1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/IntrinsicsRISCV.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "riscv-lower"
44 
45 STATISTIC(NumTailCalls, "Number of tail calls");
46 
47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
48                                          const RISCVSubtarget &STI)
49     : TargetLowering(TM), Subtarget(STI) {
50 
51   if (Subtarget.isRV32E())
52     report_fatal_error("Codegen not yet implemented for RV32E");
53 
54   RISCVABI::ABI ABI = Subtarget.getTargetABI();
55   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
56 
57   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
58       !Subtarget.hasStdExtF()) {
59     errs() << "Hard-float 'f' ABI can't be used for a target that "
60                 "doesn't support the F instruction set extension (ignoring "
61                           "target-abi)\n";
62     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
63   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
64              !Subtarget.hasStdExtD()) {
65     errs() << "Hard-float 'd' ABI can't be used for a target that "
66               "doesn't support the D instruction set extension (ignoring "
67               "target-abi)\n";
68     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
69   }
70 
71   switch (ABI) {
72   default:
73     report_fatal_error("Don't know how to lower this ABI");
74   case RISCVABI::ABI_ILP32:
75   case RISCVABI::ABI_ILP32F:
76   case RISCVABI::ABI_ILP32D:
77   case RISCVABI::ABI_LP64:
78   case RISCVABI::ABI_LP64F:
79   case RISCVABI::ABI_LP64D:
80     break;
81   }
82 
83   MVT XLenVT = Subtarget.getXLenVT();
84 
85   // Set up the register classes.
86   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
87 
88   if (Subtarget.hasStdExtZfh())
89     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
90   if (Subtarget.hasStdExtF())
91     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
92   if (Subtarget.hasStdExtD())
93     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
94 
95   static const MVT::SimpleValueType BoolVecVTs[] = {
96       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
97       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
98   static const MVT::SimpleValueType IntVecVTs[] = {
99       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
100       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
101       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
102       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
103       MVT::nxv4i64, MVT::nxv8i64};
104   static const MVT::SimpleValueType F16VecVTs[] = {
105       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
106       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
107   static const MVT::SimpleValueType F32VecVTs[] = {
108       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
109   static const MVT::SimpleValueType F64VecVTs[] = {
110       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
111 
112   if (Subtarget.hasStdExtV()) {
113     auto addRegClassForRVV = [this](MVT VT) {
114       unsigned Size = VT.getSizeInBits().getKnownMinValue();
115       assert(Size <= 512 && isPowerOf2_32(Size));
116       const TargetRegisterClass *RC;
117       if (Size <= 64)
118         RC = &RISCV::VRRegClass;
119       else if (Size == 128)
120         RC = &RISCV::VRM2RegClass;
121       else if (Size == 256)
122         RC = &RISCV::VRM4RegClass;
123       else
124         RC = &RISCV::VRM8RegClass;
125 
126       addRegisterClass(VT, RC);
127     };
128 
129     for (MVT VT : BoolVecVTs)
130       addRegClassForRVV(VT);
131     for (MVT VT : IntVecVTs)
132       addRegClassForRVV(VT);
133 
134     if (Subtarget.hasStdExtZfh())
135       for (MVT VT : F16VecVTs)
136         addRegClassForRVV(VT);
137 
138     if (Subtarget.hasStdExtF())
139       for (MVT VT : F32VecVTs)
140         addRegClassForRVV(VT);
141 
142     if (Subtarget.hasStdExtD())
143       for (MVT VT : F64VecVTs)
144         addRegClassForRVV(VT);
145 
146     if (Subtarget.useRVVForFixedLengthVectors()) {
147       auto addRegClassForFixedVectors = [this](MVT VT) {
148         MVT ContainerVT = getContainerForFixedLengthVector(VT);
149         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
150         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
151         addRegisterClass(VT, TRI.getRegClass(RCID));
152       };
153       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
154         if (useRVVForFixedLengthVectorVT(VT))
155           addRegClassForFixedVectors(VT);
156 
157       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
158         if (useRVVForFixedLengthVectorVT(VT))
159           addRegClassForFixedVectors(VT);
160     }
161   }
162 
163   // Compute derived properties from the register classes.
164   computeRegisterProperties(STI.getRegisterInfo());
165 
166   setStackPointerRegisterToSaveRestore(RISCV::X2);
167 
168   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
169     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
170 
171   // TODO: add all necessary setOperationAction calls.
172   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
173 
174   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
175   setOperationAction(ISD::BR_CC, XLenVT, Expand);
176   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
177   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
178 
179   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
180   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
181 
182   setOperationAction(ISD::VASTART, MVT::Other, Custom);
183   setOperationAction(ISD::VAARG, MVT::Other, Expand);
184   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
185   setOperationAction(ISD::VAEND, MVT::Other, Expand);
186 
187   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
188   if (!Subtarget.hasStdExtZbb()) {
189     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
190     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
191   }
192 
193   if (Subtarget.is64Bit()) {
194     setOperationAction(ISD::ADD, MVT::i32, Custom);
195     setOperationAction(ISD::SUB, MVT::i32, Custom);
196     setOperationAction(ISD::SHL, MVT::i32, Custom);
197     setOperationAction(ISD::SRA, MVT::i32, Custom);
198     setOperationAction(ISD::SRL, MVT::i32, Custom);
199 
200     setOperationAction(ISD::UADDO, MVT::i32, Custom);
201     setOperationAction(ISD::USUBO, MVT::i32, Custom);
202     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
203     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
204   } else {
205     setLibcallName(RTLIB::SHL_I128, nullptr);
206     setLibcallName(RTLIB::SRL_I128, nullptr);
207     setLibcallName(RTLIB::SRA_I128, nullptr);
208     setLibcallName(RTLIB::MUL_I128, nullptr);
209     setLibcallName(RTLIB::MULO_I64, nullptr);
210   }
211 
212   if (!Subtarget.hasStdExtM()) {
213     setOperationAction(ISD::MUL, XLenVT, Expand);
214     setOperationAction(ISD::MULHS, XLenVT, Expand);
215     setOperationAction(ISD::MULHU, XLenVT, Expand);
216     setOperationAction(ISD::SDIV, XLenVT, Expand);
217     setOperationAction(ISD::UDIV, XLenVT, Expand);
218     setOperationAction(ISD::SREM, XLenVT, Expand);
219     setOperationAction(ISD::UREM, XLenVT, Expand);
220   } else {
221     if (Subtarget.is64Bit()) {
222       setOperationAction(ISD::MUL, MVT::i32, Custom);
223       setOperationAction(ISD::MUL, MVT::i128, Custom);
224 
225       setOperationAction(ISD::SDIV, MVT::i8, Custom);
226       setOperationAction(ISD::UDIV, MVT::i8, Custom);
227       setOperationAction(ISD::UREM, MVT::i8, Custom);
228       setOperationAction(ISD::SDIV, MVT::i16, Custom);
229       setOperationAction(ISD::UDIV, MVT::i16, Custom);
230       setOperationAction(ISD::UREM, MVT::i16, Custom);
231       setOperationAction(ISD::SDIV, MVT::i32, Custom);
232       setOperationAction(ISD::UDIV, MVT::i32, Custom);
233       setOperationAction(ISD::UREM, MVT::i32, Custom);
234     } else {
235       setOperationAction(ISD::MUL, MVT::i64, Custom);
236     }
237   }
238 
239   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
240   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
241   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
242   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
243 
244   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
245   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
246   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
247 
248   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
249     if (Subtarget.is64Bit()) {
250       setOperationAction(ISD::ROTL, MVT::i32, Custom);
251       setOperationAction(ISD::ROTR, MVT::i32, Custom);
252     }
253   } else {
254     setOperationAction(ISD::ROTL, XLenVT, Expand);
255     setOperationAction(ISD::ROTR, XLenVT, Expand);
256   }
257 
258   if (Subtarget.hasStdExtZbp()) {
259     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
260     // more combining.
261     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
262     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
263     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
264     // BSWAP i8 doesn't exist.
265     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
266     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
267 
268     if (Subtarget.is64Bit()) {
269       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
270       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
271     }
272   } else {
273     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
274     // pattern match it directly in isel.
275     setOperationAction(ISD::BSWAP, XLenVT,
276                        Subtarget.hasStdExtZbb() ? Legal : Expand);
277   }
278 
279   if (Subtarget.hasStdExtZbb()) {
280     setOperationAction(ISD::SMIN, XLenVT, Legal);
281     setOperationAction(ISD::SMAX, XLenVT, Legal);
282     setOperationAction(ISD::UMIN, XLenVT, Legal);
283     setOperationAction(ISD::UMAX, XLenVT, Legal);
284 
285     if (Subtarget.is64Bit()) {
286       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
287       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
288       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
289       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
290     }
291   } else {
292     setOperationAction(ISD::CTTZ, XLenVT, Expand);
293     setOperationAction(ISD::CTLZ, XLenVT, Expand);
294     setOperationAction(ISD::CTPOP, XLenVT, Expand);
295   }
296 
297   if (Subtarget.hasStdExtZbt()) {
298     setOperationAction(ISD::FSHL, XLenVT, Custom);
299     setOperationAction(ISD::FSHR, XLenVT, Custom);
300     setOperationAction(ISD::SELECT, XLenVT, Legal);
301 
302     if (Subtarget.is64Bit()) {
303       setOperationAction(ISD::FSHL, MVT::i32, Custom);
304       setOperationAction(ISD::FSHR, MVT::i32, Custom);
305     }
306   } else {
307     setOperationAction(ISD::SELECT, XLenVT, Custom);
308   }
309 
310   static const ISD::CondCode FPCCToExpand[] = {
311       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
312       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
313       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
314 
315   static const ISD::NodeType FPOpToExpand[] = {
316       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
317       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
318 
319   if (Subtarget.hasStdExtZfh())
320     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
321 
322   if (Subtarget.hasStdExtZfh()) {
323     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
324     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
325     setOperationAction(ISD::LRINT, MVT::f16, Legal);
326     setOperationAction(ISD::LLRINT, MVT::f16, Legal);
327     setOperationAction(ISD::LROUND, MVT::f16, Legal);
328     setOperationAction(ISD::LLROUND, MVT::f16, Legal);
329     for (auto CC : FPCCToExpand)
330       setCondCodeAction(CC, MVT::f16, Expand);
331     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
332     setOperationAction(ISD::SELECT, MVT::f16, Custom);
333     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
334     for (auto Op : FPOpToExpand)
335       setOperationAction(Op, MVT::f16, Expand);
336   }
337 
338   if (Subtarget.hasStdExtF()) {
339     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
340     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
341     setOperationAction(ISD::LRINT, MVT::f32, Legal);
342     setOperationAction(ISD::LLRINT, MVT::f32, Legal);
343     setOperationAction(ISD::LROUND, MVT::f32, Legal);
344     setOperationAction(ISD::LLROUND, MVT::f32, Legal);
345     for (auto CC : FPCCToExpand)
346       setCondCodeAction(CC, MVT::f32, Expand);
347     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
348     setOperationAction(ISD::SELECT, MVT::f32, Custom);
349     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
350     for (auto Op : FPOpToExpand)
351       setOperationAction(Op, MVT::f32, Expand);
352     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
353     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
354   }
355 
356   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
357     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
358 
359   if (Subtarget.hasStdExtD()) {
360     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
361     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
362     setOperationAction(ISD::LRINT, MVT::f64, Legal);
363     setOperationAction(ISD::LLRINT, MVT::f64, Legal);
364     setOperationAction(ISD::LROUND, MVT::f64, Legal);
365     setOperationAction(ISD::LLROUND, MVT::f64, Legal);
366     for (auto CC : FPCCToExpand)
367       setCondCodeAction(CC, MVT::f64, Expand);
368     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
369     setOperationAction(ISD::SELECT, MVT::f64, Custom);
370     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
371     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
372     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
373     for (auto Op : FPOpToExpand)
374       setOperationAction(Op, MVT::f64, Expand);
375     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
376     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
377   }
378 
379   if (Subtarget.is64Bit()) {
380     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
381     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
382     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
383     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
384   }
385 
386   if (Subtarget.hasStdExtF()) {
387     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
388     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
389 
390     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
391     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
392   }
393 
394   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
395   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
396   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
397   setOperationAction(ISD::JumpTable, XLenVT, Custom);
398 
399   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
400 
401   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
402   // Unfortunately this can't be determined just from the ISA naming string.
403   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
404                      Subtarget.is64Bit() ? Legal : Custom);
405 
406   setOperationAction(ISD::TRAP, MVT::Other, Legal);
407   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
408   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
409   if (Subtarget.is64Bit())
410     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
411 
412   if (Subtarget.hasStdExtA()) {
413     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
414     setMinCmpXchgSizeInBits(32);
415   } else {
416     setMaxAtomicSizeInBitsSupported(0);
417   }
418 
419   setBooleanContents(ZeroOrOneBooleanContent);
420 
421   if (Subtarget.hasStdExtV()) {
422     setBooleanVectorContents(ZeroOrOneBooleanContent);
423 
424     setOperationAction(ISD::VSCALE, XLenVT, Custom);
425 
426     // RVV intrinsics may have illegal operands.
427     // We also need to custom legalize vmv.x.s.
428     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
429     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
430     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
431     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
432     if (Subtarget.is64Bit()) {
433       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
434     } else {
435       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
436       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
437     }
438 
439     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
440     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
441 
442     static const unsigned IntegerVPOps[] = {
443         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
444         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
445         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
446         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
447         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
448         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
449         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN};
450 
451     static const unsigned FloatingPointVPOps[] = {
452         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
453         ISD::VP_FDIV,        ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
454         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX};
455 
456     if (!Subtarget.is64Bit()) {
457       // We must custom-lower certain vXi64 operations on RV32 due to the vector
458       // element type being illegal.
459       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
460       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
461 
462       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
463       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
464       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
465       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
466       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
467       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
468       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
469       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
470 
471       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
472       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
473       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
474       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
475       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
476       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
477       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
478       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
479     }
480 
481     for (MVT VT : BoolVecVTs) {
482       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
483 
484       // Mask VTs are custom-expanded into a series of standard nodes
485       setOperationAction(ISD::TRUNCATE, VT, Custom);
486       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
487       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
488       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
489 
490       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
491       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
492 
493       setOperationAction(ISD::SELECT, VT, Custom);
494       setOperationAction(ISD::SELECT_CC, VT, Expand);
495       setOperationAction(ISD::VSELECT, VT, Expand);
496 
497       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
498       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
499       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
500 
501       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
502       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
503       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
504 
505       // RVV has native int->float & float->int conversions where the
506       // element type sizes are within one power-of-two of each other. Any
507       // wider distances between type sizes have to be lowered as sequences
508       // which progressively narrow the gap in stages.
509       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
510       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
511       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
512       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
513 
514       // Expand all extending loads to types larger than this, and truncating
515       // stores from types larger than this.
516       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
517         setTruncStoreAction(OtherVT, VT, Expand);
518         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
519         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
520         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
521       }
522     }
523 
524     for (MVT VT : IntVecVTs) {
525       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
526       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
527 
528       setOperationAction(ISD::SMIN, VT, Legal);
529       setOperationAction(ISD::SMAX, VT, Legal);
530       setOperationAction(ISD::UMIN, VT, Legal);
531       setOperationAction(ISD::UMAX, VT, Legal);
532 
533       setOperationAction(ISD::ROTL, VT, Expand);
534       setOperationAction(ISD::ROTR, VT, Expand);
535 
536       setOperationAction(ISD::CTTZ, VT, Expand);
537       setOperationAction(ISD::CTLZ, VT, Expand);
538       setOperationAction(ISD::CTPOP, VT, Expand);
539 
540       // Custom-lower extensions and truncations from/to mask types.
541       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
542       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
543       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
544 
545       // RVV has native int->float & float->int conversions where the
546       // element type sizes are within one power-of-two of each other. Any
547       // wider distances between type sizes have to be lowered as sequences
548       // which progressively narrow the gap in stages.
549       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
550       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
551       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
552       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
553 
554       setOperationAction(ISD::SADDSAT, VT, Legal);
555       setOperationAction(ISD::UADDSAT, VT, Legal);
556       setOperationAction(ISD::SSUBSAT, VT, Legal);
557       setOperationAction(ISD::USUBSAT, VT, Legal);
558 
559       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
560       // nodes which truncate by one power of two at a time.
561       setOperationAction(ISD::TRUNCATE, VT, Custom);
562 
563       // Custom-lower insert/extract operations to simplify patterns.
564       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
565       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
566 
567       // Custom-lower reduction operations to set up the corresponding custom
568       // nodes' operands.
569       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
570       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
571       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
572       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
573       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
574       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
575       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
576       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
577 
578       for (unsigned VPOpc : IntegerVPOps)
579         setOperationAction(VPOpc, VT, Custom);
580 
581       setOperationAction(ISD::LOAD, VT, Custom);
582       setOperationAction(ISD::STORE, VT, Custom);
583 
584       setOperationAction(ISD::MLOAD, VT, Custom);
585       setOperationAction(ISD::MSTORE, VT, Custom);
586       setOperationAction(ISD::MGATHER, VT, Custom);
587       setOperationAction(ISD::MSCATTER, VT, Custom);
588 
589       setOperationAction(ISD::VP_LOAD, VT, Custom);
590       setOperationAction(ISD::VP_STORE, VT, Custom);
591       setOperationAction(ISD::VP_GATHER, VT, Custom);
592       setOperationAction(ISD::VP_SCATTER, VT, Custom);
593 
594       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
595       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
596       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
597 
598       setOperationAction(ISD::SELECT, VT, Custom);
599       setOperationAction(ISD::SELECT_CC, VT, Expand);
600 
601       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
602       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
603 
604       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
605         setTruncStoreAction(VT, OtherVT, Expand);
606         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
607         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
608         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
609       }
610     }
611 
612     // Expand various CCs to best match the RVV ISA, which natively supports UNE
613     // but no other unordered comparisons, and supports all ordered comparisons
614     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
615     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
616     // and we pattern-match those back to the "original", swapping operands once
617     // more. This way we catch both operations and both "vf" and "fv" forms with
618     // fewer patterns.
619     static const ISD::CondCode VFPCCToExpand[] = {
620         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
621         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
622         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
623     };
624 
625     // Sets common operation actions on RVV floating-point vector types.
626     const auto SetCommonVFPActions = [&](MVT VT) {
627       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
628       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
629       // sizes are within one power-of-two of each other. Therefore conversions
630       // between vXf16 and vXf64 must be lowered as sequences which convert via
631       // vXf32.
632       setOperationAction(ISD::FP_ROUND, VT, Custom);
633       setOperationAction(ISD::FP_EXTEND, VT, Custom);
634       // Custom-lower insert/extract operations to simplify patterns.
635       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
636       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
637       // Expand various condition codes (explained above).
638       for (auto CC : VFPCCToExpand)
639         setCondCodeAction(CC, VT, Expand);
640 
641       setOperationAction(ISD::FMINNUM, VT, Legal);
642       setOperationAction(ISD::FMAXNUM, VT, Legal);
643 
644       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
645       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
646       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
647       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
648 
649       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
650 
651       setOperationAction(ISD::LOAD, VT, Custom);
652       setOperationAction(ISD::STORE, VT, Custom);
653 
654       setOperationAction(ISD::MLOAD, VT, Custom);
655       setOperationAction(ISD::MSTORE, VT, Custom);
656       setOperationAction(ISD::MGATHER, VT, Custom);
657       setOperationAction(ISD::MSCATTER, VT, Custom);
658 
659       setOperationAction(ISD::VP_LOAD, VT, Custom);
660       setOperationAction(ISD::VP_STORE, VT, Custom);
661       setOperationAction(ISD::VP_GATHER, VT, Custom);
662       setOperationAction(ISD::VP_SCATTER, VT, Custom);
663 
664       setOperationAction(ISD::SELECT, VT, Custom);
665       setOperationAction(ISD::SELECT_CC, VT, Expand);
666 
667       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
668       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
669       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
670 
671       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
672 
673       for (unsigned VPOpc : FloatingPointVPOps)
674         setOperationAction(VPOpc, VT, Custom);
675     };
676 
677     // Sets common extload/truncstore actions on RVV floating-point vector
678     // types.
679     const auto SetCommonVFPExtLoadTruncStoreActions =
680         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
681           for (auto SmallVT : SmallerVTs) {
682             setTruncStoreAction(VT, SmallVT, Expand);
683             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
684           }
685         };
686 
687     if (Subtarget.hasStdExtZfh())
688       for (MVT VT : F16VecVTs)
689         SetCommonVFPActions(VT);
690 
691     for (MVT VT : F32VecVTs) {
692       if (Subtarget.hasStdExtF())
693         SetCommonVFPActions(VT);
694       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
695     }
696 
697     for (MVT VT : F64VecVTs) {
698       if (Subtarget.hasStdExtD())
699         SetCommonVFPActions(VT);
700       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
701       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
702     }
703 
704     if (Subtarget.useRVVForFixedLengthVectors()) {
705       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
706         if (!useRVVForFixedLengthVectorVT(VT))
707           continue;
708 
709         // By default everything must be expanded.
710         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
711           setOperationAction(Op, VT, Expand);
712         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
713           setTruncStoreAction(VT, OtherVT, Expand);
714           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
715           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
716           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
717         }
718 
719         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
720         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
721         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
722 
723         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
724         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
725 
726         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
727         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
728 
729         setOperationAction(ISD::LOAD, VT, Custom);
730         setOperationAction(ISD::STORE, VT, Custom);
731 
732         setOperationAction(ISD::SETCC, VT, Custom);
733 
734         setOperationAction(ISD::SELECT, VT, Custom);
735 
736         setOperationAction(ISD::TRUNCATE, VT, Custom);
737 
738         setOperationAction(ISD::BITCAST, VT, Custom);
739 
740         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
741         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
742         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
743 
744         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
745         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
746         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
747 
748         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
749         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
750         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
751         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
752 
753         // Operations below are different for between masks and other vectors.
754         if (VT.getVectorElementType() == MVT::i1) {
755           setOperationAction(ISD::AND, VT, Custom);
756           setOperationAction(ISD::OR, VT, Custom);
757           setOperationAction(ISD::XOR, VT, Custom);
758           continue;
759         }
760 
761         // Use SPLAT_VECTOR to prevent type legalization from destroying the
762         // splats when type legalizing i64 scalar on RV32.
763         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
764         // improvements first.
765         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
766           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
767           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
768         }
769 
770         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
771         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
772 
773         setOperationAction(ISD::MLOAD, VT, Custom);
774         setOperationAction(ISD::MSTORE, VT, Custom);
775         setOperationAction(ISD::MGATHER, VT, Custom);
776         setOperationAction(ISD::MSCATTER, VT, Custom);
777 
778         setOperationAction(ISD::VP_LOAD, VT, Custom);
779         setOperationAction(ISD::VP_STORE, VT, Custom);
780         setOperationAction(ISD::VP_GATHER, VT, Custom);
781         setOperationAction(ISD::VP_SCATTER, VT, Custom);
782 
783         setOperationAction(ISD::ADD, VT, Custom);
784         setOperationAction(ISD::MUL, VT, Custom);
785         setOperationAction(ISD::SUB, VT, Custom);
786         setOperationAction(ISD::AND, VT, Custom);
787         setOperationAction(ISD::OR, VT, Custom);
788         setOperationAction(ISD::XOR, VT, Custom);
789         setOperationAction(ISD::SDIV, VT, Custom);
790         setOperationAction(ISD::SREM, VT, Custom);
791         setOperationAction(ISD::UDIV, VT, Custom);
792         setOperationAction(ISD::UREM, VT, Custom);
793         setOperationAction(ISD::SHL, VT, Custom);
794         setOperationAction(ISD::SRA, VT, Custom);
795         setOperationAction(ISD::SRL, VT, Custom);
796 
797         setOperationAction(ISD::SMIN, VT, Custom);
798         setOperationAction(ISD::SMAX, VT, Custom);
799         setOperationAction(ISD::UMIN, VT, Custom);
800         setOperationAction(ISD::UMAX, VT, Custom);
801         setOperationAction(ISD::ABS,  VT, Custom);
802 
803         setOperationAction(ISD::MULHS, VT, Custom);
804         setOperationAction(ISD::MULHU, VT, Custom);
805 
806         setOperationAction(ISD::SADDSAT, VT, Custom);
807         setOperationAction(ISD::UADDSAT, VT, Custom);
808         setOperationAction(ISD::SSUBSAT, VT, Custom);
809         setOperationAction(ISD::USUBSAT, VT, Custom);
810 
811         setOperationAction(ISD::VSELECT, VT, Custom);
812         setOperationAction(ISD::SELECT_CC, VT, Expand);
813 
814         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
815         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
816         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
817 
818         // Custom-lower reduction operations to set up the corresponding custom
819         // nodes' operands.
820         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
821         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
822         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
823         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
824         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
825 
826         for (unsigned VPOpc : IntegerVPOps)
827           setOperationAction(VPOpc, VT, Custom);
828       }
829 
830       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
831         if (!useRVVForFixedLengthVectorVT(VT))
832           continue;
833 
834         // By default everything must be expanded.
835         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
836           setOperationAction(Op, VT, Expand);
837         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
838           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
839           setTruncStoreAction(VT, OtherVT, Expand);
840         }
841 
842         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
843         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
844         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
845 
846         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
847         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
848         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
849         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
850         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
851 
852         setOperationAction(ISD::LOAD, VT, Custom);
853         setOperationAction(ISD::STORE, VT, Custom);
854         setOperationAction(ISD::MLOAD, VT, Custom);
855         setOperationAction(ISD::MSTORE, VT, Custom);
856         setOperationAction(ISD::MGATHER, VT, Custom);
857         setOperationAction(ISD::MSCATTER, VT, Custom);
858 
859         setOperationAction(ISD::VP_LOAD, VT, Custom);
860         setOperationAction(ISD::VP_STORE, VT, Custom);
861         setOperationAction(ISD::VP_GATHER, VT, Custom);
862         setOperationAction(ISD::VP_SCATTER, VT, Custom);
863 
864         setOperationAction(ISD::FADD, VT, Custom);
865         setOperationAction(ISD::FSUB, VT, Custom);
866         setOperationAction(ISD::FMUL, VT, Custom);
867         setOperationAction(ISD::FDIV, VT, Custom);
868         setOperationAction(ISD::FNEG, VT, Custom);
869         setOperationAction(ISD::FABS, VT, Custom);
870         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
871         setOperationAction(ISD::FSQRT, VT, Custom);
872         setOperationAction(ISD::FMA, VT, Custom);
873         setOperationAction(ISD::FMINNUM, VT, Custom);
874         setOperationAction(ISD::FMAXNUM, VT, Custom);
875 
876         setOperationAction(ISD::FP_ROUND, VT, Custom);
877         setOperationAction(ISD::FP_EXTEND, VT, Custom);
878 
879         for (auto CC : VFPCCToExpand)
880           setCondCodeAction(CC, VT, Expand);
881 
882         setOperationAction(ISD::VSELECT, VT, Custom);
883         setOperationAction(ISD::SELECT, VT, Custom);
884         setOperationAction(ISD::SELECT_CC, VT, Expand);
885 
886         setOperationAction(ISD::BITCAST, VT, Custom);
887 
888         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
889         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
890         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
891         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
892 
893         for (unsigned VPOpc : FloatingPointVPOps)
894           setOperationAction(VPOpc, VT, Custom);
895       }
896 
897       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
898       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
899       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
900       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
901       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
902       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
903       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
904       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
905     }
906   }
907 
908   // Function alignments.
909   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
910   setMinFunctionAlignment(FunctionAlignment);
911   setPrefFunctionAlignment(FunctionAlignment);
912 
913   setMinimumJumpTableEntries(5);
914 
915   // Jumps are expensive, compared to logic
916   setJumpIsExpensive();
917 
918   // We can use any register for comparisons
919   setHasMultipleConditionRegisters();
920 
921   setTargetDAGCombine(ISD::ADD);
922   setTargetDAGCombine(ISD::SUB);
923   setTargetDAGCombine(ISD::AND);
924   setTargetDAGCombine(ISD::OR);
925   setTargetDAGCombine(ISD::XOR);
926   setTargetDAGCombine(ISD::ANY_EXTEND);
927   setTargetDAGCombine(ISD::ZERO_EXTEND);
928   if (Subtarget.hasStdExtV()) {
929     setTargetDAGCombine(ISD::FCOPYSIGN);
930     setTargetDAGCombine(ISD::MGATHER);
931     setTargetDAGCombine(ISD::MSCATTER);
932     setTargetDAGCombine(ISD::VP_GATHER);
933     setTargetDAGCombine(ISD::VP_SCATTER);
934     setTargetDAGCombine(ISD::SRA);
935     setTargetDAGCombine(ISD::SRL);
936     setTargetDAGCombine(ISD::SHL);
937     setTargetDAGCombine(ISD::STORE);
938   }
939 }
940 
941 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
942                                             LLVMContext &Context,
943                                             EVT VT) const {
944   if (!VT.isVector())
945     return getPointerTy(DL);
946   if (Subtarget.hasStdExtV() &&
947       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
948     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
949   return VT.changeVectorElementTypeToInteger();
950 }
951 
952 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
953   return Subtarget.getXLenVT();
954 }
955 
956 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
957                                              const CallInst &I,
958                                              MachineFunction &MF,
959                                              unsigned Intrinsic) const {
960   auto &DL = I.getModule()->getDataLayout();
961   switch (Intrinsic) {
962   default:
963     return false;
964   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
965   case Intrinsic::riscv_masked_atomicrmw_add_i32:
966   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
967   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
968   case Intrinsic::riscv_masked_atomicrmw_max_i32:
969   case Intrinsic::riscv_masked_atomicrmw_min_i32:
970   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
971   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
972   case Intrinsic::riscv_masked_cmpxchg_i32: {
973     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
974     Info.opc = ISD::INTRINSIC_W_CHAIN;
975     Info.memVT = MVT::getVT(PtrTy->getElementType());
976     Info.ptrVal = I.getArgOperand(0);
977     Info.offset = 0;
978     Info.align = Align(4);
979     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
980                  MachineMemOperand::MOVolatile;
981     return true;
982   }
983   case Intrinsic::riscv_masked_strided_load:
984     Info.opc = ISD::INTRINSIC_W_CHAIN;
985     Info.ptrVal = I.getArgOperand(1);
986     Info.memVT = getValueType(DL, I.getType()->getScalarType());
987     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
988     Info.size = MemoryLocation::UnknownSize;
989     Info.flags |= MachineMemOperand::MOLoad;
990     return true;
991   case Intrinsic::riscv_masked_strided_store:
992     Info.opc = ISD::INTRINSIC_VOID;
993     Info.ptrVal = I.getArgOperand(1);
994     Info.memVT =
995         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
996     Info.align = Align(
997         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
998         8);
999     Info.size = MemoryLocation::UnknownSize;
1000     Info.flags |= MachineMemOperand::MOStore;
1001     return true;
1002   }
1003 }
1004 
1005 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1006                                                 const AddrMode &AM, Type *Ty,
1007                                                 unsigned AS,
1008                                                 Instruction *I) const {
1009   // No global is ever allowed as a base.
1010   if (AM.BaseGV)
1011     return false;
1012 
1013   // Require a 12-bit signed offset.
1014   if (!isInt<12>(AM.BaseOffs))
1015     return false;
1016 
1017   switch (AM.Scale) {
1018   case 0: // "r+i" or just "i", depending on HasBaseReg.
1019     break;
1020   case 1:
1021     if (!AM.HasBaseReg) // allow "r+i".
1022       break;
1023     return false; // disallow "r+r" or "r+r+i".
1024   default:
1025     return false;
1026   }
1027 
1028   return true;
1029 }
1030 
1031 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1032   return isInt<12>(Imm);
1033 }
1034 
1035 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1036   return isInt<12>(Imm);
1037 }
1038 
1039 // On RV32, 64-bit integers are split into their high and low parts and held
1040 // in two different registers, so the trunc is free since the low register can
1041 // just be used.
1042 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1043   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1044     return false;
1045   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1046   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1047   return (SrcBits == 64 && DestBits == 32);
1048 }
1049 
1050 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1051   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1052       !SrcVT.isInteger() || !DstVT.isInteger())
1053     return false;
1054   unsigned SrcBits = SrcVT.getSizeInBits();
1055   unsigned DestBits = DstVT.getSizeInBits();
1056   return (SrcBits == 64 && DestBits == 32);
1057 }
1058 
1059 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1060   // Zexts are free if they can be combined with a load.
1061   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1062     EVT MemVT = LD->getMemoryVT();
1063     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
1064          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
1065         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1066          LD->getExtensionType() == ISD::ZEXTLOAD))
1067       return true;
1068   }
1069 
1070   return TargetLowering::isZExtFree(Val, VT2);
1071 }
1072 
1073 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1074   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1075 }
1076 
1077 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1078   return Subtarget.hasStdExtZbb();
1079 }
1080 
1081 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1082   return Subtarget.hasStdExtZbb();
1083 }
1084 
1085 /// Check if sinking \p I's operands to I's basic block is profitable, because
1086 /// the operands can be folded into a target instruction, e.g.
1087 /// splats of scalars can fold into vector instructions.
1088 bool RISCVTargetLowering::shouldSinkOperands(
1089     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1090   using namespace llvm::PatternMatch;
1091 
1092   if (!I->getType()->isVectorTy() || !Subtarget.hasStdExtV())
1093     return false;
1094 
1095   auto IsSinker = [&](Instruction *I, int Operand) {
1096     switch (I->getOpcode()) {
1097     case Instruction::Add:
1098     case Instruction::Sub:
1099     case Instruction::Mul:
1100     case Instruction::And:
1101     case Instruction::Or:
1102     case Instruction::Xor:
1103     case Instruction::FAdd:
1104     case Instruction::FSub:
1105     case Instruction::FMul:
1106     case Instruction::FDiv:
1107       return true;
1108     case Instruction::Shl:
1109     case Instruction::LShr:
1110     case Instruction::AShr:
1111       return Operand == 1;
1112     case Instruction::Call:
1113       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1114         switch (II->getIntrinsicID()) {
1115         case Intrinsic::fma:
1116           return Operand == 0 || Operand == 1;
1117         default:
1118           return false;
1119         }
1120       }
1121       return false;
1122     default:
1123       return false;
1124     }
1125   };
1126 
1127   for (auto OpIdx : enumerate(I->operands())) {
1128     if (!IsSinker(I, OpIdx.index()))
1129       continue;
1130 
1131     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1132     // Make sure we are not already sinking this operand
1133     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1134       continue;
1135 
1136     // We are looking for a splat that can be sunk.
1137     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1138                              m_Undef(), m_ZeroMask())))
1139       continue;
1140 
1141     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1142     // and vector registers
1143     for (Use &U : Op->uses()) {
1144       Instruction *Insn = cast<Instruction>(U.getUser());
1145       if (!IsSinker(Insn, U.getOperandNo()))
1146         return false;
1147     }
1148 
1149     Ops.push_back(&Op->getOperandUse(0));
1150     Ops.push_back(&OpIdx.value());
1151   }
1152   return true;
1153 }
1154 
1155 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1156                                        bool ForCodeSize) const {
1157   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1158     return false;
1159   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1160     return false;
1161   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1162     return false;
1163   if (Imm.isNegZero())
1164     return false;
1165   return Imm.isZero();
1166 }
1167 
1168 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1169   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1170          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1171          (VT == MVT::f64 && Subtarget.hasStdExtD());
1172 }
1173 
1174 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1175                                                       CallingConv::ID CC,
1176                                                       EVT VT) const {
1177   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
1178   // end up using a GPR but that will be decided based on ABI.
1179   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1180     return MVT::f32;
1181 
1182   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1183 }
1184 
1185 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1186                                                            CallingConv::ID CC,
1187                                                            EVT VT) const {
1188   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
1189   // end up using a GPR but that will be decided based on ABI.
1190   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1191     return 1;
1192 
1193   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1194 }
1195 
1196 // Changes the condition code and swaps operands if necessary, so the SetCC
1197 // operation matches one of the comparisons supported directly by branches
1198 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1199 // with 1/-1.
1200 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1201                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1202   // Convert X > -1 to X >= 0.
1203   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1204     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1205     CC = ISD::SETGE;
1206     return;
1207   }
1208   // Convert X < 1 to 0 >= X.
1209   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1210     RHS = LHS;
1211     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1212     CC = ISD::SETGE;
1213     return;
1214   }
1215 
1216   switch (CC) {
1217   default:
1218     break;
1219   case ISD::SETGT:
1220   case ISD::SETLE:
1221   case ISD::SETUGT:
1222   case ISD::SETULE:
1223     CC = ISD::getSetCCSwappedOperands(CC);
1224     std::swap(LHS, RHS);
1225     break;
1226   }
1227 }
1228 
1229 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1230   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1231   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1232   if (VT.getVectorElementType() == MVT::i1)
1233     KnownSize *= 8;
1234 
1235   switch (KnownSize) {
1236   default:
1237     llvm_unreachable("Invalid LMUL.");
1238   case 8:
1239     return RISCVII::VLMUL::LMUL_F8;
1240   case 16:
1241     return RISCVII::VLMUL::LMUL_F4;
1242   case 32:
1243     return RISCVII::VLMUL::LMUL_F2;
1244   case 64:
1245     return RISCVII::VLMUL::LMUL_1;
1246   case 128:
1247     return RISCVII::VLMUL::LMUL_2;
1248   case 256:
1249     return RISCVII::VLMUL::LMUL_4;
1250   case 512:
1251     return RISCVII::VLMUL::LMUL_8;
1252   }
1253 }
1254 
1255 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1256   switch (LMul) {
1257   default:
1258     llvm_unreachable("Invalid LMUL.");
1259   case RISCVII::VLMUL::LMUL_F8:
1260   case RISCVII::VLMUL::LMUL_F4:
1261   case RISCVII::VLMUL::LMUL_F2:
1262   case RISCVII::VLMUL::LMUL_1:
1263     return RISCV::VRRegClassID;
1264   case RISCVII::VLMUL::LMUL_2:
1265     return RISCV::VRM2RegClassID;
1266   case RISCVII::VLMUL::LMUL_4:
1267     return RISCV::VRM4RegClassID;
1268   case RISCVII::VLMUL::LMUL_8:
1269     return RISCV::VRM8RegClassID;
1270   }
1271 }
1272 
1273 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1274   RISCVII::VLMUL LMUL = getLMUL(VT);
1275   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1276       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1277       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1278       LMUL == RISCVII::VLMUL::LMUL_1) {
1279     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1280                   "Unexpected subreg numbering");
1281     return RISCV::sub_vrm1_0 + Index;
1282   }
1283   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1284     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1285                   "Unexpected subreg numbering");
1286     return RISCV::sub_vrm2_0 + Index;
1287   }
1288   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1289     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1290                   "Unexpected subreg numbering");
1291     return RISCV::sub_vrm4_0 + Index;
1292   }
1293   llvm_unreachable("Invalid vector type.");
1294 }
1295 
1296 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1297   if (VT.getVectorElementType() == MVT::i1)
1298     return RISCV::VRRegClassID;
1299   return getRegClassIDForLMUL(getLMUL(VT));
1300 }
1301 
1302 // Attempt to decompose a subvector insert/extract between VecVT and
1303 // SubVecVT via subregister indices. Returns the subregister index that
1304 // can perform the subvector insert/extract with the given element index, as
1305 // well as the index corresponding to any leftover subvectors that must be
1306 // further inserted/extracted within the register class for SubVecVT.
1307 std::pair<unsigned, unsigned>
1308 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1309     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1310     const RISCVRegisterInfo *TRI) {
1311   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1312                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1313                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1314                 "Register classes not ordered");
1315   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1316   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1317   // Try to compose a subregister index that takes us from the incoming
1318   // LMUL>1 register class down to the outgoing one. At each step we half
1319   // the LMUL:
1320   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1321   // Note that this is not guaranteed to find a subregister index, such as
1322   // when we are extracting from one VR type to another.
1323   unsigned SubRegIdx = RISCV::NoSubRegister;
1324   for (const unsigned RCID :
1325        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1326     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1327       VecVT = VecVT.getHalfNumVectorElementsVT();
1328       bool IsHi =
1329           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1330       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1331                                             getSubregIndexByMVT(VecVT, IsHi));
1332       if (IsHi)
1333         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1334     }
1335   return {SubRegIdx, InsertExtractIdx};
1336 }
1337 
1338 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1339 // stores for those types.
1340 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1341   return !Subtarget.useRVVForFixedLengthVectors() ||
1342          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1343 }
1344 
1345 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1346   if (ScalarTy->isPointerTy())
1347     return true;
1348 
1349   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1350       ScalarTy->isIntegerTy(32) || ScalarTy->isIntegerTy(64))
1351     return true;
1352 
1353   if (ScalarTy->isHalfTy())
1354     return Subtarget.hasStdExtZfh();
1355   if (ScalarTy->isFloatTy())
1356     return Subtarget.hasStdExtF();
1357   if (ScalarTy->isDoubleTy())
1358     return Subtarget.hasStdExtD();
1359 
1360   return false;
1361 }
1362 
1363 static bool useRVVForFixedLengthVectorVT(MVT VT,
1364                                          const RISCVSubtarget &Subtarget) {
1365   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1366   if (!Subtarget.useRVVForFixedLengthVectors())
1367     return false;
1368 
1369   // We only support a set of vector types with a consistent maximum fixed size
1370   // across all supported vector element types to avoid legalization issues.
1371   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1372   // fixed-length vector type we support is 1024 bytes.
1373   if (VT.getFixedSizeInBits() > 1024 * 8)
1374     return false;
1375 
1376   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1377 
1378   MVT EltVT = VT.getVectorElementType();
1379 
1380   // Don't use RVV for vectors we cannot scalarize if required.
1381   switch (EltVT.SimpleTy) {
1382   // i1 is supported but has different rules.
1383   default:
1384     return false;
1385   case MVT::i1:
1386     // Masks can only use a single register.
1387     if (VT.getVectorNumElements() > MinVLen)
1388       return false;
1389     MinVLen /= 8;
1390     break;
1391   case MVT::i8:
1392   case MVT::i16:
1393   case MVT::i32:
1394   case MVT::i64:
1395     break;
1396   case MVT::f16:
1397     if (!Subtarget.hasStdExtZfh())
1398       return false;
1399     break;
1400   case MVT::f32:
1401     if (!Subtarget.hasStdExtF())
1402       return false;
1403     break;
1404   case MVT::f64:
1405     if (!Subtarget.hasStdExtD())
1406       return false;
1407     break;
1408   }
1409 
1410   // Reject elements larger than ELEN.
1411   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1412     return false;
1413 
1414   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1415   // Don't use RVV for types that don't fit.
1416   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1417     return false;
1418 
1419   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1420   // the base fixed length RVV support in place.
1421   if (!VT.isPow2VectorType())
1422     return false;
1423 
1424   return true;
1425 }
1426 
1427 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1428   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1429 }
1430 
1431 // Return the largest legal scalable vector type that matches VT's element type.
1432 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1433                                             const RISCVSubtarget &Subtarget) {
1434   // This may be called before legal types are setup.
1435   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1436           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1437          "Expected legal fixed length vector!");
1438 
1439   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1440   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1441 
1442   MVT EltVT = VT.getVectorElementType();
1443   switch (EltVT.SimpleTy) {
1444   default:
1445     llvm_unreachable("unexpected element type for RVV container");
1446   case MVT::i1:
1447   case MVT::i8:
1448   case MVT::i16:
1449   case MVT::i32:
1450   case MVT::i64:
1451   case MVT::f16:
1452   case MVT::f32:
1453   case MVT::f64: {
1454     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1455     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1456     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1457     unsigned NumElts =
1458         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1459     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1460     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1461     return MVT::getScalableVectorVT(EltVT, NumElts);
1462   }
1463   }
1464 }
1465 
1466 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1467                                             const RISCVSubtarget &Subtarget) {
1468   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1469                                           Subtarget);
1470 }
1471 
1472 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1473   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1474 }
1475 
1476 // Grow V to consume an entire RVV register.
1477 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1478                                        const RISCVSubtarget &Subtarget) {
1479   assert(VT.isScalableVector() &&
1480          "Expected to convert into a scalable vector!");
1481   assert(V.getValueType().isFixedLengthVector() &&
1482          "Expected a fixed length vector operand!");
1483   SDLoc DL(V);
1484   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1485   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1486 }
1487 
1488 // Shrink V so it's just big enough to maintain a VT's worth of data.
1489 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1490                                          const RISCVSubtarget &Subtarget) {
1491   assert(VT.isFixedLengthVector() &&
1492          "Expected to convert into a fixed length vector!");
1493   assert(V.getValueType().isScalableVector() &&
1494          "Expected a scalable vector operand!");
1495   SDLoc DL(V);
1496   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1497   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1498 }
1499 
1500 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1501 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1502 // the vector type that it is contained in.
1503 static std::pair<SDValue, SDValue>
1504 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1505                 const RISCVSubtarget &Subtarget) {
1506   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1507   MVT XLenVT = Subtarget.getXLenVT();
1508   SDValue VL = VecVT.isFixedLengthVector()
1509                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1510                    : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT);
1511   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1512   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1513   return {Mask, VL};
1514 }
1515 
1516 // As above but assuming the given type is a scalable vector type.
1517 static std::pair<SDValue, SDValue>
1518 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1519                         const RISCVSubtarget &Subtarget) {
1520   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1521   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1522 }
1523 
1524 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1525 // of either is (currently) supported. This can get us into an infinite loop
1526 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1527 // as a ..., etc.
1528 // Until either (or both) of these can reliably lower any node, reporting that
1529 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1530 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1531 // which is not desirable.
1532 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1533     EVT VT, unsigned DefinedValues) const {
1534   return false;
1535 }
1536 
1537 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1538   // Only splats are currently supported.
1539   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1540     return true;
1541 
1542   return false;
1543 }
1544 
1545 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) {
1546   // RISCV FP-to-int conversions saturate to the destination register size, but
1547   // don't produce 0 for nan. We can use a conversion instruction and fix the
1548   // nan case with a compare and a select.
1549   SDValue Src = Op.getOperand(0);
1550 
1551   EVT DstVT = Op.getValueType();
1552   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1553 
1554   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1555   unsigned Opc;
1556   if (SatVT == DstVT)
1557     Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ;
1558   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1559     Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
1560   else
1561     return SDValue();
1562   // FIXME: Support other SatVTs by clamping before or after the conversion.
1563 
1564   SDLoc DL(Op);
1565   SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src);
1566 
1567   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1568   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1569 }
1570 
1571 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1572                                  const RISCVSubtarget &Subtarget) {
1573   MVT VT = Op.getSimpleValueType();
1574   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1575 
1576   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1577 
1578   SDLoc DL(Op);
1579   SDValue Mask, VL;
1580   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1581 
1582   unsigned Opc =
1583       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1584   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1585   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1586 }
1587 
1588 struct VIDSequence {
1589   int64_t StepNumerator;
1590   unsigned StepDenominator;
1591   int64_t Addend;
1592 };
1593 
1594 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1595 // to the (non-zero) step S and start value X. This can be then lowered as the
1596 // RVV sequence (VID * S) + X, for example.
1597 // The step S is represented as an integer numerator divided by a positive
1598 // denominator. Note that the implementation currently only identifies
1599 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1600 // cannot detect 2/3, for example.
1601 // Note that this method will also match potentially unappealing index
1602 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1603 // determine whether this is worth generating code for.
1604 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1605   unsigned NumElts = Op.getNumOperands();
1606   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1607   if (!Op.getValueType().isInteger())
1608     return None;
1609 
1610   Optional<unsigned> SeqStepDenom;
1611   Optional<int64_t> SeqStepNum, SeqAddend;
1612   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1613   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1614   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1615     // Assume undef elements match the sequence; we just have to be careful
1616     // when interpolating across them.
1617     if (Op.getOperand(Idx).isUndef())
1618       continue;
1619     // The BUILD_VECTOR must be all constants.
1620     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1621       return None;
1622 
1623     uint64_t Val = Op.getConstantOperandVal(Idx) &
1624                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1625 
1626     if (PrevElt) {
1627       // Calculate the step since the last non-undef element, and ensure
1628       // it's consistent across the entire sequence.
1629       unsigned IdxDiff = Idx - PrevElt->second;
1630       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1631 
1632       // A zero-value value difference means that we're somewhere in the middle
1633       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1634       // step change before evaluating the sequence.
1635       if (ValDiff != 0) {
1636         int64_t Remainder = ValDiff % IdxDiff;
1637         // Normalize the step if it's greater than 1.
1638         if (Remainder != ValDiff) {
1639           // The difference must cleanly divide the element span.
1640           if (Remainder != 0)
1641             return None;
1642           ValDiff /= IdxDiff;
1643           IdxDiff = 1;
1644         }
1645 
1646         if (!SeqStepNum)
1647           SeqStepNum = ValDiff;
1648         else if (ValDiff != SeqStepNum)
1649           return None;
1650 
1651         if (!SeqStepDenom)
1652           SeqStepDenom = IdxDiff;
1653         else if (IdxDiff != *SeqStepDenom)
1654           return None;
1655       }
1656     }
1657 
1658     // Record and/or check any addend.
1659     if (SeqStepNum && SeqStepDenom) {
1660       uint64_t ExpectedVal =
1661           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1662       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1663       if (!SeqAddend)
1664         SeqAddend = Addend;
1665       else if (SeqAddend != Addend)
1666         return None;
1667     }
1668 
1669     // Record this non-undef element for later.
1670     if (!PrevElt || PrevElt->first != Val)
1671       PrevElt = std::make_pair(Val, Idx);
1672   }
1673   // We need to have logged both a step and an addend for this to count as
1674   // a legal index sequence.
1675   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1676     return None;
1677 
1678   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1679 }
1680 
1681 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1682                                  const RISCVSubtarget &Subtarget) {
1683   MVT VT = Op.getSimpleValueType();
1684   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1685 
1686   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1687 
1688   SDLoc DL(Op);
1689   SDValue Mask, VL;
1690   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1691 
1692   MVT XLenVT = Subtarget.getXLenVT();
1693   unsigned NumElts = Op.getNumOperands();
1694 
1695   if (VT.getVectorElementType() == MVT::i1) {
1696     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1697       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1698       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1699     }
1700 
1701     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1702       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1703       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1704     }
1705 
1706     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1707     // scalar integer chunks whose bit-width depends on the number of mask
1708     // bits and XLEN.
1709     // First, determine the most appropriate scalar integer type to use. This
1710     // is at most XLenVT, but may be shrunk to a smaller vector element type
1711     // according to the size of the final vector - use i8 chunks rather than
1712     // XLenVT if we're producing a v8i1. This results in more consistent
1713     // codegen across RV32 and RV64.
1714     unsigned NumViaIntegerBits =
1715         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1716     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1717       // If we have to use more than one INSERT_VECTOR_ELT then this
1718       // optimization is likely to increase code size; avoid peforming it in
1719       // such a case. We can use a load from a constant pool in this case.
1720       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1721         return SDValue();
1722       // Now we can create our integer vector type. Note that it may be larger
1723       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1724       MVT IntegerViaVecVT =
1725           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1726                            divideCeil(NumElts, NumViaIntegerBits));
1727 
1728       uint64_t Bits = 0;
1729       unsigned BitPos = 0, IntegerEltIdx = 0;
1730       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1731 
1732       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1733         // Once we accumulate enough bits to fill our scalar type, insert into
1734         // our vector and clear our accumulated data.
1735         if (I != 0 && I % NumViaIntegerBits == 0) {
1736           if (NumViaIntegerBits <= 32)
1737             Bits = SignExtend64(Bits, 32);
1738           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1739           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1740                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1741           Bits = 0;
1742           BitPos = 0;
1743           IntegerEltIdx++;
1744         }
1745         SDValue V = Op.getOperand(I);
1746         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1747         Bits |= ((uint64_t)BitValue << BitPos);
1748       }
1749 
1750       // Insert the (remaining) scalar value into position in our integer
1751       // vector type.
1752       if (NumViaIntegerBits <= 32)
1753         Bits = SignExtend64(Bits, 32);
1754       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1755       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1756                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1757 
1758       if (NumElts < NumViaIntegerBits) {
1759         // If we're producing a smaller vector than our minimum legal integer
1760         // type, bitcast to the equivalent (known-legal) mask type, and extract
1761         // our final mask.
1762         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1763         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1764         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1765                           DAG.getConstant(0, DL, XLenVT));
1766       } else {
1767         // Else we must have produced an integer type with the same size as the
1768         // mask type; bitcast for the final result.
1769         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1770         Vec = DAG.getBitcast(VT, Vec);
1771       }
1772 
1773       return Vec;
1774     }
1775 
1776     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1777     // vector type, we have a legal equivalently-sized i8 type, so we can use
1778     // that.
1779     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
1780     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
1781 
1782     SDValue WideVec;
1783     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1784       // For a splat, perform a scalar truncate before creating the wider
1785       // vector.
1786       assert(Splat.getValueType() == XLenVT &&
1787              "Unexpected type for i1 splat value");
1788       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
1789                           DAG.getConstant(1, DL, XLenVT));
1790       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
1791     } else {
1792       SmallVector<SDValue, 8> Ops(Op->op_values());
1793       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
1794       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
1795       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
1796     }
1797 
1798     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
1799   }
1800 
1801   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1802     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1803                                         : RISCVISD::VMV_V_X_VL;
1804     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1805     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1806   }
1807 
1808   // Try and match index sequences, which we can lower to the vid instruction
1809   // with optional modifications. An all-undef vector is matched by
1810   // getSplatValue, above.
1811   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
1812     int64_t StepNumerator = SimpleVID->StepNumerator;
1813     unsigned StepDenominator = SimpleVID->StepDenominator;
1814     int64_t Addend = SimpleVID->Addend;
1815     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
1816     // threshold since it's the immediate value many RVV instructions accept.
1817     if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) &&
1818         isInt<5>(Addend)) {
1819       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1820       // Convert right out of the scalable type so we can use standard ISD
1821       // nodes for the rest of the computation. If we used scalable types with
1822       // these, we'd lose the fixed-length vector info and generate worse
1823       // vsetvli code.
1824       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
1825       assert(StepNumerator != 0 && "Invalid step");
1826       bool Negate = false;
1827       if (StepNumerator != 1) {
1828         int64_t SplatStepVal = StepNumerator;
1829         unsigned Opcode = ISD::MUL;
1830         if (isPowerOf2_64(std::abs(StepNumerator))) {
1831           Negate = StepNumerator < 0;
1832           Opcode = ISD::SHL;
1833           SplatStepVal = Log2_64(std::abs(StepNumerator));
1834         }
1835         SDValue SplatStep = DAG.getSplatVector(
1836             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
1837         VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep);
1838       }
1839       if (StepDenominator != 1) {
1840         SDValue SplatStep = DAG.getSplatVector(
1841             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
1842         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
1843       }
1844       if (Addend != 0 || Negate) {
1845         SDValue SplatAddend =
1846             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
1847         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
1848       }
1849       return VID;
1850     }
1851   }
1852 
1853   // Attempt to detect "hidden" splats, which only reveal themselves as splats
1854   // when re-interpreted as a vector with a larger element type. For example,
1855   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
1856   // could be instead splat as
1857   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
1858   // TODO: This optimization could also work on non-constant splats, but it
1859   // would require bit-manipulation instructions to construct the splat value.
1860   SmallVector<SDValue> Sequence;
1861   unsigned EltBitSize = VT.getScalarSizeInBits();
1862   const auto *BV = cast<BuildVectorSDNode>(Op);
1863   if (VT.isInteger() && EltBitSize < 64 &&
1864       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1865       BV->getRepeatedSequence(Sequence) &&
1866       (Sequence.size() * EltBitSize) <= 64) {
1867     unsigned SeqLen = Sequence.size();
1868     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
1869     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
1870     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
1871             ViaIntVT == MVT::i64) &&
1872            "Unexpected sequence type");
1873 
1874     unsigned EltIdx = 0;
1875     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
1876     uint64_t SplatValue = 0;
1877     // Construct the amalgamated value which can be splatted as this larger
1878     // vector type.
1879     for (const auto &SeqV : Sequence) {
1880       if (!SeqV.isUndef())
1881         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
1882                        << (EltIdx * EltBitSize));
1883       EltIdx++;
1884     }
1885 
1886     // On RV64, sign-extend from 32 to 64 bits where possible in order to
1887     // achieve better constant materializion.
1888     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
1889       SplatValue = SignExtend64(SplatValue, 32);
1890 
1891     // Since we can't introduce illegal i64 types at this stage, we can only
1892     // perform an i64 splat on RV32 if it is its own sign-extended value. That
1893     // way we can use RVV instructions to splat.
1894     assert((ViaIntVT.bitsLE(XLenVT) ||
1895             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
1896            "Unexpected bitcast sequence");
1897     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
1898       SDValue ViaVL =
1899           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
1900       MVT ViaContainerVT =
1901           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
1902       SDValue Splat =
1903           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
1904                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
1905       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
1906       return DAG.getBitcast(VT, Splat);
1907     }
1908   }
1909 
1910   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1911   // which constitute a large proportion of the elements. In such cases we can
1912   // splat a vector with the dominant element and make up the shortfall with
1913   // INSERT_VECTOR_ELTs.
1914   // Note that this includes vectors of 2 elements by association. The
1915   // upper-most element is the "dominant" one, allowing us to use a splat to
1916   // "insert" the upper element, and an insert of the lower element at position
1917   // 0, which improves codegen.
1918   SDValue DominantValue;
1919   unsigned MostCommonCount = 0;
1920   DenseMap<SDValue, unsigned> ValueCounts;
1921   unsigned NumUndefElts =
1922       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
1923 
1924   // Track the number of scalar loads we know we'd be inserting, estimated as
1925   // any non-zero floating-point constant. Other kinds of element are either
1926   // already in registers or are materialized on demand. The threshold at which
1927   // a vector load is more desirable than several scalar materializion and
1928   // vector-insertion instructions is not known.
1929   unsigned NumScalarLoads = 0;
1930 
1931   for (SDValue V : Op->op_values()) {
1932     if (V.isUndef())
1933       continue;
1934 
1935     ValueCounts.insert(std::make_pair(V, 0));
1936     unsigned &Count = ValueCounts[V];
1937 
1938     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
1939       NumScalarLoads += !CFP->isExactlyValue(+0.0);
1940 
1941     // Is this value dominant? In case of a tie, prefer the highest element as
1942     // it's cheaper to insert near the beginning of a vector than it is at the
1943     // end.
1944     if (++Count >= MostCommonCount) {
1945       DominantValue = V;
1946       MostCommonCount = Count;
1947     }
1948   }
1949 
1950   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
1951   unsigned NumDefElts = NumElts - NumUndefElts;
1952   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
1953 
1954   // Don't perform this optimization when optimizing for size, since
1955   // materializing elements and inserting them tends to cause code bloat.
1956   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
1957       ((MostCommonCount > DominantValueCountThreshold) ||
1958        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
1959     // Start by splatting the most common element.
1960     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
1961 
1962     DenseSet<SDValue> Processed{DominantValue};
1963     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
1964     for (const auto &OpIdx : enumerate(Op->ops())) {
1965       const SDValue &V = OpIdx.value();
1966       if (V.isUndef() || !Processed.insert(V).second)
1967         continue;
1968       if (ValueCounts[V] == 1) {
1969         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
1970                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
1971       } else {
1972         // Blend in all instances of this value using a VSELECT, using a
1973         // mask where each bit signals whether that element is the one
1974         // we're after.
1975         SmallVector<SDValue> Ops;
1976         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
1977           return DAG.getConstant(V == V1, DL, XLenVT);
1978         });
1979         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
1980                           DAG.getBuildVector(SelMaskTy, DL, Ops),
1981                           DAG.getSplatBuildVector(VT, DL, V), Vec);
1982       }
1983     }
1984 
1985     return Vec;
1986   }
1987 
1988   return SDValue();
1989 }
1990 
1991 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
1992                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
1993   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
1994     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
1995     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
1996     // If Hi constant is all the same sign bit as Lo, lower this as a custom
1997     // node in order to try and match RVV vector/scalar instructions.
1998     if ((LoC >> 31) == HiC)
1999       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
2000   }
2001 
2002   // Fall back to a stack store and stride x0 vector load.
2003   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
2004 }
2005 
2006 // Called by type legalization to handle splat of i64 on RV32.
2007 // FIXME: We can optimize this when the type has sign or zero bits in one
2008 // of the halves.
2009 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
2010                                    SDValue VL, SelectionDAG &DAG) {
2011   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2012   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2013                            DAG.getConstant(0, DL, MVT::i32));
2014   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2015                            DAG.getConstant(1, DL, MVT::i32));
2016   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
2017 }
2018 
2019 // This function lowers a splat of a scalar operand Splat with the vector
2020 // length VL. It ensures the final sequence is type legal, which is useful when
2021 // lowering a splat after type legalization.
2022 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
2023                                 SelectionDAG &DAG,
2024                                 const RISCVSubtarget &Subtarget) {
2025   if (VT.isFloatingPoint())
2026     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
2027 
2028   MVT XLenVT = Subtarget.getXLenVT();
2029 
2030   // Simplest case is that the operand needs to be promoted to XLenVT.
2031   if (Scalar.getValueType().bitsLE(XLenVT)) {
2032     // If the operand is a constant, sign extend to increase our chances
2033     // of being able to use a .vi instruction. ANY_EXTEND would become a
2034     // a zero extend and the simm5 check in isel would fail.
2035     // FIXME: Should we ignore the upper bits in isel instead?
2036     unsigned ExtOpc =
2037         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2038     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2039     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
2040   }
2041 
2042   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2043          "Unexpected scalar for splat lowering!");
2044 
2045   // Otherwise use the more complicated splatting algorithm.
2046   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
2047 }
2048 
2049 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2050                                    const RISCVSubtarget &Subtarget) {
2051   SDValue V1 = Op.getOperand(0);
2052   SDValue V2 = Op.getOperand(1);
2053   SDLoc DL(Op);
2054   MVT XLenVT = Subtarget.getXLenVT();
2055   MVT VT = Op.getSimpleValueType();
2056   unsigned NumElts = VT.getVectorNumElements();
2057   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2058 
2059   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2060 
2061   SDValue TrueMask, VL;
2062   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2063 
2064   if (SVN->isSplat()) {
2065     const int Lane = SVN->getSplatIndex();
2066     if (Lane >= 0) {
2067       MVT SVT = VT.getVectorElementType();
2068 
2069       // Turn splatted vector load into a strided load with an X0 stride.
2070       SDValue V = V1;
2071       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2072       // with undef.
2073       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2074       int Offset = Lane;
2075       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2076         int OpElements =
2077             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2078         V = V.getOperand(Offset / OpElements);
2079         Offset %= OpElements;
2080       }
2081 
2082       // We need to ensure the load isn't atomic or volatile.
2083       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2084         auto *Ld = cast<LoadSDNode>(V);
2085         Offset *= SVT.getStoreSize();
2086         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2087                                                    TypeSize::Fixed(Offset), DL);
2088 
2089         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2090         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2091           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2092           SDValue IntID =
2093               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2094           SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
2095                            DAG.getRegister(RISCV::X0, XLenVT), VL};
2096           SDValue NewLoad = DAG.getMemIntrinsicNode(
2097               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2098               DAG.getMachineFunction().getMachineMemOperand(
2099                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2100           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2101           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2102         }
2103 
2104         // Otherwise use a scalar load and splat. This will give the best
2105         // opportunity to fold a splat into the operation. ISel can turn it into
2106         // the x0 strided load if we aren't able to fold away the select.
2107         if (SVT.isFloatingPoint())
2108           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2109                           Ld->getPointerInfo().getWithOffset(Offset),
2110                           Ld->getOriginalAlign(),
2111                           Ld->getMemOperand()->getFlags());
2112         else
2113           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2114                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2115                              Ld->getOriginalAlign(),
2116                              Ld->getMemOperand()->getFlags());
2117         DAG.makeEquivalentMemoryOrdering(Ld, V);
2118 
2119         unsigned Opc =
2120             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2121         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
2122         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2123       }
2124 
2125       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2126       assert(Lane < (int)NumElts && "Unexpected lane!");
2127       SDValue Gather =
2128           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2129                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2130       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2131     }
2132   }
2133 
2134   // Detect shuffles which can be re-expressed as vector selects; these are
2135   // shuffles in which each element in the destination is taken from an element
2136   // at the corresponding index in either source vectors.
2137   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
2138     int MaskIndex = MaskIdx.value();
2139     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2140   });
2141 
2142   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2143 
2144   SmallVector<SDValue> MaskVals;
2145   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2146   // merged with a second vrgather.
2147   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2148 
2149   // By default we preserve the original operand order, and use a mask to
2150   // select LHS as true and RHS as false. However, since RVV vector selects may
2151   // feature splats but only on the LHS, we may choose to invert our mask and
2152   // instead select between RHS and LHS.
2153   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2154   bool InvertMask = IsSelect == SwapOps;
2155 
2156   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2157   // half.
2158   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2159 
2160   // Now construct the mask that will be used by the vselect or blended
2161   // vrgather operation. For vrgathers, construct the appropriate indices into
2162   // each vector.
2163   for (int MaskIndex : SVN->getMask()) {
2164     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2165     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2166     if (!IsSelect) {
2167       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2168       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2169                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2170                                      : DAG.getUNDEF(XLenVT));
2171       GatherIndicesRHS.push_back(
2172           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2173                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2174       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2175         ++LHSIndexCounts[MaskIndex];
2176       if (!IsLHSOrUndefIndex)
2177         ++RHSIndexCounts[MaskIndex - NumElts];
2178     }
2179   }
2180 
2181   if (SwapOps) {
2182     std::swap(V1, V2);
2183     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2184   }
2185 
2186   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2187   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2188   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2189 
2190   if (IsSelect)
2191     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2192 
2193   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2194     // On such a large vector we're unable to use i8 as the index type.
2195     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2196     // may involve vector splitting if we're already at LMUL=8, or our
2197     // user-supplied maximum fixed-length LMUL.
2198     return SDValue();
2199   }
2200 
2201   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2202   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2203   MVT IndexVT = VT.changeTypeToInteger();
2204   // Since we can't introduce illegal index types at this stage, use i16 and
2205   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2206   // than XLenVT.
2207   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2208     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2209     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2210   }
2211 
2212   MVT IndexContainerVT =
2213       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2214 
2215   SDValue Gather;
2216   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2217   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2218   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2219     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
2220   } else {
2221     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2222     // If only one index is used, we can use a "splat" vrgather.
2223     // TODO: We can splat the most-common index and fix-up any stragglers, if
2224     // that's beneficial.
2225     if (LHSIndexCounts.size() == 1) {
2226       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2227       Gather =
2228           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2229                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2230     } else {
2231       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2232       LHSIndices =
2233           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2234 
2235       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2236                            TrueMask, VL);
2237     }
2238   }
2239 
2240   // If a second vector operand is used by this shuffle, blend it in with an
2241   // additional vrgather.
2242   if (!V2.isUndef()) {
2243     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2244     // If only one index is used, we can use a "splat" vrgather.
2245     // TODO: We can splat the most-common index and fix-up any stragglers, if
2246     // that's beneficial.
2247     if (RHSIndexCounts.size() == 1) {
2248       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2249       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2250                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2251     } else {
2252       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2253       RHSIndices =
2254           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2255       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2256                        VL);
2257     }
2258 
2259     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2260     SelectMask =
2261         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2262 
2263     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2264                          Gather, VL);
2265   }
2266 
2267   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2268 }
2269 
2270 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2271                                      SDLoc DL, SelectionDAG &DAG,
2272                                      const RISCVSubtarget &Subtarget) {
2273   if (VT.isScalableVector())
2274     return DAG.getFPExtendOrRound(Op, DL, VT);
2275   assert(VT.isFixedLengthVector() &&
2276          "Unexpected value type for RVV FP extend/round lowering");
2277   SDValue Mask, VL;
2278   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2279   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2280                         ? RISCVISD::FP_EXTEND_VL
2281                         : RISCVISD::FP_ROUND_VL;
2282   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2283 }
2284 
2285 // While RVV has alignment restrictions, we should always be able to load as a
2286 // legal equivalently-sized byte-typed vector instead. This method is
2287 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2288 // the load is already correctly-aligned, it returns SDValue().
2289 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2290                                                     SelectionDAG &DAG) const {
2291   auto *Load = cast<LoadSDNode>(Op);
2292   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2293 
2294   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2295                                      Load->getMemoryVT(),
2296                                      *Load->getMemOperand()))
2297     return SDValue();
2298 
2299   SDLoc DL(Op);
2300   MVT VT = Op.getSimpleValueType();
2301   unsigned EltSizeBits = VT.getScalarSizeInBits();
2302   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2303          "Unexpected unaligned RVV load type");
2304   MVT NewVT =
2305       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2306   assert(NewVT.isValid() &&
2307          "Expecting equally-sized RVV vector types to be legal");
2308   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2309                           Load->getPointerInfo(), Load->getOriginalAlign(),
2310                           Load->getMemOperand()->getFlags());
2311   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2312 }
2313 
2314 // While RVV has alignment restrictions, we should always be able to store as a
2315 // legal equivalently-sized byte-typed vector instead. This method is
2316 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2317 // returns SDValue() if the store is already correctly aligned.
2318 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2319                                                      SelectionDAG &DAG) const {
2320   auto *Store = cast<StoreSDNode>(Op);
2321   assert(Store && Store->getValue().getValueType().isVector() &&
2322          "Expected vector store");
2323 
2324   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2325                                      Store->getMemoryVT(),
2326                                      *Store->getMemOperand()))
2327     return SDValue();
2328 
2329   SDLoc DL(Op);
2330   SDValue StoredVal = Store->getValue();
2331   MVT VT = StoredVal.getSimpleValueType();
2332   unsigned EltSizeBits = VT.getScalarSizeInBits();
2333   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2334          "Unexpected unaligned RVV store type");
2335   MVT NewVT =
2336       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2337   assert(NewVT.isValid() &&
2338          "Expecting equally-sized RVV vector types to be legal");
2339   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2340   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2341                       Store->getPointerInfo(), Store->getOriginalAlign(),
2342                       Store->getMemOperand()->getFlags());
2343 }
2344 
2345 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2346                                             SelectionDAG &DAG) const {
2347   switch (Op.getOpcode()) {
2348   default:
2349     report_fatal_error("unimplemented operand");
2350   case ISD::GlobalAddress:
2351     return lowerGlobalAddress(Op, DAG);
2352   case ISD::BlockAddress:
2353     return lowerBlockAddress(Op, DAG);
2354   case ISD::ConstantPool:
2355     return lowerConstantPool(Op, DAG);
2356   case ISD::JumpTable:
2357     return lowerJumpTable(Op, DAG);
2358   case ISD::GlobalTLSAddress:
2359     return lowerGlobalTLSAddress(Op, DAG);
2360   case ISD::SELECT:
2361     return lowerSELECT(Op, DAG);
2362   case ISD::BRCOND:
2363     return lowerBRCOND(Op, DAG);
2364   case ISD::VASTART:
2365     return lowerVASTART(Op, DAG);
2366   case ISD::FRAMEADDR:
2367     return lowerFRAMEADDR(Op, DAG);
2368   case ISD::RETURNADDR:
2369     return lowerRETURNADDR(Op, DAG);
2370   case ISD::SHL_PARTS:
2371     return lowerShiftLeftParts(Op, DAG);
2372   case ISD::SRA_PARTS:
2373     return lowerShiftRightParts(Op, DAG, true);
2374   case ISD::SRL_PARTS:
2375     return lowerShiftRightParts(Op, DAG, false);
2376   case ISD::BITCAST: {
2377     SDLoc DL(Op);
2378     EVT VT = Op.getValueType();
2379     SDValue Op0 = Op.getOperand(0);
2380     EVT Op0VT = Op0.getValueType();
2381     MVT XLenVT = Subtarget.getXLenVT();
2382     if (VT.isFixedLengthVector()) {
2383       // We can handle fixed length vector bitcasts with a simple replacement
2384       // in isel.
2385       if (Op0VT.isFixedLengthVector())
2386         return Op;
2387       // When bitcasting from scalar to fixed-length vector, insert the scalar
2388       // into a one-element vector of the result type, and perform a vector
2389       // bitcast.
2390       if (!Op0VT.isVector()) {
2391         auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2392         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2393                                               DAG.getUNDEF(BVT), Op0,
2394                                               DAG.getConstant(0, DL, XLenVT)));
2395       }
2396       return SDValue();
2397     }
2398     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2399     // thus: bitcast the vector to a one-element vector type whose element type
2400     // is the same as the result type, and extract the first element.
2401     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2402       LLVMContext &Context = *DAG.getContext();
2403       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
2404       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2405                          DAG.getConstant(0, DL, XLenVT));
2406     }
2407     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2408       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2409       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2410       return FPConv;
2411     }
2412     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2413         Subtarget.hasStdExtF()) {
2414       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2415       SDValue FPConv =
2416           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2417       return FPConv;
2418     }
2419     return SDValue();
2420   }
2421   case ISD::INTRINSIC_WO_CHAIN:
2422     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2423   case ISD::INTRINSIC_W_CHAIN:
2424     return LowerINTRINSIC_W_CHAIN(Op, DAG);
2425   case ISD::INTRINSIC_VOID:
2426     return LowerINTRINSIC_VOID(Op, DAG);
2427   case ISD::BSWAP:
2428   case ISD::BITREVERSE: {
2429     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
2430     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
2431     MVT VT = Op.getSimpleValueType();
2432     SDLoc DL(Op);
2433     // Start with the maximum immediate value which is the bitwidth - 1.
2434     unsigned Imm = VT.getSizeInBits() - 1;
2435     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2436     if (Op.getOpcode() == ISD::BSWAP)
2437       Imm &= ~0x7U;
2438     return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
2439                        DAG.getConstant(Imm, DL, VT));
2440   }
2441   case ISD::FSHL:
2442   case ISD::FSHR: {
2443     MVT VT = Op.getSimpleValueType();
2444     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
2445     SDLoc DL(Op);
2446     if (Op.getOperand(2).getOpcode() == ISD::Constant)
2447       return Op;
2448     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2449     // use log(XLen) bits. Mask the shift amount accordingly.
2450     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
2451     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
2452                                 DAG.getConstant(ShAmtWidth, DL, VT));
2453     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
2454     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
2455   }
2456   case ISD::TRUNCATE: {
2457     SDLoc DL(Op);
2458     MVT VT = Op.getSimpleValueType();
2459     // Only custom-lower vector truncates
2460     if (!VT.isVector())
2461       return Op;
2462 
2463     // Truncates to mask types are handled differently
2464     if (VT.getVectorElementType() == MVT::i1)
2465       return lowerVectorMaskTrunc(Op, DAG);
2466 
2467     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2468     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2469     // truncate by one power of two at a time.
2470     MVT DstEltVT = VT.getVectorElementType();
2471 
2472     SDValue Src = Op.getOperand(0);
2473     MVT SrcVT = Src.getSimpleValueType();
2474     MVT SrcEltVT = SrcVT.getVectorElementType();
2475 
2476     assert(DstEltVT.bitsLT(SrcEltVT) &&
2477            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
2478            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
2479            "Unexpected vector truncate lowering");
2480 
2481     MVT ContainerVT = SrcVT;
2482     if (SrcVT.isFixedLengthVector()) {
2483       ContainerVT = getContainerForFixedLengthVector(SrcVT);
2484       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2485     }
2486 
2487     SDValue Result = Src;
2488     SDValue Mask, VL;
2489     std::tie(Mask, VL) =
2490         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
2491     LLVMContext &Context = *DAG.getContext();
2492     const ElementCount Count = ContainerVT.getVectorElementCount();
2493     do {
2494       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
2495       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
2496       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
2497                            Mask, VL);
2498     } while (SrcEltVT != DstEltVT);
2499 
2500     if (SrcVT.isFixedLengthVector())
2501       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
2502 
2503     return Result;
2504   }
2505   case ISD::ANY_EXTEND:
2506   case ISD::ZERO_EXTEND:
2507     if (Op.getOperand(0).getValueType().isVector() &&
2508         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2509       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2510     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2511   case ISD::SIGN_EXTEND:
2512     if (Op.getOperand(0).getValueType().isVector() &&
2513         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2514       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2515     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2516   case ISD::SPLAT_VECTOR_PARTS:
2517     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2518   case ISD::INSERT_VECTOR_ELT:
2519     return lowerINSERT_VECTOR_ELT(Op, DAG);
2520   case ISD::EXTRACT_VECTOR_ELT:
2521     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2522   case ISD::VSCALE: {
2523     MVT VT = Op.getSimpleValueType();
2524     SDLoc DL(Op);
2525     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2526     // We define our scalable vector types for lmul=1 to use a 64 bit known
2527     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2528     // vscale as VLENB / 8.
2529     assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!");
2530     if (isa<ConstantSDNode>(Op.getOperand(0))) {
2531       // We assume VLENB is a multiple of 8. We manually choose the best shift
2532       // here because SimplifyDemandedBits isn't always able to simplify it.
2533       uint64_t Val = Op.getConstantOperandVal(0);
2534       if (isPowerOf2_64(Val)) {
2535         uint64_t Log2 = Log2_64(Val);
2536         if (Log2 < 3)
2537           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
2538                              DAG.getConstant(3 - Log2, DL, VT));
2539         if (Log2 > 3)
2540           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
2541                              DAG.getConstant(Log2 - 3, DL, VT));
2542         return VLENB;
2543       }
2544       // If the multiplier is a multiple of 8, scale it down to avoid needing
2545       // to shift the VLENB value.
2546       if ((Val % 8) == 0)
2547         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
2548                            DAG.getConstant(Val / 8, DL, VT));
2549     }
2550 
2551     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2552                                  DAG.getConstant(3, DL, VT));
2553     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2554   }
2555   case ISD::FP_EXTEND: {
2556     // RVV can only do fp_extend to types double the size as the source. We
2557     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2558     // via f32.
2559     SDLoc DL(Op);
2560     MVT VT = Op.getSimpleValueType();
2561     SDValue Src = Op.getOperand(0);
2562     MVT SrcVT = Src.getSimpleValueType();
2563 
2564     // Prepare any fixed-length vector operands.
2565     MVT ContainerVT = VT;
2566     if (SrcVT.isFixedLengthVector()) {
2567       ContainerVT = getContainerForFixedLengthVector(VT);
2568       MVT SrcContainerVT =
2569           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2570       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2571     }
2572 
2573     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2574         SrcVT.getVectorElementType() != MVT::f16) {
2575       // For scalable vectors, we only need to close the gap between
2576       // vXf16->vXf64.
2577       if (!VT.isFixedLengthVector())
2578         return Op;
2579       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2580       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2581       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2582     }
2583 
2584     MVT InterVT = VT.changeVectorElementType(MVT::f32);
2585     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2586     SDValue IntermediateExtend = getRVVFPExtendOrRound(
2587         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2588 
2589     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2590                                            DL, DAG, Subtarget);
2591     if (VT.isFixedLengthVector())
2592       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2593     return Extend;
2594   }
2595   case ISD::FP_ROUND: {
2596     // RVV can only do fp_round to types half the size as the source. We
2597     // custom-lower f64->f16 rounds via RVV's round-to-odd float
2598     // conversion instruction.
2599     SDLoc DL(Op);
2600     MVT VT = Op.getSimpleValueType();
2601     SDValue Src = Op.getOperand(0);
2602     MVT SrcVT = Src.getSimpleValueType();
2603 
2604     // Prepare any fixed-length vector operands.
2605     MVT ContainerVT = VT;
2606     if (VT.isFixedLengthVector()) {
2607       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2608       ContainerVT =
2609           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2610       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2611     }
2612 
2613     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2614         SrcVT.getVectorElementType() != MVT::f64) {
2615       // For scalable vectors, we only need to close the gap between
2616       // vXf64<->vXf16.
2617       if (!VT.isFixedLengthVector())
2618         return Op;
2619       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2620       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2621       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2622     }
2623 
2624     SDValue Mask, VL;
2625     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2626 
2627     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2628     SDValue IntermediateRound =
2629         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2630     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2631                                           DL, DAG, Subtarget);
2632 
2633     if (VT.isFixedLengthVector())
2634       return convertFromScalableVector(VT, Round, DAG, Subtarget);
2635     return Round;
2636   }
2637   case ISD::FP_TO_SINT:
2638   case ISD::FP_TO_UINT:
2639   case ISD::SINT_TO_FP:
2640   case ISD::UINT_TO_FP: {
2641     // RVV can only do fp<->int conversions to types half/double the size as
2642     // the source. We custom-lower any conversions that do two hops into
2643     // sequences.
2644     MVT VT = Op.getSimpleValueType();
2645     if (!VT.isVector())
2646       return Op;
2647     SDLoc DL(Op);
2648     SDValue Src = Op.getOperand(0);
2649     MVT EltVT = VT.getVectorElementType();
2650     MVT SrcVT = Src.getSimpleValueType();
2651     MVT SrcEltVT = SrcVT.getVectorElementType();
2652     unsigned EltSize = EltVT.getSizeInBits();
2653     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2654     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2655            "Unexpected vector element types");
2656 
2657     bool IsInt2FP = SrcEltVT.isInteger();
2658     // Widening conversions
2659     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2660       if (IsInt2FP) {
2661         // Do a regular integer sign/zero extension then convert to float.
2662         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2663                                       VT.getVectorElementCount());
2664         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2665                                  ? ISD::ZERO_EXTEND
2666                                  : ISD::SIGN_EXTEND;
2667         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2668         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2669       }
2670       // FP2Int
2671       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2672       // Do one doubling fp_extend then complete the operation by converting
2673       // to int.
2674       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2675       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2676       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2677     }
2678 
2679     // Narrowing conversions
2680     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2681       if (IsInt2FP) {
2682         // One narrowing int_to_fp, then an fp_round.
2683         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2684         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2685         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2686         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2687       }
2688       // FP2Int
2689       // One narrowing fp_to_int, then truncate the integer. If the float isn't
2690       // representable by the integer, the result is poison.
2691       MVT IVecVT =
2692           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
2693                            VT.getVectorElementCount());
2694       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
2695       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
2696     }
2697 
2698     // Scalable vectors can exit here. Patterns will handle equally-sized
2699     // conversions halving/doubling ones.
2700     if (!VT.isFixedLengthVector())
2701       return Op;
2702 
2703     // For fixed-length vectors we lower to a custom "VL" node.
2704     unsigned RVVOpc = 0;
2705     switch (Op.getOpcode()) {
2706     default:
2707       llvm_unreachable("Impossible opcode");
2708     case ISD::FP_TO_SINT:
2709       RVVOpc = RISCVISD::FP_TO_SINT_VL;
2710       break;
2711     case ISD::FP_TO_UINT:
2712       RVVOpc = RISCVISD::FP_TO_UINT_VL;
2713       break;
2714     case ISD::SINT_TO_FP:
2715       RVVOpc = RISCVISD::SINT_TO_FP_VL;
2716       break;
2717     case ISD::UINT_TO_FP:
2718       RVVOpc = RISCVISD::UINT_TO_FP_VL;
2719       break;
2720     }
2721 
2722     MVT ContainerVT, SrcContainerVT;
2723     // Derive the reference container type from the larger vector type.
2724     if (SrcEltSize > EltSize) {
2725       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2726       ContainerVT =
2727           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2728     } else {
2729       ContainerVT = getContainerForFixedLengthVector(VT);
2730       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
2731     }
2732 
2733     SDValue Mask, VL;
2734     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2735 
2736     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2737     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
2738     return convertFromScalableVector(VT, Src, DAG, Subtarget);
2739   }
2740   case ISD::FP_TO_SINT_SAT:
2741   case ISD::FP_TO_UINT_SAT:
2742     return lowerFP_TO_INT_SAT(Op, DAG);
2743   case ISD::VECREDUCE_ADD:
2744   case ISD::VECREDUCE_UMAX:
2745   case ISD::VECREDUCE_SMAX:
2746   case ISD::VECREDUCE_UMIN:
2747   case ISD::VECREDUCE_SMIN:
2748     return lowerVECREDUCE(Op, DAG);
2749   case ISD::VECREDUCE_AND:
2750   case ISD::VECREDUCE_OR:
2751   case ISD::VECREDUCE_XOR:
2752     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2753       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
2754     return lowerVECREDUCE(Op, DAG);
2755   case ISD::VECREDUCE_FADD:
2756   case ISD::VECREDUCE_SEQ_FADD:
2757   case ISD::VECREDUCE_FMIN:
2758   case ISD::VECREDUCE_FMAX:
2759     return lowerFPVECREDUCE(Op, DAG);
2760   case ISD::VP_REDUCE_ADD:
2761   case ISD::VP_REDUCE_UMAX:
2762   case ISD::VP_REDUCE_SMAX:
2763   case ISD::VP_REDUCE_UMIN:
2764   case ISD::VP_REDUCE_SMIN:
2765   case ISD::VP_REDUCE_FADD:
2766   case ISD::VP_REDUCE_SEQ_FADD:
2767   case ISD::VP_REDUCE_FMIN:
2768   case ISD::VP_REDUCE_FMAX:
2769     return lowerVPREDUCE(Op, DAG);
2770   case ISD::VP_REDUCE_AND:
2771   case ISD::VP_REDUCE_OR:
2772   case ISD::VP_REDUCE_XOR:
2773     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
2774       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
2775     return lowerVPREDUCE(Op, DAG);
2776   case ISD::INSERT_SUBVECTOR:
2777     return lowerINSERT_SUBVECTOR(Op, DAG);
2778   case ISD::EXTRACT_SUBVECTOR:
2779     return lowerEXTRACT_SUBVECTOR(Op, DAG);
2780   case ISD::STEP_VECTOR:
2781     return lowerSTEP_VECTOR(Op, DAG);
2782   case ISD::VECTOR_REVERSE:
2783     return lowerVECTOR_REVERSE(Op, DAG);
2784   case ISD::BUILD_VECTOR:
2785     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
2786   case ISD::SPLAT_VECTOR:
2787     if (Op.getValueType().getVectorElementType() == MVT::i1)
2788       return lowerVectorMaskSplat(Op, DAG);
2789     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
2790   case ISD::VECTOR_SHUFFLE:
2791     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
2792   case ISD::CONCAT_VECTORS: {
2793     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
2794     // better than going through the stack, as the default expansion does.
2795     SDLoc DL(Op);
2796     MVT VT = Op.getSimpleValueType();
2797     unsigned NumOpElts =
2798         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
2799     SDValue Vec = DAG.getUNDEF(VT);
2800     for (const auto &OpIdx : enumerate(Op->ops()))
2801       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
2802                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
2803     return Vec;
2804   }
2805   case ISD::LOAD:
2806     if (auto V = expandUnalignedRVVLoad(Op, DAG))
2807       return V;
2808     if (Op.getValueType().isFixedLengthVector())
2809       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
2810     return Op;
2811   case ISD::STORE:
2812     if (auto V = expandUnalignedRVVStore(Op, DAG))
2813       return V;
2814     if (Op.getOperand(1).getValueType().isFixedLengthVector())
2815       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
2816     return Op;
2817   case ISD::MLOAD:
2818   case ISD::VP_LOAD:
2819     return lowerMaskedLoad(Op, DAG);
2820   case ISD::MSTORE:
2821   case ISD::VP_STORE:
2822     return lowerMaskedStore(Op, DAG);
2823   case ISD::SETCC:
2824     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
2825   case ISD::ADD:
2826     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
2827   case ISD::SUB:
2828     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
2829   case ISD::MUL:
2830     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
2831   case ISD::MULHS:
2832     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
2833   case ISD::MULHU:
2834     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
2835   case ISD::AND:
2836     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
2837                                               RISCVISD::AND_VL);
2838   case ISD::OR:
2839     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
2840                                               RISCVISD::OR_VL);
2841   case ISD::XOR:
2842     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
2843                                               RISCVISD::XOR_VL);
2844   case ISD::SDIV:
2845     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
2846   case ISD::SREM:
2847     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
2848   case ISD::UDIV:
2849     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
2850   case ISD::UREM:
2851     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
2852   case ISD::SHL:
2853   case ISD::SRA:
2854   case ISD::SRL:
2855     if (Op.getSimpleValueType().isFixedLengthVector())
2856       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
2857     // This can be called for an i32 shift amount that needs to be promoted.
2858     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
2859            "Unexpected custom legalisation");
2860     return SDValue();
2861   case ISD::SADDSAT:
2862     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
2863   case ISD::UADDSAT:
2864     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
2865   case ISD::SSUBSAT:
2866     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
2867   case ISD::USUBSAT:
2868     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
2869   case ISD::FADD:
2870     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
2871   case ISD::FSUB:
2872     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
2873   case ISD::FMUL:
2874     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
2875   case ISD::FDIV:
2876     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
2877   case ISD::FNEG:
2878     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
2879   case ISD::FABS:
2880     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
2881   case ISD::FSQRT:
2882     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
2883   case ISD::FMA:
2884     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
2885   case ISD::SMIN:
2886     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
2887   case ISD::SMAX:
2888     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
2889   case ISD::UMIN:
2890     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
2891   case ISD::UMAX:
2892     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
2893   case ISD::FMINNUM:
2894     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
2895   case ISD::FMAXNUM:
2896     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
2897   case ISD::ABS:
2898     return lowerABS(Op, DAG);
2899   case ISD::VSELECT:
2900     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
2901   case ISD::FCOPYSIGN:
2902     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
2903   case ISD::MGATHER:
2904   case ISD::VP_GATHER:
2905     return lowerMaskedGather(Op, DAG);
2906   case ISD::MSCATTER:
2907   case ISD::VP_SCATTER:
2908     return lowerMaskedScatter(Op, DAG);
2909   case ISD::FLT_ROUNDS_:
2910     return lowerGET_ROUNDING(Op, DAG);
2911   case ISD::SET_ROUNDING:
2912     return lowerSET_ROUNDING(Op, DAG);
2913   case ISD::VP_ADD:
2914     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
2915   case ISD::VP_SUB:
2916     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
2917   case ISD::VP_MUL:
2918     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
2919   case ISD::VP_SDIV:
2920     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
2921   case ISD::VP_UDIV:
2922     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
2923   case ISD::VP_SREM:
2924     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
2925   case ISD::VP_UREM:
2926     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
2927   case ISD::VP_AND:
2928     return lowerVPOp(Op, DAG, RISCVISD::AND_VL);
2929   case ISD::VP_OR:
2930     return lowerVPOp(Op, DAG, RISCVISD::OR_VL);
2931   case ISD::VP_XOR:
2932     return lowerVPOp(Op, DAG, RISCVISD::XOR_VL);
2933   case ISD::VP_ASHR:
2934     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
2935   case ISD::VP_LSHR:
2936     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
2937   case ISD::VP_SHL:
2938     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
2939   case ISD::VP_FADD:
2940     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
2941   case ISD::VP_FSUB:
2942     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
2943   case ISD::VP_FMUL:
2944     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
2945   case ISD::VP_FDIV:
2946     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
2947   }
2948 }
2949 
2950 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
2951                              SelectionDAG &DAG, unsigned Flags) {
2952   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
2953 }
2954 
2955 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
2956                              SelectionDAG &DAG, unsigned Flags) {
2957   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
2958                                    Flags);
2959 }
2960 
2961 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
2962                              SelectionDAG &DAG, unsigned Flags) {
2963   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
2964                                    N->getOffset(), Flags);
2965 }
2966 
2967 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
2968                              SelectionDAG &DAG, unsigned Flags) {
2969   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
2970 }
2971 
2972 template <class NodeTy>
2973 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
2974                                      bool IsLocal) const {
2975   SDLoc DL(N);
2976   EVT Ty = getPointerTy(DAG.getDataLayout());
2977 
2978   if (isPositionIndependent()) {
2979     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2980     if (IsLocal)
2981       // Use PC-relative addressing to access the symbol. This generates the
2982       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
2983       // %pcrel_lo(auipc)).
2984       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2985 
2986     // Use PC-relative addressing to access the GOT for this symbol, then load
2987     // the address from the GOT. This generates the pattern (PseudoLA sym),
2988     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
2989     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
2990   }
2991 
2992   switch (getTargetMachine().getCodeModel()) {
2993   default:
2994     report_fatal_error("Unsupported code model for lowering");
2995   case CodeModel::Small: {
2996     // Generate a sequence for accessing addresses within the first 2 GiB of
2997     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
2998     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
2999     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3000     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3001     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3002   }
3003   case CodeModel::Medium: {
3004     // Generate a sequence for accessing addresses within any 2GiB range within
3005     // the address space. This generates the pattern (PseudoLLA sym), which
3006     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3007     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3008     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3009   }
3010   }
3011 }
3012 
3013 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3014                                                 SelectionDAG &DAG) const {
3015   SDLoc DL(Op);
3016   EVT Ty = Op.getValueType();
3017   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3018   int64_t Offset = N->getOffset();
3019   MVT XLenVT = Subtarget.getXLenVT();
3020 
3021   const GlobalValue *GV = N->getGlobal();
3022   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3023   SDValue Addr = getAddr(N, DAG, IsLocal);
3024 
3025   // In order to maximise the opportunity for common subexpression elimination,
3026   // emit a separate ADD node for the global address offset instead of folding
3027   // it in the global address node. Later peephole optimisations may choose to
3028   // fold it back in when profitable.
3029   if (Offset != 0)
3030     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3031                        DAG.getConstant(Offset, DL, XLenVT));
3032   return Addr;
3033 }
3034 
3035 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3036                                                SelectionDAG &DAG) const {
3037   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3038 
3039   return getAddr(N, DAG);
3040 }
3041 
3042 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3043                                                SelectionDAG &DAG) const {
3044   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3045 
3046   return getAddr(N, DAG);
3047 }
3048 
3049 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3050                                             SelectionDAG &DAG) const {
3051   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3052 
3053   return getAddr(N, DAG);
3054 }
3055 
3056 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3057                                               SelectionDAG &DAG,
3058                                               bool UseGOT) const {
3059   SDLoc DL(N);
3060   EVT Ty = getPointerTy(DAG.getDataLayout());
3061   const GlobalValue *GV = N->getGlobal();
3062   MVT XLenVT = Subtarget.getXLenVT();
3063 
3064   if (UseGOT) {
3065     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3066     // load the address from the GOT and add the thread pointer. This generates
3067     // the pattern (PseudoLA_TLS_IE sym), which expands to
3068     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3069     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3070     SDValue Load =
3071         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3072 
3073     // Add the thread pointer.
3074     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3075     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3076   }
3077 
3078   // Generate a sequence for accessing the address relative to the thread
3079   // pointer, with the appropriate adjustment for the thread pointer offset.
3080   // This generates the pattern
3081   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3082   SDValue AddrHi =
3083       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3084   SDValue AddrAdd =
3085       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3086   SDValue AddrLo =
3087       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3088 
3089   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3090   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3091   SDValue MNAdd = SDValue(
3092       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3093       0);
3094   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3095 }
3096 
3097 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3098                                                SelectionDAG &DAG) const {
3099   SDLoc DL(N);
3100   EVT Ty = getPointerTy(DAG.getDataLayout());
3101   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3102   const GlobalValue *GV = N->getGlobal();
3103 
3104   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3105   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3106   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3107   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3108   SDValue Load =
3109       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3110 
3111   // Prepare argument list to generate call.
3112   ArgListTy Args;
3113   ArgListEntry Entry;
3114   Entry.Node = Load;
3115   Entry.Ty = CallTy;
3116   Args.push_back(Entry);
3117 
3118   // Setup call to __tls_get_addr.
3119   TargetLowering::CallLoweringInfo CLI(DAG);
3120   CLI.setDebugLoc(DL)
3121       .setChain(DAG.getEntryNode())
3122       .setLibCallee(CallingConv::C, CallTy,
3123                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3124                     std::move(Args));
3125 
3126   return LowerCallTo(CLI).first;
3127 }
3128 
3129 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3130                                                    SelectionDAG &DAG) const {
3131   SDLoc DL(Op);
3132   EVT Ty = Op.getValueType();
3133   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3134   int64_t Offset = N->getOffset();
3135   MVT XLenVT = Subtarget.getXLenVT();
3136 
3137   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3138 
3139   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3140       CallingConv::GHC)
3141     report_fatal_error("In GHC calling convention TLS is not supported");
3142 
3143   SDValue Addr;
3144   switch (Model) {
3145   case TLSModel::LocalExec:
3146     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3147     break;
3148   case TLSModel::InitialExec:
3149     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3150     break;
3151   case TLSModel::LocalDynamic:
3152   case TLSModel::GeneralDynamic:
3153     Addr = getDynamicTLSAddr(N, DAG);
3154     break;
3155   }
3156 
3157   // In order to maximise the opportunity for common subexpression elimination,
3158   // emit a separate ADD node for the global address offset instead of folding
3159   // it in the global address node. Later peephole optimisations may choose to
3160   // fold it back in when profitable.
3161   if (Offset != 0)
3162     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3163                        DAG.getConstant(Offset, DL, XLenVT));
3164   return Addr;
3165 }
3166 
3167 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3168   SDValue CondV = Op.getOperand(0);
3169   SDValue TrueV = Op.getOperand(1);
3170   SDValue FalseV = Op.getOperand(2);
3171   SDLoc DL(Op);
3172   MVT VT = Op.getSimpleValueType();
3173   MVT XLenVT = Subtarget.getXLenVT();
3174 
3175   // Lower vector SELECTs to VSELECTs by splatting the condition.
3176   if (VT.isVector()) {
3177     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3178     SDValue CondSplat = VT.isScalableVector()
3179                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3180                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3181     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3182   }
3183 
3184   // If the result type is XLenVT and CondV is the output of a SETCC node
3185   // which also operated on XLenVT inputs, then merge the SETCC node into the
3186   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3187   // compare+branch instructions. i.e.:
3188   // (select (setcc lhs, rhs, cc), truev, falsev)
3189   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3190   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3191       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3192     SDValue LHS = CondV.getOperand(0);
3193     SDValue RHS = CondV.getOperand(1);
3194     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3195     ISD::CondCode CCVal = CC->get();
3196 
3197     // Special case for a select of 2 constants that have a diffence of 1.
3198     // Normally this is done by DAGCombine, but if the select is introduced by
3199     // type legalization or op legalization, we miss it. Restricting to SETLT
3200     // case for now because that is what signed saturating add/sub need.
3201     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3202     // but we would probably want to swap the true/false values if the condition
3203     // is SETGE/SETLE to avoid an XORI.
3204     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3205         CCVal == ISD::SETLT) {
3206       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3207       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3208       if (TrueVal - 1 == FalseVal)
3209         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3210       if (TrueVal + 1 == FalseVal)
3211         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3212     }
3213 
3214     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3215 
3216     SDValue TargetCC = DAG.getCondCode(CCVal);
3217     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3218     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3219   }
3220 
3221   // Otherwise:
3222   // (select condv, truev, falsev)
3223   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3224   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3225   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3226 
3227   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3228 
3229   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3230 }
3231 
3232 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3233   SDValue CondV = Op.getOperand(1);
3234   SDLoc DL(Op);
3235   MVT XLenVT = Subtarget.getXLenVT();
3236 
3237   if (CondV.getOpcode() == ISD::SETCC &&
3238       CondV.getOperand(0).getValueType() == XLenVT) {
3239     SDValue LHS = CondV.getOperand(0);
3240     SDValue RHS = CondV.getOperand(1);
3241     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3242 
3243     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3244 
3245     SDValue TargetCC = DAG.getCondCode(CCVal);
3246     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3247                        LHS, RHS, TargetCC, Op.getOperand(2));
3248   }
3249 
3250   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3251                      CondV, DAG.getConstant(0, DL, XLenVT),
3252                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3253 }
3254 
3255 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3256   MachineFunction &MF = DAG.getMachineFunction();
3257   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3258 
3259   SDLoc DL(Op);
3260   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3261                                  getPointerTy(MF.getDataLayout()));
3262 
3263   // vastart just stores the address of the VarArgsFrameIndex slot into the
3264   // memory location argument.
3265   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3266   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3267                       MachinePointerInfo(SV));
3268 }
3269 
3270 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3271                                             SelectionDAG &DAG) const {
3272   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3273   MachineFunction &MF = DAG.getMachineFunction();
3274   MachineFrameInfo &MFI = MF.getFrameInfo();
3275   MFI.setFrameAddressIsTaken(true);
3276   Register FrameReg = RI.getFrameRegister(MF);
3277   int XLenInBytes = Subtarget.getXLen() / 8;
3278 
3279   EVT VT = Op.getValueType();
3280   SDLoc DL(Op);
3281   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3282   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3283   while (Depth--) {
3284     int Offset = -(XLenInBytes * 2);
3285     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3286                               DAG.getIntPtrConstant(Offset, DL));
3287     FrameAddr =
3288         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3289   }
3290   return FrameAddr;
3291 }
3292 
3293 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3294                                              SelectionDAG &DAG) const {
3295   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3296   MachineFunction &MF = DAG.getMachineFunction();
3297   MachineFrameInfo &MFI = MF.getFrameInfo();
3298   MFI.setReturnAddressIsTaken(true);
3299   MVT XLenVT = Subtarget.getXLenVT();
3300   int XLenInBytes = Subtarget.getXLen() / 8;
3301 
3302   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3303     return SDValue();
3304 
3305   EVT VT = Op.getValueType();
3306   SDLoc DL(Op);
3307   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3308   if (Depth) {
3309     int Off = -XLenInBytes;
3310     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3311     SDValue Offset = DAG.getConstant(Off, DL, VT);
3312     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3313                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3314                        MachinePointerInfo());
3315   }
3316 
3317   // Return the value of the return address register, marking it an implicit
3318   // live-in.
3319   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3320   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3321 }
3322 
3323 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3324                                                  SelectionDAG &DAG) const {
3325   SDLoc DL(Op);
3326   SDValue Lo = Op.getOperand(0);
3327   SDValue Hi = Op.getOperand(1);
3328   SDValue Shamt = Op.getOperand(2);
3329   EVT VT = Lo.getValueType();
3330 
3331   // if Shamt-XLEN < 0: // Shamt < XLEN
3332   //   Lo = Lo << Shamt
3333   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
3334   // else:
3335   //   Lo = 0
3336   //   Hi = Lo << (Shamt-XLEN)
3337 
3338   SDValue Zero = DAG.getConstant(0, DL, VT);
3339   SDValue One = DAG.getConstant(1, DL, VT);
3340   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3341   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3342   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3343   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3344 
3345   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3346   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3347   SDValue ShiftRightLo =
3348       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3349   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3350   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3351   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3352 
3353   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3354 
3355   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3356   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3357 
3358   SDValue Parts[2] = {Lo, Hi};
3359   return DAG.getMergeValues(Parts, DL);
3360 }
3361 
3362 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3363                                                   bool IsSRA) const {
3364   SDLoc DL(Op);
3365   SDValue Lo = Op.getOperand(0);
3366   SDValue Hi = Op.getOperand(1);
3367   SDValue Shamt = Op.getOperand(2);
3368   EVT VT = Lo.getValueType();
3369 
3370   // SRA expansion:
3371   //   if Shamt-XLEN < 0: // Shamt < XLEN
3372   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3373   //     Hi = Hi >>s Shamt
3374   //   else:
3375   //     Lo = Hi >>s (Shamt-XLEN);
3376   //     Hi = Hi >>s (XLEN-1)
3377   //
3378   // SRL expansion:
3379   //   if Shamt-XLEN < 0: // Shamt < XLEN
3380   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3381   //     Hi = Hi >>u Shamt
3382   //   else:
3383   //     Lo = Hi >>u (Shamt-XLEN);
3384   //     Hi = 0;
3385 
3386   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3387 
3388   SDValue Zero = DAG.getConstant(0, DL, VT);
3389   SDValue One = DAG.getConstant(1, DL, VT);
3390   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3391   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3392   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3393   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3394 
3395   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3396   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3397   SDValue ShiftLeftHi =
3398       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3399   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3400   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3401   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3402   SDValue HiFalse =
3403       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3404 
3405   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3406 
3407   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3408   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3409 
3410   SDValue Parts[2] = {Lo, Hi};
3411   return DAG.getMergeValues(Parts, DL);
3412 }
3413 
3414 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3415 // legal equivalently-sized i8 type, so we can use that as a go-between.
3416 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3417                                                   SelectionDAG &DAG) const {
3418   SDLoc DL(Op);
3419   MVT VT = Op.getSimpleValueType();
3420   SDValue SplatVal = Op.getOperand(0);
3421   // All-zeros or all-ones splats are handled specially.
3422   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
3423     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3424     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
3425   }
3426   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
3427     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3428     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
3429   }
3430   MVT XLenVT = Subtarget.getXLenVT();
3431   assert(SplatVal.getValueType() == XLenVT &&
3432          "Unexpected type for i1 splat value");
3433   MVT InterVT = VT.changeVectorElementType(MVT::i8);
3434   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
3435                          DAG.getConstant(1, DL, XLenVT));
3436   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
3437   SDValue Zero = DAG.getConstant(0, DL, InterVT);
3438   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
3439 }
3440 
3441 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
3442 // illegal (currently only vXi64 RV32).
3443 // FIXME: We could also catch non-constant sign-extended i32 values and lower
3444 // them to SPLAT_VECTOR_I64
3445 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
3446                                                      SelectionDAG &DAG) const {
3447   SDLoc DL(Op);
3448   MVT VecVT = Op.getSimpleValueType();
3449   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
3450          "Unexpected SPLAT_VECTOR_PARTS lowering");
3451 
3452   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
3453   SDValue Lo = Op.getOperand(0);
3454   SDValue Hi = Op.getOperand(1);
3455 
3456   if (VecVT.isFixedLengthVector()) {
3457     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3458     SDLoc DL(Op);
3459     SDValue Mask, VL;
3460     std::tie(Mask, VL) =
3461         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3462 
3463     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
3464     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
3465   }
3466 
3467   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
3468     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
3469     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
3470     // If Hi constant is all the same sign bit as Lo, lower this as a custom
3471     // node in order to try and match RVV vector/scalar instructions.
3472     if ((LoC >> 31) == HiC)
3473       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3474   }
3475 
3476   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
3477   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
3478       isa<ConstantSDNode>(Hi.getOperand(1)) &&
3479       Hi.getConstantOperandVal(1) == 31)
3480     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3481 
3482   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
3483   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
3484                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64));
3485 }
3486 
3487 // Custom-lower extensions from mask vectors by using a vselect either with 1
3488 // for zero/any-extension or -1 for sign-extension:
3489 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
3490 // Note that any-extension is lowered identically to zero-extension.
3491 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
3492                                                 int64_t ExtTrueVal) const {
3493   SDLoc DL(Op);
3494   MVT VecVT = Op.getSimpleValueType();
3495   SDValue Src = Op.getOperand(0);
3496   // Only custom-lower extensions from mask types
3497   assert(Src.getValueType().isVector() &&
3498          Src.getValueType().getVectorElementType() == MVT::i1);
3499 
3500   MVT XLenVT = Subtarget.getXLenVT();
3501   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
3502   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
3503 
3504   if (VecVT.isScalableVector()) {
3505     // Be careful not to introduce illegal scalar types at this stage, and be
3506     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
3507     // illegal and must be expanded. Since we know that the constants are
3508     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
3509     bool IsRV32E64 =
3510         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
3511 
3512     if (!IsRV32E64) {
3513       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
3514       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
3515     } else {
3516       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
3517       SplatTrueVal =
3518           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
3519     }
3520 
3521     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
3522   }
3523 
3524   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3525   MVT I1ContainerVT =
3526       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3527 
3528   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
3529 
3530   SDValue Mask, VL;
3531   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3532 
3533   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
3534   SplatTrueVal =
3535       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
3536   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
3537                                SplatTrueVal, SplatZero, VL);
3538 
3539   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
3540 }
3541 
3542 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3543     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
3544   MVT ExtVT = Op.getSimpleValueType();
3545   // Only custom-lower extensions from fixed-length vector types.
3546   if (!ExtVT.isFixedLengthVector())
3547     return Op;
3548   MVT VT = Op.getOperand(0).getSimpleValueType();
3549   // Grab the canonical container type for the extended type. Infer the smaller
3550   // type from that to ensure the same number of vector elements, as we know
3551   // the LMUL will be sufficient to hold the smaller type.
3552   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
3553   // Get the extended container type manually to ensure the same number of
3554   // vector elements between source and dest.
3555   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
3556                                      ContainerExtVT.getVectorElementCount());
3557 
3558   SDValue Op1 =
3559       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3560 
3561   SDLoc DL(Op);
3562   SDValue Mask, VL;
3563   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3564 
3565   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
3566 
3567   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
3568 }
3569 
3570 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3571 // setcc operation:
3572 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
3573 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
3574                                                   SelectionDAG &DAG) const {
3575   SDLoc DL(Op);
3576   EVT MaskVT = Op.getValueType();
3577   // Only expect to custom-lower truncations to mask types
3578   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
3579          "Unexpected type for vector mask lowering");
3580   SDValue Src = Op.getOperand(0);
3581   MVT VecVT = Src.getSimpleValueType();
3582 
3583   // If this is a fixed vector, we need to convert it to a scalable vector.
3584   MVT ContainerVT = VecVT;
3585   if (VecVT.isFixedLengthVector()) {
3586     ContainerVT = getContainerForFixedLengthVector(VecVT);
3587     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3588   }
3589 
3590   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
3591   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
3592 
3593   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
3594   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
3595 
3596   if (VecVT.isScalableVector()) {
3597     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
3598     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
3599   }
3600 
3601   SDValue Mask, VL;
3602   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3603 
3604   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3605   SDValue Trunc =
3606       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
3607   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
3608                       DAG.getCondCode(ISD::SETNE), Mask, VL);
3609   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
3610 }
3611 
3612 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3613 // first position of a vector, and that vector is slid up to the insert index.
3614 // By limiting the active vector length to index+1 and merging with the
3615 // original vector (with an undisturbed tail policy for elements >= VL), we
3616 // achieve the desired result of leaving all elements untouched except the one
3617 // at VL-1, which is replaced with the desired value.
3618 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3619                                                     SelectionDAG &DAG) const {
3620   SDLoc DL(Op);
3621   MVT VecVT = Op.getSimpleValueType();
3622   SDValue Vec = Op.getOperand(0);
3623   SDValue Val = Op.getOperand(1);
3624   SDValue Idx = Op.getOperand(2);
3625 
3626   if (VecVT.getVectorElementType() == MVT::i1) {
3627     // FIXME: For now we just promote to an i8 vector and insert into that,
3628     // but this is probably not optimal.
3629     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3630     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3631     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
3632     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
3633   }
3634 
3635   MVT ContainerVT = VecVT;
3636   // If the operand is a fixed-length vector, convert to a scalable one.
3637   if (VecVT.isFixedLengthVector()) {
3638     ContainerVT = getContainerForFixedLengthVector(VecVT);
3639     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3640   }
3641 
3642   MVT XLenVT = Subtarget.getXLenVT();
3643 
3644   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3645   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
3646   // Even i64-element vectors on RV32 can be lowered without scalar
3647   // legalization if the most-significant 32 bits of the value are not affected
3648   // by the sign-extension of the lower 32 bits.
3649   // TODO: We could also catch sign extensions of a 32-bit value.
3650   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
3651     const auto *CVal = cast<ConstantSDNode>(Val);
3652     if (isInt<32>(CVal->getSExtValue())) {
3653       IsLegalInsert = true;
3654       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3655     }
3656   }
3657 
3658   SDValue Mask, VL;
3659   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3660 
3661   SDValue ValInVec;
3662 
3663   if (IsLegalInsert) {
3664     unsigned Opc =
3665         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
3666     if (isNullConstant(Idx)) {
3667       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
3668       if (!VecVT.isFixedLengthVector())
3669         return Vec;
3670       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
3671     }
3672     ValInVec =
3673         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
3674   } else {
3675     // On RV32, i64-element vectors must be specially handled to place the
3676     // value at element 0, by using two vslide1up instructions in sequence on
3677     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3678     // this.
3679     SDValue One = DAG.getConstant(1, DL, XLenVT);
3680     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
3681     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
3682     MVT I32ContainerVT =
3683         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
3684     SDValue I32Mask =
3685         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
3686     // Limit the active VL to two.
3687     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
3688     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
3689     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
3690     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
3691                            InsertI64VL);
3692     // First slide in the hi value, then the lo in underneath it.
3693     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3694                            ValHi, I32Mask, InsertI64VL);
3695     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3696                            ValLo, I32Mask, InsertI64VL);
3697     // Bitcast back to the right container type.
3698     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
3699   }
3700 
3701   // Now that the value is in a vector, slide it into position.
3702   SDValue InsertVL =
3703       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
3704   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3705                                 ValInVec, Idx, Mask, InsertVL);
3706   if (!VecVT.isFixedLengthVector())
3707     return Slideup;
3708   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3709 }
3710 
3711 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
3712 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
3713 // types this is done using VMV_X_S to allow us to glean information about the
3714 // sign bits of the result.
3715 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
3716                                                      SelectionDAG &DAG) const {
3717   SDLoc DL(Op);
3718   SDValue Idx = Op.getOperand(1);
3719   SDValue Vec = Op.getOperand(0);
3720   EVT EltVT = Op.getValueType();
3721   MVT VecVT = Vec.getSimpleValueType();
3722   MVT XLenVT = Subtarget.getXLenVT();
3723 
3724   if (VecVT.getVectorElementType() == MVT::i1) {
3725     // FIXME: For now we just promote to an i8 vector and extract from that,
3726     // but this is probably not optimal.
3727     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3728     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3729     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
3730   }
3731 
3732   // If this is a fixed vector, we need to convert it to a scalable vector.
3733   MVT ContainerVT = VecVT;
3734   if (VecVT.isFixedLengthVector()) {
3735     ContainerVT = getContainerForFixedLengthVector(VecVT);
3736     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3737   }
3738 
3739   // If the index is 0, the vector is already in the right position.
3740   if (!isNullConstant(Idx)) {
3741     // Use a VL of 1 to avoid processing more elements than we need.
3742     SDValue VL = DAG.getConstant(1, DL, XLenVT);
3743     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3744     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3745     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3746                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
3747   }
3748 
3749   if (!EltVT.isInteger()) {
3750     // Floating-point extracts are handled in TableGen.
3751     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
3752                        DAG.getConstant(0, DL, XLenVT));
3753   }
3754 
3755   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3756   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
3757 }
3758 
3759 // Some RVV intrinsics may claim that they want an integer operand to be
3760 // promoted or expanded.
3761 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
3762                                           const RISCVSubtarget &Subtarget) {
3763   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3764           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
3765          "Unexpected opcode");
3766 
3767   if (!Subtarget.hasStdExtV())
3768     return SDValue();
3769 
3770   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
3771   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
3772   SDLoc DL(Op);
3773 
3774   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
3775       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
3776   if (!II || !II->SplatOperand)
3777     return SDValue();
3778 
3779   unsigned SplatOp = II->SplatOperand + HasChain;
3780   assert(SplatOp < Op.getNumOperands());
3781 
3782   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
3783   SDValue &ScalarOp = Operands[SplatOp];
3784   MVT OpVT = ScalarOp.getSimpleValueType();
3785   MVT XLenVT = Subtarget.getXLenVT();
3786 
3787   // If this isn't a scalar, or its type is XLenVT we're done.
3788   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
3789     return SDValue();
3790 
3791   // Simplest case is that the operand needs to be promoted to XLenVT.
3792   if (OpVT.bitsLT(XLenVT)) {
3793     // If the operand is a constant, sign extend to increase our chances
3794     // of being able to use a .vi instruction. ANY_EXTEND would become a
3795     // a zero extend and the simm5 check in isel would fail.
3796     // FIXME: Should we ignore the upper bits in isel instead?
3797     unsigned ExtOpc =
3798         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
3799     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
3800     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3801   }
3802 
3803   // Use the previous operand to get the vXi64 VT. The result might be a mask
3804   // VT for compares. Using the previous operand assumes that the previous
3805   // operand will never have a smaller element size than a scalar operand and
3806   // that a widening operation never uses SEW=64.
3807   // NOTE: If this fails the below assert, we can probably just find the
3808   // element count from any operand or result and use it to construct the VT.
3809   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
3810   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
3811 
3812   // The more complex case is when the scalar is larger than XLenVT.
3813   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
3814          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
3815 
3816   // If this is a sign-extended 32-bit constant, we can truncate it and rely
3817   // on the instruction to sign-extend since SEW>XLEN.
3818   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
3819     if (isInt<32>(CVal->getSExtValue())) {
3820       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3821       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3822     }
3823   }
3824 
3825   // We need to convert the scalar to a splat vector.
3826   // FIXME: Can we implicitly truncate the scalar if it is known to
3827   // be sign extended?
3828   // VL should be the last operand.
3829   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
3830   assert(VL.getValueType() == XLenVT);
3831   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
3832   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3833 }
3834 
3835 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3836                                                      SelectionDAG &DAG) const {
3837   unsigned IntNo = Op.getConstantOperandVal(0);
3838   SDLoc DL(Op);
3839   MVT XLenVT = Subtarget.getXLenVT();
3840 
3841   switch (IntNo) {
3842   default:
3843     break; // Don't custom lower most intrinsics.
3844   case Intrinsic::thread_pointer: {
3845     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3846     return DAG.getRegister(RISCV::X4, PtrVT);
3847   }
3848   case Intrinsic::riscv_orc_b:
3849     // Lower to the GORCI encoding for orc.b.
3850     return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
3851                        DAG.getConstant(7, DL, XLenVT));
3852   case Intrinsic::riscv_grev:
3853   case Intrinsic::riscv_gorc: {
3854     unsigned Opc =
3855         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
3856     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3857   }
3858   case Intrinsic::riscv_shfl:
3859   case Intrinsic::riscv_unshfl: {
3860     unsigned Opc =
3861         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
3862     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3863   }
3864   case Intrinsic::riscv_bcompress:
3865   case Intrinsic::riscv_bdecompress: {
3866     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
3867                                                        : RISCVISD::BDECOMPRESS;
3868     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3869   }
3870   case Intrinsic::riscv_vmv_x_s:
3871     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
3872     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
3873                        Op.getOperand(1));
3874   case Intrinsic::riscv_vmv_v_x:
3875     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
3876                             Op.getSimpleValueType(), DL, DAG, Subtarget);
3877   case Intrinsic::riscv_vfmv_v_f:
3878     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
3879                        Op.getOperand(1), Op.getOperand(2));
3880   case Intrinsic::riscv_vmv_s_x: {
3881     SDValue Scalar = Op.getOperand(2);
3882 
3883     if (Scalar.getValueType().bitsLE(XLenVT)) {
3884       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
3885       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
3886                          Op.getOperand(1), Scalar, Op.getOperand(3));
3887     }
3888 
3889     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
3890 
3891     // This is an i64 value that lives in two scalar registers. We have to
3892     // insert this in a convoluted way. First we build vXi64 splat containing
3893     // the/ two values that we assemble using some bit math. Next we'll use
3894     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
3895     // to merge element 0 from our splat into the source vector.
3896     // FIXME: This is probably not the best way to do this, but it is
3897     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
3898     // point.
3899     //   sw lo, (a0)
3900     //   sw hi, 4(a0)
3901     //   vlse vX, (a0)
3902     //
3903     //   vid.v      vVid
3904     //   vmseq.vx   mMask, vVid, 0
3905     //   vmerge.vvm vDest, vSrc, vVal, mMask
3906     MVT VT = Op.getSimpleValueType();
3907     SDValue Vec = Op.getOperand(1);
3908     SDValue VL = Op.getOperand(3);
3909 
3910     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
3911     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
3912                                       DAG.getConstant(0, DL, MVT::i32), VL);
3913 
3914     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
3915     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3916     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3917     SDValue SelectCond =
3918         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
3919                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
3920     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
3921                        Vec, VL);
3922   }
3923   case Intrinsic::riscv_vslide1up:
3924   case Intrinsic::riscv_vslide1down:
3925   case Intrinsic::riscv_vslide1up_mask:
3926   case Intrinsic::riscv_vslide1down_mask: {
3927     // We need to special case these when the scalar is larger than XLen.
3928     unsigned NumOps = Op.getNumOperands();
3929     bool IsMasked = NumOps == 7;
3930     unsigned OpOffset = IsMasked ? 1 : 0;
3931     SDValue Scalar = Op.getOperand(2 + OpOffset);
3932     if (Scalar.getValueType().bitsLE(XLenVT))
3933       break;
3934 
3935     // Splatting a sign extended constant is fine.
3936     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
3937       if (isInt<32>(CVal->getSExtValue()))
3938         break;
3939 
3940     MVT VT = Op.getSimpleValueType();
3941     assert(VT.getVectorElementType() == MVT::i64 &&
3942            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
3943 
3944     // Convert the vector source to the equivalent nxvXi32 vector.
3945     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
3946     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
3947 
3948     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3949                                    DAG.getConstant(0, DL, XLenVT));
3950     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3951                                    DAG.getConstant(1, DL, XLenVT));
3952 
3953     // Double the VL since we halved SEW.
3954     SDValue VL = Op.getOperand(NumOps - (1 + OpOffset));
3955     SDValue I32VL =
3956         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
3957 
3958     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
3959     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
3960 
3961     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
3962     // instructions.
3963     if (IntNo == Intrinsic::riscv_vslide1up ||
3964         IntNo == Intrinsic::riscv_vslide1up_mask) {
3965       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
3966                         I32Mask, I32VL);
3967       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
3968                         I32Mask, I32VL);
3969     } else {
3970       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
3971                         I32Mask, I32VL);
3972       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
3973                         I32Mask, I32VL);
3974     }
3975 
3976     // Convert back to nxvXi64.
3977     Vec = DAG.getBitcast(VT, Vec);
3978 
3979     if (!IsMasked)
3980       return Vec;
3981 
3982     // Apply mask after the operation.
3983     SDValue Mask = Op.getOperand(NumOps - 3);
3984     SDValue MaskedOff = Op.getOperand(1);
3985     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
3986   }
3987   }
3988 
3989   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3990 }
3991 
3992 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
3993                                                     SelectionDAG &DAG) const {
3994   unsigned IntNo = Op.getConstantOperandVal(1);
3995   switch (IntNo) {
3996   default:
3997     break;
3998   case Intrinsic::riscv_masked_strided_load: {
3999     SDLoc DL(Op);
4000     MVT XLenVT = Subtarget.getXLenVT();
4001 
4002     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4003     // the selection of the masked intrinsics doesn't do this for us.
4004     SDValue Mask = Op.getOperand(5);
4005     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4006 
4007     MVT VT = Op->getSimpleValueType(0);
4008     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4009 
4010     SDValue PassThru = Op.getOperand(2);
4011     if (!IsUnmasked) {
4012       MVT MaskVT =
4013           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4014       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4015       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4016     }
4017 
4018     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4019 
4020     SDValue IntID = DAG.getTargetConstant(
4021         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4022         XLenVT);
4023 
4024     auto *Load = cast<MemIntrinsicSDNode>(Op);
4025     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4026     if (!IsUnmasked)
4027       Ops.push_back(PassThru);
4028     Ops.push_back(Op.getOperand(3)); // Ptr
4029     Ops.push_back(Op.getOperand(4)); // Stride
4030     if (!IsUnmasked)
4031       Ops.push_back(Mask);
4032     Ops.push_back(VL);
4033     if (!IsUnmasked) {
4034       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4035       Ops.push_back(Policy);
4036     }
4037 
4038     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4039     SDValue Result =
4040         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4041                                 Load->getMemoryVT(), Load->getMemOperand());
4042     SDValue Chain = Result.getValue(1);
4043     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4044     return DAG.getMergeValues({Result, Chain}, DL);
4045   }
4046   }
4047 
4048   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4049 }
4050 
4051 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4052                                                  SelectionDAG &DAG) const {
4053   unsigned IntNo = Op.getConstantOperandVal(1);
4054   switch (IntNo) {
4055   default:
4056     break;
4057   case Intrinsic::riscv_masked_strided_store: {
4058     SDLoc DL(Op);
4059     MVT XLenVT = Subtarget.getXLenVT();
4060 
4061     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4062     // the selection of the masked intrinsics doesn't do this for us.
4063     SDValue Mask = Op.getOperand(5);
4064     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4065 
4066     SDValue Val = Op.getOperand(2);
4067     MVT VT = Val.getSimpleValueType();
4068     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4069 
4070     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4071     if (!IsUnmasked) {
4072       MVT MaskVT =
4073           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4074       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4075     }
4076 
4077     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4078 
4079     SDValue IntID = DAG.getTargetConstant(
4080         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4081         XLenVT);
4082 
4083     auto *Store = cast<MemIntrinsicSDNode>(Op);
4084     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4085     Ops.push_back(Val);
4086     Ops.push_back(Op.getOperand(3)); // Ptr
4087     Ops.push_back(Op.getOperand(4)); // Stride
4088     if (!IsUnmasked)
4089       Ops.push_back(Mask);
4090     Ops.push_back(VL);
4091 
4092     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4093                                    Ops, Store->getMemoryVT(),
4094                                    Store->getMemOperand());
4095   }
4096   }
4097 
4098   return SDValue();
4099 }
4100 
4101 static MVT getLMUL1VT(MVT VT) {
4102   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4103          "Unexpected vector MVT");
4104   return MVT::getScalableVectorVT(
4105       VT.getVectorElementType(),
4106       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4107 }
4108 
4109 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4110   switch (ISDOpcode) {
4111   default:
4112     llvm_unreachable("Unhandled reduction");
4113   case ISD::VECREDUCE_ADD:
4114     return RISCVISD::VECREDUCE_ADD_VL;
4115   case ISD::VECREDUCE_UMAX:
4116     return RISCVISD::VECREDUCE_UMAX_VL;
4117   case ISD::VECREDUCE_SMAX:
4118     return RISCVISD::VECREDUCE_SMAX_VL;
4119   case ISD::VECREDUCE_UMIN:
4120     return RISCVISD::VECREDUCE_UMIN_VL;
4121   case ISD::VECREDUCE_SMIN:
4122     return RISCVISD::VECREDUCE_SMIN_VL;
4123   case ISD::VECREDUCE_AND:
4124     return RISCVISD::VECREDUCE_AND_VL;
4125   case ISD::VECREDUCE_OR:
4126     return RISCVISD::VECREDUCE_OR_VL;
4127   case ISD::VECREDUCE_XOR:
4128     return RISCVISD::VECREDUCE_XOR_VL;
4129   }
4130 }
4131 
4132 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
4133                                                          SelectionDAG &DAG,
4134                                                          bool IsVP) const {
4135   SDLoc DL(Op);
4136   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
4137   MVT VecVT = Vec.getSimpleValueType();
4138   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
4139           Op.getOpcode() == ISD::VECREDUCE_OR ||
4140           Op.getOpcode() == ISD::VECREDUCE_XOR ||
4141           Op.getOpcode() == ISD::VP_REDUCE_AND ||
4142           Op.getOpcode() == ISD::VP_REDUCE_OR ||
4143           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
4144          "Unexpected reduction lowering");
4145 
4146   MVT XLenVT = Subtarget.getXLenVT();
4147   assert(Op.getValueType() == XLenVT &&
4148          "Expected reduction output to be legalized to XLenVT");
4149 
4150   MVT ContainerVT = VecVT;
4151   if (VecVT.isFixedLengthVector()) {
4152     ContainerVT = getContainerForFixedLengthVector(VecVT);
4153     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4154   }
4155 
4156   SDValue Mask, VL;
4157   if (IsVP) {
4158     Mask = Op.getOperand(2);
4159     VL = Op.getOperand(3);
4160   } else {
4161     std::tie(Mask, VL) =
4162         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4163   }
4164 
4165   unsigned BaseOpc;
4166   ISD::CondCode CC;
4167   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4168 
4169   switch (Op.getOpcode()) {
4170   default:
4171     llvm_unreachable("Unhandled reduction");
4172   case ISD::VECREDUCE_AND:
4173   case ISD::VP_REDUCE_AND: {
4174     // vpopc ~x == 0
4175     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
4176     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
4177     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
4178     CC = ISD::SETEQ;
4179     BaseOpc = ISD::AND;
4180     break;
4181   }
4182   case ISD::VECREDUCE_OR:
4183   case ISD::VP_REDUCE_OR:
4184     // vpopc x != 0
4185     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
4186     CC = ISD::SETNE;
4187     BaseOpc = ISD::OR;
4188     break;
4189   case ISD::VECREDUCE_XOR:
4190   case ISD::VP_REDUCE_XOR: {
4191     // ((vpopc x) & 1) != 0
4192     SDValue One = DAG.getConstant(1, DL, XLenVT);
4193     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
4194     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
4195     CC = ISD::SETNE;
4196     BaseOpc = ISD::XOR;
4197     break;
4198   }
4199   }
4200 
4201   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
4202 
4203   if (!IsVP)
4204     return SetCC;
4205 
4206   // Now include the start value in the operation.
4207   // Note that we must return the start value when no elements are operated
4208   // upon. The vpopc instructions we've emitted in each case above will return
4209   // 0 for an inactive vector, and so we've already received the neutral value:
4210   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
4211   // can simply include the start value.
4212   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
4213 }
4214 
4215 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
4216                                             SelectionDAG &DAG) const {
4217   SDLoc DL(Op);
4218   SDValue Vec = Op.getOperand(0);
4219   EVT VecEVT = Vec.getValueType();
4220 
4221   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
4222 
4223   // Due to ordering in legalize types we may have a vector type that needs to
4224   // be split. Do that manually so we can get down to a legal type.
4225   while (getTypeAction(*DAG.getContext(), VecEVT) ==
4226          TargetLowering::TypeSplitVector) {
4227     SDValue Lo, Hi;
4228     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
4229     VecEVT = Lo.getValueType();
4230     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
4231   }
4232 
4233   // TODO: The type may need to be widened rather than split. Or widened before
4234   // it can be split.
4235   if (!isTypeLegal(VecEVT))
4236     return SDValue();
4237 
4238   MVT VecVT = VecEVT.getSimpleVT();
4239   MVT VecEltVT = VecVT.getVectorElementType();
4240   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
4241 
4242   MVT ContainerVT = VecVT;
4243   if (VecVT.isFixedLengthVector()) {
4244     ContainerVT = getContainerForFixedLengthVector(VecVT);
4245     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4246   }
4247 
4248   MVT M1VT = getLMUL1VT(ContainerVT);
4249 
4250   SDValue Mask, VL;
4251   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4252 
4253   // FIXME: This is a VLMAX splat which might be too large and can prevent
4254   // vsetvli removal.
4255   SDValue NeutralElem =
4256       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
4257   SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
4258   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
4259                                   IdentitySplat, Mask, VL);
4260   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4261                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4262   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4263 }
4264 
4265 // Given a reduction op, this function returns the matching reduction opcode,
4266 // the vector SDValue and the scalar SDValue required to lower this to a
4267 // RISCVISD node.
4268 static std::tuple<unsigned, SDValue, SDValue>
4269 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
4270   SDLoc DL(Op);
4271   auto Flags = Op->getFlags();
4272   unsigned Opcode = Op.getOpcode();
4273   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
4274   switch (Opcode) {
4275   default:
4276     llvm_unreachable("Unhandled reduction");
4277   case ISD::VECREDUCE_FADD:
4278     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
4279                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4280   case ISD::VECREDUCE_SEQ_FADD:
4281     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
4282                            Op.getOperand(0));
4283   case ISD::VECREDUCE_FMIN:
4284     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
4285                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4286   case ISD::VECREDUCE_FMAX:
4287     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
4288                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4289   }
4290 }
4291 
4292 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
4293                                               SelectionDAG &DAG) const {
4294   SDLoc DL(Op);
4295   MVT VecEltVT = Op.getSimpleValueType();
4296 
4297   unsigned RVVOpcode;
4298   SDValue VectorVal, ScalarVal;
4299   std::tie(RVVOpcode, VectorVal, ScalarVal) =
4300       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
4301   MVT VecVT = VectorVal.getSimpleValueType();
4302 
4303   MVT ContainerVT = VecVT;
4304   if (VecVT.isFixedLengthVector()) {
4305     ContainerVT = getContainerForFixedLengthVector(VecVT);
4306     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
4307   }
4308 
4309   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
4310 
4311   SDValue Mask, VL;
4312   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4313 
4314   // FIXME: This is a VLMAX splat which might be too large and can prevent
4315   // vsetvli removal.
4316   SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
4317   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
4318                                   VectorVal, ScalarSplat, Mask, VL);
4319   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4320                      DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4321 }
4322 
4323 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
4324   switch (ISDOpcode) {
4325   default:
4326     llvm_unreachable("Unhandled reduction");
4327   case ISD::VP_REDUCE_ADD:
4328     return RISCVISD::VECREDUCE_ADD_VL;
4329   case ISD::VP_REDUCE_UMAX:
4330     return RISCVISD::VECREDUCE_UMAX_VL;
4331   case ISD::VP_REDUCE_SMAX:
4332     return RISCVISD::VECREDUCE_SMAX_VL;
4333   case ISD::VP_REDUCE_UMIN:
4334     return RISCVISD::VECREDUCE_UMIN_VL;
4335   case ISD::VP_REDUCE_SMIN:
4336     return RISCVISD::VECREDUCE_SMIN_VL;
4337   case ISD::VP_REDUCE_AND:
4338     return RISCVISD::VECREDUCE_AND_VL;
4339   case ISD::VP_REDUCE_OR:
4340     return RISCVISD::VECREDUCE_OR_VL;
4341   case ISD::VP_REDUCE_XOR:
4342     return RISCVISD::VECREDUCE_XOR_VL;
4343   case ISD::VP_REDUCE_FADD:
4344     return RISCVISD::VECREDUCE_FADD_VL;
4345   case ISD::VP_REDUCE_SEQ_FADD:
4346     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
4347   case ISD::VP_REDUCE_FMAX:
4348     return RISCVISD::VECREDUCE_FMAX_VL;
4349   case ISD::VP_REDUCE_FMIN:
4350     return RISCVISD::VECREDUCE_FMIN_VL;
4351   }
4352 }
4353 
4354 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
4355                                            SelectionDAG &DAG) const {
4356   SDLoc DL(Op);
4357   SDValue Vec = Op.getOperand(1);
4358   EVT VecEVT = Vec.getValueType();
4359 
4360   // TODO: The type may need to be widened rather than split. Or widened before
4361   // it can be split.
4362   if (!isTypeLegal(VecEVT))
4363     return SDValue();
4364 
4365   MVT VecVT = VecEVT.getSimpleVT();
4366   MVT VecEltVT = VecVT.getVectorElementType();
4367   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
4368 
4369   MVT ContainerVT = VecVT;
4370   if (VecVT.isFixedLengthVector()) {
4371     ContainerVT = getContainerForFixedLengthVector(VecVT);
4372     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4373   }
4374 
4375   SDValue VL = Op.getOperand(3);
4376   SDValue Mask = Op.getOperand(2);
4377 
4378   MVT M1VT = getLMUL1VT(ContainerVT);
4379   MVT XLenVT = Subtarget.getXLenVT();
4380   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
4381 
4382   // FIXME: This is a VLMAX splat which might be too large and can prevent
4383   // vsetvli removal.
4384   SDValue StartSplat = DAG.getSplatVector(M1VT, DL, Op.getOperand(0));
4385   SDValue Reduction =
4386       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
4387   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
4388                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4389   if (!VecVT.isInteger())
4390     return Elt0;
4391   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4392 }
4393 
4394 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
4395                                                    SelectionDAG &DAG) const {
4396   SDValue Vec = Op.getOperand(0);
4397   SDValue SubVec = Op.getOperand(1);
4398   MVT VecVT = Vec.getSimpleValueType();
4399   MVT SubVecVT = SubVec.getSimpleValueType();
4400 
4401   SDLoc DL(Op);
4402   MVT XLenVT = Subtarget.getXLenVT();
4403   unsigned OrigIdx = Op.getConstantOperandVal(2);
4404   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4405 
4406   // We don't have the ability to slide mask vectors up indexed by their i1
4407   // elements; the smallest we can do is i8. Often we are able to bitcast to
4408   // equivalent i8 vectors. Note that when inserting a fixed-length vector
4409   // into a scalable one, we might not necessarily have enough scalable
4410   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
4411   if (SubVecVT.getVectorElementType() == MVT::i1 &&
4412       (OrigIdx != 0 || !Vec.isUndef())) {
4413     if (VecVT.getVectorMinNumElements() >= 8 &&
4414         SubVecVT.getVectorMinNumElements() >= 8) {
4415       assert(OrigIdx % 8 == 0 && "Invalid index");
4416       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4417              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4418              "Unexpected mask vector lowering");
4419       OrigIdx /= 8;
4420       SubVecVT =
4421           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4422                            SubVecVT.isScalableVector());
4423       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4424                                VecVT.isScalableVector());
4425       Vec = DAG.getBitcast(VecVT, Vec);
4426       SubVec = DAG.getBitcast(SubVecVT, SubVec);
4427     } else {
4428       // We can't slide this mask vector up indexed by its i1 elements.
4429       // This poses a problem when we wish to insert a scalable vector which
4430       // can't be re-expressed as a larger type. Just choose the slow path and
4431       // extend to a larger type, then truncate back down.
4432       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4433       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4434       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4435       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
4436       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
4437                         Op.getOperand(2));
4438       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
4439       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
4440     }
4441   }
4442 
4443   // If the subvector vector is a fixed-length type, we cannot use subregister
4444   // manipulation to simplify the codegen; we don't know which register of a
4445   // LMUL group contains the specific subvector as we only know the minimum
4446   // register size. Therefore we must slide the vector group up the full
4447   // amount.
4448   if (SubVecVT.isFixedLengthVector()) {
4449     if (OrigIdx == 0 && Vec.isUndef())
4450       return Op;
4451     MVT ContainerVT = VecVT;
4452     if (VecVT.isFixedLengthVector()) {
4453       ContainerVT = getContainerForFixedLengthVector(VecVT);
4454       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4455     }
4456     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
4457                          DAG.getUNDEF(ContainerVT), SubVec,
4458                          DAG.getConstant(0, DL, XLenVT));
4459     SDValue Mask =
4460         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4461     // Set the vector length to only the number of elements we care about. Note
4462     // that for slideup this includes the offset.
4463     SDValue VL =
4464         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
4465     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4466     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4467                                   SubVec, SlideupAmt, Mask, VL);
4468     if (VecVT.isFixedLengthVector())
4469       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4470     return DAG.getBitcast(Op.getValueType(), Slideup);
4471   }
4472 
4473   unsigned SubRegIdx, RemIdx;
4474   std::tie(SubRegIdx, RemIdx) =
4475       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4476           VecVT, SubVecVT, OrigIdx, TRI);
4477 
4478   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
4479   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
4480                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
4481                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
4482 
4483   // 1. If the Idx has been completely eliminated and this subvector's size is
4484   // a vector register or a multiple thereof, or the surrounding elements are
4485   // undef, then this is a subvector insert which naturally aligns to a vector
4486   // register. These can easily be handled using subregister manipulation.
4487   // 2. If the subvector is smaller than a vector register, then the insertion
4488   // must preserve the undisturbed elements of the register. We do this by
4489   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
4490   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
4491   // subvector within the vector register, and an INSERT_SUBVECTOR of that
4492   // LMUL=1 type back into the larger vector (resolving to another subregister
4493   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
4494   // to avoid allocating a large register group to hold our subvector.
4495   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
4496     return Op;
4497 
4498   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
4499   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
4500   // (in our case undisturbed). This means we can set up a subvector insertion
4501   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
4502   // size of the subvector.
4503   MVT InterSubVT = VecVT;
4504   SDValue AlignedExtract = Vec;
4505   unsigned AlignedIdx = OrigIdx - RemIdx;
4506   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4507     InterSubVT = getLMUL1VT(VecVT);
4508     // Extract a subvector equal to the nearest full vector register type. This
4509     // should resolve to a EXTRACT_SUBREG instruction.
4510     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4511                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
4512   }
4513 
4514   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4515   // For scalable vectors this must be further multiplied by vscale.
4516   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
4517 
4518   SDValue Mask, VL;
4519   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4520 
4521   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
4522   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
4523   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
4524   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
4525 
4526   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
4527                        DAG.getUNDEF(InterSubVT), SubVec,
4528                        DAG.getConstant(0, DL, XLenVT));
4529 
4530   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
4531                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
4532 
4533   // If required, insert this subvector back into the correct vector register.
4534   // This should resolve to an INSERT_SUBREG instruction.
4535   if (VecVT.bitsGT(InterSubVT))
4536     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
4537                           DAG.getConstant(AlignedIdx, DL, XLenVT));
4538 
4539   // We might have bitcast from a mask type: cast back to the original type if
4540   // required.
4541   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
4542 }
4543 
4544 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
4545                                                     SelectionDAG &DAG) const {
4546   SDValue Vec = Op.getOperand(0);
4547   MVT SubVecVT = Op.getSimpleValueType();
4548   MVT VecVT = Vec.getSimpleValueType();
4549 
4550   SDLoc DL(Op);
4551   MVT XLenVT = Subtarget.getXLenVT();
4552   unsigned OrigIdx = Op.getConstantOperandVal(1);
4553   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4554 
4555   // We don't have the ability to slide mask vectors down indexed by their i1
4556   // elements; the smallest we can do is i8. Often we are able to bitcast to
4557   // equivalent i8 vectors. Note that when extracting a fixed-length vector
4558   // from a scalable one, we might not necessarily have enough scalable
4559   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
4560   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
4561     if (VecVT.getVectorMinNumElements() >= 8 &&
4562         SubVecVT.getVectorMinNumElements() >= 8) {
4563       assert(OrigIdx % 8 == 0 && "Invalid index");
4564       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4565              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4566              "Unexpected mask vector lowering");
4567       OrigIdx /= 8;
4568       SubVecVT =
4569           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4570                            SubVecVT.isScalableVector());
4571       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4572                                VecVT.isScalableVector());
4573       Vec = DAG.getBitcast(VecVT, Vec);
4574     } else {
4575       // We can't slide this mask vector down, indexed by its i1 elements.
4576       // This poses a problem when we wish to extract a scalable vector which
4577       // can't be re-expressed as a larger type. Just choose the slow path and
4578       // extend to a larger type, then truncate back down.
4579       // TODO: We could probably improve this when extracting certain fixed
4580       // from fixed, where we can extract as i8 and shift the correct element
4581       // right to reach the desired subvector?
4582       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4583       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4584       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4585       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
4586                         Op.getOperand(1));
4587       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
4588       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
4589     }
4590   }
4591 
4592   // If the subvector vector is a fixed-length type, we cannot use subregister
4593   // manipulation to simplify the codegen; we don't know which register of a
4594   // LMUL group contains the specific subvector as we only know the minimum
4595   // register size. Therefore we must slide the vector group down the full
4596   // amount.
4597   if (SubVecVT.isFixedLengthVector()) {
4598     // With an index of 0 this is a cast-like subvector, which can be performed
4599     // with subregister operations.
4600     if (OrigIdx == 0)
4601       return Op;
4602     MVT ContainerVT = VecVT;
4603     if (VecVT.isFixedLengthVector()) {
4604       ContainerVT = getContainerForFixedLengthVector(VecVT);
4605       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4606     }
4607     SDValue Mask =
4608         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4609     // Set the vector length to only the number of elements we care about. This
4610     // avoids sliding down elements we're going to discard straight away.
4611     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
4612     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4613     SDValue Slidedown =
4614         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4615                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
4616     // Now we can use a cast-like subvector extract to get the result.
4617     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4618                             DAG.getConstant(0, DL, XLenVT));
4619     return DAG.getBitcast(Op.getValueType(), Slidedown);
4620   }
4621 
4622   unsigned SubRegIdx, RemIdx;
4623   std::tie(SubRegIdx, RemIdx) =
4624       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4625           VecVT, SubVecVT, OrigIdx, TRI);
4626 
4627   // If the Idx has been completely eliminated then this is a subvector extract
4628   // which naturally aligns to a vector register. These can easily be handled
4629   // using subregister manipulation.
4630   if (RemIdx == 0)
4631     return Op;
4632 
4633   // Else we must shift our vector register directly to extract the subvector.
4634   // Do this using VSLIDEDOWN.
4635 
4636   // If the vector type is an LMUL-group type, extract a subvector equal to the
4637   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
4638   // instruction.
4639   MVT InterSubVT = VecVT;
4640   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4641     InterSubVT = getLMUL1VT(VecVT);
4642     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4643                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
4644   }
4645 
4646   // Slide this vector register down by the desired number of elements in order
4647   // to place the desired subvector starting at element 0.
4648   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4649   // For scalable vectors this must be further multiplied by vscale.
4650   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
4651 
4652   SDValue Mask, VL;
4653   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
4654   SDValue Slidedown =
4655       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
4656                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
4657 
4658   // Now the vector is in the right position, extract our final subvector. This
4659   // should resolve to a COPY.
4660   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4661                           DAG.getConstant(0, DL, XLenVT));
4662 
4663   // We might have bitcast from a mask type: cast back to the original type if
4664   // required.
4665   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
4666 }
4667 
4668 // Lower step_vector to the vid instruction. Any non-identity step value must
4669 // be accounted for my manual expansion.
4670 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
4671                                               SelectionDAG &DAG) const {
4672   SDLoc DL(Op);
4673   MVT VT = Op.getSimpleValueType();
4674   MVT XLenVT = Subtarget.getXLenVT();
4675   SDValue Mask, VL;
4676   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
4677   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4678   uint64_t StepValImm = Op.getConstantOperandVal(0);
4679   if (StepValImm != 1) {
4680     if (isPowerOf2_64(StepValImm)) {
4681       SDValue StepVal =
4682           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4683                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
4684       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
4685     } else {
4686       SDValue StepVal = lowerScalarSplat(
4687           DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT,
4688           DL, DAG, Subtarget);
4689       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
4690     }
4691   }
4692   return StepVec;
4693 }
4694 
4695 // Implement vector_reverse using vrgather.vv with indices determined by
4696 // subtracting the id of each element from (VLMAX-1). This will convert
4697 // the indices like so:
4698 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
4699 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
4700 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
4701                                                  SelectionDAG &DAG) const {
4702   SDLoc DL(Op);
4703   MVT VecVT = Op.getSimpleValueType();
4704   unsigned EltSize = VecVT.getScalarSizeInBits();
4705   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
4706 
4707   unsigned MaxVLMAX = 0;
4708   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
4709   if (VectorBitsMax != 0)
4710     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
4711 
4712   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
4713   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
4714 
4715   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
4716   // to use vrgatherei16.vv.
4717   // TODO: It's also possible to use vrgatherei16.vv for other types to
4718   // decrease register width for the index calculation.
4719   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
4720     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
4721     // Reverse each half, then reassemble them in reverse order.
4722     // NOTE: It's also possible that after splitting that VLMAX no longer
4723     // requires vrgatherei16.vv.
4724     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
4725       SDValue Lo, Hi;
4726       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4727       EVT LoVT, HiVT;
4728       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
4729       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
4730       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
4731       // Reassemble the low and high pieces reversed.
4732       // FIXME: This is a CONCAT_VECTORS.
4733       SDValue Res =
4734           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
4735                       DAG.getIntPtrConstant(0, DL));
4736       return DAG.getNode(
4737           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
4738           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
4739     }
4740 
4741     // Just promote the int type to i16 which will double the LMUL.
4742     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
4743     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
4744   }
4745 
4746   MVT XLenVT = Subtarget.getXLenVT();
4747   SDValue Mask, VL;
4748   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4749 
4750   // Calculate VLMAX-1 for the desired SEW.
4751   unsigned MinElts = VecVT.getVectorMinNumElements();
4752   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
4753                               DAG.getConstant(MinElts, DL, XLenVT));
4754   SDValue VLMinus1 =
4755       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
4756 
4757   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
4758   bool IsRV32E64 =
4759       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
4760   SDValue SplatVL;
4761   if (!IsRV32E64)
4762     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
4763   else
4764     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
4765 
4766   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
4767   SDValue Indices =
4768       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
4769 
4770   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
4771 }
4772 
4773 SDValue
4774 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
4775                                                      SelectionDAG &DAG) const {
4776   SDLoc DL(Op);
4777   auto *Load = cast<LoadSDNode>(Op);
4778 
4779   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4780                                         Load->getMemoryVT(),
4781                                         *Load->getMemOperand()) &&
4782          "Expecting a correctly-aligned load");
4783 
4784   MVT VT = Op.getSimpleValueType();
4785   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4786 
4787   SDValue VL =
4788       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4789 
4790   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4791   SDValue NewLoad = DAG.getMemIntrinsicNode(
4792       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
4793       Load->getMemoryVT(), Load->getMemOperand());
4794 
4795   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
4796   return DAG.getMergeValues({Result, Load->getChain()}, DL);
4797 }
4798 
4799 SDValue
4800 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
4801                                                       SelectionDAG &DAG) const {
4802   SDLoc DL(Op);
4803   auto *Store = cast<StoreSDNode>(Op);
4804 
4805   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4806                                         Store->getMemoryVT(),
4807                                         *Store->getMemOperand()) &&
4808          "Expecting a correctly-aligned store");
4809 
4810   SDValue StoreVal = Store->getValue();
4811   MVT VT = StoreVal.getSimpleValueType();
4812 
4813   // If the size less than a byte, we need to pad with zeros to make a byte.
4814   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
4815     VT = MVT::v8i1;
4816     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
4817                            DAG.getConstant(0, DL, VT), StoreVal,
4818                            DAG.getIntPtrConstant(0, DL));
4819   }
4820 
4821   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4822 
4823   SDValue VL =
4824       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4825 
4826   SDValue NewValue =
4827       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
4828   return DAG.getMemIntrinsicNode(
4829       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
4830       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
4831       Store->getMemoryVT(), Store->getMemOperand());
4832 }
4833 
4834 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
4835                                              SelectionDAG &DAG) const {
4836   SDLoc DL(Op);
4837   MVT VT = Op.getSimpleValueType();
4838 
4839   const auto *MemSD = cast<MemSDNode>(Op);
4840   EVT MemVT = MemSD->getMemoryVT();
4841   MachineMemOperand *MMO = MemSD->getMemOperand();
4842   SDValue Chain = MemSD->getChain();
4843   SDValue BasePtr = MemSD->getBasePtr();
4844 
4845   SDValue Mask, PassThru, VL;
4846   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
4847     Mask = VPLoad->getMask();
4848     PassThru = DAG.getUNDEF(VT);
4849     VL = VPLoad->getVectorLength();
4850   } else {
4851     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
4852     Mask = MLoad->getMask();
4853     PassThru = MLoad->getPassThru();
4854   }
4855 
4856   MVT XLenVT = Subtarget.getXLenVT();
4857 
4858   MVT ContainerVT = VT;
4859   if (VT.isFixedLengthVector()) {
4860     ContainerVT = getContainerForFixedLengthVector(VT);
4861     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4862 
4863     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4864     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4865   }
4866 
4867   if (!VL)
4868     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
4869 
4870   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4871   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT);
4872   SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4873   SDValue Ops[] = {Chain, IntID, PassThru, BasePtr, Mask, VL, Policy};
4874   SDValue Result =
4875       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
4876   Chain = Result.getValue(1);
4877 
4878   if (VT.isFixedLengthVector())
4879     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4880 
4881   return DAG.getMergeValues({Result, Chain}, DL);
4882 }
4883 
4884 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
4885                                               SelectionDAG &DAG) const {
4886   SDLoc DL(Op);
4887 
4888   const auto *MemSD = cast<MemSDNode>(Op);
4889   EVT MemVT = MemSD->getMemoryVT();
4890   MachineMemOperand *MMO = MemSD->getMemOperand();
4891   SDValue Chain = MemSD->getChain();
4892   SDValue BasePtr = MemSD->getBasePtr();
4893   SDValue Val, Mask, VL;
4894 
4895   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
4896     Val = VPStore->getValue();
4897     Mask = VPStore->getMask();
4898     VL = VPStore->getVectorLength();
4899   } else {
4900     const auto *MStore = cast<MaskedStoreSDNode>(Op);
4901     Val = MStore->getValue();
4902     Mask = MStore->getMask();
4903   }
4904 
4905   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4906 
4907   MVT VT = Val.getSimpleValueType();
4908   MVT XLenVT = Subtarget.getXLenVT();
4909 
4910   MVT ContainerVT = VT;
4911   if (VT.isFixedLengthVector()) {
4912     ContainerVT = getContainerForFixedLengthVector(VT);
4913 
4914     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4915     if (!IsUnmasked) {
4916       MVT MaskVT =
4917           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4918       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4919     }
4920   }
4921 
4922   if (!VL)
4923     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
4924 
4925   unsigned IntID =
4926       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
4927   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
4928   Ops.push_back(Val);
4929   Ops.push_back(BasePtr);
4930   if (!IsUnmasked)
4931     Ops.push_back(Mask);
4932   Ops.push_back(VL);
4933 
4934   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
4935                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
4936 }
4937 
4938 SDValue
4939 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
4940                                                       SelectionDAG &DAG) const {
4941   MVT InVT = Op.getOperand(0).getSimpleValueType();
4942   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
4943 
4944   MVT VT = Op.getSimpleValueType();
4945 
4946   SDValue Op1 =
4947       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4948   SDValue Op2 =
4949       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4950 
4951   SDLoc DL(Op);
4952   SDValue VL =
4953       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4954 
4955   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4956   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4957 
4958   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
4959                             Op.getOperand(2), Mask, VL);
4960 
4961   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
4962 }
4963 
4964 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
4965     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
4966   MVT VT = Op.getSimpleValueType();
4967 
4968   if (VT.getVectorElementType() == MVT::i1)
4969     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
4970 
4971   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
4972 }
4973 
4974 SDValue
4975 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
4976                                                       SelectionDAG &DAG) const {
4977   unsigned Opc;
4978   switch (Op.getOpcode()) {
4979   default: llvm_unreachable("Unexpected opcode!");
4980   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
4981   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
4982   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
4983   }
4984 
4985   return lowerToScalableOp(Op, DAG, Opc);
4986 }
4987 
4988 // Lower vector ABS to smax(X, sub(0, X)).
4989 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
4990   SDLoc DL(Op);
4991   MVT VT = Op.getSimpleValueType();
4992   SDValue X = Op.getOperand(0);
4993 
4994   assert(VT.isFixedLengthVector() && "Unexpected type");
4995 
4996   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4997   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
4998 
4999   SDValue Mask, VL;
5000   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5001 
5002   SDValue SplatZero =
5003       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5004                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5005   SDValue NegX =
5006       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5007   SDValue Max =
5008       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5009 
5010   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5011 }
5012 
5013 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5014     SDValue Op, SelectionDAG &DAG) const {
5015   SDLoc DL(Op);
5016   MVT VT = Op.getSimpleValueType();
5017   SDValue Mag = Op.getOperand(0);
5018   SDValue Sign = Op.getOperand(1);
5019   assert(Mag.getValueType() == Sign.getValueType() &&
5020          "Can only handle COPYSIGN with matching types.");
5021 
5022   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5023   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5024   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5025 
5026   SDValue Mask, VL;
5027   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5028 
5029   SDValue CopySign =
5030       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5031 
5032   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5033 }
5034 
5035 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5036     SDValue Op, SelectionDAG &DAG) const {
5037   MVT VT = Op.getSimpleValueType();
5038   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5039 
5040   MVT I1ContainerVT =
5041       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5042 
5043   SDValue CC =
5044       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5045   SDValue Op1 =
5046       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5047   SDValue Op2 =
5048       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5049 
5050   SDLoc DL(Op);
5051   SDValue Mask, VL;
5052   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5053 
5054   SDValue Select =
5055       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5056 
5057   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5058 }
5059 
5060 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5061                                                unsigned NewOpc,
5062                                                bool HasMask) const {
5063   MVT VT = Op.getSimpleValueType();
5064   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5065 
5066   // Create list of operands by converting existing ones to scalable types.
5067   SmallVector<SDValue, 6> Ops;
5068   for (const SDValue &V : Op->op_values()) {
5069     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5070 
5071     // Pass through non-vector operands.
5072     if (!V.getValueType().isVector()) {
5073       Ops.push_back(V);
5074       continue;
5075     }
5076 
5077     // "cast" fixed length vector to a scalable vector.
5078     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
5079            "Only fixed length vectors are supported!");
5080     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5081   }
5082 
5083   SDLoc DL(Op);
5084   SDValue Mask, VL;
5085   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5086   if (HasMask)
5087     Ops.push_back(Mask);
5088   Ops.push_back(VL);
5089 
5090   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
5091   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
5092 }
5093 
5094 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
5095 // * Operands of each node are assumed to be in the same order.
5096 // * The EVL operand is promoted from i32 to i64 on RV64.
5097 // * Fixed-length vectors are converted to their scalable-vector container
5098 //   types.
5099 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
5100                                        unsigned RISCVISDOpc) const {
5101   SDLoc DL(Op);
5102   MVT VT = Op.getSimpleValueType();
5103   SmallVector<SDValue, 4> Ops;
5104 
5105   for (const auto &OpIdx : enumerate(Op->ops())) {
5106     SDValue V = OpIdx.value();
5107     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5108     // Pass through operands which aren't fixed-length vectors.
5109     if (!V.getValueType().isFixedLengthVector()) {
5110       Ops.push_back(V);
5111       continue;
5112     }
5113     // "cast" fixed length vector to a scalable vector.
5114     MVT OpVT = V.getSimpleValueType();
5115     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
5116     assert(useRVVForFixedLengthVectorVT(OpVT) &&
5117            "Only fixed length vectors are supported!");
5118     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5119   }
5120 
5121   if (!VT.isFixedLengthVector())
5122     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
5123 
5124   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5125 
5126   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
5127 
5128   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
5129 }
5130 
5131 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
5132 // matched to a RVV indexed load. The RVV indexed load instructions only
5133 // support the "unsigned unscaled" addressing mode; indices are implicitly
5134 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5135 // signed or scaled indexing is extended to the XLEN value type and scaled
5136 // accordingly.
5137 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
5138                                                SelectionDAG &DAG) const {
5139   SDLoc DL(Op);
5140   MVT VT = Op.getSimpleValueType();
5141 
5142   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5143   EVT MemVT = MemSD->getMemoryVT();
5144   MachineMemOperand *MMO = MemSD->getMemOperand();
5145   SDValue Chain = MemSD->getChain();
5146   SDValue BasePtr = MemSD->getBasePtr();
5147 
5148   ISD::LoadExtType LoadExtType;
5149   SDValue Index, Mask, PassThru, VL;
5150 
5151   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
5152     Index = VPGN->getIndex();
5153     Mask = VPGN->getMask();
5154     PassThru = DAG.getUNDEF(VT);
5155     VL = VPGN->getVectorLength();
5156     // VP doesn't support extending loads.
5157     LoadExtType = ISD::NON_EXTLOAD;
5158   } else {
5159     // Else it must be a MGATHER.
5160     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
5161     Index = MGN->getIndex();
5162     Mask = MGN->getMask();
5163     PassThru = MGN->getPassThru();
5164     LoadExtType = MGN->getExtensionType();
5165   }
5166 
5167   MVT IndexVT = Index.getSimpleValueType();
5168   MVT XLenVT = Subtarget.getXLenVT();
5169 
5170   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5171          "Unexpected VTs!");
5172   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5173   // Targets have to explicitly opt-in for extending vector loads.
5174   assert(LoadExtType == ISD::NON_EXTLOAD &&
5175          "Unexpected extending MGATHER/VP_GATHER");
5176   (void)LoadExtType;
5177 
5178   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5179   // the selection of the masked intrinsics doesn't do this for us.
5180   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5181 
5182   MVT ContainerVT = VT;
5183   if (VT.isFixedLengthVector()) {
5184     // We need to use the larger of the result and index type to determine the
5185     // scalable type to use so we don't increase LMUL for any operand/result.
5186     if (VT.bitsGE(IndexVT)) {
5187       ContainerVT = getContainerForFixedLengthVector(VT);
5188       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5189                                  ContainerVT.getVectorElementCount());
5190     } else {
5191       IndexVT = getContainerForFixedLengthVector(IndexVT);
5192       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
5193                                      IndexVT.getVectorElementCount());
5194     }
5195 
5196     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5197 
5198     if (!IsUnmasked) {
5199       MVT MaskVT =
5200           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5201       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5202       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5203     }
5204   }
5205 
5206   if (!VL)
5207     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5208 
5209   unsigned IntID =
5210       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
5211   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5212   if (!IsUnmasked)
5213     Ops.push_back(PassThru);
5214   Ops.push_back(BasePtr);
5215   Ops.push_back(Index);
5216   if (!IsUnmasked)
5217     Ops.push_back(Mask);
5218   Ops.push_back(VL);
5219   if (!IsUnmasked)
5220     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5221 
5222   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5223   SDValue Result =
5224       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5225   Chain = Result.getValue(1);
5226 
5227   if (VT.isFixedLengthVector())
5228     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5229 
5230   return DAG.getMergeValues({Result, Chain}, DL);
5231 }
5232 
5233 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
5234 // matched to a RVV indexed store. The RVV indexed store instructions only
5235 // support the "unsigned unscaled" addressing mode; indices are implicitly
5236 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5237 // signed or scaled indexing is extended to the XLEN value type and scaled
5238 // accordingly.
5239 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
5240                                                 SelectionDAG &DAG) const {
5241   SDLoc DL(Op);
5242   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5243   EVT MemVT = MemSD->getMemoryVT();
5244   MachineMemOperand *MMO = MemSD->getMemOperand();
5245   SDValue Chain = MemSD->getChain();
5246   SDValue BasePtr = MemSD->getBasePtr();
5247 
5248   bool IsTruncatingStore = false;
5249   SDValue Index, Mask, Val, VL;
5250 
5251   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
5252     Index = VPSN->getIndex();
5253     Mask = VPSN->getMask();
5254     Val = VPSN->getValue();
5255     VL = VPSN->getVectorLength();
5256     // VP doesn't support truncating stores.
5257     IsTruncatingStore = false;
5258   } else {
5259     // Else it must be a MSCATTER.
5260     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
5261     Index = MSN->getIndex();
5262     Mask = MSN->getMask();
5263     Val = MSN->getValue();
5264     IsTruncatingStore = MSN->isTruncatingStore();
5265   }
5266 
5267   MVT VT = Val.getSimpleValueType();
5268   MVT IndexVT = Index.getSimpleValueType();
5269   MVT XLenVT = Subtarget.getXLenVT();
5270 
5271   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5272          "Unexpected VTs!");
5273   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5274   // Targets have to explicitly opt-in for extending vector loads and
5275   // truncating vector stores.
5276   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
5277   (void)IsTruncatingStore;
5278 
5279   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5280   // the selection of the masked intrinsics doesn't do this for us.
5281   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5282 
5283   MVT ContainerVT = VT;
5284   if (VT.isFixedLengthVector()) {
5285     // We need to use the larger of the value and index type to determine the
5286     // scalable type to use so we don't increase LMUL for any operand/result.
5287     if (VT.bitsGE(IndexVT)) {
5288       ContainerVT = getContainerForFixedLengthVector(VT);
5289       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5290                                  ContainerVT.getVectorElementCount());
5291     } else {
5292       IndexVT = getContainerForFixedLengthVector(IndexVT);
5293       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
5294                                      IndexVT.getVectorElementCount());
5295     }
5296 
5297     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5298     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5299 
5300     if (!IsUnmasked) {
5301       MVT MaskVT =
5302           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5303       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5304     }
5305   }
5306 
5307   if (!VL)
5308     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5309 
5310   unsigned IntID =
5311       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
5312   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5313   Ops.push_back(Val);
5314   Ops.push_back(BasePtr);
5315   Ops.push_back(Index);
5316   if (!IsUnmasked)
5317     Ops.push_back(Mask);
5318   Ops.push_back(VL);
5319 
5320   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5321                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5322 }
5323 
5324 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
5325                                                SelectionDAG &DAG) const {
5326   const MVT XLenVT = Subtarget.getXLenVT();
5327   SDLoc DL(Op);
5328   SDValue Chain = Op->getOperand(0);
5329   SDValue SysRegNo = DAG.getConstant(
5330       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5331   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
5332   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
5333 
5334   // Encoding used for rounding mode in RISCV differs from that used in
5335   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
5336   // table, which consists of a sequence of 4-bit fields, each representing
5337   // corresponding FLT_ROUNDS mode.
5338   static const int Table =
5339       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
5340       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
5341       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
5342       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
5343       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
5344 
5345   SDValue Shift =
5346       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
5347   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5348                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5349   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5350                                DAG.getConstant(7, DL, XLenVT));
5351 
5352   return DAG.getMergeValues({Masked, Chain}, DL);
5353 }
5354 
5355 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
5356                                                SelectionDAG &DAG) const {
5357   const MVT XLenVT = Subtarget.getXLenVT();
5358   SDLoc DL(Op);
5359   SDValue Chain = Op->getOperand(0);
5360   SDValue RMValue = Op->getOperand(1);
5361   SDValue SysRegNo = DAG.getConstant(
5362       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5363 
5364   // Encoding used for rounding mode in RISCV differs from that used in
5365   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
5366   // a table, which consists of a sequence of 4-bit fields, each representing
5367   // corresponding RISCV mode.
5368   static const unsigned Table =
5369       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
5370       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
5371       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
5372       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
5373       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
5374 
5375   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
5376                               DAG.getConstant(2, DL, XLenVT));
5377   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5378                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5379   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5380                         DAG.getConstant(0x7, DL, XLenVT));
5381   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
5382                      RMValue);
5383 }
5384 
5385 // Returns the opcode of the target-specific SDNode that implements the 32-bit
5386 // form of the given Opcode.
5387 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
5388   switch (Opcode) {
5389   default:
5390     llvm_unreachable("Unexpected opcode");
5391   case ISD::SHL:
5392     return RISCVISD::SLLW;
5393   case ISD::SRA:
5394     return RISCVISD::SRAW;
5395   case ISD::SRL:
5396     return RISCVISD::SRLW;
5397   case ISD::SDIV:
5398     return RISCVISD::DIVW;
5399   case ISD::UDIV:
5400     return RISCVISD::DIVUW;
5401   case ISD::UREM:
5402     return RISCVISD::REMUW;
5403   case ISD::ROTL:
5404     return RISCVISD::ROLW;
5405   case ISD::ROTR:
5406     return RISCVISD::RORW;
5407   case RISCVISD::GREV:
5408     return RISCVISD::GREVW;
5409   case RISCVISD::GORC:
5410     return RISCVISD::GORCW;
5411   }
5412 }
5413 
5414 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
5415 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
5416 // otherwise be promoted to i64, making it difficult to select the
5417 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
5418 // type i8/i16/i32 is lost.
5419 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
5420                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
5421   SDLoc DL(N);
5422   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5423   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
5424   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
5425   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5426   // ReplaceNodeResults requires we maintain the same type for the return value.
5427   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
5428 }
5429 
5430 // Converts the given 32-bit operation to a i64 operation with signed extension
5431 // semantic to reduce the signed extension instructions.
5432 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
5433   SDLoc DL(N);
5434   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5435   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5436   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
5437   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5438                                DAG.getValueType(MVT::i32));
5439   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
5440 }
5441 
5442 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
5443                                              SmallVectorImpl<SDValue> &Results,
5444                                              SelectionDAG &DAG) const {
5445   SDLoc DL(N);
5446   switch (N->getOpcode()) {
5447   default:
5448     llvm_unreachable("Don't know how to custom type legalize this operation!");
5449   case ISD::STRICT_FP_TO_SINT:
5450   case ISD::STRICT_FP_TO_UINT:
5451   case ISD::FP_TO_SINT:
5452   case ISD::FP_TO_UINT: {
5453     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5454            "Unexpected custom legalisation");
5455     bool IsStrict = N->isStrictFPOpcode();
5456     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
5457                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
5458     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
5459     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
5460         TargetLowering::TypeSoftenFloat) {
5461       // FIXME: Support strict FP.
5462       if (IsStrict)
5463         return;
5464       if (!isTypeLegal(Op0.getValueType()))
5465         return;
5466       unsigned Opc =
5467           IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
5468       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0);
5469       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5470       return;
5471     }
5472     // If the FP type needs to be softened, emit a library call using the 'si'
5473     // version. If we left it to default legalization we'd end up with 'di'. If
5474     // the FP type doesn't need to be softened just let generic type
5475     // legalization promote the result type.
5476     RTLIB::Libcall LC;
5477     if (IsSigned)
5478       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
5479     else
5480       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
5481     MakeLibCallOptions CallOptions;
5482     EVT OpVT = Op0.getValueType();
5483     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
5484     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
5485     SDValue Result;
5486     std::tie(Result, Chain) =
5487         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
5488     Results.push_back(Result);
5489     if (IsStrict)
5490       Results.push_back(Chain);
5491     break;
5492   }
5493   case ISD::READCYCLECOUNTER: {
5494     assert(!Subtarget.is64Bit() &&
5495            "READCYCLECOUNTER only has custom type legalization on riscv32");
5496 
5497     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5498     SDValue RCW =
5499         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
5500 
5501     Results.push_back(
5502         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
5503     Results.push_back(RCW.getValue(2));
5504     break;
5505   }
5506   case ISD::MUL: {
5507     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
5508     unsigned XLen = Subtarget.getXLen();
5509     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
5510     if (Size > XLen) {
5511       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
5512       SDValue LHS = N->getOperand(0);
5513       SDValue RHS = N->getOperand(1);
5514       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
5515 
5516       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
5517       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
5518       // We need exactly one side to be unsigned.
5519       if (LHSIsU == RHSIsU)
5520         return;
5521 
5522       auto MakeMULPair = [&](SDValue S, SDValue U) {
5523         MVT XLenVT = Subtarget.getXLenVT();
5524         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
5525         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
5526         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
5527         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
5528         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
5529       };
5530 
5531       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
5532       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
5533 
5534       // The other operand should be signed, but still prefer MULH when
5535       // possible.
5536       if (RHSIsU && LHSIsS && !RHSIsS)
5537         Results.push_back(MakeMULPair(LHS, RHS));
5538       else if (LHSIsU && RHSIsS && !LHSIsS)
5539         Results.push_back(MakeMULPair(RHS, LHS));
5540 
5541       return;
5542     }
5543     LLVM_FALLTHROUGH;
5544   }
5545   case ISD::ADD:
5546   case ISD::SUB:
5547     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5548            "Unexpected custom legalisation");
5549     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
5550     break;
5551   case ISD::SHL:
5552   case ISD::SRA:
5553   case ISD::SRL:
5554     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5555            "Unexpected custom legalisation");
5556     if (N->getOperand(1).getOpcode() != ISD::Constant) {
5557       Results.push_back(customLegalizeToWOp(N, DAG));
5558       break;
5559     }
5560 
5561     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
5562     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
5563     // shift amount.
5564     if (N->getOpcode() == ISD::SHL) {
5565       SDLoc DL(N);
5566       SDValue NewOp0 =
5567           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5568       SDValue NewOp1 =
5569           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
5570       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
5571       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5572                                    DAG.getValueType(MVT::i32));
5573       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5574     }
5575 
5576     break;
5577   case ISD::ROTL:
5578   case ISD::ROTR:
5579     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5580            "Unexpected custom legalisation");
5581     Results.push_back(customLegalizeToWOp(N, DAG));
5582     break;
5583   case ISD::CTTZ:
5584   case ISD::CTTZ_ZERO_UNDEF:
5585   case ISD::CTLZ:
5586   case ISD::CTLZ_ZERO_UNDEF: {
5587     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5588            "Unexpected custom legalisation");
5589 
5590     SDValue NewOp0 =
5591         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5592     bool IsCTZ =
5593         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
5594     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
5595     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
5596     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5597     return;
5598   }
5599   case ISD::SDIV:
5600   case ISD::UDIV:
5601   case ISD::UREM: {
5602     MVT VT = N->getSimpleValueType(0);
5603     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
5604            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
5605            "Unexpected custom legalisation");
5606     // Don't promote division/remainder by constant since we should expand those
5607     // to multiply by magic constant.
5608     // FIXME: What if the expansion is disabled for minsize.
5609     if (N->getOperand(1).getOpcode() == ISD::Constant)
5610       return;
5611 
5612     // If the input is i32, use ANY_EXTEND since the W instructions don't read
5613     // the upper 32 bits. For other types we need to sign or zero extend
5614     // based on the opcode.
5615     unsigned ExtOpc = ISD::ANY_EXTEND;
5616     if (VT != MVT::i32)
5617       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
5618                                            : ISD::ZERO_EXTEND;
5619 
5620     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
5621     break;
5622   }
5623   case ISD::UADDO:
5624   case ISD::USUBO: {
5625     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5626            "Unexpected custom legalisation");
5627     bool IsAdd = N->getOpcode() == ISD::UADDO;
5628     // Create an ADDW or SUBW.
5629     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5630     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5631     SDValue Res =
5632         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
5633     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
5634                       DAG.getValueType(MVT::i32));
5635 
5636     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
5637     // Since the inputs are sign extended from i32, this is equivalent to
5638     // comparing the lower 32 bits.
5639     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5640     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
5641                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
5642 
5643     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5644     Results.push_back(Overflow);
5645     return;
5646   }
5647   case ISD::UADDSAT:
5648   case ISD::USUBSAT: {
5649     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5650            "Unexpected custom legalisation");
5651     if (Subtarget.hasStdExtZbb()) {
5652       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
5653       // sign extend allows overflow of the lower 32 bits to be detected on
5654       // the promoted size.
5655       SDValue LHS =
5656           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5657       SDValue RHS =
5658           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
5659       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
5660       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5661       return;
5662     }
5663 
5664     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
5665     // promotion for UADDO/USUBO.
5666     Results.push_back(expandAddSubSat(N, DAG));
5667     return;
5668   }
5669   case ISD::BITCAST: {
5670     EVT VT = N->getValueType(0);
5671     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
5672     SDValue Op0 = N->getOperand(0);
5673     EVT Op0VT = Op0.getValueType();
5674     MVT XLenVT = Subtarget.getXLenVT();
5675     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
5676       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
5677       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
5678     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
5679                Subtarget.hasStdExtF()) {
5680       SDValue FPConv =
5681           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
5682       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
5683     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
5684                isTypeLegal(Op0VT)) {
5685       // Custom-legalize bitcasts from fixed-length vector types to illegal
5686       // scalar types in order to improve codegen. Bitcast the vector to a
5687       // one-element vector type whose element type is the same as the result
5688       // type, and extract the first element.
5689       LLVMContext &Context = *DAG.getContext();
5690       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
5691       Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
5692                                     DAG.getConstant(0, DL, XLenVT)));
5693     }
5694     break;
5695   }
5696   case RISCVISD::GREV:
5697   case RISCVISD::GORC: {
5698     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5699            "Unexpected custom legalisation");
5700     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5701     // This is similar to customLegalizeToWOp, except that we pass the second
5702     // operand (a TargetConstant) straight through: it is already of type
5703     // XLenVT.
5704     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5705     SDValue NewOp0 =
5706         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5707     SDValue NewOp1 =
5708         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5709     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5710     // ReplaceNodeResults requires we maintain the same type for the return
5711     // value.
5712     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5713     break;
5714   }
5715   case RISCVISD::SHFL: {
5716     // There is no SHFLIW instruction, but we can just promote the operation.
5717     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5718            "Unexpected custom legalisation");
5719     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5720     SDValue NewOp0 =
5721         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5722     SDValue NewOp1 =
5723         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5724     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
5725     // ReplaceNodeResults requires we maintain the same type for the return
5726     // value.
5727     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5728     break;
5729   }
5730   case ISD::BSWAP:
5731   case ISD::BITREVERSE: {
5732     MVT VT = N->getSimpleValueType(0);
5733     MVT XLenVT = Subtarget.getXLenVT();
5734     assert((VT == MVT::i8 || VT == MVT::i16 ||
5735             (VT == MVT::i32 && Subtarget.is64Bit())) &&
5736            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
5737     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
5738     unsigned Imm = VT.getSizeInBits() - 1;
5739     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
5740     if (N->getOpcode() == ISD::BSWAP)
5741       Imm &= ~0x7U;
5742     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
5743     SDValue GREVI =
5744         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
5745     // ReplaceNodeResults requires we maintain the same type for the return
5746     // value.
5747     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
5748     break;
5749   }
5750   case ISD::FSHL:
5751   case ISD::FSHR: {
5752     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5753            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
5754     SDValue NewOp0 =
5755         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5756     SDValue NewOp1 =
5757         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5758     SDValue NewOp2 =
5759         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5760     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
5761     // Mask the shift amount to 5 bits.
5762     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5763                          DAG.getConstant(0x1f, DL, MVT::i64));
5764     unsigned Opc =
5765         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
5766     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
5767     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
5768     break;
5769   }
5770   case ISD::EXTRACT_VECTOR_ELT: {
5771     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
5772     // type is illegal (currently only vXi64 RV32).
5773     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
5774     // transferred to the destination register. We issue two of these from the
5775     // upper- and lower- halves of the SEW-bit vector element, slid down to the
5776     // first element.
5777     SDValue Vec = N->getOperand(0);
5778     SDValue Idx = N->getOperand(1);
5779 
5780     // The vector type hasn't been legalized yet so we can't issue target
5781     // specific nodes if it needs legalization.
5782     // FIXME: We would manually legalize if it's important.
5783     if (!isTypeLegal(Vec.getValueType()))
5784       return;
5785 
5786     MVT VecVT = Vec.getSimpleValueType();
5787 
5788     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
5789            VecVT.getVectorElementType() == MVT::i64 &&
5790            "Unexpected EXTRACT_VECTOR_ELT legalization");
5791 
5792     // If this is a fixed vector, we need to convert it to a scalable vector.
5793     MVT ContainerVT = VecVT;
5794     if (VecVT.isFixedLengthVector()) {
5795       ContainerVT = getContainerForFixedLengthVector(VecVT);
5796       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5797     }
5798 
5799     MVT XLenVT = Subtarget.getXLenVT();
5800 
5801     // Use a VL of 1 to avoid processing more elements than we need.
5802     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5803     SDValue VL = DAG.getConstant(1, DL, XLenVT);
5804     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5805 
5806     // Unless the index is known to be 0, we must slide the vector down to get
5807     // the desired element into index 0.
5808     if (!isNullConstant(Idx)) {
5809       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5810                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
5811     }
5812 
5813     // Extract the lower XLEN bits of the correct vector element.
5814     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5815 
5816     // To extract the upper XLEN bits of the vector element, shift the first
5817     // element right by 32 bits and re-extract the lower XLEN bits.
5818     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5819                                      DAG.getConstant(32, DL, XLenVT), VL);
5820     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
5821                                  ThirtyTwoV, Mask, VL);
5822 
5823     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5824 
5825     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5826     break;
5827   }
5828   case ISD::INTRINSIC_WO_CHAIN: {
5829     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5830     switch (IntNo) {
5831     default:
5832       llvm_unreachable(
5833           "Don't know how to custom type legalize this intrinsic!");
5834     case Intrinsic::riscv_orc_b: {
5835       // Lower to the GORCI encoding for orc.b with the operand extended.
5836       SDValue NewOp =
5837           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5838       // If Zbp is enabled, use GORCIW which will sign extend the result.
5839       unsigned Opc =
5840           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
5841       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
5842                                 DAG.getConstant(7, DL, MVT::i64));
5843       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5844       return;
5845     }
5846     case Intrinsic::riscv_grev:
5847     case Intrinsic::riscv_gorc: {
5848       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5849              "Unexpected custom legalisation");
5850       SDValue NewOp1 =
5851           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5852       SDValue NewOp2 =
5853           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5854       unsigned Opc =
5855           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
5856       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5857       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5858       break;
5859     }
5860     case Intrinsic::riscv_shfl:
5861     case Intrinsic::riscv_unshfl: {
5862       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5863              "Unexpected custom legalisation");
5864       SDValue NewOp1 =
5865           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5866       SDValue NewOp2 =
5867           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5868       unsigned Opc =
5869           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
5870       if (isa<ConstantSDNode>(N->getOperand(2))) {
5871         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5872                              DAG.getConstant(0xf, DL, MVT::i64));
5873         Opc =
5874             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
5875       }
5876       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5877       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5878       break;
5879     }
5880     case Intrinsic::riscv_bcompress:
5881     case Intrinsic::riscv_bdecompress: {
5882       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5883              "Unexpected custom legalisation");
5884       SDValue NewOp1 =
5885           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5886       SDValue NewOp2 =
5887           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5888       unsigned Opc = IntNo == Intrinsic::riscv_bcompress
5889                          ? RISCVISD::BCOMPRESSW
5890                          : RISCVISD::BDECOMPRESSW;
5891       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5892       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5893       break;
5894     }
5895     case Intrinsic::riscv_vmv_x_s: {
5896       EVT VT = N->getValueType(0);
5897       MVT XLenVT = Subtarget.getXLenVT();
5898       if (VT.bitsLT(XLenVT)) {
5899         // Simple case just extract using vmv.x.s and truncate.
5900         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
5901                                       Subtarget.getXLenVT(), N->getOperand(1));
5902         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
5903         return;
5904       }
5905 
5906       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
5907              "Unexpected custom legalization");
5908 
5909       // We need to do the move in two steps.
5910       SDValue Vec = N->getOperand(1);
5911       MVT VecVT = Vec.getSimpleValueType();
5912 
5913       // First extract the lower XLEN bits of the element.
5914       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5915 
5916       // To extract the upper XLEN bits of the vector element, shift the first
5917       // element right by 32 bits and re-extract the lower XLEN bits.
5918       SDValue VL = DAG.getConstant(1, DL, XLenVT);
5919       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5920       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5921       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
5922                                        DAG.getConstant(32, DL, XLenVT), VL);
5923       SDValue LShr32 =
5924           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
5925       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5926 
5927       Results.push_back(
5928           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5929       break;
5930     }
5931     }
5932     break;
5933   }
5934   case ISD::VECREDUCE_ADD:
5935   case ISD::VECREDUCE_AND:
5936   case ISD::VECREDUCE_OR:
5937   case ISD::VECREDUCE_XOR:
5938   case ISD::VECREDUCE_SMAX:
5939   case ISD::VECREDUCE_UMAX:
5940   case ISD::VECREDUCE_SMIN:
5941   case ISD::VECREDUCE_UMIN:
5942     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
5943       Results.push_back(V);
5944     break;
5945   case ISD::VP_REDUCE_ADD:
5946   case ISD::VP_REDUCE_AND:
5947   case ISD::VP_REDUCE_OR:
5948   case ISD::VP_REDUCE_XOR:
5949   case ISD::VP_REDUCE_SMAX:
5950   case ISD::VP_REDUCE_UMAX:
5951   case ISD::VP_REDUCE_SMIN:
5952   case ISD::VP_REDUCE_UMIN:
5953     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
5954       Results.push_back(V);
5955     break;
5956   case ISD::FLT_ROUNDS_: {
5957     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
5958     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
5959     Results.push_back(Res.getValue(0));
5960     Results.push_back(Res.getValue(1));
5961     break;
5962   }
5963   }
5964 }
5965 
5966 // A structure to hold one of the bit-manipulation patterns below. Together, a
5967 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
5968 //   (or (and (shl x, 1), 0xAAAAAAAA),
5969 //       (and (srl x, 1), 0x55555555))
5970 struct RISCVBitmanipPat {
5971   SDValue Op;
5972   unsigned ShAmt;
5973   bool IsSHL;
5974 
5975   bool formsPairWith(const RISCVBitmanipPat &Other) const {
5976     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
5977   }
5978 };
5979 
5980 // Matches patterns of the form
5981 //   (and (shl x, C2), (C1 << C2))
5982 //   (and (srl x, C2), C1)
5983 //   (shl (and x, C1), C2)
5984 //   (srl (and x, (C1 << C2)), C2)
5985 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
5986 // The expected masks for each shift amount are specified in BitmanipMasks where
5987 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
5988 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
5989 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
5990 // XLen is 64.
5991 static Optional<RISCVBitmanipPat>
5992 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
5993   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
5994          "Unexpected number of masks");
5995   Optional<uint64_t> Mask;
5996   // Optionally consume a mask around the shift operation.
5997   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
5998     Mask = Op.getConstantOperandVal(1);
5999     Op = Op.getOperand(0);
6000   }
6001   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
6002     return None;
6003   bool IsSHL = Op.getOpcode() == ISD::SHL;
6004 
6005   if (!isa<ConstantSDNode>(Op.getOperand(1)))
6006     return None;
6007   uint64_t ShAmt = Op.getConstantOperandVal(1);
6008 
6009   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6010   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
6011     return None;
6012   // If we don't have enough masks for 64 bit, then we must be trying to
6013   // match SHFL so we're only allowed to shift 1/4 of the width.
6014   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
6015     return None;
6016 
6017   SDValue Src = Op.getOperand(0);
6018 
6019   // The expected mask is shifted left when the AND is found around SHL
6020   // patterns.
6021   //   ((x >> 1) & 0x55555555)
6022   //   ((x << 1) & 0xAAAAAAAA)
6023   bool SHLExpMask = IsSHL;
6024 
6025   if (!Mask) {
6026     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
6027     // the mask is all ones: consume that now.
6028     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
6029       Mask = Src.getConstantOperandVal(1);
6030       Src = Src.getOperand(0);
6031       // The expected mask is now in fact shifted left for SRL, so reverse the
6032       // decision.
6033       //   ((x & 0xAAAAAAAA) >> 1)
6034       //   ((x & 0x55555555) << 1)
6035       SHLExpMask = !SHLExpMask;
6036     } else {
6037       // Use a default shifted mask of all-ones if there's no AND, truncated
6038       // down to the expected width. This simplifies the logic later on.
6039       Mask = maskTrailingOnes<uint64_t>(Width);
6040       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
6041     }
6042   }
6043 
6044   unsigned MaskIdx = Log2_32(ShAmt);
6045   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6046 
6047   if (SHLExpMask)
6048     ExpMask <<= ShAmt;
6049 
6050   if (Mask != ExpMask)
6051     return None;
6052 
6053   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
6054 }
6055 
6056 // Matches any of the following bit-manipulation patterns:
6057 //   (and (shl x, 1), (0x55555555 << 1))
6058 //   (and (srl x, 1), 0x55555555)
6059 //   (shl (and x, 0x55555555), 1)
6060 //   (srl (and x, (0x55555555 << 1)), 1)
6061 // where the shift amount and mask may vary thus:
6062 //   [1]  = 0x55555555 / 0xAAAAAAAA
6063 //   [2]  = 0x33333333 / 0xCCCCCCCC
6064 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
6065 //   [8]  = 0x00FF00FF / 0xFF00FF00
6066 //   [16] = 0x0000FFFF / 0xFFFFFFFF
6067 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
6068 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
6069   // These are the unshifted masks which we use to match bit-manipulation
6070   // patterns. They may be shifted left in certain circumstances.
6071   static const uint64_t BitmanipMasks[] = {
6072       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
6073       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
6074 
6075   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6076 }
6077 
6078 // Match the following pattern as a GREVI(W) operation
6079 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
6080 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
6081                                const RISCVSubtarget &Subtarget) {
6082   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6083   EVT VT = Op.getValueType();
6084 
6085   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6086     auto LHS = matchGREVIPat(Op.getOperand(0));
6087     auto RHS = matchGREVIPat(Op.getOperand(1));
6088     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
6089       SDLoc DL(Op);
6090       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
6091                          DAG.getConstant(LHS->ShAmt, DL, VT));
6092     }
6093   }
6094   return SDValue();
6095 }
6096 
6097 // Matches any the following pattern as a GORCI(W) operation
6098 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
6099 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
6100 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
6101 // Note that with the variant of 3.,
6102 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
6103 // the inner pattern will first be matched as GREVI and then the outer
6104 // pattern will be matched to GORC via the first rule above.
6105 // 4.  (or (rotl/rotr x, bitwidth/2), x)
6106 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
6107                                const RISCVSubtarget &Subtarget) {
6108   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6109   EVT VT = Op.getValueType();
6110 
6111   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6112     SDLoc DL(Op);
6113     SDValue Op0 = Op.getOperand(0);
6114     SDValue Op1 = Op.getOperand(1);
6115 
6116     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
6117       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
6118           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
6119           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
6120         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
6121       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
6122       if ((Reverse.getOpcode() == ISD::ROTL ||
6123            Reverse.getOpcode() == ISD::ROTR) &&
6124           Reverse.getOperand(0) == X &&
6125           isa<ConstantSDNode>(Reverse.getOperand(1))) {
6126         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
6127         if (RotAmt == (VT.getSizeInBits() / 2))
6128           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
6129                              DAG.getConstant(RotAmt, DL, VT));
6130       }
6131       return SDValue();
6132     };
6133 
6134     // Check for either commutable permutation of (or (GREVI x, shamt), x)
6135     if (SDValue V = MatchOROfReverse(Op0, Op1))
6136       return V;
6137     if (SDValue V = MatchOROfReverse(Op1, Op0))
6138       return V;
6139 
6140     // OR is commutable so canonicalize its OR operand to the left
6141     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
6142       std::swap(Op0, Op1);
6143     if (Op0.getOpcode() != ISD::OR)
6144       return SDValue();
6145     SDValue OrOp0 = Op0.getOperand(0);
6146     SDValue OrOp1 = Op0.getOperand(1);
6147     auto LHS = matchGREVIPat(OrOp0);
6148     // OR is commutable so swap the operands and try again: x might have been
6149     // on the left
6150     if (!LHS) {
6151       std::swap(OrOp0, OrOp1);
6152       LHS = matchGREVIPat(OrOp0);
6153     }
6154     auto RHS = matchGREVIPat(Op1);
6155     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
6156       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
6157                          DAG.getConstant(LHS->ShAmt, DL, VT));
6158     }
6159   }
6160   return SDValue();
6161 }
6162 
6163 // Matches any of the following bit-manipulation patterns:
6164 //   (and (shl x, 1), (0x22222222 << 1))
6165 //   (and (srl x, 1), 0x22222222)
6166 //   (shl (and x, 0x22222222), 1)
6167 //   (srl (and x, (0x22222222 << 1)), 1)
6168 // where the shift amount and mask may vary thus:
6169 //   [1]  = 0x22222222 / 0x44444444
6170 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
6171 //   [4]  = 0x00F000F0 / 0x0F000F00
6172 //   [8]  = 0x0000FF00 / 0x00FF0000
6173 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
6174 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
6175   // These are the unshifted masks which we use to match bit-manipulation
6176   // patterns. They may be shifted left in certain circumstances.
6177   static const uint64_t BitmanipMasks[] = {
6178       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
6179       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
6180 
6181   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6182 }
6183 
6184 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
6185 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
6186                                const RISCVSubtarget &Subtarget) {
6187   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6188   EVT VT = Op.getValueType();
6189 
6190   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
6191     return SDValue();
6192 
6193   SDValue Op0 = Op.getOperand(0);
6194   SDValue Op1 = Op.getOperand(1);
6195 
6196   // Or is commutable so canonicalize the second OR to the LHS.
6197   if (Op0.getOpcode() != ISD::OR)
6198     std::swap(Op0, Op1);
6199   if (Op0.getOpcode() != ISD::OR)
6200     return SDValue();
6201 
6202   // We found an inner OR, so our operands are the operands of the inner OR
6203   // and the other operand of the outer OR.
6204   SDValue A = Op0.getOperand(0);
6205   SDValue B = Op0.getOperand(1);
6206   SDValue C = Op1;
6207 
6208   auto Match1 = matchSHFLPat(A);
6209   auto Match2 = matchSHFLPat(B);
6210 
6211   // If neither matched, we failed.
6212   if (!Match1 && !Match2)
6213     return SDValue();
6214 
6215   // We had at least one match. if one failed, try the remaining C operand.
6216   if (!Match1) {
6217     std::swap(A, C);
6218     Match1 = matchSHFLPat(A);
6219     if (!Match1)
6220       return SDValue();
6221   } else if (!Match2) {
6222     std::swap(B, C);
6223     Match2 = matchSHFLPat(B);
6224     if (!Match2)
6225       return SDValue();
6226   }
6227   assert(Match1 && Match2);
6228 
6229   // Make sure our matches pair up.
6230   if (!Match1->formsPairWith(*Match2))
6231     return SDValue();
6232 
6233   // All the remains is to make sure C is an AND with the same input, that masks
6234   // out the bits that are being shuffled.
6235   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
6236       C.getOperand(0) != Match1->Op)
6237     return SDValue();
6238 
6239   uint64_t Mask = C.getConstantOperandVal(1);
6240 
6241   static const uint64_t BitmanipMasks[] = {
6242       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
6243       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
6244   };
6245 
6246   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6247   unsigned MaskIdx = Log2_32(Match1->ShAmt);
6248   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6249 
6250   if (Mask != ExpMask)
6251     return SDValue();
6252 
6253   SDLoc DL(Op);
6254   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
6255                      DAG.getConstant(Match1->ShAmt, DL, VT));
6256 }
6257 
6258 // Optimize (add (shl x, c0), (shl y, c1)) ->
6259 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
6260 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
6261                                   const RISCVSubtarget &Subtarget) {
6262   // Perform this optimization only in the zba extension.
6263   if (!Subtarget.hasStdExtZba())
6264     return SDValue();
6265 
6266   // Skip for vector types and larger types.
6267   EVT VT = N->getValueType(0);
6268   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6269     return SDValue();
6270 
6271   // The two operand nodes must be SHL and have no other use.
6272   SDValue N0 = N->getOperand(0);
6273   SDValue N1 = N->getOperand(1);
6274   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
6275       !N0->hasOneUse() || !N1->hasOneUse())
6276     return SDValue();
6277 
6278   // Check c0 and c1.
6279   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6280   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
6281   if (!N0C || !N1C)
6282     return SDValue();
6283   int64_t C0 = N0C->getSExtValue();
6284   int64_t C1 = N1C->getSExtValue();
6285   if (C0 <= 0 || C1 <= 0)
6286     return SDValue();
6287 
6288   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
6289   int64_t Bits = std::min(C0, C1);
6290   int64_t Diff = std::abs(C0 - C1);
6291   if (Diff != 1 && Diff != 2 && Diff != 3)
6292     return SDValue();
6293 
6294   // Build nodes.
6295   SDLoc DL(N);
6296   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
6297   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
6298   SDValue NA0 =
6299       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
6300   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
6301   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
6302 }
6303 
6304 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
6305 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
6306 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
6307 // not undo itself, but they are redundant.
6308 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
6309   SDValue Src = N->getOperand(0);
6310 
6311   if (Src.getOpcode() != N->getOpcode())
6312     return SDValue();
6313 
6314   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
6315       !isa<ConstantSDNode>(Src.getOperand(1)))
6316     return SDValue();
6317 
6318   unsigned ShAmt1 = N->getConstantOperandVal(1);
6319   unsigned ShAmt2 = Src.getConstantOperandVal(1);
6320   Src = Src.getOperand(0);
6321 
6322   unsigned CombinedShAmt;
6323   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
6324     CombinedShAmt = ShAmt1 | ShAmt2;
6325   else
6326     CombinedShAmt = ShAmt1 ^ ShAmt2;
6327 
6328   if (CombinedShAmt == 0)
6329     return Src;
6330 
6331   SDLoc DL(N);
6332   return DAG.getNode(
6333       N->getOpcode(), DL, N->getValueType(0), Src,
6334       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
6335 }
6336 
6337 // Combine a constant select operand into its use:
6338 //
6339 // (and (select cond, -1, c), x)
6340 //   -> (select cond, x, (and x, c))  [AllOnes=1]
6341 // (or  (select cond, 0, c), x)
6342 //   -> (select cond, x, (or x, c))  [AllOnes=0]
6343 // (xor (select cond, 0, c), x)
6344 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
6345 // (add (select cond, 0, c), x)
6346 //   -> (select cond, x, (add x, c))  [AllOnes=0]
6347 // (sub x, (select cond, 0, c))
6348 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
6349 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6350                                    SelectionDAG &DAG, bool AllOnes) {
6351   EVT VT = N->getValueType(0);
6352 
6353   // Skip vectors.
6354   if (VT.isVector())
6355     return SDValue();
6356 
6357   if ((Slct.getOpcode() != ISD::SELECT &&
6358        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
6359       !Slct.hasOneUse())
6360     return SDValue();
6361 
6362   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
6363     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
6364   };
6365 
6366   bool SwapSelectOps;
6367   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
6368   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
6369   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
6370   SDValue NonConstantVal;
6371   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
6372     SwapSelectOps = false;
6373     NonConstantVal = FalseVal;
6374   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
6375     SwapSelectOps = true;
6376     NonConstantVal = TrueVal;
6377   } else
6378     return SDValue();
6379 
6380   // Slct is now know to be the desired identity constant when CC is true.
6381   TrueVal = OtherOp;
6382   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
6383   // Unless SwapSelectOps says the condition should be false.
6384   if (SwapSelectOps)
6385     std::swap(TrueVal, FalseVal);
6386 
6387   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
6388     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
6389                        {Slct.getOperand(0), Slct.getOperand(1),
6390                         Slct.getOperand(2), TrueVal, FalseVal});
6391 
6392   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
6393                      {Slct.getOperand(0), TrueVal, FalseVal});
6394 }
6395 
6396 // Attempt combineSelectAndUse on each operand of a commutative operator N.
6397 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
6398                                               bool AllOnes) {
6399   SDValue N0 = N->getOperand(0);
6400   SDValue N1 = N->getOperand(1);
6401   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
6402     return Result;
6403   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
6404     return Result;
6405   return SDValue();
6406 }
6407 
6408 // Transform (add (mul x, c0), c1) ->
6409 //           (add (mul (add x, c1/c0), c0), c1%c0).
6410 // if c1/c0 and c1%c0 are simm12, while c1 is not.
6411 // Or transform (add (mul x, c0), c1) ->
6412 //              (mul (add x, c1/c0), c0).
6413 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
6414 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
6415                                      const RISCVSubtarget &Subtarget) {
6416   // Skip for vector types and larger types.
6417   EVT VT = N->getValueType(0);
6418   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6419     return SDValue();
6420   // The first operand node must be a MUL and has no other use.
6421   SDValue N0 = N->getOperand(0);
6422   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
6423     return SDValue();
6424   // Check if c0 and c1 match above conditions.
6425   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6426   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6427   if (!N0C || !N1C)
6428     return SDValue();
6429   int64_t C0 = N0C->getSExtValue();
6430   int64_t C1 = N1C->getSExtValue();
6431   if (C0 == -1 || C0 == 0 || C0 == 1 || (C1 / C0) == 0 || isInt<12>(C1) ||
6432       !isInt<12>(C1 % C0) || !isInt<12>(C1 / C0))
6433     return SDValue();
6434   // If C0 * (C1 / C0) is a 12-bit integer, this transform will be reversed.
6435   if (isInt<12>(C0 * (C1 / C0)))
6436     return SDValue();
6437   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
6438   SDLoc DL(N);
6439   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
6440                              DAG.getConstant(C1 / C0, DL, VT));
6441   SDValue New1 =
6442       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
6443   if ((C1 % C0) == 0)
6444     return New1;
6445   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(C1 % C0, DL, VT));
6446 }
6447 
6448 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
6449                                  const RISCVSubtarget &Subtarget) {
6450   // Transform (add (mul x, c0), c1) ->
6451   //           (add (mul (add x, c1/c0), c0), c1%c0).
6452   // if c1/c0 and c1%c0 are simm12, while c1 is not.
6453   // Or transform (add (mul x, c0), c1) ->
6454   //              (mul (add x, c1/c0), c0).
6455   // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
6456   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
6457     return V;
6458   // Fold (add (shl x, c0), (shl y, c1)) ->
6459   //      (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
6460   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
6461     return V;
6462   // fold (add (select lhs, rhs, cc, 0, y), x) ->
6463   //      (select lhs, rhs, cc, x, (add x, y))
6464   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6465 }
6466 
6467 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
6468   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
6469   //      (select lhs, rhs, cc, x, (sub x, y))
6470   SDValue N0 = N->getOperand(0);
6471   SDValue N1 = N->getOperand(1);
6472   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
6473 }
6474 
6475 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
6476   // fold (and (select lhs, rhs, cc, -1, y), x) ->
6477   //      (select lhs, rhs, cc, x, (and x, y))
6478   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
6479 }
6480 
6481 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
6482                                 const RISCVSubtarget &Subtarget) {
6483   if (Subtarget.hasStdExtZbp()) {
6484     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
6485       return GREV;
6486     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
6487       return GORC;
6488     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
6489       return SHFL;
6490   }
6491 
6492   // fold (or (select cond, 0, y), x) ->
6493   //      (select cond, x, (or x, y))
6494   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6495 }
6496 
6497 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
6498   // fold (xor (select cond, 0, y), x) ->
6499   //      (select cond, x, (xor x, y))
6500   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6501 }
6502 
6503 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
6504 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
6505 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
6506 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
6507 // ADDW/SUBW/MULW.
6508 static SDValue performANY_EXTENDCombine(SDNode *N,
6509                                         TargetLowering::DAGCombinerInfo &DCI,
6510                                         const RISCVSubtarget &Subtarget) {
6511   if (!Subtarget.is64Bit())
6512     return SDValue();
6513 
6514   SelectionDAG &DAG = DCI.DAG;
6515 
6516   SDValue Src = N->getOperand(0);
6517   EVT VT = N->getValueType(0);
6518   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
6519     return SDValue();
6520 
6521   // The opcode must be one that can implicitly sign_extend.
6522   // FIXME: Additional opcodes.
6523   switch (Src.getOpcode()) {
6524   default:
6525     return SDValue();
6526   case ISD::MUL:
6527     if (!Subtarget.hasStdExtM())
6528       return SDValue();
6529     LLVM_FALLTHROUGH;
6530   case ISD::ADD:
6531   case ISD::SUB:
6532     break;
6533   }
6534 
6535   // Only handle cases where the result is used by a CopyToReg. That likely
6536   // means the value is a liveout of the basic block. This helps prevent
6537   // infinite combine loops like PR51206.
6538   if (none_of(N->uses(),
6539               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
6540     return SDValue();
6541 
6542   SmallVector<SDNode *, 4> SetCCs;
6543   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
6544                             UE = Src.getNode()->use_end();
6545        UI != UE; ++UI) {
6546     SDNode *User = *UI;
6547     if (User == N)
6548       continue;
6549     if (UI.getUse().getResNo() != Src.getResNo())
6550       continue;
6551     // All i32 setccs are legalized by sign extending operands.
6552     if (User->getOpcode() == ISD::SETCC) {
6553       SetCCs.push_back(User);
6554       continue;
6555     }
6556     // We don't know if we can extend this user.
6557     break;
6558   }
6559 
6560   // If we don't have any SetCCs, this isn't worthwhile.
6561   if (SetCCs.empty())
6562     return SDValue();
6563 
6564   SDLoc DL(N);
6565   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
6566   DCI.CombineTo(N, SExt);
6567 
6568   // Promote all the setccs.
6569   for (SDNode *SetCC : SetCCs) {
6570     SmallVector<SDValue, 4> Ops;
6571 
6572     for (unsigned j = 0; j != 2; ++j) {
6573       SDValue SOp = SetCC->getOperand(j);
6574       if (SOp == Src)
6575         Ops.push_back(SExt);
6576       else
6577         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
6578     }
6579 
6580     Ops.push_back(SetCC->getOperand(2));
6581     DCI.CombineTo(SetCC,
6582                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
6583   }
6584   return SDValue(N, 0);
6585 }
6586 
6587 // Try to form VWMUL or VWMULU.
6588 // FIXME: Support VWMULSU.
6589 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1,
6590                                     SelectionDAG &DAG) {
6591   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
6592   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
6593   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
6594   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
6595     return SDValue();
6596 
6597   SDValue Mask = N->getOperand(2);
6598   SDValue VL = N->getOperand(3);
6599 
6600   // Make sure the mask and VL match.
6601   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
6602     return SDValue();
6603 
6604   MVT VT = N->getSimpleValueType(0);
6605 
6606   // Determine the narrow size for a widening multiply.
6607   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
6608   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
6609                                   VT.getVectorElementCount());
6610 
6611   SDLoc DL(N);
6612 
6613   // See if the other operand is the same opcode.
6614   if (Op0.getOpcode() == Op1.getOpcode()) {
6615     if (!Op1.hasOneUse())
6616       return SDValue();
6617 
6618     // Make sure the mask and VL match.
6619     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
6620       return SDValue();
6621 
6622     Op1 = Op1.getOperand(0);
6623   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
6624     // The operand is a splat of a scalar.
6625 
6626     // The VL must be the same.
6627     if (Op1.getOperand(1) != VL)
6628       return SDValue();
6629 
6630     // Get the scalar value.
6631     Op1 = Op1.getOperand(0);
6632 
6633     // See if have enough sign bits or zero bits in the scalar to use a
6634     // widening multiply by splatting to smaller element size.
6635     unsigned EltBits = VT.getScalarSizeInBits();
6636     unsigned ScalarBits = Op1.getValueSizeInBits();
6637     // Make sure we're getting all element bits from the scalar register.
6638     // FIXME: Support implicit sign extension of vmv.v.x?
6639     if (ScalarBits < EltBits)
6640       return SDValue();
6641 
6642     if (IsSignExt) {
6643       if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize))
6644         return SDValue();
6645     } else {
6646       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
6647       if (!DAG.MaskedValueIsZero(Op1, Mask))
6648         return SDValue();
6649     }
6650 
6651     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL);
6652   } else
6653     return SDValue();
6654 
6655   Op0 = Op0.getOperand(0);
6656 
6657   // Re-introduce narrower extends if needed.
6658   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
6659   if (Op0.getValueType() != NarrowVT)
6660     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
6661   if (Op1.getValueType() != NarrowVT)
6662     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
6663 
6664   unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
6665   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
6666 }
6667 
6668 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
6669                                                DAGCombinerInfo &DCI) const {
6670   SelectionDAG &DAG = DCI.DAG;
6671 
6672   // Helper to call SimplifyDemandedBits on an operand of N where only some low
6673   // bits are demanded. N will be added to the Worklist if it was not deleted.
6674   // Caller should return SDValue(N, 0) if this returns true.
6675   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
6676     SDValue Op = N->getOperand(OpNo);
6677     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
6678     if (!SimplifyDemandedBits(Op, Mask, DCI))
6679       return false;
6680 
6681     if (N->getOpcode() != ISD::DELETED_NODE)
6682       DCI.AddToWorklist(N);
6683     return true;
6684   };
6685 
6686   switch (N->getOpcode()) {
6687   default:
6688     break;
6689   case RISCVISD::SplitF64: {
6690     SDValue Op0 = N->getOperand(0);
6691     // If the input to SplitF64 is just BuildPairF64 then the operation is
6692     // redundant. Instead, use BuildPairF64's operands directly.
6693     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
6694       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
6695 
6696     SDLoc DL(N);
6697 
6698     // It's cheaper to materialise two 32-bit integers than to load a double
6699     // from the constant pool and transfer it to integer registers through the
6700     // stack.
6701     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
6702       APInt V = C->getValueAPF().bitcastToAPInt();
6703       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
6704       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
6705       return DCI.CombineTo(N, Lo, Hi);
6706     }
6707 
6708     // This is a target-specific version of a DAGCombine performed in
6709     // DAGCombiner::visitBITCAST. It performs the equivalent of:
6710     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6711     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6712     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
6713         !Op0.getNode()->hasOneUse())
6714       break;
6715     SDValue NewSplitF64 =
6716         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
6717                     Op0.getOperand(0));
6718     SDValue Lo = NewSplitF64.getValue(0);
6719     SDValue Hi = NewSplitF64.getValue(1);
6720     APInt SignBit = APInt::getSignMask(32);
6721     if (Op0.getOpcode() == ISD::FNEG) {
6722       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
6723                                   DAG.getConstant(SignBit, DL, MVT::i32));
6724       return DCI.CombineTo(N, Lo, NewHi);
6725     }
6726     assert(Op0.getOpcode() == ISD::FABS);
6727     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
6728                                 DAG.getConstant(~SignBit, DL, MVT::i32));
6729     return DCI.CombineTo(N, Lo, NewHi);
6730   }
6731   case RISCVISD::SLLW:
6732   case RISCVISD::SRAW:
6733   case RISCVISD::SRLW:
6734   case RISCVISD::ROLW:
6735   case RISCVISD::RORW: {
6736     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6737     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6738         SimplifyDemandedLowBitsHelper(1, 5))
6739       return SDValue(N, 0);
6740     break;
6741   }
6742   case RISCVISD::CLZW:
6743   case RISCVISD::CTZW: {
6744     // Only the lower 32 bits of the first operand are read
6745     if (SimplifyDemandedLowBitsHelper(0, 32))
6746       return SDValue(N, 0);
6747     break;
6748   }
6749   case RISCVISD::FSL:
6750   case RISCVISD::FSR: {
6751     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
6752     unsigned BitWidth = N->getOperand(2).getValueSizeInBits();
6753     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6754     if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1))
6755       return SDValue(N, 0);
6756     break;
6757   }
6758   case RISCVISD::FSLW:
6759   case RISCVISD::FSRW: {
6760     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
6761     // read.
6762     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6763         SimplifyDemandedLowBitsHelper(1, 32) ||
6764         SimplifyDemandedLowBitsHelper(2, 6))
6765       return SDValue(N, 0);
6766     break;
6767   }
6768   case RISCVISD::GREV:
6769   case RISCVISD::GORC: {
6770     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
6771     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
6772     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6773     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
6774       return SDValue(N, 0);
6775 
6776     return combineGREVI_GORCI(N, DCI.DAG);
6777   }
6778   case RISCVISD::GREVW:
6779   case RISCVISD::GORCW: {
6780     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6781     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6782         SimplifyDemandedLowBitsHelper(1, 5))
6783       return SDValue(N, 0);
6784 
6785     return combineGREVI_GORCI(N, DCI.DAG);
6786   }
6787   case RISCVISD::SHFL:
6788   case RISCVISD::UNSHFL: {
6789     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
6790     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
6791     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6792     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
6793       return SDValue(N, 0);
6794 
6795     break;
6796   }
6797   case RISCVISD::SHFLW:
6798   case RISCVISD::UNSHFLW: {
6799     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
6800     SDValue LHS = N->getOperand(0);
6801     SDValue RHS = N->getOperand(1);
6802     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
6803     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
6804     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6805         SimplifyDemandedLowBitsHelper(1, 4))
6806       return SDValue(N, 0);
6807 
6808     break;
6809   }
6810   case RISCVISD::BCOMPRESSW:
6811   case RISCVISD::BDECOMPRESSW: {
6812     // Only the lower 32 bits of LHS and RHS are read.
6813     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6814         SimplifyDemandedLowBitsHelper(1, 32))
6815       return SDValue(N, 0);
6816 
6817     break;
6818   }
6819   case RISCVISD::FMV_X_ANYEXTH:
6820   case RISCVISD::FMV_X_ANYEXTW_RV64: {
6821     SDLoc DL(N);
6822     SDValue Op0 = N->getOperand(0);
6823     MVT VT = N->getSimpleValueType(0);
6824     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
6825     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
6826     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
6827     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
6828          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
6829         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
6830          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
6831       assert(Op0.getOperand(0).getValueType() == VT &&
6832              "Unexpected value type!");
6833       return Op0.getOperand(0);
6834     }
6835 
6836     // This is a target-specific version of a DAGCombine performed in
6837     // DAGCombiner::visitBITCAST. It performs the equivalent of:
6838     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6839     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6840     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
6841         !Op0.getNode()->hasOneUse())
6842       break;
6843     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
6844     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
6845     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
6846     if (Op0.getOpcode() == ISD::FNEG)
6847       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
6848                          DAG.getConstant(SignBit, DL, VT));
6849 
6850     assert(Op0.getOpcode() == ISD::FABS);
6851     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
6852                        DAG.getConstant(~SignBit, DL, VT));
6853   }
6854   case ISD::ADD:
6855     return performADDCombine(N, DAG, Subtarget);
6856   case ISD::SUB:
6857     return performSUBCombine(N, DAG);
6858   case ISD::AND:
6859     return performANDCombine(N, DAG);
6860   case ISD::OR:
6861     return performORCombine(N, DAG, Subtarget);
6862   case ISD::XOR:
6863     return performXORCombine(N, DAG);
6864   case ISD::ANY_EXTEND:
6865     return performANY_EXTENDCombine(N, DCI, Subtarget);
6866   case ISD::ZERO_EXTEND:
6867     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
6868     // type legalization. This is safe because fp_to_uint produces poison if
6869     // it overflows.
6870     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() &&
6871         N->getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
6872         isTypeLegal(N->getOperand(0).getOperand(0).getValueType()))
6873       return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
6874                          N->getOperand(0).getOperand(0));
6875     return SDValue();
6876   case RISCVISD::SELECT_CC: {
6877     // Transform
6878     SDValue LHS = N->getOperand(0);
6879     SDValue RHS = N->getOperand(1);
6880     SDValue TrueV = N->getOperand(3);
6881     SDValue FalseV = N->getOperand(4);
6882 
6883     // If the True and False values are the same, we don't need a select_cc.
6884     if (TrueV == FalseV)
6885       return TrueV;
6886 
6887     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
6888     if (!ISD::isIntEqualitySetCC(CCVal))
6889       break;
6890 
6891     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
6892     //      (select_cc X, Y, lt, trueV, falseV)
6893     // Sometimes the setcc is introduced after select_cc has been formed.
6894     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
6895         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
6896       // If we're looking for eq 0 instead of ne 0, we need to invert the
6897       // condition.
6898       bool Invert = CCVal == ISD::SETEQ;
6899       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
6900       if (Invert)
6901         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6902 
6903       SDLoc DL(N);
6904       RHS = LHS.getOperand(1);
6905       LHS = LHS.getOperand(0);
6906       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
6907 
6908       SDValue TargetCC = DAG.getCondCode(CCVal);
6909       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
6910                          {LHS, RHS, TargetCC, TrueV, FalseV});
6911     }
6912 
6913     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
6914     //      (select_cc X, Y, eq/ne, trueV, falseV)
6915     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
6916       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
6917                          {LHS.getOperand(0), LHS.getOperand(1),
6918                           N->getOperand(2), TrueV, FalseV});
6919     // (select_cc X, 1, setne, trueV, falseV) ->
6920     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
6921     // This can occur when legalizing some floating point comparisons.
6922     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
6923     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
6924       SDLoc DL(N);
6925       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6926       SDValue TargetCC = DAG.getCondCode(CCVal);
6927       RHS = DAG.getConstant(0, DL, LHS.getValueType());
6928       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
6929                          {LHS, RHS, TargetCC, TrueV, FalseV});
6930     }
6931 
6932     break;
6933   }
6934   case RISCVISD::BR_CC: {
6935     SDValue LHS = N->getOperand(1);
6936     SDValue RHS = N->getOperand(2);
6937     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
6938     if (!ISD::isIntEqualitySetCC(CCVal))
6939       break;
6940 
6941     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
6942     //      (br_cc X, Y, lt, dest)
6943     // Sometimes the setcc is introduced after br_cc has been formed.
6944     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
6945         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
6946       // If we're looking for eq 0 instead of ne 0, we need to invert the
6947       // condition.
6948       bool Invert = CCVal == ISD::SETEQ;
6949       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
6950       if (Invert)
6951         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6952 
6953       SDLoc DL(N);
6954       RHS = LHS.getOperand(1);
6955       LHS = LHS.getOperand(0);
6956       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
6957 
6958       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
6959                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
6960                          N->getOperand(4));
6961     }
6962 
6963     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
6964     //      (br_cc X, Y, eq/ne, trueV, falseV)
6965     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
6966       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
6967                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
6968                          N->getOperand(3), N->getOperand(4));
6969 
6970     // (br_cc X, 1, setne, br_cc) ->
6971     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
6972     // This can occur when legalizing some floating point comparisons.
6973     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
6974     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
6975       SDLoc DL(N);
6976       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6977       SDValue TargetCC = DAG.getCondCode(CCVal);
6978       RHS = DAG.getConstant(0, DL, LHS.getValueType());
6979       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
6980                          N->getOperand(0), LHS, RHS, TargetCC,
6981                          N->getOperand(4));
6982     }
6983     break;
6984   }
6985   case ISD::FCOPYSIGN: {
6986     EVT VT = N->getValueType(0);
6987     if (!VT.isVector())
6988       break;
6989     // There is a form of VFSGNJ which injects the negated sign of its second
6990     // operand. Try and bubble any FNEG up after the extend/round to produce
6991     // this optimized pattern. Avoid modifying cases where FP_ROUND and
6992     // TRUNC=1.
6993     SDValue In2 = N->getOperand(1);
6994     // Avoid cases where the extend/round has multiple uses, as duplicating
6995     // those is typically more expensive than removing a fneg.
6996     if (!In2.hasOneUse())
6997       break;
6998     if (In2.getOpcode() != ISD::FP_EXTEND &&
6999         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
7000       break;
7001     In2 = In2.getOperand(0);
7002     if (In2.getOpcode() != ISD::FNEG)
7003       break;
7004     SDLoc DL(N);
7005     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
7006     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
7007                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
7008   }
7009   case ISD::MGATHER:
7010   case ISD::MSCATTER:
7011   case ISD::VP_GATHER:
7012   case ISD::VP_SCATTER: {
7013     if (!DCI.isBeforeLegalize())
7014       break;
7015     SDValue Index, ScaleOp;
7016     bool IsIndexScaled = false;
7017     bool IsIndexSigned = false;
7018     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
7019       Index = VPGSN->getIndex();
7020       ScaleOp = VPGSN->getScale();
7021       IsIndexScaled = VPGSN->isIndexScaled();
7022       IsIndexSigned = VPGSN->isIndexSigned();
7023     } else {
7024       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
7025       Index = MGSN->getIndex();
7026       ScaleOp = MGSN->getScale();
7027       IsIndexScaled = MGSN->isIndexScaled();
7028       IsIndexSigned = MGSN->isIndexSigned();
7029     }
7030     EVT IndexVT = Index.getValueType();
7031     MVT XLenVT = Subtarget.getXLenVT();
7032     // RISCV indexed loads only support the "unsigned unscaled" addressing
7033     // mode, so anything else must be manually legalized.
7034     bool NeedsIdxLegalization =
7035         IsIndexScaled ||
7036         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
7037     if (!NeedsIdxLegalization)
7038       break;
7039 
7040     SDLoc DL(N);
7041 
7042     // Any index legalization should first promote to XLenVT, so we don't lose
7043     // bits when scaling. This may create an illegal index type so we let
7044     // LLVM's legalization take care of the splitting.
7045     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
7046     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
7047       IndexVT = IndexVT.changeVectorElementType(XLenVT);
7048       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
7049                           DL, IndexVT, Index);
7050     }
7051 
7052     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
7053     if (IsIndexScaled && Scale != 1) {
7054       // Manually scale the indices by the element size.
7055       // TODO: Sanitize the scale operand here?
7056       // TODO: For VP nodes, should we use VP_SHL here?
7057       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
7058       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
7059       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
7060     }
7061 
7062     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
7063     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
7064       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
7065                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
7066                               VPGN->getScale(), VPGN->getMask(),
7067                               VPGN->getVectorLength()},
7068                              VPGN->getMemOperand(), NewIndexTy);
7069     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
7070       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
7071                               {VPSN->getChain(), VPSN->getValue(),
7072                                VPSN->getBasePtr(), Index, VPSN->getScale(),
7073                                VPSN->getMask(), VPSN->getVectorLength()},
7074                               VPSN->getMemOperand(), NewIndexTy);
7075     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
7076       return DAG.getMaskedGather(
7077           N->getVTList(), MGN->getMemoryVT(), DL,
7078           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
7079            MGN->getBasePtr(), Index, MGN->getScale()},
7080           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
7081     const auto *MSN = cast<MaskedScatterSDNode>(N);
7082     return DAG.getMaskedScatter(
7083         N->getVTList(), MSN->getMemoryVT(), DL,
7084         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
7085          Index, MSN->getScale()},
7086         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
7087   }
7088   case RISCVISD::SRA_VL:
7089   case RISCVISD::SRL_VL:
7090   case RISCVISD::SHL_VL: {
7091     SDValue ShAmt = N->getOperand(1);
7092     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7093       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7094       SDLoc DL(N);
7095       SDValue VL = N->getOperand(3);
7096       EVT VT = N->getValueType(0);
7097       ShAmt =
7098           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
7099       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
7100                          N->getOperand(2), N->getOperand(3));
7101     }
7102     break;
7103   }
7104   case ISD::SRA:
7105   case ISD::SRL:
7106   case ISD::SHL: {
7107     SDValue ShAmt = N->getOperand(1);
7108     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7109       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7110       SDLoc DL(N);
7111       EVT VT = N->getValueType(0);
7112       ShAmt =
7113           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0));
7114       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
7115     }
7116     break;
7117   }
7118   case RISCVISD::MUL_VL: {
7119     SDValue Op0 = N->getOperand(0);
7120     SDValue Op1 = N->getOperand(1);
7121     if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG))
7122       return V;
7123     if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG))
7124       return V;
7125     return SDValue();
7126   }
7127   case ISD::STORE: {
7128     auto *Store = cast<StoreSDNode>(N);
7129     SDValue Val = Store->getValue();
7130     // Combine store of vmv.x.s to vse with VL of 1.
7131     // FIXME: Support FP.
7132     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
7133       SDValue Src = Val.getOperand(0);
7134       EVT VecVT = Src.getValueType();
7135       EVT MemVT = Store->getMemoryVT();
7136       // The memory VT and the element type must match.
7137       if (VecVT.getVectorElementType() == MemVT) {
7138         SDLoc DL(N);
7139         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7140         return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(),
7141                               DAG.getConstant(1, DL, MaskVT),
7142                               DAG.getConstant(1, DL, Subtarget.getXLenVT()),
7143                               Store->getPointerInfo(),
7144                               Store->getOriginalAlign(),
7145                               Store->getMemOperand()->getFlags());
7146       }
7147     }
7148 
7149     break;
7150   }
7151   }
7152 
7153   return SDValue();
7154 }
7155 
7156 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
7157     const SDNode *N, CombineLevel Level) const {
7158   // The following folds are only desirable if `(OP _, c1 << c2)` can be
7159   // materialised in fewer instructions than `(OP _, c1)`:
7160   //
7161   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
7162   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
7163   SDValue N0 = N->getOperand(0);
7164   EVT Ty = N0.getValueType();
7165   if (Ty.isScalarInteger() &&
7166       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
7167     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7168     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
7169     if (C1 && C2) {
7170       const APInt &C1Int = C1->getAPIntValue();
7171       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
7172 
7173       // We can materialise `c1 << c2` into an add immediate, so it's "free",
7174       // and the combine should happen, to potentially allow further combines
7175       // later.
7176       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
7177           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
7178         return true;
7179 
7180       // We can materialise `c1` in an add immediate, so it's "free", and the
7181       // combine should be prevented.
7182       if (C1Int.getMinSignedBits() <= 64 &&
7183           isLegalAddImmediate(C1Int.getSExtValue()))
7184         return false;
7185 
7186       // Neither constant will fit into an immediate, so find materialisation
7187       // costs.
7188       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
7189                                               Subtarget.getFeatureBits(),
7190                                               /*CompressionCost*/true);
7191       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
7192           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
7193           /*CompressionCost*/true);
7194 
7195       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
7196       // combine should be prevented.
7197       if (C1Cost < ShiftedC1Cost)
7198         return false;
7199     }
7200   }
7201   return true;
7202 }
7203 
7204 bool RISCVTargetLowering::targetShrinkDemandedConstant(
7205     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
7206     TargetLoweringOpt &TLO) const {
7207   // Delay this optimization as late as possible.
7208   if (!TLO.LegalOps)
7209     return false;
7210 
7211   EVT VT = Op.getValueType();
7212   if (VT.isVector())
7213     return false;
7214 
7215   // Only handle AND for now.
7216   if (Op.getOpcode() != ISD::AND)
7217     return false;
7218 
7219   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7220   if (!C)
7221     return false;
7222 
7223   const APInt &Mask = C->getAPIntValue();
7224 
7225   // Clear all non-demanded bits initially.
7226   APInt ShrunkMask = Mask & DemandedBits;
7227 
7228   // Try to make a smaller immediate by setting undemanded bits.
7229 
7230   APInt ExpandedMask = Mask | ~DemandedBits;
7231 
7232   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
7233     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
7234   };
7235   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
7236     if (NewMask == Mask)
7237       return true;
7238     SDLoc DL(Op);
7239     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
7240     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
7241     return TLO.CombineTo(Op, NewOp);
7242   };
7243 
7244   // If the shrunk mask fits in sign extended 12 bits, let the target
7245   // independent code apply it.
7246   if (ShrunkMask.isSignedIntN(12))
7247     return false;
7248 
7249   // Preserve (and X, 0xffff) when zext.h is supported.
7250   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
7251     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
7252     if (IsLegalMask(NewMask))
7253       return UseMask(NewMask);
7254   }
7255 
7256   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
7257   if (VT == MVT::i64) {
7258     APInt NewMask = APInt(64, 0xffffffff);
7259     if (IsLegalMask(NewMask))
7260       return UseMask(NewMask);
7261   }
7262 
7263   // For the remaining optimizations, we need to be able to make a negative
7264   // number through a combination of mask and undemanded bits.
7265   if (!ExpandedMask.isNegative())
7266     return false;
7267 
7268   // What is the fewest number of bits we need to represent the negative number.
7269   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
7270 
7271   // Try to make a 12 bit negative immediate. If that fails try to make a 32
7272   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
7273   APInt NewMask = ShrunkMask;
7274   if (MinSignedBits <= 12)
7275     NewMask.setBitsFrom(11);
7276   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
7277     NewMask.setBitsFrom(31);
7278   else
7279     return false;
7280 
7281   // Sanity check that our new mask is a subset of the demanded mask.
7282   assert(IsLegalMask(NewMask));
7283   return UseMask(NewMask);
7284 }
7285 
7286 static void computeGREV(APInt &Src, unsigned ShAmt) {
7287   ShAmt &= Src.getBitWidth() - 1;
7288   uint64_t x = Src.getZExtValue();
7289   if (ShAmt & 1)
7290     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
7291   if (ShAmt & 2)
7292     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
7293   if (ShAmt & 4)
7294     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
7295   if (ShAmt & 8)
7296     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
7297   if (ShAmt & 16)
7298     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
7299   if (ShAmt & 32)
7300     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
7301   Src = x;
7302 }
7303 
7304 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7305                                                         KnownBits &Known,
7306                                                         const APInt &DemandedElts,
7307                                                         const SelectionDAG &DAG,
7308                                                         unsigned Depth) const {
7309   unsigned BitWidth = Known.getBitWidth();
7310   unsigned Opc = Op.getOpcode();
7311   assert((Opc >= ISD::BUILTIN_OP_END ||
7312           Opc == ISD::INTRINSIC_WO_CHAIN ||
7313           Opc == ISD::INTRINSIC_W_CHAIN ||
7314           Opc == ISD::INTRINSIC_VOID) &&
7315          "Should use MaskedValueIsZero if you don't know whether Op"
7316          " is a target node!");
7317 
7318   Known.resetAll();
7319   switch (Opc) {
7320   default: break;
7321   case RISCVISD::SELECT_CC: {
7322     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
7323     // If we don't know any bits, early out.
7324     if (Known.isUnknown())
7325       break;
7326     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
7327 
7328     // Only known if known in both the LHS and RHS.
7329     Known = KnownBits::commonBits(Known, Known2);
7330     break;
7331   }
7332   case RISCVISD::REMUW: {
7333     KnownBits Known2;
7334     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7335     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7336     // We only care about the lower 32 bits.
7337     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
7338     // Restore the original width by sign extending.
7339     Known = Known.sext(BitWidth);
7340     break;
7341   }
7342   case RISCVISD::DIVUW: {
7343     KnownBits Known2;
7344     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7345     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7346     // We only care about the lower 32 bits.
7347     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
7348     // Restore the original width by sign extending.
7349     Known = Known.sext(BitWidth);
7350     break;
7351   }
7352   case RISCVISD::CTZW: {
7353     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7354     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
7355     unsigned LowBits = Log2_32(PossibleTZ) + 1;
7356     Known.Zero.setBitsFrom(LowBits);
7357     break;
7358   }
7359   case RISCVISD::CLZW: {
7360     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7361     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
7362     unsigned LowBits = Log2_32(PossibleLZ) + 1;
7363     Known.Zero.setBitsFrom(LowBits);
7364     break;
7365   }
7366   case RISCVISD::GREV:
7367   case RISCVISD::GREVW: {
7368     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7369       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7370       if (Opc == RISCVISD::GREVW)
7371         Known = Known.trunc(32);
7372       unsigned ShAmt = C->getZExtValue();
7373       computeGREV(Known.Zero, ShAmt);
7374       computeGREV(Known.One, ShAmt);
7375       if (Opc == RISCVISD::GREVW)
7376         Known = Known.sext(BitWidth);
7377     }
7378     break;
7379   }
7380   case RISCVISD::READ_VLENB:
7381     // We assume VLENB is at least 16 bytes.
7382     Known.Zero.setLowBits(4);
7383     // We assume VLENB is no more than 65536 / 8 bytes.
7384     Known.Zero.setBitsFrom(14);
7385     break;
7386   case ISD::INTRINSIC_W_CHAIN: {
7387     unsigned IntNo = Op.getConstantOperandVal(1);
7388     switch (IntNo) {
7389     default:
7390       // We can't do anything for most intrinsics.
7391       break;
7392     case Intrinsic::riscv_vsetvli:
7393     case Intrinsic::riscv_vsetvlimax:
7394       // Assume that VL output is positive and would fit in an int32_t.
7395       // TODO: VLEN might be capped at 16 bits in a future V spec update.
7396       if (BitWidth >= 32)
7397         Known.Zero.setBitsFrom(31);
7398       break;
7399     }
7400     break;
7401   }
7402   }
7403 }
7404 
7405 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
7406     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7407     unsigned Depth) const {
7408   switch (Op.getOpcode()) {
7409   default:
7410     break;
7411   case RISCVISD::SELECT_CC: {
7412     unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
7413     if (Tmp == 1) return 1;  // Early out.
7414     unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
7415     return std::min(Tmp, Tmp2);
7416   }
7417   case RISCVISD::SLLW:
7418   case RISCVISD::SRAW:
7419   case RISCVISD::SRLW:
7420   case RISCVISD::DIVW:
7421   case RISCVISD::DIVUW:
7422   case RISCVISD::REMUW:
7423   case RISCVISD::ROLW:
7424   case RISCVISD::RORW:
7425   case RISCVISD::GREVW:
7426   case RISCVISD::GORCW:
7427   case RISCVISD::FSLW:
7428   case RISCVISD::FSRW:
7429   case RISCVISD::SHFLW:
7430   case RISCVISD::UNSHFLW:
7431   case RISCVISD::BCOMPRESSW:
7432   case RISCVISD::BDECOMPRESSW:
7433   case RISCVISD::FCVT_W_RTZ_RV64:
7434   case RISCVISD::FCVT_WU_RTZ_RV64:
7435     // TODO: As the result is sign-extended, this is conservatively correct. A
7436     // more precise answer could be calculated for SRAW depending on known
7437     // bits in the shift amount.
7438     return 33;
7439   case RISCVISD::SHFL:
7440   case RISCVISD::UNSHFL: {
7441     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
7442     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
7443     // will stay within the upper 32 bits. If there were more than 32 sign bits
7444     // before there will be at least 33 sign bits after.
7445     if (Op.getValueType() == MVT::i64 &&
7446         isa<ConstantSDNode>(Op.getOperand(1)) &&
7447         (Op.getConstantOperandVal(1) & 0x10) == 0) {
7448       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
7449       if (Tmp > 32)
7450         return 33;
7451     }
7452     break;
7453   }
7454   case RISCVISD::VMV_X_S:
7455     // The number of sign bits of the scalar result is computed by obtaining the
7456     // element type of the input vector operand, subtracting its width from the
7457     // XLEN, and then adding one (sign bit within the element type). If the
7458     // element type is wider than XLen, the least-significant XLEN bits are
7459     // taken.
7460     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
7461       return 1;
7462     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
7463   }
7464 
7465   return 1;
7466 }
7467 
7468 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
7469                                                   MachineBasicBlock *BB) {
7470   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
7471 
7472   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
7473   // Should the count have wrapped while it was being read, we need to try
7474   // again.
7475   // ...
7476   // read:
7477   // rdcycleh x3 # load high word of cycle
7478   // rdcycle  x2 # load low word of cycle
7479   // rdcycleh x4 # load high word of cycle
7480   // bne x3, x4, read # check if high word reads match, otherwise try again
7481   // ...
7482 
7483   MachineFunction &MF = *BB->getParent();
7484   const BasicBlock *LLVM_BB = BB->getBasicBlock();
7485   MachineFunction::iterator It = ++BB->getIterator();
7486 
7487   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7488   MF.insert(It, LoopMBB);
7489 
7490   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7491   MF.insert(It, DoneMBB);
7492 
7493   // Transfer the remainder of BB and its successor edges to DoneMBB.
7494   DoneMBB->splice(DoneMBB->begin(), BB,
7495                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
7496   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
7497 
7498   BB->addSuccessor(LoopMBB);
7499 
7500   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7501   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7502   Register LoReg = MI.getOperand(0).getReg();
7503   Register HiReg = MI.getOperand(1).getReg();
7504   DebugLoc DL = MI.getDebugLoc();
7505 
7506   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
7507   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
7508       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7509       .addReg(RISCV::X0);
7510   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
7511       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
7512       .addReg(RISCV::X0);
7513   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
7514       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7515       .addReg(RISCV::X0);
7516 
7517   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
7518       .addReg(HiReg)
7519       .addReg(ReadAgainReg)
7520       .addMBB(LoopMBB);
7521 
7522   LoopMBB->addSuccessor(LoopMBB);
7523   LoopMBB->addSuccessor(DoneMBB);
7524 
7525   MI.eraseFromParent();
7526 
7527   return DoneMBB;
7528 }
7529 
7530 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
7531                                              MachineBasicBlock *BB) {
7532   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
7533 
7534   MachineFunction &MF = *BB->getParent();
7535   DebugLoc DL = MI.getDebugLoc();
7536   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
7537   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
7538   Register LoReg = MI.getOperand(0).getReg();
7539   Register HiReg = MI.getOperand(1).getReg();
7540   Register SrcReg = MI.getOperand(2).getReg();
7541   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
7542   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
7543 
7544   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
7545                           RI);
7546   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
7547   MachineMemOperand *MMOLo =
7548       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
7549   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
7550       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
7551   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
7552       .addFrameIndex(FI)
7553       .addImm(0)
7554       .addMemOperand(MMOLo);
7555   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
7556       .addFrameIndex(FI)
7557       .addImm(4)
7558       .addMemOperand(MMOHi);
7559   MI.eraseFromParent(); // The pseudo instruction is gone now.
7560   return BB;
7561 }
7562 
7563 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
7564                                                  MachineBasicBlock *BB) {
7565   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
7566          "Unexpected instruction");
7567 
7568   MachineFunction &MF = *BB->getParent();
7569   DebugLoc DL = MI.getDebugLoc();
7570   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
7571   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
7572   Register DstReg = MI.getOperand(0).getReg();
7573   Register LoReg = MI.getOperand(1).getReg();
7574   Register HiReg = MI.getOperand(2).getReg();
7575   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
7576   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
7577 
7578   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
7579   MachineMemOperand *MMOLo =
7580       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
7581   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
7582       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
7583   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
7584       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
7585       .addFrameIndex(FI)
7586       .addImm(0)
7587       .addMemOperand(MMOLo);
7588   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
7589       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
7590       .addFrameIndex(FI)
7591       .addImm(4)
7592       .addMemOperand(MMOHi);
7593   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
7594   MI.eraseFromParent(); // The pseudo instruction is gone now.
7595   return BB;
7596 }
7597 
7598 static bool isSelectPseudo(MachineInstr &MI) {
7599   switch (MI.getOpcode()) {
7600   default:
7601     return false;
7602   case RISCV::Select_GPR_Using_CC_GPR:
7603   case RISCV::Select_FPR16_Using_CC_GPR:
7604   case RISCV::Select_FPR32_Using_CC_GPR:
7605   case RISCV::Select_FPR64_Using_CC_GPR:
7606     return true;
7607   }
7608 }
7609 
7610 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
7611                                            MachineBasicBlock *BB,
7612                                            const RISCVSubtarget &Subtarget) {
7613   // To "insert" Select_* instructions, we actually have to insert the triangle
7614   // control-flow pattern.  The incoming instructions know the destination vreg
7615   // to set, the condition code register to branch on, the true/false values to
7616   // select between, and the condcode to use to select the appropriate branch.
7617   //
7618   // We produce the following control flow:
7619   //     HeadMBB
7620   //     |  \
7621   //     |  IfFalseMBB
7622   //     | /
7623   //    TailMBB
7624   //
7625   // When we find a sequence of selects we attempt to optimize their emission
7626   // by sharing the control flow. Currently we only handle cases where we have
7627   // multiple selects with the exact same condition (same LHS, RHS and CC).
7628   // The selects may be interleaved with other instructions if the other
7629   // instructions meet some requirements we deem safe:
7630   // - They are debug instructions. Otherwise,
7631   // - They do not have side-effects, do not access memory and their inputs do
7632   //   not depend on the results of the select pseudo-instructions.
7633   // The TrueV/FalseV operands of the selects cannot depend on the result of
7634   // previous selects in the sequence.
7635   // These conditions could be further relaxed. See the X86 target for a
7636   // related approach and more information.
7637   Register LHS = MI.getOperand(1).getReg();
7638   Register RHS = MI.getOperand(2).getReg();
7639   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
7640 
7641   SmallVector<MachineInstr *, 4> SelectDebugValues;
7642   SmallSet<Register, 4> SelectDests;
7643   SelectDests.insert(MI.getOperand(0).getReg());
7644 
7645   MachineInstr *LastSelectPseudo = &MI;
7646 
7647   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
7648        SequenceMBBI != E; ++SequenceMBBI) {
7649     if (SequenceMBBI->isDebugInstr())
7650       continue;
7651     else if (isSelectPseudo(*SequenceMBBI)) {
7652       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
7653           SequenceMBBI->getOperand(2).getReg() != RHS ||
7654           SequenceMBBI->getOperand(3).getImm() != CC ||
7655           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
7656           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
7657         break;
7658       LastSelectPseudo = &*SequenceMBBI;
7659       SequenceMBBI->collectDebugValues(SelectDebugValues);
7660       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
7661     } else {
7662       if (SequenceMBBI->hasUnmodeledSideEffects() ||
7663           SequenceMBBI->mayLoadOrStore())
7664         break;
7665       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
7666             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
7667           }))
7668         break;
7669     }
7670   }
7671 
7672   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
7673   const BasicBlock *LLVM_BB = BB->getBasicBlock();
7674   DebugLoc DL = MI.getDebugLoc();
7675   MachineFunction::iterator I = ++BB->getIterator();
7676 
7677   MachineBasicBlock *HeadMBB = BB;
7678   MachineFunction *F = BB->getParent();
7679   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
7680   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
7681 
7682   F->insert(I, IfFalseMBB);
7683   F->insert(I, TailMBB);
7684 
7685   // Transfer debug instructions associated with the selects to TailMBB.
7686   for (MachineInstr *DebugInstr : SelectDebugValues) {
7687     TailMBB->push_back(DebugInstr->removeFromParent());
7688   }
7689 
7690   // Move all instructions after the sequence to TailMBB.
7691   TailMBB->splice(TailMBB->end(), HeadMBB,
7692                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
7693   // Update machine-CFG edges by transferring all successors of the current
7694   // block to the new block which will contain the Phi nodes for the selects.
7695   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
7696   // Set the successors for HeadMBB.
7697   HeadMBB->addSuccessor(IfFalseMBB);
7698   HeadMBB->addSuccessor(TailMBB);
7699 
7700   // Insert appropriate branch.
7701   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
7702     .addReg(LHS)
7703     .addReg(RHS)
7704     .addMBB(TailMBB);
7705 
7706   // IfFalseMBB just falls through to TailMBB.
7707   IfFalseMBB->addSuccessor(TailMBB);
7708 
7709   // Create PHIs for all of the select pseudo-instructions.
7710   auto SelectMBBI = MI.getIterator();
7711   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
7712   auto InsertionPoint = TailMBB->begin();
7713   while (SelectMBBI != SelectEnd) {
7714     auto Next = std::next(SelectMBBI);
7715     if (isSelectPseudo(*SelectMBBI)) {
7716       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
7717       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
7718               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
7719           .addReg(SelectMBBI->getOperand(4).getReg())
7720           .addMBB(HeadMBB)
7721           .addReg(SelectMBBI->getOperand(5).getReg())
7722           .addMBB(IfFalseMBB);
7723       SelectMBBI->eraseFromParent();
7724     }
7725     SelectMBBI = Next;
7726   }
7727 
7728   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7729   return TailMBB;
7730 }
7731 
7732 MachineBasicBlock *
7733 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
7734                                                  MachineBasicBlock *BB) const {
7735   switch (MI.getOpcode()) {
7736   default:
7737     llvm_unreachable("Unexpected instr type to insert");
7738   case RISCV::ReadCycleWide:
7739     assert(!Subtarget.is64Bit() &&
7740            "ReadCycleWrite is only to be used on riscv32");
7741     return emitReadCycleWidePseudo(MI, BB);
7742   case RISCV::Select_GPR_Using_CC_GPR:
7743   case RISCV::Select_FPR16_Using_CC_GPR:
7744   case RISCV::Select_FPR32_Using_CC_GPR:
7745   case RISCV::Select_FPR64_Using_CC_GPR:
7746     return emitSelectPseudo(MI, BB, Subtarget);
7747   case RISCV::BuildPairF64Pseudo:
7748     return emitBuildPairF64Pseudo(MI, BB);
7749   case RISCV::SplitF64Pseudo:
7750     return emitSplitF64Pseudo(MI, BB);
7751   }
7752 }
7753 
7754 // Calling Convention Implementation.
7755 // The expectations for frontend ABI lowering vary from target to target.
7756 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
7757 // details, but this is a longer term goal. For now, we simply try to keep the
7758 // role of the frontend as simple and well-defined as possible. The rules can
7759 // be summarised as:
7760 // * Never split up large scalar arguments. We handle them here.
7761 // * If a hardfloat calling convention is being used, and the struct may be
7762 // passed in a pair of registers (fp+fp, int+fp), and both registers are
7763 // available, then pass as two separate arguments. If either the GPRs or FPRs
7764 // are exhausted, then pass according to the rule below.
7765 // * If a struct could never be passed in registers or directly in a stack
7766 // slot (as it is larger than 2*XLEN and the floating point rules don't
7767 // apply), then pass it using a pointer with the byval attribute.
7768 // * If a struct is less than 2*XLEN, then coerce to either a two-element
7769 // word-sized array or a 2*XLEN scalar (depending on alignment).
7770 // * The frontend can determine whether a struct is returned by reference or
7771 // not based on its size and fields. If it will be returned by reference, the
7772 // frontend must modify the prototype so a pointer with the sret annotation is
7773 // passed as the first argument. This is not necessary for large scalar
7774 // returns.
7775 // * Struct return values and varargs should be coerced to structs containing
7776 // register-size fields in the same situations they would be for fixed
7777 // arguments.
7778 
7779 static const MCPhysReg ArgGPRs[] = {
7780   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
7781   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
7782 };
7783 static const MCPhysReg ArgFPR16s[] = {
7784   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
7785   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
7786 };
7787 static const MCPhysReg ArgFPR32s[] = {
7788   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
7789   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
7790 };
7791 static const MCPhysReg ArgFPR64s[] = {
7792   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
7793   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
7794 };
7795 // This is an interim calling convention and it may be changed in the future.
7796 static const MCPhysReg ArgVRs[] = {
7797     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
7798     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
7799     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
7800 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
7801                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
7802                                      RISCV::V20M2, RISCV::V22M2};
7803 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
7804                                      RISCV::V20M4};
7805 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
7806 
7807 // Pass a 2*XLEN argument that has been split into two XLEN values through
7808 // registers or the stack as necessary.
7809 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
7810                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
7811                                 MVT ValVT2, MVT LocVT2,
7812                                 ISD::ArgFlagsTy ArgFlags2) {
7813   unsigned XLenInBytes = XLen / 8;
7814   if (Register Reg = State.AllocateReg(ArgGPRs)) {
7815     // At least one half can be passed via register.
7816     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
7817                                      VA1.getLocVT(), CCValAssign::Full));
7818   } else {
7819     // Both halves must be passed on the stack, with proper alignment.
7820     Align StackAlign =
7821         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
7822     State.addLoc(
7823         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
7824                             State.AllocateStack(XLenInBytes, StackAlign),
7825                             VA1.getLocVT(), CCValAssign::Full));
7826     State.addLoc(CCValAssign::getMem(
7827         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7828         LocVT2, CCValAssign::Full));
7829     return false;
7830   }
7831 
7832   if (Register Reg = State.AllocateReg(ArgGPRs)) {
7833     // The second half can also be passed via register.
7834     State.addLoc(
7835         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
7836   } else {
7837     // The second half is passed via the stack, without additional alignment.
7838     State.addLoc(CCValAssign::getMem(
7839         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7840         LocVT2, CCValAssign::Full));
7841   }
7842 
7843   return false;
7844 }
7845 
7846 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
7847                                Optional<unsigned> FirstMaskArgument,
7848                                CCState &State, const RISCVTargetLowering &TLI) {
7849   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
7850   if (RC == &RISCV::VRRegClass) {
7851     // Assign the first mask argument to V0.
7852     // This is an interim calling convention and it may be changed in the
7853     // future.
7854     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
7855       return State.AllocateReg(RISCV::V0);
7856     return State.AllocateReg(ArgVRs);
7857   }
7858   if (RC == &RISCV::VRM2RegClass)
7859     return State.AllocateReg(ArgVRM2s);
7860   if (RC == &RISCV::VRM4RegClass)
7861     return State.AllocateReg(ArgVRM4s);
7862   if (RC == &RISCV::VRM8RegClass)
7863     return State.AllocateReg(ArgVRM8s);
7864   llvm_unreachable("Unhandled register class for ValueType");
7865 }
7866 
7867 // Implements the RISC-V calling convention. Returns true upon failure.
7868 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
7869                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
7870                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
7871                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
7872                      Optional<unsigned> FirstMaskArgument) {
7873   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
7874   assert(XLen == 32 || XLen == 64);
7875   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
7876 
7877   // Any return value split in to more than two values can't be returned
7878   // directly. Vectors are returned via the available vector registers.
7879   if (!LocVT.isVector() && IsRet && ValNo > 1)
7880     return true;
7881 
7882   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
7883   // variadic argument, or if no F16/F32 argument registers are available.
7884   bool UseGPRForF16_F32 = true;
7885   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
7886   // variadic argument, or if no F64 argument registers are available.
7887   bool UseGPRForF64 = true;
7888 
7889   switch (ABI) {
7890   default:
7891     llvm_unreachable("Unexpected ABI");
7892   case RISCVABI::ABI_ILP32:
7893   case RISCVABI::ABI_LP64:
7894     break;
7895   case RISCVABI::ABI_ILP32F:
7896   case RISCVABI::ABI_LP64F:
7897     UseGPRForF16_F32 = !IsFixed;
7898     break;
7899   case RISCVABI::ABI_ILP32D:
7900   case RISCVABI::ABI_LP64D:
7901     UseGPRForF16_F32 = !IsFixed;
7902     UseGPRForF64 = !IsFixed;
7903     break;
7904   }
7905 
7906   // FPR16, FPR32, and FPR64 alias each other.
7907   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
7908     UseGPRForF16_F32 = true;
7909     UseGPRForF64 = true;
7910   }
7911 
7912   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
7913   // similar local variables rather than directly checking against the target
7914   // ABI.
7915 
7916   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
7917     LocVT = XLenVT;
7918     LocInfo = CCValAssign::BCvt;
7919   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
7920     LocVT = MVT::i64;
7921     LocInfo = CCValAssign::BCvt;
7922   }
7923 
7924   // If this is a variadic argument, the RISC-V calling convention requires
7925   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
7926   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
7927   // be used regardless of whether the original argument was split during
7928   // legalisation or not. The argument will not be passed by registers if the
7929   // original type is larger than 2*XLEN, so the register alignment rule does
7930   // not apply.
7931   unsigned TwoXLenInBytes = (2 * XLen) / 8;
7932   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
7933       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
7934     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
7935     // Skip 'odd' register if necessary.
7936     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
7937       State.AllocateReg(ArgGPRs);
7938   }
7939 
7940   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
7941   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
7942       State.getPendingArgFlags();
7943 
7944   assert(PendingLocs.size() == PendingArgFlags.size() &&
7945          "PendingLocs and PendingArgFlags out of sync");
7946 
7947   // Handle passing f64 on RV32D with a soft float ABI or when floating point
7948   // registers are exhausted.
7949   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
7950     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
7951            "Can't lower f64 if it is split");
7952     // Depending on available argument GPRS, f64 may be passed in a pair of
7953     // GPRs, split between a GPR and the stack, or passed completely on the
7954     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
7955     // cases.
7956     Register Reg = State.AllocateReg(ArgGPRs);
7957     LocVT = MVT::i32;
7958     if (!Reg) {
7959       unsigned StackOffset = State.AllocateStack(8, Align(8));
7960       State.addLoc(
7961           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
7962       return false;
7963     }
7964     if (!State.AllocateReg(ArgGPRs))
7965       State.AllocateStack(4, Align(4));
7966     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7967     return false;
7968   }
7969 
7970   // Fixed-length vectors are located in the corresponding scalable-vector
7971   // container types.
7972   if (ValVT.isFixedLengthVector())
7973     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
7974 
7975   // Split arguments might be passed indirectly, so keep track of the pending
7976   // values. Split vectors are passed via a mix of registers and indirectly, so
7977   // treat them as we would any other argument.
7978   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
7979     LocVT = XLenVT;
7980     LocInfo = CCValAssign::Indirect;
7981     PendingLocs.push_back(
7982         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
7983     PendingArgFlags.push_back(ArgFlags);
7984     if (!ArgFlags.isSplitEnd()) {
7985       return false;
7986     }
7987   }
7988 
7989   // If the split argument only had two elements, it should be passed directly
7990   // in registers or on the stack.
7991   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
7992       PendingLocs.size() <= 2) {
7993     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
7994     // Apply the normal calling convention rules to the first half of the
7995     // split argument.
7996     CCValAssign VA = PendingLocs[0];
7997     ISD::ArgFlagsTy AF = PendingArgFlags[0];
7998     PendingLocs.clear();
7999     PendingArgFlags.clear();
8000     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
8001                                ArgFlags);
8002   }
8003 
8004   // Allocate to a register if possible, or else a stack slot.
8005   Register Reg;
8006   unsigned StoreSizeBytes = XLen / 8;
8007   Align StackAlign = Align(XLen / 8);
8008 
8009   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
8010     Reg = State.AllocateReg(ArgFPR16s);
8011   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
8012     Reg = State.AllocateReg(ArgFPR32s);
8013   else if (ValVT == MVT::f64 && !UseGPRForF64)
8014     Reg = State.AllocateReg(ArgFPR64s);
8015   else if (ValVT.isVector()) {
8016     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
8017     if (!Reg) {
8018       // For return values, the vector must be passed fully via registers or
8019       // via the stack.
8020       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
8021       // but we're using all of them.
8022       if (IsRet)
8023         return true;
8024       // Try using a GPR to pass the address
8025       if ((Reg = State.AllocateReg(ArgGPRs))) {
8026         LocVT = XLenVT;
8027         LocInfo = CCValAssign::Indirect;
8028       } else if (ValVT.isScalableVector()) {
8029         report_fatal_error("Unable to pass scalable vector types on the stack");
8030       } else {
8031         // Pass fixed-length vectors on the stack.
8032         LocVT = ValVT;
8033         StoreSizeBytes = ValVT.getStoreSize();
8034         // Align vectors to their element sizes, being careful for vXi1
8035         // vectors.
8036         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8037       }
8038     }
8039   } else {
8040     Reg = State.AllocateReg(ArgGPRs);
8041   }
8042 
8043   unsigned StackOffset =
8044       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
8045 
8046   // If we reach this point and PendingLocs is non-empty, we must be at the
8047   // end of a split argument that must be passed indirectly.
8048   if (!PendingLocs.empty()) {
8049     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
8050     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
8051 
8052     for (auto &It : PendingLocs) {
8053       if (Reg)
8054         It.convertToReg(Reg);
8055       else
8056         It.convertToMem(StackOffset);
8057       State.addLoc(It);
8058     }
8059     PendingLocs.clear();
8060     PendingArgFlags.clear();
8061     return false;
8062   }
8063 
8064   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
8065           (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) &&
8066          "Expected an XLenVT or vector types at this stage");
8067 
8068   if (Reg) {
8069     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8070     return false;
8071   }
8072 
8073   // When a floating-point value is passed on the stack, no bit-conversion is
8074   // needed.
8075   if (ValVT.isFloatingPoint()) {
8076     LocVT = ValVT;
8077     LocInfo = CCValAssign::Full;
8078   }
8079   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8080   return false;
8081 }
8082 
8083 template <typename ArgTy>
8084 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
8085   for (const auto &ArgIdx : enumerate(Args)) {
8086     MVT ArgVT = ArgIdx.value().VT;
8087     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
8088       return ArgIdx.index();
8089   }
8090   return None;
8091 }
8092 
8093 void RISCVTargetLowering::analyzeInputArgs(
8094     MachineFunction &MF, CCState &CCInfo,
8095     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
8096     RISCVCCAssignFn Fn) const {
8097   unsigned NumArgs = Ins.size();
8098   FunctionType *FType = MF.getFunction().getFunctionType();
8099 
8100   Optional<unsigned> FirstMaskArgument;
8101   if (Subtarget.hasStdExtV())
8102     FirstMaskArgument = preAssignMask(Ins);
8103 
8104   for (unsigned i = 0; i != NumArgs; ++i) {
8105     MVT ArgVT = Ins[i].VT;
8106     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
8107 
8108     Type *ArgTy = nullptr;
8109     if (IsRet)
8110       ArgTy = FType->getReturnType();
8111     else if (Ins[i].isOrigArg())
8112       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
8113 
8114     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8115     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8116            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
8117            FirstMaskArgument)) {
8118       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
8119                         << EVT(ArgVT).getEVTString() << '\n');
8120       llvm_unreachable(nullptr);
8121     }
8122   }
8123 }
8124 
8125 void RISCVTargetLowering::analyzeOutputArgs(
8126     MachineFunction &MF, CCState &CCInfo,
8127     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
8128     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
8129   unsigned NumArgs = Outs.size();
8130 
8131   Optional<unsigned> FirstMaskArgument;
8132   if (Subtarget.hasStdExtV())
8133     FirstMaskArgument = preAssignMask(Outs);
8134 
8135   for (unsigned i = 0; i != NumArgs; i++) {
8136     MVT ArgVT = Outs[i].VT;
8137     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
8138     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
8139 
8140     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8141     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8142            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
8143            FirstMaskArgument)) {
8144       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
8145                         << EVT(ArgVT).getEVTString() << "\n");
8146       llvm_unreachable(nullptr);
8147     }
8148   }
8149 }
8150 
8151 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
8152 // values.
8153 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
8154                                    const CCValAssign &VA, const SDLoc &DL,
8155                                    const RISCVSubtarget &Subtarget) {
8156   switch (VA.getLocInfo()) {
8157   default:
8158     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8159   case CCValAssign::Full:
8160     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
8161       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
8162     break;
8163   case CCValAssign::BCvt:
8164     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8165       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
8166     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8167       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
8168     else
8169       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
8170     break;
8171   }
8172   return Val;
8173 }
8174 
8175 // The caller is responsible for loading the full value if the argument is
8176 // passed with CCValAssign::Indirect.
8177 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
8178                                 const CCValAssign &VA, const SDLoc &DL,
8179                                 const RISCVTargetLowering &TLI) {
8180   MachineFunction &MF = DAG.getMachineFunction();
8181   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8182   EVT LocVT = VA.getLocVT();
8183   SDValue Val;
8184   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
8185   Register VReg = RegInfo.createVirtualRegister(RC);
8186   RegInfo.addLiveIn(VA.getLocReg(), VReg);
8187   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
8188 
8189   if (VA.getLocInfo() == CCValAssign::Indirect)
8190     return Val;
8191 
8192   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
8193 }
8194 
8195 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
8196                                    const CCValAssign &VA, const SDLoc &DL,
8197                                    const RISCVSubtarget &Subtarget) {
8198   EVT LocVT = VA.getLocVT();
8199 
8200   switch (VA.getLocInfo()) {
8201   default:
8202     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8203   case CCValAssign::Full:
8204     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
8205       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
8206     break;
8207   case CCValAssign::BCvt:
8208     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8209       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
8210     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8211       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
8212     else
8213       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
8214     break;
8215   }
8216   return Val;
8217 }
8218 
8219 // The caller is responsible for loading the full value if the argument is
8220 // passed with CCValAssign::Indirect.
8221 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
8222                                 const CCValAssign &VA, const SDLoc &DL) {
8223   MachineFunction &MF = DAG.getMachineFunction();
8224   MachineFrameInfo &MFI = MF.getFrameInfo();
8225   EVT LocVT = VA.getLocVT();
8226   EVT ValVT = VA.getValVT();
8227   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
8228   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
8229                                  /*Immutable=*/true);
8230   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
8231   SDValue Val;
8232 
8233   ISD::LoadExtType ExtType;
8234   switch (VA.getLocInfo()) {
8235   default:
8236     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8237   case CCValAssign::Full:
8238   case CCValAssign::Indirect:
8239   case CCValAssign::BCvt:
8240     ExtType = ISD::NON_EXTLOAD;
8241     break;
8242   }
8243   Val = DAG.getExtLoad(
8244       ExtType, DL, LocVT, Chain, FIN,
8245       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
8246   return Val;
8247 }
8248 
8249 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
8250                                        const CCValAssign &VA, const SDLoc &DL) {
8251   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
8252          "Unexpected VA");
8253   MachineFunction &MF = DAG.getMachineFunction();
8254   MachineFrameInfo &MFI = MF.getFrameInfo();
8255   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8256 
8257   if (VA.isMemLoc()) {
8258     // f64 is passed on the stack.
8259     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
8260     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8261     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
8262                        MachinePointerInfo::getFixedStack(MF, FI));
8263   }
8264 
8265   assert(VA.isRegLoc() && "Expected register VA assignment");
8266 
8267   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8268   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
8269   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
8270   SDValue Hi;
8271   if (VA.getLocReg() == RISCV::X17) {
8272     // Second half of f64 is passed on the stack.
8273     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
8274     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8275     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
8276                      MachinePointerInfo::getFixedStack(MF, FI));
8277   } else {
8278     // Second half of f64 is passed in another GPR.
8279     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8280     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
8281     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
8282   }
8283   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
8284 }
8285 
8286 // FastCC has less than 1% performance improvement for some particular
8287 // benchmark. But theoretically, it may has benenfit for some cases.
8288 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
8289                             unsigned ValNo, MVT ValVT, MVT LocVT,
8290                             CCValAssign::LocInfo LocInfo,
8291                             ISD::ArgFlagsTy ArgFlags, CCState &State,
8292                             bool IsFixed, bool IsRet, Type *OrigTy,
8293                             const RISCVTargetLowering &TLI,
8294                             Optional<unsigned> FirstMaskArgument) {
8295 
8296   // X5 and X6 might be used for save-restore libcall.
8297   static const MCPhysReg GPRList[] = {
8298       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
8299       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
8300       RISCV::X29, RISCV::X30, RISCV::X31};
8301 
8302   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8303     if (unsigned Reg = State.AllocateReg(GPRList)) {
8304       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8305       return false;
8306     }
8307   }
8308 
8309   if (LocVT == MVT::f16) {
8310     static const MCPhysReg FPR16List[] = {
8311         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
8312         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
8313         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
8314         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
8315     if (unsigned Reg = State.AllocateReg(FPR16List)) {
8316       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8317       return false;
8318     }
8319   }
8320 
8321   if (LocVT == MVT::f32) {
8322     static const MCPhysReg FPR32List[] = {
8323         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
8324         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
8325         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
8326         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
8327     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8328       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8329       return false;
8330     }
8331   }
8332 
8333   if (LocVT == MVT::f64) {
8334     static const MCPhysReg FPR64List[] = {
8335         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
8336         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
8337         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
8338         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
8339     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8340       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8341       return false;
8342     }
8343   }
8344 
8345   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
8346     unsigned Offset4 = State.AllocateStack(4, Align(4));
8347     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
8348     return false;
8349   }
8350 
8351   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
8352     unsigned Offset5 = State.AllocateStack(8, Align(8));
8353     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
8354     return false;
8355   }
8356 
8357   if (LocVT.isVector()) {
8358     if (unsigned Reg =
8359             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
8360       // Fixed-length vectors are located in the corresponding scalable-vector
8361       // container types.
8362       if (ValVT.isFixedLengthVector())
8363         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8364       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8365     } else {
8366       // Try and pass the address via a "fast" GPR.
8367       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
8368         LocInfo = CCValAssign::Indirect;
8369         LocVT = TLI.getSubtarget().getXLenVT();
8370         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
8371       } else if (ValVT.isFixedLengthVector()) {
8372         auto StackAlign =
8373             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8374         unsigned StackOffset =
8375             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
8376         State.addLoc(
8377             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8378       } else {
8379         // Can't pass scalable vectors on the stack.
8380         return true;
8381       }
8382     }
8383 
8384     return false;
8385   }
8386 
8387   return true; // CC didn't match.
8388 }
8389 
8390 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
8391                          CCValAssign::LocInfo LocInfo,
8392                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
8393 
8394   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8395     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
8396     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
8397     static const MCPhysReg GPRList[] = {
8398         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
8399         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
8400     if (unsigned Reg = State.AllocateReg(GPRList)) {
8401       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8402       return false;
8403     }
8404   }
8405 
8406   if (LocVT == MVT::f32) {
8407     // Pass in STG registers: F1, ..., F6
8408     //                        fs0 ... fs5
8409     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
8410                                           RISCV::F18_F, RISCV::F19_F,
8411                                           RISCV::F20_F, RISCV::F21_F};
8412     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8413       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8414       return false;
8415     }
8416   }
8417 
8418   if (LocVT == MVT::f64) {
8419     // Pass in STG registers: D1, ..., D6
8420     //                        fs6 ... fs11
8421     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
8422                                           RISCV::F24_D, RISCV::F25_D,
8423                                           RISCV::F26_D, RISCV::F27_D};
8424     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8425       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8426       return false;
8427     }
8428   }
8429 
8430   report_fatal_error("No registers left in GHC calling convention");
8431   return true;
8432 }
8433 
8434 // Transform physical registers into virtual registers.
8435 SDValue RISCVTargetLowering::LowerFormalArguments(
8436     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
8437     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
8438     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
8439 
8440   MachineFunction &MF = DAG.getMachineFunction();
8441 
8442   switch (CallConv) {
8443   default:
8444     report_fatal_error("Unsupported calling convention");
8445   case CallingConv::C:
8446   case CallingConv::Fast:
8447     break;
8448   case CallingConv::GHC:
8449     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
8450         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
8451       report_fatal_error(
8452         "GHC calling convention requires the F and D instruction set extensions");
8453   }
8454 
8455   const Function &Func = MF.getFunction();
8456   if (Func.hasFnAttribute("interrupt")) {
8457     if (!Func.arg_empty())
8458       report_fatal_error(
8459         "Functions with the interrupt attribute cannot have arguments!");
8460 
8461     StringRef Kind =
8462       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
8463 
8464     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
8465       report_fatal_error(
8466         "Function interrupt attribute argument not supported!");
8467   }
8468 
8469   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8470   MVT XLenVT = Subtarget.getXLenVT();
8471   unsigned XLenInBytes = Subtarget.getXLen() / 8;
8472   // Used with vargs to acumulate store chains.
8473   std::vector<SDValue> OutChains;
8474 
8475   // Assign locations to all of the incoming arguments.
8476   SmallVector<CCValAssign, 16> ArgLocs;
8477   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
8478 
8479   if (CallConv == CallingConv::GHC)
8480     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
8481   else
8482     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
8483                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
8484                                                    : CC_RISCV);
8485 
8486   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
8487     CCValAssign &VA = ArgLocs[i];
8488     SDValue ArgValue;
8489     // Passing f64 on RV32D with a soft float ABI must be handled as a special
8490     // case.
8491     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
8492       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
8493     else if (VA.isRegLoc())
8494       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
8495     else
8496       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
8497 
8498     if (VA.getLocInfo() == CCValAssign::Indirect) {
8499       // If the original argument was split and passed by reference (e.g. i128
8500       // on RV32), we need to load all parts of it here (using the same
8501       // address). Vectors may be partly split to registers and partly to the
8502       // stack, in which case the base address is partly offset and subsequent
8503       // stores are relative to that.
8504       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
8505                                    MachinePointerInfo()));
8506       unsigned ArgIndex = Ins[i].OrigArgIndex;
8507       unsigned ArgPartOffset = Ins[i].PartOffset;
8508       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
8509       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
8510         CCValAssign &PartVA = ArgLocs[i + 1];
8511         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
8512         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
8513         if (PartVA.getValVT().isScalableVector())
8514           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
8515         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
8516         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
8517                                      MachinePointerInfo()));
8518         ++i;
8519       }
8520       continue;
8521     }
8522     InVals.push_back(ArgValue);
8523   }
8524 
8525   if (IsVarArg) {
8526     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
8527     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
8528     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
8529     MachineFrameInfo &MFI = MF.getFrameInfo();
8530     MachineRegisterInfo &RegInfo = MF.getRegInfo();
8531     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
8532 
8533     // Offset of the first variable argument from stack pointer, and size of
8534     // the vararg save area. For now, the varargs save area is either zero or
8535     // large enough to hold a0-a7.
8536     int VaArgOffset, VarArgsSaveSize;
8537 
8538     // If all registers are allocated, then all varargs must be passed on the
8539     // stack and we don't need to save any argregs.
8540     if (ArgRegs.size() == Idx) {
8541       VaArgOffset = CCInfo.getNextStackOffset();
8542       VarArgsSaveSize = 0;
8543     } else {
8544       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
8545       VaArgOffset = -VarArgsSaveSize;
8546     }
8547 
8548     // Record the frame index of the first variable argument
8549     // which is a value necessary to VASTART.
8550     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
8551     RVFI->setVarArgsFrameIndex(FI);
8552 
8553     // If saving an odd number of registers then create an extra stack slot to
8554     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
8555     // offsets to even-numbered registered remain 2*XLEN-aligned.
8556     if (Idx % 2) {
8557       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
8558       VarArgsSaveSize += XLenInBytes;
8559     }
8560 
8561     // Copy the integer registers that may have been used for passing varargs
8562     // to the vararg save area.
8563     for (unsigned I = Idx; I < ArgRegs.size();
8564          ++I, VaArgOffset += XLenInBytes) {
8565       const Register Reg = RegInfo.createVirtualRegister(RC);
8566       RegInfo.addLiveIn(ArgRegs[I], Reg);
8567       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
8568       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
8569       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
8570       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
8571                                    MachinePointerInfo::getFixedStack(MF, FI));
8572       cast<StoreSDNode>(Store.getNode())
8573           ->getMemOperand()
8574           ->setValue((Value *)nullptr);
8575       OutChains.push_back(Store);
8576     }
8577     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
8578   }
8579 
8580   // All stores are grouped in one node to allow the matching between
8581   // the size of Ins and InVals. This only happens for vararg functions.
8582   if (!OutChains.empty()) {
8583     OutChains.push_back(Chain);
8584     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
8585   }
8586 
8587   return Chain;
8588 }
8589 
8590 /// isEligibleForTailCallOptimization - Check whether the call is eligible
8591 /// for tail call optimization.
8592 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
8593 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
8594     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
8595     const SmallVector<CCValAssign, 16> &ArgLocs) const {
8596 
8597   auto &Callee = CLI.Callee;
8598   auto CalleeCC = CLI.CallConv;
8599   auto &Outs = CLI.Outs;
8600   auto &Caller = MF.getFunction();
8601   auto CallerCC = Caller.getCallingConv();
8602 
8603   // Exception-handling functions need a special set of instructions to
8604   // indicate a return to the hardware. Tail-calling another function would
8605   // probably break this.
8606   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
8607   // should be expanded as new function attributes are introduced.
8608   if (Caller.hasFnAttribute("interrupt"))
8609     return false;
8610 
8611   // Do not tail call opt if the stack is used to pass parameters.
8612   if (CCInfo.getNextStackOffset() != 0)
8613     return false;
8614 
8615   // Do not tail call opt if any parameters need to be passed indirectly.
8616   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
8617   // passed indirectly. So the address of the value will be passed in a
8618   // register, or if not available, then the address is put on the stack. In
8619   // order to pass indirectly, space on the stack often needs to be allocated
8620   // in order to store the value. In this case the CCInfo.getNextStackOffset()
8621   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
8622   // are passed CCValAssign::Indirect.
8623   for (auto &VA : ArgLocs)
8624     if (VA.getLocInfo() == CCValAssign::Indirect)
8625       return false;
8626 
8627   // Do not tail call opt if either caller or callee uses struct return
8628   // semantics.
8629   auto IsCallerStructRet = Caller.hasStructRetAttr();
8630   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
8631   if (IsCallerStructRet || IsCalleeStructRet)
8632     return false;
8633 
8634   // Externally-defined functions with weak linkage should not be
8635   // tail-called. The behaviour of branch instructions in this situation (as
8636   // used for tail calls) is implementation-defined, so we cannot rely on the
8637   // linker replacing the tail call with a return.
8638   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
8639     const GlobalValue *GV = G->getGlobal();
8640     if (GV->hasExternalWeakLinkage())
8641       return false;
8642   }
8643 
8644   // The callee has to preserve all registers the caller needs to preserve.
8645   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
8646   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
8647   if (CalleeCC != CallerCC) {
8648     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
8649     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
8650       return false;
8651   }
8652 
8653   // Byval parameters hand the function a pointer directly into the stack area
8654   // we want to reuse during a tail call. Working around this *is* possible
8655   // but less efficient and uglier in LowerCall.
8656   for (auto &Arg : Outs)
8657     if (Arg.Flags.isByVal())
8658       return false;
8659 
8660   return true;
8661 }
8662 
8663 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
8664   return DAG.getDataLayout().getPrefTypeAlign(
8665       VT.getTypeForEVT(*DAG.getContext()));
8666 }
8667 
8668 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
8669 // and output parameter nodes.
8670 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
8671                                        SmallVectorImpl<SDValue> &InVals) const {
8672   SelectionDAG &DAG = CLI.DAG;
8673   SDLoc &DL = CLI.DL;
8674   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
8675   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
8676   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
8677   SDValue Chain = CLI.Chain;
8678   SDValue Callee = CLI.Callee;
8679   bool &IsTailCall = CLI.IsTailCall;
8680   CallingConv::ID CallConv = CLI.CallConv;
8681   bool IsVarArg = CLI.IsVarArg;
8682   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8683   MVT XLenVT = Subtarget.getXLenVT();
8684 
8685   MachineFunction &MF = DAG.getMachineFunction();
8686 
8687   // Analyze the operands of the call, assigning locations to each operand.
8688   SmallVector<CCValAssign, 16> ArgLocs;
8689   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
8690 
8691   if (CallConv == CallingConv::GHC)
8692     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
8693   else
8694     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
8695                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
8696                                                     : CC_RISCV);
8697 
8698   // Check if it's really possible to do a tail call.
8699   if (IsTailCall)
8700     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
8701 
8702   if (IsTailCall)
8703     ++NumTailCalls;
8704   else if (CLI.CB && CLI.CB->isMustTailCall())
8705     report_fatal_error("failed to perform tail call elimination on a call "
8706                        "site marked musttail");
8707 
8708   // Get a count of how many bytes are to be pushed on the stack.
8709   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
8710 
8711   // Create local copies for byval args
8712   SmallVector<SDValue, 8> ByValArgs;
8713   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
8714     ISD::ArgFlagsTy Flags = Outs[i].Flags;
8715     if (!Flags.isByVal())
8716       continue;
8717 
8718     SDValue Arg = OutVals[i];
8719     unsigned Size = Flags.getByValSize();
8720     Align Alignment = Flags.getNonZeroByValAlign();
8721 
8722     int FI =
8723         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
8724     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
8725     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
8726 
8727     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
8728                           /*IsVolatile=*/false,
8729                           /*AlwaysInline=*/false, IsTailCall,
8730                           MachinePointerInfo(), MachinePointerInfo());
8731     ByValArgs.push_back(FIPtr);
8732   }
8733 
8734   if (!IsTailCall)
8735     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
8736 
8737   // Copy argument values to their designated locations.
8738   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
8739   SmallVector<SDValue, 8> MemOpChains;
8740   SDValue StackPtr;
8741   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
8742     CCValAssign &VA = ArgLocs[i];
8743     SDValue ArgValue = OutVals[i];
8744     ISD::ArgFlagsTy Flags = Outs[i].Flags;
8745 
8746     // Handle passing f64 on RV32D with a soft float ABI as a special case.
8747     bool IsF64OnRV32DSoftABI =
8748         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
8749     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
8750       SDValue SplitF64 = DAG.getNode(
8751           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
8752       SDValue Lo = SplitF64.getValue(0);
8753       SDValue Hi = SplitF64.getValue(1);
8754 
8755       Register RegLo = VA.getLocReg();
8756       RegsToPass.push_back(std::make_pair(RegLo, Lo));
8757 
8758       if (RegLo == RISCV::X17) {
8759         // Second half of f64 is passed on the stack.
8760         // Work out the address of the stack slot.
8761         if (!StackPtr.getNode())
8762           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
8763         // Emit the store.
8764         MemOpChains.push_back(
8765             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
8766       } else {
8767         // Second half of f64 is passed in another GPR.
8768         assert(RegLo < RISCV::X31 && "Invalid register pair");
8769         Register RegHigh = RegLo + 1;
8770         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
8771       }
8772       continue;
8773     }
8774 
8775     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
8776     // as any other MemLoc.
8777 
8778     // Promote the value if needed.
8779     // For now, only handle fully promoted and indirect arguments.
8780     if (VA.getLocInfo() == CCValAssign::Indirect) {
8781       // Store the argument in a stack slot and pass its address.
8782       Align StackAlign =
8783           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
8784                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
8785       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
8786       // If the original argument was split (e.g. i128), we need
8787       // to store the required parts of it here (and pass just one address).
8788       // Vectors may be partly split to registers and partly to the stack, in
8789       // which case the base address is partly offset and subsequent stores are
8790       // relative to that.
8791       unsigned ArgIndex = Outs[i].OrigArgIndex;
8792       unsigned ArgPartOffset = Outs[i].PartOffset;
8793       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
8794       // Calculate the total size to store. We don't have access to what we're
8795       // actually storing other than performing the loop and collecting the
8796       // info.
8797       SmallVector<std::pair<SDValue, SDValue>> Parts;
8798       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
8799         SDValue PartValue = OutVals[i + 1];
8800         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
8801         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
8802         EVT PartVT = PartValue.getValueType();
8803         if (PartVT.isScalableVector())
8804           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
8805         StoredSize += PartVT.getStoreSize();
8806         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
8807         Parts.push_back(std::make_pair(PartValue, Offset));
8808         ++i;
8809       }
8810       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
8811       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
8812       MemOpChains.push_back(
8813           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
8814                        MachinePointerInfo::getFixedStack(MF, FI)));
8815       for (const auto &Part : Parts) {
8816         SDValue PartValue = Part.first;
8817         SDValue PartOffset = Part.second;
8818         SDValue Address =
8819             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
8820         MemOpChains.push_back(
8821             DAG.getStore(Chain, DL, PartValue, Address,
8822                          MachinePointerInfo::getFixedStack(MF, FI)));
8823       }
8824       ArgValue = SpillSlot;
8825     } else {
8826       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
8827     }
8828 
8829     // Use local copy if it is a byval arg.
8830     if (Flags.isByVal())
8831       ArgValue = ByValArgs[j++];
8832 
8833     if (VA.isRegLoc()) {
8834       // Queue up the argument copies and emit them at the end.
8835       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
8836     } else {
8837       assert(VA.isMemLoc() && "Argument not register or memory");
8838       assert(!IsTailCall && "Tail call not allowed if stack is used "
8839                             "for passing parameters");
8840 
8841       // Work out the address of the stack slot.
8842       if (!StackPtr.getNode())
8843         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
8844       SDValue Address =
8845           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
8846                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
8847 
8848       // Emit the store.
8849       MemOpChains.push_back(
8850           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
8851     }
8852   }
8853 
8854   // Join the stores, which are independent of one another.
8855   if (!MemOpChains.empty())
8856     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
8857 
8858   SDValue Glue;
8859 
8860   // Build a sequence of copy-to-reg nodes, chained and glued together.
8861   for (auto &Reg : RegsToPass) {
8862     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
8863     Glue = Chain.getValue(1);
8864   }
8865 
8866   // Validate that none of the argument registers have been marked as
8867   // reserved, if so report an error. Do the same for the return address if this
8868   // is not a tailcall.
8869   validateCCReservedRegs(RegsToPass, MF);
8870   if (!IsTailCall &&
8871       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
8872     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
8873         MF.getFunction(),
8874         "Return address register required, but has been reserved."});
8875 
8876   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
8877   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
8878   // split it and then direct call can be matched by PseudoCALL.
8879   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
8880     const GlobalValue *GV = S->getGlobal();
8881 
8882     unsigned OpFlags = RISCVII::MO_CALL;
8883     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
8884       OpFlags = RISCVII::MO_PLT;
8885 
8886     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
8887   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
8888     unsigned OpFlags = RISCVII::MO_CALL;
8889 
8890     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
8891                                                  nullptr))
8892       OpFlags = RISCVII::MO_PLT;
8893 
8894     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
8895   }
8896 
8897   // The first call operand is the chain and the second is the target address.
8898   SmallVector<SDValue, 8> Ops;
8899   Ops.push_back(Chain);
8900   Ops.push_back(Callee);
8901 
8902   // Add argument registers to the end of the list so that they are
8903   // known live into the call.
8904   for (auto &Reg : RegsToPass)
8905     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
8906 
8907   if (!IsTailCall) {
8908     // Add a register mask operand representing the call-preserved registers.
8909     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
8910     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
8911     assert(Mask && "Missing call preserved mask for calling convention");
8912     Ops.push_back(DAG.getRegisterMask(Mask));
8913   }
8914 
8915   // Glue the call to the argument copies, if any.
8916   if (Glue.getNode())
8917     Ops.push_back(Glue);
8918 
8919   // Emit the call.
8920   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8921 
8922   if (IsTailCall) {
8923     MF.getFrameInfo().setHasTailCall();
8924     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
8925   }
8926 
8927   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
8928   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
8929   Glue = Chain.getValue(1);
8930 
8931   // Mark the end of the call, which is glued to the call itself.
8932   Chain = DAG.getCALLSEQ_END(Chain,
8933                              DAG.getConstant(NumBytes, DL, PtrVT, true),
8934                              DAG.getConstant(0, DL, PtrVT, true),
8935                              Glue, DL);
8936   Glue = Chain.getValue(1);
8937 
8938   // Assign locations to each value returned by this call.
8939   SmallVector<CCValAssign, 16> RVLocs;
8940   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
8941   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
8942 
8943   // Copy all of the result registers out of their specified physreg.
8944   for (auto &VA : RVLocs) {
8945     // Copy the value out
8946     SDValue RetValue =
8947         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
8948     // Glue the RetValue to the end of the call sequence
8949     Chain = RetValue.getValue(1);
8950     Glue = RetValue.getValue(2);
8951 
8952     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
8953       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
8954       SDValue RetValue2 =
8955           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
8956       Chain = RetValue2.getValue(1);
8957       Glue = RetValue2.getValue(2);
8958       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
8959                              RetValue2);
8960     }
8961 
8962     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
8963 
8964     InVals.push_back(RetValue);
8965   }
8966 
8967   return Chain;
8968 }
8969 
8970 bool RISCVTargetLowering::CanLowerReturn(
8971     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
8972     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
8973   SmallVector<CCValAssign, 16> RVLocs;
8974   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
8975 
8976   Optional<unsigned> FirstMaskArgument;
8977   if (Subtarget.hasStdExtV())
8978     FirstMaskArgument = preAssignMask(Outs);
8979 
8980   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
8981     MVT VT = Outs[i].VT;
8982     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
8983     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8984     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
8985                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
8986                  *this, FirstMaskArgument))
8987       return false;
8988   }
8989   return true;
8990 }
8991 
8992 SDValue
8993 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
8994                                  bool IsVarArg,
8995                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
8996                                  const SmallVectorImpl<SDValue> &OutVals,
8997                                  const SDLoc &DL, SelectionDAG &DAG) const {
8998   const MachineFunction &MF = DAG.getMachineFunction();
8999   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9000 
9001   // Stores the assignment of the return value to a location.
9002   SmallVector<CCValAssign, 16> RVLocs;
9003 
9004   // Info about the registers and stack slot.
9005   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
9006                  *DAG.getContext());
9007 
9008   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
9009                     nullptr, CC_RISCV);
9010 
9011   if (CallConv == CallingConv::GHC && !RVLocs.empty())
9012     report_fatal_error("GHC functions return void only");
9013 
9014   SDValue Glue;
9015   SmallVector<SDValue, 4> RetOps(1, Chain);
9016 
9017   // Copy the result values into the output registers.
9018   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
9019     SDValue Val = OutVals[i];
9020     CCValAssign &VA = RVLocs[i];
9021     assert(VA.isRegLoc() && "Can only return in registers!");
9022 
9023     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9024       // Handle returning f64 on RV32D with a soft float ABI.
9025       assert(VA.isRegLoc() && "Expected return via registers");
9026       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
9027                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
9028       SDValue Lo = SplitF64.getValue(0);
9029       SDValue Hi = SplitF64.getValue(1);
9030       Register RegLo = VA.getLocReg();
9031       assert(RegLo < RISCV::X31 && "Invalid register pair");
9032       Register RegHi = RegLo + 1;
9033 
9034       if (STI.isRegisterReservedByUser(RegLo) ||
9035           STI.isRegisterReservedByUser(RegHi))
9036         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9037             MF.getFunction(),
9038             "Return value register required, but has been reserved."});
9039 
9040       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
9041       Glue = Chain.getValue(1);
9042       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
9043       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
9044       Glue = Chain.getValue(1);
9045       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
9046     } else {
9047       // Handle a 'normal' return.
9048       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
9049       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
9050 
9051       if (STI.isRegisterReservedByUser(VA.getLocReg()))
9052         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9053             MF.getFunction(),
9054             "Return value register required, but has been reserved."});
9055 
9056       // Guarantee that all emitted copies are stuck together.
9057       Glue = Chain.getValue(1);
9058       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
9059     }
9060   }
9061 
9062   RetOps[0] = Chain; // Update chain.
9063 
9064   // Add the glue node if we have it.
9065   if (Glue.getNode()) {
9066     RetOps.push_back(Glue);
9067   }
9068 
9069   unsigned RetOpc = RISCVISD::RET_FLAG;
9070   // Interrupt service routines use different return instructions.
9071   const Function &Func = DAG.getMachineFunction().getFunction();
9072   if (Func.hasFnAttribute("interrupt")) {
9073     if (!Func.getReturnType()->isVoidTy())
9074       report_fatal_error(
9075           "Functions with the interrupt attribute must have void return type!");
9076 
9077     MachineFunction &MF = DAG.getMachineFunction();
9078     StringRef Kind =
9079       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9080 
9081     if (Kind == "user")
9082       RetOpc = RISCVISD::URET_FLAG;
9083     else if (Kind == "supervisor")
9084       RetOpc = RISCVISD::SRET_FLAG;
9085     else
9086       RetOpc = RISCVISD::MRET_FLAG;
9087   }
9088 
9089   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
9090 }
9091 
9092 void RISCVTargetLowering::validateCCReservedRegs(
9093     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
9094     MachineFunction &MF) const {
9095   const Function &F = MF.getFunction();
9096   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9097 
9098   if (llvm::any_of(Regs, [&STI](auto Reg) {
9099         return STI.isRegisterReservedByUser(Reg.first);
9100       }))
9101     F.getContext().diagnose(DiagnosticInfoUnsupported{
9102         F, "Argument register required, but has been reserved."});
9103 }
9104 
9105 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
9106   return CI->isTailCall();
9107 }
9108 
9109 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
9110 #define NODE_NAME_CASE(NODE)                                                   \
9111   case RISCVISD::NODE:                                                         \
9112     return "RISCVISD::" #NODE;
9113   // clang-format off
9114   switch ((RISCVISD::NodeType)Opcode) {
9115   case RISCVISD::FIRST_NUMBER:
9116     break;
9117   NODE_NAME_CASE(RET_FLAG)
9118   NODE_NAME_CASE(URET_FLAG)
9119   NODE_NAME_CASE(SRET_FLAG)
9120   NODE_NAME_CASE(MRET_FLAG)
9121   NODE_NAME_CASE(CALL)
9122   NODE_NAME_CASE(SELECT_CC)
9123   NODE_NAME_CASE(BR_CC)
9124   NODE_NAME_CASE(BuildPairF64)
9125   NODE_NAME_CASE(SplitF64)
9126   NODE_NAME_CASE(TAIL)
9127   NODE_NAME_CASE(MULHSU)
9128   NODE_NAME_CASE(SLLW)
9129   NODE_NAME_CASE(SRAW)
9130   NODE_NAME_CASE(SRLW)
9131   NODE_NAME_CASE(DIVW)
9132   NODE_NAME_CASE(DIVUW)
9133   NODE_NAME_CASE(REMUW)
9134   NODE_NAME_CASE(ROLW)
9135   NODE_NAME_CASE(RORW)
9136   NODE_NAME_CASE(CLZW)
9137   NODE_NAME_CASE(CTZW)
9138   NODE_NAME_CASE(FSLW)
9139   NODE_NAME_CASE(FSRW)
9140   NODE_NAME_CASE(FSL)
9141   NODE_NAME_CASE(FSR)
9142   NODE_NAME_CASE(FMV_H_X)
9143   NODE_NAME_CASE(FMV_X_ANYEXTH)
9144   NODE_NAME_CASE(FMV_W_X_RV64)
9145   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
9146   NODE_NAME_CASE(FCVT_X_RTZ)
9147   NODE_NAME_CASE(FCVT_XU_RTZ)
9148   NODE_NAME_CASE(FCVT_W_RTZ_RV64)
9149   NODE_NAME_CASE(FCVT_WU_RTZ_RV64)
9150   NODE_NAME_CASE(READ_CYCLE_WIDE)
9151   NODE_NAME_CASE(GREV)
9152   NODE_NAME_CASE(GREVW)
9153   NODE_NAME_CASE(GORC)
9154   NODE_NAME_CASE(GORCW)
9155   NODE_NAME_CASE(SHFL)
9156   NODE_NAME_CASE(SHFLW)
9157   NODE_NAME_CASE(UNSHFL)
9158   NODE_NAME_CASE(UNSHFLW)
9159   NODE_NAME_CASE(BCOMPRESS)
9160   NODE_NAME_CASE(BCOMPRESSW)
9161   NODE_NAME_CASE(BDECOMPRESS)
9162   NODE_NAME_CASE(BDECOMPRESSW)
9163   NODE_NAME_CASE(VMV_V_X_VL)
9164   NODE_NAME_CASE(VFMV_V_F_VL)
9165   NODE_NAME_CASE(VMV_X_S)
9166   NODE_NAME_CASE(VMV_S_X_VL)
9167   NODE_NAME_CASE(VFMV_S_F_VL)
9168   NODE_NAME_CASE(SPLAT_VECTOR_I64)
9169   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
9170   NODE_NAME_CASE(READ_VLENB)
9171   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
9172   NODE_NAME_CASE(VSLIDEUP_VL)
9173   NODE_NAME_CASE(VSLIDE1UP_VL)
9174   NODE_NAME_CASE(VSLIDEDOWN_VL)
9175   NODE_NAME_CASE(VSLIDE1DOWN_VL)
9176   NODE_NAME_CASE(VID_VL)
9177   NODE_NAME_CASE(VFNCVT_ROD_VL)
9178   NODE_NAME_CASE(VECREDUCE_ADD_VL)
9179   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
9180   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
9181   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
9182   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
9183   NODE_NAME_CASE(VECREDUCE_AND_VL)
9184   NODE_NAME_CASE(VECREDUCE_OR_VL)
9185   NODE_NAME_CASE(VECREDUCE_XOR_VL)
9186   NODE_NAME_CASE(VECREDUCE_FADD_VL)
9187   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
9188   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
9189   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
9190   NODE_NAME_CASE(ADD_VL)
9191   NODE_NAME_CASE(AND_VL)
9192   NODE_NAME_CASE(MUL_VL)
9193   NODE_NAME_CASE(OR_VL)
9194   NODE_NAME_CASE(SDIV_VL)
9195   NODE_NAME_CASE(SHL_VL)
9196   NODE_NAME_CASE(SREM_VL)
9197   NODE_NAME_CASE(SRA_VL)
9198   NODE_NAME_CASE(SRL_VL)
9199   NODE_NAME_CASE(SUB_VL)
9200   NODE_NAME_CASE(UDIV_VL)
9201   NODE_NAME_CASE(UREM_VL)
9202   NODE_NAME_CASE(XOR_VL)
9203   NODE_NAME_CASE(SADDSAT_VL)
9204   NODE_NAME_CASE(UADDSAT_VL)
9205   NODE_NAME_CASE(SSUBSAT_VL)
9206   NODE_NAME_CASE(USUBSAT_VL)
9207   NODE_NAME_CASE(FADD_VL)
9208   NODE_NAME_CASE(FSUB_VL)
9209   NODE_NAME_CASE(FMUL_VL)
9210   NODE_NAME_CASE(FDIV_VL)
9211   NODE_NAME_CASE(FNEG_VL)
9212   NODE_NAME_CASE(FABS_VL)
9213   NODE_NAME_CASE(FSQRT_VL)
9214   NODE_NAME_CASE(FMA_VL)
9215   NODE_NAME_CASE(FCOPYSIGN_VL)
9216   NODE_NAME_CASE(SMIN_VL)
9217   NODE_NAME_CASE(SMAX_VL)
9218   NODE_NAME_CASE(UMIN_VL)
9219   NODE_NAME_CASE(UMAX_VL)
9220   NODE_NAME_CASE(FMINNUM_VL)
9221   NODE_NAME_CASE(FMAXNUM_VL)
9222   NODE_NAME_CASE(MULHS_VL)
9223   NODE_NAME_CASE(MULHU_VL)
9224   NODE_NAME_CASE(FP_TO_SINT_VL)
9225   NODE_NAME_CASE(FP_TO_UINT_VL)
9226   NODE_NAME_CASE(SINT_TO_FP_VL)
9227   NODE_NAME_CASE(UINT_TO_FP_VL)
9228   NODE_NAME_CASE(FP_EXTEND_VL)
9229   NODE_NAME_CASE(FP_ROUND_VL)
9230   NODE_NAME_CASE(VWMUL_VL)
9231   NODE_NAME_CASE(VWMULU_VL)
9232   NODE_NAME_CASE(SETCC_VL)
9233   NODE_NAME_CASE(VSELECT_VL)
9234   NODE_NAME_CASE(VMAND_VL)
9235   NODE_NAME_CASE(VMOR_VL)
9236   NODE_NAME_CASE(VMXOR_VL)
9237   NODE_NAME_CASE(VMCLR_VL)
9238   NODE_NAME_CASE(VMSET_VL)
9239   NODE_NAME_CASE(VRGATHER_VX_VL)
9240   NODE_NAME_CASE(VRGATHER_VV_VL)
9241   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
9242   NODE_NAME_CASE(VSEXT_VL)
9243   NODE_NAME_CASE(VZEXT_VL)
9244   NODE_NAME_CASE(VPOPC_VL)
9245   NODE_NAME_CASE(VLE_VL)
9246   NODE_NAME_CASE(VSE_VL)
9247   NODE_NAME_CASE(READ_CSR)
9248   NODE_NAME_CASE(WRITE_CSR)
9249   NODE_NAME_CASE(SWAP_CSR)
9250   }
9251   // clang-format on
9252   return nullptr;
9253 #undef NODE_NAME_CASE
9254 }
9255 
9256 /// getConstraintType - Given a constraint letter, return the type of
9257 /// constraint it is for this target.
9258 RISCVTargetLowering::ConstraintType
9259 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
9260   if (Constraint.size() == 1) {
9261     switch (Constraint[0]) {
9262     default:
9263       break;
9264     case 'f':
9265       return C_RegisterClass;
9266     case 'I':
9267     case 'J':
9268     case 'K':
9269       return C_Immediate;
9270     case 'A':
9271       return C_Memory;
9272     case 'S': // A symbolic address
9273       return C_Other;
9274     }
9275   } else {
9276     if (Constraint == "vr" || Constraint == "vm")
9277       return C_RegisterClass;
9278   }
9279   return TargetLowering::getConstraintType(Constraint);
9280 }
9281 
9282 std::pair<unsigned, const TargetRegisterClass *>
9283 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
9284                                                   StringRef Constraint,
9285                                                   MVT VT) const {
9286   // First, see if this is a constraint that directly corresponds to a
9287   // RISCV register class.
9288   if (Constraint.size() == 1) {
9289     switch (Constraint[0]) {
9290     case 'r':
9291       return std::make_pair(0U, &RISCV::GPRRegClass);
9292     case 'f':
9293       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
9294         return std::make_pair(0U, &RISCV::FPR16RegClass);
9295       if (Subtarget.hasStdExtF() && VT == MVT::f32)
9296         return std::make_pair(0U, &RISCV::FPR32RegClass);
9297       if (Subtarget.hasStdExtD() && VT == MVT::f64)
9298         return std::make_pair(0U, &RISCV::FPR64RegClass);
9299       break;
9300     default:
9301       break;
9302     }
9303   } else {
9304     if (Constraint == "vr") {
9305       for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
9306                              &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9307         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
9308           return std::make_pair(0U, RC);
9309       }
9310     } else if (Constraint == "vm") {
9311       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
9312         return std::make_pair(0U, &RISCV::VMRegClass);
9313     }
9314   }
9315 
9316   // Clang will correctly decode the usage of register name aliases into their
9317   // official names. However, other frontends like `rustc` do not. This allows
9318   // users of these frontends to use the ABI names for registers in LLVM-style
9319   // register constraints.
9320   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
9321                                .Case("{zero}", RISCV::X0)
9322                                .Case("{ra}", RISCV::X1)
9323                                .Case("{sp}", RISCV::X2)
9324                                .Case("{gp}", RISCV::X3)
9325                                .Case("{tp}", RISCV::X4)
9326                                .Case("{t0}", RISCV::X5)
9327                                .Case("{t1}", RISCV::X6)
9328                                .Case("{t2}", RISCV::X7)
9329                                .Cases("{s0}", "{fp}", RISCV::X8)
9330                                .Case("{s1}", RISCV::X9)
9331                                .Case("{a0}", RISCV::X10)
9332                                .Case("{a1}", RISCV::X11)
9333                                .Case("{a2}", RISCV::X12)
9334                                .Case("{a3}", RISCV::X13)
9335                                .Case("{a4}", RISCV::X14)
9336                                .Case("{a5}", RISCV::X15)
9337                                .Case("{a6}", RISCV::X16)
9338                                .Case("{a7}", RISCV::X17)
9339                                .Case("{s2}", RISCV::X18)
9340                                .Case("{s3}", RISCV::X19)
9341                                .Case("{s4}", RISCV::X20)
9342                                .Case("{s5}", RISCV::X21)
9343                                .Case("{s6}", RISCV::X22)
9344                                .Case("{s7}", RISCV::X23)
9345                                .Case("{s8}", RISCV::X24)
9346                                .Case("{s9}", RISCV::X25)
9347                                .Case("{s10}", RISCV::X26)
9348                                .Case("{s11}", RISCV::X27)
9349                                .Case("{t3}", RISCV::X28)
9350                                .Case("{t4}", RISCV::X29)
9351                                .Case("{t5}", RISCV::X30)
9352                                .Case("{t6}", RISCV::X31)
9353                                .Default(RISCV::NoRegister);
9354   if (XRegFromAlias != RISCV::NoRegister)
9355     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
9356 
9357   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
9358   // TableGen record rather than the AsmName to choose registers for InlineAsm
9359   // constraints, plus we want to match those names to the widest floating point
9360   // register type available, manually select floating point registers here.
9361   //
9362   // The second case is the ABI name of the register, so that frontends can also
9363   // use the ABI names in register constraint lists.
9364   if (Subtarget.hasStdExtF()) {
9365     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
9366                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
9367                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
9368                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
9369                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
9370                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
9371                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
9372                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
9373                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
9374                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
9375                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
9376                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
9377                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
9378                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
9379                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
9380                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
9381                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
9382                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
9383                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
9384                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
9385                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
9386                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
9387                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
9388                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
9389                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
9390                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
9391                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
9392                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
9393                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
9394                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
9395                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
9396                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
9397                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
9398                         .Default(RISCV::NoRegister);
9399     if (FReg != RISCV::NoRegister) {
9400       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
9401       if (Subtarget.hasStdExtD()) {
9402         unsigned RegNo = FReg - RISCV::F0_F;
9403         unsigned DReg = RISCV::F0_D + RegNo;
9404         return std::make_pair(DReg, &RISCV::FPR64RegClass);
9405       }
9406       return std::make_pair(FReg, &RISCV::FPR32RegClass);
9407     }
9408   }
9409 
9410   if (Subtarget.hasStdExtV()) {
9411     Register VReg = StringSwitch<Register>(Constraint.lower())
9412                         .Case("{v0}", RISCV::V0)
9413                         .Case("{v1}", RISCV::V1)
9414                         .Case("{v2}", RISCV::V2)
9415                         .Case("{v3}", RISCV::V3)
9416                         .Case("{v4}", RISCV::V4)
9417                         .Case("{v5}", RISCV::V5)
9418                         .Case("{v6}", RISCV::V6)
9419                         .Case("{v7}", RISCV::V7)
9420                         .Case("{v8}", RISCV::V8)
9421                         .Case("{v9}", RISCV::V9)
9422                         .Case("{v10}", RISCV::V10)
9423                         .Case("{v11}", RISCV::V11)
9424                         .Case("{v12}", RISCV::V12)
9425                         .Case("{v13}", RISCV::V13)
9426                         .Case("{v14}", RISCV::V14)
9427                         .Case("{v15}", RISCV::V15)
9428                         .Case("{v16}", RISCV::V16)
9429                         .Case("{v17}", RISCV::V17)
9430                         .Case("{v18}", RISCV::V18)
9431                         .Case("{v19}", RISCV::V19)
9432                         .Case("{v20}", RISCV::V20)
9433                         .Case("{v21}", RISCV::V21)
9434                         .Case("{v22}", RISCV::V22)
9435                         .Case("{v23}", RISCV::V23)
9436                         .Case("{v24}", RISCV::V24)
9437                         .Case("{v25}", RISCV::V25)
9438                         .Case("{v26}", RISCV::V26)
9439                         .Case("{v27}", RISCV::V27)
9440                         .Case("{v28}", RISCV::V28)
9441                         .Case("{v29}", RISCV::V29)
9442                         .Case("{v30}", RISCV::V30)
9443                         .Case("{v31}", RISCV::V31)
9444                         .Default(RISCV::NoRegister);
9445     if (VReg != RISCV::NoRegister) {
9446       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
9447         return std::make_pair(VReg, &RISCV::VMRegClass);
9448       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
9449         return std::make_pair(VReg, &RISCV::VRRegClass);
9450       for (const auto *RC :
9451            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9452         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
9453           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
9454           return std::make_pair(VReg, RC);
9455         }
9456       }
9457     }
9458   }
9459 
9460   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
9461 }
9462 
9463 unsigned
9464 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
9465   // Currently only support length 1 constraints.
9466   if (ConstraintCode.size() == 1) {
9467     switch (ConstraintCode[0]) {
9468     case 'A':
9469       return InlineAsm::Constraint_A;
9470     default:
9471       break;
9472     }
9473   }
9474 
9475   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
9476 }
9477 
9478 void RISCVTargetLowering::LowerAsmOperandForConstraint(
9479     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
9480     SelectionDAG &DAG) const {
9481   // Currently only support length 1 constraints.
9482   if (Constraint.length() == 1) {
9483     switch (Constraint[0]) {
9484     case 'I':
9485       // Validate & create a 12-bit signed immediate operand.
9486       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
9487         uint64_t CVal = C->getSExtValue();
9488         if (isInt<12>(CVal))
9489           Ops.push_back(
9490               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
9491       }
9492       return;
9493     case 'J':
9494       // Validate & create an integer zero operand.
9495       if (auto *C = dyn_cast<ConstantSDNode>(Op))
9496         if (C->getZExtValue() == 0)
9497           Ops.push_back(
9498               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
9499       return;
9500     case 'K':
9501       // Validate & create a 5-bit unsigned immediate operand.
9502       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
9503         uint64_t CVal = C->getZExtValue();
9504         if (isUInt<5>(CVal))
9505           Ops.push_back(
9506               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
9507       }
9508       return;
9509     case 'S':
9510       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9511         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
9512                                                  GA->getValueType(0)));
9513       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
9514         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
9515                                                 BA->getValueType(0)));
9516       }
9517       return;
9518     default:
9519       break;
9520     }
9521   }
9522   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
9523 }
9524 
9525 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
9526                                                    Instruction *Inst,
9527                                                    AtomicOrdering Ord) const {
9528   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
9529     return Builder.CreateFence(Ord);
9530   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
9531     return Builder.CreateFence(AtomicOrdering::Release);
9532   return nullptr;
9533 }
9534 
9535 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
9536                                                     Instruction *Inst,
9537                                                     AtomicOrdering Ord) const {
9538   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
9539     return Builder.CreateFence(AtomicOrdering::Acquire);
9540   return nullptr;
9541 }
9542 
9543 TargetLowering::AtomicExpansionKind
9544 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
9545   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
9546   // point operations can't be used in an lr/sc sequence without breaking the
9547   // forward-progress guarantee.
9548   if (AI->isFloatingPointOperation())
9549     return AtomicExpansionKind::CmpXChg;
9550 
9551   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
9552   if (Size == 8 || Size == 16)
9553     return AtomicExpansionKind::MaskedIntrinsic;
9554   return AtomicExpansionKind::None;
9555 }
9556 
9557 static Intrinsic::ID
9558 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
9559   if (XLen == 32) {
9560     switch (BinOp) {
9561     default:
9562       llvm_unreachable("Unexpected AtomicRMW BinOp");
9563     case AtomicRMWInst::Xchg:
9564       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
9565     case AtomicRMWInst::Add:
9566       return Intrinsic::riscv_masked_atomicrmw_add_i32;
9567     case AtomicRMWInst::Sub:
9568       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
9569     case AtomicRMWInst::Nand:
9570       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
9571     case AtomicRMWInst::Max:
9572       return Intrinsic::riscv_masked_atomicrmw_max_i32;
9573     case AtomicRMWInst::Min:
9574       return Intrinsic::riscv_masked_atomicrmw_min_i32;
9575     case AtomicRMWInst::UMax:
9576       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
9577     case AtomicRMWInst::UMin:
9578       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
9579     }
9580   }
9581 
9582   if (XLen == 64) {
9583     switch (BinOp) {
9584     default:
9585       llvm_unreachable("Unexpected AtomicRMW BinOp");
9586     case AtomicRMWInst::Xchg:
9587       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
9588     case AtomicRMWInst::Add:
9589       return Intrinsic::riscv_masked_atomicrmw_add_i64;
9590     case AtomicRMWInst::Sub:
9591       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
9592     case AtomicRMWInst::Nand:
9593       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
9594     case AtomicRMWInst::Max:
9595       return Intrinsic::riscv_masked_atomicrmw_max_i64;
9596     case AtomicRMWInst::Min:
9597       return Intrinsic::riscv_masked_atomicrmw_min_i64;
9598     case AtomicRMWInst::UMax:
9599       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
9600     case AtomicRMWInst::UMin:
9601       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
9602     }
9603   }
9604 
9605   llvm_unreachable("Unexpected XLen\n");
9606 }
9607 
9608 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
9609     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
9610     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
9611   unsigned XLen = Subtarget.getXLen();
9612   Value *Ordering =
9613       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
9614   Type *Tys[] = {AlignedAddr->getType()};
9615   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
9616       AI->getModule(),
9617       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
9618 
9619   if (XLen == 64) {
9620     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
9621     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
9622     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
9623   }
9624 
9625   Value *Result;
9626 
9627   // Must pass the shift amount needed to sign extend the loaded value prior
9628   // to performing a signed comparison for min/max. ShiftAmt is the number of
9629   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
9630   // is the number of bits to left+right shift the value in order to
9631   // sign-extend.
9632   if (AI->getOperation() == AtomicRMWInst::Min ||
9633       AI->getOperation() == AtomicRMWInst::Max) {
9634     const DataLayout &DL = AI->getModule()->getDataLayout();
9635     unsigned ValWidth =
9636         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
9637     Value *SextShamt =
9638         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
9639     Result = Builder.CreateCall(LrwOpScwLoop,
9640                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
9641   } else {
9642     Result =
9643         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
9644   }
9645 
9646   if (XLen == 64)
9647     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
9648   return Result;
9649 }
9650 
9651 TargetLowering::AtomicExpansionKind
9652 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
9653     AtomicCmpXchgInst *CI) const {
9654   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
9655   if (Size == 8 || Size == 16)
9656     return AtomicExpansionKind::MaskedIntrinsic;
9657   return AtomicExpansionKind::None;
9658 }
9659 
9660 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
9661     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
9662     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
9663   unsigned XLen = Subtarget.getXLen();
9664   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
9665   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
9666   if (XLen == 64) {
9667     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
9668     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
9669     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
9670     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
9671   }
9672   Type *Tys[] = {AlignedAddr->getType()};
9673   Function *MaskedCmpXchg =
9674       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
9675   Value *Result = Builder.CreateCall(
9676       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
9677   if (XLen == 64)
9678     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
9679   return Result;
9680 }
9681 
9682 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
9683   return false;
9684 }
9685 
9686 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
9687                                                      EVT VT) const {
9688   VT = VT.getScalarType();
9689 
9690   if (!VT.isSimple())
9691     return false;
9692 
9693   switch (VT.getSimpleVT().SimpleTy) {
9694   case MVT::f16:
9695     return Subtarget.hasStdExtZfh();
9696   case MVT::f32:
9697     return Subtarget.hasStdExtF();
9698   case MVT::f64:
9699     return Subtarget.hasStdExtD();
9700   default:
9701     break;
9702   }
9703 
9704   return false;
9705 }
9706 
9707 Register RISCVTargetLowering::getExceptionPointerRegister(
9708     const Constant *PersonalityFn) const {
9709   return RISCV::X10;
9710 }
9711 
9712 Register RISCVTargetLowering::getExceptionSelectorRegister(
9713     const Constant *PersonalityFn) const {
9714   return RISCV::X11;
9715 }
9716 
9717 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
9718   // Return false to suppress the unnecessary extensions if the LibCall
9719   // arguments or return value is f32 type for LP64 ABI.
9720   RISCVABI::ABI ABI = Subtarget.getTargetABI();
9721   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
9722     return false;
9723 
9724   return true;
9725 }
9726 
9727 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
9728   if (Subtarget.is64Bit() && Type == MVT::i32)
9729     return true;
9730 
9731   return IsSigned;
9732 }
9733 
9734 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
9735                                                  SDValue C) const {
9736   // Check integral scalar types.
9737   if (VT.isScalarInteger()) {
9738     // Omit the optimization if the sub target has the M extension and the data
9739     // size exceeds XLen.
9740     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
9741       return false;
9742     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
9743       // Break the MUL to a SLLI and an ADD/SUB.
9744       const APInt &Imm = ConstNode->getAPIntValue();
9745       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
9746           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
9747         return true;
9748       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
9749       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
9750           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
9751            (Imm - 8).isPowerOf2()))
9752         return true;
9753       // Omit the following optimization if the sub target has the M extension
9754       // and the data size >= XLen.
9755       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
9756         return false;
9757       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
9758       // a pair of LUI/ADDI.
9759       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
9760         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
9761         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
9762             (1 - ImmS).isPowerOf2())
9763         return true;
9764       }
9765     }
9766   }
9767 
9768   return false;
9769 }
9770 
9771 bool RISCVTargetLowering::isMulAddWithConstProfitable(
9772     const SDValue &AddNode, const SDValue &ConstNode) const {
9773   // Let the DAGCombiner decide for vectors.
9774   EVT VT = AddNode.getValueType();
9775   if (VT.isVector())
9776     return true;
9777 
9778   // Let the DAGCombiner decide for larger types.
9779   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
9780     return true;
9781 
9782   // It is worse if c1 is simm12 while c1*c2 is not.
9783   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
9784   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
9785   const APInt &C1 = C1Node->getAPIntValue();
9786   const APInt &C2 = C2Node->getAPIntValue();
9787   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
9788     return false;
9789 
9790   // Default to true and let the DAGCombiner decide.
9791   return true;
9792 }
9793 
9794 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
9795     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
9796     bool *Fast) const {
9797   if (!VT.isVector())
9798     return false;
9799 
9800   EVT ElemVT = VT.getVectorElementType();
9801   if (Alignment >= ElemVT.getStoreSize()) {
9802     if (Fast)
9803       *Fast = true;
9804     return true;
9805   }
9806 
9807   return false;
9808 }
9809 
9810 bool RISCVTargetLowering::splitValueIntoRegisterParts(
9811     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
9812     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
9813   bool IsABIRegCopy = CC.hasValue();
9814   EVT ValueVT = Val.getValueType();
9815   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
9816     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
9817     // and cast to f32.
9818     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
9819     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
9820     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
9821                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
9822     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
9823     Parts[0] = Val;
9824     return true;
9825   }
9826 
9827   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
9828     LLVMContext &Context = *DAG.getContext();
9829     EVT ValueEltVT = ValueVT.getVectorElementType();
9830     EVT PartEltVT = PartVT.getVectorElementType();
9831     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
9832     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
9833     if (PartVTBitSize % ValueVTBitSize == 0) {
9834       // If the element types are different, bitcast to the same element type of
9835       // PartVT first.
9836       if (ValueEltVT != PartEltVT) {
9837         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
9838         assert(Count != 0 && "The number of element should not be zero.");
9839         EVT SameEltTypeVT =
9840             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
9841         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
9842       }
9843       Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
9844                         Val, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
9845       Parts[0] = Val;
9846       return true;
9847     }
9848   }
9849   return false;
9850 }
9851 
9852 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
9853     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
9854     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
9855   bool IsABIRegCopy = CC.hasValue();
9856   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
9857     SDValue Val = Parts[0];
9858 
9859     // Cast the f32 to i32, truncate to i16, and cast back to f16.
9860     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
9861     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
9862     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
9863     return Val;
9864   }
9865 
9866   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
9867     LLVMContext &Context = *DAG.getContext();
9868     SDValue Val = Parts[0];
9869     EVT ValueEltVT = ValueVT.getVectorElementType();
9870     EVT PartEltVT = PartVT.getVectorElementType();
9871     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
9872     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
9873     if (PartVTBitSize % ValueVTBitSize == 0) {
9874       EVT SameEltTypeVT = ValueVT;
9875       // If the element types are different, convert it to the same element type
9876       // of PartVT.
9877       if (ValueEltVT != PartEltVT) {
9878         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
9879         assert(Count != 0 && "The number of element should not be zero.");
9880         SameEltTypeVT =
9881             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
9882       }
9883       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val,
9884                         DAG.getConstant(0, DL, Subtarget.getXLenVT()));
9885       if (ValueEltVT != PartEltVT)
9886         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
9887       return Val;
9888     }
9889   }
9890   return SDValue();
9891 }
9892 
9893 #define GET_REGISTER_MATCHER
9894 #include "RISCVGenAsmMatcher.inc"
9895 
9896 Register
9897 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
9898                                        const MachineFunction &MF) const {
9899   Register Reg = MatchRegisterAltName(RegName);
9900   if (Reg == RISCV::NoRegister)
9901     Reg = MatchRegisterName(RegName);
9902   if (Reg == RISCV::NoRegister)
9903     report_fatal_error(
9904         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
9905   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
9906   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
9907     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
9908                              StringRef(RegName) + "\"."));
9909   return Reg;
9910 }
9911 
9912 namespace llvm {
9913 namespace RISCVVIntrinsicsTable {
9914 
9915 #define GET_RISCVVIntrinsicsTable_IMPL
9916 #include "RISCVGenSearchableTables.inc"
9917 
9918 } // namespace RISCVVIntrinsicsTable
9919 
9920 } // namespace llvm
9921