8247 const RISCVSubtarget &Subtarget) { 8248 EVT LocVT = VA.getLocVT(); 8249 8250 switch (VA.getLocInfo()) { 8251 default: 8252 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8253 case CCValAssign::Full: 8254 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8255 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8256 break; 8257 case CCValAssign::BCvt: 8258 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8259 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8260 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8261 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8262 else 8263 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8264 break; 8265 } 8266 return Val; 8267 } 8268 8269 // The caller is responsible for loading the full value if the argument is 8270 // passed with CCValAssign::Indirect. 8271 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8272 const CCValAssign &VA, const SDLoc &DL) { 8273 MachineFunction &MF = DAG.getMachineFunction(); 8274 MachineFrameInfo &MFI = MF.getFrameInfo(); 8275 EVT LocVT = VA.getLocVT(); 8276 EVT ValVT = VA.getValVT(); 8277 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8278 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8279 /*Immutable=*/true); 8280 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8281 SDValue Val; 8282 8283 ISD::LoadExtType ExtType; 8284 switch (VA.getLocInfo()) { 8285 default: 8286 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8287 case CCValAssign::Full: 8288 case CCValAssign::Indirect: 8289 case CCValAssign::BCvt: 8290 ExtType = ISD::NON_EXTLOAD; 8291 break; 8292 } 8293 Val = DAG.getExtLoad( 8294 ExtType, DL, LocVT, Chain, FIN, 8295 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8296 return Val; 8297 } 8298 8299 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8300 const CCValAssign &VA, const SDLoc &DL) { 8301 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8302 "Unexpected VA"); 8303 MachineFunction &MF = DAG.getMachineFunction(); 8304 MachineFrameInfo &MFI = MF.getFrameInfo(); 8305 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8306 8307 if (VA.isMemLoc()) { 8308 // f64 is passed on the stack. 8309 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 8310 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8311 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8312 MachinePointerInfo::getFixedStack(MF, FI)); 8313 } 8314 8315 assert(VA.isRegLoc() && "Expected register VA assignment"); 8316 8317 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8318 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8319 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8320 SDValue Hi; 8321 if (VA.getLocReg() == RISCV::X17) { 8322 // Second half of f64 is passed on the stack. 8323 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 8324 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8325 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8326 MachinePointerInfo::getFixedStack(MF, FI)); 8327 } else { 8328 // Second half of f64 is passed in another GPR. 8329 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8330 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8331 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8332 } 8333 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8334 } 8335 8336 // FastCC has less than 1% performance improvement for some particular 8337 // benchmark. But theoretically, it may has benenfit for some cases. 8338 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8339 unsigned ValNo, MVT ValVT, MVT LocVT, 8340 CCValAssign::LocInfo LocInfo, 8341 ISD::ArgFlagsTy ArgFlags, CCState &State, 8342 bool IsFixed, bool IsRet, Type *OrigTy, 8343 const RISCVTargetLowering &TLI, 8344 Optional<unsigned> FirstMaskArgument) { 8345 8346 // X5 and X6 might be used for save-restore libcall. 8347 static const MCPhysReg GPRList[] = { 8348 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8349 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8350 RISCV::X29, RISCV::X30, RISCV::X31}; 8351 8352 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8353 if (unsigned Reg = State.AllocateReg(GPRList)) { 8354 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8355 return false; 8356 } 8357 } 8358 8359 if (LocVT == MVT::f16) { 8360 static const MCPhysReg FPR16List[] = { 8361 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8362 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8363 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8364 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8365 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8366 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8367 return false; 8368 } 8369 } 8370 8371 if (LocVT == MVT::f32) { 8372 static const MCPhysReg FPR32List[] = { 8373 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8374 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8375 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8376 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8377 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8378 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8379 return false; 8380 } 8381 } 8382 8383 if (LocVT == MVT::f64) { 8384 static const MCPhysReg FPR64List[] = { 8385 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8386 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8387 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8388 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8389 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8390 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8391 return false; 8392 } 8393 } 8394 8395 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8396 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8397 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8398 return false; 8399 } 8400 8401 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8402 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8403 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8404 return false; 8405 } 8406 8407 if (LocVT.isVector()) { 8408 if (unsigned Reg = 8409 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8410 // Fixed-length vectors are located in the corresponding scalable-vector 8411 // container types. 8412 if (ValVT.isFixedLengthVector()) 8413 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8414 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8415 } else { 8416 // Try and pass the address via a "fast" GPR. 8417 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8418 LocInfo = CCValAssign::Indirect; 8419 LocVT = TLI.getSubtarget().getXLenVT(); 8420 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8421 } else if (ValVT.isFixedLengthVector()) { 8422 auto StackAlign = 8423 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8424 unsigned StackOffset = 8425 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8426 State.addLoc( 8427 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8428 } else { 8429 // Can't pass scalable vectors on the stack. 8430 return true; 8431 } 8432 } 8433 8434 return false; 8435 } 8436 8437 return true; // CC didn't match. 8438 } 8439 8440 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 8441 CCValAssign::LocInfo LocInfo, 8442 ISD::ArgFlagsTy ArgFlags, CCState &State) { 8443 8444 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8445 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 8446 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 8447 static const MCPhysReg GPRList[] = { 8448 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 8449 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 8450 if (unsigned Reg = State.AllocateReg(GPRList)) { 8451 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8452 return false; 8453 } 8454 } 8455 8456 if (LocVT == MVT::f32) { 8457 // Pass in STG registers: F1, ..., F6 8458 // fs0 ... fs5 8459 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 8460 RISCV::F18_F, RISCV::F19_F, 8461 RISCV::F20_F, RISCV::F21_F}; 8462 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8463 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8464 return false; 8465 } 8466 } 8467 8468 if (LocVT == MVT::f64) { 8469 // Pass in STG registers: D1, ..., D6 8470 // fs6 ... fs11 8471 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 8472 RISCV::F24_D, RISCV::F25_D, 8473 RISCV::F26_D, RISCV::F27_D}; 8474 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8475 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8476 return false; 8477 } 8478 } 8479 8480 report_fatal_error("No registers left in GHC calling convention"); 8481 return true; 8482 } 8483 8484 // Transform physical registers into virtual registers. 8485 SDValue RISCVTargetLowering::LowerFormalArguments( 8486 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 8487 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 8488 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 8489 8490 MachineFunction &MF = DAG.getMachineFunction(); 8491 8492 switch (CallConv) { 8493 default: 8494 report_fatal_error("Unsupported calling convention"); 8495 case CallingConv::C: 8496 case CallingConv::Fast: 8497 break; 8498 case CallingConv::GHC: 8499 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 8500 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 8501 report_fatal_error( 8502 "GHC calling convention requires the F and D instruction set extensions"); 8503 } 8504 8505 const Function &Func = MF.getFunction(); 8506 if (Func.hasFnAttribute("interrupt")) { 8507 if (!Func.arg_empty()) 8508 report_fatal_error( 8509 "Functions with the interrupt attribute cannot have arguments!"); 8510 8511 StringRef Kind = 8512 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8513 8514 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 8515 report_fatal_error( 8516 "Function interrupt attribute argument not supported!"); 8517 } 8518 8519 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8520 MVT XLenVT = Subtarget.getXLenVT(); 8521 unsigned XLenInBytes = Subtarget.getXLen() / 8; 8522 // Used with vargs to acumulate store chains. 8523 std::vector<SDValue> OutChains; 8524 8525 // Assign locations to all of the incoming arguments. 8526 SmallVector<CCValAssign, 16> ArgLocs; 8527 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8528 8529 if (CallConv == CallingConv::GHC) 8530 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 8531 else 8532 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 8533 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8534 : CC_RISCV); 8535 8536 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 8537 CCValAssign &VA = ArgLocs[i]; 8538 SDValue ArgValue; 8539 // Passing f64 on RV32D with a soft float ABI must be handled as a special 8540 // case. 8541 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 8542 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 8543 else if (VA.isRegLoc()) 8544 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 8545 else 8546 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 8547 8548 if (VA.getLocInfo() == CCValAssign::Indirect) { 8549 // If the original argument was split and passed by reference (e.g. i128 8550 // on RV32), we need to load all parts of it here (using the same 8551 // address). Vectors may be partly split to registers and partly to the 8552 // stack, in which case the base address is partly offset and subsequent 8553 // stores are relative to that. 8554 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 8555 MachinePointerInfo())); 8556 unsigned ArgIndex = Ins[i].OrigArgIndex; 8557 unsigned ArgPartOffset = Ins[i].PartOffset; 8558 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8559 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 8560 CCValAssign &PartVA = ArgLocs[i + 1]; 8561 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 8562 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8563 if (PartVA.getValVT().isScalableVector()) 8564 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8565 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 8566 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 8567 MachinePointerInfo())); 8568 ++i; 8569 } 8570 continue; 8571 } 8572 InVals.push_back(ArgValue); 8573 } 8574 8575 if (IsVarArg) { 8576 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 8577 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 8578 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 8579 MachineFrameInfo &MFI = MF.getFrameInfo(); 8580 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8581 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 8582 8583 // Offset of the first variable argument from stack pointer, and size of 8584 // the vararg save area. For now, the varargs save area is either zero or 8585 // large enough to hold a0-a7. 8586 int VaArgOffset, VarArgsSaveSize; 8587 8588 // If all registers are allocated, then all varargs must be passed on the 8589 // stack and we don't need to save any argregs. 8590 if (ArgRegs.size() == Idx) { 8591 VaArgOffset = CCInfo.getNextStackOffset(); 8592 VarArgsSaveSize = 0; 8593 } else { 8594 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 8595 VaArgOffset = -VarArgsSaveSize; 8596 } 8597 8598 // Record the frame index of the first variable argument 8599 // which is a value necessary to VASTART. 8600 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8601 RVFI->setVarArgsFrameIndex(FI); 8602 8603 // If saving an odd number of registers then create an extra stack slot to 8604 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 8605 // offsets to even-numbered registered remain 2*XLEN-aligned. 8606 if (Idx % 2) { 8607 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 8608 VarArgsSaveSize += XLenInBytes; 8609 } 8610 8611 // Copy the integer registers that may have been used for passing varargs 8612 // to the vararg save area. 8613 for (unsigned I = Idx; I < ArgRegs.size(); 8614 ++I, VaArgOffset += XLenInBytes) { 8615 const Register Reg = RegInfo.createVirtualRegister(RC); 8616 RegInfo.addLiveIn(ArgRegs[I], Reg); 8617 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8618 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8619 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8620 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8621 MachinePointerInfo::getFixedStack(MF, FI)); 8622 cast<StoreSDNode>(Store.getNode()) 8623 ->getMemOperand() 8624 ->setValue((Value *)nullptr); 8625 OutChains.push_back(Store); 8626 } 8627 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8628 } 8629 8630 // All stores are grouped in one node to allow the matching between 8631 // the size of Ins and InVals. This only happens for vararg functions. 8632 if (!OutChains.empty()) { 8633 OutChains.push_back(Chain); 8634 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8635 } 8636 8637 return Chain; 8638 } 8639 8640 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8641 /// for tail call optimization. 8642 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8643 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8644 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8645 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8646 8647 auto &Callee = CLI.Callee; 8648 auto CalleeCC = CLI.CallConv; 8649 auto &Outs = CLI.Outs; 8650 auto &Caller = MF.getFunction(); 8651 auto CallerCC = Caller.getCallingConv(); 8652 8653 // Exception-handling functions need a special set of instructions to 8654 // indicate a return to the hardware. Tail-calling another function would 8655 // probably break this. 8656 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 8657 // should be expanded as new function attributes are introduced. 8658 if (Caller.hasFnAttribute("interrupt")) 8659 return false; 8660 8661 // Do not tail call opt if the stack is used to pass parameters. 8662 if (CCInfo.getNextStackOffset() != 0) 8663 return false; 8664 8665 // Do not tail call opt if any parameters need to be passed indirectly. 8666 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 8667 // passed indirectly. So the address of the value will be passed in a 8668 // register, or if not available, then the address is put on the stack. In 8669 // order to pass indirectly, space on the stack often needs to be allocated 8670 // in order to store the value. In this case the CCInfo.getNextStackOffset() 8671 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 8672 // are passed CCValAssign::Indirect. 8673 for (auto &VA : ArgLocs) 8674 if (VA.getLocInfo() == CCValAssign::Indirect) 8675 return false; 8676 8677 // Do not tail call opt if either caller or callee uses struct return 8678 // semantics. 8679 auto IsCallerStructRet = Caller.hasStructRetAttr(); 8680 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 8681 if (IsCallerStructRet || IsCalleeStructRet) 8682 return false; 8683 8684 // Externally-defined functions with weak linkage should not be 8685 // tail-called. The behaviour of branch instructions in this situation (as 8686 // used for tail calls) is implementation-defined, so we cannot rely on the 8687 // linker replacing the tail call with a return. 8688 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 8689 const GlobalValue *GV = G->getGlobal(); 8690 if (GV->hasExternalWeakLinkage()) 8691 return false; 8692 } 8693 8694 // The callee has to preserve all registers the caller needs to preserve. 8695 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8696 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 8697 if (CalleeCC != CallerCC) { 8698 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 8699 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 8700 return false; 8701 } 8702 8703 // Byval parameters hand the function a pointer directly into the stack area 8704 // we want to reuse during a tail call. Working around this *is* possible 8705 // but less efficient and uglier in LowerCall. 8706 for (auto &Arg : Outs) 8707 if (Arg.Flags.isByVal()) 8708 return false; 8709 8710 return true; 8711 } 8712 8713 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 8714 return DAG.getDataLayout().getPrefTypeAlign( 8715 VT.getTypeForEVT(*DAG.getContext())); 8716 } 8717 8718 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 8719 // and output parameter nodes. 8720 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 8721 SmallVectorImpl<SDValue> &InVals) const { 8722 SelectionDAG &DAG = CLI.DAG; 8723 SDLoc &DL = CLI.DL; 8724 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 8725 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 8726 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 8727 SDValue Chain = CLI.Chain; 8728 SDValue Callee = CLI.Callee; 8729 bool &IsTailCall = CLI.IsTailCall; 8730 CallingConv::ID CallConv = CLI.CallConv; 8731 bool IsVarArg = CLI.IsVarArg; 8732 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8733 MVT XLenVT = Subtarget.getXLenVT(); 8734 8735 MachineFunction &MF = DAG.getMachineFunction(); 8736 8737 // Analyze the operands of the call, assigning locations to each operand. 8738 SmallVector<CCValAssign, 16> ArgLocs; 8739 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8740 8741 if (CallConv == CallingConv::GHC) 8742 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 8743 else 8744 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 8745 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8746 : CC_RISCV); 8747 8748 // Check if it's really possible to do a tail call. 8749 if (IsTailCall) 8750 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 8751 8752 if (IsTailCall) 8753 ++NumTailCalls; 8754 else if (CLI.CB && CLI.CB->isMustTailCall()) 8755 report_fatal_error("failed to perform tail call elimination on a call " 8756 "site marked musttail"); 8757 8758 // Get a count of how many bytes are to be pushed on the stack. 8759 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 8760 8761 // Create local copies for byval args 8762 SmallVector<SDValue, 8> ByValArgs; 8763 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8764 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8765 if (!Flags.isByVal()) 8766 continue; 8767 8768 SDValue Arg = OutVals[i]; 8769 unsigned Size = Flags.getByValSize(); 8770 Align Alignment = Flags.getNonZeroByValAlign(); 8771 8772 int FI = 8773 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 8774 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8775 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 8776 8777 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 8778 /*IsVolatile=*/false, 8779 /*AlwaysInline=*/false, IsTailCall, 8780 MachinePointerInfo(), MachinePointerInfo()); 8781 ByValArgs.push_back(FIPtr); 8782 } 8783 8784 if (!IsTailCall) 8785 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 8786 8787 // Copy argument values to their designated locations. 8788 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 8789 SmallVector<SDValue, 8> MemOpChains; 8790 SDValue StackPtr; 8791 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 8792 CCValAssign &VA = ArgLocs[i]; 8793 SDValue ArgValue = OutVals[i]; 8794 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8795 8796 // Handle passing f64 on RV32D with a soft float ABI as a special case. 8797 bool IsF64OnRV32DSoftABI = 8798 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 8799 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 8800 SDValue SplitF64 = DAG.getNode( 8801 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 8802 SDValue Lo = SplitF64.getValue(0); 8803 SDValue Hi = SplitF64.getValue(1); 8804 8805 Register RegLo = VA.getLocReg(); 8806 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 8807 8808 if (RegLo == RISCV::X17) { 8809 // Second half of f64 is passed on the stack. 8810 // Work out the address of the stack slot. 8811 if (!StackPtr.getNode()) 8812 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8813 // Emit the store. 8814 MemOpChains.push_back( 8815 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 8816 } else { 8817 // Second half of f64 is passed in another GPR. 8818 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8819 Register RegHigh = RegLo + 1; 8820 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 8821 } 8822 continue; 8823 } 8824 8825 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 8826 // as any other MemLoc. 8827 8828 // Promote the value if needed. 8829 // For now, only handle fully promoted and indirect arguments. 8830 if (VA.getLocInfo() == CCValAssign::Indirect) { 8831 // Store the argument in a stack slot and pass its address. 8832 Align StackAlign = 8833 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 8834 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 8835 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 8836 // If the original argument was split (e.g. i128), we need 8837 // to store the required parts of it here (and pass just one address). 8838 // Vectors may be partly split to registers and partly to the stack, in 8839 // which case the base address is partly offset and subsequent stores are 8840 // relative to that. 8841 unsigned ArgIndex = Outs[i].OrigArgIndex; 8842 unsigned ArgPartOffset = Outs[i].PartOffset; 8843 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8844 // Calculate the total size to store. We don't have access to what we're 8845 // actually storing other than performing the loop and collecting the 8846 // info. 8847 SmallVector<std::pair<SDValue, SDValue>> Parts; 8848 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 8849 SDValue PartValue = OutVals[i + 1]; 8850 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 8851 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8852 EVT PartVT = PartValue.getValueType(); 8853 if (PartVT.isScalableVector()) 8854 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8855 StoredSize += PartVT.getStoreSize(); 8856 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 8857 Parts.push_back(std::make_pair(PartValue, Offset)); 8858 ++i; 8859 } 8860 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 8861 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 8862 MemOpChains.push_back( 8863 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 8864 MachinePointerInfo::getFixedStack(MF, FI))); 8865 for (const auto &Part : Parts) { 8866 SDValue PartValue = Part.first; 8867 SDValue PartOffset = Part.second; 8868 SDValue Address = 8869 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 8870 MemOpChains.push_back( 8871 DAG.getStore(Chain, DL, PartValue, Address, 8872 MachinePointerInfo::getFixedStack(MF, FI))); 8873 } 8874 ArgValue = SpillSlot; 8875 } else { 8876 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 8877 } 8878 8879 // Use local copy if it is a byval arg. 8880 if (Flags.isByVal()) 8881 ArgValue = ByValArgs[j++]; 8882 8883 if (VA.isRegLoc()) { 8884 // Queue up the argument copies and emit them at the end. 8885 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 8886 } else { 8887 assert(VA.isMemLoc() && "Argument not register or memory"); 8888 assert(!IsTailCall && "Tail call not allowed if stack is used " 8889 "for passing parameters"); 8890 8891 // Work out the address of the stack slot. 8892 if (!StackPtr.getNode()) 8893 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8894 SDValue Address = 8895 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 8896 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 8897 8898 // Emit the store. 8899 MemOpChains.push_back( 8900 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 8901 } 8902 } 8903 8904 // Join the stores, which are independent of one another. 8905 if (!MemOpChains.empty()) 8906 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 8907 8908 SDValue Glue; 8909 8910 // Build a sequence of copy-to-reg nodes, chained and glued together. 8911 for (auto &Reg : RegsToPass) { 8912 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 8913 Glue = Chain.getValue(1); 8914 } 8915 8916 // Validate that none of the argument registers have been marked as 8917 // reserved, if so report an error. Do the same for the return address if this 8918 // is not a tailcall. 8919 validateCCReservedRegs(RegsToPass, MF); 8920 if (!IsTailCall && 8921 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 8922 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8923 MF.getFunction(), 8924 "Return address register required, but has been reserved."}); 8925 8926 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 8927 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 8928 // split it and then direct call can be matched by PseudoCALL. 8929 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 8930 const GlobalValue *GV = S->getGlobal(); 8931 8932 unsigned OpFlags = RISCVII::MO_CALL; 8933 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 8934 OpFlags = RISCVII::MO_PLT; 8935 8936 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 8937 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 8938 unsigned OpFlags = RISCVII::MO_CALL; 8939 8940 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 8941 nullptr)) 8942 OpFlags = RISCVII::MO_PLT; 8943 8944 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 8945 } 8946 8947 // The first call operand is the chain and the second is the target address. 8948 SmallVector<SDValue, 8> Ops; 8949 Ops.push_back(Chain); 8950 Ops.push_back(Callee); 8951 8952 // Add argument registers to the end of the list so that they are 8953 // known live into the call. 8954 for (auto &Reg : RegsToPass) 8955 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 8956 8957 if (!IsTailCall) { 8958 // Add a register mask operand representing the call-preserved registers. 8959 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8960 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 8961 assert(Mask && "Missing call preserved mask for calling convention"); 8962 Ops.push_back(DAG.getRegisterMask(Mask)); 8963 } 8964 8965 // Glue the call to the argument copies, if any. 8966 if (Glue.getNode()) 8967 Ops.push_back(Glue); 8968 8969 // Emit the call. 8970 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8971 8972 if (IsTailCall) { 8973 MF.getFrameInfo().setHasTailCall(); 8974 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 8975 } 8976 8977 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 8978 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 8979 Glue = Chain.getValue(1); 8980 8981 // Mark the end of the call, which is glued to the call itself. 8982 Chain = DAG.getCALLSEQ_END(Chain, 8983 DAG.getConstant(NumBytes, DL, PtrVT, true), 8984 DAG.getConstant(0, DL, PtrVT, true), 8985 Glue, DL); 8986 Glue = Chain.getValue(1); 8987 8988 // Assign locations to each value returned by this call. 8989 SmallVector<CCValAssign, 16> RVLocs; 8990 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 8991 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 8992 8993 // Copy all of the result registers out of their specified physreg. 8994 for (auto &VA : RVLocs) { 8995 // Copy the value out 8996 SDValue RetValue = 8997 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 8998 // Glue the RetValue to the end of the call sequence 8999 Chain = RetValue.getValue(1); 9000 Glue = RetValue.getValue(2); 9001 9002 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9003 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9004 SDValue RetValue2 = 9005 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9006 Chain = RetValue2.getValue(1); 9007 Glue = RetValue2.getValue(2); 9008 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9009 RetValue2); 9010 } 9011 9012 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9013 9014 InVals.push_back(RetValue); 9015 } 9016 9017 return Chain; 9018 } 9019 9020 bool RISCVTargetLowering::CanLowerReturn( 9021 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9022 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9023 SmallVector<CCValAssign, 16> RVLocs; 9024 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9025 9026 Optional<unsigned> FirstMaskArgument; 9027 if (Subtarget.hasVInstructions()) 9028 FirstMaskArgument = preAssignMask(Outs); 9029 9030 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9031 MVT VT = Outs[i].VT; 9032 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9033 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9034 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9035 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9036 *this, FirstMaskArgument)) 9037 return false; 9038 } 9039 return true; 9040 } 9041 9042 SDValue 9043 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9044 bool IsVarArg, 9045 const SmallVectorImpl<ISD::OutputArg> &Outs, 9046 const SmallVectorImpl<SDValue> &OutVals, 9047 const SDLoc &DL, SelectionDAG &DAG) const { 9048 const MachineFunction &MF = DAG.getMachineFunction(); 9049 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9050 9051 // Stores the assignment of the return value to a location. 9052 SmallVector<CCValAssign, 16> RVLocs; 9053 9054 // Info about the registers and stack slot. 9055 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9056 *DAG.getContext()); 9057 9058 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9059 nullptr, CC_RISCV); 9060 9061 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9062 report_fatal_error("GHC functions return void only"); 9063 9064 SDValue Glue; 9065 SmallVector<SDValue, 4> RetOps(1, Chain); 9066 9067 // Copy the result values into the output registers. 9068 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9069 SDValue Val = OutVals[i]; 9070 CCValAssign &VA = RVLocs[i]; 9071 assert(VA.isRegLoc() && "Can only return in registers!"); 9072 9073 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9074 // Handle returning f64 on RV32D with a soft float ABI. 9075 assert(VA.isRegLoc() && "Expected return via registers"); 9076 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9077 DAG.getVTList(MVT::i32, MVT::i32), Val); 9078 SDValue Lo = SplitF64.getValue(0); 9079 SDValue Hi = SplitF64.getValue(1); 9080 Register RegLo = VA.getLocReg(); 9081 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9082 Register RegHi = RegLo + 1; 9083 9084 if (STI.isRegisterReservedByUser(RegLo) || 9085 STI.isRegisterReservedByUser(RegHi)) 9086 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9087 MF.getFunction(), 9088 "Return value register required, but has been reserved."}); 9089 9090 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9091 Glue = Chain.getValue(1); 9092 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9093 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9094 Glue = Chain.getValue(1); 9095 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9096 } else { 9097 // Handle a 'normal' return. 9098 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9099 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9100 9101 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9102 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9103 MF.getFunction(), 9104 "Return value register required, but has been reserved."}); 9105 9106 // Guarantee that all emitted copies are stuck together. 9107 Glue = Chain.getValue(1); 9108 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9109 } 9110 } 9111 9112 RetOps[0] = Chain; // Update chain. 9113 9114 // Add the glue node if we have it. 9115 if (Glue.getNode()) { 9116 RetOps.push_back(Glue); 9117 } 9118 9119 unsigned RetOpc = RISCVISD::RET_FLAG; 9120 // Interrupt service routines use different return instructions. 9121 const Function &Func = DAG.getMachineFunction().getFunction(); 9122 if (Func.hasFnAttribute("interrupt")) { 9123 if (!Func.getReturnType()->isVoidTy()) 9124 report_fatal_error( 9125 "Functions with the interrupt attribute must have void return type!"); 9126 9127 MachineFunction &MF = DAG.getMachineFunction(); 9128 StringRef Kind = 9129 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9130 9131 if (Kind == "user") 9132 RetOpc = RISCVISD::URET_FLAG; 9133 else if (Kind == "supervisor") 9134 RetOpc = RISCVISD::SRET_FLAG; 9135 else 9136 RetOpc = RISCVISD::MRET_FLAG; 9137 } 9138 9139 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9140 } 9141 9142 void RISCVTargetLowering::validateCCReservedRegs( 9143 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9144 MachineFunction &MF) const { 9145 const Function &F = MF.getFunction(); 9146 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9147 9148 if (llvm::any_of(Regs, [&STI](auto Reg) { 9149 return STI.isRegisterReservedByUser(Reg.first); 9150 })) 9151 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9152 F, "Argument register required, but has been reserved."}); 9153 } 9154 9155 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9156 return CI->isTailCall(); 9157 } 9158 9159 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9160 #define NODE_NAME_CASE(NODE) \ 9161 case RISCVISD::NODE: \ 9162 return "RISCVISD::" #NODE; 9163 // clang-format off 9164 switch ((RISCVISD::NodeType)Opcode) { 9165 case RISCVISD::FIRST_NUMBER: 9166 break; 9167 NODE_NAME_CASE(RET_FLAG) 9168 NODE_NAME_CASE(URET_FLAG) 9169 NODE_NAME_CASE(SRET_FLAG) 9170 NODE_NAME_CASE(MRET_FLAG) 9171 NODE_NAME_CASE(CALL) 9172 NODE_NAME_CASE(SELECT_CC) 9173 NODE_NAME_CASE(BR_CC) 9174 NODE_NAME_CASE(BuildPairF64) 9175 NODE_NAME_CASE(SplitF64) 9176 NODE_NAME_CASE(TAIL) 9177 NODE_NAME_CASE(MULHSU) 9178 NODE_NAME_CASE(SLLW) 9179 NODE_NAME_CASE(SRAW) 9180 NODE_NAME_CASE(SRLW) 9181 NODE_NAME_CASE(DIVW) 9182 NODE_NAME_CASE(DIVUW) 9183 NODE_NAME_CASE(REMUW) 9184 NODE_NAME_CASE(ROLW) 9185 NODE_NAME_CASE(RORW) 9186 NODE_NAME_CASE(CLZW) 9187 NODE_NAME_CASE(CTZW) 9188 NODE_NAME_CASE(FSLW) 9189 NODE_NAME_CASE(FSRW) 9190 NODE_NAME_CASE(FSL) 9191 NODE_NAME_CASE(FSR) 9192 NODE_NAME_CASE(FMV_H_X) 9193 NODE_NAME_CASE(FMV_X_ANYEXTH) 9194 NODE_NAME_CASE(FMV_W_X_RV64) 9195 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9196 NODE_NAME_CASE(FCVT_X_RTZ) 9197 NODE_NAME_CASE(FCVT_XU_RTZ) 9198 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 9199 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 9200 NODE_NAME_CASE(READ_CYCLE_WIDE) 9201 NODE_NAME_CASE(GREV) 9202 NODE_NAME_CASE(GREVW) 9203 NODE_NAME_CASE(GORC) 9204 NODE_NAME_CASE(GORCW) 9205 NODE_NAME_CASE(SHFL) 9206 NODE_NAME_CASE(SHFLW) 9207 NODE_NAME_CASE(UNSHFL) 9208 NODE_NAME_CASE(UNSHFLW) 9209 NODE_NAME_CASE(BCOMPRESS) 9210 NODE_NAME_CASE(BCOMPRESSW) 9211 NODE_NAME_CASE(BDECOMPRESS) 9212 NODE_NAME_CASE(BDECOMPRESSW) 9213 NODE_NAME_CASE(VMV_V_X_VL) 9214 NODE_NAME_CASE(VFMV_V_F_VL) 9215 NODE_NAME_CASE(VMV_X_S) 9216 NODE_NAME_CASE(VMV_S_X_VL) 9217 NODE_NAME_CASE(VFMV_S_F_VL) 9218 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9219 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9220 NODE_NAME_CASE(READ_VLENB) 9221 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9222 NODE_NAME_CASE(VSLIDEUP_VL) 9223 NODE_NAME_CASE(VSLIDE1UP_VL) 9224 NODE_NAME_CASE(VSLIDEDOWN_VL) 9225 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9226 NODE_NAME_CASE(VID_VL) 9227 NODE_NAME_CASE(VFNCVT_ROD_VL) 9228 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9229 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9230 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9231 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9232 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9233 NODE_NAME_CASE(VECREDUCE_AND_VL) 9234 NODE_NAME_CASE(VECREDUCE_OR_VL) 9235 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9236 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9237 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9238 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9239 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9240 NODE_NAME_CASE(ADD_VL) 9241 NODE_NAME_CASE(AND_VL) 9242 NODE_NAME_CASE(MUL_VL) 9243 NODE_NAME_CASE(OR_VL) 9244 NODE_NAME_CASE(SDIV_VL) 9245 NODE_NAME_CASE(SHL_VL) 9246 NODE_NAME_CASE(SREM_VL) 9247 NODE_NAME_CASE(SRA_VL) 9248 NODE_NAME_CASE(SRL_VL) 9249 NODE_NAME_CASE(SUB_VL) 9250 NODE_NAME_CASE(UDIV_VL) 9251 NODE_NAME_CASE(UREM_VL) 9252 NODE_NAME_CASE(XOR_VL) 9253 NODE_NAME_CASE(SADDSAT_VL) 9254 NODE_NAME_CASE(UADDSAT_VL) 9255 NODE_NAME_CASE(SSUBSAT_VL) 9256 NODE_NAME_CASE(USUBSAT_VL) 9257 NODE_NAME_CASE(FADD_VL) 9258 NODE_NAME_CASE(FSUB_VL) 9259 NODE_NAME_CASE(FMUL_VL) 9260 NODE_NAME_CASE(FDIV_VL) 9261 NODE_NAME_CASE(FNEG_VL) 9262 NODE_NAME_CASE(FABS_VL) 9263 NODE_NAME_CASE(FSQRT_VL) 9264 NODE_NAME_CASE(FMA_VL) 9265 NODE_NAME_CASE(FCOPYSIGN_VL) 9266 NODE_NAME_CASE(SMIN_VL) 9267 NODE_NAME_CASE(SMAX_VL) 9268 NODE_NAME_CASE(UMIN_VL) 9269 NODE_NAME_CASE(UMAX_VL) 9270 NODE_NAME_CASE(FMINNUM_VL) 9271 NODE_NAME_CASE(FMAXNUM_VL) 9272 NODE_NAME_CASE(MULHS_VL) 9273 NODE_NAME_CASE(MULHU_VL) 9274 NODE_NAME_CASE(FP_TO_SINT_VL) 9275 NODE_NAME_CASE(FP_TO_UINT_VL) 9276 NODE_NAME_CASE(SINT_TO_FP_VL) 9277 NODE_NAME_CASE(UINT_TO_FP_VL) 9278 NODE_NAME_CASE(FP_EXTEND_VL) 9279 NODE_NAME_CASE(FP_ROUND_VL) 9280 NODE_NAME_CASE(VWMUL_VL) 9281 NODE_NAME_CASE(VWMULU_VL) 9282 NODE_NAME_CASE(SETCC_VL) 9283 NODE_NAME_CASE(VSELECT_VL) 9284 NODE_NAME_CASE(VMAND_VL) 9285 NODE_NAME_CASE(VMOR_VL) 9286 NODE_NAME_CASE(VMXOR_VL) 9287 NODE_NAME_CASE(VMCLR_VL) 9288 NODE_NAME_CASE(VMSET_VL) 9289 NODE_NAME_CASE(VRGATHER_VX_VL) 9290 NODE_NAME_CASE(VRGATHER_VV_VL) 9291 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9292 NODE_NAME_CASE(VSEXT_VL) 9293 NODE_NAME_CASE(VZEXT_VL) 9294 NODE_NAME_CASE(VCPOP_VL) 9295 NODE_NAME_CASE(VLE_VL) 9296 NODE_NAME_CASE(VSE_VL) 9297 NODE_NAME_CASE(READ_CSR) 9298 NODE_NAME_CASE(WRITE_CSR) 9299 NODE_NAME_CASE(SWAP_CSR) 9300 } 9301 // clang-format on 9302 return nullptr; 9303 #undef NODE_NAME_CASE 9304 } 9305 9306 /// getConstraintType - Given a constraint letter, return the type of 9307 /// constraint it is for this target. 9308 RISCVTargetLowering::ConstraintType 9309 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9310 if (Constraint.size() == 1) { 9311 switch (Constraint[0]) { 9312 default: 9313 break; 9314 case 'f': 9315 return C_RegisterClass; 9316 case 'I': 9317 case 'J': 9318 case 'K': 9319 return C_Immediate; 9320 case 'A': 9321 return C_Memory; 9322 case 'S': // A symbolic address 9323 return C_Other; 9324 } 9325 } else { 9326 if (Constraint == "vr" || Constraint == "vm") 9327 return C_RegisterClass; 9328 } 9329 return TargetLowering::getConstraintType(Constraint); 9330 } 9331 9332 std::pair<unsigned, const TargetRegisterClass *> 9333 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9334 StringRef Constraint, 9335 MVT VT) const { 9336 // First, see if this is a constraint that directly corresponds to a 9337 // RISCV register class. 9338 if (Constraint.size() == 1) { 9339 switch (Constraint[0]) { 9340 case 'r': 9341 return std::make_pair(0U, &RISCV::GPRRegClass); 9342 case 'f': 9343 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9344 return std::make_pair(0U, &RISCV::FPR16RegClass); 9345 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9346 return std::make_pair(0U, &RISCV::FPR32RegClass); 9347 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9348 return std::make_pair(0U, &RISCV::FPR64RegClass); 9349 break; 9350 default: 9351 break; 9352 } 9353 } else { 9354 if (Constraint == "vr") { 9355 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9356 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9357 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9358 return std::make_pair(0U, RC); 9359 } 9360 } else if (Constraint == "vm") { 9361 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9362 return std::make_pair(0U, &RISCV::VMRegClass); 9363 } 9364 } 9365 9366 // Clang will correctly decode the usage of register name aliases into their 9367 // official names. However, other frontends like `rustc` do not. This allows 9368 // users of these frontends to use the ABI names for registers in LLVM-style 9369 // register constraints. 9370 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9371 .Case("{zero}", RISCV::X0) 9372 .Case("{ra}", RISCV::X1) 9373 .Case("{sp}", RISCV::X2) 9374 .Case("{gp}", RISCV::X3) 9375 .Case("{tp}", RISCV::X4) 9376 .Case("{t0}", RISCV::X5) 9377 .Case("{t1}", RISCV::X6) 9378 .Case("{t2}", RISCV::X7) 9379 .Cases("{s0}", "{fp}", RISCV::X8) 9380 .Case("{s1}", RISCV::X9) 9381 .Case("{a0}", RISCV::X10) 9382 .Case("{a1}", RISCV::X11) 9383 .Case("{a2}", RISCV::X12) 9384 .Case("{a3}", RISCV::X13) 9385 .Case("{a4}", RISCV::X14) 9386 .Case("{a5}", RISCV::X15) 9387 .Case("{a6}", RISCV::X16) 9388 .Case("{a7}", RISCV::X17) 9389 .Case("{s2}", RISCV::X18) 9390 .Case("{s3}", RISCV::X19) 9391 .Case("{s4}", RISCV::X20) 9392 .Case("{s5}", RISCV::X21) 9393 .Case("{s6}", RISCV::X22) 9394 .Case("{s7}", RISCV::X23) 9395 .Case("{s8}", RISCV::X24) 9396 .Case("{s9}", RISCV::X25) 9397 .Case("{s10}", RISCV::X26) 9398 .Case("{s11}", RISCV::X27) 9399 .Case("{t3}", RISCV::X28) 9400 .Case("{t4}", RISCV::X29) 9401 .Case("{t5}", RISCV::X30) 9402 .Case("{t6}", RISCV::X31) 9403 .Default(RISCV::NoRegister); 9404 if (XRegFromAlias != RISCV::NoRegister) 9405 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9406 9407 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9408 // TableGen record rather than the AsmName to choose registers for InlineAsm 9409 // constraints, plus we want to match those names to the widest floating point 9410 // register type available, manually select floating point registers here. 9411 // 9412 // The second case is the ABI name of the register, so that frontends can also 9413 // use the ABI names in register constraint lists. 9414 if (Subtarget.hasStdExtF()) { 9415 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9416 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9417 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9418 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9419 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9420 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9421 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9422 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9423 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9424 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9425 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9426 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9427 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9428 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9429 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9430 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9431 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9432 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9433 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9434 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9435 .Cases("{f19}", "{fs3}", RISCV::F19_F) 9436 .Cases("{f20}", "{fs4}", RISCV::F20_F) 9437 .Cases("{f21}", "{fs5}", RISCV::F21_F) 9438 .Cases("{f22}", "{fs6}", RISCV::F22_F) 9439 .Cases("{f23}", "{fs7}", RISCV::F23_F) 9440 .Cases("{f24}", "{fs8}", RISCV::F24_F) 9441 .Cases("{f25}", "{fs9}", RISCV::F25_F) 9442 .Cases("{f26}", "{fs10}", RISCV::F26_F) 9443 .Cases("{f27}", "{fs11}", RISCV::F27_F) 9444 .Cases("{f28}", "{ft8}", RISCV::F28_F) 9445 .Cases("{f29}", "{ft9}", RISCV::F29_F) 9446 .Cases("{f30}", "{ft10}", RISCV::F30_F) 9447 .Cases("{f31}", "{ft11}", RISCV::F31_F) 9448 .Default(RISCV::NoRegister); 9449 if (FReg != RISCV::NoRegister) { 9450 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 9451 if (Subtarget.hasStdExtD()) { 9452 unsigned RegNo = FReg - RISCV::F0_F; 9453 unsigned DReg = RISCV::F0_D + RegNo; 9454 return std::make_pair(DReg, &RISCV::FPR64RegClass); 9455 } 9456 return std::make_pair(FReg, &RISCV::FPR32RegClass); 9457 } 9458 } 9459 9460 if (Subtarget.hasVInstructions()) { 9461 Register VReg = StringSwitch<Register>(Constraint.lower()) 9462 .Case("{v0}", RISCV::V0) 9463 .Case("{v1}", RISCV::V1) 9464 .Case("{v2}", RISCV::V2) 9465 .Case("{v3}", RISCV::V3) 9466 .Case("{v4}", RISCV::V4) 9467 .Case("{v5}", RISCV::V5) 9468 .Case("{v6}", RISCV::V6) 9469 .Case("{v7}", RISCV::V7) 9470 .Case("{v8}", RISCV::V8) 9471 .Case("{v9}", RISCV::V9) 9472 .Case("{v10}", RISCV::V10) 9473 .Case("{v11}", RISCV::V11) 9474 .Case("{v12}", RISCV::V12) 9475 .Case("{v13}", RISCV::V13) 9476 .Case("{v14}", RISCV::V14) 9477 .Case("{v15}", RISCV::V15) 9478 .Case("{v16}", RISCV::V16) 9479 .Case("{v17}", RISCV::V17) 9480 .Case("{v18}", RISCV::V18) 9481 .Case("{v19}", RISCV::V19) 9482 .Case("{v20}", RISCV::V20) 9483 .Case("{v21}", RISCV::V21) 9484 .Case("{v22}", RISCV::V22) 9485 .Case("{v23}", RISCV::V23) 9486 .Case("{v24}", RISCV::V24) 9487 .Case("{v25}", RISCV::V25) 9488 .Case("{v26}", RISCV::V26) 9489 .Case("{v27}", RISCV::V27) 9490 .Case("{v28}", RISCV::V28) 9491 .Case("{v29}", RISCV::V29) 9492 .Case("{v30}", RISCV::V30) 9493 .Case("{v31}", RISCV::V31) 9494 .Default(RISCV::NoRegister); 9495 if (VReg != RISCV::NoRegister) { 9496 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9497 return std::make_pair(VReg, &RISCV::VMRegClass); 9498 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 9499 return std::make_pair(VReg, &RISCV::VRRegClass); 9500 for (const auto *RC : 9501 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9502 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 9503 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 9504 return std::make_pair(VReg, RC); 9505 } 9506 } 9507 } 9508 } 9509 9510 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9511 } 9512 9513 unsigned 9514 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 9515 // Currently only support length 1 constraints. 9516 if (ConstraintCode.size() == 1) { 9517 switch (ConstraintCode[0]) { 9518 case 'A': 9519 return InlineAsm::Constraint_A; 9520 default: 9521 break; 9522 } 9523 } 9524 9525 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 9526 } 9527 9528 void RISCVTargetLowering::LowerAsmOperandForConstraint( 9529 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 9530 SelectionDAG &DAG) const { 9531 // Currently only support length 1 constraints. 9532 if (Constraint.length() == 1) { 9533 switch (Constraint[0]) { 9534 case 'I': 9535 // Validate & create a 12-bit signed immediate operand. 9536 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9537 uint64_t CVal = C->getSExtValue(); 9538 if (isInt<12>(CVal)) 9539 Ops.push_back( 9540 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9541 } 9542 return; 9543 case 'J': 9544 // Validate & create an integer zero operand. 9545 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 9546 if (C->getZExtValue() == 0) 9547 Ops.push_back( 9548 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 9549 return; 9550 case 'K': 9551 // Validate & create a 5-bit unsigned immediate operand. 9552 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9553 uint64_t CVal = C->getZExtValue(); 9554 if (isUInt<5>(CVal)) 9555 Ops.push_back( 9556 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9557 } 9558 return; 9559 case 'S': 9560 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9561 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 9562 GA->getValueType(0))); 9563 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 9564 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 9565 BA->getValueType(0))); 9566 } 9567 return; 9568 default: 9569 break; 9570 } 9571 } 9572 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9573 } 9574 9575 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 9576 Instruction *Inst, 9577 AtomicOrdering Ord) const { 9578 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 9579 return Builder.CreateFence(Ord); 9580 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 9581 return Builder.CreateFence(AtomicOrdering::Release); 9582 return nullptr; 9583 } 9584 9585 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 9586 Instruction *Inst, 9587 AtomicOrdering Ord) const { 9588 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 9589 return Builder.CreateFence(AtomicOrdering::Acquire); 9590 return nullptr; 9591 } 9592 9593 TargetLowering::AtomicExpansionKind 9594 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 9595 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 9596 // point operations can't be used in an lr/sc sequence without breaking the 9597 // forward-progress guarantee. 9598 if (AI->isFloatingPointOperation()) 9599 return AtomicExpansionKind::CmpXChg; 9600 9601 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 9602 if (Size == 8 || Size == 16) 9603 return AtomicExpansionKind::MaskedIntrinsic; 9604 return AtomicExpansionKind::None; 9605 } 9606 9607 static Intrinsic::ID 9608 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 9609 if (XLen == 32) { 9610 switch (BinOp) { 9611 default: 9612 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9613 case AtomicRMWInst::Xchg: 9614 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 9615 case AtomicRMWInst::Add: 9616 return Intrinsic::riscv_masked_atomicrmw_add_i32; 9617 case AtomicRMWInst::Sub: 9618 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9619 case AtomicRMWInst::Nand: 9620 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9621 case AtomicRMWInst::Max: 9622 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9623 case AtomicRMWInst::Min: 9624 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9625 case AtomicRMWInst::UMax: 9626 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9627 case AtomicRMWInst::UMin: 9628 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9629 } 9630 } 9631 9632 if (XLen == 64) { 9633 switch (BinOp) { 9634 default: 9635 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9636 case AtomicRMWInst::Xchg: 9637 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9638 case AtomicRMWInst::Add: 9639 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9640 case AtomicRMWInst::Sub: 9641 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9642 case AtomicRMWInst::Nand: 9643 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9644 case AtomicRMWInst::Max: 9645 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9646 case AtomicRMWInst::Min: 9647 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9648 case AtomicRMWInst::UMax: 9649 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 9650 case AtomicRMWInst::UMin: 9651 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 9652 } 9653 } 9654 9655 llvm_unreachable("Unexpected XLen\n"); 9656 } 9657 9658 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 9659 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 9660 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 9661 unsigned XLen = Subtarget.getXLen(); 9662 Value *Ordering = 9663 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 9664 Type *Tys[] = {AlignedAddr->getType()}; 9665 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 9666 AI->getModule(), 9667 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 9668 9669 if (XLen == 64) { 9670 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 9671 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9672 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 9673 } 9674 9675 Value *Result; 9676 9677 // Must pass the shift amount needed to sign extend the loaded value prior 9678 // to performing a signed comparison for min/max. ShiftAmt is the number of 9679 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 9680 // is the number of bits to left+right shift the value in order to 9681 // sign-extend. 9682 if (AI->getOperation() == AtomicRMWInst::Min || 9683 AI->getOperation() == AtomicRMWInst::Max) { 9684 const DataLayout &DL = AI->getModule()->getDataLayout(); 9685 unsigned ValWidth = 9686 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 9687 Value *SextShamt = 9688 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 9689 Result = Builder.CreateCall(LrwOpScwLoop, 9690 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 9691 } else { 9692 Result = 9693 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 9694 } 9695 9696 if (XLen == 64) 9697 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9698 return Result; 9699 } 9700 9701 TargetLowering::AtomicExpansionKind 9702 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 9703 AtomicCmpXchgInst *CI) const { 9704 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 9705 if (Size == 8 || Size == 16) 9706 return AtomicExpansionKind::MaskedIntrinsic; 9707 return AtomicExpansionKind::None; 9708 } 9709 9710 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 9711 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 9712 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 9713 unsigned XLen = Subtarget.getXLen(); 9714 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 9715 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 9716 if (XLen == 64) { 9717 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 9718 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 9719 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9720 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 9721 } 9722 Type *Tys[] = {AlignedAddr->getType()}; 9723 Function *MaskedCmpXchg = 9724 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 9725 Value *Result = Builder.CreateCall( 9726 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 9727 if (XLen == 64) 9728 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9729 return Result; 9730 } 9731 9732 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 9733 return false; 9734 } 9735 9736 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 9737 EVT VT) const { 9738 VT = VT.getScalarType(); 9739 9740 if (!VT.isSimple()) 9741 return false; 9742 9743 switch (VT.getSimpleVT().SimpleTy) { 9744 case MVT::f16: 9745 return Subtarget.hasStdExtZfh(); 9746 case MVT::f32: 9747 return Subtarget.hasStdExtF(); 9748 case MVT::f64: 9749 return Subtarget.hasStdExtD(); 9750 default: 9751 break; 9752 } 9753 9754 return false; 9755 } 9756 9757 Register RISCVTargetLowering::getExceptionPointerRegister( 9758 const Constant *PersonalityFn) const { 9759 return RISCV::X10; 9760 } 9761 9762 Register RISCVTargetLowering::getExceptionSelectorRegister( 9763 const Constant *PersonalityFn) const { 9764 return RISCV::X11; 9765 } 9766 9767 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 9768 // Return false to suppress the unnecessary extensions if the LibCall 9769 // arguments or return value is f32 type for LP64 ABI. 9770 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 9771 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 9772 return false; 9773 9774 return true; 9775 } 9776 9777 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 9778 if (Subtarget.is64Bit() && Type == MVT::i32) 9779 return true; 9780 9781 return IsSigned; 9782 } 9783 9784 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 9785 SDValue C) const { 9786 // Check integral scalar types. 9787 if (VT.isScalarInteger()) { 9788 // Omit the optimization if the sub target has the M extension and the data 9789 // size exceeds XLen. 9790 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 9791 return false; 9792 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 9793 // Break the MUL to a SLLI and an ADD/SUB. 9794 const APInt &Imm = ConstNode->getAPIntValue(); 9795 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 9796 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 9797 return true; 9798 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 9799 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 9800 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 9801 (Imm - 8).isPowerOf2())) 9802 return true; 9803 // Omit the following optimization if the sub target has the M extension 9804 // and the data size >= XLen. 9805 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 9806 return false; 9807 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 9808 // a pair of LUI/ADDI. 9809 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 9810 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 9811 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 9812 (1 - ImmS).isPowerOf2()) 9813 return true; 9814 } 9815 } 9816 } 9817 9818 return false; 9819 } 9820 9821 bool RISCVTargetLowering::isMulAddWithConstProfitable( 9822 const SDValue &AddNode, const SDValue &ConstNode) const { 9823 // Let the DAGCombiner decide for vectors. 9824 EVT VT = AddNode.getValueType(); 9825 if (VT.isVector()) 9826 return true; 9827 9828 // Let the DAGCombiner decide for larger types. 9829 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 9830 return true; 9831 9832 // It is worse if c1 is simm12 while c1*c2 is not. 9833 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 9834 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 9835 const APInt &C1 = C1Node->getAPIntValue(); 9836 const APInt &C2 = C2Node->getAPIntValue(); 9837 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 9838 return false; 9839 9840 // Default to true and let the DAGCombiner decide. 9841 return true; 9842 } 9843 9844 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 9845 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 9846 bool *Fast) const { 9847 if (!VT.isVector()) 9848 return false; 9849 9850 EVT ElemVT = VT.getVectorElementType(); 9851 if (Alignment >= ElemVT.getStoreSize()) { 9852 if (Fast) 9853 *Fast = true; 9854 return true; 9855 } 9856 9857 return false; 9858 } 9859 9860 bool RISCVTargetLowering::splitValueIntoRegisterParts( 9861 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 9862 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 9863 bool IsABIRegCopy = CC.hasValue(); 9864 EVT ValueVT = Val.getValueType(); 9865 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9866 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 9867 // and cast to f32. 9868 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 9869 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 9870 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 9871 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 9872 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 9873 Parts[0] = Val; 9874 return true; 9875 } 9876 9877 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9878 LLVMContext &Context = *DAG.getContext(); 9879 EVT ValueEltVT = ValueVT.getVectorElementType(); 9880 EVT PartEltVT = PartVT.getVectorElementType(); 9881 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9882 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9883 if (PartVTBitSize % ValueVTBitSize == 0) { 9884 // If the element types are different, bitcast to the same element type of 9885 // PartVT first. 9886 if (ValueEltVT != PartEltVT) { 9887 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9888 assert(Count != 0 && "The number of element should not be zero."); 9889 EVT SameEltTypeVT = 9890 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9891 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 9892 } 9893 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 9894 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9895 Parts[0] = Val; 9896 return true; 9897 } 9898 } 9899 return false; 9900 } 9901 9902 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 9903 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 9904 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 9905 bool IsABIRegCopy = CC.hasValue(); 9906 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9907 SDValue Val = Parts[0]; 9908 9909 // Cast the f32 to i32, truncate to i16, and cast back to f16. 9910 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 9911 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 9912 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 9913 return Val; 9914 } 9915 9916 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9917 LLVMContext &Context = *DAG.getContext(); 9918 SDValue Val = Parts[0]; 9919 EVT ValueEltVT = ValueVT.getVectorElementType(); 9920 EVT PartEltVT = PartVT.getVectorElementType(); 9921 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9922 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9923 if (PartVTBitSize % ValueVTBitSize == 0) { 9924 EVT SameEltTypeVT = ValueVT; 9925 // If the element types are different, convert it to the same element type 9926 // of PartVT. 9927 if (ValueEltVT != PartEltVT) { 9928 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9929 assert(Count != 0 && "The number of element should not be zero."); 9930 SameEltTypeVT = 9931 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9932 } 9933 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 9934 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9935 if (ValueEltVT != PartEltVT) 9936 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 9937 return Val; 9938 } 9939 } 9940 return SDValue(); 9941 } 9942 9943 #define GET_REGISTER_MATCHER 9944 #include "RISCVGenAsmMatcher.inc" 9945 9946 Register 9947 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 9948 const MachineFunction &MF) const { 9949 Register Reg = MatchRegisterAltName(RegName); 9950 if (Reg == RISCV::NoRegister) 9951 Reg = MatchRegisterName(RegName); 9952 if (Reg == RISCV::NoRegister) 9953 report_fatal_error( 9954 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 9955 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 9956 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 9957 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 9958 StringRef(RegName) + "\".")); 9959 return Reg; 9960 } 9961 9962 namespace llvm { 9963 namespace RISCVVIntrinsicsTable { 9964 9965 #define GET_RISCVVIntrinsicsTable_IMPL 9966 #include "RISCVGenSearchableTables.inc" 9967 9968 } // namespace RISCVVIntrinsicsTable 9969 9970 } // namespace llvm 9971