1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 254 Subtarget.hasStdExtZbkb()) { 255 if (Subtarget.is64Bit()) { 256 setOperationAction(ISD::ROTL, MVT::i32, Custom); 257 setOperationAction(ISD::ROTR, MVT::i32, Custom); 258 } 259 } else { 260 setOperationAction(ISD::ROTL, XLenVT, Expand); 261 setOperationAction(ISD::ROTR, XLenVT, Expand); 262 } 263 264 if (Subtarget.hasStdExtZbp()) { 265 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 266 // more combining. 267 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 268 setOperationAction(ISD::BSWAP, XLenVT, Custom); 269 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 270 // BSWAP i8 doesn't exist. 271 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 272 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 273 274 if (Subtarget.is64Bit()) { 275 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 276 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 277 } 278 } else { 279 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 280 // pattern match it directly in isel. 281 setOperationAction(ISD::BSWAP, XLenVT, 282 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 283 ? Legal 284 : Expand); 285 // Zbkb can use rev8+brev8 to implement bitreverse. 286 setOperationAction(ISD::BITREVERSE, XLenVT, 287 Subtarget.hasStdExtZbkb() ? Custom : Expand); 288 } 289 290 if (Subtarget.hasStdExtZbb()) { 291 setOperationAction(ISD::SMIN, XLenVT, Legal); 292 setOperationAction(ISD::SMAX, XLenVT, Legal); 293 setOperationAction(ISD::UMIN, XLenVT, Legal); 294 setOperationAction(ISD::UMAX, XLenVT, Legal); 295 296 if (Subtarget.is64Bit()) { 297 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 298 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 299 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 300 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 301 } 302 } else { 303 setOperationAction(ISD::CTTZ, XLenVT, Expand); 304 setOperationAction(ISD::CTLZ, XLenVT, Expand); 305 setOperationAction(ISD::CTPOP, XLenVT, Expand); 306 } 307 308 if (Subtarget.hasStdExtZbt()) { 309 setOperationAction(ISD::FSHL, XLenVT, Custom); 310 setOperationAction(ISD::FSHR, XLenVT, Custom); 311 setOperationAction(ISD::SELECT, XLenVT, Legal); 312 313 if (Subtarget.is64Bit()) { 314 setOperationAction(ISD::FSHL, MVT::i32, Custom); 315 setOperationAction(ISD::FSHR, MVT::i32, Custom); 316 } 317 } else { 318 setOperationAction(ISD::SELECT, XLenVT, Custom); 319 } 320 321 static const ISD::CondCode FPCCToExpand[] = { 322 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 323 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 324 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 325 326 static const ISD::NodeType FPOpToExpand[] = { 327 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 328 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 329 330 if (Subtarget.hasStdExtZfh()) 331 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 332 333 if (Subtarget.hasStdExtZfh()) { 334 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 335 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 336 setOperationAction(ISD::LRINT, MVT::f16, Legal); 337 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 338 setOperationAction(ISD::LROUND, MVT::f16, Legal); 339 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 340 setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal); 341 setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal); 342 setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal); 343 setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal); 344 setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); 345 setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); 346 setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); 348 setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); 349 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 350 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); 352 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal); 353 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal); 354 for (auto CC : FPCCToExpand) 355 setCondCodeAction(CC, MVT::f16, Expand); 356 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 357 setOperationAction(ISD::SELECT, MVT::f16, Custom); 358 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 359 360 setOperationAction(ISD::FREM, MVT::f16, Promote); 361 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 362 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 363 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 364 setOperationAction(ISD::FRINT, MVT::f16, Promote); 365 setOperationAction(ISD::FROUND, MVT::f16, Promote); 366 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 367 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 368 setOperationAction(ISD::FPOW, MVT::f16, Promote); 369 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 370 setOperationAction(ISD::FCOS, MVT::f16, Promote); 371 setOperationAction(ISD::FSIN, MVT::f16, Promote); 372 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 373 setOperationAction(ISD::FEXP, MVT::f16, Promote); 374 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 375 setOperationAction(ISD::FLOG, MVT::f16, Promote); 376 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 377 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 378 379 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 380 // complete support for all operations in LegalizeDAG. 381 382 // We need to custom promote this. 383 if (Subtarget.is64Bit()) 384 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 385 } 386 387 if (Subtarget.hasStdExtF()) { 388 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 389 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 390 setOperationAction(ISD::LRINT, MVT::f32, Legal); 391 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 392 setOperationAction(ISD::LROUND, MVT::f32, Legal); 393 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 394 setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal); 395 setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal); 396 setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal); 397 setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal); 398 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 399 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 400 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 401 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 402 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 403 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 404 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 405 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 406 for (auto CC : FPCCToExpand) 407 setCondCodeAction(CC, MVT::f32, Expand); 408 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 409 setOperationAction(ISD::SELECT, MVT::f32, Custom); 410 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 411 for (auto Op : FPOpToExpand) 412 setOperationAction(Op, MVT::f32, Expand); 413 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 414 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 415 } 416 417 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 418 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 419 420 if (Subtarget.hasStdExtD()) { 421 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 422 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 423 setOperationAction(ISD::LRINT, MVT::f64, Legal); 424 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 425 setOperationAction(ISD::LROUND, MVT::f64, Legal); 426 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 427 setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal); 428 setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal); 429 setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal); 430 setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal); 431 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 432 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 433 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 434 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 435 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 436 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 437 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 438 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 439 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 440 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 441 for (auto CC : FPCCToExpand) 442 setCondCodeAction(CC, MVT::f64, Expand); 443 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 444 setOperationAction(ISD::SELECT, MVT::f64, Custom); 445 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 446 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 447 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 448 for (auto Op : FPOpToExpand) 449 setOperationAction(Op, MVT::f64, Expand); 450 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 451 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 452 } 453 454 if (Subtarget.is64Bit()) { 455 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 456 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 457 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 458 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 459 } 460 461 if (Subtarget.hasStdExtF()) { 462 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 463 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 464 465 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 466 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 467 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 468 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 469 470 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 471 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 472 } 473 474 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 475 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 476 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 477 setOperationAction(ISD::JumpTable, XLenVT, Custom); 478 479 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 480 481 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 482 // Unfortunately this can't be determined just from the ISA naming string. 483 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 484 Subtarget.is64Bit() ? Legal : Custom); 485 486 setOperationAction(ISD::TRAP, MVT::Other, Legal); 487 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 488 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 489 if (Subtarget.is64Bit()) 490 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 491 492 if (Subtarget.hasStdExtA()) { 493 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 494 setMinCmpXchgSizeInBits(32); 495 } else { 496 setMaxAtomicSizeInBitsSupported(0); 497 } 498 499 setBooleanContents(ZeroOrOneBooleanContent); 500 501 if (Subtarget.hasVInstructions()) { 502 setBooleanVectorContents(ZeroOrOneBooleanContent); 503 504 setOperationAction(ISD::VSCALE, XLenVT, Custom); 505 506 // RVV intrinsics may have illegal operands. 507 // We also need to custom legalize vmv.x.s. 508 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 509 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 510 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 511 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 512 if (Subtarget.is64Bit()) { 513 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 514 } else { 515 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 516 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 517 } 518 519 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 520 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 521 522 static const unsigned IntegerVPOps[] = { 523 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 524 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 525 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 526 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 527 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 528 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 529 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 530 ISD::VP_MERGE, ISD::VP_SELECT}; 531 532 static const unsigned FloatingPointVPOps[] = { 533 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 534 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 535 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, 536 ISD::VP_SELECT}; 537 538 if (!Subtarget.is64Bit()) { 539 // We must custom-lower certain vXi64 operations on RV32 due to the vector 540 // element type being illegal. 541 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 542 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 543 544 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 545 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 546 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 547 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 548 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 549 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 550 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 551 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 552 553 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 554 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 555 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 556 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 557 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 558 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 559 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 560 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 561 } 562 563 for (MVT VT : BoolVecVTs) { 564 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 565 566 // Mask VTs are custom-expanded into a series of standard nodes 567 setOperationAction(ISD::TRUNCATE, VT, Custom); 568 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 569 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 570 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 571 572 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 573 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 574 575 setOperationAction(ISD::SELECT, VT, Custom); 576 setOperationAction(ISD::SELECT_CC, VT, Expand); 577 setOperationAction(ISD::VSELECT, VT, Expand); 578 setOperationAction(ISD::VP_MERGE, VT, Expand); 579 setOperationAction(ISD::VP_SELECT, VT, Expand); 580 581 setOperationAction(ISD::VP_AND, VT, Custom); 582 setOperationAction(ISD::VP_OR, VT, Custom); 583 setOperationAction(ISD::VP_XOR, VT, Custom); 584 585 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 586 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 587 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 588 589 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 590 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 591 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 592 593 // RVV has native int->float & float->int conversions where the 594 // element type sizes are within one power-of-two of each other. Any 595 // wider distances between type sizes have to be lowered as sequences 596 // which progressively narrow the gap in stages. 597 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 598 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 599 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 600 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 601 602 // Expand all extending loads to types larger than this, and truncating 603 // stores from types larger than this. 604 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 605 setTruncStoreAction(OtherVT, VT, Expand); 606 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 607 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 608 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 609 } 610 } 611 612 for (MVT VT : IntVecVTs) { 613 if (VT.getVectorElementType() == MVT::i64 && 614 !Subtarget.hasVInstructionsI64()) 615 continue; 616 617 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 618 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 619 620 // Vectors implement MULHS/MULHU. 621 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 622 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 623 624 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 625 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) { 626 setOperationAction(ISD::MULHU, VT, Expand); 627 setOperationAction(ISD::MULHS, VT, Expand); 628 } 629 630 setOperationAction(ISD::SMIN, VT, Legal); 631 setOperationAction(ISD::SMAX, VT, Legal); 632 setOperationAction(ISD::UMIN, VT, Legal); 633 setOperationAction(ISD::UMAX, VT, Legal); 634 635 setOperationAction(ISD::ROTL, VT, Expand); 636 setOperationAction(ISD::ROTR, VT, Expand); 637 638 setOperationAction(ISD::CTTZ, VT, Expand); 639 setOperationAction(ISD::CTLZ, VT, Expand); 640 setOperationAction(ISD::CTPOP, VT, Expand); 641 642 setOperationAction(ISD::BSWAP, VT, Expand); 643 644 // Custom-lower extensions and truncations from/to mask types. 645 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 646 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 647 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 648 649 // RVV has native int->float & float->int conversions where the 650 // element type sizes are within one power-of-two of each other. Any 651 // wider distances between type sizes have to be lowered as sequences 652 // which progressively narrow the gap in stages. 653 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 654 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 655 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 656 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 657 658 setOperationAction(ISD::SADDSAT, VT, Legal); 659 setOperationAction(ISD::UADDSAT, VT, Legal); 660 setOperationAction(ISD::SSUBSAT, VT, Legal); 661 setOperationAction(ISD::USUBSAT, VT, Legal); 662 663 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 664 // nodes which truncate by one power of two at a time. 665 setOperationAction(ISD::TRUNCATE, VT, Custom); 666 667 // Custom-lower insert/extract operations to simplify patterns. 668 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 669 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 670 671 // Custom-lower reduction operations to set up the corresponding custom 672 // nodes' operands. 673 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 674 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 675 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 676 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 677 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 678 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 679 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 680 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 681 682 for (unsigned VPOpc : IntegerVPOps) 683 setOperationAction(VPOpc, VT, Custom); 684 685 setOperationAction(ISD::LOAD, VT, Custom); 686 setOperationAction(ISD::STORE, VT, Custom); 687 688 setOperationAction(ISD::MLOAD, VT, Custom); 689 setOperationAction(ISD::MSTORE, VT, Custom); 690 setOperationAction(ISD::MGATHER, VT, Custom); 691 setOperationAction(ISD::MSCATTER, VT, Custom); 692 693 setOperationAction(ISD::VP_LOAD, VT, Custom); 694 setOperationAction(ISD::VP_STORE, VT, Custom); 695 setOperationAction(ISD::VP_GATHER, VT, Custom); 696 setOperationAction(ISD::VP_SCATTER, VT, Custom); 697 698 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 699 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 700 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 701 702 setOperationAction(ISD::SELECT, VT, Custom); 703 setOperationAction(ISD::SELECT_CC, VT, Expand); 704 705 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 706 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 707 708 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 709 setTruncStoreAction(VT, OtherVT, Expand); 710 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 711 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 712 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 713 } 714 715 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 716 // type that can represent the value exactly. 717 if (VT.getVectorElementType() != MVT::i64) { 718 MVT FloatEltVT = 719 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 720 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 721 if (isTypeLegal(FloatVT)) { 722 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 723 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 724 } 725 } 726 } 727 728 // Expand various CCs to best match the RVV ISA, which natively supports UNE 729 // but no other unordered comparisons, and supports all ordered comparisons 730 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 731 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 732 // and we pattern-match those back to the "original", swapping operands once 733 // more. This way we catch both operations and both "vf" and "fv" forms with 734 // fewer patterns. 735 static const ISD::CondCode VFPCCToExpand[] = { 736 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 737 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 738 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 739 }; 740 741 // Sets common operation actions on RVV floating-point vector types. 742 const auto SetCommonVFPActions = [&](MVT VT) { 743 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 744 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 745 // sizes are within one power-of-two of each other. Therefore conversions 746 // between vXf16 and vXf64 must be lowered as sequences which convert via 747 // vXf32. 748 setOperationAction(ISD::FP_ROUND, VT, Custom); 749 setOperationAction(ISD::FP_EXTEND, VT, Custom); 750 // Custom-lower insert/extract operations to simplify patterns. 751 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 752 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 753 // Expand various condition codes (explained above). 754 for (auto CC : VFPCCToExpand) 755 setCondCodeAction(CC, VT, Expand); 756 757 setOperationAction(ISD::FMINNUM, VT, Legal); 758 setOperationAction(ISD::FMAXNUM, VT, Legal); 759 760 setOperationAction(ISD::FTRUNC, VT, Custom); 761 setOperationAction(ISD::FCEIL, VT, Custom); 762 setOperationAction(ISD::FFLOOR, VT, Custom); 763 setOperationAction(ISD::FROUND, VT, Custom); 764 765 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 766 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 767 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 768 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 769 770 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 771 772 setOperationAction(ISD::LOAD, VT, Custom); 773 setOperationAction(ISD::STORE, VT, Custom); 774 775 setOperationAction(ISD::MLOAD, VT, Custom); 776 setOperationAction(ISD::MSTORE, VT, Custom); 777 setOperationAction(ISD::MGATHER, VT, Custom); 778 setOperationAction(ISD::MSCATTER, VT, Custom); 779 780 setOperationAction(ISD::VP_LOAD, VT, Custom); 781 setOperationAction(ISD::VP_STORE, VT, Custom); 782 setOperationAction(ISD::VP_GATHER, VT, Custom); 783 setOperationAction(ISD::VP_SCATTER, VT, Custom); 784 785 setOperationAction(ISD::SELECT, VT, Custom); 786 setOperationAction(ISD::SELECT_CC, VT, Expand); 787 788 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 789 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 790 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 791 792 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 793 794 for (unsigned VPOpc : FloatingPointVPOps) 795 setOperationAction(VPOpc, VT, Custom); 796 }; 797 798 // Sets common extload/truncstore actions on RVV floating-point vector 799 // types. 800 const auto SetCommonVFPExtLoadTruncStoreActions = 801 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 802 for (auto SmallVT : SmallerVTs) { 803 setTruncStoreAction(VT, SmallVT, Expand); 804 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 805 } 806 }; 807 808 if (Subtarget.hasVInstructionsF16()) 809 for (MVT VT : F16VecVTs) 810 SetCommonVFPActions(VT); 811 812 for (MVT VT : F32VecVTs) { 813 if (Subtarget.hasVInstructionsF32()) 814 SetCommonVFPActions(VT); 815 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 816 } 817 818 for (MVT VT : F64VecVTs) { 819 if (Subtarget.hasVInstructionsF64()) 820 SetCommonVFPActions(VT); 821 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 822 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 823 } 824 825 if (Subtarget.useRVVForFixedLengthVectors()) { 826 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 827 if (!useRVVForFixedLengthVectorVT(VT)) 828 continue; 829 830 // By default everything must be expanded. 831 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 832 setOperationAction(Op, VT, Expand); 833 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 834 setTruncStoreAction(VT, OtherVT, Expand); 835 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 836 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 837 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 838 } 839 840 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 841 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 842 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 843 844 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 845 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 846 847 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 848 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 849 850 setOperationAction(ISD::LOAD, VT, Custom); 851 setOperationAction(ISD::STORE, VT, Custom); 852 853 setOperationAction(ISD::SETCC, VT, Custom); 854 855 setOperationAction(ISD::SELECT, VT, Custom); 856 857 setOperationAction(ISD::TRUNCATE, VT, Custom); 858 859 setOperationAction(ISD::BITCAST, VT, Custom); 860 861 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 862 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 863 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 864 865 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 866 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 867 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 868 869 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 870 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 871 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 872 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 873 874 // Operations below are different for between masks and other vectors. 875 if (VT.getVectorElementType() == MVT::i1) { 876 setOperationAction(ISD::VP_AND, VT, Custom); 877 setOperationAction(ISD::VP_OR, VT, Custom); 878 setOperationAction(ISD::VP_XOR, VT, Custom); 879 setOperationAction(ISD::AND, VT, Custom); 880 setOperationAction(ISD::OR, VT, Custom); 881 setOperationAction(ISD::XOR, VT, Custom); 882 continue; 883 } 884 885 // Use SPLAT_VECTOR to prevent type legalization from destroying the 886 // splats when type legalizing i64 scalar on RV32. 887 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 888 // improvements first. 889 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 890 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 891 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 892 } 893 894 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 895 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 896 897 setOperationAction(ISD::MLOAD, VT, Custom); 898 setOperationAction(ISD::MSTORE, VT, Custom); 899 setOperationAction(ISD::MGATHER, VT, Custom); 900 setOperationAction(ISD::MSCATTER, VT, Custom); 901 902 setOperationAction(ISD::VP_LOAD, VT, Custom); 903 setOperationAction(ISD::VP_STORE, VT, Custom); 904 setOperationAction(ISD::VP_GATHER, VT, Custom); 905 setOperationAction(ISD::VP_SCATTER, VT, Custom); 906 907 setOperationAction(ISD::ADD, VT, Custom); 908 setOperationAction(ISD::MUL, VT, Custom); 909 setOperationAction(ISD::SUB, VT, Custom); 910 setOperationAction(ISD::AND, VT, Custom); 911 setOperationAction(ISD::OR, VT, Custom); 912 setOperationAction(ISD::XOR, VT, Custom); 913 setOperationAction(ISD::SDIV, VT, Custom); 914 setOperationAction(ISD::SREM, VT, Custom); 915 setOperationAction(ISD::UDIV, VT, Custom); 916 setOperationAction(ISD::UREM, VT, Custom); 917 setOperationAction(ISD::SHL, VT, Custom); 918 setOperationAction(ISD::SRA, VT, Custom); 919 setOperationAction(ISD::SRL, VT, Custom); 920 921 setOperationAction(ISD::SMIN, VT, Custom); 922 setOperationAction(ISD::SMAX, VT, Custom); 923 setOperationAction(ISD::UMIN, VT, Custom); 924 setOperationAction(ISD::UMAX, VT, Custom); 925 setOperationAction(ISD::ABS, VT, Custom); 926 927 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 928 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) { 929 setOperationAction(ISD::MULHS, VT, Custom); 930 setOperationAction(ISD::MULHU, VT, Custom); 931 } 932 933 setOperationAction(ISD::SADDSAT, VT, Custom); 934 setOperationAction(ISD::UADDSAT, VT, Custom); 935 setOperationAction(ISD::SSUBSAT, VT, Custom); 936 setOperationAction(ISD::USUBSAT, VT, Custom); 937 938 setOperationAction(ISD::VSELECT, VT, Custom); 939 setOperationAction(ISD::SELECT_CC, VT, Expand); 940 941 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 942 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 943 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 944 945 // Custom-lower reduction operations to set up the corresponding custom 946 // nodes' operands. 947 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 948 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 949 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 950 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 951 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 952 953 for (unsigned VPOpc : IntegerVPOps) 954 setOperationAction(VPOpc, VT, Custom); 955 956 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 957 // type that can represent the value exactly. 958 if (VT.getVectorElementType() != MVT::i64) { 959 MVT FloatEltVT = 960 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 961 EVT FloatVT = 962 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 963 if (isTypeLegal(FloatVT)) { 964 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 965 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 966 } 967 } 968 } 969 970 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 971 if (!useRVVForFixedLengthVectorVT(VT)) 972 continue; 973 974 // By default everything must be expanded. 975 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 976 setOperationAction(Op, VT, Expand); 977 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 978 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 979 setTruncStoreAction(VT, OtherVT, Expand); 980 } 981 982 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 983 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 984 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 985 986 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 987 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 988 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 989 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 990 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 991 992 setOperationAction(ISD::LOAD, VT, Custom); 993 setOperationAction(ISD::STORE, VT, Custom); 994 setOperationAction(ISD::MLOAD, VT, Custom); 995 setOperationAction(ISD::MSTORE, VT, Custom); 996 setOperationAction(ISD::MGATHER, VT, Custom); 997 setOperationAction(ISD::MSCATTER, VT, Custom); 998 999 setOperationAction(ISD::VP_LOAD, VT, Custom); 1000 setOperationAction(ISD::VP_STORE, VT, Custom); 1001 setOperationAction(ISD::VP_GATHER, VT, Custom); 1002 setOperationAction(ISD::VP_SCATTER, VT, Custom); 1003 1004 setOperationAction(ISD::FADD, VT, Custom); 1005 setOperationAction(ISD::FSUB, VT, Custom); 1006 setOperationAction(ISD::FMUL, VT, Custom); 1007 setOperationAction(ISD::FDIV, VT, Custom); 1008 setOperationAction(ISD::FNEG, VT, Custom); 1009 setOperationAction(ISD::FABS, VT, Custom); 1010 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 1011 setOperationAction(ISD::FSQRT, VT, Custom); 1012 setOperationAction(ISD::FMA, VT, Custom); 1013 setOperationAction(ISD::FMINNUM, VT, Custom); 1014 setOperationAction(ISD::FMAXNUM, VT, Custom); 1015 1016 setOperationAction(ISD::FP_ROUND, VT, Custom); 1017 setOperationAction(ISD::FP_EXTEND, VT, Custom); 1018 1019 setOperationAction(ISD::FTRUNC, VT, Custom); 1020 setOperationAction(ISD::FCEIL, VT, Custom); 1021 setOperationAction(ISD::FFLOOR, VT, Custom); 1022 setOperationAction(ISD::FROUND, VT, Custom); 1023 1024 for (auto CC : VFPCCToExpand) 1025 setCondCodeAction(CC, VT, Expand); 1026 1027 setOperationAction(ISD::VSELECT, VT, Custom); 1028 setOperationAction(ISD::SELECT, VT, Custom); 1029 setOperationAction(ISD::SELECT_CC, VT, Expand); 1030 1031 setOperationAction(ISD::BITCAST, VT, Custom); 1032 1033 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1034 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1035 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1036 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1037 1038 for (unsigned VPOpc : FloatingPointVPOps) 1039 setOperationAction(VPOpc, VT, Custom); 1040 } 1041 1042 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1043 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1044 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1045 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1046 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1047 if (Subtarget.hasStdExtZfh()) 1048 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1049 if (Subtarget.hasStdExtF()) 1050 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1051 if (Subtarget.hasStdExtD()) 1052 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1053 } 1054 } 1055 1056 // Function alignments. 1057 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1058 setMinFunctionAlignment(FunctionAlignment); 1059 setPrefFunctionAlignment(FunctionAlignment); 1060 1061 setMinimumJumpTableEntries(5); 1062 1063 // Jumps are expensive, compared to logic 1064 setJumpIsExpensive(); 1065 1066 setTargetDAGCombine(ISD::ADD); 1067 setTargetDAGCombine(ISD::SUB); 1068 setTargetDAGCombine(ISD::AND); 1069 setTargetDAGCombine(ISD::OR); 1070 setTargetDAGCombine(ISD::XOR); 1071 setTargetDAGCombine(ISD::ANY_EXTEND); 1072 if (Subtarget.hasStdExtF()) { 1073 setTargetDAGCombine(ISD::ZERO_EXTEND); 1074 setTargetDAGCombine(ISD::FP_TO_SINT); 1075 setTargetDAGCombine(ISD::FP_TO_UINT); 1076 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 1077 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 1078 } 1079 if (Subtarget.hasVInstructions()) { 1080 setTargetDAGCombine(ISD::FCOPYSIGN); 1081 setTargetDAGCombine(ISD::MGATHER); 1082 setTargetDAGCombine(ISD::MSCATTER); 1083 setTargetDAGCombine(ISD::VP_GATHER); 1084 setTargetDAGCombine(ISD::VP_SCATTER); 1085 setTargetDAGCombine(ISD::SRA); 1086 setTargetDAGCombine(ISD::SRL); 1087 setTargetDAGCombine(ISD::SHL); 1088 setTargetDAGCombine(ISD::STORE); 1089 setTargetDAGCombine(ISD::SPLAT_VECTOR); 1090 } 1091 1092 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 1093 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 1094 } 1095 1096 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1097 LLVMContext &Context, 1098 EVT VT) const { 1099 if (!VT.isVector()) 1100 return getPointerTy(DL); 1101 if (Subtarget.hasVInstructions() && 1102 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1103 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1104 return VT.changeVectorElementTypeToInteger(); 1105 } 1106 1107 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1108 return Subtarget.getXLenVT(); 1109 } 1110 1111 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1112 const CallInst &I, 1113 MachineFunction &MF, 1114 unsigned Intrinsic) const { 1115 auto &DL = I.getModule()->getDataLayout(); 1116 switch (Intrinsic) { 1117 default: 1118 return false; 1119 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1120 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1121 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1122 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1123 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1124 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1125 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1126 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1127 case Intrinsic::riscv_masked_cmpxchg_i32: 1128 Info.opc = ISD::INTRINSIC_W_CHAIN; 1129 Info.memVT = MVT::i32; 1130 Info.ptrVal = I.getArgOperand(0); 1131 Info.offset = 0; 1132 Info.align = Align(4); 1133 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1134 MachineMemOperand::MOVolatile; 1135 return true; 1136 case Intrinsic::riscv_masked_strided_load: 1137 Info.opc = ISD::INTRINSIC_W_CHAIN; 1138 Info.ptrVal = I.getArgOperand(1); 1139 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1140 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1141 Info.size = MemoryLocation::UnknownSize; 1142 Info.flags |= MachineMemOperand::MOLoad; 1143 return true; 1144 case Intrinsic::riscv_masked_strided_store: 1145 Info.opc = ISD::INTRINSIC_VOID; 1146 Info.ptrVal = I.getArgOperand(1); 1147 Info.memVT = 1148 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1149 Info.align = Align( 1150 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1151 8); 1152 Info.size = MemoryLocation::UnknownSize; 1153 Info.flags |= MachineMemOperand::MOStore; 1154 return true; 1155 } 1156 } 1157 1158 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1159 const AddrMode &AM, Type *Ty, 1160 unsigned AS, 1161 Instruction *I) const { 1162 // No global is ever allowed as a base. 1163 if (AM.BaseGV) 1164 return false; 1165 1166 // Require a 12-bit signed offset. 1167 if (!isInt<12>(AM.BaseOffs)) 1168 return false; 1169 1170 switch (AM.Scale) { 1171 case 0: // "r+i" or just "i", depending on HasBaseReg. 1172 break; 1173 case 1: 1174 if (!AM.HasBaseReg) // allow "r+i". 1175 break; 1176 return false; // disallow "r+r" or "r+r+i". 1177 default: 1178 return false; 1179 } 1180 1181 return true; 1182 } 1183 1184 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1185 return isInt<12>(Imm); 1186 } 1187 1188 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1189 return isInt<12>(Imm); 1190 } 1191 1192 // On RV32, 64-bit integers are split into their high and low parts and held 1193 // in two different registers, so the trunc is free since the low register can 1194 // just be used. 1195 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1196 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1197 return false; 1198 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1199 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1200 return (SrcBits == 64 && DestBits == 32); 1201 } 1202 1203 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1204 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1205 !SrcVT.isInteger() || !DstVT.isInteger()) 1206 return false; 1207 unsigned SrcBits = SrcVT.getSizeInBits(); 1208 unsigned DestBits = DstVT.getSizeInBits(); 1209 return (SrcBits == 64 && DestBits == 32); 1210 } 1211 1212 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1213 // Zexts are free if they can be combined with a load. 1214 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1215 // poorly with type legalization of compares preferring sext. 1216 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1217 EVT MemVT = LD->getMemoryVT(); 1218 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1219 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1220 LD->getExtensionType() == ISD::ZEXTLOAD)) 1221 return true; 1222 } 1223 1224 return TargetLowering::isZExtFree(Val, VT2); 1225 } 1226 1227 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1228 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1229 } 1230 1231 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1232 return Subtarget.hasStdExtZbb(); 1233 } 1234 1235 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1236 return Subtarget.hasStdExtZbb(); 1237 } 1238 1239 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1240 EVT VT = Y.getValueType(); 1241 1242 // FIXME: Support vectors once we have tests. 1243 if (VT.isVector()) 1244 return false; 1245 1246 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1247 Subtarget.hasStdExtZbkb()) && 1248 !isa<ConstantSDNode>(Y); 1249 } 1250 1251 /// Check if sinking \p I's operands to I's basic block is profitable, because 1252 /// the operands can be folded into a target instruction, e.g. 1253 /// splats of scalars can fold into vector instructions. 1254 bool RISCVTargetLowering::shouldSinkOperands( 1255 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1256 using namespace llvm::PatternMatch; 1257 1258 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1259 return false; 1260 1261 auto IsSinker = [&](Instruction *I, int Operand) { 1262 switch (I->getOpcode()) { 1263 case Instruction::Add: 1264 case Instruction::Sub: 1265 case Instruction::Mul: 1266 case Instruction::And: 1267 case Instruction::Or: 1268 case Instruction::Xor: 1269 case Instruction::FAdd: 1270 case Instruction::FSub: 1271 case Instruction::FMul: 1272 case Instruction::FDiv: 1273 case Instruction::ICmp: 1274 case Instruction::FCmp: 1275 return true; 1276 case Instruction::Shl: 1277 case Instruction::LShr: 1278 case Instruction::AShr: 1279 case Instruction::UDiv: 1280 case Instruction::SDiv: 1281 case Instruction::URem: 1282 case Instruction::SRem: 1283 return Operand == 1; 1284 case Instruction::Call: 1285 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1286 switch (II->getIntrinsicID()) { 1287 case Intrinsic::fma: 1288 return Operand == 0 || Operand == 1; 1289 // FIXME: Our patterns can only match vx/vf instructions when the splat 1290 // it on the RHS, because TableGen doesn't recognize our VP operations 1291 // as commutative. 1292 case Intrinsic::vp_add: 1293 case Intrinsic::vp_mul: 1294 case Intrinsic::vp_and: 1295 case Intrinsic::vp_or: 1296 case Intrinsic::vp_xor: 1297 case Intrinsic::vp_fadd: 1298 case Intrinsic::vp_fmul: 1299 case Intrinsic::vp_shl: 1300 case Intrinsic::vp_lshr: 1301 case Intrinsic::vp_ashr: 1302 case Intrinsic::vp_udiv: 1303 case Intrinsic::vp_sdiv: 1304 case Intrinsic::vp_urem: 1305 case Intrinsic::vp_srem: 1306 return Operand == 1; 1307 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1308 // explicit patterns for both LHS and RHS (as 'vr' versions). 1309 case Intrinsic::vp_sub: 1310 case Intrinsic::vp_fsub: 1311 case Intrinsic::vp_fdiv: 1312 return Operand == 0 || Operand == 1; 1313 default: 1314 return false; 1315 } 1316 } 1317 return false; 1318 default: 1319 return false; 1320 } 1321 }; 1322 1323 for (auto OpIdx : enumerate(I->operands())) { 1324 if (!IsSinker(I, OpIdx.index())) 1325 continue; 1326 1327 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1328 // Make sure we are not already sinking this operand 1329 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1330 continue; 1331 1332 // We are looking for a splat that can be sunk. 1333 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1334 m_Undef(), m_ZeroMask()))) 1335 continue; 1336 1337 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1338 // and vector registers 1339 for (Use &U : Op->uses()) { 1340 Instruction *Insn = cast<Instruction>(U.getUser()); 1341 if (!IsSinker(Insn, U.getOperandNo())) 1342 return false; 1343 } 1344 1345 Ops.push_back(&Op->getOperandUse(0)); 1346 Ops.push_back(&OpIdx.value()); 1347 } 1348 return true; 1349 } 1350 1351 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1352 bool ForCodeSize) const { 1353 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1354 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1355 return false; 1356 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1357 return false; 1358 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1359 return false; 1360 return Imm.isZero(); 1361 } 1362 1363 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1364 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1365 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1366 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1367 } 1368 1369 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1370 CallingConv::ID CC, 1371 EVT VT) const { 1372 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1373 // We might still end up using a GPR but that will be decided based on ABI. 1374 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1375 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1376 return MVT::f32; 1377 1378 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1379 } 1380 1381 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1382 CallingConv::ID CC, 1383 EVT VT) const { 1384 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1385 // We might still end up using a GPR but that will be decided based on ABI. 1386 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1387 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1388 return 1; 1389 1390 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1391 } 1392 1393 // Changes the condition code and swaps operands if necessary, so the SetCC 1394 // operation matches one of the comparisons supported directly by branches 1395 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1396 // with 1/-1. 1397 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1398 ISD::CondCode &CC, SelectionDAG &DAG) { 1399 // Convert X > -1 to X >= 0. 1400 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1401 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1402 CC = ISD::SETGE; 1403 return; 1404 } 1405 // Convert X < 1 to 0 >= X. 1406 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1407 RHS = LHS; 1408 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1409 CC = ISD::SETGE; 1410 return; 1411 } 1412 1413 switch (CC) { 1414 default: 1415 break; 1416 case ISD::SETGT: 1417 case ISD::SETLE: 1418 case ISD::SETUGT: 1419 case ISD::SETULE: 1420 CC = ISD::getSetCCSwappedOperands(CC); 1421 std::swap(LHS, RHS); 1422 break; 1423 } 1424 } 1425 1426 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1427 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1428 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1429 if (VT.getVectorElementType() == MVT::i1) 1430 KnownSize *= 8; 1431 1432 switch (KnownSize) { 1433 default: 1434 llvm_unreachable("Invalid LMUL."); 1435 case 8: 1436 return RISCVII::VLMUL::LMUL_F8; 1437 case 16: 1438 return RISCVII::VLMUL::LMUL_F4; 1439 case 32: 1440 return RISCVII::VLMUL::LMUL_F2; 1441 case 64: 1442 return RISCVII::VLMUL::LMUL_1; 1443 case 128: 1444 return RISCVII::VLMUL::LMUL_2; 1445 case 256: 1446 return RISCVII::VLMUL::LMUL_4; 1447 case 512: 1448 return RISCVII::VLMUL::LMUL_8; 1449 } 1450 } 1451 1452 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1453 switch (LMul) { 1454 default: 1455 llvm_unreachable("Invalid LMUL."); 1456 case RISCVII::VLMUL::LMUL_F8: 1457 case RISCVII::VLMUL::LMUL_F4: 1458 case RISCVII::VLMUL::LMUL_F2: 1459 case RISCVII::VLMUL::LMUL_1: 1460 return RISCV::VRRegClassID; 1461 case RISCVII::VLMUL::LMUL_2: 1462 return RISCV::VRM2RegClassID; 1463 case RISCVII::VLMUL::LMUL_4: 1464 return RISCV::VRM4RegClassID; 1465 case RISCVII::VLMUL::LMUL_8: 1466 return RISCV::VRM8RegClassID; 1467 } 1468 } 1469 1470 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1471 RISCVII::VLMUL LMUL = getLMUL(VT); 1472 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1473 LMUL == RISCVII::VLMUL::LMUL_F4 || 1474 LMUL == RISCVII::VLMUL::LMUL_F2 || 1475 LMUL == RISCVII::VLMUL::LMUL_1) { 1476 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1477 "Unexpected subreg numbering"); 1478 return RISCV::sub_vrm1_0 + Index; 1479 } 1480 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1481 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1482 "Unexpected subreg numbering"); 1483 return RISCV::sub_vrm2_0 + Index; 1484 } 1485 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1486 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1487 "Unexpected subreg numbering"); 1488 return RISCV::sub_vrm4_0 + Index; 1489 } 1490 llvm_unreachable("Invalid vector type."); 1491 } 1492 1493 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1494 if (VT.getVectorElementType() == MVT::i1) 1495 return RISCV::VRRegClassID; 1496 return getRegClassIDForLMUL(getLMUL(VT)); 1497 } 1498 1499 // Attempt to decompose a subvector insert/extract between VecVT and 1500 // SubVecVT via subregister indices. Returns the subregister index that 1501 // can perform the subvector insert/extract with the given element index, as 1502 // well as the index corresponding to any leftover subvectors that must be 1503 // further inserted/extracted within the register class for SubVecVT. 1504 std::pair<unsigned, unsigned> 1505 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1506 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1507 const RISCVRegisterInfo *TRI) { 1508 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1509 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1510 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1511 "Register classes not ordered"); 1512 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1513 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1514 // Try to compose a subregister index that takes us from the incoming 1515 // LMUL>1 register class down to the outgoing one. At each step we half 1516 // the LMUL: 1517 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1518 // Note that this is not guaranteed to find a subregister index, such as 1519 // when we are extracting from one VR type to another. 1520 unsigned SubRegIdx = RISCV::NoSubRegister; 1521 for (const unsigned RCID : 1522 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1523 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1524 VecVT = VecVT.getHalfNumVectorElementsVT(); 1525 bool IsHi = 1526 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1527 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1528 getSubregIndexByMVT(VecVT, IsHi)); 1529 if (IsHi) 1530 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1531 } 1532 return {SubRegIdx, InsertExtractIdx}; 1533 } 1534 1535 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1536 // stores for those types. 1537 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1538 return !Subtarget.useRVVForFixedLengthVectors() || 1539 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1540 } 1541 1542 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1543 if (ScalarTy->isPointerTy()) 1544 return true; 1545 1546 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1547 ScalarTy->isIntegerTy(32)) 1548 return true; 1549 1550 if (ScalarTy->isIntegerTy(64)) 1551 return Subtarget.hasVInstructionsI64(); 1552 1553 if (ScalarTy->isHalfTy()) 1554 return Subtarget.hasVInstructionsF16(); 1555 if (ScalarTy->isFloatTy()) 1556 return Subtarget.hasVInstructionsF32(); 1557 if (ScalarTy->isDoubleTy()) 1558 return Subtarget.hasVInstructionsF64(); 1559 1560 return false; 1561 } 1562 1563 static SDValue getVLOperand(SDValue Op) { 1564 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1565 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1566 "Unexpected opcode"); 1567 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1568 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1569 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1570 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1571 if (!II) 1572 return SDValue(); 1573 return Op.getOperand(II->VLOperand + 1 + HasChain); 1574 } 1575 1576 static bool useRVVForFixedLengthVectorVT(MVT VT, 1577 const RISCVSubtarget &Subtarget) { 1578 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1579 if (!Subtarget.useRVVForFixedLengthVectors()) 1580 return false; 1581 1582 // We only support a set of vector types with a consistent maximum fixed size 1583 // across all supported vector element types to avoid legalization issues. 1584 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1585 // fixed-length vector type we support is 1024 bytes. 1586 if (VT.getFixedSizeInBits() > 1024 * 8) 1587 return false; 1588 1589 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1590 1591 MVT EltVT = VT.getVectorElementType(); 1592 1593 // Don't use RVV for vectors we cannot scalarize if required. 1594 switch (EltVT.SimpleTy) { 1595 // i1 is supported but has different rules. 1596 default: 1597 return false; 1598 case MVT::i1: 1599 // Masks can only use a single register. 1600 if (VT.getVectorNumElements() > MinVLen) 1601 return false; 1602 MinVLen /= 8; 1603 break; 1604 case MVT::i8: 1605 case MVT::i16: 1606 case MVT::i32: 1607 break; 1608 case MVT::i64: 1609 if (!Subtarget.hasVInstructionsI64()) 1610 return false; 1611 break; 1612 case MVT::f16: 1613 if (!Subtarget.hasVInstructionsF16()) 1614 return false; 1615 break; 1616 case MVT::f32: 1617 if (!Subtarget.hasVInstructionsF32()) 1618 return false; 1619 break; 1620 case MVT::f64: 1621 if (!Subtarget.hasVInstructionsF64()) 1622 return false; 1623 break; 1624 } 1625 1626 // Reject elements larger than ELEN. 1627 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1628 return false; 1629 1630 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1631 // Don't use RVV for types that don't fit. 1632 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1633 return false; 1634 1635 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1636 // the base fixed length RVV support in place. 1637 if (!VT.isPow2VectorType()) 1638 return false; 1639 1640 return true; 1641 } 1642 1643 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1644 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1645 } 1646 1647 // Return the largest legal scalable vector type that matches VT's element type. 1648 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1649 const RISCVSubtarget &Subtarget) { 1650 // This may be called before legal types are setup. 1651 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1652 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1653 "Expected legal fixed length vector!"); 1654 1655 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1656 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1657 1658 MVT EltVT = VT.getVectorElementType(); 1659 switch (EltVT.SimpleTy) { 1660 default: 1661 llvm_unreachable("unexpected element type for RVV container"); 1662 case MVT::i1: 1663 case MVT::i8: 1664 case MVT::i16: 1665 case MVT::i32: 1666 case MVT::i64: 1667 case MVT::f16: 1668 case MVT::f32: 1669 case MVT::f64: { 1670 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1671 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1672 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1673 unsigned NumElts = 1674 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1675 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1676 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1677 return MVT::getScalableVectorVT(EltVT, NumElts); 1678 } 1679 } 1680 } 1681 1682 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1683 const RISCVSubtarget &Subtarget) { 1684 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1685 Subtarget); 1686 } 1687 1688 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1689 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1690 } 1691 1692 // Grow V to consume an entire RVV register. 1693 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1694 const RISCVSubtarget &Subtarget) { 1695 assert(VT.isScalableVector() && 1696 "Expected to convert into a scalable vector!"); 1697 assert(V.getValueType().isFixedLengthVector() && 1698 "Expected a fixed length vector operand!"); 1699 SDLoc DL(V); 1700 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1701 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1702 } 1703 1704 // Shrink V so it's just big enough to maintain a VT's worth of data. 1705 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1706 const RISCVSubtarget &Subtarget) { 1707 assert(VT.isFixedLengthVector() && 1708 "Expected to convert into a fixed length vector!"); 1709 assert(V.getValueType().isScalableVector() && 1710 "Expected a scalable vector operand!"); 1711 SDLoc DL(V); 1712 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1713 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1714 } 1715 1716 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1717 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1718 // the vector type that it is contained in. 1719 static std::pair<SDValue, SDValue> 1720 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1721 const RISCVSubtarget &Subtarget) { 1722 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1723 MVT XLenVT = Subtarget.getXLenVT(); 1724 SDValue VL = VecVT.isFixedLengthVector() 1725 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1726 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1727 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1728 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1729 return {Mask, VL}; 1730 } 1731 1732 // As above but assuming the given type is a scalable vector type. 1733 static std::pair<SDValue, SDValue> 1734 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1735 const RISCVSubtarget &Subtarget) { 1736 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1737 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1738 } 1739 1740 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1741 // of either is (currently) supported. This can get us into an infinite loop 1742 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1743 // as a ..., etc. 1744 // Until either (or both) of these can reliably lower any node, reporting that 1745 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1746 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1747 // which is not desirable. 1748 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1749 EVT VT, unsigned DefinedValues) const { 1750 return false; 1751 } 1752 1753 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1754 const RISCVSubtarget &Subtarget) { 1755 // RISCV FP-to-int conversions saturate to the destination register size, but 1756 // don't produce 0 for nan. We can use a conversion instruction and fix the 1757 // nan case with a compare and a select. 1758 SDValue Src = Op.getOperand(0); 1759 1760 EVT DstVT = Op.getValueType(); 1761 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1762 1763 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1764 unsigned Opc; 1765 if (SatVT == DstVT) 1766 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1767 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1768 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1769 else 1770 return SDValue(); 1771 // FIXME: Support other SatVTs by clamping before or after the conversion. 1772 1773 SDLoc DL(Op); 1774 SDValue FpToInt = DAG.getNode( 1775 Opc, DL, DstVT, Src, 1776 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1777 1778 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1779 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1780 } 1781 1782 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1783 // and back. Taking care to avoid converting values that are nan or already 1784 // correct. 1785 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1786 // have FRM dependencies modeled yet. 1787 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1788 MVT VT = Op.getSimpleValueType(); 1789 assert(VT.isVector() && "Unexpected type"); 1790 1791 SDLoc DL(Op); 1792 1793 // Freeze the source since we are increasing the number of uses. 1794 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1795 1796 // Truncate to integer and convert back to FP. 1797 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1798 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1799 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1800 1801 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1802 1803 if (Op.getOpcode() == ISD::FCEIL) { 1804 // If the truncated value is the greater than or equal to the original 1805 // value, we've computed the ceil. Otherwise, we went the wrong way and 1806 // need to increase by 1. 1807 // FIXME: This should use a masked operation. Handle here or in isel? 1808 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1809 DAG.getConstantFP(1.0, DL, VT)); 1810 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1811 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1812 } else if (Op.getOpcode() == ISD::FFLOOR) { 1813 // If the truncated value is the less than or equal to the original value, 1814 // we've computed the floor. Otherwise, we went the wrong way and need to 1815 // decrease by 1. 1816 // FIXME: This should use a masked operation. Handle here or in isel? 1817 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1818 DAG.getConstantFP(1.0, DL, VT)); 1819 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1820 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1821 } 1822 1823 // Restore the original sign so that -0.0 is preserved. 1824 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1825 1826 // Determine the largest integer that can be represented exactly. This and 1827 // values larger than it don't have any fractional bits so don't need to 1828 // be converted. 1829 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1830 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1831 APFloat MaxVal = APFloat(FltSem); 1832 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1833 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1834 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1835 1836 // If abs(Src) was larger than MaxVal or nan, keep it. 1837 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1838 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1839 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1840 } 1841 1842 // ISD::FROUND is defined to round to nearest with ties rounding away from 0. 1843 // This mode isn't supported in vector hardware on RISCV. But as long as we 1844 // aren't compiling with trapping math, we can emulate this with 1845 // floor(X + copysign(nextafter(0.5, 0.0), X)). 1846 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM 1847 // dependencies modeled yet. 1848 // FIXME: Use masked operations to avoid final merge. 1849 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) { 1850 MVT VT = Op.getSimpleValueType(); 1851 assert(VT.isVector() && "Unexpected type"); 1852 1853 SDLoc DL(Op); 1854 1855 // Freeze the source since we are increasing the number of uses. 1856 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1857 1858 // We do the conversion on the absolute value and fix the sign at the end. 1859 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1860 1861 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1862 bool Ignored; 1863 APFloat Point5Pred = APFloat(0.5f); 1864 Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored); 1865 Point5Pred.next(/*nextDown*/ true); 1866 1867 // Add the adjustment. 1868 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs, 1869 DAG.getConstantFP(Point5Pred, DL, VT)); 1870 1871 // Truncate to integer and convert back to fp. 1872 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1873 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust); 1874 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1875 1876 // Restore the original sign. 1877 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1878 1879 // Determine the largest integer that can be represented exactly. This and 1880 // values larger than it don't have any fractional bits so don't need to 1881 // be converted. 1882 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1883 APFloat MaxVal = APFloat(FltSem); 1884 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1885 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1886 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1887 1888 // If abs(Src) was larger than MaxVal or nan, keep it. 1889 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1890 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1891 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1892 } 1893 1894 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1895 const RISCVSubtarget &Subtarget) { 1896 MVT VT = Op.getSimpleValueType(); 1897 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1898 1899 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1900 1901 SDLoc DL(Op); 1902 SDValue Mask, VL; 1903 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1904 1905 unsigned Opc = 1906 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1907 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1908 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1909 } 1910 1911 struct VIDSequence { 1912 int64_t StepNumerator; 1913 unsigned StepDenominator; 1914 int64_t Addend; 1915 }; 1916 1917 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1918 // to the (non-zero) step S and start value X. This can be then lowered as the 1919 // RVV sequence (VID * S) + X, for example. 1920 // The step S is represented as an integer numerator divided by a positive 1921 // denominator. Note that the implementation currently only identifies 1922 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1923 // cannot detect 2/3, for example. 1924 // Note that this method will also match potentially unappealing index 1925 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1926 // determine whether this is worth generating code for. 1927 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1928 unsigned NumElts = Op.getNumOperands(); 1929 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1930 if (!Op.getValueType().isInteger()) 1931 return None; 1932 1933 Optional<unsigned> SeqStepDenom; 1934 Optional<int64_t> SeqStepNum, SeqAddend; 1935 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1936 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1937 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1938 // Assume undef elements match the sequence; we just have to be careful 1939 // when interpolating across them. 1940 if (Op.getOperand(Idx).isUndef()) 1941 continue; 1942 // The BUILD_VECTOR must be all constants. 1943 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1944 return None; 1945 1946 uint64_t Val = Op.getConstantOperandVal(Idx) & 1947 maskTrailingOnes<uint64_t>(EltSizeInBits); 1948 1949 if (PrevElt) { 1950 // Calculate the step since the last non-undef element, and ensure 1951 // it's consistent across the entire sequence. 1952 unsigned IdxDiff = Idx - PrevElt->second; 1953 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1954 1955 // A zero-value value difference means that we're somewhere in the middle 1956 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1957 // step change before evaluating the sequence. 1958 if (ValDiff != 0) { 1959 int64_t Remainder = ValDiff % IdxDiff; 1960 // Normalize the step if it's greater than 1. 1961 if (Remainder != ValDiff) { 1962 // The difference must cleanly divide the element span. 1963 if (Remainder != 0) 1964 return None; 1965 ValDiff /= IdxDiff; 1966 IdxDiff = 1; 1967 } 1968 1969 if (!SeqStepNum) 1970 SeqStepNum = ValDiff; 1971 else if (ValDiff != SeqStepNum) 1972 return None; 1973 1974 if (!SeqStepDenom) 1975 SeqStepDenom = IdxDiff; 1976 else if (IdxDiff != *SeqStepDenom) 1977 return None; 1978 } 1979 } 1980 1981 // Record and/or check any addend. 1982 if (SeqStepNum && SeqStepDenom) { 1983 uint64_t ExpectedVal = 1984 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1985 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1986 if (!SeqAddend) 1987 SeqAddend = Addend; 1988 else if (SeqAddend != Addend) 1989 return None; 1990 } 1991 1992 // Record this non-undef element for later. 1993 if (!PrevElt || PrevElt->first != Val) 1994 PrevElt = std::make_pair(Val, Idx); 1995 } 1996 // We need to have logged both a step and an addend for this to count as 1997 // a legal index sequence. 1998 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1999 return None; 2000 2001 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 2002 } 2003 2004 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT 2005 // and lower it as a VRGATHER_VX_VL from the source vector. 2006 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, 2007 SelectionDAG &DAG, 2008 const RISCVSubtarget &Subtarget) { 2009 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2010 return SDValue(); 2011 SDValue Vec = SplatVal.getOperand(0); 2012 // Only perform this optimization on vectors of the same size for simplicity. 2013 if (Vec.getValueType() != VT) 2014 return SDValue(); 2015 SDValue Idx = SplatVal.getOperand(1); 2016 // The index must be a legal type. 2017 if (Idx.getValueType() != Subtarget.getXLenVT()) 2018 return SDValue(); 2019 2020 MVT ContainerVT = VT; 2021 if (VT.isFixedLengthVector()) { 2022 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2023 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2024 } 2025 2026 SDValue Mask, VL; 2027 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2028 2029 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, 2030 Idx, Mask, VL); 2031 2032 if (!VT.isFixedLengthVector()) 2033 return Gather; 2034 2035 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2036 } 2037 2038 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 2039 const RISCVSubtarget &Subtarget) { 2040 MVT VT = Op.getSimpleValueType(); 2041 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 2042 2043 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2044 2045 SDLoc DL(Op); 2046 SDValue Mask, VL; 2047 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2048 2049 MVT XLenVT = Subtarget.getXLenVT(); 2050 unsigned NumElts = Op.getNumOperands(); 2051 2052 if (VT.getVectorElementType() == MVT::i1) { 2053 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 2054 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 2055 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 2056 } 2057 2058 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 2059 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 2060 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 2061 } 2062 2063 // Lower constant mask BUILD_VECTORs via an integer vector type, in 2064 // scalar integer chunks whose bit-width depends on the number of mask 2065 // bits and XLEN. 2066 // First, determine the most appropriate scalar integer type to use. This 2067 // is at most XLenVT, but may be shrunk to a smaller vector element type 2068 // according to the size of the final vector - use i8 chunks rather than 2069 // XLenVT if we're producing a v8i1. This results in more consistent 2070 // codegen across RV32 and RV64. 2071 unsigned NumViaIntegerBits = 2072 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 2073 NumViaIntegerBits = std::min(NumViaIntegerBits, 2074 Subtarget.getMaxELENForFixedLengthVectors()); 2075 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 2076 // If we have to use more than one INSERT_VECTOR_ELT then this 2077 // optimization is likely to increase code size; avoid peforming it in 2078 // such a case. We can use a load from a constant pool in this case. 2079 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 2080 return SDValue(); 2081 // Now we can create our integer vector type. Note that it may be larger 2082 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2083 MVT IntegerViaVecVT = 2084 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2085 divideCeil(NumElts, NumViaIntegerBits)); 2086 2087 uint64_t Bits = 0; 2088 unsigned BitPos = 0, IntegerEltIdx = 0; 2089 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2090 2091 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2092 // Once we accumulate enough bits to fill our scalar type, insert into 2093 // our vector and clear our accumulated data. 2094 if (I != 0 && I % NumViaIntegerBits == 0) { 2095 if (NumViaIntegerBits <= 32) 2096 Bits = SignExtend64(Bits, 32); 2097 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2098 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2099 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2100 Bits = 0; 2101 BitPos = 0; 2102 IntegerEltIdx++; 2103 } 2104 SDValue V = Op.getOperand(I); 2105 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2106 Bits |= ((uint64_t)BitValue << BitPos); 2107 } 2108 2109 // Insert the (remaining) scalar value into position in our integer 2110 // vector type. 2111 if (NumViaIntegerBits <= 32) 2112 Bits = SignExtend64(Bits, 32); 2113 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2114 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2115 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2116 2117 if (NumElts < NumViaIntegerBits) { 2118 // If we're producing a smaller vector than our minimum legal integer 2119 // type, bitcast to the equivalent (known-legal) mask type, and extract 2120 // our final mask. 2121 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2122 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2123 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2124 DAG.getConstant(0, DL, XLenVT)); 2125 } else { 2126 // Else we must have produced an integer type with the same size as the 2127 // mask type; bitcast for the final result. 2128 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2129 Vec = DAG.getBitcast(VT, Vec); 2130 } 2131 2132 return Vec; 2133 } 2134 2135 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2136 // vector type, we have a legal equivalently-sized i8 type, so we can use 2137 // that. 2138 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2139 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2140 2141 SDValue WideVec; 2142 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2143 // For a splat, perform a scalar truncate before creating the wider 2144 // vector. 2145 assert(Splat.getValueType() == XLenVT && 2146 "Unexpected type for i1 splat value"); 2147 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2148 DAG.getConstant(1, DL, XLenVT)); 2149 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2150 } else { 2151 SmallVector<SDValue, 8> Ops(Op->op_values()); 2152 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2153 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2154 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2155 } 2156 2157 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2158 } 2159 2160 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2161 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) 2162 return Gather; 2163 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2164 : RISCVISD::VMV_V_X_VL; 2165 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 2166 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2167 } 2168 2169 // Try and match index sequences, which we can lower to the vid instruction 2170 // with optional modifications. An all-undef vector is matched by 2171 // getSplatValue, above. 2172 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2173 int64_t StepNumerator = SimpleVID->StepNumerator; 2174 unsigned StepDenominator = SimpleVID->StepDenominator; 2175 int64_t Addend = SimpleVID->Addend; 2176 2177 assert(StepNumerator != 0 && "Invalid step"); 2178 bool Negate = false; 2179 int64_t SplatStepVal = StepNumerator; 2180 unsigned StepOpcode = ISD::MUL; 2181 if (StepNumerator != 1) { 2182 if (isPowerOf2_64(std::abs(StepNumerator))) { 2183 Negate = StepNumerator < 0; 2184 StepOpcode = ISD::SHL; 2185 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2186 } 2187 } 2188 2189 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2190 // threshold since it's the immediate value many RVV instructions accept. 2191 // There is no vmul.vi instruction so ensure multiply constant can fit in 2192 // a single addi instruction. 2193 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2194 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2195 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2196 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2197 // Convert right out of the scalable type so we can use standard ISD 2198 // nodes for the rest of the computation. If we used scalable types with 2199 // these, we'd lose the fixed-length vector info and generate worse 2200 // vsetvli code. 2201 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2202 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2203 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2204 SDValue SplatStep = DAG.getSplatVector( 2205 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2206 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2207 } 2208 if (StepDenominator != 1) { 2209 SDValue SplatStep = DAG.getSplatVector( 2210 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2211 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2212 } 2213 if (Addend != 0 || Negate) { 2214 SDValue SplatAddend = 2215 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2216 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2217 } 2218 return VID; 2219 } 2220 } 2221 2222 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2223 // when re-interpreted as a vector with a larger element type. For example, 2224 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2225 // could be instead splat as 2226 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2227 // TODO: This optimization could also work on non-constant splats, but it 2228 // would require bit-manipulation instructions to construct the splat value. 2229 SmallVector<SDValue> Sequence; 2230 unsigned EltBitSize = VT.getScalarSizeInBits(); 2231 const auto *BV = cast<BuildVectorSDNode>(Op); 2232 if (VT.isInteger() && EltBitSize < 64 && 2233 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2234 BV->getRepeatedSequence(Sequence) && 2235 (Sequence.size() * EltBitSize) <= 64) { 2236 unsigned SeqLen = Sequence.size(); 2237 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2238 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2239 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2240 ViaIntVT == MVT::i64) && 2241 "Unexpected sequence type"); 2242 2243 unsigned EltIdx = 0; 2244 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2245 uint64_t SplatValue = 0; 2246 // Construct the amalgamated value which can be splatted as this larger 2247 // vector type. 2248 for (const auto &SeqV : Sequence) { 2249 if (!SeqV.isUndef()) 2250 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2251 << (EltIdx * EltBitSize)); 2252 EltIdx++; 2253 } 2254 2255 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2256 // achieve better constant materializion. 2257 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2258 SplatValue = SignExtend64(SplatValue, 32); 2259 2260 // Since we can't introduce illegal i64 types at this stage, we can only 2261 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2262 // way we can use RVV instructions to splat. 2263 assert((ViaIntVT.bitsLE(XLenVT) || 2264 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2265 "Unexpected bitcast sequence"); 2266 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2267 SDValue ViaVL = 2268 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2269 MVT ViaContainerVT = 2270 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2271 SDValue Splat = 2272 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2273 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2274 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2275 return DAG.getBitcast(VT, Splat); 2276 } 2277 } 2278 2279 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2280 // which constitute a large proportion of the elements. In such cases we can 2281 // splat a vector with the dominant element and make up the shortfall with 2282 // INSERT_VECTOR_ELTs. 2283 // Note that this includes vectors of 2 elements by association. The 2284 // upper-most element is the "dominant" one, allowing us to use a splat to 2285 // "insert" the upper element, and an insert of the lower element at position 2286 // 0, which improves codegen. 2287 SDValue DominantValue; 2288 unsigned MostCommonCount = 0; 2289 DenseMap<SDValue, unsigned> ValueCounts; 2290 unsigned NumUndefElts = 2291 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2292 2293 // Track the number of scalar loads we know we'd be inserting, estimated as 2294 // any non-zero floating-point constant. Other kinds of element are either 2295 // already in registers or are materialized on demand. The threshold at which 2296 // a vector load is more desirable than several scalar materializion and 2297 // vector-insertion instructions is not known. 2298 unsigned NumScalarLoads = 0; 2299 2300 for (SDValue V : Op->op_values()) { 2301 if (V.isUndef()) 2302 continue; 2303 2304 ValueCounts.insert(std::make_pair(V, 0)); 2305 unsigned &Count = ValueCounts[V]; 2306 2307 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2308 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2309 2310 // Is this value dominant? In case of a tie, prefer the highest element as 2311 // it's cheaper to insert near the beginning of a vector than it is at the 2312 // end. 2313 if (++Count >= MostCommonCount) { 2314 DominantValue = V; 2315 MostCommonCount = Count; 2316 } 2317 } 2318 2319 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2320 unsigned NumDefElts = NumElts - NumUndefElts; 2321 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2322 2323 // Don't perform this optimization when optimizing for size, since 2324 // materializing elements and inserting them tends to cause code bloat. 2325 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2326 ((MostCommonCount > DominantValueCountThreshold) || 2327 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2328 // Start by splatting the most common element. 2329 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2330 2331 DenseSet<SDValue> Processed{DominantValue}; 2332 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2333 for (const auto &OpIdx : enumerate(Op->ops())) { 2334 const SDValue &V = OpIdx.value(); 2335 if (V.isUndef() || !Processed.insert(V).second) 2336 continue; 2337 if (ValueCounts[V] == 1) { 2338 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2339 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2340 } else { 2341 // Blend in all instances of this value using a VSELECT, using a 2342 // mask where each bit signals whether that element is the one 2343 // we're after. 2344 SmallVector<SDValue> Ops; 2345 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2346 return DAG.getConstant(V == V1, DL, XLenVT); 2347 }); 2348 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2349 DAG.getBuildVector(SelMaskTy, DL, Ops), 2350 DAG.getSplatBuildVector(VT, DL, V), Vec); 2351 } 2352 } 2353 2354 return Vec; 2355 } 2356 2357 return SDValue(); 2358 } 2359 2360 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2361 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2362 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2363 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2364 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2365 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2366 // node in order to try and match RVV vector/scalar instructions. 2367 if ((LoC >> 31) == HiC) 2368 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2369 2370 // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use 2371 // vmv.v.x whose EEW = 32 to lower it. 2372 auto *Const = dyn_cast<ConstantSDNode>(VL); 2373 if (LoC == HiC && Const && Const->isAllOnesValue() && 2374 Const->getOpcode() != ISD::TargetConstant) { 2375 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2376 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2377 // access the subtarget here now. 2378 auto InterVec = DAG.getNode( 2379 RISCVISD::VMV_V_X_VL, DL, InterVT, Lo, 2380 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i32)); 2381 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2382 } 2383 } 2384 2385 // Fall back to a stack store and stride x0 vector load. 2386 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2387 } 2388 2389 // Called by type legalization to handle splat of i64 on RV32. 2390 // FIXME: We can optimize this when the type has sign or zero bits in one 2391 // of the halves. 2392 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2393 SDValue VL, SelectionDAG &DAG) { 2394 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2395 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2396 DAG.getConstant(0, DL, MVT::i32)); 2397 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2398 DAG.getConstant(1, DL, MVT::i32)); 2399 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2400 } 2401 2402 // This function lowers a splat of a scalar operand Splat with the vector 2403 // length VL. It ensures the final sequence is type legal, which is useful when 2404 // lowering a splat after type legalization. 2405 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2406 SelectionDAG &DAG, 2407 const RISCVSubtarget &Subtarget) { 2408 if (VT.isFloatingPoint()) { 2409 // If VL is 1, we could use vfmv.s.f. 2410 if (isOneConstant(VL)) 2411 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT), 2412 Scalar, VL); 2413 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2414 } 2415 2416 MVT XLenVT = Subtarget.getXLenVT(); 2417 2418 // Simplest case is that the operand needs to be promoted to XLenVT. 2419 if (Scalar.getValueType().bitsLE(XLenVT)) { 2420 // If the operand is a constant, sign extend to increase our chances 2421 // of being able to use a .vi instruction. ANY_EXTEND would become a 2422 // a zero extend and the simm5 check in isel would fail. 2423 // FIXME: Should we ignore the upper bits in isel instead? 2424 unsigned ExtOpc = 2425 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2426 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2427 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2428 // If VL is 1 and the scalar value won't benefit from immediate, we could 2429 // use vmv.s.x. 2430 if (isOneConstant(VL) && 2431 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2432 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar, 2433 VL); 2434 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2435 } 2436 2437 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2438 "Unexpected scalar for splat lowering!"); 2439 2440 if (isOneConstant(VL) && isNullConstant(Scalar)) 2441 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), 2442 DAG.getConstant(0, DL, XLenVT), VL); 2443 2444 // Otherwise use the more complicated splatting algorithm. 2445 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2446 } 2447 2448 // Is the mask a slidedown that shifts in undefs. 2449 static int matchShuffleAsSlideDown(ArrayRef<int> Mask) { 2450 int Size = Mask.size(); 2451 2452 // Elements shifted in should be undef. 2453 auto CheckUndefs = [&](int Shift) { 2454 for (int i = Size - Shift; i != Size; ++i) 2455 if (Mask[i] >= 0) 2456 return false; 2457 return true; 2458 }; 2459 2460 // Elements should be shifted or undef. 2461 auto MatchShift = [&](int Shift) { 2462 for (int i = 0; i != Size - Shift; ++i) 2463 if (Mask[i] >= 0 && Mask[i] != Shift + i) 2464 return false; 2465 return true; 2466 }; 2467 2468 // Try all possible shifts. 2469 for (int Shift = 1; Shift != Size; ++Shift) 2470 if (CheckUndefs(Shift) && MatchShift(Shift)) 2471 return Shift; 2472 2473 // No match. 2474 return -1; 2475 } 2476 2477 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2478 const RISCVSubtarget &Subtarget) { 2479 // We need to be able to widen elements to the next larger integer type. 2480 if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors()) 2481 return false; 2482 2483 int Size = Mask.size(); 2484 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2485 2486 int Srcs[] = {-1, -1}; 2487 for (int i = 0; i != Size; ++i) { 2488 // Ignore undef elements. 2489 if (Mask[i] < 0) 2490 continue; 2491 2492 // Is this an even or odd element. 2493 int Pol = i % 2; 2494 2495 // Ensure we consistently use the same source for this element polarity. 2496 int Src = Mask[i] / Size; 2497 if (Srcs[Pol] < 0) 2498 Srcs[Pol] = Src; 2499 if (Srcs[Pol] != Src) 2500 return false; 2501 2502 // Make sure the element within the source is appropriate for this element 2503 // in the destination. 2504 int Elt = Mask[i] % Size; 2505 if (Elt != i / 2) 2506 return false; 2507 } 2508 2509 // We need to find a source for each polarity and they can't be the same. 2510 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2511 return false; 2512 2513 // Swap the sources if the second source was in the even polarity. 2514 SwapSources = Srcs[0] > Srcs[1]; 2515 2516 return true; 2517 } 2518 2519 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2520 const RISCVSubtarget &Subtarget) { 2521 SDValue V1 = Op.getOperand(0); 2522 SDValue V2 = Op.getOperand(1); 2523 SDLoc DL(Op); 2524 MVT XLenVT = Subtarget.getXLenVT(); 2525 MVT VT = Op.getSimpleValueType(); 2526 unsigned NumElts = VT.getVectorNumElements(); 2527 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2528 2529 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2530 2531 SDValue TrueMask, VL; 2532 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2533 2534 if (SVN->isSplat()) { 2535 const int Lane = SVN->getSplatIndex(); 2536 if (Lane >= 0) { 2537 MVT SVT = VT.getVectorElementType(); 2538 2539 // Turn splatted vector load into a strided load with an X0 stride. 2540 SDValue V = V1; 2541 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2542 // with undef. 2543 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2544 int Offset = Lane; 2545 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2546 int OpElements = 2547 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2548 V = V.getOperand(Offset / OpElements); 2549 Offset %= OpElements; 2550 } 2551 2552 // We need to ensure the load isn't atomic or volatile. 2553 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2554 auto *Ld = cast<LoadSDNode>(V); 2555 Offset *= SVT.getStoreSize(); 2556 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2557 TypeSize::Fixed(Offset), DL); 2558 2559 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2560 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2561 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2562 SDValue IntID = 2563 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2564 SDValue Ops[] = {Ld->getChain(), 2565 IntID, 2566 DAG.getUNDEF(ContainerVT), 2567 NewAddr, 2568 DAG.getRegister(RISCV::X0, XLenVT), 2569 VL}; 2570 SDValue NewLoad = DAG.getMemIntrinsicNode( 2571 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2572 DAG.getMachineFunction().getMachineMemOperand( 2573 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2574 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2575 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2576 } 2577 2578 // Otherwise use a scalar load and splat. This will give the best 2579 // opportunity to fold a splat into the operation. ISel can turn it into 2580 // the x0 strided load if we aren't able to fold away the select. 2581 if (SVT.isFloatingPoint()) 2582 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2583 Ld->getPointerInfo().getWithOffset(Offset), 2584 Ld->getOriginalAlign(), 2585 Ld->getMemOperand()->getFlags()); 2586 else 2587 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2588 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2589 Ld->getOriginalAlign(), 2590 Ld->getMemOperand()->getFlags()); 2591 DAG.makeEquivalentMemoryOrdering(Ld, V); 2592 2593 unsigned Opc = 2594 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2595 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2596 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2597 } 2598 2599 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2600 assert(Lane < (int)NumElts && "Unexpected lane!"); 2601 SDValue Gather = 2602 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2603 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2604 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2605 } 2606 } 2607 2608 ArrayRef<int> Mask = SVN->getMask(); 2609 2610 // Try to match as a slidedown. 2611 int SlideAmt = matchShuffleAsSlideDown(Mask); 2612 if (SlideAmt >= 0) { 2613 // TODO: Should we reduce the VL to account for the upper undef elements? 2614 // Requires additional vsetvlis, but might be faster to execute. 2615 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2616 SDValue SlideDown = 2617 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2618 DAG.getUNDEF(ContainerVT), V1, 2619 DAG.getConstant(SlideAmt, DL, XLenVT), 2620 TrueMask, VL); 2621 return convertFromScalableVector(VT, SlideDown, DAG, Subtarget); 2622 } 2623 2624 // Detect an interleave shuffle and lower to 2625 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2626 bool SwapSources; 2627 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2628 // Swap sources if needed. 2629 if (SwapSources) 2630 std::swap(V1, V2); 2631 2632 // Extract the lower half of the vectors. 2633 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2634 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2635 DAG.getConstant(0, DL, XLenVT)); 2636 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2637 DAG.getConstant(0, DL, XLenVT)); 2638 2639 // Double the element width and halve the number of elements in an int type. 2640 unsigned EltBits = VT.getScalarSizeInBits(); 2641 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2642 MVT WideIntVT = 2643 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2644 // Convert this to a scalable vector. We need to base this on the 2645 // destination size to ensure there's always a type with a smaller LMUL. 2646 MVT WideIntContainerVT = 2647 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2648 2649 // Convert sources to scalable vectors with the same element count as the 2650 // larger type. 2651 MVT HalfContainerVT = MVT::getVectorVT( 2652 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2653 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2654 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2655 2656 // Cast sources to integer. 2657 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2658 MVT IntHalfVT = 2659 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2660 V1 = DAG.getBitcast(IntHalfVT, V1); 2661 V2 = DAG.getBitcast(IntHalfVT, V2); 2662 2663 // Freeze V2 since we use it twice and we need to be sure that the add and 2664 // multiply see the same value. 2665 V2 = DAG.getNode(ISD::FREEZE, DL, IntHalfVT, V2); 2666 2667 // Recreate TrueMask using the widened type's element count. 2668 MVT MaskVT = 2669 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2670 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2671 2672 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2673 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2674 V2, TrueMask, VL); 2675 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2676 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2677 DAG.getAllOnesConstant(DL, XLenVT)); 2678 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2679 V2, Multiplier, TrueMask, VL); 2680 // Add the new copies to our previous addition giving us 2^eltbits copies of 2681 // V2. This is equivalent to shifting V2 left by eltbits. This should 2682 // combine with the vwmulu.vv above to form vwmaccu.vv. 2683 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2684 TrueMask, VL); 2685 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2686 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2687 // vector VT. 2688 ContainerVT = 2689 MVT::getVectorVT(VT.getVectorElementType(), 2690 WideIntContainerVT.getVectorElementCount() * 2); 2691 Add = DAG.getBitcast(ContainerVT, Add); 2692 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2693 } 2694 2695 // Detect shuffles which can be re-expressed as vector selects; these are 2696 // shuffles in which each element in the destination is taken from an element 2697 // at the corresponding index in either source vectors. 2698 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2699 int MaskIndex = MaskIdx.value(); 2700 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2701 }); 2702 2703 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2704 2705 SmallVector<SDValue> MaskVals; 2706 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2707 // merged with a second vrgather. 2708 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2709 2710 // By default we preserve the original operand order, and use a mask to 2711 // select LHS as true and RHS as false. However, since RVV vector selects may 2712 // feature splats but only on the LHS, we may choose to invert our mask and 2713 // instead select between RHS and LHS. 2714 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2715 bool InvertMask = IsSelect == SwapOps; 2716 2717 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2718 // half. 2719 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2720 2721 // Now construct the mask that will be used by the vselect or blended 2722 // vrgather operation. For vrgathers, construct the appropriate indices into 2723 // each vector. 2724 for (int MaskIndex : Mask) { 2725 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2726 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2727 if (!IsSelect) { 2728 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2729 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2730 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2731 : DAG.getUNDEF(XLenVT)); 2732 GatherIndicesRHS.push_back( 2733 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2734 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2735 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2736 ++LHSIndexCounts[MaskIndex]; 2737 if (!IsLHSOrUndefIndex) 2738 ++RHSIndexCounts[MaskIndex - NumElts]; 2739 } 2740 } 2741 2742 if (SwapOps) { 2743 std::swap(V1, V2); 2744 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2745 } 2746 2747 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2748 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2749 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2750 2751 if (IsSelect) 2752 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2753 2754 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2755 // On such a large vector we're unable to use i8 as the index type. 2756 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2757 // may involve vector splitting if we're already at LMUL=8, or our 2758 // user-supplied maximum fixed-length LMUL. 2759 return SDValue(); 2760 } 2761 2762 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2763 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2764 MVT IndexVT = VT.changeTypeToInteger(); 2765 // Since we can't introduce illegal index types at this stage, use i16 and 2766 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2767 // than XLenVT. 2768 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2769 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2770 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2771 } 2772 2773 MVT IndexContainerVT = 2774 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2775 2776 SDValue Gather; 2777 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2778 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2779 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2780 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2781 } else { 2782 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2783 // If only one index is used, we can use a "splat" vrgather. 2784 // TODO: We can splat the most-common index and fix-up any stragglers, if 2785 // that's beneficial. 2786 if (LHSIndexCounts.size() == 1) { 2787 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2788 Gather = 2789 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2790 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2791 } else { 2792 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2793 LHSIndices = 2794 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2795 2796 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2797 TrueMask, VL); 2798 } 2799 } 2800 2801 // If a second vector operand is used by this shuffle, blend it in with an 2802 // additional vrgather. 2803 if (!V2.isUndef()) { 2804 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2805 // If only one index is used, we can use a "splat" vrgather. 2806 // TODO: We can splat the most-common index and fix-up any stragglers, if 2807 // that's beneficial. 2808 if (RHSIndexCounts.size() == 1) { 2809 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2810 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2811 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2812 } else { 2813 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2814 RHSIndices = 2815 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2816 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2817 VL); 2818 } 2819 2820 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2821 SelectMask = 2822 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2823 2824 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2825 Gather, VL); 2826 } 2827 2828 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2829 } 2830 2831 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 2832 // Support splats for any type. These should type legalize well. 2833 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 2834 return true; 2835 2836 // Only support legal VTs for other shuffles for now. 2837 if (!isTypeLegal(VT)) 2838 return false; 2839 2840 MVT SVT = VT.getSimpleVT(); 2841 2842 bool SwapSources; 2843 return (matchShuffleAsSlideDown(M) >= 0) || 2844 isInterleaveShuffle(M, SVT, SwapSources, Subtarget); 2845 } 2846 2847 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2848 SDLoc DL, SelectionDAG &DAG, 2849 const RISCVSubtarget &Subtarget) { 2850 if (VT.isScalableVector()) 2851 return DAG.getFPExtendOrRound(Op, DL, VT); 2852 assert(VT.isFixedLengthVector() && 2853 "Unexpected value type for RVV FP extend/round lowering"); 2854 SDValue Mask, VL; 2855 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2856 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2857 ? RISCVISD::FP_EXTEND_VL 2858 : RISCVISD::FP_ROUND_VL; 2859 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2860 } 2861 2862 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2863 // the exponent. 2864 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2865 MVT VT = Op.getSimpleValueType(); 2866 unsigned EltSize = VT.getScalarSizeInBits(); 2867 SDValue Src = Op.getOperand(0); 2868 SDLoc DL(Op); 2869 2870 // We need a FP type that can represent the value. 2871 // TODO: Use f16 for i8 when possible? 2872 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2873 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2874 2875 // Legal types should have been checked in the RISCVTargetLowering 2876 // constructor. 2877 // TODO: Splitting may make sense in some cases. 2878 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2879 "Expected legal float type!"); 2880 2881 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2882 // The trailing zero count is equal to log2 of this single bit value. 2883 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2884 SDValue Neg = 2885 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2886 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2887 } 2888 2889 // We have a legal FP type, convert to it. 2890 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2891 // Bitcast to integer and shift the exponent to the LSB. 2892 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2893 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2894 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2895 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2896 DAG.getConstant(ShiftAmt, DL, IntVT)); 2897 // Truncate back to original type to allow vnsrl. 2898 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2899 // The exponent contains log2 of the value in biased form. 2900 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2901 2902 // For trailing zeros, we just need to subtract the bias. 2903 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2904 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2905 DAG.getConstant(ExponentBias, DL, VT)); 2906 2907 // For leading zeros, we need to remove the bias and convert from log2 to 2908 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2909 unsigned Adjust = ExponentBias + (EltSize - 1); 2910 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2911 } 2912 2913 // While RVV has alignment restrictions, we should always be able to load as a 2914 // legal equivalently-sized byte-typed vector instead. This method is 2915 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2916 // the load is already correctly-aligned, it returns SDValue(). 2917 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2918 SelectionDAG &DAG) const { 2919 auto *Load = cast<LoadSDNode>(Op); 2920 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2921 2922 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2923 Load->getMemoryVT(), 2924 *Load->getMemOperand())) 2925 return SDValue(); 2926 2927 SDLoc DL(Op); 2928 MVT VT = Op.getSimpleValueType(); 2929 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2930 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2931 "Unexpected unaligned RVV load type"); 2932 MVT NewVT = 2933 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2934 assert(NewVT.isValid() && 2935 "Expecting equally-sized RVV vector types to be legal"); 2936 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2937 Load->getPointerInfo(), Load->getOriginalAlign(), 2938 Load->getMemOperand()->getFlags()); 2939 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2940 } 2941 2942 // While RVV has alignment restrictions, we should always be able to store as a 2943 // legal equivalently-sized byte-typed vector instead. This method is 2944 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2945 // returns SDValue() if the store is already correctly aligned. 2946 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2947 SelectionDAG &DAG) const { 2948 auto *Store = cast<StoreSDNode>(Op); 2949 assert(Store && Store->getValue().getValueType().isVector() && 2950 "Expected vector store"); 2951 2952 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2953 Store->getMemoryVT(), 2954 *Store->getMemOperand())) 2955 return SDValue(); 2956 2957 SDLoc DL(Op); 2958 SDValue StoredVal = Store->getValue(); 2959 MVT VT = StoredVal.getSimpleValueType(); 2960 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2961 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2962 "Unexpected unaligned RVV store type"); 2963 MVT NewVT = 2964 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2965 assert(NewVT.isValid() && 2966 "Expecting equally-sized RVV vector types to be legal"); 2967 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2968 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2969 Store->getPointerInfo(), Store->getOriginalAlign(), 2970 Store->getMemOperand()->getFlags()); 2971 } 2972 2973 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2974 SelectionDAG &DAG) const { 2975 switch (Op.getOpcode()) { 2976 default: 2977 report_fatal_error("unimplemented operand"); 2978 case ISD::GlobalAddress: 2979 return lowerGlobalAddress(Op, DAG); 2980 case ISD::BlockAddress: 2981 return lowerBlockAddress(Op, DAG); 2982 case ISD::ConstantPool: 2983 return lowerConstantPool(Op, DAG); 2984 case ISD::JumpTable: 2985 return lowerJumpTable(Op, DAG); 2986 case ISD::GlobalTLSAddress: 2987 return lowerGlobalTLSAddress(Op, DAG); 2988 case ISD::SELECT: 2989 return lowerSELECT(Op, DAG); 2990 case ISD::BRCOND: 2991 return lowerBRCOND(Op, DAG); 2992 case ISD::VASTART: 2993 return lowerVASTART(Op, DAG); 2994 case ISD::FRAMEADDR: 2995 return lowerFRAMEADDR(Op, DAG); 2996 case ISD::RETURNADDR: 2997 return lowerRETURNADDR(Op, DAG); 2998 case ISD::SHL_PARTS: 2999 return lowerShiftLeftParts(Op, DAG); 3000 case ISD::SRA_PARTS: 3001 return lowerShiftRightParts(Op, DAG, true); 3002 case ISD::SRL_PARTS: 3003 return lowerShiftRightParts(Op, DAG, false); 3004 case ISD::BITCAST: { 3005 SDLoc DL(Op); 3006 EVT VT = Op.getValueType(); 3007 SDValue Op0 = Op.getOperand(0); 3008 EVT Op0VT = Op0.getValueType(); 3009 MVT XLenVT = Subtarget.getXLenVT(); 3010 if (VT.isFixedLengthVector()) { 3011 // We can handle fixed length vector bitcasts with a simple replacement 3012 // in isel. 3013 if (Op0VT.isFixedLengthVector()) 3014 return Op; 3015 // When bitcasting from scalar to fixed-length vector, insert the scalar 3016 // into a one-element vector of the result type, and perform a vector 3017 // bitcast. 3018 if (!Op0VT.isVector()) { 3019 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 3020 if (!isTypeLegal(BVT)) 3021 return SDValue(); 3022 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 3023 DAG.getUNDEF(BVT), Op0, 3024 DAG.getConstant(0, DL, XLenVT))); 3025 } 3026 return SDValue(); 3027 } 3028 // Custom-legalize bitcasts from fixed-length vector types to scalar types 3029 // thus: bitcast the vector to a one-element vector type whose element type 3030 // is the same as the result type, and extract the first element. 3031 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 3032 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 3033 if (!isTypeLegal(BVT)) 3034 return SDValue(); 3035 SDValue BVec = DAG.getBitcast(BVT, Op0); 3036 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 3037 DAG.getConstant(0, DL, XLenVT)); 3038 } 3039 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 3040 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 3041 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 3042 return FPConv; 3043 } 3044 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 3045 Subtarget.hasStdExtF()) { 3046 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3047 SDValue FPConv = 3048 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 3049 return FPConv; 3050 } 3051 return SDValue(); 3052 } 3053 case ISD::INTRINSIC_WO_CHAIN: 3054 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3055 case ISD::INTRINSIC_W_CHAIN: 3056 return LowerINTRINSIC_W_CHAIN(Op, DAG); 3057 case ISD::INTRINSIC_VOID: 3058 return LowerINTRINSIC_VOID(Op, DAG); 3059 case ISD::BSWAP: 3060 case ISD::BITREVERSE: { 3061 MVT VT = Op.getSimpleValueType(); 3062 SDLoc DL(Op); 3063 if (Subtarget.hasStdExtZbp()) { 3064 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 3065 // Start with the maximum immediate value which is the bitwidth - 1. 3066 unsigned Imm = VT.getSizeInBits() - 1; 3067 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 3068 if (Op.getOpcode() == ISD::BSWAP) 3069 Imm &= ~0x7U; 3070 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 3071 DAG.getConstant(Imm, DL, VT)); 3072 } 3073 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 3074 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 3075 // Expand bitreverse to a bswap(rev8) followed by brev8. 3076 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 3077 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 3078 // as brev8 by an isel pattern. 3079 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 3080 DAG.getConstant(7, DL, VT)); 3081 } 3082 case ISD::FSHL: 3083 case ISD::FSHR: { 3084 MVT VT = Op.getSimpleValueType(); 3085 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 3086 SDLoc DL(Op); 3087 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 3088 // use log(XLen) bits. Mask the shift amount accordingly to prevent 3089 // accidentally setting the extra bit. 3090 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 3091 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 3092 DAG.getConstant(ShAmtWidth, DL, VT)); 3093 // fshl and fshr concatenate their operands in the same order. fsr and fsl 3094 // instruction use different orders. fshl will return its first operand for 3095 // shift of zero, fshr will return its second operand. fsl and fsr both 3096 // return rs1 so the ISD nodes need to have different operand orders. 3097 // Shift amount is in rs2. 3098 SDValue Op0 = Op.getOperand(0); 3099 SDValue Op1 = Op.getOperand(1); 3100 unsigned Opc = RISCVISD::FSL; 3101 if (Op.getOpcode() == ISD::FSHR) { 3102 std::swap(Op0, Op1); 3103 Opc = RISCVISD::FSR; 3104 } 3105 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3106 } 3107 case ISD::TRUNCATE: { 3108 SDLoc DL(Op); 3109 MVT VT = Op.getSimpleValueType(); 3110 // Only custom-lower vector truncates 3111 if (!VT.isVector()) 3112 return Op; 3113 3114 // Truncates to mask types are handled differently 3115 if (VT.getVectorElementType() == MVT::i1) 3116 return lowerVectorMaskTrunc(Op, DAG); 3117 3118 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 3119 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 3120 // truncate by one power of two at a time. 3121 MVT DstEltVT = VT.getVectorElementType(); 3122 3123 SDValue Src = Op.getOperand(0); 3124 MVT SrcVT = Src.getSimpleValueType(); 3125 MVT SrcEltVT = SrcVT.getVectorElementType(); 3126 3127 assert(DstEltVT.bitsLT(SrcEltVT) && 3128 isPowerOf2_64(DstEltVT.getSizeInBits()) && 3129 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 3130 "Unexpected vector truncate lowering"); 3131 3132 MVT ContainerVT = SrcVT; 3133 if (SrcVT.isFixedLengthVector()) { 3134 ContainerVT = getContainerForFixedLengthVector(SrcVT); 3135 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3136 } 3137 3138 SDValue Result = Src; 3139 SDValue Mask, VL; 3140 std::tie(Mask, VL) = 3141 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 3142 LLVMContext &Context = *DAG.getContext(); 3143 const ElementCount Count = ContainerVT.getVectorElementCount(); 3144 do { 3145 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 3146 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 3147 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 3148 Mask, VL); 3149 } while (SrcEltVT != DstEltVT); 3150 3151 if (SrcVT.isFixedLengthVector()) 3152 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3153 3154 return Result; 3155 } 3156 case ISD::ANY_EXTEND: 3157 case ISD::ZERO_EXTEND: 3158 if (Op.getOperand(0).getValueType().isVector() && 3159 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3160 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3161 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3162 case ISD::SIGN_EXTEND: 3163 if (Op.getOperand(0).getValueType().isVector() && 3164 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3165 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3166 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3167 case ISD::SPLAT_VECTOR_PARTS: 3168 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3169 case ISD::INSERT_VECTOR_ELT: 3170 return lowerINSERT_VECTOR_ELT(Op, DAG); 3171 case ISD::EXTRACT_VECTOR_ELT: 3172 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3173 case ISD::VSCALE: { 3174 MVT VT = Op.getSimpleValueType(); 3175 SDLoc DL(Op); 3176 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3177 // We define our scalable vector types for lmul=1 to use a 64 bit known 3178 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3179 // vscale as VLENB / 8. 3180 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3181 if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock) 3182 report_fatal_error("Support for VLEN==32 is incomplete."); 3183 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3184 // We assume VLENB is a multiple of 8. We manually choose the best shift 3185 // here because SimplifyDemandedBits isn't always able to simplify it. 3186 uint64_t Val = Op.getConstantOperandVal(0); 3187 if (isPowerOf2_64(Val)) { 3188 uint64_t Log2 = Log2_64(Val); 3189 if (Log2 < 3) 3190 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3191 DAG.getConstant(3 - Log2, DL, VT)); 3192 if (Log2 > 3) 3193 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3194 DAG.getConstant(Log2 - 3, DL, VT)); 3195 return VLENB; 3196 } 3197 // If the multiplier is a multiple of 8, scale it down to avoid needing 3198 // to shift the VLENB value. 3199 if ((Val % 8) == 0) 3200 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3201 DAG.getConstant(Val / 8, DL, VT)); 3202 } 3203 3204 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3205 DAG.getConstant(3, DL, VT)); 3206 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3207 } 3208 case ISD::FPOWI: { 3209 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3210 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3211 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3212 Op.getOperand(1).getValueType() == MVT::i32) { 3213 SDLoc DL(Op); 3214 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3215 SDValue Powi = 3216 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3217 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3218 DAG.getIntPtrConstant(0, DL)); 3219 } 3220 return SDValue(); 3221 } 3222 case ISD::FP_EXTEND: { 3223 // RVV can only do fp_extend to types double the size as the source. We 3224 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3225 // via f32. 3226 SDLoc DL(Op); 3227 MVT VT = Op.getSimpleValueType(); 3228 SDValue Src = Op.getOperand(0); 3229 MVT SrcVT = Src.getSimpleValueType(); 3230 3231 // Prepare any fixed-length vector operands. 3232 MVT ContainerVT = VT; 3233 if (SrcVT.isFixedLengthVector()) { 3234 ContainerVT = getContainerForFixedLengthVector(VT); 3235 MVT SrcContainerVT = 3236 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3237 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3238 } 3239 3240 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3241 SrcVT.getVectorElementType() != MVT::f16) { 3242 // For scalable vectors, we only need to close the gap between 3243 // vXf16->vXf64. 3244 if (!VT.isFixedLengthVector()) 3245 return Op; 3246 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3247 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3248 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3249 } 3250 3251 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3252 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3253 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3254 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3255 3256 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3257 DL, DAG, Subtarget); 3258 if (VT.isFixedLengthVector()) 3259 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3260 return Extend; 3261 } 3262 case ISD::FP_ROUND: { 3263 // RVV can only do fp_round to types half the size as the source. We 3264 // custom-lower f64->f16 rounds via RVV's round-to-odd float 3265 // conversion instruction. 3266 SDLoc DL(Op); 3267 MVT VT = Op.getSimpleValueType(); 3268 SDValue Src = Op.getOperand(0); 3269 MVT SrcVT = Src.getSimpleValueType(); 3270 3271 // Prepare any fixed-length vector operands. 3272 MVT ContainerVT = VT; 3273 if (VT.isFixedLengthVector()) { 3274 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3275 ContainerVT = 3276 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3277 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3278 } 3279 3280 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 3281 SrcVT.getVectorElementType() != MVT::f64) { 3282 // For scalable vectors, we only need to close the gap between 3283 // vXf64<->vXf16. 3284 if (!VT.isFixedLengthVector()) 3285 return Op; 3286 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 3287 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3288 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3289 } 3290 3291 SDValue Mask, VL; 3292 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3293 3294 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3295 SDValue IntermediateRound = 3296 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3297 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3298 DL, DAG, Subtarget); 3299 3300 if (VT.isFixedLengthVector()) 3301 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3302 return Round; 3303 } 3304 case ISD::FP_TO_SINT: 3305 case ISD::FP_TO_UINT: 3306 case ISD::SINT_TO_FP: 3307 case ISD::UINT_TO_FP: { 3308 // RVV can only do fp<->int conversions to types half/double the size as 3309 // the source. We custom-lower any conversions that do two hops into 3310 // sequences. 3311 MVT VT = Op.getSimpleValueType(); 3312 if (!VT.isVector()) 3313 return Op; 3314 SDLoc DL(Op); 3315 SDValue Src = Op.getOperand(0); 3316 MVT EltVT = VT.getVectorElementType(); 3317 MVT SrcVT = Src.getSimpleValueType(); 3318 MVT SrcEltVT = SrcVT.getVectorElementType(); 3319 unsigned EltSize = EltVT.getSizeInBits(); 3320 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3321 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3322 "Unexpected vector element types"); 3323 3324 bool IsInt2FP = SrcEltVT.isInteger(); 3325 // Widening conversions 3326 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 3327 if (IsInt2FP) { 3328 // Do a regular integer sign/zero extension then convert to float. 3329 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 3330 VT.getVectorElementCount()); 3331 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3332 ? ISD::ZERO_EXTEND 3333 : ISD::SIGN_EXTEND; 3334 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3335 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3336 } 3337 // FP2Int 3338 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3339 // Do one doubling fp_extend then complete the operation by converting 3340 // to int. 3341 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3342 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3343 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3344 } 3345 3346 // Narrowing conversions 3347 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 3348 if (IsInt2FP) { 3349 // One narrowing int_to_fp, then an fp_round. 3350 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3351 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3352 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3353 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3354 } 3355 // FP2Int 3356 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3357 // representable by the integer, the result is poison. 3358 MVT IVecVT = 3359 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 3360 VT.getVectorElementCount()); 3361 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3362 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3363 } 3364 3365 // Scalable vectors can exit here. Patterns will handle equally-sized 3366 // conversions halving/doubling ones. 3367 if (!VT.isFixedLengthVector()) 3368 return Op; 3369 3370 // For fixed-length vectors we lower to a custom "VL" node. 3371 unsigned RVVOpc = 0; 3372 switch (Op.getOpcode()) { 3373 default: 3374 llvm_unreachable("Impossible opcode"); 3375 case ISD::FP_TO_SINT: 3376 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3377 break; 3378 case ISD::FP_TO_UINT: 3379 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3380 break; 3381 case ISD::SINT_TO_FP: 3382 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3383 break; 3384 case ISD::UINT_TO_FP: 3385 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3386 break; 3387 } 3388 3389 MVT ContainerVT, SrcContainerVT; 3390 // Derive the reference container type from the larger vector type. 3391 if (SrcEltSize > EltSize) { 3392 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3393 ContainerVT = 3394 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3395 } else { 3396 ContainerVT = getContainerForFixedLengthVector(VT); 3397 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3398 } 3399 3400 SDValue Mask, VL; 3401 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3402 3403 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3404 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3405 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3406 } 3407 case ISD::FP_TO_SINT_SAT: 3408 case ISD::FP_TO_UINT_SAT: 3409 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3410 case ISD::FTRUNC: 3411 case ISD::FCEIL: 3412 case ISD::FFLOOR: 3413 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3414 case ISD::FROUND: 3415 return lowerFROUND(Op, DAG); 3416 case ISD::VECREDUCE_ADD: 3417 case ISD::VECREDUCE_UMAX: 3418 case ISD::VECREDUCE_SMAX: 3419 case ISD::VECREDUCE_UMIN: 3420 case ISD::VECREDUCE_SMIN: 3421 return lowerVECREDUCE(Op, DAG); 3422 case ISD::VECREDUCE_AND: 3423 case ISD::VECREDUCE_OR: 3424 case ISD::VECREDUCE_XOR: 3425 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3426 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3427 return lowerVECREDUCE(Op, DAG); 3428 case ISD::VECREDUCE_FADD: 3429 case ISD::VECREDUCE_SEQ_FADD: 3430 case ISD::VECREDUCE_FMIN: 3431 case ISD::VECREDUCE_FMAX: 3432 return lowerFPVECREDUCE(Op, DAG); 3433 case ISD::VP_REDUCE_ADD: 3434 case ISD::VP_REDUCE_UMAX: 3435 case ISD::VP_REDUCE_SMAX: 3436 case ISD::VP_REDUCE_UMIN: 3437 case ISD::VP_REDUCE_SMIN: 3438 case ISD::VP_REDUCE_FADD: 3439 case ISD::VP_REDUCE_SEQ_FADD: 3440 case ISD::VP_REDUCE_FMIN: 3441 case ISD::VP_REDUCE_FMAX: 3442 return lowerVPREDUCE(Op, DAG); 3443 case ISD::VP_REDUCE_AND: 3444 case ISD::VP_REDUCE_OR: 3445 case ISD::VP_REDUCE_XOR: 3446 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3447 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3448 return lowerVPREDUCE(Op, DAG); 3449 case ISD::INSERT_SUBVECTOR: 3450 return lowerINSERT_SUBVECTOR(Op, DAG); 3451 case ISD::EXTRACT_SUBVECTOR: 3452 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3453 case ISD::STEP_VECTOR: 3454 return lowerSTEP_VECTOR(Op, DAG); 3455 case ISD::VECTOR_REVERSE: 3456 return lowerVECTOR_REVERSE(Op, DAG); 3457 case ISD::BUILD_VECTOR: 3458 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3459 case ISD::SPLAT_VECTOR: 3460 if (Op.getValueType().getVectorElementType() == MVT::i1) 3461 return lowerVectorMaskSplat(Op, DAG); 3462 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3463 case ISD::VECTOR_SHUFFLE: 3464 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3465 case ISD::CONCAT_VECTORS: { 3466 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3467 // better than going through the stack, as the default expansion does. 3468 SDLoc DL(Op); 3469 MVT VT = Op.getSimpleValueType(); 3470 unsigned NumOpElts = 3471 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3472 SDValue Vec = DAG.getUNDEF(VT); 3473 for (const auto &OpIdx : enumerate(Op->ops())) { 3474 SDValue SubVec = OpIdx.value(); 3475 // Don't insert undef subvectors. 3476 if (SubVec.isUndef()) 3477 continue; 3478 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3479 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3480 } 3481 return Vec; 3482 } 3483 case ISD::LOAD: 3484 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3485 return V; 3486 if (Op.getValueType().isFixedLengthVector()) 3487 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3488 return Op; 3489 case ISD::STORE: 3490 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3491 return V; 3492 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3493 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3494 return Op; 3495 case ISD::MLOAD: 3496 case ISD::VP_LOAD: 3497 return lowerMaskedLoad(Op, DAG); 3498 case ISD::MSTORE: 3499 case ISD::VP_STORE: 3500 return lowerMaskedStore(Op, DAG); 3501 case ISD::SETCC: 3502 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3503 case ISD::ADD: 3504 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3505 case ISD::SUB: 3506 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3507 case ISD::MUL: 3508 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3509 case ISD::MULHS: 3510 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3511 case ISD::MULHU: 3512 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3513 case ISD::AND: 3514 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3515 RISCVISD::AND_VL); 3516 case ISD::OR: 3517 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3518 RISCVISD::OR_VL); 3519 case ISD::XOR: 3520 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3521 RISCVISD::XOR_VL); 3522 case ISD::SDIV: 3523 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3524 case ISD::SREM: 3525 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3526 case ISD::UDIV: 3527 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3528 case ISD::UREM: 3529 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3530 case ISD::SHL: 3531 case ISD::SRA: 3532 case ISD::SRL: 3533 if (Op.getSimpleValueType().isFixedLengthVector()) 3534 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3535 // This can be called for an i32 shift amount that needs to be promoted. 3536 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3537 "Unexpected custom legalisation"); 3538 return SDValue(); 3539 case ISD::SADDSAT: 3540 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3541 case ISD::UADDSAT: 3542 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3543 case ISD::SSUBSAT: 3544 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3545 case ISD::USUBSAT: 3546 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3547 case ISD::FADD: 3548 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3549 case ISD::FSUB: 3550 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3551 case ISD::FMUL: 3552 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3553 case ISD::FDIV: 3554 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3555 case ISD::FNEG: 3556 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3557 case ISD::FABS: 3558 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3559 case ISD::FSQRT: 3560 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3561 case ISD::FMA: 3562 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3563 case ISD::SMIN: 3564 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3565 case ISD::SMAX: 3566 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3567 case ISD::UMIN: 3568 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3569 case ISD::UMAX: 3570 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3571 case ISD::FMINNUM: 3572 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3573 case ISD::FMAXNUM: 3574 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3575 case ISD::ABS: 3576 return lowerABS(Op, DAG); 3577 case ISD::CTLZ_ZERO_UNDEF: 3578 case ISD::CTTZ_ZERO_UNDEF: 3579 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3580 case ISD::VSELECT: 3581 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3582 case ISD::FCOPYSIGN: 3583 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3584 case ISD::MGATHER: 3585 case ISD::VP_GATHER: 3586 return lowerMaskedGather(Op, DAG); 3587 case ISD::MSCATTER: 3588 case ISD::VP_SCATTER: 3589 return lowerMaskedScatter(Op, DAG); 3590 case ISD::FLT_ROUNDS_: 3591 return lowerGET_ROUNDING(Op, DAG); 3592 case ISD::SET_ROUNDING: 3593 return lowerSET_ROUNDING(Op, DAG); 3594 case ISD::VP_SELECT: 3595 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3596 case ISD::VP_MERGE: 3597 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3598 case ISD::VP_ADD: 3599 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3600 case ISD::VP_SUB: 3601 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3602 case ISD::VP_MUL: 3603 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3604 case ISD::VP_SDIV: 3605 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3606 case ISD::VP_UDIV: 3607 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3608 case ISD::VP_SREM: 3609 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3610 case ISD::VP_UREM: 3611 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3612 case ISD::VP_AND: 3613 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3614 case ISD::VP_OR: 3615 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3616 case ISD::VP_XOR: 3617 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3618 case ISD::VP_ASHR: 3619 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3620 case ISD::VP_LSHR: 3621 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3622 case ISD::VP_SHL: 3623 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3624 case ISD::VP_FADD: 3625 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3626 case ISD::VP_FSUB: 3627 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3628 case ISD::VP_FMUL: 3629 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3630 case ISD::VP_FDIV: 3631 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3632 } 3633 } 3634 3635 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3636 SelectionDAG &DAG, unsigned Flags) { 3637 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3638 } 3639 3640 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3641 SelectionDAG &DAG, unsigned Flags) { 3642 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3643 Flags); 3644 } 3645 3646 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3647 SelectionDAG &DAG, unsigned Flags) { 3648 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3649 N->getOffset(), Flags); 3650 } 3651 3652 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3653 SelectionDAG &DAG, unsigned Flags) { 3654 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3655 } 3656 3657 template <class NodeTy> 3658 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3659 bool IsLocal) const { 3660 SDLoc DL(N); 3661 EVT Ty = getPointerTy(DAG.getDataLayout()); 3662 3663 if (isPositionIndependent()) { 3664 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3665 if (IsLocal) 3666 // Use PC-relative addressing to access the symbol. This generates the 3667 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3668 // %pcrel_lo(auipc)). 3669 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3670 3671 // Use PC-relative addressing to access the GOT for this symbol, then load 3672 // the address from the GOT. This generates the pattern (PseudoLA sym), 3673 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3674 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3675 } 3676 3677 switch (getTargetMachine().getCodeModel()) { 3678 default: 3679 report_fatal_error("Unsupported code model for lowering"); 3680 case CodeModel::Small: { 3681 // Generate a sequence for accessing addresses within the first 2 GiB of 3682 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3683 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3684 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3685 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3686 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3687 } 3688 case CodeModel::Medium: { 3689 // Generate a sequence for accessing addresses within any 2GiB range within 3690 // the address space. This generates the pattern (PseudoLLA sym), which 3691 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3692 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3693 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3694 } 3695 } 3696 } 3697 3698 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3699 SelectionDAG &DAG) const { 3700 SDLoc DL(Op); 3701 EVT Ty = Op.getValueType(); 3702 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3703 int64_t Offset = N->getOffset(); 3704 MVT XLenVT = Subtarget.getXLenVT(); 3705 3706 const GlobalValue *GV = N->getGlobal(); 3707 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3708 SDValue Addr = getAddr(N, DAG, IsLocal); 3709 3710 // In order to maximise the opportunity for common subexpression elimination, 3711 // emit a separate ADD node for the global address offset instead of folding 3712 // it in the global address node. Later peephole optimisations may choose to 3713 // fold it back in when profitable. 3714 if (Offset != 0) 3715 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3716 DAG.getConstant(Offset, DL, XLenVT)); 3717 return Addr; 3718 } 3719 3720 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3721 SelectionDAG &DAG) const { 3722 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3723 3724 return getAddr(N, DAG); 3725 } 3726 3727 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3728 SelectionDAG &DAG) const { 3729 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3730 3731 return getAddr(N, DAG); 3732 } 3733 3734 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3735 SelectionDAG &DAG) const { 3736 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3737 3738 return getAddr(N, DAG); 3739 } 3740 3741 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3742 SelectionDAG &DAG, 3743 bool UseGOT) const { 3744 SDLoc DL(N); 3745 EVT Ty = getPointerTy(DAG.getDataLayout()); 3746 const GlobalValue *GV = N->getGlobal(); 3747 MVT XLenVT = Subtarget.getXLenVT(); 3748 3749 if (UseGOT) { 3750 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3751 // load the address from the GOT and add the thread pointer. This generates 3752 // the pattern (PseudoLA_TLS_IE sym), which expands to 3753 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3754 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3755 SDValue Load = 3756 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3757 3758 // Add the thread pointer. 3759 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3760 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3761 } 3762 3763 // Generate a sequence for accessing the address relative to the thread 3764 // pointer, with the appropriate adjustment for the thread pointer offset. 3765 // This generates the pattern 3766 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3767 SDValue AddrHi = 3768 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3769 SDValue AddrAdd = 3770 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3771 SDValue AddrLo = 3772 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3773 3774 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3775 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3776 SDValue MNAdd = SDValue( 3777 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3778 0); 3779 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3780 } 3781 3782 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3783 SelectionDAG &DAG) const { 3784 SDLoc DL(N); 3785 EVT Ty = getPointerTy(DAG.getDataLayout()); 3786 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3787 const GlobalValue *GV = N->getGlobal(); 3788 3789 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3790 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3791 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3792 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3793 SDValue Load = 3794 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3795 3796 // Prepare argument list to generate call. 3797 ArgListTy Args; 3798 ArgListEntry Entry; 3799 Entry.Node = Load; 3800 Entry.Ty = CallTy; 3801 Args.push_back(Entry); 3802 3803 // Setup call to __tls_get_addr. 3804 TargetLowering::CallLoweringInfo CLI(DAG); 3805 CLI.setDebugLoc(DL) 3806 .setChain(DAG.getEntryNode()) 3807 .setLibCallee(CallingConv::C, CallTy, 3808 DAG.getExternalSymbol("__tls_get_addr", Ty), 3809 std::move(Args)); 3810 3811 return LowerCallTo(CLI).first; 3812 } 3813 3814 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3815 SelectionDAG &DAG) const { 3816 SDLoc DL(Op); 3817 EVT Ty = Op.getValueType(); 3818 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3819 int64_t Offset = N->getOffset(); 3820 MVT XLenVT = Subtarget.getXLenVT(); 3821 3822 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3823 3824 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3825 CallingConv::GHC) 3826 report_fatal_error("In GHC calling convention TLS is not supported"); 3827 3828 SDValue Addr; 3829 switch (Model) { 3830 case TLSModel::LocalExec: 3831 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3832 break; 3833 case TLSModel::InitialExec: 3834 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3835 break; 3836 case TLSModel::LocalDynamic: 3837 case TLSModel::GeneralDynamic: 3838 Addr = getDynamicTLSAddr(N, DAG); 3839 break; 3840 } 3841 3842 // In order to maximise the opportunity for common subexpression elimination, 3843 // emit a separate ADD node for the global address offset instead of folding 3844 // it in the global address node. Later peephole optimisations may choose to 3845 // fold it back in when profitable. 3846 if (Offset != 0) 3847 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3848 DAG.getConstant(Offset, DL, XLenVT)); 3849 return Addr; 3850 } 3851 3852 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3853 SDValue CondV = Op.getOperand(0); 3854 SDValue TrueV = Op.getOperand(1); 3855 SDValue FalseV = Op.getOperand(2); 3856 SDLoc DL(Op); 3857 MVT VT = Op.getSimpleValueType(); 3858 MVT XLenVT = Subtarget.getXLenVT(); 3859 3860 // Lower vector SELECTs to VSELECTs by splatting the condition. 3861 if (VT.isVector()) { 3862 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3863 SDValue CondSplat = VT.isScalableVector() 3864 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3865 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3866 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3867 } 3868 3869 // If the result type is XLenVT and CondV is the output of a SETCC node 3870 // which also operated on XLenVT inputs, then merge the SETCC node into the 3871 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3872 // compare+branch instructions. i.e.: 3873 // (select (setcc lhs, rhs, cc), truev, falsev) 3874 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3875 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3876 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3877 SDValue LHS = CondV.getOperand(0); 3878 SDValue RHS = CondV.getOperand(1); 3879 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3880 ISD::CondCode CCVal = CC->get(); 3881 3882 // Special case for a select of 2 constants that have a diffence of 1. 3883 // Normally this is done by DAGCombine, but if the select is introduced by 3884 // type legalization or op legalization, we miss it. Restricting to SETLT 3885 // case for now because that is what signed saturating add/sub need. 3886 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3887 // but we would probably want to swap the true/false values if the condition 3888 // is SETGE/SETLE to avoid an XORI. 3889 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3890 CCVal == ISD::SETLT) { 3891 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3892 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3893 if (TrueVal - 1 == FalseVal) 3894 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3895 if (TrueVal + 1 == FalseVal) 3896 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3897 } 3898 3899 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3900 3901 SDValue TargetCC = DAG.getCondCode(CCVal); 3902 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3903 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3904 } 3905 3906 // Otherwise: 3907 // (select condv, truev, falsev) 3908 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3909 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3910 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3911 3912 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3913 3914 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3915 } 3916 3917 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3918 SDValue CondV = Op.getOperand(1); 3919 SDLoc DL(Op); 3920 MVT XLenVT = Subtarget.getXLenVT(); 3921 3922 if (CondV.getOpcode() == ISD::SETCC && 3923 CondV.getOperand(0).getValueType() == XLenVT) { 3924 SDValue LHS = CondV.getOperand(0); 3925 SDValue RHS = CondV.getOperand(1); 3926 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3927 3928 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3929 3930 SDValue TargetCC = DAG.getCondCode(CCVal); 3931 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3932 LHS, RHS, TargetCC, Op.getOperand(2)); 3933 } 3934 3935 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3936 CondV, DAG.getConstant(0, DL, XLenVT), 3937 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3938 } 3939 3940 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3941 MachineFunction &MF = DAG.getMachineFunction(); 3942 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3943 3944 SDLoc DL(Op); 3945 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3946 getPointerTy(MF.getDataLayout())); 3947 3948 // vastart just stores the address of the VarArgsFrameIndex slot into the 3949 // memory location argument. 3950 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3951 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3952 MachinePointerInfo(SV)); 3953 } 3954 3955 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3956 SelectionDAG &DAG) const { 3957 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3958 MachineFunction &MF = DAG.getMachineFunction(); 3959 MachineFrameInfo &MFI = MF.getFrameInfo(); 3960 MFI.setFrameAddressIsTaken(true); 3961 Register FrameReg = RI.getFrameRegister(MF); 3962 int XLenInBytes = Subtarget.getXLen() / 8; 3963 3964 EVT VT = Op.getValueType(); 3965 SDLoc DL(Op); 3966 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3967 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3968 while (Depth--) { 3969 int Offset = -(XLenInBytes * 2); 3970 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3971 DAG.getIntPtrConstant(Offset, DL)); 3972 FrameAddr = 3973 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3974 } 3975 return FrameAddr; 3976 } 3977 3978 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3979 SelectionDAG &DAG) const { 3980 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3981 MachineFunction &MF = DAG.getMachineFunction(); 3982 MachineFrameInfo &MFI = MF.getFrameInfo(); 3983 MFI.setReturnAddressIsTaken(true); 3984 MVT XLenVT = Subtarget.getXLenVT(); 3985 int XLenInBytes = Subtarget.getXLen() / 8; 3986 3987 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3988 return SDValue(); 3989 3990 EVT VT = Op.getValueType(); 3991 SDLoc DL(Op); 3992 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3993 if (Depth) { 3994 int Off = -XLenInBytes; 3995 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3996 SDValue Offset = DAG.getConstant(Off, DL, VT); 3997 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3998 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3999 MachinePointerInfo()); 4000 } 4001 4002 // Return the value of the return address register, marking it an implicit 4003 // live-in. 4004 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 4005 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 4006 } 4007 4008 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 4009 SelectionDAG &DAG) const { 4010 SDLoc DL(Op); 4011 SDValue Lo = Op.getOperand(0); 4012 SDValue Hi = Op.getOperand(1); 4013 SDValue Shamt = Op.getOperand(2); 4014 EVT VT = Lo.getValueType(); 4015 4016 // if Shamt-XLEN < 0: // Shamt < XLEN 4017 // Lo = Lo << Shamt 4018 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 4019 // else: 4020 // Lo = 0 4021 // Hi = Lo << (Shamt-XLEN) 4022 4023 SDValue Zero = DAG.getConstant(0, DL, VT); 4024 SDValue One = DAG.getConstant(1, DL, VT); 4025 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4026 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4027 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4028 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 4029 4030 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 4031 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 4032 SDValue ShiftRightLo = 4033 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 4034 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 4035 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 4036 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 4037 4038 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4039 4040 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 4041 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4042 4043 SDValue Parts[2] = {Lo, Hi}; 4044 return DAG.getMergeValues(Parts, DL); 4045 } 4046 4047 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 4048 bool IsSRA) const { 4049 SDLoc DL(Op); 4050 SDValue Lo = Op.getOperand(0); 4051 SDValue Hi = Op.getOperand(1); 4052 SDValue Shamt = Op.getOperand(2); 4053 EVT VT = Lo.getValueType(); 4054 4055 // SRA expansion: 4056 // if Shamt-XLEN < 0: // Shamt < XLEN 4057 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 4058 // Hi = Hi >>s Shamt 4059 // else: 4060 // Lo = Hi >>s (Shamt-XLEN); 4061 // Hi = Hi >>s (XLEN-1) 4062 // 4063 // SRL expansion: 4064 // if Shamt-XLEN < 0: // Shamt < XLEN 4065 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 4066 // Hi = Hi >>u Shamt 4067 // else: 4068 // Lo = Hi >>u (Shamt-XLEN); 4069 // Hi = 0; 4070 4071 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 4072 4073 SDValue Zero = DAG.getConstant(0, DL, VT); 4074 SDValue One = DAG.getConstant(1, DL, VT); 4075 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4076 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4077 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4078 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 4079 4080 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 4081 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 4082 SDValue ShiftLeftHi = 4083 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 4084 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 4085 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 4086 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 4087 SDValue HiFalse = 4088 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 4089 4090 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4091 4092 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 4093 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4094 4095 SDValue Parts[2] = {Lo, Hi}; 4096 return DAG.getMergeValues(Parts, DL); 4097 } 4098 4099 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 4100 // legal equivalently-sized i8 type, so we can use that as a go-between. 4101 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 4102 SelectionDAG &DAG) const { 4103 SDLoc DL(Op); 4104 MVT VT = Op.getSimpleValueType(); 4105 SDValue SplatVal = Op.getOperand(0); 4106 // All-zeros or all-ones splats are handled specially. 4107 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4108 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4109 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4110 } 4111 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4112 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4113 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4114 } 4115 MVT XLenVT = Subtarget.getXLenVT(); 4116 assert(SplatVal.getValueType() == XLenVT && 4117 "Unexpected type for i1 splat value"); 4118 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4119 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4120 DAG.getConstant(1, DL, XLenVT)); 4121 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4122 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4123 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4124 } 4125 4126 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4127 // illegal (currently only vXi64 RV32). 4128 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4129 // them to VMV_V_X_VL. 4130 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4131 SelectionDAG &DAG) const { 4132 SDLoc DL(Op); 4133 MVT VecVT = Op.getSimpleValueType(); 4134 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4135 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4136 4137 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4138 SDValue Lo = Op.getOperand(0); 4139 SDValue Hi = Op.getOperand(1); 4140 4141 if (VecVT.isFixedLengthVector()) { 4142 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4143 SDLoc DL(Op); 4144 SDValue Mask, VL; 4145 std::tie(Mask, VL) = 4146 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4147 4148 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 4149 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4150 } 4151 4152 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4153 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4154 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4155 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4156 // node in order to try and match RVV vector/scalar instructions. 4157 if ((LoC >> 31) == HiC) 4158 return DAG.getNode( 4159 RISCVISD::VMV_V_X_VL, DL, VecVT, Lo, 4160 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i32)); 4161 } 4162 4163 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4164 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4165 isa<ConstantSDNode>(Hi.getOperand(1)) && 4166 Hi.getConstantOperandVal(1) == 31) 4167 return DAG.getNode( 4168 RISCVISD::VMV_V_X_VL, DL, VecVT, Lo, 4169 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i32)); 4170 4171 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4172 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 4173 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i32)); 4174 } 4175 4176 // Custom-lower extensions from mask vectors by using a vselect either with 1 4177 // for zero/any-extension or -1 for sign-extension: 4178 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4179 // Note that any-extension is lowered identically to zero-extension. 4180 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4181 int64_t ExtTrueVal) const { 4182 SDLoc DL(Op); 4183 MVT VecVT = Op.getSimpleValueType(); 4184 SDValue Src = Op.getOperand(0); 4185 // Only custom-lower extensions from mask types 4186 assert(Src.getValueType().isVector() && 4187 Src.getValueType().getVectorElementType() == MVT::i1); 4188 4189 MVT XLenVT = Subtarget.getXLenVT(); 4190 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4191 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4192 4193 if (VecVT.isScalableVector()) { 4194 // Be careful not to introduce illegal scalar types at this stage, and be 4195 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 4196 // illegal and must be expanded. Since we know that the constants are 4197 // sign-extended 32-bit values, we use VMV_V_X_VL directly. 4198 bool IsRV32E64 = 4199 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 4200 4201 if (!IsRV32E64) { 4202 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 4203 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 4204 } else { 4205 SplatZero = 4206 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, SplatZero, 4207 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT)); 4208 SplatTrueVal = 4209 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, SplatTrueVal, 4210 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT)); 4211 } 4212 4213 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4214 } 4215 4216 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4217 MVT I1ContainerVT = 4218 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4219 4220 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4221 4222 SDValue Mask, VL; 4223 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4224 4225 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 4226 SplatTrueVal = 4227 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 4228 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4229 SplatTrueVal, SplatZero, VL); 4230 4231 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4232 } 4233 4234 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4235 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4236 MVT ExtVT = Op.getSimpleValueType(); 4237 // Only custom-lower extensions from fixed-length vector types. 4238 if (!ExtVT.isFixedLengthVector()) 4239 return Op; 4240 MVT VT = Op.getOperand(0).getSimpleValueType(); 4241 // Grab the canonical container type for the extended type. Infer the smaller 4242 // type from that to ensure the same number of vector elements, as we know 4243 // the LMUL will be sufficient to hold the smaller type. 4244 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4245 // Get the extended container type manually to ensure the same number of 4246 // vector elements between source and dest. 4247 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4248 ContainerExtVT.getVectorElementCount()); 4249 4250 SDValue Op1 = 4251 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4252 4253 SDLoc DL(Op); 4254 SDValue Mask, VL; 4255 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4256 4257 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4258 4259 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4260 } 4261 4262 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4263 // setcc operation: 4264 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4265 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 4266 SelectionDAG &DAG) const { 4267 SDLoc DL(Op); 4268 EVT MaskVT = Op.getValueType(); 4269 // Only expect to custom-lower truncations to mask types 4270 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4271 "Unexpected type for vector mask lowering"); 4272 SDValue Src = Op.getOperand(0); 4273 MVT VecVT = Src.getSimpleValueType(); 4274 4275 // If this is a fixed vector, we need to convert it to a scalable vector. 4276 MVT ContainerVT = VecVT; 4277 if (VecVT.isFixedLengthVector()) { 4278 ContainerVT = getContainerForFixedLengthVector(VecVT); 4279 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4280 } 4281 4282 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4283 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4284 4285 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 4286 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 4287 4288 if (VecVT.isScalableVector()) { 4289 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 4290 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 4291 } 4292 4293 SDValue Mask, VL; 4294 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4295 4296 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4297 SDValue Trunc = 4298 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4299 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4300 DAG.getCondCode(ISD::SETNE), Mask, VL); 4301 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4302 } 4303 4304 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4305 // first position of a vector, and that vector is slid up to the insert index. 4306 // By limiting the active vector length to index+1 and merging with the 4307 // original vector (with an undisturbed tail policy for elements >= VL), we 4308 // achieve the desired result of leaving all elements untouched except the one 4309 // at VL-1, which is replaced with the desired value. 4310 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4311 SelectionDAG &DAG) const { 4312 SDLoc DL(Op); 4313 MVT VecVT = Op.getSimpleValueType(); 4314 SDValue Vec = Op.getOperand(0); 4315 SDValue Val = Op.getOperand(1); 4316 SDValue Idx = Op.getOperand(2); 4317 4318 if (VecVT.getVectorElementType() == MVT::i1) { 4319 // FIXME: For now we just promote to an i8 vector and insert into that, 4320 // but this is probably not optimal. 4321 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4322 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4323 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4324 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4325 } 4326 4327 MVT ContainerVT = VecVT; 4328 // If the operand is a fixed-length vector, convert to a scalable one. 4329 if (VecVT.isFixedLengthVector()) { 4330 ContainerVT = getContainerForFixedLengthVector(VecVT); 4331 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4332 } 4333 4334 MVT XLenVT = Subtarget.getXLenVT(); 4335 4336 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4337 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4338 // Even i64-element vectors on RV32 can be lowered without scalar 4339 // legalization if the most-significant 32 bits of the value are not affected 4340 // by the sign-extension of the lower 32 bits. 4341 // TODO: We could also catch sign extensions of a 32-bit value. 4342 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4343 const auto *CVal = cast<ConstantSDNode>(Val); 4344 if (isInt<32>(CVal->getSExtValue())) { 4345 IsLegalInsert = true; 4346 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4347 } 4348 } 4349 4350 SDValue Mask, VL; 4351 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4352 4353 SDValue ValInVec; 4354 4355 if (IsLegalInsert) { 4356 unsigned Opc = 4357 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4358 if (isNullConstant(Idx)) { 4359 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4360 if (!VecVT.isFixedLengthVector()) 4361 return Vec; 4362 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4363 } 4364 ValInVec = 4365 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4366 } else { 4367 // On RV32, i64-element vectors must be specially handled to place the 4368 // value at element 0, by using two vslide1up instructions in sequence on 4369 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4370 // this. 4371 SDValue One = DAG.getConstant(1, DL, XLenVT); 4372 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4373 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4374 MVT I32ContainerVT = 4375 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4376 SDValue I32Mask = 4377 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4378 // Limit the active VL to two. 4379 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4380 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4381 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4382 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 4383 InsertI64VL); 4384 // First slide in the hi value, then the lo in underneath it. 4385 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4386 ValHi, I32Mask, InsertI64VL); 4387 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4388 ValLo, I32Mask, InsertI64VL); 4389 // Bitcast back to the right container type. 4390 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4391 } 4392 4393 // Now that the value is in a vector, slide it into position. 4394 SDValue InsertVL = 4395 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4396 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4397 ValInVec, Idx, Mask, InsertVL); 4398 if (!VecVT.isFixedLengthVector()) 4399 return Slideup; 4400 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4401 } 4402 4403 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4404 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4405 // types this is done using VMV_X_S to allow us to glean information about the 4406 // sign bits of the result. 4407 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4408 SelectionDAG &DAG) const { 4409 SDLoc DL(Op); 4410 SDValue Idx = Op.getOperand(1); 4411 SDValue Vec = Op.getOperand(0); 4412 EVT EltVT = Op.getValueType(); 4413 MVT VecVT = Vec.getSimpleValueType(); 4414 MVT XLenVT = Subtarget.getXLenVT(); 4415 4416 if (VecVT.getVectorElementType() == MVT::i1) { 4417 if (VecVT.isFixedLengthVector()) { 4418 unsigned NumElts = VecVT.getVectorNumElements(); 4419 if (NumElts >= 8) { 4420 MVT WideEltVT; 4421 unsigned WidenVecLen; 4422 SDValue ExtractElementIdx; 4423 SDValue ExtractBitIdx; 4424 unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors(); 4425 MVT LargestEltVT = MVT::getIntegerVT( 4426 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4427 if (NumElts <= LargestEltVT.getSizeInBits()) { 4428 assert(isPowerOf2_32(NumElts) && 4429 "the number of elements should be power of 2"); 4430 WideEltVT = MVT::getIntegerVT(NumElts); 4431 WidenVecLen = 1; 4432 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4433 ExtractBitIdx = Idx; 4434 } else { 4435 WideEltVT = LargestEltVT; 4436 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4437 // extract element index = index / element width 4438 ExtractElementIdx = DAG.getNode( 4439 ISD::SRL, DL, XLenVT, Idx, 4440 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4441 // mask bit index = index % element width 4442 ExtractBitIdx = DAG.getNode( 4443 ISD::AND, DL, XLenVT, Idx, 4444 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4445 } 4446 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4447 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4448 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4449 Vec, ExtractElementIdx); 4450 // Extract the bit from GPR. 4451 SDValue ShiftRight = 4452 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4453 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4454 DAG.getConstant(1, DL, XLenVT)); 4455 } 4456 } 4457 // Otherwise, promote to an i8 vector and extract from that. 4458 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4459 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4460 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4461 } 4462 4463 // If this is a fixed vector, we need to convert it to a scalable vector. 4464 MVT ContainerVT = VecVT; 4465 if (VecVT.isFixedLengthVector()) { 4466 ContainerVT = getContainerForFixedLengthVector(VecVT); 4467 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4468 } 4469 4470 // If the index is 0, the vector is already in the right position. 4471 if (!isNullConstant(Idx)) { 4472 // Use a VL of 1 to avoid processing more elements than we need. 4473 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4474 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4475 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4476 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4477 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4478 } 4479 4480 if (!EltVT.isInteger()) { 4481 // Floating-point extracts are handled in TableGen. 4482 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4483 DAG.getConstant(0, DL, XLenVT)); 4484 } 4485 4486 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4487 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4488 } 4489 4490 // Some RVV intrinsics may claim that they want an integer operand to be 4491 // promoted or expanded. 4492 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 4493 const RISCVSubtarget &Subtarget) { 4494 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4495 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4496 "Unexpected opcode"); 4497 4498 if (!Subtarget.hasVInstructions()) 4499 return SDValue(); 4500 4501 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4502 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4503 SDLoc DL(Op); 4504 4505 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4506 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4507 if (!II || !II->hasSplatOperand()) 4508 return SDValue(); 4509 4510 unsigned SplatOp = II->SplatOperand + 1 + HasChain; 4511 assert(SplatOp < Op.getNumOperands()); 4512 4513 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4514 SDValue &ScalarOp = Operands[SplatOp]; 4515 MVT OpVT = ScalarOp.getSimpleValueType(); 4516 MVT XLenVT = Subtarget.getXLenVT(); 4517 4518 // If this isn't a scalar, or its type is XLenVT we're done. 4519 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4520 return SDValue(); 4521 4522 // Simplest case is that the operand needs to be promoted to XLenVT. 4523 if (OpVT.bitsLT(XLenVT)) { 4524 // If the operand is a constant, sign extend to increase our chances 4525 // of being able to use a .vi instruction. ANY_EXTEND would become a 4526 // a zero extend and the simm5 check in isel would fail. 4527 // FIXME: Should we ignore the upper bits in isel instead? 4528 unsigned ExtOpc = 4529 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4530 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4531 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4532 } 4533 4534 // Use the previous operand to get the vXi64 VT. The result might be a mask 4535 // VT for compares. Using the previous operand assumes that the previous 4536 // operand will never have a smaller element size than a scalar operand and 4537 // that a widening operation never uses SEW=64. 4538 // NOTE: If this fails the below assert, we can probably just find the 4539 // element count from any operand or result and use it to construct the VT. 4540 assert(II->SplatOperand > 0 && "Unexpected splat operand!"); 4541 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4542 4543 // The more complex case is when the scalar is larger than XLenVT. 4544 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4545 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4546 4547 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4548 // on the instruction to sign-extend since SEW>XLEN. 4549 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4550 if (isInt<32>(CVal->getSExtValue())) { 4551 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4552 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4553 } 4554 } 4555 4556 // We need to convert the scalar to a splat vector. 4557 // FIXME: Can we implicitly truncate the scalar if it is known to 4558 // be sign extended? 4559 SDValue VL = getVLOperand(Op); 4560 assert(VL.getValueType() == XLenVT); 4561 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4562 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4563 } 4564 4565 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4566 SelectionDAG &DAG) const { 4567 unsigned IntNo = Op.getConstantOperandVal(0); 4568 SDLoc DL(Op); 4569 MVT XLenVT = Subtarget.getXLenVT(); 4570 4571 switch (IntNo) { 4572 default: 4573 break; // Don't custom lower most intrinsics. 4574 case Intrinsic::thread_pointer: { 4575 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4576 return DAG.getRegister(RISCV::X4, PtrVT); 4577 } 4578 case Intrinsic::riscv_orc_b: 4579 case Intrinsic::riscv_brev8: { 4580 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4581 unsigned Opc = 4582 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4583 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4584 DAG.getConstant(7, DL, XLenVT)); 4585 } 4586 case Intrinsic::riscv_grev: 4587 case Intrinsic::riscv_gorc: { 4588 unsigned Opc = 4589 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4590 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4591 } 4592 case Intrinsic::riscv_zip: 4593 case Intrinsic::riscv_unzip: { 4594 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4595 // For i32 the immdiate is 15. For i64 the immediate is 31. 4596 unsigned Opc = 4597 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4598 unsigned BitWidth = Op.getValueSizeInBits(); 4599 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4600 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4601 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4602 } 4603 case Intrinsic::riscv_shfl: 4604 case Intrinsic::riscv_unshfl: { 4605 unsigned Opc = 4606 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4607 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4608 } 4609 case Intrinsic::riscv_bcompress: 4610 case Intrinsic::riscv_bdecompress: { 4611 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4612 : RISCVISD::BDECOMPRESS; 4613 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4614 } 4615 case Intrinsic::riscv_bfp: 4616 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4617 Op.getOperand(2)); 4618 case Intrinsic::riscv_fsl: 4619 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4620 Op.getOperand(2), Op.getOperand(3)); 4621 case Intrinsic::riscv_fsr: 4622 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4623 Op.getOperand(2), Op.getOperand(3)); 4624 case Intrinsic::riscv_vmv_x_s: 4625 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4626 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4627 Op.getOperand(1)); 4628 case Intrinsic::riscv_vmv_v_x: 4629 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4630 Op.getSimpleValueType(), DL, DAG, Subtarget); 4631 case Intrinsic::riscv_vfmv_v_f: 4632 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4633 Op.getOperand(1), Op.getOperand(2)); 4634 case Intrinsic::riscv_vmv_s_x: { 4635 SDValue Scalar = Op.getOperand(2); 4636 4637 if (Scalar.getValueType().bitsLE(XLenVT)) { 4638 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4639 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4640 Op.getOperand(1), Scalar, Op.getOperand(3)); 4641 } 4642 4643 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4644 4645 // This is an i64 value that lives in two scalar registers. We have to 4646 // insert this in a convoluted way. First we build vXi64 splat containing 4647 // the/ two values that we assemble using some bit math. Next we'll use 4648 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4649 // to merge element 0 from our splat into the source vector. 4650 // FIXME: This is probably not the best way to do this, but it is 4651 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4652 // point. 4653 // sw lo, (a0) 4654 // sw hi, 4(a0) 4655 // vlse vX, (a0) 4656 // 4657 // vid.v vVid 4658 // vmseq.vx mMask, vVid, 0 4659 // vmerge.vvm vDest, vSrc, vVal, mMask 4660 MVT VT = Op.getSimpleValueType(); 4661 SDValue Vec = Op.getOperand(1); 4662 SDValue VL = getVLOperand(Op); 4663 4664 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4665 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4666 DAG.getConstant(0, DL, MVT::i32), VL); 4667 4668 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4669 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4670 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4671 SDValue SelectCond = 4672 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4673 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4674 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4675 Vec, VL); 4676 } 4677 case Intrinsic::riscv_vslide1up: 4678 case Intrinsic::riscv_vslide1down: 4679 case Intrinsic::riscv_vslide1up_mask: 4680 case Intrinsic::riscv_vslide1down_mask: { 4681 // We need to special case these when the scalar is larger than XLen. 4682 unsigned NumOps = Op.getNumOperands(); 4683 bool IsMasked = NumOps == 7; 4684 unsigned OpOffset = IsMasked ? 1 : 0; 4685 SDValue Scalar = Op.getOperand(2 + OpOffset); 4686 if (Scalar.getValueType().bitsLE(XLenVT)) 4687 break; 4688 4689 // Splatting a sign extended constant is fine. 4690 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4691 if (isInt<32>(CVal->getSExtValue())) 4692 break; 4693 4694 MVT VT = Op.getSimpleValueType(); 4695 assert(VT.getVectorElementType() == MVT::i64 && 4696 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4697 4698 // Convert the vector source to the equivalent nxvXi32 vector. 4699 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4700 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4701 4702 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4703 DAG.getConstant(0, DL, XLenVT)); 4704 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4705 DAG.getConstant(1, DL, XLenVT)); 4706 4707 // Double the VL since we halved SEW. 4708 SDValue VL = getVLOperand(Op); 4709 SDValue I32VL = 4710 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4711 4712 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4713 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4714 4715 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4716 // instructions. 4717 if (IntNo == Intrinsic::riscv_vslide1up || 4718 IntNo == Intrinsic::riscv_vslide1up_mask) { 4719 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4720 I32Mask, I32VL); 4721 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4722 I32Mask, I32VL); 4723 } else { 4724 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4725 I32Mask, I32VL); 4726 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4727 I32Mask, I32VL); 4728 } 4729 4730 // Convert back to nxvXi64. 4731 Vec = DAG.getBitcast(VT, Vec); 4732 4733 if (!IsMasked) 4734 return Vec; 4735 4736 // Apply mask after the operation. 4737 SDValue Mask = Op.getOperand(NumOps - 3); 4738 SDValue MaskedOff = Op.getOperand(1); 4739 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4740 } 4741 } 4742 4743 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4744 } 4745 4746 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4747 SelectionDAG &DAG) const { 4748 unsigned IntNo = Op.getConstantOperandVal(1); 4749 switch (IntNo) { 4750 default: 4751 break; 4752 case Intrinsic::riscv_masked_strided_load: { 4753 SDLoc DL(Op); 4754 MVT XLenVT = Subtarget.getXLenVT(); 4755 4756 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4757 // the selection of the masked intrinsics doesn't do this for us. 4758 SDValue Mask = Op.getOperand(5); 4759 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4760 4761 MVT VT = Op->getSimpleValueType(0); 4762 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4763 4764 SDValue PassThru = Op.getOperand(2); 4765 if (!IsUnmasked) { 4766 MVT MaskVT = 4767 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4768 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4769 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4770 } 4771 4772 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4773 4774 SDValue IntID = DAG.getTargetConstant( 4775 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4776 XLenVT); 4777 4778 auto *Load = cast<MemIntrinsicSDNode>(Op); 4779 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4780 if (IsUnmasked) 4781 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4782 else 4783 Ops.push_back(PassThru); 4784 Ops.push_back(Op.getOperand(3)); // Ptr 4785 Ops.push_back(Op.getOperand(4)); // Stride 4786 if (!IsUnmasked) 4787 Ops.push_back(Mask); 4788 Ops.push_back(VL); 4789 if (!IsUnmasked) { 4790 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4791 Ops.push_back(Policy); 4792 } 4793 4794 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4795 SDValue Result = 4796 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4797 Load->getMemoryVT(), Load->getMemOperand()); 4798 SDValue Chain = Result.getValue(1); 4799 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4800 return DAG.getMergeValues({Result, Chain}, DL); 4801 } 4802 } 4803 4804 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4805 } 4806 4807 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4808 SelectionDAG &DAG) const { 4809 unsigned IntNo = Op.getConstantOperandVal(1); 4810 switch (IntNo) { 4811 default: 4812 break; 4813 case Intrinsic::riscv_masked_strided_store: { 4814 SDLoc DL(Op); 4815 MVT XLenVT = Subtarget.getXLenVT(); 4816 4817 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4818 // the selection of the masked intrinsics doesn't do this for us. 4819 SDValue Mask = Op.getOperand(5); 4820 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4821 4822 SDValue Val = Op.getOperand(2); 4823 MVT VT = Val.getSimpleValueType(); 4824 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4825 4826 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4827 if (!IsUnmasked) { 4828 MVT MaskVT = 4829 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4830 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4831 } 4832 4833 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4834 4835 SDValue IntID = DAG.getTargetConstant( 4836 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4837 XLenVT); 4838 4839 auto *Store = cast<MemIntrinsicSDNode>(Op); 4840 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4841 Ops.push_back(Val); 4842 Ops.push_back(Op.getOperand(3)); // Ptr 4843 Ops.push_back(Op.getOperand(4)); // Stride 4844 if (!IsUnmasked) 4845 Ops.push_back(Mask); 4846 Ops.push_back(VL); 4847 4848 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4849 Ops, Store->getMemoryVT(), 4850 Store->getMemOperand()); 4851 } 4852 } 4853 4854 return SDValue(); 4855 } 4856 4857 static MVT getLMUL1VT(MVT VT) { 4858 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4859 "Unexpected vector MVT"); 4860 return MVT::getScalableVectorVT( 4861 VT.getVectorElementType(), 4862 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4863 } 4864 4865 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4866 switch (ISDOpcode) { 4867 default: 4868 llvm_unreachable("Unhandled reduction"); 4869 case ISD::VECREDUCE_ADD: 4870 return RISCVISD::VECREDUCE_ADD_VL; 4871 case ISD::VECREDUCE_UMAX: 4872 return RISCVISD::VECREDUCE_UMAX_VL; 4873 case ISD::VECREDUCE_SMAX: 4874 return RISCVISD::VECREDUCE_SMAX_VL; 4875 case ISD::VECREDUCE_UMIN: 4876 return RISCVISD::VECREDUCE_UMIN_VL; 4877 case ISD::VECREDUCE_SMIN: 4878 return RISCVISD::VECREDUCE_SMIN_VL; 4879 case ISD::VECREDUCE_AND: 4880 return RISCVISD::VECREDUCE_AND_VL; 4881 case ISD::VECREDUCE_OR: 4882 return RISCVISD::VECREDUCE_OR_VL; 4883 case ISD::VECREDUCE_XOR: 4884 return RISCVISD::VECREDUCE_XOR_VL; 4885 } 4886 } 4887 4888 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4889 SelectionDAG &DAG, 4890 bool IsVP) const { 4891 SDLoc DL(Op); 4892 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4893 MVT VecVT = Vec.getSimpleValueType(); 4894 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4895 Op.getOpcode() == ISD::VECREDUCE_OR || 4896 Op.getOpcode() == ISD::VECREDUCE_XOR || 4897 Op.getOpcode() == ISD::VP_REDUCE_AND || 4898 Op.getOpcode() == ISD::VP_REDUCE_OR || 4899 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4900 "Unexpected reduction lowering"); 4901 4902 MVT XLenVT = Subtarget.getXLenVT(); 4903 assert(Op.getValueType() == XLenVT && 4904 "Expected reduction output to be legalized to XLenVT"); 4905 4906 MVT ContainerVT = VecVT; 4907 if (VecVT.isFixedLengthVector()) { 4908 ContainerVT = getContainerForFixedLengthVector(VecVT); 4909 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4910 } 4911 4912 SDValue Mask, VL; 4913 if (IsVP) { 4914 Mask = Op.getOperand(2); 4915 VL = Op.getOperand(3); 4916 } else { 4917 std::tie(Mask, VL) = 4918 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4919 } 4920 4921 unsigned BaseOpc; 4922 ISD::CondCode CC; 4923 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4924 4925 switch (Op.getOpcode()) { 4926 default: 4927 llvm_unreachable("Unhandled reduction"); 4928 case ISD::VECREDUCE_AND: 4929 case ISD::VP_REDUCE_AND: { 4930 // vcpop ~x == 0 4931 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4932 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4933 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4934 CC = ISD::SETEQ; 4935 BaseOpc = ISD::AND; 4936 break; 4937 } 4938 case ISD::VECREDUCE_OR: 4939 case ISD::VP_REDUCE_OR: 4940 // vcpop x != 0 4941 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4942 CC = ISD::SETNE; 4943 BaseOpc = ISD::OR; 4944 break; 4945 case ISD::VECREDUCE_XOR: 4946 case ISD::VP_REDUCE_XOR: { 4947 // ((vcpop x) & 1) != 0 4948 SDValue One = DAG.getConstant(1, DL, XLenVT); 4949 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4950 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4951 CC = ISD::SETNE; 4952 BaseOpc = ISD::XOR; 4953 break; 4954 } 4955 } 4956 4957 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4958 4959 if (!IsVP) 4960 return SetCC; 4961 4962 // Now include the start value in the operation. 4963 // Note that we must return the start value when no elements are operated 4964 // upon. The vcpop instructions we've emitted in each case above will return 4965 // 0 for an inactive vector, and so we've already received the neutral value: 4966 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4967 // can simply include the start value. 4968 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4969 } 4970 4971 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4972 SelectionDAG &DAG) const { 4973 SDLoc DL(Op); 4974 SDValue Vec = Op.getOperand(0); 4975 EVT VecEVT = Vec.getValueType(); 4976 4977 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4978 4979 // Due to ordering in legalize types we may have a vector type that needs to 4980 // be split. Do that manually so we can get down to a legal type. 4981 while (getTypeAction(*DAG.getContext(), VecEVT) == 4982 TargetLowering::TypeSplitVector) { 4983 SDValue Lo, Hi; 4984 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4985 VecEVT = Lo.getValueType(); 4986 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4987 } 4988 4989 // TODO: The type may need to be widened rather than split. Or widened before 4990 // it can be split. 4991 if (!isTypeLegal(VecEVT)) 4992 return SDValue(); 4993 4994 MVT VecVT = VecEVT.getSimpleVT(); 4995 MVT VecEltVT = VecVT.getVectorElementType(); 4996 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4997 4998 MVT ContainerVT = VecVT; 4999 if (VecVT.isFixedLengthVector()) { 5000 ContainerVT = getContainerForFixedLengthVector(VecVT); 5001 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5002 } 5003 5004 MVT M1VT = getLMUL1VT(ContainerVT); 5005 MVT XLenVT = Subtarget.getXLenVT(); 5006 5007 SDValue Mask, VL; 5008 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5009 5010 SDValue NeutralElem = 5011 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 5012 SDValue IdentitySplat = lowerScalarSplat( 5013 NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 5014 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 5015 IdentitySplat, Mask, VL); 5016 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5017 DAG.getConstant(0, DL, XLenVT)); 5018 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5019 } 5020 5021 // Given a reduction op, this function returns the matching reduction opcode, 5022 // the vector SDValue and the scalar SDValue required to lower this to a 5023 // RISCVISD node. 5024 static std::tuple<unsigned, SDValue, SDValue> 5025 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 5026 SDLoc DL(Op); 5027 auto Flags = Op->getFlags(); 5028 unsigned Opcode = Op.getOpcode(); 5029 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 5030 switch (Opcode) { 5031 default: 5032 llvm_unreachable("Unhandled reduction"); 5033 case ISD::VECREDUCE_FADD: { 5034 // Use positive zero if we can. It is cheaper to materialize. 5035 SDValue Zero = 5036 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 5037 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 5038 } 5039 case ISD::VECREDUCE_SEQ_FADD: 5040 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 5041 Op.getOperand(0)); 5042 case ISD::VECREDUCE_FMIN: 5043 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 5044 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5045 case ISD::VECREDUCE_FMAX: 5046 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 5047 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5048 } 5049 } 5050 5051 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 5052 SelectionDAG &DAG) const { 5053 SDLoc DL(Op); 5054 MVT VecEltVT = Op.getSimpleValueType(); 5055 5056 unsigned RVVOpcode; 5057 SDValue VectorVal, ScalarVal; 5058 std::tie(RVVOpcode, VectorVal, ScalarVal) = 5059 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 5060 MVT VecVT = VectorVal.getSimpleValueType(); 5061 5062 MVT ContainerVT = VecVT; 5063 if (VecVT.isFixedLengthVector()) { 5064 ContainerVT = getContainerForFixedLengthVector(VecVT); 5065 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 5066 } 5067 5068 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 5069 MVT XLenVT = Subtarget.getXLenVT(); 5070 5071 SDValue Mask, VL; 5072 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5073 5074 SDValue ScalarSplat = lowerScalarSplat( 5075 ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 5076 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 5077 VectorVal, ScalarSplat, Mask, VL); 5078 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5079 DAG.getConstant(0, DL, XLenVT)); 5080 } 5081 5082 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 5083 switch (ISDOpcode) { 5084 default: 5085 llvm_unreachable("Unhandled reduction"); 5086 case ISD::VP_REDUCE_ADD: 5087 return RISCVISD::VECREDUCE_ADD_VL; 5088 case ISD::VP_REDUCE_UMAX: 5089 return RISCVISD::VECREDUCE_UMAX_VL; 5090 case ISD::VP_REDUCE_SMAX: 5091 return RISCVISD::VECREDUCE_SMAX_VL; 5092 case ISD::VP_REDUCE_UMIN: 5093 return RISCVISD::VECREDUCE_UMIN_VL; 5094 case ISD::VP_REDUCE_SMIN: 5095 return RISCVISD::VECREDUCE_SMIN_VL; 5096 case ISD::VP_REDUCE_AND: 5097 return RISCVISD::VECREDUCE_AND_VL; 5098 case ISD::VP_REDUCE_OR: 5099 return RISCVISD::VECREDUCE_OR_VL; 5100 case ISD::VP_REDUCE_XOR: 5101 return RISCVISD::VECREDUCE_XOR_VL; 5102 case ISD::VP_REDUCE_FADD: 5103 return RISCVISD::VECREDUCE_FADD_VL; 5104 case ISD::VP_REDUCE_SEQ_FADD: 5105 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 5106 case ISD::VP_REDUCE_FMAX: 5107 return RISCVISD::VECREDUCE_FMAX_VL; 5108 case ISD::VP_REDUCE_FMIN: 5109 return RISCVISD::VECREDUCE_FMIN_VL; 5110 } 5111 } 5112 5113 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5114 SelectionDAG &DAG) const { 5115 SDLoc DL(Op); 5116 SDValue Vec = Op.getOperand(1); 5117 EVT VecEVT = Vec.getValueType(); 5118 5119 // TODO: The type may need to be widened rather than split. Or widened before 5120 // it can be split. 5121 if (!isTypeLegal(VecEVT)) 5122 return SDValue(); 5123 5124 MVT VecVT = VecEVT.getSimpleVT(); 5125 MVT VecEltVT = VecVT.getVectorElementType(); 5126 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5127 5128 MVT ContainerVT = VecVT; 5129 if (VecVT.isFixedLengthVector()) { 5130 ContainerVT = getContainerForFixedLengthVector(VecVT); 5131 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5132 } 5133 5134 SDValue VL = Op.getOperand(3); 5135 SDValue Mask = Op.getOperand(2); 5136 5137 MVT M1VT = getLMUL1VT(ContainerVT); 5138 MVT XLenVT = Subtarget.getXLenVT(); 5139 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5140 5141 SDValue StartSplat = 5142 lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, 5143 DL, DAG, Subtarget); 5144 SDValue Reduction = 5145 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5146 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5147 DAG.getConstant(0, DL, XLenVT)); 5148 if (!VecVT.isInteger()) 5149 return Elt0; 5150 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5151 } 5152 5153 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5154 SelectionDAG &DAG) const { 5155 SDValue Vec = Op.getOperand(0); 5156 SDValue SubVec = Op.getOperand(1); 5157 MVT VecVT = Vec.getSimpleValueType(); 5158 MVT SubVecVT = SubVec.getSimpleValueType(); 5159 5160 SDLoc DL(Op); 5161 MVT XLenVT = Subtarget.getXLenVT(); 5162 unsigned OrigIdx = Op.getConstantOperandVal(2); 5163 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5164 5165 // We don't have the ability to slide mask vectors up indexed by their i1 5166 // elements; the smallest we can do is i8. Often we are able to bitcast to 5167 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5168 // into a scalable one, we might not necessarily have enough scalable 5169 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5170 if (SubVecVT.getVectorElementType() == MVT::i1 && 5171 (OrigIdx != 0 || !Vec.isUndef())) { 5172 if (VecVT.getVectorMinNumElements() >= 8 && 5173 SubVecVT.getVectorMinNumElements() >= 8) { 5174 assert(OrigIdx % 8 == 0 && "Invalid index"); 5175 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5176 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5177 "Unexpected mask vector lowering"); 5178 OrigIdx /= 8; 5179 SubVecVT = 5180 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5181 SubVecVT.isScalableVector()); 5182 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5183 VecVT.isScalableVector()); 5184 Vec = DAG.getBitcast(VecVT, Vec); 5185 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5186 } else { 5187 // We can't slide this mask vector up indexed by its i1 elements. 5188 // This poses a problem when we wish to insert a scalable vector which 5189 // can't be re-expressed as a larger type. Just choose the slow path and 5190 // extend to a larger type, then truncate back down. 5191 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5192 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5193 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5194 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5195 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5196 Op.getOperand(2)); 5197 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5198 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5199 } 5200 } 5201 5202 // If the subvector vector is a fixed-length type, we cannot use subregister 5203 // manipulation to simplify the codegen; we don't know which register of a 5204 // LMUL group contains the specific subvector as we only know the minimum 5205 // register size. Therefore we must slide the vector group up the full 5206 // amount. 5207 if (SubVecVT.isFixedLengthVector()) { 5208 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5209 return Op; 5210 MVT ContainerVT = VecVT; 5211 if (VecVT.isFixedLengthVector()) { 5212 ContainerVT = getContainerForFixedLengthVector(VecVT); 5213 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5214 } 5215 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5216 DAG.getUNDEF(ContainerVT), SubVec, 5217 DAG.getConstant(0, DL, XLenVT)); 5218 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5219 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5220 return DAG.getBitcast(Op.getValueType(), SubVec); 5221 } 5222 SDValue Mask = 5223 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5224 // Set the vector length to only the number of elements we care about. Note 5225 // that for slideup this includes the offset. 5226 SDValue VL = 5227 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5228 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5229 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5230 SubVec, SlideupAmt, Mask, VL); 5231 if (VecVT.isFixedLengthVector()) 5232 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5233 return DAG.getBitcast(Op.getValueType(), Slideup); 5234 } 5235 5236 unsigned SubRegIdx, RemIdx; 5237 std::tie(SubRegIdx, RemIdx) = 5238 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5239 VecVT, SubVecVT, OrigIdx, TRI); 5240 5241 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5242 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5243 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5244 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5245 5246 // 1. If the Idx has been completely eliminated and this subvector's size is 5247 // a vector register or a multiple thereof, or the surrounding elements are 5248 // undef, then this is a subvector insert which naturally aligns to a vector 5249 // register. These can easily be handled using subregister manipulation. 5250 // 2. If the subvector is smaller than a vector register, then the insertion 5251 // must preserve the undisturbed elements of the register. We do this by 5252 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5253 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5254 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5255 // LMUL=1 type back into the larger vector (resolving to another subregister 5256 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5257 // to avoid allocating a large register group to hold our subvector. 5258 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5259 return Op; 5260 5261 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5262 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5263 // (in our case undisturbed). This means we can set up a subvector insertion 5264 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5265 // size of the subvector. 5266 MVT InterSubVT = VecVT; 5267 SDValue AlignedExtract = Vec; 5268 unsigned AlignedIdx = OrigIdx - RemIdx; 5269 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5270 InterSubVT = getLMUL1VT(VecVT); 5271 // Extract a subvector equal to the nearest full vector register type. This 5272 // should resolve to a EXTRACT_SUBREG instruction. 5273 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5274 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5275 } 5276 5277 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5278 // For scalable vectors this must be further multiplied by vscale. 5279 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5280 5281 SDValue Mask, VL; 5282 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5283 5284 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5285 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5286 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5287 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5288 5289 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5290 DAG.getUNDEF(InterSubVT), SubVec, 5291 DAG.getConstant(0, DL, XLenVT)); 5292 5293 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5294 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5295 5296 // If required, insert this subvector back into the correct vector register. 5297 // This should resolve to an INSERT_SUBREG instruction. 5298 if (VecVT.bitsGT(InterSubVT)) 5299 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5300 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5301 5302 // We might have bitcast from a mask type: cast back to the original type if 5303 // required. 5304 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5305 } 5306 5307 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5308 SelectionDAG &DAG) const { 5309 SDValue Vec = Op.getOperand(0); 5310 MVT SubVecVT = Op.getSimpleValueType(); 5311 MVT VecVT = Vec.getSimpleValueType(); 5312 5313 SDLoc DL(Op); 5314 MVT XLenVT = Subtarget.getXLenVT(); 5315 unsigned OrigIdx = Op.getConstantOperandVal(1); 5316 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5317 5318 // We don't have the ability to slide mask vectors down indexed by their i1 5319 // elements; the smallest we can do is i8. Often we are able to bitcast to 5320 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5321 // from a scalable one, we might not necessarily have enough scalable 5322 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5323 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5324 if (VecVT.getVectorMinNumElements() >= 8 && 5325 SubVecVT.getVectorMinNumElements() >= 8) { 5326 assert(OrigIdx % 8 == 0 && "Invalid index"); 5327 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5328 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5329 "Unexpected mask vector lowering"); 5330 OrigIdx /= 8; 5331 SubVecVT = 5332 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5333 SubVecVT.isScalableVector()); 5334 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5335 VecVT.isScalableVector()); 5336 Vec = DAG.getBitcast(VecVT, Vec); 5337 } else { 5338 // We can't slide this mask vector down, indexed by its i1 elements. 5339 // This poses a problem when we wish to extract a scalable vector which 5340 // can't be re-expressed as a larger type. Just choose the slow path and 5341 // extend to a larger type, then truncate back down. 5342 // TODO: We could probably improve this when extracting certain fixed 5343 // from fixed, where we can extract as i8 and shift the correct element 5344 // right to reach the desired subvector? 5345 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5346 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5347 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5348 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5349 Op.getOperand(1)); 5350 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5351 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5352 } 5353 } 5354 5355 // If the subvector vector is a fixed-length type, we cannot use subregister 5356 // manipulation to simplify the codegen; we don't know which register of a 5357 // LMUL group contains the specific subvector as we only know the minimum 5358 // register size. Therefore we must slide the vector group down the full 5359 // amount. 5360 if (SubVecVT.isFixedLengthVector()) { 5361 // With an index of 0 this is a cast-like subvector, which can be performed 5362 // with subregister operations. 5363 if (OrigIdx == 0) 5364 return Op; 5365 MVT ContainerVT = VecVT; 5366 if (VecVT.isFixedLengthVector()) { 5367 ContainerVT = getContainerForFixedLengthVector(VecVT); 5368 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5369 } 5370 SDValue Mask = 5371 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5372 // Set the vector length to only the number of elements we care about. This 5373 // avoids sliding down elements we're going to discard straight away. 5374 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5375 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5376 SDValue Slidedown = 5377 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5378 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5379 // Now we can use a cast-like subvector extract to get the result. 5380 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5381 DAG.getConstant(0, DL, XLenVT)); 5382 return DAG.getBitcast(Op.getValueType(), Slidedown); 5383 } 5384 5385 unsigned SubRegIdx, RemIdx; 5386 std::tie(SubRegIdx, RemIdx) = 5387 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5388 VecVT, SubVecVT, OrigIdx, TRI); 5389 5390 // If the Idx has been completely eliminated then this is a subvector extract 5391 // which naturally aligns to a vector register. These can easily be handled 5392 // using subregister manipulation. 5393 if (RemIdx == 0) 5394 return Op; 5395 5396 // Else we must shift our vector register directly to extract the subvector. 5397 // Do this using VSLIDEDOWN. 5398 5399 // If the vector type is an LMUL-group type, extract a subvector equal to the 5400 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5401 // instruction. 5402 MVT InterSubVT = VecVT; 5403 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5404 InterSubVT = getLMUL1VT(VecVT); 5405 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5406 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5407 } 5408 5409 // Slide this vector register down by the desired number of elements in order 5410 // to place the desired subvector starting at element 0. 5411 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5412 // For scalable vectors this must be further multiplied by vscale. 5413 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5414 5415 SDValue Mask, VL; 5416 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5417 SDValue Slidedown = 5418 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5419 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5420 5421 // Now the vector is in the right position, extract our final subvector. This 5422 // should resolve to a COPY. 5423 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5424 DAG.getConstant(0, DL, XLenVT)); 5425 5426 // We might have bitcast from a mask type: cast back to the original type if 5427 // required. 5428 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5429 } 5430 5431 // Lower step_vector to the vid instruction. Any non-identity step value must 5432 // be accounted for my manual expansion. 5433 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5434 SelectionDAG &DAG) const { 5435 SDLoc DL(Op); 5436 MVT VT = Op.getSimpleValueType(); 5437 MVT XLenVT = Subtarget.getXLenVT(); 5438 SDValue Mask, VL; 5439 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5440 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5441 uint64_t StepValImm = Op.getConstantOperandVal(0); 5442 if (StepValImm != 1) { 5443 if (isPowerOf2_64(StepValImm)) { 5444 SDValue StepVal = 5445 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 5446 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5447 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5448 } else { 5449 SDValue StepVal = lowerScalarSplat( 5450 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 5451 DL, DAG, Subtarget); 5452 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5453 } 5454 } 5455 return StepVec; 5456 } 5457 5458 // Implement vector_reverse using vrgather.vv with indices determined by 5459 // subtracting the id of each element from (VLMAX-1). This will convert 5460 // the indices like so: 5461 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5462 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5463 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5464 SelectionDAG &DAG) const { 5465 SDLoc DL(Op); 5466 MVT VecVT = Op.getSimpleValueType(); 5467 unsigned EltSize = VecVT.getScalarSizeInBits(); 5468 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5469 5470 unsigned MaxVLMAX = 0; 5471 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5472 if (VectorBitsMax != 0) 5473 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 5474 5475 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5476 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5477 5478 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5479 // to use vrgatherei16.vv. 5480 // TODO: It's also possible to use vrgatherei16.vv for other types to 5481 // decrease register width for the index calculation. 5482 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5483 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5484 // Reverse each half, then reassemble them in reverse order. 5485 // NOTE: It's also possible that after splitting that VLMAX no longer 5486 // requires vrgatherei16.vv. 5487 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5488 SDValue Lo, Hi; 5489 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5490 EVT LoVT, HiVT; 5491 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5492 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5493 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5494 // Reassemble the low and high pieces reversed. 5495 // FIXME: This is a CONCAT_VECTORS. 5496 SDValue Res = 5497 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5498 DAG.getIntPtrConstant(0, DL)); 5499 return DAG.getNode( 5500 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5501 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5502 } 5503 5504 // Just promote the int type to i16 which will double the LMUL. 5505 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5506 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5507 } 5508 5509 MVT XLenVT = Subtarget.getXLenVT(); 5510 SDValue Mask, VL; 5511 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5512 5513 // Calculate VLMAX-1 for the desired SEW. 5514 unsigned MinElts = VecVT.getVectorMinNumElements(); 5515 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5516 DAG.getConstant(MinElts, DL, XLenVT)); 5517 SDValue VLMinus1 = 5518 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5519 5520 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5521 bool IsRV32E64 = 5522 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5523 SDValue SplatVL; 5524 if (!IsRV32E64) 5525 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5526 else 5527 SplatVL = 5528 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, VLMinus1, 5529 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT)); 5530 5531 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5532 SDValue Indices = 5533 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5534 5535 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5536 } 5537 5538 SDValue 5539 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5540 SelectionDAG &DAG) const { 5541 SDLoc DL(Op); 5542 auto *Load = cast<LoadSDNode>(Op); 5543 5544 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5545 Load->getMemoryVT(), 5546 *Load->getMemOperand()) && 5547 "Expecting a correctly-aligned load"); 5548 5549 MVT VT = Op.getSimpleValueType(); 5550 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5551 5552 SDValue VL = 5553 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5554 5555 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5556 SDValue NewLoad = DAG.getMemIntrinsicNode( 5557 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5558 Load->getMemoryVT(), Load->getMemOperand()); 5559 5560 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5561 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5562 } 5563 5564 SDValue 5565 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5566 SelectionDAG &DAG) const { 5567 SDLoc DL(Op); 5568 auto *Store = cast<StoreSDNode>(Op); 5569 5570 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5571 Store->getMemoryVT(), 5572 *Store->getMemOperand()) && 5573 "Expecting a correctly-aligned store"); 5574 5575 SDValue StoreVal = Store->getValue(); 5576 MVT VT = StoreVal.getSimpleValueType(); 5577 5578 // If the size less than a byte, we need to pad with zeros to make a byte. 5579 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5580 VT = MVT::v8i1; 5581 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5582 DAG.getConstant(0, DL, VT), StoreVal, 5583 DAG.getIntPtrConstant(0, DL)); 5584 } 5585 5586 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5587 5588 SDValue VL = 5589 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5590 5591 SDValue NewValue = 5592 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5593 return DAG.getMemIntrinsicNode( 5594 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5595 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5596 Store->getMemoryVT(), Store->getMemOperand()); 5597 } 5598 5599 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5600 SelectionDAG &DAG) const { 5601 SDLoc DL(Op); 5602 MVT VT = Op.getSimpleValueType(); 5603 5604 const auto *MemSD = cast<MemSDNode>(Op); 5605 EVT MemVT = MemSD->getMemoryVT(); 5606 MachineMemOperand *MMO = MemSD->getMemOperand(); 5607 SDValue Chain = MemSD->getChain(); 5608 SDValue BasePtr = MemSD->getBasePtr(); 5609 5610 SDValue Mask, PassThru, VL; 5611 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5612 Mask = VPLoad->getMask(); 5613 PassThru = DAG.getUNDEF(VT); 5614 VL = VPLoad->getVectorLength(); 5615 } else { 5616 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5617 Mask = MLoad->getMask(); 5618 PassThru = MLoad->getPassThru(); 5619 } 5620 5621 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5622 5623 MVT XLenVT = Subtarget.getXLenVT(); 5624 5625 MVT ContainerVT = VT; 5626 if (VT.isFixedLengthVector()) { 5627 ContainerVT = getContainerForFixedLengthVector(VT); 5628 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5629 if (!IsUnmasked) { 5630 MVT MaskVT = 5631 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5632 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5633 } 5634 } 5635 5636 if (!VL) 5637 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5638 5639 unsigned IntID = 5640 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5641 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5642 if (IsUnmasked) 5643 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5644 else 5645 Ops.push_back(PassThru); 5646 Ops.push_back(BasePtr); 5647 if (!IsUnmasked) 5648 Ops.push_back(Mask); 5649 Ops.push_back(VL); 5650 if (!IsUnmasked) 5651 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5652 5653 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5654 5655 SDValue Result = 5656 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5657 Chain = Result.getValue(1); 5658 5659 if (VT.isFixedLengthVector()) 5660 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5661 5662 return DAG.getMergeValues({Result, Chain}, DL); 5663 } 5664 5665 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5666 SelectionDAG &DAG) const { 5667 SDLoc DL(Op); 5668 5669 const auto *MemSD = cast<MemSDNode>(Op); 5670 EVT MemVT = MemSD->getMemoryVT(); 5671 MachineMemOperand *MMO = MemSD->getMemOperand(); 5672 SDValue Chain = MemSD->getChain(); 5673 SDValue BasePtr = MemSD->getBasePtr(); 5674 SDValue Val, Mask, VL; 5675 5676 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5677 Val = VPStore->getValue(); 5678 Mask = VPStore->getMask(); 5679 VL = VPStore->getVectorLength(); 5680 } else { 5681 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5682 Val = MStore->getValue(); 5683 Mask = MStore->getMask(); 5684 } 5685 5686 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5687 5688 MVT VT = Val.getSimpleValueType(); 5689 MVT XLenVT = Subtarget.getXLenVT(); 5690 5691 MVT ContainerVT = VT; 5692 if (VT.isFixedLengthVector()) { 5693 ContainerVT = getContainerForFixedLengthVector(VT); 5694 5695 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5696 if (!IsUnmasked) { 5697 MVT MaskVT = 5698 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5699 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5700 } 5701 } 5702 5703 if (!VL) 5704 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5705 5706 unsigned IntID = 5707 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5708 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5709 Ops.push_back(Val); 5710 Ops.push_back(BasePtr); 5711 if (!IsUnmasked) 5712 Ops.push_back(Mask); 5713 Ops.push_back(VL); 5714 5715 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5716 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5717 } 5718 5719 SDValue 5720 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5721 SelectionDAG &DAG) const { 5722 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5723 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5724 5725 MVT VT = Op.getSimpleValueType(); 5726 5727 SDValue Op1 = 5728 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5729 SDValue Op2 = 5730 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5731 5732 SDLoc DL(Op); 5733 SDValue VL = 5734 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5735 5736 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5737 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5738 5739 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5740 Op.getOperand(2), Mask, VL); 5741 5742 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5743 } 5744 5745 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5746 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5747 MVT VT = Op.getSimpleValueType(); 5748 5749 if (VT.getVectorElementType() == MVT::i1) 5750 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5751 5752 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5753 } 5754 5755 SDValue 5756 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5757 SelectionDAG &DAG) const { 5758 unsigned Opc; 5759 switch (Op.getOpcode()) { 5760 default: llvm_unreachable("Unexpected opcode!"); 5761 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5762 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5763 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5764 } 5765 5766 return lowerToScalableOp(Op, DAG, Opc); 5767 } 5768 5769 // Lower vector ABS to smax(X, sub(0, X)). 5770 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5771 SDLoc DL(Op); 5772 MVT VT = Op.getSimpleValueType(); 5773 SDValue X = Op.getOperand(0); 5774 5775 assert(VT.isFixedLengthVector() && "Unexpected type"); 5776 5777 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5778 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5779 5780 SDValue Mask, VL; 5781 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5782 5783 SDValue SplatZero = 5784 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5785 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5786 SDValue NegX = 5787 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5788 SDValue Max = 5789 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5790 5791 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5792 } 5793 5794 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5795 SDValue Op, SelectionDAG &DAG) const { 5796 SDLoc DL(Op); 5797 MVT VT = Op.getSimpleValueType(); 5798 SDValue Mag = Op.getOperand(0); 5799 SDValue Sign = Op.getOperand(1); 5800 assert(Mag.getValueType() == Sign.getValueType() && 5801 "Can only handle COPYSIGN with matching types."); 5802 5803 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5804 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5805 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5806 5807 SDValue Mask, VL; 5808 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5809 5810 SDValue CopySign = 5811 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5812 5813 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5814 } 5815 5816 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5817 SDValue Op, SelectionDAG &DAG) const { 5818 MVT VT = Op.getSimpleValueType(); 5819 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5820 5821 MVT I1ContainerVT = 5822 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5823 5824 SDValue CC = 5825 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5826 SDValue Op1 = 5827 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5828 SDValue Op2 = 5829 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5830 5831 SDLoc DL(Op); 5832 SDValue Mask, VL; 5833 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5834 5835 SDValue Select = 5836 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5837 5838 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5839 } 5840 5841 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5842 unsigned NewOpc, 5843 bool HasMask) const { 5844 MVT VT = Op.getSimpleValueType(); 5845 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5846 5847 // Create list of operands by converting existing ones to scalable types. 5848 SmallVector<SDValue, 6> Ops; 5849 for (const SDValue &V : Op->op_values()) { 5850 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5851 5852 // Pass through non-vector operands. 5853 if (!V.getValueType().isVector()) { 5854 Ops.push_back(V); 5855 continue; 5856 } 5857 5858 // "cast" fixed length vector to a scalable vector. 5859 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5860 "Only fixed length vectors are supported!"); 5861 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5862 } 5863 5864 SDLoc DL(Op); 5865 SDValue Mask, VL; 5866 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5867 if (HasMask) 5868 Ops.push_back(Mask); 5869 Ops.push_back(VL); 5870 5871 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5872 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5873 } 5874 5875 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5876 // * Operands of each node are assumed to be in the same order. 5877 // * The EVL operand is promoted from i32 to i64 on RV64. 5878 // * Fixed-length vectors are converted to their scalable-vector container 5879 // types. 5880 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5881 unsigned RISCVISDOpc) const { 5882 SDLoc DL(Op); 5883 MVT VT = Op.getSimpleValueType(); 5884 SmallVector<SDValue, 4> Ops; 5885 5886 for (const auto &OpIdx : enumerate(Op->ops())) { 5887 SDValue V = OpIdx.value(); 5888 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5889 // Pass through operands which aren't fixed-length vectors. 5890 if (!V.getValueType().isFixedLengthVector()) { 5891 Ops.push_back(V); 5892 continue; 5893 } 5894 // "cast" fixed length vector to a scalable vector. 5895 MVT OpVT = V.getSimpleValueType(); 5896 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5897 assert(useRVVForFixedLengthVectorVT(OpVT) && 5898 "Only fixed length vectors are supported!"); 5899 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5900 } 5901 5902 if (!VT.isFixedLengthVector()) 5903 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5904 5905 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5906 5907 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5908 5909 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5910 } 5911 5912 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 5913 unsigned MaskOpc, 5914 unsigned VecOpc) const { 5915 MVT VT = Op.getSimpleValueType(); 5916 if (VT.getVectorElementType() != MVT::i1) 5917 return lowerVPOp(Op, DAG, VecOpc); 5918 5919 // It is safe to drop mask parameter as masked-off elements are undef. 5920 SDValue Op1 = Op->getOperand(0); 5921 SDValue Op2 = Op->getOperand(1); 5922 SDValue VL = Op->getOperand(3); 5923 5924 MVT ContainerVT = VT; 5925 const bool IsFixed = VT.isFixedLengthVector(); 5926 if (IsFixed) { 5927 ContainerVT = getContainerForFixedLengthVector(VT); 5928 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 5929 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 5930 } 5931 5932 SDLoc DL(Op); 5933 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 5934 if (!IsFixed) 5935 return Val; 5936 return convertFromScalableVector(VT, Val, DAG, Subtarget); 5937 } 5938 5939 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5940 // matched to a RVV indexed load. The RVV indexed load instructions only 5941 // support the "unsigned unscaled" addressing mode; indices are implicitly 5942 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5943 // signed or scaled indexing is extended to the XLEN value type and scaled 5944 // accordingly. 5945 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5946 SelectionDAG &DAG) const { 5947 SDLoc DL(Op); 5948 MVT VT = Op.getSimpleValueType(); 5949 5950 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5951 EVT MemVT = MemSD->getMemoryVT(); 5952 MachineMemOperand *MMO = MemSD->getMemOperand(); 5953 SDValue Chain = MemSD->getChain(); 5954 SDValue BasePtr = MemSD->getBasePtr(); 5955 5956 ISD::LoadExtType LoadExtType; 5957 SDValue Index, Mask, PassThru, VL; 5958 5959 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5960 Index = VPGN->getIndex(); 5961 Mask = VPGN->getMask(); 5962 PassThru = DAG.getUNDEF(VT); 5963 VL = VPGN->getVectorLength(); 5964 // VP doesn't support extending loads. 5965 LoadExtType = ISD::NON_EXTLOAD; 5966 } else { 5967 // Else it must be a MGATHER. 5968 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5969 Index = MGN->getIndex(); 5970 Mask = MGN->getMask(); 5971 PassThru = MGN->getPassThru(); 5972 LoadExtType = MGN->getExtensionType(); 5973 } 5974 5975 MVT IndexVT = Index.getSimpleValueType(); 5976 MVT XLenVT = Subtarget.getXLenVT(); 5977 5978 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5979 "Unexpected VTs!"); 5980 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5981 // Targets have to explicitly opt-in for extending vector loads. 5982 assert(LoadExtType == ISD::NON_EXTLOAD && 5983 "Unexpected extending MGATHER/VP_GATHER"); 5984 (void)LoadExtType; 5985 5986 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5987 // the selection of the masked intrinsics doesn't do this for us. 5988 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5989 5990 MVT ContainerVT = VT; 5991 if (VT.isFixedLengthVector()) { 5992 // We need to use the larger of the result and index type to determine the 5993 // scalable type to use so we don't increase LMUL for any operand/result. 5994 if (VT.bitsGE(IndexVT)) { 5995 ContainerVT = getContainerForFixedLengthVector(VT); 5996 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5997 ContainerVT.getVectorElementCount()); 5998 } else { 5999 IndexVT = getContainerForFixedLengthVector(IndexVT); 6000 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 6001 IndexVT.getVectorElementCount()); 6002 } 6003 6004 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6005 6006 if (!IsUnmasked) { 6007 MVT MaskVT = 6008 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6009 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6010 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 6011 } 6012 } 6013 6014 if (!VL) 6015 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6016 6017 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6018 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6019 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6020 VL); 6021 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6022 TrueMask, VL); 6023 } 6024 6025 unsigned IntID = 6026 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 6027 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6028 if (IsUnmasked) 6029 Ops.push_back(DAG.getUNDEF(ContainerVT)); 6030 else 6031 Ops.push_back(PassThru); 6032 Ops.push_back(BasePtr); 6033 Ops.push_back(Index); 6034 if (!IsUnmasked) 6035 Ops.push_back(Mask); 6036 Ops.push_back(VL); 6037 if (!IsUnmasked) 6038 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 6039 6040 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 6041 SDValue Result = 6042 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 6043 Chain = Result.getValue(1); 6044 6045 if (VT.isFixedLengthVector()) 6046 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 6047 6048 return DAG.getMergeValues({Result, Chain}, DL); 6049 } 6050 6051 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 6052 // matched to a RVV indexed store. The RVV indexed store instructions only 6053 // support the "unsigned unscaled" addressing mode; indices are implicitly 6054 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6055 // signed or scaled indexing is extended to the XLEN value type and scaled 6056 // accordingly. 6057 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 6058 SelectionDAG &DAG) const { 6059 SDLoc DL(Op); 6060 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6061 EVT MemVT = MemSD->getMemoryVT(); 6062 MachineMemOperand *MMO = MemSD->getMemOperand(); 6063 SDValue Chain = MemSD->getChain(); 6064 SDValue BasePtr = MemSD->getBasePtr(); 6065 6066 bool IsTruncatingStore = false; 6067 SDValue Index, Mask, Val, VL; 6068 6069 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 6070 Index = VPSN->getIndex(); 6071 Mask = VPSN->getMask(); 6072 Val = VPSN->getValue(); 6073 VL = VPSN->getVectorLength(); 6074 // VP doesn't support truncating stores. 6075 IsTruncatingStore = false; 6076 } else { 6077 // Else it must be a MSCATTER. 6078 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 6079 Index = MSN->getIndex(); 6080 Mask = MSN->getMask(); 6081 Val = MSN->getValue(); 6082 IsTruncatingStore = MSN->isTruncatingStore(); 6083 } 6084 6085 MVT VT = Val.getSimpleValueType(); 6086 MVT IndexVT = Index.getSimpleValueType(); 6087 MVT XLenVT = Subtarget.getXLenVT(); 6088 6089 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6090 "Unexpected VTs!"); 6091 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6092 // Targets have to explicitly opt-in for extending vector loads and 6093 // truncating vector stores. 6094 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 6095 (void)IsTruncatingStore; 6096 6097 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6098 // the selection of the masked intrinsics doesn't do this for us. 6099 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6100 6101 MVT ContainerVT = VT; 6102 if (VT.isFixedLengthVector()) { 6103 // We need to use the larger of the value and index type to determine the 6104 // scalable type to use so we don't increase LMUL for any operand/result. 6105 if (VT.bitsGE(IndexVT)) { 6106 ContainerVT = getContainerForFixedLengthVector(VT); 6107 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6108 ContainerVT.getVectorElementCount()); 6109 } else { 6110 IndexVT = getContainerForFixedLengthVector(IndexVT); 6111 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 6112 IndexVT.getVectorElementCount()); 6113 } 6114 6115 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6116 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6117 6118 if (!IsUnmasked) { 6119 MVT MaskVT = 6120 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6121 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6122 } 6123 } 6124 6125 if (!VL) 6126 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6127 6128 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6129 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6130 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6131 VL); 6132 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6133 TrueMask, VL); 6134 } 6135 6136 unsigned IntID = 6137 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6138 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6139 Ops.push_back(Val); 6140 Ops.push_back(BasePtr); 6141 Ops.push_back(Index); 6142 if (!IsUnmasked) 6143 Ops.push_back(Mask); 6144 Ops.push_back(VL); 6145 6146 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6147 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6148 } 6149 6150 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6151 SelectionDAG &DAG) const { 6152 const MVT XLenVT = Subtarget.getXLenVT(); 6153 SDLoc DL(Op); 6154 SDValue Chain = Op->getOperand(0); 6155 SDValue SysRegNo = DAG.getTargetConstant( 6156 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6157 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6158 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6159 6160 // Encoding used for rounding mode in RISCV differs from that used in 6161 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6162 // table, which consists of a sequence of 4-bit fields, each representing 6163 // corresponding FLT_ROUNDS mode. 6164 static const int Table = 6165 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6166 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6167 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6168 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6169 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6170 6171 SDValue Shift = 6172 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6173 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6174 DAG.getConstant(Table, DL, XLenVT), Shift); 6175 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6176 DAG.getConstant(7, DL, XLenVT)); 6177 6178 return DAG.getMergeValues({Masked, Chain}, DL); 6179 } 6180 6181 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6182 SelectionDAG &DAG) const { 6183 const MVT XLenVT = Subtarget.getXLenVT(); 6184 SDLoc DL(Op); 6185 SDValue Chain = Op->getOperand(0); 6186 SDValue RMValue = Op->getOperand(1); 6187 SDValue SysRegNo = DAG.getTargetConstant( 6188 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6189 6190 // Encoding used for rounding mode in RISCV differs from that used in 6191 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6192 // a table, which consists of a sequence of 4-bit fields, each representing 6193 // corresponding RISCV mode. 6194 static const unsigned Table = 6195 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6196 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6197 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6198 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6199 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6200 6201 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6202 DAG.getConstant(2, DL, XLenVT)); 6203 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6204 DAG.getConstant(Table, DL, XLenVT), Shift); 6205 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6206 DAG.getConstant(0x7, DL, XLenVT)); 6207 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6208 RMValue); 6209 } 6210 6211 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6212 switch (IntNo) { 6213 default: 6214 llvm_unreachable("Unexpected Intrinsic"); 6215 case Intrinsic::riscv_grev: 6216 return RISCVISD::GREVW; 6217 case Intrinsic::riscv_gorc: 6218 return RISCVISD::GORCW; 6219 case Intrinsic::riscv_bcompress: 6220 return RISCVISD::BCOMPRESSW; 6221 case Intrinsic::riscv_bdecompress: 6222 return RISCVISD::BDECOMPRESSW; 6223 case Intrinsic::riscv_bfp: 6224 return RISCVISD::BFPW; 6225 case Intrinsic::riscv_fsl: 6226 return RISCVISD::FSLW; 6227 case Intrinsic::riscv_fsr: 6228 return RISCVISD::FSRW; 6229 } 6230 } 6231 6232 // Converts the given intrinsic to a i64 operation with any extension. 6233 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6234 unsigned IntNo) { 6235 SDLoc DL(N); 6236 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6237 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6238 SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6239 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); 6240 // ReplaceNodeResults requires we maintain the same type for the return value. 6241 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6242 } 6243 6244 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6245 // form of the given Opcode. 6246 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6247 switch (Opcode) { 6248 default: 6249 llvm_unreachable("Unexpected opcode"); 6250 case ISD::SHL: 6251 return RISCVISD::SLLW; 6252 case ISD::SRA: 6253 return RISCVISD::SRAW; 6254 case ISD::SRL: 6255 return RISCVISD::SRLW; 6256 case ISD::SDIV: 6257 return RISCVISD::DIVW; 6258 case ISD::UDIV: 6259 return RISCVISD::DIVUW; 6260 case ISD::UREM: 6261 return RISCVISD::REMUW; 6262 case ISD::ROTL: 6263 return RISCVISD::ROLW; 6264 case ISD::ROTR: 6265 return RISCVISD::RORW; 6266 case RISCVISD::GREV: 6267 return RISCVISD::GREVW; 6268 case RISCVISD::GORC: 6269 return RISCVISD::GORCW; 6270 } 6271 } 6272 6273 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6274 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6275 // otherwise be promoted to i64, making it difficult to select the 6276 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6277 // type i8/i16/i32 is lost. 6278 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6279 unsigned ExtOpc = ISD::ANY_EXTEND) { 6280 SDLoc DL(N); 6281 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6282 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6283 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6284 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6285 // ReplaceNodeResults requires we maintain the same type for the return value. 6286 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6287 } 6288 6289 // Converts the given 32-bit operation to a i64 operation with signed extension 6290 // semantic to reduce the signed extension instructions. 6291 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6292 SDLoc DL(N); 6293 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6294 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6295 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6296 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6297 DAG.getValueType(MVT::i32)); 6298 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6299 } 6300 6301 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6302 SmallVectorImpl<SDValue> &Results, 6303 SelectionDAG &DAG) const { 6304 SDLoc DL(N); 6305 switch (N->getOpcode()) { 6306 default: 6307 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6308 case ISD::STRICT_FP_TO_SINT: 6309 case ISD::STRICT_FP_TO_UINT: 6310 case ISD::FP_TO_SINT: 6311 case ISD::FP_TO_UINT: { 6312 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6313 "Unexpected custom legalisation"); 6314 bool IsStrict = N->isStrictFPOpcode(); 6315 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6316 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6317 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6318 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6319 TargetLowering::TypeSoftenFloat) { 6320 if (!isTypeLegal(Op0.getValueType())) 6321 return; 6322 if (IsStrict) { 6323 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6324 : RISCVISD::STRICT_FCVT_WU_RV64; 6325 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6326 SDValue Res = DAG.getNode( 6327 Opc, DL, VTs, N->getOperand(0), Op0, 6328 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6329 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6330 Results.push_back(Res.getValue(1)); 6331 return; 6332 } 6333 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6334 SDValue Res = 6335 DAG.getNode(Opc, DL, MVT::i64, Op0, 6336 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6337 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6338 return; 6339 } 6340 // If the FP type needs to be softened, emit a library call using the 'si' 6341 // version. If we left it to default legalization we'd end up with 'di'. If 6342 // the FP type doesn't need to be softened just let generic type 6343 // legalization promote the result type. 6344 RTLIB::Libcall LC; 6345 if (IsSigned) 6346 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6347 else 6348 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6349 MakeLibCallOptions CallOptions; 6350 EVT OpVT = Op0.getValueType(); 6351 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6352 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6353 SDValue Result; 6354 std::tie(Result, Chain) = 6355 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6356 Results.push_back(Result); 6357 if (IsStrict) 6358 Results.push_back(Chain); 6359 break; 6360 } 6361 case ISD::READCYCLECOUNTER: { 6362 assert(!Subtarget.is64Bit() && 6363 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6364 6365 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6366 SDValue RCW = 6367 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6368 6369 Results.push_back( 6370 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6371 Results.push_back(RCW.getValue(2)); 6372 break; 6373 } 6374 case ISD::MUL: { 6375 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6376 unsigned XLen = Subtarget.getXLen(); 6377 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6378 if (Size > XLen) { 6379 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6380 SDValue LHS = N->getOperand(0); 6381 SDValue RHS = N->getOperand(1); 6382 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6383 6384 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6385 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6386 // We need exactly one side to be unsigned. 6387 if (LHSIsU == RHSIsU) 6388 return; 6389 6390 auto MakeMULPair = [&](SDValue S, SDValue U) { 6391 MVT XLenVT = Subtarget.getXLenVT(); 6392 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6393 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6394 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6395 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6396 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6397 }; 6398 6399 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6400 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6401 6402 // The other operand should be signed, but still prefer MULH when 6403 // possible. 6404 if (RHSIsU && LHSIsS && !RHSIsS) 6405 Results.push_back(MakeMULPair(LHS, RHS)); 6406 else if (LHSIsU && RHSIsS && !LHSIsS) 6407 Results.push_back(MakeMULPair(RHS, LHS)); 6408 6409 return; 6410 } 6411 LLVM_FALLTHROUGH; 6412 } 6413 case ISD::ADD: 6414 case ISD::SUB: 6415 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6416 "Unexpected custom legalisation"); 6417 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6418 break; 6419 case ISD::SHL: 6420 case ISD::SRA: 6421 case ISD::SRL: 6422 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6423 "Unexpected custom legalisation"); 6424 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6425 Results.push_back(customLegalizeToWOp(N, DAG)); 6426 break; 6427 } 6428 6429 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6430 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6431 // shift amount. 6432 if (N->getOpcode() == ISD::SHL) { 6433 SDLoc DL(N); 6434 SDValue NewOp0 = 6435 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6436 SDValue NewOp1 = 6437 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6438 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6439 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6440 DAG.getValueType(MVT::i32)); 6441 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6442 } 6443 6444 break; 6445 case ISD::ROTL: 6446 case ISD::ROTR: 6447 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6448 "Unexpected custom legalisation"); 6449 Results.push_back(customLegalizeToWOp(N, DAG)); 6450 break; 6451 case ISD::CTTZ: 6452 case ISD::CTTZ_ZERO_UNDEF: 6453 case ISD::CTLZ: 6454 case ISD::CTLZ_ZERO_UNDEF: { 6455 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6456 "Unexpected custom legalisation"); 6457 6458 SDValue NewOp0 = 6459 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6460 bool IsCTZ = 6461 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6462 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6463 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6464 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6465 return; 6466 } 6467 case ISD::SDIV: 6468 case ISD::UDIV: 6469 case ISD::UREM: { 6470 MVT VT = N->getSimpleValueType(0); 6471 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6472 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6473 "Unexpected custom legalisation"); 6474 // Don't promote division/remainder by constant since we should expand those 6475 // to multiply by magic constant. 6476 // FIXME: What if the expansion is disabled for minsize. 6477 if (N->getOperand(1).getOpcode() == ISD::Constant) 6478 return; 6479 6480 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6481 // the upper 32 bits. For other types we need to sign or zero extend 6482 // based on the opcode. 6483 unsigned ExtOpc = ISD::ANY_EXTEND; 6484 if (VT != MVT::i32) 6485 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6486 : ISD::ZERO_EXTEND; 6487 6488 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6489 break; 6490 } 6491 case ISD::UADDO: 6492 case ISD::USUBO: { 6493 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6494 "Unexpected custom legalisation"); 6495 bool IsAdd = N->getOpcode() == ISD::UADDO; 6496 // Create an ADDW or SUBW. 6497 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6498 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6499 SDValue Res = 6500 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6501 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6502 DAG.getValueType(MVT::i32)); 6503 6504 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6505 // Since the inputs are sign extended from i32, this is equivalent to 6506 // comparing the lower 32 bits. 6507 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6508 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6509 IsAdd ? ISD::SETULT : ISD::SETUGT); 6510 6511 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6512 Results.push_back(Overflow); 6513 return; 6514 } 6515 case ISD::UADDSAT: 6516 case ISD::USUBSAT: { 6517 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6518 "Unexpected custom legalisation"); 6519 if (Subtarget.hasStdExtZbb()) { 6520 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6521 // sign extend allows overflow of the lower 32 bits to be detected on 6522 // the promoted size. 6523 SDValue LHS = 6524 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6525 SDValue RHS = 6526 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6527 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6528 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6529 return; 6530 } 6531 6532 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6533 // promotion for UADDO/USUBO. 6534 Results.push_back(expandAddSubSat(N, DAG)); 6535 return; 6536 } 6537 case ISD::BITCAST: { 6538 EVT VT = N->getValueType(0); 6539 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6540 SDValue Op0 = N->getOperand(0); 6541 EVT Op0VT = Op0.getValueType(); 6542 MVT XLenVT = Subtarget.getXLenVT(); 6543 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6544 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6545 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6546 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6547 Subtarget.hasStdExtF()) { 6548 SDValue FPConv = 6549 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6550 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6551 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6552 isTypeLegal(Op0VT)) { 6553 // Custom-legalize bitcasts from fixed-length vector types to illegal 6554 // scalar types in order to improve codegen. Bitcast the vector to a 6555 // one-element vector type whose element type is the same as the result 6556 // type, and extract the first element. 6557 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6558 if (isTypeLegal(BVT)) { 6559 SDValue BVec = DAG.getBitcast(BVT, Op0); 6560 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6561 DAG.getConstant(0, DL, XLenVT))); 6562 } 6563 } 6564 break; 6565 } 6566 case RISCVISD::GREV: 6567 case RISCVISD::GORC: { 6568 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6569 "Unexpected custom legalisation"); 6570 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6571 // This is similar to customLegalizeToWOp, except that we pass the second 6572 // operand (a TargetConstant) straight through: it is already of type 6573 // XLenVT. 6574 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6575 SDValue NewOp0 = 6576 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6577 SDValue NewOp1 = 6578 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6579 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6580 // ReplaceNodeResults requires we maintain the same type for the return 6581 // value. 6582 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6583 break; 6584 } 6585 case RISCVISD::SHFL: { 6586 // There is no SHFLIW instruction, but we can just promote the operation. 6587 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6588 "Unexpected custom legalisation"); 6589 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6590 SDValue NewOp0 = 6591 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6592 SDValue NewOp1 = 6593 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6594 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 6595 // ReplaceNodeResults requires we maintain the same type for the return 6596 // value. 6597 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6598 break; 6599 } 6600 case ISD::BSWAP: 6601 case ISD::BITREVERSE: { 6602 MVT VT = N->getSimpleValueType(0); 6603 MVT XLenVT = Subtarget.getXLenVT(); 6604 assert((VT == MVT::i8 || VT == MVT::i16 || 6605 (VT == MVT::i32 && Subtarget.is64Bit())) && 6606 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6607 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6608 unsigned Imm = VT.getSizeInBits() - 1; 6609 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6610 if (N->getOpcode() == ISD::BSWAP) 6611 Imm &= ~0x7U; 6612 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 6613 SDValue GREVI = 6614 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 6615 // ReplaceNodeResults requires we maintain the same type for the return 6616 // value. 6617 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6618 break; 6619 } 6620 case ISD::FSHL: 6621 case ISD::FSHR: { 6622 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6623 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6624 SDValue NewOp0 = 6625 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6626 SDValue NewOp1 = 6627 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6628 SDValue NewShAmt = 6629 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6630 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6631 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 6632 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 6633 DAG.getConstant(0x1f, DL, MVT::i64)); 6634 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 6635 // instruction use different orders. fshl will return its first operand for 6636 // shift of zero, fshr will return its second operand. fsl and fsr both 6637 // return rs1 so the ISD nodes need to have different operand orders. 6638 // Shift amount is in rs2. 6639 unsigned Opc = RISCVISD::FSLW; 6640 if (N->getOpcode() == ISD::FSHR) { 6641 std::swap(NewOp0, NewOp1); 6642 Opc = RISCVISD::FSRW; 6643 } 6644 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 6645 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6646 break; 6647 } 6648 case ISD::EXTRACT_VECTOR_ELT: { 6649 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6650 // type is illegal (currently only vXi64 RV32). 6651 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6652 // transferred to the destination register. We issue two of these from the 6653 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6654 // first element. 6655 SDValue Vec = N->getOperand(0); 6656 SDValue Idx = N->getOperand(1); 6657 6658 // The vector type hasn't been legalized yet so we can't issue target 6659 // specific nodes if it needs legalization. 6660 // FIXME: We would manually legalize if it's important. 6661 if (!isTypeLegal(Vec.getValueType())) 6662 return; 6663 6664 MVT VecVT = Vec.getSimpleValueType(); 6665 6666 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6667 VecVT.getVectorElementType() == MVT::i64 && 6668 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6669 6670 // If this is a fixed vector, we need to convert it to a scalable vector. 6671 MVT ContainerVT = VecVT; 6672 if (VecVT.isFixedLengthVector()) { 6673 ContainerVT = getContainerForFixedLengthVector(VecVT); 6674 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6675 } 6676 6677 MVT XLenVT = Subtarget.getXLenVT(); 6678 6679 // Use a VL of 1 to avoid processing more elements than we need. 6680 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6681 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6682 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6683 6684 // Unless the index is known to be 0, we must slide the vector down to get 6685 // the desired element into index 0. 6686 if (!isNullConstant(Idx)) { 6687 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6688 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6689 } 6690 6691 // Extract the lower XLEN bits of the correct vector element. 6692 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6693 6694 // To extract the upper XLEN bits of the vector element, shift the first 6695 // element right by 32 bits and re-extract the lower XLEN bits. 6696 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6697 DAG.getConstant(32, DL, XLenVT), VL); 6698 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6699 ThirtyTwoV, Mask, VL); 6700 6701 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6702 6703 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6704 break; 6705 } 6706 case ISD::INTRINSIC_WO_CHAIN: { 6707 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6708 switch (IntNo) { 6709 default: 6710 llvm_unreachable( 6711 "Don't know how to custom type legalize this intrinsic!"); 6712 case Intrinsic::riscv_grev: 6713 case Intrinsic::riscv_gorc: 6714 case Intrinsic::riscv_bcompress: 6715 case Intrinsic::riscv_bdecompress: 6716 case Intrinsic::riscv_bfp: { 6717 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6718 "Unexpected custom legalisation"); 6719 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 6720 break; 6721 } 6722 case Intrinsic::riscv_fsl: 6723 case Intrinsic::riscv_fsr: { 6724 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6725 "Unexpected custom legalisation"); 6726 SDValue NewOp1 = 6727 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6728 SDValue NewOp2 = 6729 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6730 SDValue NewOp3 = 6731 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)); 6732 unsigned Opc = getRISCVWOpcodeByIntr(IntNo); 6733 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3); 6734 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6735 break; 6736 } 6737 case Intrinsic::riscv_orc_b: { 6738 // Lower to the GORCI encoding for orc.b with the operand extended. 6739 SDValue NewOp = 6740 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6741 // If Zbp is enabled, use GORCIW which will sign extend the result. 6742 unsigned Opc = 6743 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6744 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6745 DAG.getConstant(7, DL, MVT::i64)); 6746 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6747 return; 6748 } 6749 case Intrinsic::riscv_shfl: 6750 case Intrinsic::riscv_unshfl: { 6751 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6752 "Unexpected custom legalisation"); 6753 SDValue NewOp1 = 6754 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6755 SDValue NewOp2 = 6756 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6757 unsigned Opc = 6758 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6759 // There is no (UN)SHFLIW. If the control word is a constant, we can use 6760 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 6761 // will be shuffled the same way as the lower 32 bit half, but the two 6762 // halves won't cross. 6763 if (isa<ConstantSDNode>(NewOp2)) { 6764 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6765 DAG.getConstant(0xf, DL, MVT::i64)); 6766 Opc = 6767 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6768 } 6769 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6770 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6771 break; 6772 } 6773 case Intrinsic::riscv_vmv_x_s: { 6774 EVT VT = N->getValueType(0); 6775 MVT XLenVT = Subtarget.getXLenVT(); 6776 if (VT.bitsLT(XLenVT)) { 6777 // Simple case just extract using vmv.x.s and truncate. 6778 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6779 Subtarget.getXLenVT(), N->getOperand(1)); 6780 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6781 return; 6782 } 6783 6784 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6785 "Unexpected custom legalization"); 6786 6787 // We need to do the move in two steps. 6788 SDValue Vec = N->getOperand(1); 6789 MVT VecVT = Vec.getSimpleValueType(); 6790 6791 // First extract the lower XLEN bits of the element. 6792 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6793 6794 // To extract the upper XLEN bits of the vector element, shift the first 6795 // element right by 32 bits and re-extract the lower XLEN bits. 6796 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6797 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6798 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6799 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6800 DAG.getConstant(32, DL, XLenVT), VL); 6801 SDValue LShr32 = 6802 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6803 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6804 6805 Results.push_back( 6806 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6807 break; 6808 } 6809 } 6810 break; 6811 } 6812 case ISD::VECREDUCE_ADD: 6813 case ISD::VECREDUCE_AND: 6814 case ISD::VECREDUCE_OR: 6815 case ISD::VECREDUCE_XOR: 6816 case ISD::VECREDUCE_SMAX: 6817 case ISD::VECREDUCE_UMAX: 6818 case ISD::VECREDUCE_SMIN: 6819 case ISD::VECREDUCE_UMIN: 6820 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6821 Results.push_back(V); 6822 break; 6823 case ISD::VP_REDUCE_ADD: 6824 case ISD::VP_REDUCE_AND: 6825 case ISD::VP_REDUCE_OR: 6826 case ISD::VP_REDUCE_XOR: 6827 case ISD::VP_REDUCE_SMAX: 6828 case ISD::VP_REDUCE_UMAX: 6829 case ISD::VP_REDUCE_SMIN: 6830 case ISD::VP_REDUCE_UMIN: 6831 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6832 Results.push_back(V); 6833 break; 6834 case ISD::FLT_ROUNDS_: { 6835 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6836 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6837 Results.push_back(Res.getValue(0)); 6838 Results.push_back(Res.getValue(1)); 6839 break; 6840 } 6841 } 6842 } 6843 6844 // A structure to hold one of the bit-manipulation patterns below. Together, a 6845 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6846 // (or (and (shl x, 1), 0xAAAAAAAA), 6847 // (and (srl x, 1), 0x55555555)) 6848 struct RISCVBitmanipPat { 6849 SDValue Op; 6850 unsigned ShAmt; 6851 bool IsSHL; 6852 6853 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6854 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6855 } 6856 }; 6857 6858 // Matches patterns of the form 6859 // (and (shl x, C2), (C1 << C2)) 6860 // (and (srl x, C2), C1) 6861 // (shl (and x, C1), C2) 6862 // (srl (and x, (C1 << C2)), C2) 6863 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6864 // The expected masks for each shift amount are specified in BitmanipMasks where 6865 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6866 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6867 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6868 // XLen is 64. 6869 static Optional<RISCVBitmanipPat> 6870 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6871 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6872 "Unexpected number of masks"); 6873 Optional<uint64_t> Mask; 6874 // Optionally consume a mask around the shift operation. 6875 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6876 Mask = Op.getConstantOperandVal(1); 6877 Op = Op.getOperand(0); 6878 } 6879 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6880 return None; 6881 bool IsSHL = Op.getOpcode() == ISD::SHL; 6882 6883 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6884 return None; 6885 uint64_t ShAmt = Op.getConstantOperandVal(1); 6886 6887 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6888 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6889 return None; 6890 // If we don't have enough masks for 64 bit, then we must be trying to 6891 // match SHFL so we're only allowed to shift 1/4 of the width. 6892 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6893 return None; 6894 6895 SDValue Src = Op.getOperand(0); 6896 6897 // The expected mask is shifted left when the AND is found around SHL 6898 // patterns. 6899 // ((x >> 1) & 0x55555555) 6900 // ((x << 1) & 0xAAAAAAAA) 6901 bool SHLExpMask = IsSHL; 6902 6903 if (!Mask) { 6904 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6905 // the mask is all ones: consume that now. 6906 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6907 Mask = Src.getConstantOperandVal(1); 6908 Src = Src.getOperand(0); 6909 // The expected mask is now in fact shifted left for SRL, so reverse the 6910 // decision. 6911 // ((x & 0xAAAAAAAA) >> 1) 6912 // ((x & 0x55555555) << 1) 6913 SHLExpMask = !SHLExpMask; 6914 } else { 6915 // Use a default shifted mask of all-ones if there's no AND, truncated 6916 // down to the expected width. This simplifies the logic later on. 6917 Mask = maskTrailingOnes<uint64_t>(Width); 6918 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6919 } 6920 } 6921 6922 unsigned MaskIdx = Log2_32(ShAmt); 6923 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6924 6925 if (SHLExpMask) 6926 ExpMask <<= ShAmt; 6927 6928 if (Mask != ExpMask) 6929 return None; 6930 6931 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6932 } 6933 6934 // Matches any of the following bit-manipulation patterns: 6935 // (and (shl x, 1), (0x55555555 << 1)) 6936 // (and (srl x, 1), 0x55555555) 6937 // (shl (and x, 0x55555555), 1) 6938 // (srl (and x, (0x55555555 << 1)), 1) 6939 // where the shift amount and mask may vary thus: 6940 // [1] = 0x55555555 / 0xAAAAAAAA 6941 // [2] = 0x33333333 / 0xCCCCCCCC 6942 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6943 // [8] = 0x00FF00FF / 0xFF00FF00 6944 // [16] = 0x0000FFFF / 0xFFFFFFFF 6945 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6946 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6947 // These are the unshifted masks which we use to match bit-manipulation 6948 // patterns. They may be shifted left in certain circumstances. 6949 static const uint64_t BitmanipMasks[] = { 6950 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6951 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6952 6953 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6954 } 6955 6956 // Match the following pattern as a GREVI(W) operation 6957 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6958 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6959 const RISCVSubtarget &Subtarget) { 6960 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6961 EVT VT = Op.getValueType(); 6962 6963 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6964 auto LHS = matchGREVIPat(Op.getOperand(0)); 6965 auto RHS = matchGREVIPat(Op.getOperand(1)); 6966 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6967 SDLoc DL(Op); 6968 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6969 DAG.getConstant(LHS->ShAmt, DL, VT)); 6970 } 6971 } 6972 return SDValue(); 6973 } 6974 6975 // Matches any the following pattern as a GORCI(W) operation 6976 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6977 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6978 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6979 // Note that with the variant of 3., 6980 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6981 // the inner pattern will first be matched as GREVI and then the outer 6982 // pattern will be matched to GORC via the first rule above. 6983 // 4. (or (rotl/rotr x, bitwidth/2), x) 6984 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6985 const RISCVSubtarget &Subtarget) { 6986 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6987 EVT VT = Op.getValueType(); 6988 6989 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6990 SDLoc DL(Op); 6991 SDValue Op0 = Op.getOperand(0); 6992 SDValue Op1 = Op.getOperand(1); 6993 6994 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6995 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6996 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6997 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6998 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6999 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 7000 if ((Reverse.getOpcode() == ISD::ROTL || 7001 Reverse.getOpcode() == ISD::ROTR) && 7002 Reverse.getOperand(0) == X && 7003 isa<ConstantSDNode>(Reverse.getOperand(1))) { 7004 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 7005 if (RotAmt == (VT.getSizeInBits() / 2)) 7006 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 7007 DAG.getConstant(RotAmt, DL, VT)); 7008 } 7009 return SDValue(); 7010 }; 7011 7012 // Check for either commutable permutation of (or (GREVI x, shamt), x) 7013 if (SDValue V = MatchOROfReverse(Op0, Op1)) 7014 return V; 7015 if (SDValue V = MatchOROfReverse(Op1, Op0)) 7016 return V; 7017 7018 // OR is commutable so canonicalize its OR operand to the left 7019 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 7020 std::swap(Op0, Op1); 7021 if (Op0.getOpcode() != ISD::OR) 7022 return SDValue(); 7023 SDValue OrOp0 = Op0.getOperand(0); 7024 SDValue OrOp1 = Op0.getOperand(1); 7025 auto LHS = matchGREVIPat(OrOp0); 7026 // OR is commutable so swap the operands and try again: x might have been 7027 // on the left 7028 if (!LHS) { 7029 std::swap(OrOp0, OrOp1); 7030 LHS = matchGREVIPat(OrOp0); 7031 } 7032 auto RHS = matchGREVIPat(Op1); 7033 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 7034 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 7035 DAG.getConstant(LHS->ShAmt, DL, VT)); 7036 } 7037 } 7038 return SDValue(); 7039 } 7040 7041 // Matches any of the following bit-manipulation patterns: 7042 // (and (shl x, 1), (0x22222222 << 1)) 7043 // (and (srl x, 1), 0x22222222) 7044 // (shl (and x, 0x22222222), 1) 7045 // (srl (and x, (0x22222222 << 1)), 1) 7046 // where the shift amount and mask may vary thus: 7047 // [1] = 0x22222222 / 0x44444444 7048 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 7049 // [4] = 0x00F000F0 / 0x0F000F00 7050 // [8] = 0x0000FF00 / 0x00FF0000 7051 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 7052 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 7053 // These are the unshifted masks which we use to match bit-manipulation 7054 // patterns. They may be shifted left in certain circumstances. 7055 static const uint64_t BitmanipMasks[] = { 7056 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 7057 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 7058 7059 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7060 } 7061 7062 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 7063 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 7064 const RISCVSubtarget &Subtarget) { 7065 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7066 EVT VT = Op.getValueType(); 7067 7068 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 7069 return SDValue(); 7070 7071 SDValue Op0 = Op.getOperand(0); 7072 SDValue Op1 = Op.getOperand(1); 7073 7074 // Or is commutable so canonicalize the second OR to the LHS. 7075 if (Op0.getOpcode() != ISD::OR) 7076 std::swap(Op0, Op1); 7077 if (Op0.getOpcode() != ISD::OR) 7078 return SDValue(); 7079 7080 // We found an inner OR, so our operands are the operands of the inner OR 7081 // and the other operand of the outer OR. 7082 SDValue A = Op0.getOperand(0); 7083 SDValue B = Op0.getOperand(1); 7084 SDValue C = Op1; 7085 7086 auto Match1 = matchSHFLPat(A); 7087 auto Match2 = matchSHFLPat(B); 7088 7089 // If neither matched, we failed. 7090 if (!Match1 && !Match2) 7091 return SDValue(); 7092 7093 // We had at least one match. if one failed, try the remaining C operand. 7094 if (!Match1) { 7095 std::swap(A, C); 7096 Match1 = matchSHFLPat(A); 7097 if (!Match1) 7098 return SDValue(); 7099 } else if (!Match2) { 7100 std::swap(B, C); 7101 Match2 = matchSHFLPat(B); 7102 if (!Match2) 7103 return SDValue(); 7104 } 7105 assert(Match1 && Match2); 7106 7107 // Make sure our matches pair up. 7108 if (!Match1->formsPairWith(*Match2)) 7109 return SDValue(); 7110 7111 // All the remains is to make sure C is an AND with the same input, that masks 7112 // out the bits that are being shuffled. 7113 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7114 C.getOperand(0) != Match1->Op) 7115 return SDValue(); 7116 7117 uint64_t Mask = C.getConstantOperandVal(1); 7118 7119 static const uint64_t BitmanipMasks[] = { 7120 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7121 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7122 }; 7123 7124 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7125 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7126 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7127 7128 if (Mask != ExpMask) 7129 return SDValue(); 7130 7131 SDLoc DL(Op); 7132 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7133 DAG.getConstant(Match1->ShAmt, DL, VT)); 7134 } 7135 7136 // Optimize (add (shl x, c0), (shl y, c1)) -> 7137 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7138 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7139 const RISCVSubtarget &Subtarget) { 7140 // Perform this optimization only in the zba extension. 7141 if (!Subtarget.hasStdExtZba()) 7142 return SDValue(); 7143 7144 // Skip for vector types and larger types. 7145 EVT VT = N->getValueType(0); 7146 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7147 return SDValue(); 7148 7149 // The two operand nodes must be SHL and have no other use. 7150 SDValue N0 = N->getOperand(0); 7151 SDValue N1 = N->getOperand(1); 7152 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7153 !N0->hasOneUse() || !N1->hasOneUse()) 7154 return SDValue(); 7155 7156 // Check c0 and c1. 7157 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7158 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7159 if (!N0C || !N1C) 7160 return SDValue(); 7161 int64_t C0 = N0C->getSExtValue(); 7162 int64_t C1 = N1C->getSExtValue(); 7163 if (C0 <= 0 || C1 <= 0) 7164 return SDValue(); 7165 7166 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7167 int64_t Bits = std::min(C0, C1); 7168 int64_t Diff = std::abs(C0 - C1); 7169 if (Diff != 1 && Diff != 2 && Diff != 3) 7170 return SDValue(); 7171 7172 // Build nodes. 7173 SDLoc DL(N); 7174 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7175 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7176 SDValue NA0 = 7177 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7178 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7179 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7180 } 7181 7182 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7183 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7184 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7185 // not undo itself, but they are redundant. 7186 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7187 SDValue Src = N->getOperand(0); 7188 7189 if (Src.getOpcode() != N->getOpcode()) 7190 return SDValue(); 7191 7192 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7193 !isa<ConstantSDNode>(Src.getOperand(1))) 7194 return SDValue(); 7195 7196 unsigned ShAmt1 = N->getConstantOperandVal(1); 7197 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7198 Src = Src.getOperand(0); 7199 7200 unsigned CombinedShAmt; 7201 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 7202 CombinedShAmt = ShAmt1 | ShAmt2; 7203 else 7204 CombinedShAmt = ShAmt1 ^ ShAmt2; 7205 7206 if (CombinedShAmt == 0) 7207 return Src; 7208 7209 SDLoc DL(N); 7210 return DAG.getNode( 7211 N->getOpcode(), DL, N->getValueType(0), Src, 7212 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7213 } 7214 7215 // Combine a constant select operand into its use: 7216 // 7217 // (and (select cond, -1, c), x) 7218 // -> (select cond, x, (and x, c)) [AllOnes=1] 7219 // (or (select cond, 0, c), x) 7220 // -> (select cond, x, (or x, c)) [AllOnes=0] 7221 // (xor (select cond, 0, c), x) 7222 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7223 // (add (select cond, 0, c), x) 7224 // -> (select cond, x, (add x, c)) [AllOnes=0] 7225 // (sub x, (select cond, 0, c)) 7226 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7227 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7228 SelectionDAG &DAG, bool AllOnes) { 7229 EVT VT = N->getValueType(0); 7230 7231 // Skip vectors. 7232 if (VT.isVector()) 7233 return SDValue(); 7234 7235 if ((Slct.getOpcode() != ISD::SELECT && 7236 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7237 !Slct.hasOneUse()) 7238 return SDValue(); 7239 7240 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7241 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7242 }; 7243 7244 bool SwapSelectOps; 7245 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7246 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7247 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7248 SDValue NonConstantVal; 7249 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7250 SwapSelectOps = false; 7251 NonConstantVal = FalseVal; 7252 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7253 SwapSelectOps = true; 7254 NonConstantVal = TrueVal; 7255 } else 7256 return SDValue(); 7257 7258 // Slct is now know to be the desired identity constant when CC is true. 7259 TrueVal = OtherOp; 7260 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7261 // Unless SwapSelectOps says the condition should be false. 7262 if (SwapSelectOps) 7263 std::swap(TrueVal, FalseVal); 7264 7265 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7266 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7267 {Slct.getOperand(0), Slct.getOperand(1), 7268 Slct.getOperand(2), TrueVal, FalseVal}); 7269 7270 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7271 {Slct.getOperand(0), TrueVal, FalseVal}); 7272 } 7273 7274 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7275 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7276 bool AllOnes) { 7277 SDValue N0 = N->getOperand(0); 7278 SDValue N1 = N->getOperand(1); 7279 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7280 return Result; 7281 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7282 return Result; 7283 return SDValue(); 7284 } 7285 7286 // Transform (add (mul x, c0), c1) -> 7287 // (add (mul (add x, c1/c0), c0), c1%c0). 7288 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7289 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7290 // to an infinite loop in DAGCombine if transformed. 7291 // Or transform (add (mul x, c0), c1) -> 7292 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7293 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7294 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7295 // lead to an infinite loop in DAGCombine if transformed. 7296 // Or transform (add (mul x, c0), c1) -> 7297 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7298 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7299 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7300 // lead to an infinite loop in DAGCombine if transformed. 7301 // Or transform (add (mul x, c0), c1) -> 7302 // (mul (add x, c1/c0), c0). 7303 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7304 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7305 const RISCVSubtarget &Subtarget) { 7306 // Skip for vector types and larger types. 7307 EVT VT = N->getValueType(0); 7308 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7309 return SDValue(); 7310 // The first operand node must be a MUL and has no other use. 7311 SDValue N0 = N->getOperand(0); 7312 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7313 return SDValue(); 7314 // Check if c0 and c1 match above conditions. 7315 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7316 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7317 if (!N0C || !N1C) 7318 return SDValue(); 7319 int64_t C0 = N0C->getSExtValue(); 7320 int64_t C1 = N1C->getSExtValue(); 7321 int64_t CA, CB; 7322 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7323 return SDValue(); 7324 // Search for proper CA (non-zero) and CB that both are simm12. 7325 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7326 !isInt<12>(C0 * (C1 / C0))) { 7327 CA = C1 / C0; 7328 CB = C1 % C0; 7329 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7330 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7331 CA = C1 / C0 + 1; 7332 CB = C1 % C0 - C0; 7333 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7334 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7335 CA = C1 / C0 - 1; 7336 CB = C1 % C0 + C0; 7337 } else 7338 return SDValue(); 7339 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7340 SDLoc DL(N); 7341 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7342 DAG.getConstant(CA, DL, VT)); 7343 SDValue New1 = 7344 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7345 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7346 } 7347 7348 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7349 const RISCVSubtarget &Subtarget) { 7350 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7351 return V; 7352 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7353 return V; 7354 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7355 // (select lhs, rhs, cc, x, (add x, y)) 7356 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7357 } 7358 7359 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7360 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7361 // (select lhs, rhs, cc, x, (sub x, y)) 7362 SDValue N0 = N->getOperand(0); 7363 SDValue N1 = N->getOperand(1); 7364 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7365 } 7366 7367 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7368 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7369 // (select lhs, rhs, cc, x, (and x, y)) 7370 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7371 } 7372 7373 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7374 const RISCVSubtarget &Subtarget) { 7375 if (Subtarget.hasStdExtZbp()) { 7376 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7377 return GREV; 7378 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7379 return GORC; 7380 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7381 return SHFL; 7382 } 7383 7384 // fold (or (select cond, 0, y), x) -> 7385 // (select cond, x, (or x, y)) 7386 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7387 } 7388 7389 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7390 // fold (xor (select cond, 0, y), x) -> 7391 // (select cond, x, (xor x, y)) 7392 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7393 } 7394 7395 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 7396 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 7397 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 7398 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 7399 // ADDW/SUBW/MULW. 7400 static SDValue performANY_EXTENDCombine(SDNode *N, 7401 TargetLowering::DAGCombinerInfo &DCI, 7402 const RISCVSubtarget &Subtarget) { 7403 if (!Subtarget.is64Bit()) 7404 return SDValue(); 7405 7406 SelectionDAG &DAG = DCI.DAG; 7407 7408 SDValue Src = N->getOperand(0); 7409 EVT VT = N->getValueType(0); 7410 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 7411 return SDValue(); 7412 7413 // The opcode must be one that can implicitly sign_extend. 7414 // FIXME: Additional opcodes. 7415 switch (Src.getOpcode()) { 7416 default: 7417 return SDValue(); 7418 case ISD::MUL: 7419 if (!Subtarget.hasStdExtM()) 7420 return SDValue(); 7421 LLVM_FALLTHROUGH; 7422 case ISD::ADD: 7423 case ISD::SUB: 7424 break; 7425 } 7426 7427 // Only handle cases where the result is used by a CopyToReg. That likely 7428 // means the value is a liveout of the basic block. This helps prevent 7429 // infinite combine loops like PR51206. 7430 if (none_of(N->uses(), 7431 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 7432 return SDValue(); 7433 7434 SmallVector<SDNode *, 4> SetCCs; 7435 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 7436 UE = Src.getNode()->use_end(); 7437 UI != UE; ++UI) { 7438 SDNode *User = *UI; 7439 if (User == N) 7440 continue; 7441 if (UI.getUse().getResNo() != Src.getResNo()) 7442 continue; 7443 // All i32 setccs are legalized by sign extending operands. 7444 if (User->getOpcode() == ISD::SETCC) { 7445 SetCCs.push_back(User); 7446 continue; 7447 } 7448 // We don't know if we can extend this user. 7449 break; 7450 } 7451 7452 // If we don't have any SetCCs, this isn't worthwhile. 7453 if (SetCCs.empty()) 7454 return SDValue(); 7455 7456 SDLoc DL(N); 7457 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 7458 DCI.CombineTo(N, SExt); 7459 7460 // Promote all the setccs. 7461 for (SDNode *SetCC : SetCCs) { 7462 SmallVector<SDValue, 4> Ops; 7463 7464 for (unsigned j = 0; j != 2; ++j) { 7465 SDValue SOp = SetCC->getOperand(j); 7466 if (SOp == Src) 7467 Ops.push_back(SExt); 7468 else 7469 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 7470 } 7471 7472 Ops.push_back(SetCC->getOperand(2)); 7473 DCI.CombineTo(SetCC, 7474 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 7475 } 7476 return SDValue(N, 0); 7477 } 7478 7479 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to 7480 // vwadd(u).vv/vx or vwsub(u).vv/vx. 7481 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG, 7482 bool Commute = false) { 7483 assert((N->getOpcode() == RISCVISD::ADD_VL || 7484 N->getOpcode() == RISCVISD::SUB_VL) && 7485 "Unexpected opcode"); 7486 bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL; 7487 SDValue Op0 = N->getOperand(0); 7488 SDValue Op1 = N->getOperand(1); 7489 if (Commute) 7490 std::swap(Op0, Op1); 7491 7492 MVT VT = N->getSimpleValueType(0); 7493 7494 // Determine the narrow size for a widening add/sub. 7495 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7496 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7497 VT.getVectorElementCount()); 7498 7499 SDValue Mask = N->getOperand(2); 7500 SDValue VL = N->getOperand(3); 7501 7502 SDLoc DL(N); 7503 7504 // If the RHS is a sext or zext, we can form a widening op. 7505 if ((Op1.getOpcode() == RISCVISD::VZEXT_VL || 7506 Op1.getOpcode() == RISCVISD::VSEXT_VL) && 7507 Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) { 7508 unsigned ExtOpc = Op1.getOpcode(); 7509 Op1 = Op1.getOperand(0); 7510 // Re-introduce narrower extends if needed. 7511 if (Op1.getValueType() != NarrowVT) 7512 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7513 7514 unsigned WOpc; 7515 if (ExtOpc == RISCVISD::VSEXT_VL) 7516 WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL; 7517 else 7518 WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL; 7519 7520 return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL); 7521 } 7522 7523 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar 7524 // sext/zext? 7525 7526 return SDValue(); 7527 } 7528 7529 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or 7530 // vwsub(u).vv/vx. 7531 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) { 7532 SDValue Op0 = N->getOperand(0); 7533 SDValue Op1 = N->getOperand(1); 7534 SDValue Mask = N->getOperand(2); 7535 SDValue VL = N->getOperand(3); 7536 7537 MVT VT = N->getSimpleValueType(0); 7538 MVT NarrowVT = Op1.getSimpleValueType(); 7539 unsigned NarrowSize = NarrowVT.getScalarSizeInBits(); 7540 7541 unsigned VOpc; 7542 switch (N->getOpcode()) { 7543 default: llvm_unreachable("Unexpected opcode"); 7544 case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break; 7545 case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break; 7546 case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break; 7547 case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break; 7548 } 7549 7550 bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL || 7551 N->getOpcode() == RISCVISD::VWSUB_W_VL; 7552 7553 SDLoc DL(N); 7554 7555 // If the LHS is a sext or zext, we can narrow this op to the same size as 7556 // the RHS. 7557 if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) || 7558 (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) && 7559 Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) { 7560 unsigned ExtOpc = Op0.getOpcode(); 7561 Op0 = Op0.getOperand(0); 7562 // Re-introduce narrower extends if needed. 7563 if (Op0.getValueType() != NarrowVT) 7564 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7565 return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL); 7566 } 7567 7568 bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL || 7569 N->getOpcode() == RISCVISD::VWADDU_W_VL; 7570 7571 // Look for splats on the left hand side of a vwadd(u).wv. We might be able 7572 // to commute and use a vwadd(u).vx instead. 7573 if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL && 7574 Op0.getOperand(1) == VL) { 7575 Op0 = Op0.getOperand(0); 7576 7577 // See if have enough sign bits or zero bits in the scalar to use a 7578 // widening add/sub by splatting to smaller element size. 7579 unsigned EltBits = VT.getScalarSizeInBits(); 7580 unsigned ScalarBits = Op0.getValueSizeInBits(); 7581 // Make sure we're getting all element bits from the scalar register. 7582 // FIXME: Support implicit sign extension of vmv.v.x? 7583 if (ScalarBits < EltBits) 7584 return SDValue(); 7585 7586 if (IsSigned) { 7587 if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize)) 7588 return SDValue(); 7589 } else { 7590 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7591 if (!DAG.MaskedValueIsZero(Op0, Mask)) 7592 return SDValue(); 7593 } 7594 7595 Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op0, VL); 7596 return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL); 7597 } 7598 7599 return SDValue(); 7600 } 7601 7602 // Try to form VWMUL, VWMULU or VWMULSU. 7603 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 7604 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 7605 bool Commute) { 7606 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7607 SDValue Op0 = N->getOperand(0); 7608 SDValue Op1 = N->getOperand(1); 7609 if (Commute) 7610 std::swap(Op0, Op1); 7611 7612 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7613 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7614 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 7615 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7616 return SDValue(); 7617 7618 SDValue Mask = N->getOperand(2); 7619 SDValue VL = N->getOperand(3); 7620 7621 // Make sure the mask and VL match. 7622 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 7623 return SDValue(); 7624 7625 MVT VT = N->getSimpleValueType(0); 7626 7627 // Determine the narrow size for a widening multiply. 7628 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7629 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7630 VT.getVectorElementCount()); 7631 7632 SDLoc DL(N); 7633 7634 // See if the other operand is the same opcode. 7635 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 7636 if (!Op1.hasOneUse()) 7637 return SDValue(); 7638 7639 // Make sure the mask and VL match. 7640 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 7641 return SDValue(); 7642 7643 Op1 = Op1.getOperand(0); 7644 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 7645 // The operand is a splat of a scalar. 7646 7647 // The VL must be the same. 7648 if (Op1.getOperand(1) != VL) 7649 return SDValue(); 7650 7651 // Get the scalar value. 7652 Op1 = Op1.getOperand(0); 7653 7654 // See if have enough sign bits or zero bits in the scalar to use a 7655 // widening multiply by splatting to smaller element size. 7656 unsigned EltBits = VT.getScalarSizeInBits(); 7657 unsigned ScalarBits = Op1.getValueSizeInBits(); 7658 // Make sure we're getting all element bits from the scalar register. 7659 // FIXME: Support implicit sign extension of vmv.v.x? 7660 if (ScalarBits < EltBits) 7661 return SDValue(); 7662 7663 if (IsSignExt) { 7664 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 7665 return SDValue(); 7666 } else { 7667 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7668 if (!DAG.MaskedValueIsZero(Op1, Mask)) 7669 return SDValue(); 7670 } 7671 7672 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 7673 } else 7674 return SDValue(); 7675 7676 Op0 = Op0.getOperand(0); 7677 7678 // Re-introduce narrower extends if needed. 7679 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7680 if (Op0.getValueType() != NarrowVT) 7681 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7682 if (Op1.getValueType() != NarrowVT) 7683 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7684 7685 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 7686 if (!IsVWMULSU) 7687 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7688 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7689 } 7690 7691 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 7692 switch (Op.getOpcode()) { 7693 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 7694 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 7695 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 7696 case ISD::FCEIL: return RISCVFPRndMode::RUP; 7697 case ISD::FROUND: return RISCVFPRndMode::RMM; 7698 } 7699 7700 return RISCVFPRndMode::Invalid; 7701 } 7702 7703 // Fold 7704 // (fp_to_int (froundeven X)) -> fcvt X, rne 7705 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 7706 // (fp_to_int (ffloor X)) -> fcvt X, rdn 7707 // (fp_to_int (fceil X)) -> fcvt X, rup 7708 // (fp_to_int (fround X)) -> fcvt X, rmm 7709 static SDValue performFP_TO_INTCombine(SDNode *N, 7710 TargetLowering::DAGCombinerInfo &DCI, 7711 const RISCVSubtarget &Subtarget) { 7712 SelectionDAG &DAG = DCI.DAG; 7713 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7714 MVT XLenVT = Subtarget.getXLenVT(); 7715 7716 // Only handle XLen or i32 types. Other types narrower than XLen will 7717 // eventually be legalized to XLenVT. 7718 EVT VT = N->getValueType(0); 7719 if (VT != MVT::i32 && VT != XLenVT) 7720 return SDValue(); 7721 7722 SDValue Src = N->getOperand(0); 7723 7724 // Ensure the FP type is also legal. 7725 if (!TLI.isTypeLegal(Src.getValueType())) 7726 return SDValue(); 7727 7728 // Don't do this for f16 with Zfhmin and not Zfh. 7729 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7730 return SDValue(); 7731 7732 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7733 if (FRM == RISCVFPRndMode::Invalid) 7734 return SDValue(); 7735 7736 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 7737 7738 unsigned Opc; 7739 if (VT == XLenVT) 7740 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7741 else 7742 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7743 7744 SDLoc DL(N); 7745 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 7746 DAG.getTargetConstant(FRM, DL, XLenVT)); 7747 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 7748 } 7749 7750 // Fold 7751 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 7752 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 7753 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 7754 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 7755 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 7756 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 7757 TargetLowering::DAGCombinerInfo &DCI, 7758 const RISCVSubtarget &Subtarget) { 7759 SelectionDAG &DAG = DCI.DAG; 7760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7761 MVT XLenVT = Subtarget.getXLenVT(); 7762 7763 // Only handle XLen types. Other types narrower than XLen will eventually be 7764 // legalized to XLenVT. 7765 EVT DstVT = N->getValueType(0); 7766 if (DstVT != XLenVT) 7767 return SDValue(); 7768 7769 SDValue Src = N->getOperand(0); 7770 7771 // Ensure the FP type is also legal. 7772 if (!TLI.isTypeLegal(Src.getValueType())) 7773 return SDValue(); 7774 7775 // Don't do this for f16 with Zfhmin and not Zfh. 7776 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7777 return SDValue(); 7778 7779 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 7780 7781 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7782 if (FRM == RISCVFPRndMode::Invalid) 7783 return SDValue(); 7784 7785 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 7786 7787 unsigned Opc; 7788 if (SatVT == DstVT) 7789 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7790 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 7791 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7792 else 7793 return SDValue(); 7794 // FIXME: Support other SatVTs by clamping before or after the conversion. 7795 7796 Src = Src.getOperand(0); 7797 7798 SDLoc DL(N); 7799 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 7800 DAG.getTargetConstant(FRM, DL, XLenVT)); 7801 7802 // RISCV FP-to-int conversions saturate to the destination register size, but 7803 // don't produce 0 for nan. 7804 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 7805 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 7806 } 7807 7808 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 7809 DAGCombinerInfo &DCI) const { 7810 SelectionDAG &DAG = DCI.DAG; 7811 7812 // Helper to call SimplifyDemandedBits on an operand of N where only some low 7813 // bits are demanded. N will be added to the Worklist if it was not deleted. 7814 // Caller should return SDValue(N, 0) if this returns true. 7815 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 7816 SDValue Op = N->getOperand(OpNo); 7817 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 7818 if (!SimplifyDemandedBits(Op, Mask, DCI)) 7819 return false; 7820 7821 if (N->getOpcode() != ISD::DELETED_NODE) 7822 DCI.AddToWorklist(N); 7823 return true; 7824 }; 7825 7826 switch (N->getOpcode()) { 7827 default: 7828 break; 7829 case RISCVISD::SplitF64: { 7830 SDValue Op0 = N->getOperand(0); 7831 // If the input to SplitF64 is just BuildPairF64 then the operation is 7832 // redundant. Instead, use BuildPairF64's operands directly. 7833 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 7834 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 7835 7836 if (Op0->isUndef()) { 7837 SDValue Lo = DAG.getUNDEF(MVT::i32); 7838 SDValue Hi = DAG.getUNDEF(MVT::i32); 7839 return DCI.CombineTo(N, Lo, Hi); 7840 } 7841 7842 SDLoc DL(N); 7843 7844 // It's cheaper to materialise two 32-bit integers than to load a double 7845 // from the constant pool and transfer it to integer registers through the 7846 // stack. 7847 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 7848 APInt V = C->getValueAPF().bitcastToAPInt(); 7849 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 7850 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 7851 return DCI.CombineTo(N, Lo, Hi); 7852 } 7853 7854 // This is a target-specific version of a DAGCombine performed in 7855 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7856 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7857 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7858 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7859 !Op0.getNode()->hasOneUse()) 7860 break; 7861 SDValue NewSplitF64 = 7862 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 7863 Op0.getOperand(0)); 7864 SDValue Lo = NewSplitF64.getValue(0); 7865 SDValue Hi = NewSplitF64.getValue(1); 7866 APInt SignBit = APInt::getSignMask(32); 7867 if (Op0.getOpcode() == ISD::FNEG) { 7868 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 7869 DAG.getConstant(SignBit, DL, MVT::i32)); 7870 return DCI.CombineTo(N, Lo, NewHi); 7871 } 7872 assert(Op0.getOpcode() == ISD::FABS); 7873 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 7874 DAG.getConstant(~SignBit, DL, MVT::i32)); 7875 return DCI.CombineTo(N, Lo, NewHi); 7876 } 7877 case RISCVISD::SLLW: 7878 case RISCVISD::SRAW: 7879 case RISCVISD::SRLW: 7880 case RISCVISD::ROLW: 7881 case RISCVISD::RORW: { 7882 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7883 if (SimplifyDemandedLowBitsHelper(0, 32) || 7884 SimplifyDemandedLowBitsHelper(1, 5)) 7885 return SDValue(N, 0); 7886 break; 7887 } 7888 case RISCVISD::CLZW: 7889 case RISCVISD::CTZW: { 7890 // Only the lower 32 bits of the first operand are read 7891 if (SimplifyDemandedLowBitsHelper(0, 32)) 7892 return SDValue(N, 0); 7893 break; 7894 } 7895 case RISCVISD::GREV: 7896 case RISCVISD::GORC: { 7897 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 7898 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7899 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7900 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 7901 return SDValue(N, 0); 7902 7903 return combineGREVI_GORCI(N, DAG); 7904 } 7905 case RISCVISD::GREVW: 7906 case RISCVISD::GORCW: { 7907 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7908 if (SimplifyDemandedLowBitsHelper(0, 32) || 7909 SimplifyDemandedLowBitsHelper(1, 5)) 7910 return SDValue(N, 0); 7911 7912 return combineGREVI_GORCI(N, DAG); 7913 } 7914 case RISCVISD::SHFL: 7915 case RISCVISD::UNSHFL: { 7916 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 7917 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7918 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7919 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 7920 return SDValue(N, 0); 7921 7922 break; 7923 } 7924 case RISCVISD::SHFLW: 7925 case RISCVISD::UNSHFLW: { 7926 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 7927 if (SimplifyDemandedLowBitsHelper(0, 32) || 7928 SimplifyDemandedLowBitsHelper(1, 4)) 7929 return SDValue(N, 0); 7930 7931 break; 7932 } 7933 case RISCVISD::BCOMPRESSW: 7934 case RISCVISD::BDECOMPRESSW: { 7935 // Only the lower 32 bits of LHS and RHS are read. 7936 if (SimplifyDemandedLowBitsHelper(0, 32) || 7937 SimplifyDemandedLowBitsHelper(1, 32)) 7938 return SDValue(N, 0); 7939 7940 break; 7941 } 7942 case RISCVISD::FMV_X_ANYEXTH: 7943 case RISCVISD::FMV_X_ANYEXTW_RV64: { 7944 SDLoc DL(N); 7945 SDValue Op0 = N->getOperand(0); 7946 MVT VT = N->getSimpleValueType(0); 7947 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 7948 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 7949 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 7950 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 7951 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 7952 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7953 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 7954 assert(Op0.getOperand(0).getValueType() == VT && 7955 "Unexpected value type!"); 7956 return Op0.getOperand(0); 7957 } 7958 7959 // This is a target-specific version of a DAGCombine performed in 7960 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7961 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7962 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7963 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7964 !Op0.getNode()->hasOneUse()) 7965 break; 7966 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 7967 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 7968 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 7969 if (Op0.getOpcode() == ISD::FNEG) 7970 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 7971 DAG.getConstant(SignBit, DL, VT)); 7972 7973 assert(Op0.getOpcode() == ISD::FABS); 7974 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 7975 DAG.getConstant(~SignBit, DL, VT)); 7976 } 7977 case ISD::ADD: 7978 return performADDCombine(N, DAG, Subtarget); 7979 case ISD::SUB: 7980 return performSUBCombine(N, DAG); 7981 case ISD::AND: 7982 return performANDCombine(N, DAG); 7983 case ISD::OR: 7984 return performORCombine(N, DAG, Subtarget); 7985 case ISD::XOR: 7986 return performXORCombine(N, DAG); 7987 case ISD::ANY_EXTEND: 7988 return performANY_EXTENDCombine(N, DCI, Subtarget); 7989 case ISD::ZERO_EXTEND: 7990 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 7991 // type legalization. This is safe because fp_to_uint produces poison if 7992 // it overflows. 7993 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 7994 SDValue Src = N->getOperand(0); 7995 if (Src.getOpcode() == ISD::FP_TO_UINT && 7996 isTypeLegal(Src.getOperand(0).getValueType())) 7997 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 7998 Src.getOperand(0)); 7999 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 8000 isTypeLegal(Src.getOperand(1).getValueType())) { 8001 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 8002 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 8003 Src.getOperand(0), Src.getOperand(1)); 8004 DCI.CombineTo(N, Res); 8005 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 8006 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 8007 return SDValue(N, 0); // Return N so it doesn't get rechecked. 8008 } 8009 } 8010 return SDValue(); 8011 case RISCVISD::SELECT_CC: { 8012 // Transform 8013 SDValue LHS = N->getOperand(0); 8014 SDValue RHS = N->getOperand(1); 8015 SDValue TrueV = N->getOperand(3); 8016 SDValue FalseV = N->getOperand(4); 8017 8018 // If the True and False values are the same, we don't need a select_cc. 8019 if (TrueV == FalseV) 8020 return TrueV; 8021 8022 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 8023 if (!ISD::isIntEqualitySetCC(CCVal)) 8024 break; 8025 8026 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 8027 // (select_cc X, Y, lt, trueV, falseV) 8028 // Sometimes the setcc is introduced after select_cc has been formed. 8029 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8030 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8031 // If we're looking for eq 0 instead of ne 0, we need to invert the 8032 // condition. 8033 bool Invert = CCVal == ISD::SETEQ; 8034 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8035 if (Invert) 8036 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8037 8038 SDLoc DL(N); 8039 RHS = LHS.getOperand(1); 8040 LHS = LHS.getOperand(0); 8041 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8042 8043 SDValue TargetCC = DAG.getCondCode(CCVal); 8044 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8045 {LHS, RHS, TargetCC, TrueV, FalseV}); 8046 } 8047 8048 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 8049 // (select_cc X, Y, eq/ne, trueV, falseV) 8050 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8051 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 8052 {LHS.getOperand(0), LHS.getOperand(1), 8053 N->getOperand(2), TrueV, FalseV}); 8054 // (select_cc X, 1, setne, trueV, falseV) -> 8055 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 8056 // This can occur when legalizing some floating point comparisons. 8057 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8058 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8059 SDLoc DL(N); 8060 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8061 SDValue TargetCC = DAG.getCondCode(CCVal); 8062 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8063 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8064 {LHS, RHS, TargetCC, TrueV, FalseV}); 8065 } 8066 8067 break; 8068 } 8069 case RISCVISD::BR_CC: { 8070 SDValue LHS = N->getOperand(1); 8071 SDValue RHS = N->getOperand(2); 8072 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 8073 if (!ISD::isIntEqualitySetCC(CCVal)) 8074 break; 8075 8076 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 8077 // (br_cc X, Y, lt, dest) 8078 // Sometimes the setcc is introduced after br_cc has been formed. 8079 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8080 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8081 // If we're looking for eq 0 instead of ne 0, we need to invert the 8082 // condition. 8083 bool Invert = CCVal == ISD::SETEQ; 8084 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8085 if (Invert) 8086 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8087 8088 SDLoc DL(N); 8089 RHS = LHS.getOperand(1); 8090 LHS = LHS.getOperand(0); 8091 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8092 8093 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8094 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 8095 N->getOperand(4)); 8096 } 8097 8098 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 8099 // (br_cc X, Y, eq/ne, trueV, falseV) 8100 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8101 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 8102 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 8103 N->getOperand(3), N->getOperand(4)); 8104 8105 // (br_cc X, 1, setne, br_cc) -> 8106 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 8107 // This can occur when legalizing some floating point comparisons. 8108 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8109 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8110 SDLoc DL(N); 8111 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8112 SDValue TargetCC = DAG.getCondCode(CCVal); 8113 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8114 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8115 N->getOperand(0), LHS, RHS, TargetCC, 8116 N->getOperand(4)); 8117 } 8118 break; 8119 } 8120 case ISD::FP_TO_SINT: 8121 case ISD::FP_TO_UINT: 8122 return performFP_TO_INTCombine(N, DCI, Subtarget); 8123 case ISD::FP_TO_SINT_SAT: 8124 case ISD::FP_TO_UINT_SAT: 8125 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 8126 case ISD::FCOPYSIGN: { 8127 EVT VT = N->getValueType(0); 8128 if (!VT.isVector()) 8129 break; 8130 // There is a form of VFSGNJ which injects the negated sign of its second 8131 // operand. Try and bubble any FNEG up after the extend/round to produce 8132 // this optimized pattern. Avoid modifying cases where FP_ROUND and 8133 // TRUNC=1. 8134 SDValue In2 = N->getOperand(1); 8135 // Avoid cases where the extend/round has multiple uses, as duplicating 8136 // those is typically more expensive than removing a fneg. 8137 if (!In2.hasOneUse()) 8138 break; 8139 if (In2.getOpcode() != ISD::FP_EXTEND && 8140 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 8141 break; 8142 In2 = In2.getOperand(0); 8143 if (In2.getOpcode() != ISD::FNEG) 8144 break; 8145 SDLoc DL(N); 8146 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 8147 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 8148 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 8149 } 8150 case ISD::MGATHER: 8151 case ISD::MSCATTER: 8152 case ISD::VP_GATHER: 8153 case ISD::VP_SCATTER: { 8154 if (!DCI.isBeforeLegalize()) 8155 break; 8156 SDValue Index, ScaleOp; 8157 bool IsIndexScaled = false; 8158 bool IsIndexSigned = false; 8159 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 8160 Index = VPGSN->getIndex(); 8161 ScaleOp = VPGSN->getScale(); 8162 IsIndexScaled = VPGSN->isIndexScaled(); 8163 IsIndexSigned = VPGSN->isIndexSigned(); 8164 } else { 8165 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 8166 Index = MGSN->getIndex(); 8167 ScaleOp = MGSN->getScale(); 8168 IsIndexScaled = MGSN->isIndexScaled(); 8169 IsIndexSigned = MGSN->isIndexSigned(); 8170 } 8171 EVT IndexVT = Index.getValueType(); 8172 MVT XLenVT = Subtarget.getXLenVT(); 8173 // RISCV indexed loads only support the "unsigned unscaled" addressing 8174 // mode, so anything else must be manually legalized. 8175 bool NeedsIdxLegalization = 8176 IsIndexScaled || 8177 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 8178 if (!NeedsIdxLegalization) 8179 break; 8180 8181 SDLoc DL(N); 8182 8183 // Any index legalization should first promote to XLenVT, so we don't lose 8184 // bits when scaling. This may create an illegal index type so we let 8185 // LLVM's legalization take care of the splitting. 8186 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 8187 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 8188 IndexVT = IndexVT.changeVectorElementType(XLenVT); 8189 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 8190 DL, IndexVT, Index); 8191 } 8192 8193 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 8194 if (IsIndexScaled && Scale != 1) { 8195 // Manually scale the indices by the element size. 8196 // TODO: Sanitize the scale operand here? 8197 // TODO: For VP nodes, should we use VP_SHL here? 8198 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 8199 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 8200 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 8201 } 8202 8203 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 8204 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 8205 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 8206 {VPGN->getChain(), VPGN->getBasePtr(), Index, 8207 VPGN->getScale(), VPGN->getMask(), 8208 VPGN->getVectorLength()}, 8209 VPGN->getMemOperand(), NewIndexTy); 8210 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 8211 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 8212 {VPSN->getChain(), VPSN->getValue(), 8213 VPSN->getBasePtr(), Index, VPSN->getScale(), 8214 VPSN->getMask(), VPSN->getVectorLength()}, 8215 VPSN->getMemOperand(), NewIndexTy); 8216 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 8217 return DAG.getMaskedGather( 8218 N->getVTList(), MGN->getMemoryVT(), DL, 8219 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 8220 MGN->getBasePtr(), Index, MGN->getScale()}, 8221 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 8222 const auto *MSN = cast<MaskedScatterSDNode>(N); 8223 return DAG.getMaskedScatter( 8224 N->getVTList(), MSN->getMemoryVT(), DL, 8225 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 8226 Index, MSN->getScale()}, 8227 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 8228 } 8229 case RISCVISD::SRA_VL: 8230 case RISCVISD::SRL_VL: 8231 case RISCVISD::SHL_VL: { 8232 SDValue ShAmt = N->getOperand(1); 8233 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8234 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8235 SDLoc DL(N); 8236 SDValue VL = N->getOperand(3); 8237 EVT VT = N->getValueType(0); 8238 ShAmt = 8239 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 8240 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 8241 N->getOperand(2), N->getOperand(3)); 8242 } 8243 break; 8244 } 8245 case ISD::SRA: 8246 case ISD::SRL: 8247 case ISD::SHL: { 8248 SDValue ShAmt = N->getOperand(1); 8249 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8250 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8251 SDLoc DL(N); 8252 EVT VT = N->getValueType(0); 8253 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), 8254 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, 8255 Subtarget.getXLenVT())); 8256 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 8257 } 8258 break; 8259 } 8260 case RISCVISD::ADD_VL: 8261 if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false)) 8262 return V; 8263 return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true); 8264 case RISCVISD::SUB_VL: 8265 return combineADDSUB_VLToVWADDSUB_VL(N, DAG); 8266 case RISCVISD::VWADD_W_VL: 8267 case RISCVISD::VWADDU_W_VL: 8268 case RISCVISD::VWSUB_W_VL: 8269 case RISCVISD::VWSUBU_W_VL: 8270 return combineVWADD_W_VL_VWSUB_W_VL(N, DAG); 8271 case RISCVISD::MUL_VL: 8272 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 8273 return V; 8274 // Mul is commutative. 8275 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 8276 case ISD::STORE: { 8277 auto *Store = cast<StoreSDNode>(N); 8278 SDValue Val = Store->getValue(); 8279 // Combine store of vmv.x.s to vse with VL of 1. 8280 // FIXME: Support FP. 8281 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 8282 SDValue Src = Val.getOperand(0); 8283 EVT VecVT = Src.getValueType(); 8284 EVT MemVT = Store->getMemoryVT(); 8285 // The memory VT and the element type must match. 8286 if (VecVT.getVectorElementType() == MemVT) { 8287 SDLoc DL(N); 8288 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 8289 return DAG.getStoreVP( 8290 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 8291 DAG.getConstant(1, DL, MaskVT), 8292 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 8293 Store->getMemOperand(), Store->getAddressingMode(), 8294 Store->isTruncatingStore(), /*IsCompress*/ false); 8295 } 8296 } 8297 8298 break; 8299 } 8300 case ISD::SPLAT_VECTOR: { 8301 EVT VT = N->getValueType(0); 8302 // Only perform this combine on legal MVT types. 8303 if (!isTypeLegal(VT)) 8304 break; 8305 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, 8306 DAG, Subtarget)) 8307 return Gather; 8308 break; 8309 } 8310 } 8311 8312 return SDValue(); 8313 } 8314 8315 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 8316 const SDNode *N, CombineLevel Level) const { 8317 // The following folds are only desirable if `(OP _, c1 << c2)` can be 8318 // materialised in fewer instructions than `(OP _, c1)`: 8319 // 8320 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8321 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8322 SDValue N0 = N->getOperand(0); 8323 EVT Ty = N0.getValueType(); 8324 if (Ty.isScalarInteger() && 8325 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 8326 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 8327 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8328 if (C1 && C2) { 8329 const APInt &C1Int = C1->getAPIntValue(); 8330 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 8331 8332 // We can materialise `c1 << c2` into an add immediate, so it's "free", 8333 // and the combine should happen, to potentially allow further combines 8334 // later. 8335 if (ShiftedC1Int.getMinSignedBits() <= 64 && 8336 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 8337 return true; 8338 8339 // We can materialise `c1` in an add immediate, so it's "free", and the 8340 // combine should be prevented. 8341 if (C1Int.getMinSignedBits() <= 64 && 8342 isLegalAddImmediate(C1Int.getSExtValue())) 8343 return false; 8344 8345 // Neither constant will fit into an immediate, so find materialisation 8346 // costs. 8347 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 8348 Subtarget.getFeatureBits(), 8349 /*CompressionCost*/true); 8350 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 8351 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 8352 /*CompressionCost*/true); 8353 8354 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 8355 // combine should be prevented. 8356 if (C1Cost < ShiftedC1Cost) 8357 return false; 8358 } 8359 } 8360 return true; 8361 } 8362 8363 bool RISCVTargetLowering::targetShrinkDemandedConstant( 8364 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 8365 TargetLoweringOpt &TLO) const { 8366 // Delay this optimization as late as possible. 8367 if (!TLO.LegalOps) 8368 return false; 8369 8370 EVT VT = Op.getValueType(); 8371 if (VT.isVector()) 8372 return false; 8373 8374 // Only handle AND for now. 8375 if (Op.getOpcode() != ISD::AND) 8376 return false; 8377 8378 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8379 if (!C) 8380 return false; 8381 8382 const APInt &Mask = C->getAPIntValue(); 8383 8384 // Clear all non-demanded bits initially. 8385 APInt ShrunkMask = Mask & DemandedBits; 8386 8387 // Try to make a smaller immediate by setting undemanded bits. 8388 8389 APInt ExpandedMask = Mask | ~DemandedBits; 8390 8391 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 8392 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 8393 }; 8394 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 8395 if (NewMask == Mask) 8396 return true; 8397 SDLoc DL(Op); 8398 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 8399 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 8400 return TLO.CombineTo(Op, NewOp); 8401 }; 8402 8403 // If the shrunk mask fits in sign extended 12 bits, let the target 8404 // independent code apply it. 8405 if (ShrunkMask.isSignedIntN(12)) 8406 return false; 8407 8408 // Preserve (and X, 0xffff) when zext.h is supported. 8409 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 8410 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 8411 if (IsLegalMask(NewMask)) 8412 return UseMask(NewMask); 8413 } 8414 8415 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 8416 if (VT == MVT::i64) { 8417 APInt NewMask = APInt(64, 0xffffffff); 8418 if (IsLegalMask(NewMask)) 8419 return UseMask(NewMask); 8420 } 8421 8422 // For the remaining optimizations, we need to be able to make a negative 8423 // number through a combination of mask and undemanded bits. 8424 if (!ExpandedMask.isNegative()) 8425 return false; 8426 8427 // What is the fewest number of bits we need to represent the negative number. 8428 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 8429 8430 // Try to make a 12 bit negative immediate. If that fails try to make a 32 8431 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 8432 APInt NewMask = ShrunkMask; 8433 if (MinSignedBits <= 12) 8434 NewMask.setBitsFrom(11); 8435 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 8436 NewMask.setBitsFrom(31); 8437 else 8438 return false; 8439 8440 // Check that our new mask is a subset of the demanded mask. 8441 assert(IsLegalMask(NewMask)); 8442 return UseMask(NewMask); 8443 } 8444 8445 static void computeGREV(APInt &Src, unsigned ShAmt) { 8446 ShAmt &= Src.getBitWidth() - 1; 8447 uint64_t x = Src.getZExtValue(); 8448 if (ShAmt & 1) 8449 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 8450 if (ShAmt & 2) 8451 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 8452 if (ShAmt & 4) 8453 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 8454 if (ShAmt & 8) 8455 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 8456 if (ShAmt & 16) 8457 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 8458 if (ShAmt & 32) 8459 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 8460 Src = x; 8461 } 8462 8463 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 8464 KnownBits &Known, 8465 const APInt &DemandedElts, 8466 const SelectionDAG &DAG, 8467 unsigned Depth) const { 8468 unsigned BitWidth = Known.getBitWidth(); 8469 unsigned Opc = Op.getOpcode(); 8470 assert((Opc >= ISD::BUILTIN_OP_END || 8471 Opc == ISD::INTRINSIC_WO_CHAIN || 8472 Opc == ISD::INTRINSIC_W_CHAIN || 8473 Opc == ISD::INTRINSIC_VOID) && 8474 "Should use MaskedValueIsZero if you don't know whether Op" 8475 " is a target node!"); 8476 8477 Known.resetAll(); 8478 switch (Opc) { 8479 default: break; 8480 case RISCVISD::SELECT_CC: { 8481 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 8482 // If we don't know any bits, early out. 8483 if (Known.isUnknown()) 8484 break; 8485 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 8486 8487 // Only known if known in both the LHS and RHS. 8488 Known = KnownBits::commonBits(Known, Known2); 8489 break; 8490 } 8491 case RISCVISD::REMUW: { 8492 KnownBits Known2; 8493 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8494 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8495 // We only care about the lower 32 bits. 8496 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 8497 // Restore the original width by sign extending. 8498 Known = Known.sext(BitWidth); 8499 break; 8500 } 8501 case RISCVISD::DIVUW: { 8502 KnownBits Known2; 8503 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8504 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8505 // We only care about the lower 32 bits. 8506 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 8507 // Restore the original width by sign extending. 8508 Known = Known.sext(BitWidth); 8509 break; 8510 } 8511 case RISCVISD::CTZW: { 8512 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8513 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 8514 unsigned LowBits = Log2_32(PossibleTZ) + 1; 8515 Known.Zero.setBitsFrom(LowBits); 8516 break; 8517 } 8518 case RISCVISD::CLZW: { 8519 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8520 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 8521 unsigned LowBits = Log2_32(PossibleLZ) + 1; 8522 Known.Zero.setBitsFrom(LowBits); 8523 break; 8524 } 8525 case RISCVISD::GREV: 8526 case RISCVISD::GREVW: { 8527 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8528 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8529 if (Opc == RISCVISD::GREVW) 8530 Known = Known.trunc(32); 8531 unsigned ShAmt = C->getZExtValue(); 8532 computeGREV(Known.Zero, ShAmt); 8533 computeGREV(Known.One, ShAmt); 8534 if (Opc == RISCVISD::GREVW) 8535 Known = Known.sext(BitWidth); 8536 } 8537 break; 8538 } 8539 case RISCVISD::READ_VLENB: { 8540 // If we know the minimum VLen from Zvl extensions, we can use that to 8541 // determine the trailing zeros of VLENB. 8542 // FIXME: Limit to 128 bit vectors until we have more testing. 8543 unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8; 8544 if (MinVLenB > 0) 8545 Known.Zero.setLowBits(Log2_32(MinVLenB)); 8546 // We assume VLENB is no more than 65536 / 8 bytes. 8547 Known.Zero.setBitsFrom(14); 8548 break; 8549 } 8550 case ISD::INTRINSIC_W_CHAIN: 8551 case ISD::INTRINSIC_WO_CHAIN: { 8552 unsigned IntNo = 8553 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 8554 switch (IntNo) { 8555 default: 8556 // We can't do anything for most intrinsics. 8557 break; 8558 case Intrinsic::riscv_vsetvli: 8559 case Intrinsic::riscv_vsetvlimax: 8560 case Intrinsic::riscv_vsetvli_opt: 8561 case Intrinsic::riscv_vsetvlimax_opt: 8562 // Assume that VL output is positive and would fit in an int32_t. 8563 // TODO: VLEN might be capped at 16 bits in a future V spec update. 8564 if (BitWidth >= 32) 8565 Known.Zero.setBitsFrom(31); 8566 break; 8567 } 8568 break; 8569 } 8570 } 8571 } 8572 8573 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 8574 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 8575 unsigned Depth) const { 8576 switch (Op.getOpcode()) { 8577 default: 8578 break; 8579 case RISCVISD::SELECT_CC: { 8580 unsigned Tmp = 8581 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 8582 if (Tmp == 1) return 1; // Early out. 8583 unsigned Tmp2 = 8584 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 8585 return std::min(Tmp, Tmp2); 8586 } 8587 case RISCVISD::SLLW: 8588 case RISCVISD::SRAW: 8589 case RISCVISD::SRLW: 8590 case RISCVISD::DIVW: 8591 case RISCVISD::DIVUW: 8592 case RISCVISD::REMUW: 8593 case RISCVISD::ROLW: 8594 case RISCVISD::RORW: 8595 case RISCVISD::GREVW: 8596 case RISCVISD::GORCW: 8597 case RISCVISD::FSLW: 8598 case RISCVISD::FSRW: 8599 case RISCVISD::SHFLW: 8600 case RISCVISD::UNSHFLW: 8601 case RISCVISD::BCOMPRESSW: 8602 case RISCVISD::BDECOMPRESSW: 8603 case RISCVISD::BFPW: 8604 case RISCVISD::FCVT_W_RV64: 8605 case RISCVISD::FCVT_WU_RV64: 8606 case RISCVISD::STRICT_FCVT_W_RV64: 8607 case RISCVISD::STRICT_FCVT_WU_RV64: 8608 // TODO: As the result is sign-extended, this is conservatively correct. A 8609 // more precise answer could be calculated for SRAW depending on known 8610 // bits in the shift amount. 8611 return 33; 8612 case RISCVISD::SHFL: 8613 case RISCVISD::UNSHFL: { 8614 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 8615 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 8616 // will stay within the upper 32 bits. If there were more than 32 sign bits 8617 // before there will be at least 33 sign bits after. 8618 if (Op.getValueType() == MVT::i64 && 8619 isa<ConstantSDNode>(Op.getOperand(1)) && 8620 (Op.getConstantOperandVal(1) & 0x10) == 0) { 8621 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 8622 if (Tmp > 32) 8623 return 33; 8624 } 8625 break; 8626 } 8627 case RISCVISD::VMV_X_S: { 8628 // The number of sign bits of the scalar result is computed by obtaining the 8629 // element type of the input vector operand, subtracting its width from the 8630 // XLEN, and then adding one (sign bit within the element type). If the 8631 // element type is wider than XLen, the least-significant XLEN bits are 8632 // taken. 8633 unsigned XLen = Subtarget.getXLen(); 8634 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 8635 if (EltBits <= XLen) 8636 return XLen - EltBits + 1; 8637 break; 8638 } 8639 } 8640 8641 return 1; 8642 } 8643 8644 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 8645 MachineBasicBlock *BB) { 8646 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 8647 8648 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 8649 // Should the count have wrapped while it was being read, we need to try 8650 // again. 8651 // ... 8652 // read: 8653 // rdcycleh x3 # load high word of cycle 8654 // rdcycle x2 # load low word of cycle 8655 // rdcycleh x4 # load high word of cycle 8656 // bne x3, x4, read # check if high word reads match, otherwise try again 8657 // ... 8658 8659 MachineFunction &MF = *BB->getParent(); 8660 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8661 MachineFunction::iterator It = ++BB->getIterator(); 8662 8663 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8664 MF.insert(It, LoopMBB); 8665 8666 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8667 MF.insert(It, DoneMBB); 8668 8669 // Transfer the remainder of BB and its successor edges to DoneMBB. 8670 DoneMBB->splice(DoneMBB->begin(), BB, 8671 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8672 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 8673 8674 BB->addSuccessor(LoopMBB); 8675 8676 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8677 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8678 Register LoReg = MI.getOperand(0).getReg(); 8679 Register HiReg = MI.getOperand(1).getReg(); 8680 DebugLoc DL = MI.getDebugLoc(); 8681 8682 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 8683 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 8684 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8685 .addReg(RISCV::X0); 8686 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 8687 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 8688 .addReg(RISCV::X0); 8689 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 8690 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8691 .addReg(RISCV::X0); 8692 8693 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 8694 .addReg(HiReg) 8695 .addReg(ReadAgainReg) 8696 .addMBB(LoopMBB); 8697 8698 LoopMBB->addSuccessor(LoopMBB); 8699 LoopMBB->addSuccessor(DoneMBB); 8700 8701 MI.eraseFromParent(); 8702 8703 return DoneMBB; 8704 } 8705 8706 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 8707 MachineBasicBlock *BB) { 8708 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 8709 8710 MachineFunction &MF = *BB->getParent(); 8711 DebugLoc DL = MI.getDebugLoc(); 8712 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8713 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8714 Register LoReg = MI.getOperand(0).getReg(); 8715 Register HiReg = MI.getOperand(1).getReg(); 8716 Register SrcReg = MI.getOperand(2).getReg(); 8717 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 8718 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8719 8720 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 8721 RI); 8722 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8723 MachineMemOperand *MMOLo = 8724 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 8725 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8726 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 8727 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 8728 .addFrameIndex(FI) 8729 .addImm(0) 8730 .addMemOperand(MMOLo); 8731 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 8732 .addFrameIndex(FI) 8733 .addImm(4) 8734 .addMemOperand(MMOHi); 8735 MI.eraseFromParent(); // The pseudo instruction is gone now. 8736 return BB; 8737 } 8738 8739 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 8740 MachineBasicBlock *BB) { 8741 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 8742 "Unexpected instruction"); 8743 8744 MachineFunction &MF = *BB->getParent(); 8745 DebugLoc DL = MI.getDebugLoc(); 8746 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8747 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8748 Register DstReg = MI.getOperand(0).getReg(); 8749 Register LoReg = MI.getOperand(1).getReg(); 8750 Register HiReg = MI.getOperand(2).getReg(); 8751 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 8752 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8753 8754 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8755 MachineMemOperand *MMOLo = 8756 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 8757 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8758 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 8759 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8760 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 8761 .addFrameIndex(FI) 8762 .addImm(0) 8763 .addMemOperand(MMOLo); 8764 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8765 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 8766 .addFrameIndex(FI) 8767 .addImm(4) 8768 .addMemOperand(MMOHi); 8769 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 8770 MI.eraseFromParent(); // The pseudo instruction is gone now. 8771 return BB; 8772 } 8773 8774 static bool isSelectPseudo(MachineInstr &MI) { 8775 switch (MI.getOpcode()) { 8776 default: 8777 return false; 8778 case RISCV::Select_GPR_Using_CC_GPR: 8779 case RISCV::Select_FPR16_Using_CC_GPR: 8780 case RISCV::Select_FPR32_Using_CC_GPR: 8781 case RISCV::Select_FPR64_Using_CC_GPR: 8782 return true; 8783 } 8784 } 8785 8786 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 8787 unsigned RelOpcode, unsigned EqOpcode, 8788 const RISCVSubtarget &Subtarget) { 8789 DebugLoc DL = MI.getDebugLoc(); 8790 Register DstReg = MI.getOperand(0).getReg(); 8791 Register Src1Reg = MI.getOperand(1).getReg(); 8792 Register Src2Reg = MI.getOperand(2).getReg(); 8793 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 8794 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 8795 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 8796 8797 // Save the current FFLAGS. 8798 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 8799 8800 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 8801 .addReg(Src1Reg) 8802 .addReg(Src2Reg); 8803 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8804 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 8805 8806 // Restore the FFLAGS. 8807 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 8808 .addReg(SavedFFlags, RegState::Kill); 8809 8810 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 8811 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 8812 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 8813 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 8814 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8815 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 8816 8817 // Erase the pseudoinstruction. 8818 MI.eraseFromParent(); 8819 return BB; 8820 } 8821 8822 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 8823 MachineBasicBlock *BB, 8824 const RISCVSubtarget &Subtarget) { 8825 // To "insert" Select_* instructions, we actually have to insert the triangle 8826 // control-flow pattern. The incoming instructions know the destination vreg 8827 // to set, the condition code register to branch on, the true/false values to 8828 // select between, and the condcode to use to select the appropriate branch. 8829 // 8830 // We produce the following control flow: 8831 // HeadMBB 8832 // | \ 8833 // | IfFalseMBB 8834 // | / 8835 // TailMBB 8836 // 8837 // When we find a sequence of selects we attempt to optimize their emission 8838 // by sharing the control flow. Currently we only handle cases where we have 8839 // multiple selects with the exact same condition (same LHS, RHS and CC). 8840 // The selects may be interleaved with other instructions if the other 8841 // instructions meet some requirements we deem safe: 8842 // - They are debug instructions. Otherwise, 8843 // - They do not have side-effects, do not access memory and their inputs do 8844 // not depend on the results of the select pseudo-instructions. 8845 // The TrueV/FalseV operands of the selects cannot depend on the result of 8846 // previous selects in the sequence. 8847 // These conditions could be further relaxed. See the X86 target for a 8848 // related approach and more information. 8849 Register LHS = MI.getOperand(1).getReg(); 8850 Register RHS = MI.getOperand(2).getReg(); 8851 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 8852 8853 SmallVector<MachineInstr *, 4> SelectDebugValues; 8854 SmallSet<Register, 4> SelectDests; 8855 SelectDests.insert(MI.getOperand(0).getReg()); 8856 8857 MachineInstr *LastSelectPseudo = &MI; 8858 8859 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 8860 SequenceMBBI != E; ++SequenceMBBI) { 8861 if (SequenceMBBI->isDebugInstr()) 8862 continue; 8863 else if (isSelectPseudo(*SequenceMBBI)) { 8864 if (SequenceMBBI->getOperand(1).getReg() != LHS || 8865 SequenceMBBI->getOperand(2).getReg() != RHS || 8866 SequenceMBBI->getOperand(3).getImm() != CC || 8867 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 8868 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 8869 break; 8870 LastSelectPseudo = &*SequenceMBBI; 8871 SequenceMBBI->collectDebugValues(SelectDebugValues); 8872 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 8873 } else { 8874 if (SequenceMBBI->hasUnmodeledSideEffects() || 8875 SequenceMBBI->mayLoadOrStore()) 8876 break; 8877 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 8878 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 8879 })) 8880 break; 8881 } 8882 } 8883 8884 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 8885 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8886 DebugLoc DL = MI.getDebugLoc(); 8887 MachineFunction::iterator I = ++BB->getIterator(); 8888 8889 MachineBasicBlock *HeadMBB = BB; 8890 MachineFunction *F = BB->getParent(); 8891 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 8892 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 8893 8894 F->insert(I, IfFalseMBB); 8895 F->insert(I, TailMBB); 8896 8897 // Transfer debug instructions associated with the selects to TailMBB. 8898 for (MachineInstr *DebugInstr : SelectDebugValues) { 8899 TailMBB->push_back(DebugInstr->removeFromParent()); 8900 } 8901 8902 // Move all instructions after the sequence to TailMBB. 8903 TailMBB->splice(TailMBB->end(), HeadMBB, 8904 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 8905 // Update machine-CFG edges by transferring all successors of the current 8906 // block to the new block which will contain the Phi nodes for the selects. 8907 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 8908 // Set the successors for HeadMBB. 8909 HeadMBB->addSuccessor(IfFalseMBB); 8910 HeadMBB->addSuccessor(TailMBB); 8911 8912 // Insert appropriate branch. 8913 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 8914 .addReg(LHS) 8915 .addReg(RHS) 8916 .addMBB(TailMBB); 8917 8918 // IfFalseMBB just falls through to TailMBB. 8919 IfFalseMBB->addSuccessor(TailMBB); 8920 8921 // Create PHIs for all of the select pseudo-instructions. 8922 auto SelectMBBI = MI.getIterator(); 8923 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 8924 auto InsertionPoint = TailMBB->begin(); 8925 while (SelectMBBI != SelectEnd) { 8926 auto Next = std::next(SelectMBBI); 8927 if (isSelectPseudo(*SelectMBBI)) { 8928 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 8929 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 8930 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 8931 .addReg(SelectMBBI->getOperand(4).getReg()) 8932 .addMBB(HeadMBB) 8933 .addReg(SelectMBBI->getOperand(5).getReg()) 8934 .addMBB(IfFalseMBB); 8935 SelectMBBI->eraseFromParent(); 8936 } 8937 SelectMBBI = Next; 8938 } 8939 8940 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8941 return TailMBB; 8942 } 8943 8944 MachineBasicBlock * 8945 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 8946 MachineBasicBlock *BB) const { 8947 switch (MI.getOpcode()) { 8948 default: 8949 llvm_unreachable("Unexpected instr type to insert"); 8950 case RISCV::ReadCycleWide: 8951 assert(!Subtarget.is64Bit() && 8952 "ReadCycleWrite is only to be used on riscv32"); 8953 return emitReadCycleWidePseudo(MI, BB); 8954 case RISCV::Select_GPR_Using_CC_GPR: 8955 case RISCV::Select_FPR16_Using_CC_GPR: 8956 case RISCV::Select_FPR32_Using_CC_GPR: 8957 case RISCV::Select_FPR64_Using_CC_GPR: 8958 return emitSelectPseudo(MI, BB, Subtarget); 8959 case RISCV::BuildPairF64Pseudo: 8960 return emitBuildPairF64Pseudo(MI, BB); 8961 case RISCV::SplitF64Pseudo: 8962 return emitSplitF64Pseudo(MI, BB); 8963 case RISCV::PseudoQuietFLE_H: 8964 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 8965 case RISCV::PseudoQuietFLT_H: 8966 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 8967 case RISCV::PseudoQuietFLE_S: 8968 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 8969 case RISCV::PseudoQuietFLT_S: 8970 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 8971 case RISCV::PseudoQuietFLE_D: 8972 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 8973 case RISCV::PseudoQuietFLT_D: 8974 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 8975 } 8976 } 8977 8978 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 8979 SDNode *Node) const { 8980 // Add FRM dependency to any instructions with dynamic rounding mode. 8981 unsigned Opc = MI.getOpcode(); 8982 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 8983 if (Idx < 0) 8984 return; 8985 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 8986 return; 8987 // If the instruction already reads FRM, don't add another read. 8988 if (MI.readsRegister(RISCV::FRM)) 8989 return; 8990 MI.addOperand( 8991 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 8992 } 8993 8994 // Calling Convention Implementation. 8995 // The expectations for frontend ABI lowering vary from target to target. 8996 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 8997 // details, but this is a longer term goal. For now, we simply try to keep the 8998 // role of the frontend as simple and well-defined as possible. The rules can 8999 // be summarised as: 9000 // * Never split up large scalar arguments. We handle them here. 9001 // * If a hardfloat calling convention is being used, and the struct may be 9002 // passed in a pair of registers (fp+fp, int+fp), and both registers are 9003 // available, then pass as two separate arguments. If either the GPRs or FPRs 9004 // are exhausted, then pass according to the rule below. 9005 // * If a struct could never be passed in registers or directly in a stack 9006 // slot (as it is larger than 2*XLEN and the floating point rules don't 9007 // apply), then pass it using a pointer with the byval attribute. 9008 // * If a struct is less than 2*XLEN, then coerce to either a two-element 9009 // word-sized array or a 2*XLEN scalar (depending on alignment). 9010 // * The frontend can determine whether a struct is returned by reference or 9011 // not based on its size and fields. If it will be returned by reference, the 9012 // frontend must modify the prototype so a pointer with the sret annotation is 9013 // passed as the first argument. This is not necessary for large scalar 9014 // returns. 9015 // * Struct return values and varargs should be coerced to structs containing 9016 // register-size fields in the same situations they would be for fixed 9017 // arguments. 9018 9019 static const MCPhysReg ArgGPRs[] = { 9020 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 9021 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 9022 }; 9023 static const MCPhysReg ArgFPR16s[] = { 9024 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 9025 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 9026 }; 9027 static const MCPhysReg ArgFPR32s[] = { 9028 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 9029 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 9030 }; 9031 static const MCPhysReg ArgFPR64s[] = { 9032 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 9033 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 9034 }; 9035 // This is an interim calling convention and it may be changed in the future. 9036 static const MCPhysReg ArgVRs[] = { 9037 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 9038 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 9039 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 9040 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 9041 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 9042 RISCV::V20M2, RISCV::V22M2}; 9043 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 9044 RISCV::V20M4}; 9045 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 9046 9047 // Pass a 2*XLEN argument that has been split into two XLEN values through 9048 // registers or the stack as necessary. 9049 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 9050 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 9051 MVT ValVT2, MVT LocVT2, 9052 ISD::ArgFlagsTy ArgFlags2) { 9053 unsigned XLenInBytes = XLen / 8; 9054 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9055 // At least one half can be passed via register. 9056 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 9057 VA1.getLocVT(), CCValAssign::Full)); 9058 } else { 9059 // Both halves must be passed on the stack, with proper alignment. 9060 Align StackAlign = 9061 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 9062 State.addLoc( 9063 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 9064 State.AllocateStack(XLenInBytes, StackAlign), 9065 VA1.getLocVT(), CCValAssign::Full)); 9066 State.addLoc(CCValAssign::getMem( 9067 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9068 LocVT2, CCValAssign::Full)); 9069 return false; 9070 } 9071 9072 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9073 // The second half can also be passed via register. 9074 State.addLoc( 9075 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 9076 } else { 9077 // The second half is passed via the stack, without additional alignment. 9078 State.addLoc(CCValAssign::getMem( 9079 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9080 LocVT2, CCValAssign::Full)); 9081 } 9082 9083 return false; 9084 } 9085 9086 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 9087 Optional<unsigned> FirstMaskArgument, 9088 CCState &State, const RISCVTargetLowering &TLI) { 9089 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 9090 if (RC == &RISCV::VRRegClass) { 9091 // Assign the first mask argument to V0. 9092 // This is an interim calling convention and it may be changed in the 9093 // future. 9094 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 9095 return State.AllocateReg(RISCV::V0); 9096 return State.AllocateReg(ArgVRs); 9097 } 9098 if (RC == &RISCV::VRM2RegClass) 9099 return State.AllocateReg(ArgVRM2s); 9100 if (RC == &RISCV::VRM4RegClass) 9101 return State.AllocateReg(ArgVRM4s); 9102 if (RC == &RISCV::VRM8RegClass) 9103 return State.AllocateReg(ArgVRM8s); 9104 llvm_unreachable("Unhandled register class for ValueType"); 9105 } 9106 9107 // Implements the RISC-V calling convention. Returns true upon failure. 9108 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 9109 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 9110 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 9111 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 9112 Optional<unsigned> FirstMaskArgument) { 9113 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 9114 assert(XLen == 32 || XLen == 64); 9115 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 9116 9117 // Any return value split in to more than two values can't be returned 9118 // directly. Vectors are returned via the available vector registers. 9119 if (!LocVT.isVector() && IsRet && ValNo > 1) 9120 return true; 9121 9122 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 9123 // variadic argument, or if no F16/F32 argument registers are available. 9124 bool UseGPRForF16_F32 = true; 9125 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 9126 // variadic argument, or if no F64 argument registers are available. 9127 bool UseGPRForF64 = true; 9128 9129 switch (ABI) { 9130 default: 9131 llvm_unreachable("Unexpected ABI"); 9132 case RISCVABI::ABI_ILP32: 9133 case RISCVABI::ABI_LP64: 9134 break; 9135 case RISCVABI::ABI_ILP32F: 9136 case RISCVABI::ABI_LP64F: 9137 UseGPRForF16_F32 = !IsFixed; 9138 break; 9139 case RISCVABI::ABI_ILP32D: 9140 case RISCVABI::ABI_LP64D: 9141 UseGPRForF16_F32 = !IsFixed; 9142 UseGPRForF64 = !IsFixed; 9143 break; 9144 } 9145 9146 // FPR16, FPR32, and FPR64 alias each other. 9147 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 9148 UseGPRForF16_F32 = true; 9149 UseGPRForF64 = true; 9150 } 9151 9152 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 9153 // similar local variables rather than directly checking against the target 9154 // ABI. 9155 9156 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 9157 LocVT = XLenVT; 9158 LocInfo = CCValAssign::BCvt; 9159 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 9160 LocVT = MVT::i64; 9161 LocInfo = CCValAssign::BCvt; 9162 } 9163 9164 // If this is a variadic argument, the RISC-V calling convention requires 9165 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 9166 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 9167 // be used regardless of whether the original argument was split during 9168 // legalisation or not. The argument will not be passed by registers if the 9169 // original type is larger than 2*XLEN, so the register alignment rule does 9170 // not apply. 9171 unsigned TwoXLenInBytes = (2 * XLen) / 8; 9172 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 9173 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 9174 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 9175 // Skip 'odd' register if necessary. 9176 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 9177 State.AllocateReg(ArgGPRs); 9178 } 9179 9180 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 9181 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 9182 State.getPendingArgFlags(); 9183 9184 assert(PendingLocs.size() == PendingArgFlags.size() && 9185 "PendingLocs and PendingArgFlags out of sync"); 9186 9187 // Handle passing f64 on RV32D with a soft float ABI or when floating point 9188 // registers are exhausted. 9189 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 9190 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 9191 "Can't lower f64 if it is split"); 9192 // Depending on available argument GPRS, f64 may be passed in a pair of 9193 // GPRs, split between a GPR and the stack, or passed completely on the 9194 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 9195 // cases. 9196 Register Reg = State.AllocateReg(ArgGPRs); 9197 LocVT = MVT::i32; 9198 if (!Reg) { 9199 unsigned StackOffset = State.AllocateStack(8, Align(8)); 9200 State.addLoc( 9201 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9202 return false; 9203 } 9204 if (!State.AllocateReg(ArgGPRs)) 9205 State.AllocateStack(4, Align(4)); 9206 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9207 return false; 9208 } 9209 9210 // Fixed-length vectors are located in the corresponding scalable-vector 9211 // container types. 9212 if (ValVT.isFixedLengthVector()) 9213 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9214 9215 // Split arguments might be passed indirectly, so keep track of the pending 9216 // values. Split vectors are passed via a mix of registers and indirectly, so 9217 // treat them as we would any other argument. 9218 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 9219 LocVT = XLenVT; 9220 LocInfo = CCValAssign::Indirect; 9221 PendingLocs.push_back( 9222 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 9223 PendingArgFlags.push_back(ArgFlags); 9224 if (!ArgFlags.isSplitEnd()) { 9225 return false; 9226 } 9227 } 9228 9229 // If the split argument only had two elements, it should be passed directly 9230 // in registers or on the stack. 9231 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 9232 PendingLocs.size() <= 2) { 9233 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 9234 // Apply the normal calling convention rules to the first half of the 9235 // split argument. 9236 CCValAssign VA = PendingLocs[0]; 9237 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 9238 PendingLocs.clear(); 9239 PendingArgFlags.clear(); 9240 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 9241 ArgFlags); 9242 } 9243 9244 // Allocate to a register if possible, or else a stack slot. 9245 Register Reg; 9246 unsigned StoreSizeBytes = XLen / 8; 9247 Align StackAlign = Align(XLen / 8); 9248 9249 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 9250 Reg = State.AllocateReg(ArgFPR16s); 9251 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 9252 Reg = State.AllocateReg(ArgFPR32s); 9253 else if (ValVT == MVT::f64 && !UseGPRForF64) 9254 Reg = State.AllocateReg(ArgFPR64s); 9255 else if (ValVT.isVector()) { 9256 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 9257 if (!Reg) { 9258 // For return values, the vector must be passed fully via registers or 9259 // via the stack. 9260 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 9261 // but we're using all of them. 9262 if (IsRet) 9263 return true; 9264 // Try using a GPR to pass the address 9265 if ((Reg = State.AllocateReg(ArgGPRs))) { 9266 LocVT = XLenVT; 9267 LocInfo = CCValAssign::Indirect; 9268 } else if (ValVT.isScalableVector()) { 9269 LocVT = XLenVT; 9270 LocInfo = CCValAssign::Indirect; 9271 } else { 9272 // Pass fixed-length vectors on the stack. 9273 LocVT = ValVT; 9274 StoreSizeBytes = ValVT.getStoreSize(); 9275 // Align vectors to their element sizes, being careful for vXi1 9276 // vectors. 9277 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9278 } 9279 } 9280 } else { 9281 Reg = State.AllocateReg(ArgGPRs); 9282 } 9283 9284 unsigned StackOffset = 9285 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 9286 9287 // If we reach this point and PendingLocs is non-empty, we must be at the 9288 // end of a split argument that must be passed indirectly. 9289 if (!PendingLocs.empty()) { 9290 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 9291 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 9292 9293 for (auto &It : PendingLocs) { 9294 if (Reg) 9295 It.convertToReg(Reg); 9296 else 9297 It.convertToMem(StackOffset); 9298 State.addLoc(It); 9299 } 9300 PendingLocs.clear(); 9301 PendingArgFlags.clear(); 9302 return false; 9303 } 9304 9305 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 9306 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 9307 "Expected an XLenVT or vector types at this stage"); 9308 9309 if (Reg) { 9310 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9311 return false; 9312 } 9313 9314 // When a floating-point value is passed on the stack, no bit-conversion is 9315 // needed. 9316 if (ValVT.isFloatingPoint()) { 9317 LocVT = ValVT; 9318 LocInfo = CCValAssign::Full; 9319 } 9320 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9321 return false; 9322 } 9323 9324 template <typename ArgTy> 9325 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 9326 for (const auto &ArgIdx : enumerate(Args)) { 9327 MVT ArgVT = ArgIdx.value().VT; 9328 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 9329 return ArgIdx.index(); 9330 } 9331 return None; 9332 } 9333 9334 void RISCVTargetLowering::analyzeInputArgs( 9335 MachineFunction &MF, CCState &CCInfo, 9336 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 9337 RISCVCCAssignFn Fn) const { 9338 unsigned NumArgs = Ins.size(); 9339 FunctionType *FType = MF.getFunction().getFunctionType(); 9340 9341 Optional<unsigned> FirstMaskArgument; 9342 if (Subtarget.hasVInstructions()) 9343 FirstMaskArgument = preAssignMask(Ins); 9344 9345 for (unsigned i = 0; i != NumArgs; ++i) { 9346 MVT ArgVT = Ins[i].VT; 9347 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 9348 9349 Type *ArgTy = nullptr; 9350 if (IsRet) 9351 ArgTy = FType->getReturnType(); 9352 else if (Ins[i].isOrigArg()) 9353 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 9354 9355 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9356 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9357 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 9358 FirstMaskArgument)) { 9359 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 9360 << EVT(ArgVT).getEVTString() << '\n'); 9361 llvm_unreachable(nullptr); 9362 } 9363 } 9364 } 9365 9366 void RISCVTargetLowering::analyzeOutputArgs( 9367 MachineFunction &MF, CCState &CCInfo, 9368 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 9369 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 9370 unsigned NumArgs = Outs.size(); 9371 9372 Optional<unsigned> FirstMaskArgument; 9373 if (Subtarget.hasVInstructions()) 9374 FirstMaskArgument = preAssignMask(Outs); 9375 9376 for (unsigned i = 0; i != NumArgs; i++) { 9377 MVT ArgVT = Outs[i].VT; 9378 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9379 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 9380 9381 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9382 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9383 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 9384 FirstMaskArgument)) { 9385 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 9386 << EVT(ArgVT).getEVTString() << "\n"); 9387 llvm_unreachable(nullptr); 9388 } 9389 } 9390 } 9391 9392 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 9393 // values. 9394 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 9395 const CCValAssign &VA, const SDLoc &DL, 9396 const RISCVSubtarget &Subtarget) { 9397 switch (VA.getLocInfo()) { 9398 default: 9399 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9400 case CCValAssign::Full: 9401 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 9402 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 9403 break; 9404 case CCValAssign::BCvt: 9405 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9406 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 9407 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9408 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 9409 else 9410 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 9411 break; 9412 } 9413 return Val; 9414 } 9415 9416 // The caller is responsible for loading the full value if the argument is 9417 // passed with CCValAssign::Indirect. 9418 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 9419 const CCValAssign &VA, const SDLoc &DL, 9420 const RISCVTargetLowering &TLI) { 9421 MachineFunction &MF = DAG.getMachineFunction(); 9422 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9423 EVT LocVT = VA.getLocVT(); 9424 SDValue Val; 9425 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 9426 Register VReg = RegInfo.createVirtualRegister(RC); 9427 RegInfo.addLiveIn(VA.getLocReg(), VReg); 9428 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 9429 9430 if (VA.getLocInfo() == CCValAssign::Indirect) 9431 return Val; 9432 9433 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 9434 } 9435 9436 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 9437 const CCValAssign &VA, const SDLoc &DL, 9438 const RISCVSubtarget &Subtarget) { 9439 EVT LocVT = VA.getLocVT(); 9440 9441 switch (VA.getLocInfo()) { 9442 default: 9443 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9444 case CCValAssign::Full: 9445 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 9446 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 9447 break; 9448 case CCValAssign::BCvt: 9449 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9450 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 9451 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9452 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 9453 else 9454 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 9455 break; 9456 } 9457 return Val; 9458 } 9459 9460 // The caller is responsible for loading the full value if the argument is 9461 // passed with CCValAssign::Indirect. 9462 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 9463 const CCValAssign &VA, const SDLoc &DL) { 9464 MachineFunction &MF = DAG.getMachineFunction(); 9465 MachineFrameInfo &MFI = MF.getFrameInfo(); 9466 EVT LocVT = VA.getLocVT(); 9467 EVT ValVT = VA.getValVT(); 9468 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 9469 if (ValVT.isScalableVector()) { 9470 // When the value is a scalable vector, we save the pointer which points to 9471 // the scalable vector value in the stack. The ValVT will be the pointer 9472 // type, instead of the scalable vector type. 9473 ValVT = LocVT; 9474 } 9475 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 9476 /*IsImmutable=*/true); 9477 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 9478 SDValue Val; 9479 9480 ISD::LoadExtType ExtType; 9481 switch (VA.getLocInfo()) { 9482 default: 9483 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9484 case CCValAssign::Full: 9485 case CCValAssign::Indirect: 9486 case CCValAssign::BCvt: 9487 ExtType = ISD::NON_EXTLOAD; 9488 break; 9489 } 9490 Val = DAG.getExtLoad( 9491 ExtType, DL, LocVT, Chain, FIN, 9492 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 9493 return Val; 9494 } 9495 9496 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 9497 const CCValAssign &VA, const SDLoc &DL) { 9498 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 9499 "Unexpected VA"); 9500 MachineFunction &MF = DAG.getMachineFunction(); 9501 MachineFrameInfo &MFI = MF.getFrameInfo(); 9502 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9503 9504 if (VA.isMemLoc()) { 9505 // f64 is passed on the stack. 9506 int FI = 9507 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 9508 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9509 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 9510 MachinePointerInfo::getFixedStack(MF, FI)); 9511 } 9512 9513 assert(VA.isRegLoc() && "Expected register VA assignment"); 9514 9515 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9516 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 9517 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 9518 SDValue Hi; 9519 if (VA.getLocReg() == RISCV::X17) { 9520 // Second half of f64 is passed on the stack. 9521 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 9522 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9523 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 9524 MachinePointerInfo::getFixedStack(MF, FI)); 9525 } else { 9526 // Second half of f64 is passed in another GPR. 9527 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9528 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 9529 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 9530 } 9531 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 9532 } 9533 9534 // FastCC has less than 1% performance improvement for some particular 9535 // benchmark. But theoretically, it may has benenfit for some cases. 9536 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 9537 unsigned ValNo, MVT ValVT, MVT LocVT, 9538 CCValAssign::LocInfo LocInfo, 9539 ISD::ArgFlagsTy ArgFlags, CCState &State, 9540 bool IsFixed, bool IsRet, Type *OrigTy, 9541 const RISCVTargetLowering &TLI, 9542 Optional<unsigned> FirstMaskArgument) { 9543 9544 // X5 and X6 might be used for save-restore libcall. 9545 static const MCPhysReg GPRList[] = { 9546 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 9547 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 9548 RISCV::X29, RISCV::X30, RISCV::X31}; 9549 9550 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9551 if (unsigned Reg = State.AllocateReg(GPRList)) { 9552 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9553 return false; 9554 } 9555 } 9556 9557 if (LocVT == MVT::f16) { 9558 static const MCPhysReg FPR16List[] = { 9559 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 9560 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 9561 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 9562 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 9563 if (unsigned Reg = State.AllocateReg(FPR16List)) { 9564 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9565 return false; 9566 } 9567 } 9568 9569 if (LocVT == MVT::f32) { 9570 static const MCPhysReg FPR32List[] = { 9571 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 9572 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 9573 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 9574 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 9575 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9576 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9577 return false; 9578 } 9579 } 9580 9581 if (LocVT == MVT::f64) { 9582 static const MCPhysReg FPR64List[] = { 9583 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 9584 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 9585 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 9586 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 9587 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9588 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9589 return false; 9590 } 9591 } 9592 9593 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 9594 unsigned Offset4 = State.AllocateStack(4, Align(4)); 9595 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 9596 return false; 9597 } 9598 9599 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 9600 unsigned Offset5 = State.AllocateStack(8, Align(8)); 9601 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 9602 return false; 9603 } 9604 9605 if (LocVT.isVector()) { 9606 if (unsigned Reg = 9607 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 9608 // Fixed-length vectors are located in the corresponding scalable-vector 9609 // container types. 9610 if (ValVT.isFixedLengthVector()) 9611 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9612 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9613 } else { 9614 // Try and pass the address via a "fast" GPR. 9615 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 9616 LocInfo = CCValAssign::Indirect; 9617 LocVT = TLI.getSubtarget().getXLenVT(); 9618 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 9619 } else if (ValVT.isFixedLengthVector()) { 9620 auto StackAlign = 9621 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9622 unsigned StackOffset = 9623 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 9624 State.addLoc( 9625 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9626 } else { 9627 // Can't pass scalable vectors on the stack. 9628 return true; 9629 } 9630 } 9631 9632 return false; 9633 } 9634 9635 return true; // CC didn't match. 9636 } 9637 9638 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 9639 CCValAssign::LocInfo LocInfo, 9640 ISD::ArgFlagsTy ArgFlags, CCState &State) { 9641 9642 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9643 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 9644 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 9645 static const MCPhysReg GPRList[] = { 9646 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 9647 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 9648 if (unsigned Reg = State.AllocateReg(GPRList)) { 9649 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9650 return false; 9651 } 9652 } 9653 9654 if (LocVT == MVT::f32) { 9655 // Pass in STG registers: F1, ..., F6 9656 // fs0 ... fs5 9657 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 9658 RISCV::F18_F, RISCV::F19_F, 9659 RISCV::F20_F, RISCV::F21_F}; 9660 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9661 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9662 return false; 9663 } 9664 } 9665 9666 if (LocVT == MVT::f64) { 9667 // Pass in STG registers: D1, ..., D6 9668 // fs6 ... fs11 9669 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 9670 RISCV::F24_D, RISCV::F25_D, 9671 RISCV::F26_D, RISCV::F27_D}; 9672 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9673 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9674 return false; 9675 } 9676 } 9677 9678 report_fatal_error("No registers left in GHC calling convention"); 9679 return true; 9680 } 9681 9682 // Transform physical registers into virtual registers. 9683 SDValue RISCVTargetLowering::LowerFormalArguments( 9684 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 9685 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 9686 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 9687 9688 MachineFunction &MF = DAG.getMachineFunction(); 9689 9690 switch (CallConv) { 9691 default: 9692 report_fatal_error("Unsupported calling convention"); 9693 case CallingConv::C: 9694 case CallingConv::Fast: 9695 break; 9696 case CallingConv::GHC: 9697 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 9698 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 9699 report_fatal_error( 9700 "GHC calling convention requires the F and D instruction set extensions"); 9701 } 9702 9703 const Function &Func = MF.getFunction(); 9704 if (Func.hasFnAttribute("interrupt")) { 9705 if (!Func.arg_empty()) 9706 report_fatal_error( 9707 "Functions with the interrupt attribute cannot have arguments!"); 9708 9709 StringRef Kind = 9710 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9711 9712 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 9713 report_fatal_error( 9714 "Function interrupt attribute argument not supported!"); 9715 } 9716 9717 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9718 MVT XLenVT = Subtarget.getXLenVT(); 9719 unsigned XLenInBytes = Subtarget.getXLen() / 8; 9720 // Used with vargs to acumulate store chains. 9721 std::vector<SDValue> OutChains; 9722 9723 // Assign locations to all of the incoming arguments. 9724 SmallVector<CCValAssign, 16> ArgLocs; 9725 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9726 9727 if (CallConv == CallingConv::GHC) 9728 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 9729 else 9730 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 9731 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9732 : CC_RISCV); 9733 9734 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 9735 CCValAssign &VA = ArgLocs[i]; 9736 SDValue ArgValue; 9737 // Passing f64 on RV32D with a soft float ABI must be handled as a special 9738 // case. 9739 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 9740 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 9741 else if (VA.isRegLoc()) 9742 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 9743 else 9744 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 9745 9746 if (VA.getLocInfo() == CCValAssign::Indirect) { 9747 // If the original argument was split and passed by reference (e.g. i128 9748 // on RV32), we need to load all parts of it here (using the same 9749 // address). Vectors may be partly split to registers and partly to the 9750 // stack, in which case the base address is partly offset and subsequent 9751 // stores are relative to that. 9752 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 9753 MachinePointerInfo())); 9754 unsigned ArgIndex = Ins[i].OrigArgIndex; 9755 unsigned ArgPartOffset = Ins[i].PartOffset; 9756 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9757 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 9758 CCValAssign &PartVA = ArgLocs[i + 1]; 9759 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 9760 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9761 if (PartVA.getValVT().isScalableVector()) 9762 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9763 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 9764 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 9765 MachinePointerInfo())); 9766 ++i; 9767 } 9768 continue; 9769 } 9770 InVals.push_back(ArgValue); 9771 } 9772 9773 if (IsVarArg) { 9774 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 9775 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 9776 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 9777 MachineFrameInfo &MFI = MF.getFrameInfo(); 9778 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9779 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 9780 9781 // Offset of the first variable argument from stack pointer, and size of 9782 // the vararg save area. For now, the varargs save area is either zero or 9783 // large enough to hold a0-a7. 9784 int VaArgOffset, VarArgsSaveSize; 9785 9786 // If all registers are allocated, then all varargs must be passed on the 9787 // stack and we don't need to save any argregs. 9788 if (ArgRegs.size() == Idx) { 9789 VaArgOffset = CCInfo.getNextStackOffset(); 9790 VarArgsSaveSize = 0; 9791 } else { 9792 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 9793 VaArgOffset = -VarArgsSaveSize; 9794 } 9795 9796 // Record the frame index of the first variable argument 9797 // which is a value necessary to VASTART. 9798 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9799 RVFI->setVarArgsFrameIndex(FI); 9800 9801 // If saving an odd number of registers then create an extra stack slot to 9802 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 9803 // offsets to even-numbered registered remain 2*XLEN-aligned. 9804 if (Idx % 2) { 9805 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 9806 VarArgsSaveSize += XLenInBytes; 9807 } 9808 9809 // Copy the integer registers that may have been used for passing varargs 9810 // to the vararg save area. 9811 for (unsigned I = Idx; I < ArgRegs.size(); 9812 ++I, VaArgOffset += XLenInBytes) { 9813 const Register Reg = RegInfo.createVirtualRegister(RC); 9814 RegInfo.addLiveIn(ArgRegs[I], Reg); 9815 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 9816 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9817 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9818 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 9819 MachinePointerInfo::getFixedStack(MF, FI)); 9820 cast<StoreSDNode>(Store.getNode()) 9821 ->getMemOperand() 9822 ->setValue((Value *)nullptr); 9823 OutChains.push_back(Store); 9824 } 9825 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 9826 } 9827 9828 // All stores are grouped in one node to allow the matching between 9829 // the size of Ins and InVals. This only happens for vararg functions. 9830 if (!OutChains.empty()) { 9831 OutChains.push_back(Chain); 9832 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 9833 } 9834 9835 return Chain; 9836 } 9837 9838 /// isEligibleForTailCallOptimization - Check whether the call is eligible 9839 /// for tail call optimization. 9840 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 9841 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 9842 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 9843 const SmallVector<CCValAssign, 16> &ArgLocs) const { 9844 9845 auto &Callee = CLI.Callee; 9846 auto CalleeCC = CLI.CallConv; 9847 auto &Outs = CLI.Outs; 9848 auto &Caller = MF.getFunction(); 9849 auto CallerCC = Caller.getCallingConv(); 9850 9851 // Exception-handling functions need a special set of instructions to 9852 // indicate a return to the hardware. Tail-calling another function would 9853 // probably break this. 9854 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 9855 // should be expanded as new function attributes are introduced. 9856 if (Caller.hasFnAttribute("interrupt")) 9857 return false; 9858 9859 // Do not tail call opt if the stack is used to pass parameters. 9860 if (CCInfo.getNextStackOffset() != 0) 9861 return false; 9862 9863 // Do not tail call opt if any parameters need to be passed indirectly. 9864 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 9865 // passed indirectly. So the address of the value will be passed in a 9866 // register, or if not available, then the address is put on the stack. In 9867 // order to pass indirectly, space on the stack often needs to be allocated 9868 // in order to store the value. In this case the CCInfo.getNextStackOffset() 9869 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 9870 // are passed CCValAssign::Indirect. 9871 for (auto &VA : ArgLocs) 9872 if (VA.getLocInfo() == CCValAssign::Indirect) 9873 return false; 9874 9875 // Do not tail call opt if either caller or callee uses struct return 9876 // semantics. 9877 auto IsCallerStructRet = Caller.hasStructRetAttr(); 9878 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 9879 if (IsCallerStructRet || IsCalleeStructRet) 9880 return false; 9881 9882 // Externally-defined functions with weak linkage should not be 9883 // tail-called. The behaviour of branch instructions in this situation (as 9884 // used for tail calls) is implementation-defined, so we cannot rely on the 9885 // linker replacing the tail call with a return. 9886 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 9887 const GlobalValue *GV = G->getGlobal(); 9888 if (GV->hasExternalWeakLinkage()) 9889 return false; 9890 } 9891 9892 // The callee has to preserve all registers the caller needs to preserve. 9893 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9894 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 9895 if (CalleeCC != CallerCC) { 9896 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 9897 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 9898 return false; 9899 } 9900 9901 // Byval parameters hand the function a pointer directly into the stack area 9902 // we want to reuse during a tail call. Working around this *is* possible 9903 // but less efficient and uglier in LowerCall. 9904 for (auto &Arg : Outs) 9905 if (Arg.Flags.isByVal()) 9906 return false; 9907 9908 return true; 9909 } 9910 9911 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 9912 return DAG.getDataLayout().getPrefTypeAlign( 9913 VT.getTypeForEVT(*DAG.getContext())); 9914 } 9915 9916 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 9917 // and output parameter nodes. 9918 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 9919 SmallVectorImpl<SDValue> &InVals) const { 9920 SelectionDAG &DAG = CLI.DAG; 9921 SDLoc &DL = CLI.DL; 9922 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 9923 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 9924 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 9925 SDValue Chain = CLI.Chain; 9926 SDValue Callee = CLI.Callee; 9927 bool &IsTailCall = CLI.IsTailCall; 9928 CallingConv::ID CallConv = CLI.CallConv; 9929 bool IsVarArg = CLI.IsVarArg; 9930 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9931 MVT XLenVT = Subtarget.getXLenVT(); 9932 9933 MachineFunction &MF = DAG.getMachineFunction(); 9934 9935 // Analyze the operands of the call, assigning locations to each operand. 9936 SmallVector<CCValAssign, 16> ArgLocs; 9937 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9938 9939 if (CallConv == CallingConv::GHC) 9940 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 9941 else 9942 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 9943 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9944 : CC_RISCV); 9945 9946 // Check if it's really possible to do a tail call. 9947 if (IsTailCall) 9948 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 9949 9950 if (IsTailCall) 9951 ++NumTailCalls; 9952 else if (CLI.CB && CLI.CB->isMustTailCall()) 9953 report_fatal_error("failed to perform tail call elimination on a call " 9954 "site marked musttail"); 9955 9956 // Get a count of how many bytes are to be pushed on the stack. 9957 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 9958 9959 // Create local copies for byval args 9960 SmallVector<SDValue, 8> ByValArgs; 9961 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9962 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9963 if (!Flags.isByVal()) 9964 continue; 9965 9966 SDValue Arg = OutVals[i]; 9967 unsigned Size = Flags.getByValSize(); 9968 Align Alignment = Flags.getNonZeroByValAlign(); 9969 9970 int FI = 9971 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 9972 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9973 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 9974 9975 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 9976 /*IsVolatile=*/false, 9977 /*AlwaysInline=*/false, IsTailCall, 9978 MachinePointerInfo(), MachinePointerInfo()); 9979 ByValArgs.push_back(FIPtr); 9980 } 9981 9982 if (!IsTailCall) 9983 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 9984 9985 // Copy argument values to their designated locations. 9986 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 9987 SmallVector<SDValue, 8> MemOpChains; 9988 SDValue StackPtr; 9989 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 9990 CCValAssign &VA = ArgLocs[i]; 9991 SDValue ArgValue = OutVals[i]; 9992 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9993 9994 // Handle passing f64 on RV32D with a soft float ABI as a special case. 9995 bool IsF64OnRV32DSoftABI = 9996 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 9997 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 9998 SDValue SplitF64 = DAG.getNode( 9999 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 10000 SDValue Lo = SplitF64.getValue(0); 10001 SDValue Hi = SplitF64.getValue(1); 10002 10003 Register RegLo = VA.getLocReg(); 10004 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 10005 10006 if (RegLo == RISCV::X17) { 10007 // Second half of f64 is passed on the stack. 10008 // Work out the address of the stack slot. 10009 if (!StackPtr.getNode()) 10010 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10011 // Emit the store. 10012 MemOpChains.push_back( 10013 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 10014 } else { 10015 // Second half of f64 is passed in another GPR. 10016 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10017 Register RegHigh = RegLo + 1; 10018 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 10019 } 10020 continue; 10021 } 10022 10023 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 10024 // as any other MemLoc. 10025 10026 // Promote the value if needed. 10027 // For now, only handle fully promoted and indirect arguments. 10028 if (VA.getLocInfo() == CCValAssign::Indirect) { 10029 // Store the argument in a stack slot and pass its address. 10030 Align StackAlign = 10031 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 10032 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 10033 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 10034 // If the original argument was split (e.g. i128), we need 10035 // to store the required parts of it here (and pass just one address). 10036 // Vectors may be partly split to registers and partly to the stack, in 10037 // which case the base address is partly offset and subsequent stores are 10038 // relative to that. 10039 unsigned ArgIndex = Outs[i].OrigArgIndex; 10040 unsigned ArgPartOffset = Outs[i].PartOffset; 10041 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10042 // Calculate the total size to store. We don't have access to what we're 10043 // actually storing other than performing the loop and collecting the 10044 // info. 10045 SmallVector<std::pair<SDValue, SDValue>> Parts; 10046 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 10047 SDValue PartValue = OutVals[i + 1]; 10048 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 10049 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10050 EVT PartVT = PartValue.getValueType(); 10051 if (PartVT.isScalableVector()) 10052 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10053 StoredSize += PartVT.getStoreSize(); 10054 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 10055 Parts.push_back(std::make_pair(PartValue, Offset)); 10056 ++i; 10057 } 10058 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 10059 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 10060 MemOpChains.push_back( 10061 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 10062 MachinePointerInfo::getFixedStack(MF, FI))); 10063 for (const auto &Part : Parts) { 10064 SDValue PartValue = Part.first; 10065 SDValue PartOffset = Part.second; 10066 SDValue Address = 10067 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 10068 MemOpChains.push_back( 10069 DAG.getStore(Chain, DL, PartValue, Address, 10070 MachinePointerInfo::getFixedStack(MF, FI))); 10071 } 10072 ArgValue = SpillSlot; 10073 } else { 10074 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 10075 } 10076 10077 // Use local copy if it is a byval arg. 10078 if (Flags.isByVal()) 10079 ArgValue = ByValArgs[j++]; 10080 10081 if (VA.isRegLoc()) { 10082 // Queue up the argument copies and emit them at the end. 10083 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 10084 } else { 10085 assert(VA.isMemLoc() && "Argument not register or memory"); 10086 assert(!IsTailCall && "Tail call not allowed if stack is used " 10087 "for passing parameters"); 10088 10089 // Work out the address of the stack slot. 10090 if (!StackPtr.getNode()) 10091 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10092 SDValue Address = 10093 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 10094 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 10095 10096 // Emit the store. 10097 MemOpChains.push_back( 10098 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 10099 } 10100 } 10101 10102 // Join the stores, which are independent of one another. 10103 if (!MemOpChains.empty()) 10104 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 10105 10106 SDValue Glue; 10107 10108 // Build a sequence of copy-to-reg nodes, chained and glued together. 10109 for (auto &Reg : RegsToPass) { 10110 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 10111 Glue = Chain.getValue(1); 10112 } 10113 10114 // Validate that none of the argument registers have been marked as 10115 // reserved, if so report an error. Do the same for the return address if this 10116 // is not a tailcall. 10117 validateCCReservedRegs(RegsToPass, MF); 10118 if (!IsTailCall && 10119 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 10120 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10121 MF.getFunction(), 10122 "Return address register required, but has been reserved."}); 10123 10124 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 10125 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 10126 // split it and then direct call can be matched by PseudoCALL. 10127 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 10128 const GlobalValue *GV = S->getGlobal(); 10129 10130 unsigned OpFlags = RISCVII::MO_CALL; 10131 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 10132 OpFlags = RISCVII::MO_PLT; 10133 10134 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 10135 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 10136 unsigned OpFlags = RISCVII::MO_CALL; 10137 10138 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 10139 nullptr)) 10140 OpFlags = RISCVII::MO_PLT; 10141 10142 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 10143 } 10144 10145 // The first call operand is the chain and the second is the target address. 10146 SmallVector<SDValue, 8> Ops; 10147 Ops.push_back(Chain); 10148 Ops.push_back(Callee); 10149 10150 // Add argument registers to the end of the list so that they are 10151 // known live into the call. 10152 for (auto &Reg : RegsToPass) 10153 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 10154 10155 if (!IsTailCall) { 10156 // Add a register mask operand representing the call-preserved registers. 10157 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10158 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 10159 assert(Mask && "Missing call preserved mask for calling convention"); 10160 Ops.push_back(DAG.getRegisterMask(Mask)); 10161 } 10162 10163 // Glue the call to the argument copies, if any. 10164 if (Glue.getNode()) 10165 Ops.push_back(Glue); 10166 10167 // Emit the call. 10168 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10169 10170 if (IsTailCall) { 10171 MF.getFrameInfo().setHasTailCall(); 10172 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 10173 } 10174 10175 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 10176 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 10177 Glue = Chain.getValue(1); 10178 10179 // Mark the end of the call, which is glued to the call itself. 10180 Chain = DAG.getCALLSEQ_END(Chain, 10181 DAG.getConstant(NumBytes, DL, PtrVT, true), 10182 DAG.getConstant(0, DL, PtrVT, true), 10183 Glue, DL); 10184 Glue = Chain.getValue(1); 10185 10186 // Assign locations to each value returned by this call. 10187 SmallVector<CCValAssign, 16> RVLocs; 10188 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 10189 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 10190 10191 // Copy all of the result registers out of their specified physreg. 10192 for (auto &VA : RVLocs) { 10193 // Copy the value out 10194 SDValue RetValue = 10195 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 10196 // Glue the RetValue to the end of the call sequence 10197 Chain = RetValue.getValue(1); 10198 Glue = RetValue.getValue(2); 10199 10200 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10201 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 10202 SDValue RetValue2 = 10203 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 10204 Chain = RetValue2.getValue(1); 10205 Glue = RetValue2.getValue(2); 10206 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 10207 RetValue2); 10208 } 10209 10210 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 10211 10212 InVals.push_back(RetValue); 10213 } 10214 10215 return Chain; 10216 } 10217 10218 bool RISCVTargetLowering::CanLowerReturn( 10219 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 10220 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 10221 SmallVector<CCValAssign, 16> RVLocs; 10222 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 10223 10224 Optional<unsigned> FirstMaskArgument; 10225 if (Subtarget.hasVInstructions()) 10226 FirstMaskArgument = preAssignMask(Outs); 10227 10228 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10229 MVT VT = Outs[i].VT; 10230 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10231 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10232 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 10233 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 10234 *this, FirstMaskArgument)) 10235 return false; 10236 } 10237 return true; 10238 } 10239 10240 SDValue 10241 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 10242 bool IsVarArg, 10243 const SmallVectorImpl<ISD::OutputArg> &Outs, 10244 const SmallVectorImpl<SDValue> &OutVals, 10245 const SDLoc &DL, SelectionDAG &DAG) const { 10246 const MachineFunction &MF = DAG.getMachineFunction(); 10247 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10248 10249 // Stores the assignment of the return value to a location. 10250 SmallVector<CCValAssign, 16> RVLocs; 10251 10252 // Info about the registers and stack slot. 10253 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 10254 *DAG.getContext()); 10255 10256 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 10257 nullptr, CC_RISCV); 10258 10259 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 10260 report_fatal_error("GHC functions return void only"); 10261 10262 SDValue Glue; 10263 SmallVector<SDValue, 4> RetOps(1, Chain); 10264 10265 // Copy the result values into the output registers. 10266 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 10267 SDValue Val = OutVals[i]; 10268 CCValAssign &VA = RVLocs[i]; 10269 assert(VA.isRegLoc() && "Can only return in registers!"); 10270 10271 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10272 // Handle returning f64 on RV32D with a soft float ABI. 10273 assert(VA.isRegLoc() && "Expected return via registers"); 10274 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 10275 DAG.getVTList(MVT::i32, MVT::i32), Val); 10276 SDValue Lo = SplitF64.getValue(0); 10277 SDValue Hi = SplitF64.getValue(1); 10278 Register RegLo = VA.getLocReg(); 10279 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10280 Register RegHi = RegLo + 1; 10281 10282 if (STI.isRegisterReservedByUser(RegLo) || 10283 STI.isRegisterReservedByUser(RegHi)) 10284 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10285 MF.getFunction(), 10286 "Return value register required, but has been reserved."}); 10287 10288 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 10289 Glue = Chain.getValue(1); 10290 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 10291 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 10292 Glue = Chain.getValue(1); 10293 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 10294 } else { 10295 // Handle a 'normal' return. 10296 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 10297 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 10298 10299 if (STI.isRegisterReservedByUser(VA.getLocReg())) 10300 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10301 MF.getFunction(), 10302 "Return value register required, but has been reserved."}); 10303 10304 // Guarantee that all emitted copies are stuck together. 10305 Glue = Chain.getValue(1); 10306 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 10307 } 10308 } 10309 10310 RetOps[0] = Chain; // Update chain. 10311 10312 // Add the glue node if we have it. 10313 if (Glue.getNode()) { 10314 RetOps.push_back(Glue); 10315 } 10316 10317 unsigned RetOpc = RISCVISD::RET_FLAG; 10318 // Interrupt service routines use different return instructions. 10319 const Function &Func = DAG.getMachineFunction().getFunction(); 10320 if (Func.hasFnAttribute("interrupt")) { 10321 if (!Func.getReturnType()->isVoidTy()) 10322 report_fatal_error( 10323 "Functions with the interrupt attribute must have void return type!"); 10324 10325 MachineFunction &MF = DAG.getMachineFunction(); 10326 StringRef Kind = 10327 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10328 10329 if (Kind == "user") 10330 RetOpc = RISCVISD::URET_FLAG; 10331 else if (Kind == "supervisor") 10332 RetOpc = RISCVISD::SRET_FLAG; 10333 else 10334 RetOpc = RISCVISD::MRET_FLAG; 10335 } 10336 10337 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 10338 } 10339 10340 void RISCVTargetLowering::validateCCReservedRegs( 10341 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 10342 MachineFunction &MF) const { 10343 const Function &F = MF.getFunction(); 10344 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10345 10346 if (llvm::any_of(Regs, [&STI](auto Reg) { 10347 return STI.isRegisterReservedByUser(Reg.first); 10348 })) 10349 F.getContext().diagnose(DiagnosticInfoUnsupported{ 10350 F, "Argument register required, but has been reserved."}); 10351 } 10352 10353 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 10354 return CI->isTailCall(); 10355 } 10356 10357 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 10358 #define NODE_NAME_CASE(NODE) \ 10359 case RISCVISD::NODE: \ 10360 return "RISCVISD::" #NODE; 10361 // clang-format off 10362 switch ((RISCVISD::NodeType)Opcode) { 10363 case RISCVISD::FIRST_NUMBER: 10364 break; 10365 NODE_NAME_CASE(RET_FLAG) 10366 NODE_NAME_CASE(URET_FLAG) 10367 NODE_NAME_CASE(SRET_FLAG) 10368 NODE_NAME_CASE(MRET_FLAG) 10369 NODE_NAME_CASE(CALL) 10370 NODE_NAME_CASE(SELECT_CC) 10371 NODE_NAME_CASE(BR_CC) 10372 NODE_NAME_CASE(BuildPairF64) 10373 NODE_NAME_CASE(SplitF64) 10374 NODE_NAME_CASE(TAIL) 10375 NODE_NAME_CASE(MULHSU) 10376 NODE_NAME_CASE(SLLW) 10377 NODE_NAME_CASE(SRAW) 10378 NODE_NAME_CASE(SRLW) 10379 NODE_NAME_CASE(DIVW) 10380 NODE_NAME_CASE(DIVUW) 10381 NODE_NAME_CASE(REMUW) 10382 NODE_NAME_CASE(ROLW) 10383 NODE_NAME_CASE(RORW) 10384 NODE_NAME_CASE(CLZW) 10385 NODE_NAME_CASE(CTZW) 10386 NODE_NAME_CASE(FSLW) 10387 NODE_NAME_CASE(FSRW) 10388 NODE_NAME_CASE(FSL) 10389 NODE_NAME_CASE(FSR) 10390 NODE_NAME_CASE(FMV_H_X) 10391 NODE_NAME_CASE(FMV_X_ANYEXTH) 10392 NODE_NAME_CASE(FMV_W_X_RV64) 10393 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 10394 NODE_NAME_CASE(FCVT_X) 10395 NODE_NAME_CASE(FCVT_XU) 10396 NODE_NAME_CASE(FCVT_W_RV64) 10397 NODE_NAME_CASE(FCVT_WU_RV64) 10398 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 10399 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 10400 NODE_NAME_CASE(READ_CYCLE_WIDE) 10401 NODE_NAME_CASE(GREV) 10402 NODE_NAME_CASE(GREVW) 10403 NODE_NAME_CASE(GORC) 10404 NODE_NAME_CASE(GORCW) 10405 NODE_NAME_CASE(SHFL) 10406 NODE_NAME_CASE(SHFLW) 10407 NODE_NAME_CASE(UNSHFL) 10408 NODE_NAME_CASE(UNSHFLW) 10409 NODE_NAME_CASE(BFP) 10410 NODE_NAME_CASE(BFPW) 10411 NODE_NAME_CASE(BCOMPRESS) 10412 NODE_NAME_CASE(BCOMPRESSW) 10413 NODE_NAME_CASE(BDECOMPRESS) 10414 NODE_NAME_CASE(BDECOMPRESSW) 10415 NODE_NAME_CASE(VMV_V_X_VL) 10416 NODE_NAME_CASE(VFMV_V_F_VL) 10417 NODE_NAME_CASE(VMV_X_S) 10418 NODE_NAME_CASE(VMV_S_X_VL) 10419 NODE_NAME_CASE(VFMV_S_F_VL) 10420 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 10421 NODE_NAME_CASE(READ_VLENB) 10422 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 10423 NODE_NAME_CASE(VSLIDEUP_VL) 10424 NODE_NAME_CASE(VSLIDE1UP_VL) 10425 NODE_NAME_CASE(VSLIDEDOWN_VL) 10426 NODE_NAME_CASE(VSLIDE1DOWN_VL) 10427 NODE_NAME_CASE(VID_VL) 10428 NODE_NAME_CASE(VFNCVT_ROD_VL) 10429 NODE_NAME_CASE(VECREDUCE_ADD_VL) 10430 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 10431 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 10432 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 10433 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 10434 NODE_NAME_CASE(VECREDUCE_AND_VL) 10435 NODE_NAME_CASE(VECREDUCE_OR_VL) 10436 NODE_NAME_CASE(VECREDUCE_XOR_VL) 10437 NODE_NAME_CASE(VECREDUCE_FADD_VL) 10438 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 10439 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 10440 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 10441 NODE_NAME_CASE(ADD_VL) 10442 NODE_NAME_CASE(AND_VL) 10443 NODE_NAME_CASE(MUL_VL) 10444 NODE_NAME_CASE(OR_VL) 10445 NODE_NAME_CASE(SDIV_VL) 10446 NODE_NAME_CASE(SHL_VL) 10447 NODE_NAME_CASE(SREM_VL) 10448 NODE_NAME_CASE(SRA_VL) 10449 NODE_NAME_CASE(SRL_VL) 10450 NODE_NAME_CASE(SUB_VL) 10451 NODE_NAME_CASE(UDIV_VL) 10452 NODE_NAME_CASE(UREM_VL) 10453 NODE_NAME_CASE(XOR_VL) 10454 NODE_NAME_CASE(SADDSAT_VL) 10455 NODE_NAME_CASE(UADDSAT_VL) 10456 NODE_NAME_CASE(SSUBSAT_VL) 10457 NODE_NAME_CASE(USUBSAT_VL) 10458 NODE_NAME_CASE(FADD_VL) 10459 NODE_NAME_CASE(FSUB_VL) 10460 NODE_NAME_CASE(FMUL_VL) 10461 NODE_NAME_CASE(FDIV_VL) 10462 NODE_NAME_CASE(FNEG_VL) 10463 NODE_NAME_CASE(FABS_VL) 10464 NODE_NAME_CASE(FSQRT_VL) 10465 NODE_NAME_CASE(FMA_VL) 10466 NODE_NAME_CASE(FCOPYSIGN_VL) 10467 NODE_NAME_CASE(SMIN_VL) 10468 NODE_NAME_CASE(SMAX_VL) 10469 NODE_NAME_CASE(UMIN_VL) 10470 NODE_NAME_CASE(UMAX_VL) 10471 NODE_NAME_CASE(FMINNUM_VL) 10472 NODE_NAME_CASE(FMAXNUM_VL) 10473 NODE_NAME_CASE(MULHS_VL) 10474 NODE_NAME_CASE(MULHU_VL) 10475 NODE_NAME_CASE(FP_TO_SINT_VL) 10476 NODE_NAME_CASE(FP_TO_UINT_VL) 10477 NODE_NAME_CASE(SINT_TO_FP_VL) 10478 NODE_NAME_CASE(UINT_TO_FP_VL) 10479 NODE_NAME_CASE(FP_EXTEND_VL) 10480 NODE_NAME_CASE(FP_ROUND_VL) 10481 NODE_NAME_CASE(VWMUL_VL) 10482 NODE_NAME_CASE(VWMULU_VL) 10483 NODE_NAME_CASE(VWMULSU_VL) 10484 NODE_NAME_CASE(VWADD_VL) 10485 NODE_NAME_CASE(VWADDU_VL) 10486 NODE_NAME_CASE(VWSUB_VL) 10487 NODE_NAME_CASE(VWSUBU_VL) 10488 NODE_NAME_CASE(VWADD_W_VL) 10489 NODE_NAME_CASE(VWADDU_W_VL) 10490 NODE_NAME_CASE(VWSUB_W_VL) 10491 NODE_NAME_CASE(VWSUBU_W_VL) 10492 NODE_NAME_CASE(SETCC_VL) 10493 NODE_NAME_CASE(VSELECT_VL) 10494 NODE_NAME_CASE(VP_MERGE_VL) 10495 NODE_NAME_CASE(VMAND_VL) 10496 NODE_NAME_CASE(VMOR_VL) 10497 NODE_NAME_CASE(VMXOR_VL) 10498 NODE_NAME_CASE(VMCLR_VL) 10499 NODE_NAME_CASE(VMSET_VL) 10500 NODE_NAME_CASE(VRGATHER_VX_VL) 10501 NODE_NAME_CASE(VRGATHER_VV_VL) 10502 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 10503 NODE_NAME_CASE(VSEXT_VL) 10504 NODE_NAME_CASE(VZEXT_VL) 10505 NODE_NAME_CASE(VCPOP_VL) 10506 NODE_NAME_CASE(VLE_VL) 10507 NODE_NAME_CASE(VSE_VL) 10508 NODE_NAME_CASE(READ_CSR) 10509 NODE_NAME_CASE(WRITE_CSR) 10510 NODE_NAME_CASE(SWAP_CSR) 10511 } 10512 // clang-format on 10513 return nullptr; 10514 #undef NODE_NAME_CASE 10515 } 10516 10517 /// getConstraintType - Given a constraint letter, return the type of 10518 /// constraint it is for this target. 10519 RISCVTargetLowering::ConstraintType 10520 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 10521 if (Constraint.size() == 1) { 10522 switch (Constraint[0]) { 10523 default: 10524 break; 10525 case 'f': 10526 return C_RegisterClass; 10527 case 'I': 10528 case 'J': 10529 case 'K': 10530 return C_Immediate; 10531 case 'A': 10532 return C_Memory; 10533 case 'S': // A symbolic address 10534 return C_Other; 10535 } 10536 } else { 10537 if (Constraint == "vr" || Constraint == "vm") 10538 return C_RegisterClass; 10539 } 10540 return TargetLowering::getConstraintType(Constraint); 10541 } 10542 10543 std::pair<unsigned, const TargetRegisterClass *> 10544 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10545 StringRef Constraint, 10546 MVT VT) const { 10547 // First, see if this is a constraint that directly corresponds to a 10548 // RISCV register class. 10549 if (Constraint.size() == 1) { 10550 switch (Constraint[0]) { 10551 case 'r': 10552 // TODO: Support fixed vectors up to XLen for P extension? 10553 if (VT.isVector()) 10554 break; 10555 return std::make_pair(0U, &RISCV::GPRRegClass); 10556 case 'f': 10557 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 10558 return std::make_pair(0U, &RISCV::FPR16RegClass); 10559 if (Subtarget.hasStdExtF() && VT == MVT::f32) 10560 return std::make_pair(0U, &RISCV::FPR32RegClass); 10561 if (Subtarget.hasStdExtD() && VT == MVT::f64) 10562 return std::make_pair(0U, &RISCV::FPR64RegClass); 10563 break; 10564 default: 10565 break; 10566 } 10567 } else if (Constraint == "vr") { 10568 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 10569 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10570 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 10571 return std::make_pair(0U, RC); 10572 } 10573 } else if (Constraint == "vm") { 10574 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 10575 return std::make_pair(0U, &RISCV::VMV0RegClass); 10576 } 10577 10578 // Clang will correctly decode the usage of register name aliases into their 10579 // official names. However, other frontends like `rustc` do not. This allows 10580 // users of these frontends to use the ABI names for registers in LLVM-style 10581 // register constraints. 10582 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 10583 .Case("{zero}", RISCV::X0) 10584 .Case("{ra}", RISCV::X1) 10585 .Case("{sp}", RISCV::X2) 10586 .Case("{gp}", RISCV::X3) 10587 .Case("{tp}", RISCV::X4) 10588 .Case("{t0}", RISCV::X5) 10589 .Case("{t1}", RISCV::X6) 10590 .Case("{t2}", RISCV::X7) 10591 .Cases("{s0}", "{fp}", RISCV::X8) 10592 .Case("{s1}", RISCV::X9) 10593 .Case("{a0}", RISCV::X10) 10594 .Case("{a1}", RISCV::X11) 10595 .Case("{a2}", RISCV::X12) 10596 .Case("{a3}", RISCV::X13) 10597 .Case("{a4}", RISCV::X14) 10598 .Case("{a5}", RISCV::X15) 10599 .Case("{a6}", RISCV::X16) 10600 .Case("{a7}", RISCV::X17) 10601 .Case("{s2}", RISCV::X18) 10602 .Case("{s3}", RISCV::X19) 10603 .Case("{s4}", RISCV::X20) 10604 .Case("{s5}", RISCV::X21) 10605 .Case("{s6}", RISCV::X22) 10606 .Case("{s7}", RISCV::X23) 10607 .Case("{s8}", RISCV::X24) 10608 .Case("{s9}", RISCV::X25) 10609 .Case("{s10}", RISCV::X26) 10610 .Case("{s11}", RISCV::X27) 10611 .Case("{t3}", RISCV::X28) 10612 .Case("{t4}", RISCV::X29) 10613 .Case("{t5}", RISCV::X30) 10614 .Case("{t6}", RISCV::X31) 10615 .Default(RISCV::NoRegister); 10616 if (XRegFromAlias != RISCV::NoRegister) 10617 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 10618 10619 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 10620 // TableGen record rather than the AsmName to choose registers for InlineAsm 10621 // constraints, plus we want to match those names to the widest floating point 10622 // register type available, manually select floating point registers here. 10623 // 10624 // The second case is the ABI name of the register, so that frontends can also 10625 // use the ABI names in register constraint lists. 10626 if (Subtarget.hasStdExtF()) { 10627 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 10628 .Cases("{f0}", "{ft0}", RISCV::F0_F) 10629 .Cases("{f1}", "{ft1}", RISCV::F1_F) 10630 .Cases("{f2}", "{ft2}", RISCV::F2_F) 10631 .Cases("{f3}", "{ft3}", RISCV::F3_F) 10632 .Cases("{f4}", "{ft4}", RISCV::F4_F) 10633 .Cases("{f5}", "{ft5}", RISCV::F5_F) 10634 .Cases("{f6}", "{ft6}", RISCV::F6_F) 10635 .Cases("{f7}", "{ft7}", RISCV::F7_F) 10636 .Cases("{f8}", "{fs0}", RISCV::F8_F) 10637 .Cases("{f9}", "{fs1}", RISCV::F9_F) 10638 .Cases("{f10}", "{fa0}", RISCV::F10_F) 10639 .Cases("{f11}", "{fa1}", RISCV::F11_F) 10640 .Cases("{f12}", "{fa2}", RISCV::F12_F) 10641 .Cases("{f13}", "{fa3}", RISCV::F13_F) 10642 .Cases("{f14}", "{fa4}", RISCV::F14_F) 10643 .Cases("{f15}", "{fa5}", RISCV::F15_F) 10644 .Cases("{f16}", "{fa6}", RISCV::F16_F) 10645 .Cases("{f17}", "{fa7}", RISCV::F17_F) 10646 .Cases("{f18}", "{fs2}", RISCV::F18_F) 10647 .Cases("{f19}", "{fs3}", RISCV::F19_F) 10648 .Cases("{f20}", "{fs4}", RISCV::F20_F) 10649 .Cases("{f21}", "{fs5}", RISCV::F21_F) 10650 .Cases("{f22}", "{fs6}", RISCV::F22_F) 10651 .Cases("{f23}", "{fs7}", RISCV::F23_F) 10652 .Cases("{f24}", "{fs8}", RISCV::F24_F) 10653 .Cases("{f25}", "{fs9}", RISCV::F25_F) 10654 .Cases("{f26}", "{fs10}", RISCV::F26_F) 10655 .Cases("{f27}", "{fs11}", RISCV::F27_F) 10656 .Cases("{f28}", "{ft8}", RISCV::F28_F) 10657 .Cases("{f29}", "{ft9}", RISCV::F29_F) 10658 .Cases("{f30}", "{ft10}", RISCV::F30_F) 10659 .Cases("{f31}", "{ft11}", RISCV::F31_F) 10660 .Default(RISCV::NoRegister); 10661 if (FReg != RISCV::NoRegister) { 10662 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 10663 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 10664 unsigned RegNo = FReg - RISCV::F0_F; 10665 unsigned DReg = RISCV::F0_D + RegNo; 10666 return std::make_pair(DReg, &RISCV::FPR64RegClass); 10667 } 10668 if (VT == MVT::f32 || VT == MVT::Other) 10669 return std::make_pair(FReg, &RISCV::FPR32RegClass); 10670 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 10671 unsigned RegNo = FReg - RISCV::F0_F; 10672 unsigned HReg = RISCV::F0_H + RegNo; 10673 return std::make_pair(HReg, &RISCV::FPR16RegClass); 10674 } 10675 } 10676 } 10677 10678 if (Subtarget.hasVInstructions()) { 10679 Register VReg = StringSwitch<Register>(Constraint.lower()) 10680 .Case("{v0}", RISCV::V0) 10681 .Case("{v1}", RISCV::V1) 10682 .Case("{v2}", RISCV::V2) 10683 .Case("{v3}", RISCV::V3) 10684 .Case("{v4}", RISCV::V4) 10685 .Case("{v5}", RISCV::V5) 10686 .Case("{v6}", RISCV::V6) 10687 .Case("{v7}", RISCV::V7) 10688 .Case("{v8}", RISCV::V8) 10689 .Case("{v9}", RISCV::V9) 10690 .Case("{v10}", RISCV::V10) 10691 .Case("{v11}", RISCV::V11) 10692 .Case("{v12}", RISCV::V12) 10693 .Case("{v13}", RISCV::V13) 10694 .Case("{v14}", RISCV::V14) 10695 .Case("{v15}", RISCV::V15) 10696 .Case("{v16}", RISCV::V16) 10697 .Case("{v17}", RISCV::V17) 10698 .Case("{v18}", RISCV::V18) 10699 .Case("{v19}", RISCV::V19) 10700 .Case("{v20}", RISCV::V20) 10701 .Case("{v21}", RISCV::V21) 10702 .Case("{v22}", RISCV::V22) 10703 .Case("{v23}", RISCV::V23) 10704 .Case("{v24}", RISCV::V24) 10705 .Case("{v25}", RISCV::V25) 10706 .Case("{v26}", RISCV::V26) 10707 .Case("{v27}", RISCV::V27) 10708 .Case("{v28}", RISCV::V28) 10709 .Case("{v29}", RISCV::V29) 10710 .Case("{v30}", RISCV::V30) 10711 .Case("{v31}", RISCV::V31) 10712 .Default(RISCV::NoRegister); 10713 if (VReg != RISCV::NoRegister) { 10714 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 10715 return std::make_pair(VReg, &RISCV::VMRegClass); 10716 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 10717 return std::make_pair(VReg, &RISCV::VRRegClass); 10718 for (const auto *RC : 10719 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10720 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 10721 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 10722 return std::make_pair(VReg, RC); 10723 } 10724 } 10725 } 10726 } 10727 10728 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10729 } 10730 10731 unsigned 10732 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 10733 // Currently only support length 1 constraints. 10734 if (ConstraintCode.size() == 1) { 10735 switch (ConstraintCode[0]) { 10736 case 'A': 10737 return InlineAsm::Constraint_A; 10738 default: 10739 break; 10740 } 10741 } 10742 10743 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 10744 } 10745 10746 void RISCVTargetLowering::LowerAsmOperandForConstraint( 10747 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 10748 SelectionDAG &DAG) const { 10749 // Currently only support length 1 constraints. 10750 if (Constraint.length() == 1) { 10751 switch (Constraint[0]) { 10752 case 'I': 10753 // Validate & create a 12-bit signed immediate operand. 10754 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10755 uint64_t CVal = C->getSExtValue(); 10756 if (isInt<12>(CVal)) 10757 Ops.push_back( 10758 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10759 } 10760 return; 10761 case 'J': 10762 // Validate & create an integer zero operand. 10763 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 10764 if (C->getZExtValue() == 0) 10765 Ops.push_back( 10766 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 10767 return; 10768 case 'K': 10769 // Validate & create a 5-bit unsigned immediate operand. 10770 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10771 uint64_t CVal = C->getZExtValue(); 10772 if (isUInt<5>(CVal)) 10773 Ops.push_back( 10774 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10775 } 10776 return; 10777 case 'S': 10778 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 10779 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 10780 GA->getValueType(0))); 10781 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 10782 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 10783 BA->getValueType(0))); 10784 } 10785 return; 10786 default: 10787 break; 10788 } 10789 } 10790 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10791 } 10792 10793 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 10794 Instruction *Inst, 10795 AtomicOrdering Ord) const { 10796 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 10797 return Builder.CreateFence(Ord); 10798 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 10799 return Builder.CreateFence(AtomicOrdering::Release); 10800 return nullptr; 10801 } 10802 10803 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 10804 Instruction *Inst, 10805 AtomicOrdering Ord) const { 10806 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 10807 return Builder.CreateFence(AtomicOrdering::Acquire); 10808 return nullptr; 10809 } 10810 10811 TargetLowering::AtomicExpansionKind 10812 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 10813 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 10814 // point operations can't be used in an lr/sc sequence without breaking the 10815 // forward-progress guarantee. 10816 if (AI->isFloatingPointOperation()) 10817 return AtomicExpansionKind::CmpXChg; 10818 10819 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 10820 if (Size == 8 || Size == 16) 10821 return AtomicExpansionKind::MaskedIntrinsic; 10822 return AtomicExpansionKind::None; 10823 } 10824 10825 static Intrinsic::ID 10826 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 10827 if (XLen == 32) { 10828 switch (BinOp) { 10829 default: 10830 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10831 case AtomicRMWInst::Xchg: 10832 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 10833 case AtomicRMWInst::Add: 10834 return Intrinsic::riscv_masked_atomicrmw_add_i32; 10835 case AtomicRMWInst::Sub: 10836 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 10837 case AtomicRMWInst::Nand: 10838 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 10839 case AtomicRMWInst::Max: 10840 return Intrinsic::riscv_masked_atomicrmw_max_i32; 10841 case AtomicRMWInst::Min: 10842 return Intrinsic::riscv_masked_atomicrmw_min_i32; 10843 case AtomicRMWInst::UMax: 10844 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 10845 case AtomicRMWInst::UMin: 10846 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 10847 } 10848 } 10849 10850 if (XLen == 64) { 10851 switch (BinOp) { 10852 default: 10853 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10854 case AtomicRMWInst::Xchg: 10855 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 10856 case AtomicRMWInst::Add: 10857 return Intrinsic::riscv_masked_atomicrmw_add_i64; 10858 case AtomicRMWInst::Sub: 10859 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 10860 case AtomicRMWInst::Nand: 10861 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 10862 case AtomicRMWInst::Max: 10863 return Intrinsic::riscv_masked_atomicrmw_max_i64; 10864 case AtomicRMWInst::Min: 10865 return Intrinsic::riscv_masked_atomicrmw_min_i64; 10866 case AtomicRMWInst::UMax: 10867 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 10868 case AtomicRMWInst::UMin: 10869 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 10870 } 10871 } 10872 10873 llvm_unreachable("Unexpected XLen\n"); 10874 } 10875 10876 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 10877 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 10878 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 10879 unsigned XLen = Subtarget.getXLen(); 10880 Value *Ordering = 10881 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 10882 Type *Tys[] = {AlignedAddr->getType()}; 10883 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 10884 AI->getModule(), 10885 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 10886 10887 if (XLen == 64) { 10888 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 10889 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10890 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 10891 } 10892 10893 Value *Result; 10894 10895 // Must pass the shift amount needed to sign extend the loaded value prior 10896 // to performing a signed comparison for min/max. ShiftAmt is the number of 10897 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 10898 // is the number of bits to left+right shift the value in order to 10899 // sign-extend. 10900 if (AI->getOperation() == AtomicRMWInst::Min || 10901 AI->getOperation() == AtomicRMWInst::Max) { 10902 const DataLayout &DL = AI->getModule()->getDataLayout(); 10903 unsigned ValWidth = 10904 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 10905 Value *SextShamt = 10906 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 10907 Result = Builder.CreateCall(LrwOpScwLoop, 10908 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 10909 } else { 10910 Result = 10911 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 10912 } 10913 10914 if (XLen == 64) 10915 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10916 return Result; 10917 } 10918 10919 TargetLowering::AtomicExpansionKind 10920 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 10921 AtomicCmpXchgInst *CI) const { 10922 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 10923 if (Size == 8 || Size == 16) 10924 return AtomicExpansionKind::MaskedIntrinsic; 10925 return AtomicExpansionKind::None; 10926 } 10927 10928 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 10929 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 10930 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 10931 unsigned XLen = Subtarget.getXLen(); 10932 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 10933 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 10934 if (XLen == 64) { 10935 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 10936 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 10937 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10938 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 10939 } 10940 Type *Tys[] = {AlignedAddr->getType()}; 10941 Function *MaskedCmpXchg = 10942 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 10943 Value *Result = Builder.CreateCall( 10944 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 10945 if (XLen == 64) 10946 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10947 return Result; 10948 } 10949 10950 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 10951 return false; 10952 } 10953 10954 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 10955 EVT VT) const { 10956 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 10957 return false; 10958 10959 switch (FPVT.getSimpleVT().SimpleTy) { 10960 case MVT::f16: 10961 return Subtarget.hasStdExtZfh(); 10962 case MVT::f32: 10963 return Subtarget.hasStdExtF(); 10964 case MVT::f64: 10965 return Subtarget.hasStdExtD(); 10966 default: 10967 return false; 10968 } 10969 } 10970 10971 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 10972 // If we are using the small code model, we can reduce size of jump table 10973 // entry to 4 bytes. 10974 if (Subtarget.is64Bit() && !isPositionIndependent() && 10975 getTargetMachine().getCodeModel() == CodeModel::Small) { 10976 return MachineJumpTableInfo::EK_Custom32; 10977 } 10978 return TargetLowering::getJumpTableEncoding(); 10979 } 10980 10981 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 10982 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 10983 unsigned uid, MCContext &Ctx) const { 10984 assert(Subtarget.is64Bit() && !isPositionIndependent() && 10985 getTargetMachine().getCodeModel() == CodeModel::Small); 10986 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 10987 } 10988 10989 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 10990 EVT VT) const { 10991 VT = VT.getScalarType(); 10992 10993 if (!VT.isSimple()) 10994 return false; 10995 10996 switch (VT.getSimpleVT().SimpleTy) { 10997 case MVT::f16: 10998 return Subtarget.hasStdExtZfh(); 10999 case MVT::f32: 11000 return Subtarget.hasStdExtF(); 11001 case MVT::f64: 11002 return Subtarget.hasStdExtD(); 11003 default: 11004 break; 11005 } 11006 11007 return false; 11008 } 11009 11010 Register RISCVTargetLowering::getExceptionPointerRegister( 11011 const Constant *PersonalityFn) const { 11012 return RISCV::X10; 11013 } 11014 11015 Register RISCVTargetLowering::getExceptionSelectorRegister( 11016 const Constant *PersonalityFn) const { 11017 return RISCV::X11; 11018 } 11019 11020 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 11021 // Return false to suppress the unnecessary extensions if the LibCall 11022 // arguments or return value is f32 type for LP64 ABI. 11023 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 11024 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 11025 return false; 11026 11027 return true; 11028 } 11029 11030 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 11031 if (Subtarget.is64Bit() && Type == MVT::i32) 11032 return true; 11033 11034 return IsSigned; 11035 } 11036 11037 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 11038 SDValue C) const { 11039 // Check integral scalar types. 11040 if (VT.isScalarInteger()) { 11041 // Omit the optimization if the sub target has the M extension and the data 11042 // size exceeds XLen. 11043 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 11044 return false; 11045 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 11046 // Break the MUL to a SLLI and an ADD/SUB. 11047 const APInt &Imm = ConstNode->getAPIntValue(); 11048 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 11049 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 11050 return true; 11051 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 11052 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 11053 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 11054 (Imm - 8).isPowerOf2())) 11055 return true; 11056 // Omit the following optimization if the sub target has the M extension 11057 // and the data size >= XLen. 11058 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 11059 return false; 11060 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 11061 // a pair of LUI/ADDI. 11062 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 11063 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 11064 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 11065 (1 - ImmS).isPowerOf2()) 11066 return true; 11067 } 11068 } 11069 } 11070 11071 return false; 11072 } 11073 11074 bool RISCVTargetLowering::isMulAddWithConstProfitable( 11075 const SDValue &AddNode, const SDValue &ConstNode) const { 11076 // Let the DAGCombiner decide for vectors. 11077 EVT VT = AddNode.getValueType(); 11078 if (VT.isVector()) 11079 return true; 11080 11081 // Let the DAGCombiner decide for larger types. 11082 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 11083 return true; 11084 11085 // It is worse if c1 is simm12 while c1*c2 is not. 11086 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 11087 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 11088 const APInt &C1 = C1Node->getAPIntValue(); 11089 const APInt &C2 = C2Node->getAPIntValue(); 11090 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 11091 return false; 11092 11093 // Default to true and let the DAGCombiner decide. 11094 return true; 11095 } 11096 11097 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 11098 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 11099 bool *Fast) const { 11100 if (!VT.isVector()) 11101 return false; 11102 11103 EVT ElemVT = VT.getVectorElementType(); 11104 if (Alignment >= ElemVT.getStoreSize()) { 11105 if (Fast) 11106 *Fast = true; 11107 return true; 11108 } 11109 11110 return false; 11111 } 11112 11113 bool RISCVTargetLowering::splitValueIntoRegisterParts( 11114 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 11115 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 11116 bool IsABIRegCopy = CC.hasValue(); 11117 EVT ValueVT = Val.getValueType(); 11118 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11119 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 11120 // and cast to f32. 11121 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 11122 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 11123 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 11124 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 11125 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 11126 Parts[0] = Val; 11127 return true; 11128 } 11129 11130 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11131 LLVMContext &Context = *DAG.getContext(); 11132 EVT ValueEltVT = ValueVT.getVectorElementType(); 11133 EVT PartEltVT = PartVT.getVectorElementType(); 11134 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11135 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11136 if (PartVTBitSize % ValueVTBitSize == 0) { 11137 assert(PartVTBitSize >= ValueVTBitSize); 11138 // If the element types are different, bitcast to the same element type of 11139 // PartVT first. 11140 // Give an example here, we want copy a <vscale x 1 x i8> value to 11141 // <vscale x 4 x i16>. 11142 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 11143 // subvector, then we can bitcast to <vscale x 4 x i16>. 11144 if (ValueEltVT != PartEltVT) { 11145 if (PartVTBitSize > ValueVTBitSize) { 11146 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11147 assert(Count != 0 && "The number of element should not be zero."); 11148 EVT SameEltTypeVT = 11149 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11150 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 11151 DAG.getUNDEF(SameEltTypeVT), Val, 11152 DAG.getVectorIdxConstant(0, DL)); 11153 } 11154 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 11155 } else { 11156 Val = 11157 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 11158 Val, DAG.getVectorIdxConstant(0, DL)); 11159 } 11160 Parts[0] = Val; 11161 return true; 11162 } 11163 } 11164 return false; 11165 } 11166 11167 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 11168 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 11169 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 11170 bool IsABIRegCopy = CC.hasValue(); 11171 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11172 SDValue Val = Parts[0]; 11173 11174 // Cast the f32 to i32, truncate to i16, and cast back to f16. 11175 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 11176 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 11177 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 11178 return Val; 11179 } 11180 11181 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11182 LLVMContext &Context = *DAG.getContext(); 11183 SDValue Val = Parts[0]; 11184 EVT ValueEltVT = ValueVT.getVectorElementType(); 11185 EVT PartEltVT = PartVT.getVectorElementType(); 11186 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11187 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11188 if (PartVTBitSize % ValueVTBitSize == 0) { 11189 assert(PartVTBitSize >= ValueVTBitSize); 11190 EVT SameEltTypeVT = ValueVT; 11191 // If the element types are different, convert it to the same element type 11192 // of PartVT. 11193 // Give an example here, we want copy a <vscale x 1 x i8> value from 11194 // <vscale x 4 x i16>. 11195 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 11196 // then we can extract <vscale x 1 x i8>. 11197 if (ValueEltVT != PartEltVT) { 11198 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11199 assert(Count != 0 && "The number of element should not be zero."); 11200 SameEltTypeVT = 11201 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11202 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 11203 } 11204 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 11205 DAG.getVectorIdxConstant(0, DL)); 11206 return Val; 11207 } 11208 } 11209 return SDValue(); 11210 } 11211 11212 SDValue 11213 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11214 SelectionDAG &DAG, 11215 SmallVectorImpl<SDNode *> &Created) const { 11216 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 11217 if (isIntDivCheap(N->getValueType(0), Attr)) 11218 return SDValue(N, 0); // Lower SDIV as SDIV 11219 11220 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 11221 "Unexpected divisor!"); 11222 11223 // Conditional move is needed, so do the transformation iff Zbt is enabled. 11224 if (!Subtarget.hasStdExtZbt()) 11225 return SDValue(); 11226 11227 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 11228 // Besides, more critical path instructions will be generated when dividing 11229 // by 2. So we keep using the original DAGs for these cases. 11230 unsigned Lg2 = Divisor.countTrailingZeros(); 11231 if (Lg2 == 1 || Lg2 >= 12) 11232 return SDValue(); 11233 11234 // fold (sdiv X, pow2) 11235 EVT VT = N->getValueType(0); 11236 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 11237 return SDValue(); 11238 11239 SDLoc DL(N); 11240 SDValue N0 = N->getOperand(0); 11241 SDValue Zero = DAG.getConstant(0, DL, VT); 11242 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 11243 11244 // Add (N0 < 0) ? Pow2 - 1 : 0; 11245 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 11246 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 11247 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 11248 11249 Created.push_back(Cmp.getNode()); 11250 Created.push_back(Add.getNode()); 11251 Created.push_back(Sel.getNode()); 11252 11253 // Divide by pow2. 11254 SDValue SRA = 11255 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 11256 11257 // If we're dividing by a positive value, we're done. Otherwise, we must 11258 // negate the result. 11259 if (Divisor.isNonNegative()) 11260 return SRA; 11261 11262 Created.push_back(SRA.getNode()); 11263 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 11264 } 11265 11266 #define GET_REGISTER_MATCHER 11267 #include "RISCVGenAsmMatcher.inc" 11268 11269 Register 11270 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 11271 const MachineFunction &MF) const { 11272 Register Reg = MatchRegisterAltName(RegName); 11273 if (Reg == RISCV::NoRegister) 11274 Reg = MatchRegisterName(RegName); 11275 if (Reg == RISCV::NoRegister) 11276 report_fatal_error( 11277 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 11278 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 11279 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 11280 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 11281 StringRef(RegName) + "\".")); 11282 return Reg; 11283 } 11284 11285 namespace llvm { 11286 namespace RISCVVIntrinsicsTable { 11287 11288 #define GET_RISCVVIntrinsicsTable_IMPL 11289 #include "RISCVGenSearchableTables.inc" 11290 11291 } // namespace RISCVVIntrinsicsTable 11292 11293 } // namespace llvm 11294