1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 254 Subtarget.hasStdExtZbkb()) { 255 if (Subtarget.is64Bit()) { 256 setOperationAction(ISD::ROTL, MVT::i32, Custom); 257 setOperationAction(ISD::ROTR, MVT::i32, Custom); 258 } 259 } else { 260 setOperationAction(ISD::ROTL, XLenVT, Expand); 261 setOperationAction(ISD::ROTR, XLenVT, Expand); 262 } 263 264 if (Subtarget.hasStdExtZbp()) { 265 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 266 // more combining. 267 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 268 setOperationAction(ISD::BSWAP, XLenVT, Custom); 269 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 270 // BSWAP i8 doesn't exist. 271 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 272 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 273 274 if (Subtarget.is64Bit()) { 275 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 276 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 277 } 278 } else { 279 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 280 // pattern match it directly in isel. 281 setOperationAction(ISD::BSWAP, XLenVT, 282 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 283 ? Legal 284 : Expand); 285 // Zbkb can use rev8+brev8 to implement bitreverse. 286 setOperationAction(ISD::BITREVERSE, XLenVT, 287 Subtarget.hasStdExtZbkb() ? Custom : Expand); 288 } 289 290 if (Subtarget.hasStdExtZbb()) { 291 setOperationAction(ISD::SMIN, XLenVT, Legal); 292 setOperationAction(ISD::SMAX, XLenVT, Legal); 293 setOperationAction(ISD::UMIN, XLenVT, Legal); 294 setOperationAction(ISD::UMAX, XLenVT, Legal); 295 296 if (Subtarget.is64Bit()) { 297 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 298 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 299 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 300 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 301 } 302 } else { 303 setOperationAction(ISD::CTTZ, XLenVT, Expand); 304 setOperationAction(ISD::CTLZ, XLenVT, Expand); 305 setOperationAction(ISD::CTPOP, XLenVT, Expand); 306 307 if (Subtarget.is64Bit()) 308 setOperationAction(ISD::ABS, MVT::i32, Custom); 309 } 310 311 if (Subtarget.hasStdExtZbt()) { 312 setOperationAction(ISD::FSHL, XLenVT, Custom); 313 setOperationAction(ISD::FSHR, XLenVT, Custom); 314 setOperationAction(ISD::SELECT, XLenVT, Legal); 315 316 if (Subtarget.is64Bit()) { 317 setOperationAction(ISD::FSHL, MVT::i32, Custom); 318 setOperationAction(ISD::FSHR, MVT::i32, Custom); 319 } 320 } else { 321 setOperationAction(ISD::SELECT, XLenVT, Custom); 322 } 323 324 static constexpr ISD::NodeType FPLegalNodeTypes[] = { 325 ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT, 326 ISD::LLRINT, ISD::LROUND, ISD::LLROUND, 327 ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND, 328 ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD, 329 ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, 330 ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS}; 331 332 static const ISD::CondCode FPCCToExpand[] = { 333 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 334 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 335 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 336 337 static const ISD::NodeType FPOpToExpand[] = { 338 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 339 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 340 341 if (Subtarget.hasStdExtZfh()) 342 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 343 344 if (Subtarget.hasStdExtZfh()) { 345 for (auto NT : FPLegalNodeTypes) 346 setOperationAction(NT, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 348 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 349 for (auto CC : FPCCToExpand) 350 setCondCodeAction(CC, MVT::f16, Expand); 351 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 352 setOperationAction(ISD::SELECT, MVT::f16, Custom); 353 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 354 355 setOperationAction(ISD::FREM, MVT::f16, Promote); 356 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 357 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 358 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 359 setOperationAction(ISD::FRINT, MVT::f16, Promote); 360 setOperationAction(ISD::FROUND, MVT::f16, Promote); 361 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 362 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 363 setOperationAction(ISD::FPOW, MVT::f16, Promote); 364 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 365 setOperationAction(ISD::FCOS, MVT::f16, Promote); 366 setOperationAction(ISD::FSIN, MVT::f16, Promote); 367 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 368 setOperationAction(ISD::FEXP, MVT::f16, Promote); 369 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 370 setOperationAction(ISD::FLOG, MVT::f16, Promote); 371 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 372 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 373 374 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 375 // complete support for all operations in LegalizeDAG. 376 377 // We need to custom promote this. 378 if (Subtarget.is64Bit()) 379 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 380 } 381 382 if (Subtarget.hasStdExtF()) { 383 for (auto NT : FPLegalNodeTypes) 384 setOperationAction(NT, MVT::f32, Legal); 385 for (auto CC : FPCCToExpand) 386 setCondCodeAction(CC, MVT::f32, Expand); 387 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 388 setOperationAction(ISD::SELECT, MVT::f32, Custom); 389 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 390 for (auto Op : FPOpToExpand) 391 setOperationAction(Op, MVT::f32, Expand); 392 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 393 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 394 } 395 396 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 397 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 398 399 if (Subtarget.hasStdExtD()) { 400 for (auto NT : FPLegalNodeTypes) 401 setOperationAction(NT, MVT::f64, Legal); 402 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 403 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 404 for (auto CC : FPCCToExpand) 405 setCondCodeAction(CC, MVT::f64, Expand); 406 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 407 setOperationAction(ISD::SELECT, MVT::f64, Custom); 408 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 409 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 410 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 411 for (auto Op : FPOpToExpand) 412 setOperationAction(Op, MVT::f64, Expand); 413 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 414 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 415 } 416 417 if (Subtarget.is64Bit()) { 418 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 419 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 420 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 421 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 422 } 423 424 if (Subtarget.hasStdExtF()) { 425 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 426 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 427 428 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 429 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 430 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 431 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 432 433 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 434 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 435 } 436 437 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 438 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 439 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 440 setOperationAction(ISD::JumpTable, XLenVT, Custom); 441 442 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 443 444 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 445 // Unfortunately this can't be determined just from the ISA naming string. 446 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 447 Subtarget.is64Bit() ? Legal : Custom); 448 449 setOperationAction(ISD::TRAP, MVT::Other, Legal); 450 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 451 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 452 if (Subtarget.is64Bit()) 453 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 454 455 if (Subtarget.hasStdExtA()) { 456 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 457 setMinCmpXchgSizeInBits(32); 458 } else { 459 setMaxAtomicSizeInBitsSupported(0); 460 } 461 462 setBooleanContents(ZeroOrOneBooleanContent); 463 464 if (Subtarget.hasVInstructions()) { 465 setBooleanVectorContents(ZeroOrOneBooleanContent); 466 467 setOperationAction(ISD::VSCALE, XLenVT, Custom); 468 469 // RVV intrinsics may have illegal operands. 470 // We also need to custom legalize vmv.x.s. 471 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 472 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 473 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 474 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 475 if (Subtarget.is64Bit()) { 476 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 477 } else { 478 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 479 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 480 } 481 482 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 483 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 484 485 static const unsigned IntegerVPOps[] = { 486 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 487 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 488 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 489 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 490 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 491 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 492 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 493 ISD::VP_MERGE, ISD::VP_SELECT, ISD::VP_FPTOSI}; 494 495 static const unsigned FloatingPointVPOps[] = { 496 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 497 ISD::VP_FDIV, ISD::VP_FNEG, ISD::VP_FMA, 498 ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN, 499 ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, ISD::VP_SELECT, 500 ISD::VP_SITOFP}; 501 502 if (!Subtarget.is64Bit()) { 503 // We must custom-lower certain vXi64 operations on RV32 due to the vector 504 // element type being illegal. 505 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 506 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 507 508 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 509 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 510 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 511 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 512 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 513 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 514 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 515 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 516 517 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 518 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 519 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 520 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 521 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 522 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 523 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 524 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 525 } 526 527 for (MVT VT : BoolVecVTs) { 528 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 529 530 // Mask VTs are custom-expanded into a series of standard nodes 531 setOperationAction(ISD::TRUNCATE, VT, Custom); 532 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 533 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 534 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 535 536 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 537 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 538 539 setOperationAction(ISD::SELECT, VT, Custom); 540 setOperationAction(ISD::SELECT_CC, VT, Expand); 541 setOperationAction(ISD::VSELECT, VT, Expand); 542 setOperationAction(ISD::VP_MERGE, VT, Expand); 543 setOperationAction(ISD::VP_SELECT, VT, Expand); 544 545 setOperationAction(ISD::VP_AND, VT, Custom); 546 setOperationAction(ISD::VP_OR, VT, Custom); 547 setOperationAction(ISD::VP_XOR, VT, Custom); 548 549 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 550 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 551 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 552 553 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 554 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 555 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 556 557 // RVV has native int->float & float->int conversions where the 558 // element type sizes are within one power-of-two of each other. Any 559 // wider distances between type sizes have to be lowered as sequences 560 // which progressively narrow the gap in stages. 561 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 562 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 563 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 564 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 565 566 // Expand all extending loads to types larger than this, and truncating 567 // stores from types larger than this. 568 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 569 setTruncStoreAction(OtherVT, VT, Expand); 570 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 571 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 572 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 573 } 574 } 575 576 for (MVT VT : IntVecVTs) { 577 if (VT.getVectorElementType() == MVT::i64 && 578 !Subtarget.hasVInstructionsI64()) 579 continue; 580 581 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 582 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 583 584 // Vectors implement MULHS/MULHU. 585 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 586 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 587 588 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 589 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) { 590 setOperationAction(ISD::MULHU, VT, Expand); 591 setOperationAction(ISD::MULHS, VT, Expand); 592 } 593 594 setOperationAction(ISD::SMIN, VT, Legal); 595 setOperationAction(ISD::SMAX, VT, Legal); 596 setOperationAction(ISD::UMIN, VT, Legal); 597 setOperationAction(ISD::UMAX, VT, Legal); 598 599 setOperationAction(ISD::ROTL, VT, Expand); 600 setOperationAction(ISD::ROTR, VT, Expand); 601 602 setOperationAction(ISD::CTTZ, VT, Expand); 603 setOperationAction(ISD::CTLZ, VT, Expand); 604 setOperationAction(ISD::CTPOP, VT, Expand); 605 606 setOperationAction(ISD::BSWAP, VT, Expand); 607 608 // Custom-lower extensions and truncations from/to mask types. 609 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 610 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 611 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 612 613 // RVV has native int->float & float->int conversions where the 614 // element type sizes are within one power-of-two of each other. Any 615 // wider distances between type sizes have to be lowered as sequences 616 // which progressively narrow the gap in stages. 617 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 618 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 619 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 620 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 621 622 setOperationAction(ISD::SADDSAT, VT, Legal); 623 setOperationAction(ISD::UADDSAT, VT, Legal); 624 setOperationAction(ISD::SSUBSAT, VT, Legal); 625 setOperationAction(ISD::USUBSAT, VT, Legal); 626 627 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 628 // nodes which truncate by one power of two at a time. 629 setOperationAction(ISD::TRUNCATE, VT, Custom); 630 631 // Custom-lower insert/extract operations to simplify patterns. 632 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 633 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 634 635 // Custom-lower reduction operations to set up the corresponding custom 636 // nodes' operands. 637 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 638 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 639 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 640 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 641 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 642 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 643 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 644 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 645 646 for (unsigned VPOpc : IntegerVPOps) 647 setOperationAction(VPOpc, VT, Custom); 648 649 setOperationAction(ISD::LOAD, VT, Custom); 650 setOperationAction(ISD::STORE, VT, Custom); 651 652 setOperationAction(ISD::MLOAD, VT, Custom); 653 setOperationAction(ISD::MSTORE, VT, Custom); 654 setOperationAction(ISD::MGATHER, VT, Custom); 655 setOperationAction(ISD::MSCATTER, VT, Custom); 656 657 setOperationAction(ISD::VP_LOAD, VT, Custom); 658 setOperationAction(ISD::VP_STORE, VT, Custom); 659 setOperationAction(ISD::VP_GATHER, VT, Custom); 660 setOperationAction(ISD::VP_SCATTER, VT, Custom); 661 662 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 663 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 664 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 665 666 setOperationAction(ISD::SELECT, VT, Custom); 667 setOperationAction(ISD::SELECT_CC, VT, Expand); 668 669 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 670 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 671 672 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 673 setTruncStoreAction(VT, OtherVT, Expand); 674 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 675 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 676 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 677 } 678 679 // Splice 680 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 681 682 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 683 // type that can represent the value exactly. 684 if (VT.getVectorElementType() != MVT::i64) { 685 MVT FloatEltVT = 686 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 687 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 688 if (isTypeLegal(FloatVT)) { 689 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 690 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 691 } 692 } 693 } 694 695 // Expand various CCs to best match the RVV ISA, which natively supports UNE 696 // but no other unordered comparisons, and supports all ordered comparisons 697 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 698 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 699 // and we pattern-match those back to the "original", swapping operands once 700 // more. This way we catch both operations and both "vf" and "fv" forms with 701 // fewer patterns. 702 static const ISD::CondCode VFPCCToExpand[] = { 703 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 704 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 705 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 706 }; 707 708 // Sets common operation actions on RVV floating-point vector types. 709 const auto SetCommonVFPActions = [&](MVT VT) { 710 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 711 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 712 // sizes are within one power-of-two of each other. Therefore conversions 713 // between vXf16 and vXf64 must be lowered as sequences which convert via 714 // vXf32. 715 setOperationAction(ISD::FP_ROUND, VT, Custom); 716 setOperationAction(ISD::FP_EXTEND, VT, Custom); 717 // Custom-lower insert/extract operations to simplify patterns. 718 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 719 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 720 // Expand various condition codes (explained above). 721 for (auto CC : VFPCCToExpand) 722 setCondCodeAction(CC, VT, Expand); 723 724 setOperationAction(ISD::FMINNUM, VT, Legal); 725 setOperationAction(ISD::FMAXNUM, VT, Legal); 726 727 setOperationAction(ISD::FTRUNC, VT, Custom); 728 setOperationAction(ISD::FCEIL, VT, Custom); 729 setOperationAction(ISD::FFLOOR, VT, Custom); 730 setOperationAction(ISD::FROUND, VT, Custom); 731 732 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 733 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 734 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 735 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 736 737 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 738 739 setOperationAction(ISD::LOAD, VT, Custom); 740 setOperationAction(ISD::STORE, VT, Custom); 741 742 setOperationAction(ISD::MLOAD, VT, Custom); 743 setOperationAction(ISD::MSTORE, VT, Custom); 744 setOperationAction(ISD::MGATHER, VT, Custom); 745 setOperationAction(ISD::MSCATTER, VT, Custom); 746 747 setOperationAction(ISD::VP_LOAD, VT, Custom); 748 setOperationAction(ISD::VP_STORE, VT, Custom); 749 setOperationAction(ISD::VP_GATHER, VT, Custom); 750 setOperationAction(ISD::VP_SCATTER, VT, Custom); 751 752 setOperationAction(ISD::SELECT, VT, Custom); 753 setOperationAction(ISD::SELECT_CC, VT, Expand); 754 755 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 756 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 757 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 758 759 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 760 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 761 762 for (unsigned VPOpc : FloatingPointVPOps) 763 setOperationAction(VPOpc, VT, Custom); 764 }; 765 766 // Sets common extload/truncstore actions on RVV floating-point vector 767 // types. 768 const auto SetCommonVFPExtLoadTruncStoreActions = 769 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 770 for (auto SmallVT : SmallerVTs) { 771 setTruncStoreAction(VT, SmallVT, Expand); 772 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 773 } 774 }; 775 776 if (Subtarget.hasVInstructionsF16()) 777 for (MVT VT : F16VecVTs) 778 SetCommonVFPActions(VT); 779 780 for (MVT VT : F32VecVTs) { 781 if (Subtarget.hasVInstructionsF32()) 782 SetCommonVFPActions(VT); 783 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 784 } 785 786 for (MVT VT : F64VecVTs) { 787 if (Subtarget.hasVInstructionsF64()) 788 SetCommonVFPActions(VT); 789 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 790 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 791 } 792 793 if (Subtarget.useRVVForFixedLengthVectors()) { 794 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 795 if (!useRVVForFixedLengthVectorVT(VT)) 796 continue; 797 798 // By default everything must be expanded. 799 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 800 setOperationAction(Op, VT, Expand); 801 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 802 setTruncStoreAction(VT, OtherVT, Expand); 803 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 804 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 805 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 806 } 807 808 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 809 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 810 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 811 812 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 813 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 814 815 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 816 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 817 818 setOperationAction(ISD::LOAD, VT, Custom); 819 setOperationAction(ISD::STORE, VT, Custom); 820 821 setOperationAction(ISD::SETCC, VT, Custom); 822 823 setOperationAction(ISD::SELECT, VT, Custom); 824 825 setOperationAction(ISD::TRUNCATE, VT, Custom); 826 827 setOperationAction(ISD::BITCAST, VT, Custom); 828 829 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 830 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 831 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 832 833 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 834 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 835 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 836 837 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 838 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 839 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 840 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 841 842 // Operations below are different for between masks and other vectors. 843 if (VT.getVectorElementType() == MVT::i1) { 844 setOperationAction(ISD::VP_AND, VT, Custom); 845 setOperationAction(ISD::VP_OR, VT, Custom); 846 setOperationAction(ISD::VP_XOR, VT, Custom); 847 setOperationAction(ISD::AND, VT, Custom); 848 setOperationAction(ISD::OR, VT, Custom); 849 setOperationAction(ISD::XOR, VT, Custom); 850 851 setOperationAction(ISD::VP_FPTOSI, VT, Custom); 852 continue; 853 } 854 855 // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to 856 // it before type legalization for i64 vectors on RV32. It will then be 857 // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle. 858 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 859 // improvements first. 860 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 861 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 862 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 863 } 864 865 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 866 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 867 868 setOperationAction(ISD::MLOAD, VT, Custom); 869 setOperationAction(ISD::MSTORE, VT, Custom); 870 setOperationAction(ISD::MGATHER, VT, Custom); 871 setOperationAction(ISD::MSCATTER, VT, Custom); 872 873 setOperationAction(ISD::VP_LOAD, VT, Custom); 874 setOperationAction(ISD::VP_STORE, VT, Custom); 875 setOperationAction(ISD::VP_GATHER, VT, Custom); 876 setOperationAction(ISD::VP_SCATTER, VT, Custom); 877 878 setOperationAction(ISD::ADD, VT, Custom); 879 setOperationAction(ISD::MUL, VT, Custom); 880 setOperationAction(ISD::SUB, VT, Custom); 881 setOperationAction(ISD::AND, VT, Custom); 882 setOperationAction(ISD::OR, VT, Custom); 883 setOperationAction(ISD::XOR, VT, Custom); 884 setOperationAction(ISD::SDIV, VT, Custom); 885 setOperationAction(ISD::SREM, VT, Custom); 886 setOperationAction(ISD::UDIV, VT, Custom); 887 setOperationAction(ISD::UREM, VT, Custom); 888 setOperationAction(ISD::SHL, VT, Custom); 889 setOperationAction(ISD::SRA, VT, Custom); 890 setOperationAction(ISD::SRL, VT, Custom); 891 892 setOperationAction(ISD::SMIN, VT, Custom); 893 setOperationAction(ISD::SMAX, VT, Custom); 894 setOperationAction(ISD::UMIN, VT, Custom); 895 setOperationAction(ISD::UMAX, VT, Custom); 896 setOperationAction(ISD::ABS, VT, Custom); 897 898 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 899 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) { 900 setOperationAction(ISD::MULHS, VT, Custom); 901 setOperationAction(ISD::MULHU, VT, Custom); 902 } 903 904 setOperationAction(ISD::SADDSAT, VT, Custom); 905 setOperationAction(ISD::UADDSAT, VT, Custom); 906 setOperationAction(ISD::SSUBSAT, VT, Custom); 907 setOperationAction(ISD::USUBSAT, VT, Custom); 908 909 setOperationAction(ISD::VSELECT, VT, Custom); 910 setOperationAction(ISD::SELECT_CC, VT, Expand); 911 912 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 913 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 914 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 915 916 // Custom-lower reduction operations to set up the corresponding custom 917 // nodes' operands. 918 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 919 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 920 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 921 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 922 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 923 924 for (unsigned VPOpc : IntegerVPOps) 925 setOperationAction(VPOpc, VT, Custom); 926 927 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 928 // type that can represent the value exactly. 929 if (VT.getVectorElementType() != MVT::i64) { 930 MVT FloatEltVT = 931 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 932 EVT FloatVT = 933 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 934 if (isTypeLegal(FloatVT)) { 935 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 936 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 937 } 938 } 939 } 940 941 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 942 if (!useRVVForFixedLengthVectorVT(VT)) 943 continue; 944 945 // By default everything must be expanded. 946 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 947 setOperationAction(Op, VT, Expand); 948 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 949 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 950 setTruncStoreAction(VT, OtherVT, Expand); 951 } 952 953 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 954 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 955 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 956 957 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 958 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 959 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 960 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 961 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 962 963 setOperationAction(ISD::LOAD, VT, Custom); 964 setOperationAction(ISD::STORE, VT, Custom); 965 setOperationAction(ISD::MLOAD, VT, Custom); 966 setOperationAction(ISD::MSTORE, VT, Custom); 967 setOperationAction(ISD::MGATHER, VT, Custom); 968 setOperationAction(ISD::MSCATTER, VT, Custom); 969 970 setOperationAction(ISD::VP_LOAD, VT, Custom); 971 setOperationAction(ISD::VP_STORE, VT, Custom); 972 setOperationAction(ISD::VP_GATHER, VT, Custom); 973 setOperationAction(ISD::VP_SCATTER, VT, Custom); 974 975 setOperationAction(ISD::FADD, VT, Custom); 976 setOperationAction(ISD::FSUB, VT, Custom); 977 setOperationAction(ISD::FMUL, VT, Custom); 978 setOperationAction(ISD::FDIV, VT, Custom); 979 setOperationAction(ISD::FNEG, VT, Custom); 980 setOperationAction(ISD::FABS, VT, Custom); 981 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 982 setOperationAction(ISD::FSQRT, VT, Custom); 983 setOperationAction(ISD::FMA, VT, Custom); 984 setOperationAction(ISD::FMINNUM, VT, Custom); 985 setOperationAction(ISD::FMAXNUM, VT, Custom); 986 987 setOperationAction(ISD::FP_ROUND, VT, Custom); 988 setOperationAction(ISD::FP_EXTEND, VT, Custom); 989 990 setOperationAction(ISD::FTRUNC, VT, Custom); 991 setOperationAction(ISD::FCEIL, VT, Custom); 992 setOperationAction(ISD::FFLOOR, VT, Custom); 993 setOperationAction(ISD::FROUND, VT, Custom); 994 995 for (auto CC : VFPCCToExpand) 996 setCondCodeAction(CC, VT, Expand); 997 998 setOperationAction(ISD::VSELECT, VT, Custom); 999 setOperationAction(ISD::SELECT, VT, Custom); 1000 setOperationAction(ISD::SELECT_CC, VT, Expand); 1001 1002 setOperationAction(ISD::BITCAST, VT, Custom); 1003 1004 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1005 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1006 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1007 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1008 1009 for (unsigned VPOpc : FloatingPointVPOps) 1010 setOperationAction(VPOpc, VT, Custom); 1011 } 1012 1013 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1014 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1015 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1016 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1017 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1018 if (Subtarget.hasStdExtZfh()) 1019 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1020 if (Subtarget.hasStdExtF()) 1021 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1022 if (Subtarget.hasStdExtD()) 1023 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1024 } 1025 } 1026 1027 // Function alignments. 1028 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1029 setMinFunctionAlignment(FunctionAlignment); 1030 setPrefFunctionAlignment(FunctionAlignment); 1031 1032 setMinimumJumpTableEntries(5); 1033 1034 // Jumps are expensive, compared to logic 1035 setJumpIsExpensive(); 1036 1037 setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND, 1038 ISD::OR, ISD::XOR}); 1039 1040 if (Subtarget.hasStdExtZbp()) 1041 setTargetDAGCombine({ISD::ROTL, ISD::ROTR}); 1042 if (Subtarget.hasStdExtZbkb()) 1043 setTargetDAGCombine(ISD::BITREVERSE); 1044 if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb()) 1045 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 1046 if (Subtarget.hasStdExtF()) 1047 setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT, 1048 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}); 1049 if (Subtarget.hasVInstructions()) 1050 setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER, 1051 ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL, 1052 ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR}); 1053 1054 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 1055 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 1056 } 1057 1058 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1059 LLVMContext &Context, 1060 EVT VT) const { 1061 if (!VT.isVector()) 1062 return getPointerTy(DL); 1063 if (Subtarget.hasVInstructions() && 1064 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1065 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1066 return VT.changeVectorElementTypeToInteger(); 1067 } 1068 1069 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1070 return Subtarget.getXLenVT(); 1071 } 1072 1073 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1074 const CallInst &I, 1075 MachineFunction &MF, 1076 unsigned Intrinsic) const { 1077 auto &DL = I.getModule()->getDataLayout(); 1078 switch (Intrinsic) { 1079 default: 1080 return false; 1081 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1082 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1083 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1084 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1085 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1086 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1087 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1088 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1089 case Intrinsic::riscv_masked_cmpxchg_i32: 1090 Info.opc = ISD::INTRINSIC_W_CHAIN; 1091 Info.memVT = MVT::i32; 1092 Info.ptrVal = I.getArgOperand(0); 1093 Info.offset = 0; 1094 Info.align = Align(4); 1095 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1096 MachineMemOperand::MOVolatile; 1097 return true; 1098 case Intrinsic::riscv_masked_strided_load: 1099 Info.opc = ISD::INTRINSIC_W_CHAIN; 1100 Info.ptrVal = I.getArgOperand(1); 1101 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1102 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1103 Info.size = MemoryLocation::UnknownSize; 1104 Info.flags |= MachineMemOperand::MOLoad; 1105 return true; 1106 case Intrinsic::riscv_masked_strided_store: 1107 Info.opc = ISD::INTRINSIC_VOID; 1108 Info.ptrVal = I.getArgOperand(1); 1109 Info.memVT = 1110 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1111 Info.align = Align( 1112 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1113 8); 1114 Info.size = MemoryLocation::UnknownSize; 1115 Info.flags |= MachineMemOperand::MOStore; 1116 return true; 1117 case Intrinsic::riscv_seg2_load: 1118 case Intrinsic::riscv_seg3_load: 1119 case Intrinsic::riscv_seg4_load: 1120 case Intrinsic::riscv_seg5_load: 1121 case Intrinsic::riscv_seg6_load: 1122 case Intrinsic::riscv_seg7_load: 1123 case Intrinsic::riscv_seg8_load: 1124 Info.opc = ISD::INTRINSIC_W_CHAIN; 1125 Info.ptrVal = I.getArgOperand(0); 1126 Info.memVT = 1127 getValueType(DL, I.getType()->getStructElementType(0)->getScalarType()); 1128 Info.align = 1129 Align(DL.getTypeSizeInBits( 1130 I.getType()->getStructElementType(0)->getScalarType()) / 1131 8); 1132 Info.size = MemoryLocation::UnknownSize; 1133 Info.flags |= MachineMemOperand::MOLoad; 1134 return true; 1135 } 1136 } 1137 1138 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1139 const AddrMode &AM, Type *Ty, 1140 unsigned AS, 1141 Instruction *I) const { 1142 // No global is ever allowed as a base. 1143 if (AM.BaseGV) 1144 return false; 1145 1146 // Require a 12-bit signed offset. 1147 if (!isInt<12>(AM.BaseOffs)) 1148 return false; 1149 1150 switch (AM.Scale) { 1151 case 0: // "r+i" or just "i", depending on HasBaseReg. 1152 break; 1153 case 1: 1154 if (!AM.HasBaseReg) // allow "r+i". 1155 break; 1156 return false; // disallow "r+r" or "r+r+i". 1157 default: 1158 return false; 1159 } 1160 1161 return true; 1162 } 1163 1164 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1165 return isInt<12>(Imm); 1166 } 1167 1168 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1169 return isInt<12>(Imm); 1170 } 1171 1172 // On RV32, 64-bit integers are split into their high and low parts and held 1173 // in two different registers, so the trunc is free since the low register can 1174 // just be used. 1175 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1176 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1177 return false; 1178 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1179 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1180 return (SrcBits == 64 && DestBits == 32); 1181 } 1182 1183 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1184 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1185 !SrcVT.isInteger() || !DstVT.isInteger()) 1186 return false; 1187 unsigned SrcBits = SrcVT.getSizeInBits(); 1188 unsigned DestBits = DstVT.getSizeInBits(); 1189 return (SrcBits == 64 && DestBits == 32); 1190 } 1191 1192 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1193 // Zexts are free if they can be combined with a load. 1194 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1195 // poorly with type legalization of compares preferring sext. 1196 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1197 EVT MemVT = LD->getMemoryVT(); 1198 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1199 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1200 LD->getExtensionType() == ISD::ZEXTLOAD)) 1201 return true; 1202 } 1203 1204 return TargetLowering::isZExtFree(Val, VT2); 1205 } 1206 1207 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1208 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1209 } 1210 1211 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1212 return Subtarget.hasStdExtZbb(); 1213 } 1214 1215 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1216 return Subtarget.hasStdExtZbb(); 1217 } 1218 1219 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1220 EVT VT = Y.getValueType(); 1221 1222 // FIXME: Support vectors once we have tests. 1223 if (VT.isVector()) 1224 return false; 1225 1226 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1227 Subtarget.hasStdExtZbkb()) && 1228 !isa<ConstantSDNode>(Y); 1229 } 1230 1231 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const { 1232 // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position. 1233 auto *C = dyn_cast<ConstantSDNode>(Y); 1234 return C && C->getAPIntValue().ule(10); 1235 } 1236 1237 /// Check if sinking \p I's operands to I's basic block is profitable, because 1238 /// the operands can be folded into a target instruction, e.g. 1239 /// splats of scalars can fold into vector instructions. 1240 bool RISCVTargetLowering::shouldSinkOperands( 1241 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1242 using namespace llvm::PatternMatch; 1243 1244 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1245 return false; 1246 1247 auto IsSinker = [&](Instruction *I, int Operand) { 1248 switch (I->getOpcode()) { 1249 case Instruction::Add: 1250 case Instruction::Sub: 1251 case Instruction::Mul: 1252 case Instruction::And: 1253 case Instruction::Or: 1254 case Instruction::Xor: 1255 case Instruction::FAdd: 1256 case Instruction::FSub: 1257 case Instruction::FMul: 1258 case Instruction::FDiv: 1259 case Instruction::ICmp: 1260 case Instruction::FCmp: 1261 return true; 1262 case Instruction::Shl: 1263 case Instruction::LShr: 1264 case Instruction::AShr: 1265 case Instruction::UDiv: 1266 case Instruction::SDiv: 1267 case Instruction::URem: 1268 case Instruction::SRem: 1269 return Operand == 1; 1270 case Instruction::Call: 1271 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1272 switch (II->getIntrinsicID()) { 1273 case Intrinsic::fma: 1274 case Intrinsic::vp_fma: 1275 return Operand == 0 || Operand == 1; 1276 // FIXME: Our patterns can only match vx/vf instructions when the splat 1277 // it on the RHS, because TableGen doesn't recognize our VP operations 1278 // as commutative. 1279 case Intrinsic::vp_add: 1280 case Intrinsic::vp_mul: 1281 case Intrinsic::vp_and: 1282 case Intrinsic::vp_or: 1283 case Intrinsic::vp_xor: 1284 case Intrinsic::vp_fadd: 1285 case Intrinsic::vp_fmul: 1286 case Intrinsic::vp_shl: 1287 case Intrinsic::vp_lshr: 1288 case Intrinsic::vp_ashr: 1289 case Intrinsic::vp_udiv: 1290 case Intrinsic::vp_sdiv: 1291 case Intrinsic::vp_urem: 1292 case Intrinsic::vp_srem: 1293 return Operand == 1; 1294 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1295 // explicit patterns for both LHS and RHS (as 'vr' versions). 1296 case Intrinsic::vp_sub: 1297 case Intrinsic::vp_fsub: 1298 case Intrinsic::vp_fdiv: 1299 return Operand == 0 || Operand == 1; 1300 default: 1301 return false; 1302 } 1303 } 1304 return false; 1305 default: 1306 return false; 1307 } 1308 }; 1309 1310 for (auto OpIdx : enumerate(I->operands())) { 1311 if (!IsSinker(I, OpIdx.index())) 1312 continue; 1313 1314 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1315 // Make sure we are not already sinking this operand 1316 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1317 continue; 1318 1319 // We are looking for a splat that can be sunk. 1320 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1321 m_Undef(), m_ZeroMask()))) 1322 continue; 1323 1324 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1325 // and vector registers 1326 for (Use &U : Op->uses()) { 1327 Instruction *Insn = cast<Instruction>(U.getUser()); 1328 if (!IsSinker(Insn, U.getOperandNo())) 1329 return false; 1330 } 1331 1332 Ops.push_back(&Op->getOperandUse(0)); 1333 Ops.push_back(&OpIdx.value()); 1334 } 1335 return true; 1336 } 1337 1338 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1339 bool ForCodeSize) const { 1340 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1341 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1342 return false; 1343 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1344 return false; 1345 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1346 return false; 1347 return Imm.isZero(); 1348 } 1349 1350 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1351 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1352 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1353 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1354 } 1355 1356 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1357 CallingConv::ID CC, 1358 EVT VT) const { 1359 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1360 // We might still end up using a GPR but that will be decided based on ABI. 1361 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1362 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1363 return MVT::f32; 1364 1365 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1366 } 1367 1368 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1369 CallingConv::ID CC, 1370 EVT VT) const { 1371 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1372 // We might still end up using a GPR but that will be decided based on ABI. 1373 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1374 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1375 return 1; 1376 1377 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1378 } 1379 1380 // Changes the condition code and swaps operands if necessary, so the SetCC 1381 // operation matches one of the comparisons supported directly by branches 1382 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1383 // with 1/-1. 1384 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1385 ISD::CondCode &CC, SelectionDAG &DAG) { 1386 // Convert X > -1 to X >= 0. 1387 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1388 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1389 CC = ISD::SETGE; 1390 return; 1391 } 1392 // Convert X < 1 to 0 >= X. 1393 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1394 RHS = LHS; 1395 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1396 CC = ISD::SETGE; 1397 return; 1398 } 1399 1400 switch (CC) { 1401 default: 1402 break; 1403 case ISD::SETGT: 1404 case ISD::SETLE: 1405 case ISD::SETUGT: 1406 case ISD::SETULE: 1407 CC = ISD::getSetCCSwappedOperands(CC); 1408 std::swap(LHS, RHS); 1409 break; 1410 } 1411 } 1412 1413 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1414 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1415 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1416 if (VT.getVectorElementType() == MVT::i1) 1417 KnownSize *= 8; 1418 1419 switch (KnownSize) { 1420 default: 1421 llvm_unreachable("Invalid LMUL."); 1422 case 8: 1423 return RISCVII::VLMUL::LMUL_F8; 1424 case 16: 1425 return RISCVII::VLMUL::LMUL_F4; 1426 case 32: 1427 return RISCVII::VLMUL::LMUL_F2; 1428 case 64: 1429 return RISCVII::VLMUL::LMUL_1; 1430 case 128: 1431 return RISCVII::VLMUL::LMUL_2; 1432 case 256: 1433 return RISCVII::VLMUL::LMUL_4; 1434 case 512: 1435 return RISCVII::VLMUL::LMUL_8; 1436 } 1437 } 1438 1439 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1440 switch (LMul) { 1441 default: 1442 llvm_unreachable("Invalid LMUL."); 1443 case RISCVII::VLMUL::LMUL_F8: 1444 case RISCVII::VLMUL::LMUL_F4: 1445 case RISCVII::VLMUL::LMUL_F2: 1446 case RISCVII::VLMUL::LMUL_1: 1447 return RISCV::VRRegClassID; 1448 case RISCVII::VLMUL::LMUL_2: 1449 return RISCV::VRM2RegClassID; 1450 case RISCVII::VLMUL::LMUL_4: 1451 return RISCV::VRM4RegClassID; 1452 case RISCVII::VLMUL::LMUL_8: 1453 return RISCV::VRM8RegClassID; 1454 } 1455 } 1456 1457 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1458 RISCVII::VLMUL LMUL = getLMUL(VT); 1459 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1460 LMUL == RISCVII::VLMUL::LMUL_F4 || 1461 LMUL == RISCVII::VLMUL::LMUL_F2 || 1462 LMUL == RISCVII::VLMUL::LMUL_1) { 1463 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1464 "Unexpected subreg numbering"); 1465 return RISCV::sub_vrm1_0 + Index; 1466 } 1467 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1468 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1469 "Unexpected subreg numbering"); 1470 return RISCV::sub_vrm2_0 + Index; 1471 } 1472 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1473 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1474 "Unexpected subreg numbering"); 1475 return RISCV::sub_vrm4_0 + Index; 1476 } 1477 llvm_unreachable("Invalid vector type."); 1478 } 1479 1480 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1481 if (VT.getVectorElementType() == MVT::i1) 1482 return RISCV::VRRegClassID; 1483 return getRegClassIDForLMUL(getLMUL(VT)); 1484 } 1485 1486 // Attempt to decompose a subvector insert/extract between VecVT and 1487 // SubVecVT via subregister indices. Returns the subregister index that 1488 // can perform the subvector insert/extract with the given element index, as 1489 // well as the index corresponding to any leftover subvectors that must be 1490 // further inserted/extracted within the register class for SubVecVT. 1491 std::pair<unsigned, unsigned> 1492 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1493 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1494 const RISCVRegisterInfo *TRI) { 1495 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1496 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1497 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1498 "Register classes not ordered"); 1499 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1500 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1501 // Try to compose a subregister index that takes us from the incoming 1502 // LMUL>1 register class down to the outgoing one. At each step we half 1503 // the LMUL: 1504 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1505 // Note that this is not guaranteed to find a subregister index, such as 1506 // when we are extracting from one VR type to another. 1507 unsigned SubRegIdx = RISCV::NoSubRegister; 1508 for (const unsigned RCID : 1509 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1510 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1511 VecVT = VecVT.getHalfNumVectorElementsVT(); 1512 bool IsHi = 1513 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1514 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1515 getSubregIndexByMVT(VecVT, IsHi)); 1516 if (IsHi) 1517 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1518 } 1519 return {SubRegIdx, InsertExtractIdx}; 1520 } 1521 1522 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1523 // stores for those types. 1524 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1525 return !Subtarget.useRVVForFixedLengthVectors() || 1526 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1527 } 1528 1529 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1530 if (ScalarTy->isPointerTy()) 1531 return true; 1532 1533 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1534 ScalarTy->isIntegerTy(32)) 1535 return true; 1536 1537 if (ScalarTy->isIntegerTy(64)) 1538 return Subtarget.hasVInstructionsI64(); 1539 1540 if (ScalarTy->isHalfTy()) 1541 return Subtarget.hasVInstructionsF16(); 1542 if (ScalarTy->isFloatTy()) 1543 return Subtarget.hasVInstructionsF32(); 1544 if (ScalarTy->isDoubleTy()) 1545 return Subtarget.hasVInstructionsF64(); 1546 1547 return false; 1548 } 1549 1550 static SDValue getVLOperand(SDValue Op) { 1551 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1552 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1553 "Unexpected opcode"); 1554 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1555 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1556 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1557 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1558 if (!II) 1559 return SDValue(); 1560 return Op.getOperand(II->VLOperand + 1 + HasChain); 1561 } 1562 1563 static bool useRVVForFixedLengthVectorVT(MVT VT, 1564 const RISCVSubtarget &Subtarget) { 1565 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1566 if (!Subtarget.useRVVForFixedLengthVectors()) 1567 return false; 1568 1569 // We only support a set of vector types with a consistent maximum fixed size 1570 // across all supported vector element types to avoid legalization issues. 1571 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1572 // fixed-length vector type we support is 1024 bytes. 1573 if (VT.getFixedSizeInBits() > 1024 * 8) 1574 return false; 1575 1576 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1577 1578 MVT EltVT = VT.getVectorElementType(); 1579 1580 // Don't use RVV for vectors we cannot scalarize if required. 1581 switch (EltVT.SimpleTy) { 1582 // i1 is supported but has different rules. 1583 default: 1584 return false; 1585 case MVT::i1: 1586 // Masks can only use a single register. 1587 if (VT.getVectorNumElements() > MinVLen) 1588 return false; 1589 MinVLen /= 8; 1590 break; 1591 case MVT::i8: 1592 case MVT::i16: 1593 case MVT::i32: 1594 break; 1595 case MVT::i64: 1596 if (!Subtarget.hasVInstructionsI64()) 1597 return false; 1598 break; 1599 case MVT::f16: 1600 if (!Subtarget.hasVInstructionsF16()) 1601 return false; 1602 break; 1603 case MVT::f32: 1604 if (!Subtarget.hasVInstructionsF32()) 1605 return false; 1606 break; 1607 case MVT::f64: 1608 if (!Subtarget.hasVInstructionsF64()) 1609 return false; 1610 break; 1611 } 1612 1613 // Reject elements larger than ELEN. 1614 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1615 return false; 1616 1617 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1618 // Don't use RVV for types that don't fit. 1619 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1620 return false; 1621 1622 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1623 // the base fixed length RVV support in place. 1624 if (!VT.isPow2VectorType()) 1625 return false; 1626 1627 return true; 1628 } 1629 1630 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1631 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1632 } 1633 1634 // Return the largest legal scalable vector type that matches VT's element type. 1635 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1636 const RISCVSubtarget &Subtarget) { 1637 // This may be called before legal types are setup. 1638 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1639 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1640 "Expected legal fixed length vector!"); 1641 1642 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1643 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1644 1645 MVT EltVT = VT.getVectorElementType(); 1646 switch (EltVT.SimpleTy) { 1647 default: 1648 llvm_unreachable("unexpected element type for RVV container"); 1649 case MVT::i1: 1650 case MVT::i8: 1651 case MVT::i16: 1652 case MVT::i32: 1653 case MVT::i64: 1654 case MVT::f16: 1655 case MVT::f32: 1656 case MVT::f64: { 1657 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1658 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1659 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1660 unsigned NumElts = 1661 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1662 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1663 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1664 return MVT::getScalableVectorVT(EltVT, NumElts); 1665 } 1666 } 1667 } 1668 1669 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1670 const RISCVSubtarget &Subtarget) { 1671 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1672 Subtarget); 1673 } 1674 1675 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1676 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1677 } 1678 1679 // Grow V to consume an entire RVV register. 1680 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1681 const RISCVSubtarget &Subtarget) { 1682 assert(VT.isScalableVector() && 1683 "Expected to convert into a scalable vector!"); 1684 assert(V.getValueType().isFixedLengthVector() && 1685 "Expected a fixed length vector operand!"); 1686 SDLoc DL(V); 1687 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1688 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1689 } 1690 1691 // Shrink V so it's just big enough to maintain a VT's worth of data. 1692 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1693 const RISCVSubtarget &Subtarget) { 1694 assert(VT.isFixedLengthVector() && 1695 "Expected to convert into a fixed length vector!"); 1696 assert(V.getValueType().isScalableVector() && 1697 "Expected a scalable vector operand!"); 1698 SDLoc DL(V); 1699 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1700 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1701 } 1702 1703 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1704 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1705 // the vector type that it is contained in. 1706 static std::pair<SDValue, SDValue> 1707 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1708 const RISCVSubtarget &Subtarget) { 1709 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1710 MVT XLenVT = Subtarget.getXLenVT(); 1711 SDValue VL = VecVT.isFixedLengthVector() 1712 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1713 : DAG.getRegister(RISCV::X0, XLenVT); 1714 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1715 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1716 return {Mask, VL}; 1717 } 1718 1719 // As above but assuming the given type is a scalable vector type. 1720 static std::pair<SDValue, SDValue> 1721 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1722 const RISCVSubtarget &Subtarget) { 1723 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1724 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1725 } 1726 1727 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1728 // of either is (currently) supported. This can get us into an infinite loop 1729 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1730 // as a ..., etc. 1731 // Until either (or both) of these can reliably lower any node, reporting that 1732 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1733 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1734 // which is not desirable. 1735 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1736 EVT VT, unsigned DefinedValues) const { 1737 return false; 1738 } 1739 1740 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1741 const RISCVSubtarget &Subtarget) { 1742 // RISCV FP-to-int conversions saturate to the destination register size, but 1743 // don't produce 0 for nan. We can use a conversion instruction and fix the 1744 // nan case with a compare and a select. 1745 SDValue Src = Op.getOperand(0); 1746 1747 EVT DstVT = Op.getValueType(); 1748 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1749 1750 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1751 unsigned Opc; 1752 if (SatVT == DstVT) 1753 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1754 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1755 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1756 else 1757 return SDValue(); 1758 // FIXME: Support other SatVTs by clamping before or after the conversion. 1759 1760 SDLoc DL(Op); 1761 SDValue FpToInt = DAG.getNode( 1762 Opc, DL, DstVT, Src, 1763 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1764 1765 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1766 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1767 } 1768 1769 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1770 // and back. Taking care to avoid converting values that are nan or already 1771 // correct. 1772 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1773 // have FRM dependencies modeled yet. 1774 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1775 MVT VT = Op.getSimpleValueType(); 1776 assert(VT.isVector() && "Unexpected type"); 1777 1778 SDLoc DL(Op); 1779 1780 // Freeze the source since we are increasing the number of uses. 1781 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1782 1783 // Truncate to integer and convert back to FP. 1784 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1785 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1786 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1787 1788 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1789 1790 if (Op.getOpcode() == ISD::FCEIL) { 1791 // If the truncated value is the greater than or equal to the original 1792 // value, we've computed the ceil. Otherwise, we went the wrong way and 1793 // need to increase by 1. 1794 // FIXME: This should use a masked operation. Handle here or in isel? 1795 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1796 DAG.getConstantFP(1.0, DL, VT)); 1797 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1798 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1799 } else if (Op.getOpcode() == ISD::FFLOOR) { 1800 // If the truncated value is the less than or equal to the original value, 1801 // we've computed the floor. Otherwise, we went the wrong way and need to 1802 // decrease by 1. 1803 // FIXME: This should use a masked operation. Handle here or in isel? 1804 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1805 DAG.getConstantFP(1.0, DL, VT)); 1806 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1807 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1808 } 1809 1810 // Restore the original sign so that -0.0 is preserved. 1811 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1812 1813 // Determine the largest integer that can be represented exactly. This and 1814 // values larger than it don't have any fractional bits so don't need to 1815 // be converted. 1816 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1817 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1818 APFloat MaxVal = APFloat(FltSem); 1819 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1820 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1821 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1822 1823 // If abs(Src) was larger than MaxVal or nan, keep it. 1824 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1825 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1826 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1827 } 1828 1829 // ISD::FROUND is defined to round to nearest with ties rounding away from 0. 1830 // This mode isn't supported in vector hardware on RISCV. But as long as we 1831 // aren't compiling with trapping math, we can emulate this with 1832 // floor(X + copysign(nextafter(0.5, 0.0), X)). 1833 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM 1834 // dependencies modeled yet. 1835 // FIXME: Use masked operations to avoid final merge. 1836 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) { 1837 MVT VT = Op.getSimpleValueType(); 1838 assert(VT.isVector() && "Unexpected type"); 1839 1840 SDLoc DL(Op); 1841 1842 // Freeze the source since we are increasing the number of uses. 1843 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1844 1845 // We do the conversion on the absolute value and fix the sign at the end. 1846 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1847 1848 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1849 bool Ignored; 1850 APFloat Point5Pred = APFloat(0.5f); 1851 Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored); 1852 Point5Pred.next(/*nextDown*/ true); 1853 1854 // Add the adjustment. 1855 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs, 1856 DAG.getConstantFP(Point5Pred, DL, VT)); 1857 1858 // Truncate to integer and convert back to fp. 1859 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1860 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust); 1861 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1862 1863 // Restore the original sign. 1864 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1865 1866 // Determine the largest integer that can be represented exactly. This and 1867 // values larger than it don't have any fractional bits so don't need to 1868 // be converted. 1869 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1870 APFloat MaxVal = APFloat(FltSem); 1871 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1872 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1873 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1874 1875 // If abs(Src) was larger than MaxVal or nan, keep it. 1876 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1877 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1878 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1879 } 1880 1881 struct VIDSequence { 1882 int64_t StepNumerator; 1883 unsigned StepDenominator; 1884 int64_t Addend; 1885 }; 1886 1887 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1888 // to the (non-zero) step S and start value X. This can be then lowered as the 1889 // RVV sequence (VID * S) + X, for example. 1890 // The step S is represented as an integer numerator divided by a positive 1891 // denominator. Note that the implementation currently only identifies 1892 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1893 // cannot detect 2/3, for example. 1894 // Note that this method will also match potentially unappealing index 1895 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1896 // determine whether this is worth generating code for. 1897 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1898 unsigned NumElts = Op.getNumOperands(); 1899 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1900 if (!Op.getValueType().isInteger()) 1901 return None; 1902 1903 Optional<unsigned> SeqStepDenom; 1904 Optional<int64_t> SeqStepNum, SeqAddend; 1905 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1906 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1907 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1908 // Assume undef elements match the sequence; we just have to be careful 1909 // when interpolating across them. 1910 if (Op.getOperand(Idx).isUndef()) 1911 continue; 1912 // The BUILD_VECTOR must be all constants. 1913 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1914 return None; 1915 1916 uint64_t Val = Op.getConstantOperandVal(Idx) & 1917 maskTrailingOnes<uint64_t>(EltSizeInBits); 1918 1919 if (PrevElt) { 1920 // Calculate the step since the last non-undef element, and ensure 1921 // it's consistent across the entire sequence. 1922 unsigned IdxDiff = Idx - PrevElt->second; 1923 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1924 1925 // A zero-value value difference means that we're somewhere in the middle 1926 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1927 // step change before evaluating the sequence. 1928 if (ValDiff != 0) { 1929 int64_t Remainder = ValDiff % IdxDiff; 1930 // Normalize the step if it's greater than 1. 1931 if (Remainder != ValDiff) { 1932 // The difference must cleanly divide the element span. 1933 if (Remainder != 0) 1934 return None; 1935 ValDiff /= IdxDiff; 1936 IdxDiff = 1; 1937 } 1938 1939 if (!SeqStepNum) 1940 SeqStepNum = ValDiff; 1941 else if (ValDiff != SeqStepNum) 1942 return None; 1943 1944 if (!SeqStepDenom) 1945 SeqStepDenom = IdxDiff; 1946 else if (IdxDiff != *SeqStepDenom) 1947 return None; 1948 } 1949 } 1950 1951 // Record and/or check any addend. 1952 if (SeqStepNum && SeqStepDenom) { 1953 uint64_t ExpectedVal = 1954 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1955 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1956 if (!SeqAddend) 1957 SeqAddend = Addend; 1958 else if (SeqAddend != Addend) 1959 return None; 1960 } 1961 1962 // Record this non-undef element for later. 1963 if (!PrevElt || PrevElt->first != Val) 1964 PrevElt = std::make_pair(Val, Idx); 1965 } 1966 // We need to have logged both a step and an addend for this to count as 1967 // a legal index sequence. 1968 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1969 return None; 1970 1971 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1972 } 1973 1974 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT 1975 // and lower it as a VRGATHER_VX_VL from the source vector. 1976 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, 1977 SelectionDAG &DAG, 1978 const RISCVSubtarget &Subtarget) { 1979 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1980 return SDValue(); 1981 SDValue Vec = SplatVal.getOperand(0); 1982 // Only perform this optimization on vectors of the same size for simplicity. 1983 if (Vec.getValueType() != VT) 1984 return SDValue(); 1985 SDValue Idx = SplatVal.getOperand(1); 1986 // The index must be a legal type. 1987 if (Idx.getValueType() != Subtarget.getXLenVT()) 1988 return SDValue(); 1989 1990 MVT ContainerVT = VT; 1991 if (VT.isFixedLengthVector()) { 1992 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1993 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 1994 } 1995 1996 SDValue Mask, VL; 1997 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1998 1999 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, 2000 Idx, Mask, VL); 2001 2002 if (!VT.isFixedLengthVector()) 2003 return Gather; 2004 2005 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2006 } 2007 2008 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 2009 const RISCVSubtarget &Subtarget) { 2010 MVT VT = Op.getSimpleValueType(); 2011 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 2012 2013 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2014 2015 SDLoc DL(Op); 2016 SDValue Mask, VL; 2017 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2018 2019 MVT XLenVT = Subtarget.getXLenVT(); 2020 unsigned NumElts = Op.getNumOperands(); 2021 2022 if (VT.getVectorElementType() == MVT::i1) { 2023 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 2024 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 2025 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 2026 } 2027 2028 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 2029 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 2030 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 2031 } 2032 2033 // Lower constant mask BUILD_VECTORs via an integer vector type, in 2034 // scalar integer chunks whose bit-width depends on the number of mask 2035 // bits and XLEN. 2036 // First, determine the most appropriate scalar integer type to use. This 2037 // is at most XLenVT, but may be shrunk to a smaller vector element type 2038 // according to the size of the final vector - use i8 chunks rather than 2039 // XLenVT if we're producing a v8i1. This results in more consistent 2040 // codegen across RV32 and RV64. 2041 unsigned NumViaIntegerBits = 2042 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 2043 NumViaIntegerBits = std::min(NumViaIntegerBits, 2044 Subtarget.getMaxELENForFixedLengthVectors()); 2045 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 2046 // If we have to use more than one INSERT_VECTOR_ELT then this 2047 // optimization is likely to increase code size; avoid peforming it in 2048 // such a case. We can use a load from a constant pool in this case. 2049 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 2050 return SDValue(); 2051 // Now we can create our integer vector type. Note that it may be larger 2052 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2053 MVT IntegerViaVecVT = 2054 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2055 divideCeil(NumElts, NumViaIntegerBits)); 2056 2057 uint64_t Bits = 0; 2058 unsigned BitPos = 0, IntegerEltIdx = 0; 2059 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2060 2061 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2062 // Once we accumulate enough bits to fill our scalar type, insert into 2063 // our vector and clear our accumulated data. 2064 if (I != 0 && I % NumViaIntegerBits == 0) { 2065 if (NumViaIntegerBits <= 32) 2066 Bits = SignExtend64(Bits, 32); 2067 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2068 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2069 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2070 Bits = 0; 2071 BitPos = 0; 2072 IntegerEltIdx++; 2073 } 2074 SDValue V = Op.getOperand(I); 2075 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2076 Bits |= ((uint64_t)BitValue << BitPos); 2077 } 2078 2079 // Insert the (remaining) scalar value into position in our integer 2080 // vector type. 2081 if (NumViaIntegerBits <= 32) 2082 Bits = SignExtend64(Bits, 32); 2083 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2084 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2085 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2086 2087 if (NumElts < NumViaIntegerBits) { 2088 // If we're producing a smaller vector than our minimum legal integer 2089 // type, bitcast to the equivalent (known-legal) mask type, and extract 2090 // our final mask. 2091 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2092 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2093 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2094 DAG.getConstant(0, DL, XLenVT)); 2095 } else { 2096 // Else we must have produced an integer type with the same size as the 2097 // mask type; bitcast for the final result. 2098 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2099 Vec = DAG.getBitcast(VT, Vec); 2100 } 2101 2102 return Vec; 2103 } 2104 2105 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2106 // vector type, we have a legal equivalently-sized i8 type, so we can use 2107 // that. 2108 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2109 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2110 2111 SDValue WideVec; 2112 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2113 // For a splat, perform a scalar truncate before creating the wider 2114 // vector. 2115 assert(Splat.getValueType() == XLenVT && 2116 "Unexpected type for i1 splat value"); 2117 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2118 DAG.getConstant(1, DL, XLenVT)); 2119 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2120 } else { 2121 SmallVector<SDValue, 8> Ops(Op->op_values()); 2122 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2123 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2124 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2125 } 2126 2127 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2128 } 2129 2130 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2131 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) 2132 return Gather; 2133 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2134 : RISCVISD::VMV_V_X_VL; 2135 Splat = 2136 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); 2137 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2138 } 2139 2140 // Try and match index sequences, which we can lower to the vid instruction 2141 // with optional modifications. An all-undef vector is matched by 2142 // getSplatValue, above. 2143 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2144 int64_t StepNumerator = SimpleVID->StepNumerator; 2145 unsigned StepDenominator = SimpleVID->StepDenominator; 2146 int64_t Addend = SimpleVID->Addend; 2147 2148 assert(StepNumerator != 0 && "Invalid step"); 2149 bool Negate = false; 2150 int64_t SplatStepVal = StepNumerator; 2151 unsigned StepOpcode = ISD::MUL; 2152 if (StepNumerator != 1) { 2153 if (isPowerOf2_64(std::abs(StepNumerator))) { 2154 Negate = StepNumerator < 0; 2155 StepOpcode = ISD::SHL; 2156 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2157 } 2158 } 2159 2160 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2161 // threshold since it's the immediate value many RVV instructions accept. 2162 // There is no vmul.vi instruction so ensure multiply constant can fit in 2163 // a single addi instruction. 2164 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2165 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2166 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2167 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2168 // Convert right out of the scalable type so we can use standard ISD 2169 // nodes for the rest of the computation. If we used scalable types with 2170 // these, we'd lose the fixed-length vector info and generate worse 2171 // vsetvli code. 2172 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2173 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2174 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2175 SDValue SplatStep = DAG.getSplatBuildVector( 2176 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2177 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2178 } 2179 if (StepDenominator != 1) { 2180 SDValue SplatStep = DAG.getSplatBuildVector( 2181 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2182 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2183 } 2184 if (Addend != 0 || Negate) { 2185 SDValue SplatAddend = DAG.getSplatBuildVector( 2186 VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2187 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2188 } 2189 return VID; 2190 } 2191 } 2192 2193 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2194 // when re-interpreted as a vector with a larger element type. For example, 2195 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2196 // could be instead splat as 2197 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2198 // TODO: This optimization could also work on non-constant splats, but it 2199 // would require bit-manipulation instructions to construct the splat value. 2200 SmallVector<SDValue> Sequence; 2201 unsigned EltBitSize = VT.getScalarSizeInBits(); 2202 const auto *BV = cast<BuildVectorSDNode>(Op); 2203 if (VT.isInteger() && EltBitSize < 64 && 2204 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2205 BV->getRepeatedSequence(Sequence) && 2206 (Sequence.size() * EltBitSize) <= 64) { 2207 unsigned SeqLen = Sequence.size(); 2208 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2209 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2210 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2211 ViaIntVT == MVT::i64) && 2212 "Unexpected sequence type"); 2213 2214 unsigned EltIdx = 0; 2215 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2216 uint64_t SplatValue = 0; 2217 // Construct the amalgamated value which can be splatted as this larger 2218 // vector type. 2219 for (const auto &SeqV : Sequence) { 2220 if (!SeqV.isUndef()) 2221 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2222 << (EltIdx * EltBitSize)); 2223 EltIdx++; 2224 } 2225 2226 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2227 // achieve better constant materializion. 2228 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2229 SplatValue = SignExtend64(SplatValue, 32); 2230 2231 // Since we can't introduce illegal i64 types at this stage, we can only 2232 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2233 // way we can use RVV instructions to splat. 2234 assert((ViaIntVT.bitsLE(XLenVT) || 2235 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2236 "Unexpected bitcast sequence"); 2237 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2238 SDValue ViaVL = 2239 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2240 MVT ViaContainerVT = 2241 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2242 SDValue Splat = 2243 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2244 DAG.getUNDEF(ViaContainerVT), 2245 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2246 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2247 return DAG.getBitcast(VT, Splat); 2248 } 2249 } 2250 2251 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2252 // which constitute a large proportion of the elements. In such cases we can 2253 // splat a vector with the dominant element and make up the shortfall with 2254 // INSERT_VECTOR_ELTs. 2255 // Note that this includes vectors of 2 elements by association. The 2256 // upper-most element is the "dominant" one, allowing us to use a splat to 2257 // "insert" the upper element, and an insert of the lower element at position 2258 // 0, which improves codegen. 2259 SDValue DominantValue; 2260 unsigned MostCommonCount = 0; 2261 DenseMap<SDValue, unsigned> ValueCounts; 2262 unsigned NumUndefElts = 2263 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2264 2265 // Track the number of scalar loads we know we'd be inserting, estimated as 2266 // any non-zero floating-point constant. Other kinds of element are either 2267 // already in registers or are materialized on demand. The threshold at which 2268 // a vector load is more desirable than several scalar materializion and 2269 // vector-insertion instructions is not known. 2270 unsigned NumScalarLoads = 0; 2271 2272 for (SDValue V : Op->op_values()) { 2273 if (V.isUndef()) 2274 continue; 2275 2276 ValueCounts.insert(std::make_pair(V, 0)); 2277 unsigned &Count = ValueCounts[V]; 2278 2279 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2280 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2281 2282 // Is this value dominant? In case of a tie, prefer the highest element as 2283 // it's cheaper to insert near the beginning of a vector than it is at the 2284 // end. 2285 if (++Count >= MostCommonCount) { 2286 DominantValue = V; 2287 MostCommonCount = Count; 2288 } 2289 } 2290 2291 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2292 unsigned NumDefElts = NumElts - NumUndefElts; 2293 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2294 2295 // Don't perform this optimization when optimizing for size, since 2296 // materializing elements and inserting them tends to cause code bloat. 2297 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2298 ((MostCommonCount > DominantValueCountThreshold) || 2299 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2300 // Start by splatting the most common element. 2301 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2302 2303 DenseSet<SDValue> Processed{DominantValue}; 2304 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2305 for (const auto &OpIdx : enumerate(Op->ops())) { 2306 const SDValue &V = OpIdx.value(); 2307 if (V.isUndef() || !Processed.insert(V).second) 2308 continue; 2309 if (ValueCounts[V] == 1) { 2310 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2311 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2312 } else { 2313 // Blend in all instances of this value using a VSELECT, using a 2314 // mask where each bit signals whether that element is the one 2315 // we're after. 2316 SmallVector<SDValue> Ops; 2317 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2318 return DAG.getConstant(V == V1, DL, XLenVT); 2319 }); 2320 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2321 DAG.getBuildVector(SelMaskTy, DL, Ops), 2322 DAG.getSplatBuildVector(VT, DL, V), Vec); 2323 } 2324 } 2325 2326 return Vec; 2327 } 2328 2329 return SDValue(); 2330 } 2331 2332 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2333 SDValue Lo, SDValue Hi, SDValue VL, 2334 SelectionDAG &DAG) { 2335 if (!Passthru) 2336 Passthru = DAG.getUNDEF(VT); 2337 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2338 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2339 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2340 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2341 // node in order to try and match RVV vector/scalar instructions. 2342 if ((LoC >> 31) == HiC) 2343 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); 2344 2345 // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use 2346 // vmv.v.x whose EEW = 32 to lower it. 2347 auto *Const = dyn_cast<ConstantSDNode>(VL); 2348 if (LoC == HiC && Const && Const->isAllOnesValue()) { 2349 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2350 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2351 // access the subtarget here now. 2352 auto InterVec = DAG.getNode( 2353 RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo, 2354 DAG.getRegister(RISCV::X0, MVT::i32)); 2355 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2356 } 2357 } 2358 2359 // Fall back to a stack store and stride x0 vector load. 2360 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo, 2361 Hi, VL); 2362 } 2363 2364 // Called by type legalization to handle splat of i64 on RV32. 2365 // FIXME: We can optimize this when the type has sign or zero bits in one 2366 // of the halves. 2367 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2368 SDValue Scalar, SDValue VL, 2369 SelectionDAG &DAG) { 2370 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2371 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2372 DAG.getConstant(0, DL, MVT::i32)); 2373 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2374 DAG.getConstant(1, DL, MVT::i32)); 2375 return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG); 2376 } 2377 2378 // This function lowers a splat of a scalar operand Splat with the vector 2379 // length VL. It ensures the final sequence is type legal, which is useful when 2380 // lowering a splat after type legalization. 2381 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL, 2382 MVT VT, SDLoc DL, SelectionDAG &DAG, 2383 const RISCVSubtarget &Subtarget) { 2384 bool HasPassthru = Passthru && !Passthru.isUndef(); 2385 if (!HasPassthru && !Passthru) 2386 Passthru = DAG.getUNDEF(VT); 2387 if (VT.isFloatingPoint()) { 2388 // If VL is 1, we could use vfmv.s.f. 2389 if (isOneConstant(VL)) 2390 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL); 2391 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL); 2392 } 2393 2394 MVT XLenVT = Subtarget.getXLenVT(); 2395 2396 // Simplest case is that the operand needs to be promoted to XLenVT. 2397 if (Scalar.getValueType().bitsLE(XLenVT)) { 2398 // If the operand is a constant, sign extend to increase our chances 2399 // of being able to use a .vi instruction. ANY_EXTEND would become a 2400 // a zero extend and the simm5 check in isel would fail. 2401 // FIXME: Should we ignore the upper bits in isel instead? 2402 unsigned ExtOpc = 2403 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2404 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2405 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2406 // If VL is 1 and the scalar value won't benefit from immediate, we could 2407 // use vmv.s.x. 2408 if (isOneConstant(VL) && 2409 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2410 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL); 2411 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); 2412 } 2413 2414 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2415 "Unexpected scalar for splat lowering!"); 2416 2417 if (isOneConstant(VL) && isNullConstant(Scalar)) 2418 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, 2419 DAG.getConstant(0, DL, XLenVT), VL); 2420 2421 // Otherwise use the more complicated splatting algorithm. 2422 return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG); 2423 } 2424 2425 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2426 const RISCVSubtarget &Subtarget) { 2427 // We need to be able to widen elements to the next larger integer type. 2428 if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors()) 2429 return false; 2430 2431 int Size = Mask.size(); 2432 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2433 2434 int Srcs[] = {-1, -1}; 2435 for (int i = 0; i != Size; ++i) { 2436 // Ignore undef elements. 2437 if (Mask[i] < 0) 2438 continue; 2439 2440 // Is this an even or odd element. 2441 int Pol = i % 2; 2442 2443 // Ensure we consistently use the same source for this element polarity. 2444 int Src = Mask[i] / Size; 2445 if (Srcs[Pol] < 0) 2446 Srcs[Pol] = Src; 2447 if (Srcs[Pol] != Src) 2448 return false; 2449 2450 // Make sure the element within the source is appropriate for this element 2451 // in the destination. 2452 int Elt = Mask[i] % Size; 2453 if (Elt != i / 2) 2454 return false; 2455 } 2456 2457 // We need to find a source for each polarity and they can't be the same. 2458 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2459 return false; 2460 2461 // Swap the sources if the second source was in the even polarity. 2462 SwapSources = Srcs[0] > Srcs[1]; 2463 2464 return true; 2465 } 2466 2467 /// Match shuffles that concatenate two vectors, rotate the concatenation, 2468 /// and then extract the original number of elements from the rotated result. 2469 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The 2470 /// returned rotation amount is for a rotate right, where elements move from 2471 /// higher elements to lower elements. \p LoSrc indicates the first source 2472 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector 2473 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be 2474 /// 0 or 1 if a rotation is found. 2475 /// 2476 /// NOTE: We talk about rotate to the right which matches how bit shift and 2477 /// rotate instructions are described where LSBs are on the right, but LLVM IR 2478 /// and the table below write vectors with the lowest elements on the left. 2479 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) { 2480 int Size = Mask.size(); 2481 2482 // We need to detect various ways of spelling a rotation: 2483 // [11, 12, 13, 14, 15, 0, 1, 2] 2484 // [-1, 12, 13, 14, -1, -1, 1, -1] 2485 // [-1, -1, -1, -1, -1, -1, 1, 2] 2486 // [ 3, 4, 5, 6, 7, 8, 9, 10] 2487 // [-1, 4, 5, 6, -1, -1, 9, -1] 2488 // [-1, 4, 5, 6, -1, -1, -1, -1] 2489 int Rotation = 0; 2490 LoSrc = -1; 2491 HiSrc = -1; 2492 for (int i = 0; i != Size; ++i) { 2493 int M = Mask[i]; 2494 if (M < 0) 2495 continue; 2496 2497 // Determine where a rotate vector would have started. 2498 int StartIdx = i - (M % Size); 2499 // The identity rotation isn't interesting, stop. 2500 if (StartIdx == 0) 2501 return -1; 2502 2503 // If we found the tail of a vector the rotation must be the missing 2504 // front. If we found the head of a vector, it must be how much of the 2505 // head. 2506 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; 2507 2508 if (Rotation == 0) 2509 Rotation = CandidateRotation; 2510 else if (Rotation != CandidateRotation) 2511 // The rotations don't match, so we can't match this mask. 2512 return -1; 2513 2514 // Compute which value this mask is pointing at. 2515 int MaskSrc = M < Size ? 0 : 1; 2516 2517 // Compute which of the two target values this index should be assigned to. 2518 // This reflects whether the high elements are remaining or the low elemnts 2519 // are remaining. 2520 int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc; 2521 2522 // Either set up this value if we've not encountered it before, or check 2523 // that it remains consistent. 2524 if (TargetSrc < 0) 2525 TargetSrc = MaskSrc; 2526 else if (TargetSrc != MaskSrc) 2527 // This may be a rotation, but it pulls from the inputs in some 2528 // unsupported interleaving. 2529 return -1; 2530 } 2531 2532 // Check that we successfully analyzed the mask, and normalize the results. 2533 assert(Rotation != 0 && "Failed to locate a viable rotation!"); 2534 assert((LoSrc >= 0 || HiSrc >= 0) && 2535 "Failed to find a rotated input vector!"); 2536 2537 return Rotation; 2538 } 2539 2540 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2541 const RISCVSubtarget &Subtarget) { 2542 SDValue V1 = Op.getOperand(0); 2543 SDValue V2 = Op.getOperand(1); 2544 SDLoc DL(Op); 2545 MVT XLenVT = Subtarget.getXLenVT(); 2546 MVT VT = Op.getSimpleValueType(); 2547 unsigned NumElts = VT.getVectorNumElements(); 2548 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2549 2550 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2551 2552 SDValue TrueMask, VL; 2553 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2554 2555 if (SVN->isSplat()) { 2556 const int Lane = SVN->getSplatIndex(); 2557 if (Lane >= 0) { 2558 MVT SVT = VT.getVectorElementType(); 2559 2560 // Turn splatted vector load into a strided load with an X0 stride. 2561 SDValue V = V1; 2562 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2563 // with undef. 2564 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2565 int Offset = Lane; 2566 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2567 int OpElements = 2568 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2569 V = V.getOperand(Offset / OpElements); 2570 Offset %= OpElements; 2571 } 2572 2573 // We need to ensure the load isn't atomic or volatile. 2574 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2575 auto *Ld = cast<LoadSDNode>(V); 2576 Offset *= SVT.getStoreSize(); 2577 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2578 TypeSize::Fixed(Offset), DL); 2579 2580 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2581 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2582 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2583 SDValue IntID = 2584 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2585 SDValue Ops[] = {Ld->getChain(), 2586 IntID, 2587 DAG.getUNDEF(ContainerVT), 2588 NewAddr, 2589 DAG.getRegister(RISCV::X0, XLenVT), 2590 VL}; 2591 SDValue NewLoad = DAG.getMemIntrinsicNode( 2592 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2593 DAG.getMachineFunction().getMachineMemOperand( 2594 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2595 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2596 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2597 } 2598 2599 // Otherwise use a scalar load and splat. This will give the best 2600 // opportunity to fold a splat into the operation. ISel can turn it into 2601 // the x0 strided load if we aren't able to fold away the select. 2602 if (SVT.isFloatingPoint()) 2603 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2604 Ld->getPointerInfo().getWithOffset(Offset), 2605 Ld->getOriginalAlign(), 2606 Ld->getMemOperand()->getFlags()); 2607 else 2608 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2609 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2610 Ld->getOriginalAlign(), 2611 Ld->getMemOperand()->getFlags()); 2612 DAG.makeEquivalentMemoryOrdering(Ld, V); 2613 2614 unsigned Opc = 2615 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2616 SDValue Splat = 2617 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL); 2618 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2619 } 2620 2621 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2622 assert(Lane < (int)NumElts && "Unexpected lane!"); 2623 SDValue Gather = 2624 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2625 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2626 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2627 } 2628 } 2629 2630 ArrayRef<int> Mask = SVN->getMask(); 2631 2632 // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may 2633 // be undef which can be handled with a single SLIDEDOWN/UP. 2634 int LoSrc, HiSrc; 2635 int Rotation = isElementRotate(LoSrc, HiSrc, Mask); 2636 if (Rotation > 0) { 2637 SDValue LoV, HiV; 2638 if (LoSrc >= 0) { 2639 LoV = LoSrc == 0 ? V1 : V2; 2640 LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget); 2641 } 2642 if (HiSrc >= 0) { 2643 HiV = HiSrc == 0 ? V1 : V2; 2644 HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget); 2645 } 2646 2647 // We found a rotation. We need to slide HiV down by Rotation. Then we need 2648 // to slide LoV up by (NumElts - Rotation). 2649 unsigned InvRotate = NumElts - Rotation; 2650 2651 SDValue Res = DAG.getUNDEF(ContainerVT); 2652 if (HiV) { 2653 // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN. 2654 // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it 2655 // causes multiple vsetvlis in some test cases such as lowering 2656 // reduce.mul 2657 SDValue DownVL = VL; 2658 if (LoV) 2659 DownVL = DAG.getConstant(InvRotate, DL, XLenVT); 2660 Res = 2661 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV, 2662 DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL); 2663 } 2664 if (LoV) 2665 Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV, 2666 DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL); 2667 2668 return convertFromScalableVector(VT, Res, DAG, Subtarget); 2669 } 2670 2671 // Detect an interleave shuffle and lower to 2672 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2673 bool SwapSources; 2674 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2675 // Swap sources if needed. 2676 if (SwapSources) 2677 std::swap(V1, V2); 2678 2679 // Extract the lower half of the vectors. 2680 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2681 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2682 DAG.getConstant(0, DL, XLenVT)); 2683 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2684 DAG.getConstant(0, DL, XLenVT)); 2685 2686 // Double the element width and halve the number of elements in an int type. 2687 unsigned EltBits = VT.getScalarSizeInBits(); 2688 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2689 MVT WideIntVT = 2690 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2691 // Convert this to a scalable vector. We need to base this on the 2692 // destination size to ensure there's always a type with a smaller LMUL. 2693 MVT WideIntContainerVT = 2694 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2695 2696 // Convert sources to scalable vectors with the same element count as the 2697 // larger type. 2698 MVT HalfContainerVT = MVT::getVectorVT( 2699 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2700 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2701 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2702 2703 // Cast sources to integer. 2704 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2705 MVT IntHalfVT = 2706 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2707 V1 = DAG.getBitcast(IntHalfVT, V1); 2708 V2 = DAG.getBitcast(IntHalfVT, V2); 2709 2710 // Freeze V2 since we use it twice and we need to be sure that the add and 2711 // multiply see the same value. 2712 V2 = DAG.getFreeze(V2); 2713 2714 // Recreate TrueMask using the widened type's element count. 2715 MVT MaskVT = 2716 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2717 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2718 2719 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2720 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2721 V2, TrueMask, VL); 2722 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2723 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2724 DAG.getUNDEF(IntHalfVT), 2725 DAG.getAllOnesConstant(DL, XLenVT)); 2726 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2727 V2, Multiplier, TrueMask, VL); 2728 // Add the new copies to our previous addition giving us 2^eltbits copies of 2729 // V2. This is equivalent to shifting V2 left by eltbits. This should 2730 // combine with the vwmulu.vv above to form vwmaccu.vv. 2731 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2732 TrueMask, VL); 2733 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2734 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2735 // vector VT. 2736 ContainerVT = 2737 MVT::getVectorVT(VT.getVectorElementType(), 2738 WideIntContainerVT.getVectorElementCount() * 2); 2739 Add = DAG.getBitcast(ContainerVT, Add); 2740 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2741 } 2742 2743 // Detect shuffles which can be re-expressed as vector selects; these are 2744 // shuffles in which each element in the destination is taken from an element 2745 // at the corresponding index in either source vectors. 2746 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2747 int MaskIndex = MaskIdx.value(); 2748 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2749 }); 2750 2751 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2752 2753 SmallVector<SDValue> MaskVals; 2754 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2755 // merged with a second vrgather. 2756 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2757 2758 // By default we preserve the original operand order, and use a mask to 2759 // select LHS as true and RHS as false. However, since RVV vector selects may 2760 // feature splats but only on the LHS, we may choose to invert our mask and 2761 // instead select between RHS and LHS. 2762 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2763 bool InvertMask = IsSelect == SwapOps; 2764 2765 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2766 // half. 2767 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2768 2769 // Now construct the mask that will be used by the vselect or blended 2770 // vrgather operation. For vrgathers, construct the appropriate indices into 2771 // each vector. 2772 for (int MaskIndex : Mask) { 2773 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2774 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2775 if (!IsSelect) { 2776 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2777 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2778 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2779 : DAG.getUNDEF(XLenVT)); 2780 GatherIndicesRHS.push_back( 2781 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2782 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2783 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2784 ++LHSIndexCounts[MaskIndex]; 2785 if (!IsLHSOrUndefIndex) 2786 ++RHSIndexCounts[MaskIndex - NumElts]; 2787 } 2788 } 2789 2790 if (SwapOps) { 2791 std::swap(V1, V2); 2792 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2793 } 2794 2795 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2796 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2797 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2798 2799 if (IsSelect) 2800 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2801 2802 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2803 // On such a large vector we're unable to use i8 as the index type. 2804 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2805 // may involve vector splitting if we're already at LMUL=8, or our 2806 // user-supplied maximum fixed-length LMUL. 2807 return SDValue(); 2808 } 2809 2810 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2811 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2812 MVT IndexVT = VT.changeTypeToInteger(); 2813 // Since we can't introduce illegal index types at this stage, use i16 and 2814 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2815 // than XLenVT. 2816 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2817 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2818 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2819 } 2820 2821 MVT IndexContainerVT = 2822 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2823 2824 SDValue Gather; 2825 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2826 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2827 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2828 Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG, 2829 Subtarget); 2830 } else { 2831 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2832 // If only one index is used, we can use a "splat" vrgather. 2833 // TODO: We can splat the most-common index and fix-up any stragglers, if 2834 // that's beneficial. 2835 if (LHSIndexCounts.size() == 1) { 2836 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2837 Gather = 2838 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2839 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2840 } else { 2841 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2842 LHSIndices = 2843 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2844 2845 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2846 TrueMask, VL); 2847 } 2848 } 2849 2850 // If a second vector operand is used by this shuffle, blend it in with an 2851 // additional vrgather. 2852 if (!V2.isUndef()) { 2853 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2854 // If only one index is used, we can use a "splat" vrgather. 2855 // TODO: We can splat the most-common index and fix-up any stragglers, if 2856 // that's beneficial. 2857 if (RHSIndexCounts.size() == 1) { 2858 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2859 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2860 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2861 } else { 2862 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2863 RHSIndices = 2864 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2865 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2866 VL); 2867 } 2868 2869 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2870 SelectMask = 2871 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2872 2873 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2874 Gather, VL); 2875 } 2876 2877 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2878 } 2879 2880 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 2881 // Support splats for any type. These should type legalize well. 2882 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 2883 return true; 2884 2885 // Only support legal VTs for other shuffles for now. 2886 if (!isTypeLegal(VT)) 2887 return false; 2888 2889 MVT SVT = VT.getSimpleVT(); 2890 2891 bool SwapSources; 2892 int LoSrc, HiSrc; 2893 return (isElementRotate(LoSrc, HiSrc, M) > 0) || 2894 isInterleaveShuffle(M, SVT, SwapSources, Subtarget); 2895 } 2896 2897 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2898 SDLoc DL, SelectionDAG &DAG, 2899 const RISCVSubtarget &Subtarget) { 2900 if (VT.isScalableVector()) 2901 return DAG.getFPExtendOrRound(Op, DL, VT); 2902 assert(VT.isFixedLengthVector() && 2903 "Unexpected value type for RVV FP extend/round lowering"); 2904 SDValue Mask, VL; 2905 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2906 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2907 ? RISCVISD::FP_EXTEND_VL 2908 : RISCVISD::FP_ROUND_VL; 2909 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2910 } 2911 2912 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2913 // the exponent. 2914 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2915 MVT VT = Op.getSimpleValueType(); 2916 unsigned EltSize = VT.getScalarSizeInBits(); 2917 SDValue Src = Op.getOperand(0); 2918 SDLoc DL(Op); 2919 2920 // We need a FP type that can represent the value. 2921 // TODO: Use f16 for i8 when possible? 2922 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2923 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2924 2925 // Legal types should have been checked in the RISCVTargetLowering 2926 // constructor. 2927 // TODO: Splitting may make sense in some cases. 2928 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2929 "Expected legal float type!"); 2930 2931 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2932 // The trailing zero count is equal to log2 of this single bit value. 2933 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2934 SDValue Neg = 2935 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2936 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2937 } 2938 2939 // We have a legal FP type, convert to it. 2940 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2941 // Bitcast to integer and shift the exponent to the LSB. 2942 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2943 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2944 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2945 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2946 DAG.getConstant(ShiftAmt, DL, IntVT)); 2947 // Truncate back to original type to allow vnsrl. 2948 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2949 // The exponent contains log2 of the value in biased form. 2950 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2951 2952 // For trailing zeros, we just need to subtract the bias. 2953 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2954 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2955 DAG.getConstant(ExponentBias, DL, VT)); 2956 2957 // For leading zeros, we need to remove the bias and convert from log2 to 2958 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2959 unsigned Adjust = ExponentBias + (EltSize - 1); 2960 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2961 } 2962 2963 // While RVV has alignment restrictions, we should always be able to load as a 2964 // legal equivalently-sized byte-typed vector instead. This method is 2965 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2966 // the load is already correctly-aligned, it returns SDValue(). 2967 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2968 SelectionDAG &DAG) const { 2969 auto *Load = cast<LoadSDNode>(Op); 2970 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2971 2972 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2973 Load->getMemoryVT(), 2974 *Load->getMemOperand())) 2975 return SDValue(); 2976 2977 SDLoc DL(Op); 2978 MVT VT = Op.getSimpleValueType(); 2979 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2980 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2981 "Unexpected unaligned RVV load type"); 2982 MVT NewVT = 2983 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2984 assert(NewVT.isValid() && 2985 "Expecting equally-sized RVV vector types to be legal"); 2986 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2987 Load->getPointerInfo(), Load->getOriginalAlign(), 2988 Load->getMemOperand()->getFlags()); 2989 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2990 } 2991 2992 // While RVV has alignment restrictions, we should always be able to store as a 2993 // legal equivalently-sized byte-typed vector instead. This method is 2994 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2995 // returns SDValue() if the store is already correctly aligned. 2996 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2997 SelectionDAG &DAG) const { 2998 auto *Store = cast<StoreSDNode>(Op); 2999 assert(Store && Store->getValue().getValueType().isVector() && 3000 "Expected vector store"); 3001 3002 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 3003 Store->getMemoryVT(), 3004 *Store->getMemOperand())) 3005 return SDValue(); 3006 3007 SDLoc DL(Op); 3008 SDValue StoredVal = Store->getValue(); 3009 MVT VT = StoredVal.getSimpleValueType(); 3010 unsigned EltSizeBits = VT.getScalarSizeInBits(); 3011 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 3012 "Unexpected unaligned RVV store type"); 3013 MVT NewVT = 3014 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 3015 assert(NewVT.isValid() && 3016 "Expecting equally-sized RVV vector types to be legal"); 3017 StoredVal = DAG.getBitcast(NewVT, StoredVal); 3018 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 3019 Store->getPointerInfo(), Store->getOriginalAlign(), 3020 Store->getMemOperand()->getFlags()); 3021 } 3022 3023 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 3024 SelectionDAG &DAG) const { 3025 switch (Op.getOpcode()) { 3026 default: 3027 report_fatal_error("unimplemented operand"); 3028 case ISD::GlobalAddress: 3029 return lowerGlobalAddress(Op, DAG); 3030 case ISD::BlockAddress: 3031 return lowerBlockAddress(Op, DAG); 3032 case ISD::ConstantPool: 3033 return lowerConstantPool(Op, DAG); 3034 case ISD::JumpTable: 3035 return lowerJumpTable(Op, DAG); 3036 case ISD::GlobalTLSAddress: 3037 return lowerGlobalTLSAddress(Op, DAG); 3038 case ISD::SELECT: 3039 return lowerSELECT(Op, DAG); 3040 case ISD::BRCOND: 3041 return lowerBRCOND(Op, DAG); 3042 case ISD::VASTART: 3043 return lowerVASTART(Op, DAG); 3044 case ISD::FRAMEADDR: 3045 return lowerFRAMEADDR(Op, DAG); 3046 case ISD::RETURNADDR: 3047 return lowerRETURNADDR(Op, DAG); 3048 case ISD::SHL_PARTS: 3049 return lowerShiftLeftParts(Op, DAG); 3050 case ISD::SRA_PARTS: 3051 return lowerShiftRightParts(Op, DAG, true); 3052 case ISD::SRL_PARTS: 3053 return lowerShiftRightParts(Op, DAG, false); 3054 case ISD::BITCAST: { 3055 SDLoc DL(Op); 3056 EVT VT = Op.getValueType(); 3057 SDValue Op0 = Op.getOperand(0); 3058 EVT Op0VT = Op0.getValueType(); 3059 MVT XLenVT = Subtarget.getXLenVT(); 3060 if (VT.isFixedLengthVector()) { 3061 // We can handle fixed length vector bitcasts with a simple replacement 3062 // in isel. 3063 if (Op0VT.isFixedLengthVector()) 3064 return Op; 3065 // When bitcasting from scalar to fixed-length vector, insert the scalar 3066 // into a one-element vector of the result type, and perform a vector 3067 // bitcast. 3068 if (!Op0VT.isVector()) { 3069 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 3070 if (!isTypeLegal(BVT)) 3071 return SDValue(); 3072 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 3073 DAG.getUNDEF(BVT), Op0, 3074 DAG.getConstant(0, DL, XLenVT))); 3075 } 3076 return SDValue(); 3077 } 3078 // Custom-legalize bitcasts from fixed-length vector types to scalar types 3079 // thus: bitcast the vector to a one-element vector type whose element type 3080 // is the same as the result type, and extract the first element. 3081 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 3082 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 3083 if (!isTypeLegal(BVT)) 3084 return SDValue(); 3085 SDValue BVec = DAG.getBitcast(BVT, Op0); 3086 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 3087 DAG.getConstant(0, DL, XLenVT)); 3088 } 3089 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 3090 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 3091 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 3092 return FPConv; 3093 } 3094 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 3095 Subtarget.hasStdExtF()) { 3096 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3097 SDValue FPConv = 3098 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 3099 return FPConv; 3100 } 3101 return SDValue(); 3102 } 3103 case ISD::INTRINSIC_WO_CHAIN: 3104 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3105 case ISD::INTRINSIC_W_CHAIN: 3106 return LowerINTRINSIC_W_CHAIN(Op, DAG); 3107 case ISD::INTRINSIC_VOID: 3108 return LowerINTRINSIC_VOID(Op, DAG); 3109 case ISD::BSWAP: 3110 case ISD::BITREVERSE: { 3111 MVT VT = Op.getSimpleValueType(); 3112 SDLoc DL(Op); 3113 if (Subtarget.hasStdExtZbp()) { 3114 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 3115 // Start with the maximum immediate value which is the bitwidth - 1. 3116 unsigned Imm = VT.getSizeInBits() - 1; 3117 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 3118 if (Op.getOpcode() == ISD::BSWAP) 3119 Imm &= ~0x7U; 3120 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 3121 DAG.getConstant(Imm, DL, VT)); 3122 } 3123 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 3124 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 3125 // Expand bitreverse to a bswap(rev8) followed by brev8. 3126 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 3127 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 3128 // as brev8 by an isel pattern. 3129 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 3130 DAG.getConstant(7, DL, VT)); 3131 } 3132 case ISD::FSHL: 3133 case ISD::FSHR: { 3134 MVT VT = Op.getSimpleValueType(); 3135 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 3136 SDLoc DL(Op); 3137 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 3138 // use log(XLen) bits. Mask the shift amount accordingly to prevent 3139 // accidentally setting the extra bit. 3140 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 3141 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 3142 DAG.getConstant(ShAmtWidth, DL, VT)); 3143 // fshl and fshr concatenate their operands in the same order. fsr and fsl 3144 // instruction use different orders. fshl will return its first operand for 3145 // shift of zero, fshr will return its second operand. fsl and fsr both 3146 // return rs1 so the ISD nodes need to have different operand orders. 3147 // Shift amount is in rs2. 3148 SDValue Op0 = Op.getOperand(0); 3149 SDValue Op1 = Op.getOperand(1); 3150 unsigned Opc = RISCVISD::FSL; 3151 if (Op.getOpcode() == ISD::FSHR) { 3152 std::swap(Op0, Op1); 3153 Opc = RISCVISD::FSR; 3154 } 3155 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3156 } 3157 case ISD::TRUNCATE: { 3158 SDLoc DL(Op); 3159 MVT VT = Op.getSimpleValueType(); 3160 // Only custom-lower vector truncates 3161 if (!VT.isVector()) 3162 return Op; 3163 3164 // Truncates to mask types are handled differently 3165 if (VT.getVectorElementType() == MVT::i1) 3166 return lowerVectorMaskTrunc(Op, DAG); 3167 3168 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 3169 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 3170 // truncate by one power of two at a time. 3171 MVT DstEltVT = VT.getVectorElementType(); 3172 3173 SDValue Src = Op.getOperand(0); 3174 MVT SrcVT = Src.getSimpleValueType(); 3175 MVT SrcEltVT = SrcVT.getVectorElementType(); 3176 3177 assert(DstEltVT.bitsLT(SrcEltVT) && 3178 isPowerOf2_64(DstEltVT.getSizeInBits()) && 3179 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 3180 "Unexpected vector truncate lowering"); 3181 3182 MVT ContainerVT = SrcVT; 3183 if (SrcVT.isFixedLengthVector()) { 3184 ContainerVT = getContainerForFixedLengthVector(SrcVT); 3185 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3186 } 3187 3188 SDValue Result = Src; 3189 SDValue Mask, VL; 3190 std::tie(Mask, VL) = 3191 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 3192 LLVMContext &Context = *DAG.getContext(); 3193 const ElementCount Count = ContainerVT.getVectorElementCount(); 3194 do { 3195 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 3196 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 3197 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 3198 Mask, VL); 3199 } while (SrcEltVT != DstEltVT); 3200 3201 if (SrcVT.isFixedLengthVector()) 3202 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3203 3204 return Result; 3205 } 3206 case ISD::ANY_EXTEND: 3207 case ISD::ZERO_EXTEND: 3208 if (Op.getOperand(0).getValueType().isVector() && 3209 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3210 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3211 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3212 case ISD::SIGN_EXTEND: 3213 if (Op.getOperand(0).getValueType().isVector() && 3214 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3215 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3216 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3217 case ISD::SPLAT_VECTOR_PARTS: 3218 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3219 case ISD::INSERT_VECTOR_ELT: 3220 return lowerINSERT_VECTOR_ELT(Op, DAG); 3221 case ISD::EXTRACT_VECTOR_ELT: 3222 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3223 case ISD::VSCALE: { 3224 MVT VT = Op.getSimpleValueType(); 3225 SDLoc DL(Op); 3226 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3227 // We define our scalable vector types for lmul=1 to use a 64 bit known 3228 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3229 // vscale as VLENB / 8. 3230 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3231 if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock) 3232 report_fatal_error("Support for VLEN==32 is incomplete."); 3233 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3234 // We assume VLENB is a multiple of 8. We manually choose the best shift 3235 // here because SimplifyDemandedBits isn't always able to simplify it. 3236 uint64_t Val = Op.getConstantOperandVal(0); 3237 if (isPowerOf2_64(Val)) { 3238 uint64_t Log2 = Log2_64(Val); 3239 if (Log2 < 3) 3240 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3241 DAG.getConstant(3 - Log2, DL, VT)); 3242 if (Log2 > 3) 3243 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3244 DAG.getConstant(Log2 - 3, DL, VT)); 3245 return VLENB; 3246 } 3247 // If the multiplier is a multiple of 8, scale it down to avoid needing 3248 // to shift the VLENB value. 3249 if ((Val % 8) == 0) 3250 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3251 DAG.getConstant(Val / 8, DL, VT)); 3252 } 3253 3254 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3255 DAG.getConstant(3, DL, VT)); 3256 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3257 } 3258 case ISD::FPOWI: { 3259 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3260 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3261 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3262 Op.getOperand(1).getValueType() == MVT::i32) { 3263 SDLoc DL(Op); 3264 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3265 SDValue Powi = 3266 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3267 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3268 DAG.getIntPtrConstant(0, DL)); 3269 } 3270 return SDValue(); 3271 } 3272 case ISD::FP_EXTEND: { 3273 // RVV can only do fp_extend to types double the size as the source. We 3274 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3275 // via f32. 3276 SDLoc DL(Op); 3277 MVT VT = Op.getSimpleValueType(); 3278 SDValue Src = Op.getOperand(0); 3279 MVT SrcVT = Src.getSimpleValueType(); 3280 3281 // Prepare any fixed-length vector operands. 3282 MVT ContainerVT = VT; 3283 if (SrcVT.isFixedLengthVector()) { 3284 ContainerVT = getContainerForFixedLengthVector(VT); 3285 MVT SrcContainerVT = 3286 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3287 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3288 } 3289 3290 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3291 SrcVT.getVectorElementType() != MVT::f16) { 3292 // For scalable vectors, we only need to close the gap between 3293 // vXf16->vXf64. 3294 if (!VT.isFixedLengthVector()) 3295 return Op; 3296 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3297 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3298 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3299 } 3300 3301 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3302 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3303 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3304 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3305 3306 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3307 DL, DAG, Subtarget); 3308 if (VT.isFixedLengthVector()) 3309 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3310 return Extend; 3311 } 3312 case ISD::FP_ROUND: { 3313 // RVV can only do fp_round to types half the size as the source. We 3314 // custom-lower f64->f16 rounds via RVV's round-to-odd float 3315 // conversion instruction. 3316 SDLoc DL(Op); 3317 MVT VT = Op.getSimpleValueType(); 3318 SDValue Src = Op.getOperand(0); 3319 MVT SrcVT = Src.getSimpleValueType(); 3320 3321 // Prepare any fixed-length vector operands. 3322 MVT ContainerVT = VT; 3323 if (VT.isFixedLengthVector()) { 3324 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3325 ContainerVT = 3326 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3327 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3328 } 3329 3330 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 3331 SrcVT.getVectorElementType() != MVT::f64) { 3332 // For scalable vectors, we only need to close the gap between 3333 // vXf64<->vXf16. 3334 if (!VT.isFixedLengthVector()) 3335 return Op; 3336 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 3337 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3338 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3339 } 3340 3341 SDValue Mask, VL; 3342 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3343 3344 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3345 SDValue IntermediateRound = 3346 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3347 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3348 DL, DAG, Subtarget); 3349 3350 if (VT.isFixedLengthVector()) 3351 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3352 return Round; 3353 } 3354 case ISD::FP_TO_SINT: 3355 case ISD::FP_TO_UINT: 3356 case ISD::SINT_TO_FP: 3357 case ISD::UINT_TO_FP: { 3358 // RVV can only do fp<->int conversions to types half/double the size as 3359 // the source. We custom-lower any conversions that do two hops into 3360 // sequences. 3361 MVT VT = Op.getSimpleValueType(); 3362 if (!VT.isVector()) 3363 return Op; 3364 SDLoc DL(Op); 3365 SDValue Src = Op.getOperand(0); 3366 MVT EltVT = VT.getVectorElementType(); 3367 MVT SrcVT = Src.getSimpleValueType(); 3368 MVT SrcEltVT = SrcVT.getVectorElementType(); 3369 unsigned EltSize = EltVT.getSizeInBits(); 3370 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3371 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3372 "Unexpected vector element types"); 3373 3374 bool IsInt2FP = SrcEltVT.isInteger(); 3375 // Widening conversions 3376 if (EltSize > (2 * SrcEltSize)) { 3377 if (IsInt2FP) { 3378 // Do a regular integer sign/zero extension then convert to float. 3379 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), 3380 VT.getVectorElementCount()); 3381 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3382 ? ISD::ZERO_EXTEND 3383 : ISD::SIGN_EXTEND; 3384 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3385 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3386 } 3387 // FP2Int 3388 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3389 // Do one doubling fp_extend then complete the operation by converting 3390 // to int. 3391 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3392 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3393 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3394 } 3395 3396 // Narrowing conversions 3397 if (SrcEltSize > (2 * EltSize)) { 3398 if (IsInt2FP) { 3399 // One narrowing int_to_fp, then an fp_round. 3400 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3401 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3402 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3403 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3404 } 3405 // FP2Int 3406 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3407 // representable by the integer, the result is poison. 3408 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 3409 VT.getVectorElementCount()); 3410 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3411 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3412 } 3413 3414 // Scalable vectors can exit here. Patterns will handle equally-sized 3415 // conversions halving/doubling ones. 3416 if (!VT.isFixedLengthVector()) 3417 return Op; 3418 3419 // For fixed-length vectors we lower to a custom "VL" node. 3420 unsigned RVVOpc = 0; 3421 switch (Op.getOpcode()) { 3422 default: 3423 llvm_unreachable("Impossible opcode"); 3424 case ISD::FP_TO_SINT: 3425 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3426 break; 3427 case ISD::FP_TO_UINT: 3428 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3429 break; 3430 case ISD::SINT_TO_FP: 3431 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3432 break; 3433 case ISD::UINT_TO_FP: 3434 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3435 break; 3436 } 3437 3438 MVT ContainerVT, SrcContainerVT; 3439 // Derive the reference container type from the larger vector type. 3440 if (SrcEltSize > EltSize) { 3441 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3442 ContainerVT = 3443 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3444 } else { 3445 ContainerVT = getContainerForFixedLengthVector(VT); 3446 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3447 } 3448 3449 SDValue Mask, VL; 3450 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3451 3452 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3453 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3454 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3455 } 3456 case ISD::FP_TO_SINT_SAT: 3457 case ISD::FP_TO_UINT_SAT: 3458 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3459 case ISD::FTRUNC: 3460 case ISD::FCEIL: 3461 case ISD::FFLOOR: 3462 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3463 case ISD::FROUND: 3464 return lowerFROUND(Op, DAG); 3465 case ISD::VECREDUCE_ADD: 3466 case ISD::VECREDUCE_UMAX: 3467 case ISD::VECREDUCE_SMAX: 3468 case ISD::VECREDUCE_UMIN: 3469 case ISD::VECREDUCE_SMIN: 3470 return lowerVECREDUCE(Op, DAG); 3471 case ISD::VECREDUCE_AND: 3472 case ISD::VECREDUCE_OR: 3473 case ISD::VECREDUCE_XOR: 3474 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3475 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3476 return lowerVECREDUCE(Op, DAG); 3477 case ISD::VECREDUCE_FADD: 3478 case ISD::VECREDUCE_SEQ_FADD: 3479 case ISD::VECREDUCE_FMIN: 3480 case ISD::VECREDUCE_FMAX: 3481 return lowerFPVECREDUCE(Op, DAG); 3482 case ISD::VP_REDUCE_ADD: 3483 case ISD::VP_REDUCE_UMAX: 3484 case ISD::VP_REDUCE_SMAX: 3485 case ISD::VP_REDUCE_UMIN: 3486 case ISD::VP_REDUCE_SMIN: 3487 case ISD::VP_REDUCE_FADD: 3488 case ISD::VP_REDUCE_SEQ_FADD: 3489 case ISD::VP_REDUCE_FMIN: 3490 case ISD::VP_REDUCE_FMAX: 3491 return lowerVPREDUCE(Op, DAG); 3492 case ISD::VP_REDUCE_AND: 3493 case ISD::VP_REDUCE_OR: 3494 case ISD::VP_REDUCE_XOR: 3495 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3496 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3497 return lowerVPREDUCE(Op, DAG); 3498 case ISD::INSERT_SUBVECTOR: 3499 return lowerINSERT_SUBVECTOR(Op, DAG); 3500 case ISD::EXTRACT_SUBVECTOR: 3501 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3502 case ISD::STEP_VECTOR: 3503 return lowerSTEP_VECTOR(Op, DAG); 3504 case ISD::VECTOR_REVERSE: 3505 return lowerVECTOR_REVERSE(Op, DAG); 3506 case ISD::VECTOR_SPLICE: 3507 return lowerVECTOR_SPLICE(Op, DAG); 3508 case ISD::BUILD_VECTOR: 3509 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3510 case ISD::SPLAT_VECTOR: 3511 if (Op.getValueType().getVectorElementType() == MVT::i1) 3512 return lowerVectorMaskSplat(Op, DAG); 3513 return SDValue(); 3514 case ISD::VECTOR_SHUFFLE: 3515 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3516 case ISD::CONCAT_VECTORS: { 3517 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3518 // better than going through the stack, as the default expansion does. 3519 SDLoc DL(Op); 3520 MVT VT = Op.getSimpleValueType(); 3521 unsigned NumOpElts = 3522 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3523 SDValue Vec = DAG.getUNDEF(VT); 3524 for (const auto &OpIdx : enumerate(Op->ops())) { 3525 SDValue SubVec = OpIdx.value(); 3526 // Don't insert undef subvectors. 3527 if (SubVec.isUndef()) 3528 continue; 3529 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3530 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3531 } 3532 return Vec; 3533 } 3534 case ISD::LOAD: 3535 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3536 return V; 3537 if (Op.getValueType().isFixedLengthVector()) 3538 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3539 return Op; 3540 case ISD::STORE: 3541 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3542 return V; 3543 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3544 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3545 return Op; 3546 case ISD::MLOAD: 3547 case ISD::VP_LOAD: 3548 return lowerMaskedLoad(Op, DAG); 3549 case ISD::MSTORE: 3550 case ISD::VP_STORE: 3551 return lowerMaskedStore(Op, DAG); 3552 case ISD::SETCC: 3553 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3554 case ISD::ADD: 3555 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3556 case ISD::SUB: 3557 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3558 case ISD::MUL: 3559 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3560 case ISD::MULHS: 3561 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3562 case ISD::MULHU: 3563 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3564 case ISD::AND: 3565 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3566 RISCVISD::AND_VL); 3567 case ISD::OR: 3568 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3569 RISCVISD::OR_VL); 3570 case ISD::XOR: 3571 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3572 RISCVISD::XOR_VL); 3573 case ISD::SDIV: 3574 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3575 case ISD::SREM: 3576 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3577 case ISD::UDIV: 3578 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3579 case ISD::UREM: 3580 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3581 case ISD::SHL: 3582 case ISD::SRA: 3583 case ISD::SRL: 3584 if (Op.getSimpleValueType().isFixedLengthVector()) 3585 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3586 // This can be called for an i32 shift amount that needs to be promoted. 3587 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3588 "Unexpected custom legalisation"); 3589 return SDValue(); 3590 case ISD::SADDSAT: 3591 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3592 case ISD::UADDSAT: 3593 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3594 case ISD::SSUBSAT: 3595 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3596 case ISD::USUBSAT: 3597 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3598 case ISD::FADD: 3599 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3600 case ISD::FSUB: 3601 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3602 case ISD::FMUL: 3603 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3604 case ISD::FDIV: 3605 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3606 case ISD::FNEG: 3607 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3608 case ISD::FABS: 3609 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3610 case ISD::FSQRT: 3611 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3612 case ISD::FMA: 3613 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3614 case ISD::SMIN: 3615 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3616 case ISD::SMAX: 3617 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3618 case ISD::UMIN: 3619 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3620 case ISD::UMAX: 3621 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3622 case ISD::FMINNUM: 3623 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3624 case ISD::FMAXNUM: 3625 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3626 case ISD::ABS: 3627 return lowerABS(Op, DAG); 3628 case ISD::CTLZ_ZERO_UNDEF: 3629 case ISD::CTTZ_ZERO_UNDEF: 3630 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3631 case ISD::VSELECT: 3632 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3633 case ISD::FCOPYSIGN: 3634 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3635 case ISD::MGATHER: 3636 case ISD::VP_GATHER: 3637 return lowerMaskedGather(Op, DAG); 3638 case ISD::MSCATTER: 3639 case ISD::VP_SCATTER: 3640 return lowerMaskedScatter(Op, DAG); 3641 case ISD::FLT_ROUNDS_: 3642 return lowerGET_ROUNDING(Op, DAG); 3643 case ISD::SET_ROUNDING: 3644 return lowerSET_ROUNDING(Op, DAG); 3645 case ISD::VP_SELECT: 3646 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3647 case ISD::VP_MERGE: 3648 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3649 case ISD::VP_ADD: 3650 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3651 case ISD::VP_SUB: 3652 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3653 case ISD::VP_MUL: 3654 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3655 case ISD::VP_SDIV: 3656 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3657 case ISD::VP_UDIV: 3658 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3659 case ISD::VP_SREM: 3660 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3661 case ISD::VP_UREM: 3662 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3663 case ISD::VP_AND: 3664 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3665 case ISD::VP_OR: 3666 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3667 case ISD::VP_XOR: 3668 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3669 case ISD::VP_ASHR: 3670 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3671 case ISD::VP_LSHR: 3672 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3673 case ISD::VP_SHL: 3674 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3675 case ISD::VP_FADD: 3676 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3677 case ISD::VP_FSUB: 3678 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3679 case ISD::VP_FMUL: 3680 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3681 case ISD::VP_FDIV: 3682 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3683 case ISD::VP_FNEG: 3684 return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL); 3685 case ISD::VP_FMA: 3686 return lowerVPOp(Op, DAG, RISCVISD::FMA_VL); 3687 case ISD::VP_FPTOSI: 3688 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL); 3689 case ISD::VP_SITOFP: 3690 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL); 3691 } 3692 } 3693 3694 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3695 SelectionDAG &DAG, unsigned Flags) { 3696 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3697 } 3698 3699 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3700 SelectionDAG &DAG, unsigned Flags) { 3701 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3702 Flags); 3703 } 3704 3705 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3706 SelectionDAG &DAG, unsigned Flags) { 3707 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3708 N->getOffset(), Flags); 3709 } 3710 3711 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3712 SelectionDAG &DAG, unsigned Flags) { 3713 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3714 } 3715 3716 template <class NodeTy> 3717 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3718 bool IsLocal) const { 3719 SDLoc DL(N); 3720 EVT Ty = getPointerTy(DAG.getDataLayout()); 3721 3722 if (isPositionIndependent()) { 3723 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3724 if (IsLocal) 3725 // Use PC-relative addressing to access the symbol. This generates the 3726 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3727 // %pcrel_lo(auipc)). 3728 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3729 3730 // Use PC-relative addressing to access the GOT for this symbol, then load 3731 // the address from the GOT. This generates the pattern (PseudoLA sym), 3732 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3733 SDValue Load = 3734 SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3735 MachineFunction &MF = DAG.getMachineFunction(); 3736 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3737 MachinePointerInfo::getGOT(MF), 3738 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3739 MachineMemOperand::MOInvariant, 3740 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3741 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3742 return Load; 3743 } 3744 3745 switch (getTargetMachine().getCodeModel()) { 3746 default: 3747 report_fatal_error("Unsupported code model for lowering"); 3748 case CodeModel::Small: { 3749 // Generate a sequence for accessing addresses within the first 2 GiB of 3750 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3751 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3752 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3753 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3754 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3755 } 3756 case CodeModel::Medium: { 3757 // Generate a sequence for accessing addresses within any 2GiB range within 3758 // the address space. This generates the pattern (PseudoLLA sym), which 3759 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3760 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3761 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3762 } 3763 } 3764 } 3765 3766 template SDValue RISCVTargetLowering::getAddr<GlobalAddressSDNode>( 3767 GlobalAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3768 template SDValue RISCVTargetLowering::getAddr<BlockAddressSDNode>( 3769 BlockAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3770 template SDValue RISCVTargetLowering::getAddr<ConstantPoolSDNode>( 3771 ConstantPoolSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3772 template SDValue RISCVTargetLowering::getAddr<JumpTableSDNode>( 3773 JumpTableSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3774 3775 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3776 SelectionDAG &DAG) const { 3777 SDLoc DL(Op); 3778 EVT Ty = Op.getValueType(); 3779 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3780 int64_t Offset = N->getOffset(); 3781 MVT XLenVT = Subtarget.getXLenVT(); 3782 3783 const GlobalValue *GV = N->getGlobal(); 3784 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3785 SDValue Addr = getAddr(N, DAG, IsLocal); 3786 3787 // In order to maximise the opportunity for common subexpression elimination, 3788 // emit a separate ADD node for the global address offset instead of folding 3789 // it in the global address node. Later peephole optimisations may choose to 3790 // fold it back in when profitable. 3791 if (Offset != 0) 3792 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3793 DAG.getConstant(Offset, DL, XLenVT)); 3794 return Addr; 3795 } 3796 3797 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3798 SelectionDAG &DAG) const { 3799 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3800 3801 return getAddr(N, DAG); 3802 } 3803 3804 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3805 SelectionDAG &DAG) const { 3806 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3807 3808 return getAddr(N, DAG); 3809 } 3810 3811 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3812 SelectionDAG &DAG) const { 3813 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3814 3815 return getAddr(N, DAG); 3816 } 3817 3818 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3819 SelectionDAG &DAG, 3820 bool UseGOT) const { 3821 SDLoc DL(N); 3822 EVT Ty = getPointerTy(DAG.getDataLayout()); 3823 const GlobalValue *GV = N->getGlobal(); 3824 MVT XLenVT = Subtarget.getXLenVT(); 3825 3826 if (UseGOT) { 3827 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3828 // load the address from the GOT and add the thread pointer. This generates 3829 // the pattern (PseudoLA_TLS_IE sym), which expands to 3830 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3831 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3832 SDValue Load = 3833 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3834 MachineFunction &MF = DAG.getMachineFunction(); 3835 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3836 MachinePointerInfo::getGOT(MF), 3837 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3838 MachineMemOperand::MOInvariant, 3839 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3840 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3841 3842 // Add the thread pointer. 3843 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3844 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3845 } 3846 3847 // Generate a sequence for accessing the address relative to the thread 3848 // pointer, with the appropriate adjustment for the thread pointer offset. 3849 // This generates the pattern 3850 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3851 SDValue AddrHi = 3852 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3853 SDValue AddrAdd = 3854 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3855 SDValue AddrLo = 3856 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3857 3858 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3859 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3860 SDValue MNAdd = SDValue( 3861 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3862 0); 3863 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3864 } 3865 3866 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3867 SelectionDAG &DAG) const { 3868 SDLoc DL(N); 3869 EVT Ty = getPointerTy(DAG.getDataLayout()); 3870 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3871 const GlobalValue *GV = N->getGlobal(); 3872 3873 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3874 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3875 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3876 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3877 SDValue Load = 3878 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3879 3880 // Prepare argument list to generate call. 3881 ArgListTy Args; 3882 ArgListEntry Entry; 3883 Entry.Node = Load; 3884 Entry.Ty = CallTy; 3885 Args.push_back(Entry); 3886 3887 // Setup call to __tls_get_addr. 3888 TargetLowering::CallLoweringInfo CLI(DAG); 3889 CLI.setDebugLoc(DL) 3890 .setChain(DAG.getEntryNode()) 3891 .setLibCallee(CallingConv::C, CallTy, 3892 DAG.getExternalSymbol("__tls_get_addr", Ty), 3893 std::move(Args)); 3894 3895 return LowerCallTo(CLI).first; 3896 } 3897 3898 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3899 SelectionDAG &DAG) const { 3900 SDLoc DL(Op); 3901 EVT Ty = Op.getValueType(); 3902 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3903 int64_t Offset = N->getOffset(); 3904 MVT XLenVT = Subtarget.getXLenVT(); 3905 3906 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3907 3908 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3909 CallingConv::GHC) 3910 report_fatal_error("In GHC calling convention TLS is not supported"); 3911 3912 SDValue Addr; 3913 switch (Model) { 3914 case TLSModel::LocalExec: 3915 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3916 break; 3917 case TLSModel::InitialExec: 3918 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3919 break; 3920 case TLSModel::LocalDynamic: 3921 case TLSModel::GeneralDynamic: 3922 Addr = getDynamicTLSAddr(N, DAG); 3923 break; 3924 } 3925 3926 // In order to maximise the opportunity for common subexpression elimination, 3927 // emit a separate ADD node for the global address offset instead of folding 3928 // it in the global address node. Later peephole optimisations may choose to 3929 // fold it back in when profitable. 3930 if (Offset != 0) 3931 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3932 DAG.getConstant(Offset, DL, XLenVT)); 3933 return Addr; 3934 } 3935 3936 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3937 SDValue CondV = Op.getOperand(0); 3938 SDValue TrueV = Op.getOperand(1); 3939 SDValue FalseV = Op.getOperand(2); 3940 SDLoc DL(Op); 3941 MVT VT = Op.getSimpleValueType(); 3942 MVT XLenVT = Subtarget.getXLenVT(); 3943 3944 // Lower vector SELECTs to VSELECTs by splatting the condition. 3945 if (VT.isVector()) { 3946 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3947 SDValue CondSplat = VT.isScalableVector() 3948 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3949 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3950 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3951 } 3952 3953 // If the result type is XLenVT and CondV is the output of a SETCC node 3954 // which also operated on XLenVT inputs, then merge the SETCC node into the 3955 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3956 // compare+branch instructions. i.e.: 3957 // (select (setcc lhs, rhs, cc), truev, falsev) 3958 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3959 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3960 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3961 SDValue LHS = CondV.getOperand(0); 3962 SDValue RHS = CondV.getOperand(1); 3963 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3964 ISD::CondCode CCVal = CC->get(); 3965 3966 // Special case for a select of 2 constants that have a diffence of 1. 3967 // Normally this is done by DAGCombine, but if the select is introduced by 3968 // type legalization or op legalization, we miss it. Restricting to SETLT 3969 // case for now because that is what signed saturating add/sub need. 3970 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3971 // but we would probably want to swap the true/false values if the condition 3972 // is SETGE/SETLE to avoid an XORI. 3973 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3974 CCVal == ISD::SETLT) { 3975 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3976 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3977 if (TrueVal - 1 == FalseVal) 3978 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3979 if (TrueVal + 1 == FalseVal) 3980 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3981 } 3982 3983 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3984 3985 SDValue TargetCC = DAG.getCondCode(CCVal); 3986 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3987 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3988 } 3989 3990 // Otherwise: 3991 // (select condv, truev, falsev) 3992 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3993 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3994 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3995 3996 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3997 3998 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3999 } 4000 4001 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 4002 SDValue CondV = Op.getOperand(1); 4003 SDLoc DL(Op); 4004 MVT XLenVT = Subtarget.getXLenVT(); 4005 4006 if (CondV.getOpcode() == ISD::SETCC && 4007 CondV.getOperand(0).getValueType() == XLenVT) { 4008 SDValue LHS = CondV.getOperand(0); 4009 SDValue RHS = CondV.getOperand(1); 4010 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 4011 4012 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 4013 4014 SDValue TargetCC = DAG.getCondCode(CCVal); 4015 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 4016 LHS, RHS, TargetCC, Op.getOperand(2)); 4017 } 4018 4019 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 4020 CondV, DAG.getConstant(0, DL, XLenVT), 4021 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 4022 } 4023 4024 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 4025 MachineFunction &MF = DAG.getMachineFunction(); 4026 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 4027 4028 SDLoc DL(Op); 4029 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 4030 getPointerTy(MF.getDataLayout())); 4031 4032 // vastart just stores the address of the VarArgsFrameIndex slot into the 4033 // memory location argument. 4034 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 4035 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 4036 MachinePointerInfo(SV)); 4037 } 4038 4039 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 4040 SelectionDAG &DAG) const { 4041 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4042 MachineFunction &MF = DAG.getMachineFunction(); 4043 MachineFrameInfo &MFI = MF.getFrameInfo(); 4044 MFI.setFrameAddressIsTaken(true); 4045 Register FrameReg = RI.getFrameRegister(MF); 4046 int XLenInBytes = Subtarget.getXLen() / 8; 4047 4048 EVT VT = Op.getValueType(); 4049 SDLoc DL(Op); 4050 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 4051 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4052 while (Depth--) { 4053 int Offset = -(XLenInBytes * 2); 4054 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 4055 DAG.getIntPtrConstant(Offset, DL)); 4056 FrameAddr = 4057 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 4058 } 4059 return FrameAddr; 4060 } 4061 4062 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 4063 SelectionDAG &DAG) const { 4064 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4065 MachineFunction &MF = DAG.getMachineFunction(); 4066 MachineFrameInfo &MFI = MF.getFrameInfo(); 4067 MFI.setReturnAddressIsTaken(true); 4068 MVT XLenVT = Subtarget.getXLenVT(); 4069 int XLenInBytes = Subtarget.getXLen() / 8; 4070 4071 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 4072 return SDValue(); 4073 4074 EVT VT = Op.getValueType(); 4075 SDLoc DL(Op); 4076 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4077 if (Depth) { 4078 int Off = -XLenInBytes; 4079 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 4080 SDValue Offset = DAG.getConstant(Off, DL, VT); 4081 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 4082 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 4083 MachinePointerInfo()); 4084 } 4085 4086 // Return the value of the return address register, marking it an implicit 4087 // live-in. 4088 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 4089 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 4090 } 4091 4092 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 4093 SelectionDAG &DAG) const { 4094 SDLoc DL(Op); 4095 SDValue Lo = Op.getOperand(0); 4096 SDValue Hi = Op.getOperand(1); 4097 SDValue Shamt = Op.getOperand(2); 4098 EVT VT = Lo.getValueType(); 4099 4100 // if Shamt-XLEN < 0: // Shamt < XLEN 4101 // Lo = Lo << Shamt 4102 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt)) 4103 // else: 4104 // Lo = 0 4105 // Hi = Lo << (Shamt-XLEN) 4106 4107 SDValue Zero = DAG.getConstant(0, DL, VT); 4108 SDValue One = DAG.getConstant(1, DL, VT); 4109 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4110 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4111 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4112 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4113 4114 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 4115 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 4116 SDValue ShiftRightLo = 4117 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 4118 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 4119 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 4120 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 4121 4122 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4123 4124 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 4125 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4126 4127 SDValue Parts[2] = {Lo, Hi}; 4128 return DAG.getMergeValues(Parts, DL); 4129 } 4130 4131 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 4132 bool IsSRA) const { 4133 SDLoc DL(Op); 4134 SDValue Lo = Op.getOperand(0); 4135 SDValue Hi = Op.getOperand(1); 4136 SDValue Shamt = Op.getOperand(2); 4137 EVT VT = Lo.getValueType(); 4138 4139 // SRA expansion: 4140 // if Shamt-XLEN < 0: // Shamt < XLEN 4141 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4142 // Hi = Hi >>s Shamt 4143 // else: 4144 // Lo = Hi >>s (Shamt-XLEN); 4145 // Hi = Hi >>s (XLEN-1) 4146 // 4147 // SRL expansion: 4148 // if Shamt-XLEN < 0: // Shamt < XLEN 4149 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4150 // Hi = Hi >>u Shamt 4151 // else: 4152 // Lo = Hi >>u (Shamt-XLEN); 4153 // Hi = 0; 4154 4155 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 4156 4157 SDValue Zero = DAG.getConstant(0, DL, VT); 4158 SDValue One = DAG.getConstant(1, DL, VT); 4159 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4160 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4161 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4162 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4163 4164 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 4165 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 4166 SDValue ShiftLeftHi = 4167 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 4168 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 4169 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 4170 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 4171 SDValue HiFalse = 4172 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 4173 4174 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4175 4176 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 4177 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4178 4179 SDValue Parts[2] = {Lo, Hi}; 4180 return DAG.getMergeValues(Parts, DL); 4181 } 4182 4183 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 4184 // legal equivalently-sized i8 type, so we can use that as a go-between. 4185 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 4186 SelectionDAG &DAG) const { 4187 SDLoc DL(Op); 4188 MVT VT = Op.getSimpleValueType(); 4189 SDValue SplatVal = Op.getOperand(0); 4190 // All-zeros or all-ones splats are handled specially. 4191 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4192 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4193 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4194 } 4195 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4196 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4197 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4198 } 4199 MVT XLenVT = Subtarget.getXLenVT(); 4200 assert(SplatVal.getValueType() == XLenVT && 4201 "Unexpected type for i1 splat value"); 4202 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4203 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4204 DAG.getConstant(1, DL, XLenVT)); 4205 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4206 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4207 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4208 } 4209 4210 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4211 // illegal (currently only vXi64 RV32). 4212 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4213 // them to VMV_V_X_VL. 4214 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4215 SelectionDAG &DAG) const { 4216 SDLoc DL(Op); 4217 MVT VecVT = Op.getSimpleValueType(); 4218 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4219 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4220 4221 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4222 SDValue Lo = Op.getOperand(0); 4223 SDValue Hi = Op.getOperand(1); 4224 4225 if (VecVT.isFixedLengthVector()) { 4226 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4227 SDLoc DL(Op); 4228 SDValue Mask, VL; 4229 std::tie(Mask, VL) = 4230 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4231 4232 SDValue Res = 4233 splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG); 4234 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4235 } 4236 4237 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4238 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4239 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4240 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4241 // node in order to try and match RVV vector/scalar instructions. 4242 if ((LoC >> 31) == HiC) 4243 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4244 Lo, DAG.getRegister(RISCV::X0, MVT::i32)); 4245 } 4246 4247 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4248 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4249 isa<ConstantSDNode>(Hi.getOperand(1)) && 4250 Hi.getConstantOperandVal(1) == 31) 4251 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo, 4252 DAG.getRegister(RISCV::X0, MVT::i32)); 4253 4254 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4255 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, 4256 DAG.getUNDEF(VecVT), Lo, Hi, 4257 DAG.getRegister(RISCV::X0, MVT::i32)); 4258 } 4259 4260 // Custom-lower extensions from mask vectors by using a vselect either with 1 4261 // for zero/any-extension or -1 for sign-extension: 4262 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4263 // Note that any-extension is lowered identically to zero-extension. 4264 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4265 int64_t ExtTrueVal) const { 4266 SDLoc DL(Op); 4267 MVT VecVT = Op.getSimpleValueType(); 4268 SDValue Src = Op.getOperand(0); 4269 // Only custom-lower extensions from mask types 4270 assert(Src.getValueType().isVector() && 4271 Src.getValueType().getVectorElementType() == MVT::i1); 4272 4273 if (VecVT.isScalableVector()) { 4274 SDValue SplatZero = DAG.getConstant(0, DL, VecVT); 4275 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT); 4276 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4277 } 4278 4279 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4280 MVT I1ContainerVT = 4281 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4282 4283 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4284 4285 SDValue Mask, VL; 4286 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4287 4288 MVT XLenVT = Subtarget.getXLenVT(); 4289 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4290 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4291 4292 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4293 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4294 SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4295 DAG.getUNDEF(ContainerVT), SplatTrueVal, VL); 4296 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4297 SplatTrueVal, SplatZero, VL); 4298 4299 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4300 } 4301 4302 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4303 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4304 MVT ExtVT = Op.getSimpleValueType(); 4305 // Only custom-lower extensions from fixed-length vector types. 4306 if (!ExtVT.isFixedLengthVector()) 4307 return Op; 4308 MVT VT = Op.getOperand(0).getSimpleValueType(); 4309 // Grab the canonical container type for the extended type. Infer the smaller 4310 // type from that to ensure the same number of vector elements, as we know 4311 // the LMUL will be sufficient to hold the smaller type. 4312 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4313 // Get the extended container type manually to ensure the same number of 4314 // vector elements between source and dest. 4315 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4316 ContainerExtVT.getVectorElementCount()); 4317 4318 SDValue Op1 = 4319 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4320 4321 SDLoc DL(Op); 4322 SDValue Mask, VL; 4323 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4324 4325 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4326 4327 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4328 } 4329 4330 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4331 // setcc operation: 4332 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4333 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 4334 SelectionDAG &DAG) const { 4335 SDLoc DL(Op); 4336 EVT MaskVT = Op.getValueType(); 4337 // Only expect to custom-lower truncations to mask types 4338 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4339 "Unexpected type for vector mask lowering"); 4340 SDValue Src = Op.getOperand(0); 4341 MVT VecVT = Src.getSimpleValueType(); 4342 4343 // If this is a fixed vector, we need to convert it to a scalable vector. 4344 MVT ContainerVT = VecVT; 4345 if (VecVT.isFixedLengthVector()) { 4346 ContainerVT = getContainerForFixedLengthVector(VecVT); 4347 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4348 } 4349 4350 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4351 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4352 4353 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4354 DAG.getUNDEF(ContainerVT), SplatOne); 4355 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4356 DAG.getUNDEF(ContainerVT), SplatZero); 4357 4358 if (VecVT.isScalableVector()) { 4359 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 4360 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 4361 } 4362 4363 SDValue Mask, VL; 4364 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4365 4366 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4367 SDValue Trunc = 4368 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4369 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4370 DAG.getCondCode(ISD::SETNE), Mask, VL); 4371 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4372 } 4373 4374 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4375 // first position of a vector, and that vector is slid up to the insert index. 4376 // By limiting the active vector length to index+1 and merging with the 4377 // original vector (with an undisturbed tail policy for elements >= VL), we 4378 // achieve the desired result of leaving all elements untouched except the one 4379 // at VL-1, which is replaced with the desired value. 4380 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4381 SelectionDAG &DAG) const { 4382 SDLoc DL(Op); 4383 MVT VecVT = Op.getSimpleValueType(); 4384 SDValue Vec = Op.getOperand(0); 4385 SDValue Val = Op.getOperand(1); 4386 SDValue Idx = Op.getOperand(2); 4387 4388 if (VecVT.getVectorElementType() == MVT::i1) { 4389 // FIXME: For now we just promote to an i8 vector and insert into that, 4390 // but this is probably not optimal. 4391 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4392 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4393 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4394 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4395 } 4396 4397 MVT ContainerVT = VecVT; 4398 // If the operand is a fixed-length vector, convert to a scalable one. 4399 if (VecVT.isFixedLengthVector()) { 4400 ContainerVT = getContainerForFixedLengthVector(VecVT); 4401 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4402 } 4403 4404 MVT XLenVT = Subtarget.getXLenVT(); 4405 4406 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4407 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4408 // Even i64-element vectors on RV32 can be lowered without scalar 4409 // legalization if the most-significant 32 bits of the value are not affected 4410 // by the sign-extension of the lower 32 bits. 4411 // TODO: We could also catch sign extensions of a 32-bit value. 4412 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4413 const auto *CVal = cast<ConstantSDNode>(Val); 4414 if (isInt<32>(CVal->getSExtValue())) { 4415 IsLegalInsert = true; 4416 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4417 } 4418 } 4419 4420 SDValue Mask, VL; 4421 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4422 4423 SDValue ValInVec; 4424 4425 if (IsLegalInsert) { 4426 unsigned Opc = 4427 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4428 if (isNullConstant(Idx)) { 4429 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4430 if (!VecVT.isFixedLengthVector()) 4431 return Vec; 4432 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4433 } 4434 ValInVec = 4435 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4436 } else { 4437 // On RV32, i64-element vectors must be specially handled to place the 4438 // value at element 0, by using two vslide1up instructions in sequence on 4439 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4440 // this. 4441 SDValue One = DAG.getConstant(1, DL, XLenVT); 4442 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4443 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4444 MVT I32ContainerVT = 4445 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4446 SDValue I32Mask = 4447 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4448 // Limit the active VL to two. 4449 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4450 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4451 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4452 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, 4453 DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL); 4454 // First slide in the hi value, then the lo in underneath it. 4455 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4456 DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi, 4457 I32Mask, InsertI64VL); 4458 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4459 DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo, 4460 I32Mask, InsertI64VL); 4461 // Bitcast back to the right container type. 4462 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4463 } 4464 4465 // Now that the value is in a vector, slide it into position. 4466 SDValue InsertVL = 4467 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4468 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4469 ValInVec, Idx, Mask, InsertVL); 4470 if (!VecVT.isFixedLengthVector()) 4471 return Slideup; 4472 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4473 } 4474 4475 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4476 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4477 // types this is done using VMV_X_S to allow us to glean information about the 4478 // sign bits of the result. 4479 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4480 SelectionDAG &DAG) const { 4481 SDLoc DL(Op); 4482 SDValue Idx = Op.getOperand(1); 4483 SDValue Vec = Op.getOperand(0); 4484 EVT EltVT = Op.getValueType(); 4485 MVT VecVT = Vec.getSimpleValueType(); 4486 MVT XLenVT = Subtarget.getXLenVT(); 4487 4488 if (VecVT.getVectorElementType() == MVT::i1) { 4489 if (VecVT.isFixedLengthVector()) { 4490 unsigned NumElts = VecVT.getVectorNumElements(); 4491 if (NumElts >= 8) { 4492 MVT WideEltVT; 4493 unsigned WidenVecLen; 4494 SDValue ExtractElementIdx; 4495 SDValue ExtractBitIdx; 4496 unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors(); 4497 MVT LargestEltVT = MVT::getIntegerVT( 4498 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4499 if (NumElts <= LargestEltVT.getSizeInBits()) { 4500 assert(isPowerOf2_32(NumElts) && 4501 "the number of elements should be power of 2"); 4502 WideEltVT = MVT::getIntegerVT(NumElts); 4503 WidenVecLen = 1; 4504 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4505 ExtractBitIdx = Idx; 4506 } else { 4507 WideEltVT = LargestEltVT; 4508 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4509 // extract element index = index / element width 4510 ExtractElementIdx = DAG.getNode( 4511 ISD::SRL, DL, XLenVT, Idx, 4512 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4513 // mask bit index = index % element width 4514 ExtractBitIdx = DAG.getNode( 4515 ISD::AND, DL, XLenVT, Idx, 4516 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4517 } 4518 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4519 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4520 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4521 Vec, ExtractElementIdx); 4522 // Extract the bit from GPR. 4523 SDValue ShiftRight = 4524 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4525 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4526 DAG.getConstant(1, DL, XLenVT)); 4527 } 4528 } 4529 // Otherwise, promote to an i8 vector and extract from that. 4530 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4531 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4532 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4533 } 4534 4535 // If this is a fixed vector, we need to convert it to a scalable vector. 4536 MVT ContainerVT = VecVT; 4537 if (VecVT.isFixedLengthVector()) { 4538 ContainerVT = getContainerForFixedLengthVector(VecVT); 4539 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4540 } 4541 4542 // If the index is 0, the vector is already in the right position. 4543 if (!isNullConstant(Idx)) { 4544 // Use a VL of 1 to avoid processing more elements than we need. 4545 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4546 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4547 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4548 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4549 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4550 } 4551 4552 if (!EltVT.isInteger()) { 4553 // Floating-point extracts are handled in TableGen. 4554 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4555 DAG.getConstant(0, DL, XLenVT)); 4556 } 4557 4558 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4559 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4560 } 4561 4562 // Some RVV intrinsics may claim that they want an integer operand to be 4563 // promoted or expanded. 4564 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG, 4565 const RISCVSubtarget &Subtarget) { 4566 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4567 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4568 "Unexpected opcode"); 4569 4570 if (!Subtarget.hasVInstructions()) 4571 return SDValue(); 4572 4573 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4574 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4575 SDLoc DL(Op); 4576 4577 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4578 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4579 if (!II || !II->hasScalarOperand()) 4580 return SDValue(); 4581 4582 unsigned SplatOp = II->ScalarOperand + 1 + HasChain; 4583 assert(SplatOp < Op.getNumOperands()); 4584 4585 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4586 SDValue &ScalarOp = Operands[SplatOp]; 4587 MVT OpVT = ScalarOp.getSimpleValueType(); 4588 MVT XLenVT = Subtarget.getXLenVT(); 4589 4590 // If this isn't a scalar, or its type is XLenVT we're done. 4591 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4592 return SDValue(); 4593 4594 // Simplest case is that the operand needs to be promoted to XLenVT. 4595 if (OpVT.bitsLT(XLenVT)) { 4596 // If the operand is a constant, sign extend to increase our chances 4597 // of being able to use a .vi instruction. ANY_EXTEND would become a 4598 // a zero extend and the simm5 check in isel would fail. 4599 // FIXME: Should we ignore the upper bits in isel instead? 4600 unsigned ExtOpc = 4601 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4602 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4603 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4604 } 4605 4606 // Use the previous operand to get the vXi64 VT. The result might be a mask 4607 // VT for compares. Using the previous operand assumes that the previous 4608 // operand will never have a smaller element size than a scalar operand and 4609 // that a widening operation never uses SEW=64. 4610 // NOTE: If this fails the below assert, we can probably just find the 4611 // element count from any operand or result and use it to construct the VT. 4612 assert(II->ScalarOperand > 0 && "Unexpected splat operand!"); 4613 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4614 4615 // The more complex case is when the scalar is larger than XLenVT. 4616 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4617 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4618 4619 // If this is a sign-extended 32-bit value, we can truncate it and rely on the 4620 // instruction to sign-extend since SEW>XLEN. 4621 if (DAG.ComputeNumSignBits(ScalarOp) > 32) { 4622 ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp); 4623 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4624 } 4625 4626 switch (IntNo) { 4627 case Intrinsic::riscv_vslide1up: 4628 case Intrinsic::riscv_vslide1down: 4629 case Intrinsic::riscv_vslide1up_mask: 4630 case Intrinsic::riscv_vslide1down_mask: { 4631 // We need to special case these when the scalar is larger than XLen. 4632 unsigned NumOps = Op.getNumOperands(); 4633 bool IsMasked = NumOps == 7; 4634 4635 // Convert the vector source to the equivalent nxvXi32 vector. 4636 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4637 SDValue Vec = DAG.getBitcast(I32VT, Operands[2]); 4638 4639 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4640 DAG.getConstant(0, DL, XLenVT)); 4641 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4642 DAG.getConstant(1, DL, XLenVT)); 4643 4644 // Double the VL since we halved SEW. 4645 SDValue AVL = getVLOperand(Op); 4646 SDValue I32VL; 4647 4648 // Optimize for constant AVL 4649 if (isa<ConstantSDNode>(AVL)) { 4650 unsigned EltSize = VT.getScalarSizeInBits(); 4651 unsigned MinSize = VT.getSizeInBits().getKnownMinValue(); 4652 4653 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 4654 unsigned MaxVLMAX = 4655 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 4656 4657 unsigned VectorBitsMin = Subtarget.getRealMinVLen(); 4658 unsigned MinVLMAX = 4659 RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize); 4660 4661 uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue(); 4662 if (AVLInt <= MinVLMAX) { 4663 I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT); 4664 } else if (AVLInt >= 2 * MaxVLMAX) { 4665 // Just set vl to VLMAX in this situation 4666 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT); 4667 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4668 unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits()); 4669 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4670 SDValue SETVLMAX = DAG.getTargetConstant( 4671 Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32); 4672 I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW, 4673 LMUL); 4674 } else { 4675 // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl 4676 // is related to the hardware implementation. 4677 // So let the following code handle 4678 } 4679 } 4680 if (!I32VL) { 4681 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT); 4682 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4683 unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits()); 4684 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4685 SDValue SETVL = 4686 DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32); 4687 // Using vsetvli instruction to get actually used length which related to 4688 // the hardware implementation 4689 SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL, 4690 SEW, LMUL); 4691 I32VL = 4692 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4693 } 4694 4695 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4696 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, I32VL); 4697 4698 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4699 // instructions. 4700 SDValue Passthru; 4701 if (IsMasked) 4702 Passthru = DAG.getUNDEF(I32VT); 4703 else 4704 Passthru = DAG.getBitcast(I32VT, Operands[1]); 4705 4706 if (IntNo == Intrinsic::riscv_vslide1up || 4707 IntNo == Intrinsic::riscv_vslide1up_mask) { 4708 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4709 ScalarHi, I32Mask, I32VL); 4710 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4711 ScalarLo, I32Mask, I32VL); 4712 } else { 4713 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4714 ScalarLo, I32Mask, I32VL); 4715 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4716 ScalarHi, I32Mask, I32VL); 4717 } 4718 4719 // Convert back to nxvXi64. 4720 Vec = DAG.getBitcast(VT, Vec); 4721 4722 if (!IsMasked) 4723 return Vec; 4724 // Apply mask after the operation. 4725 SDValue Mask = Operands[NumOps - 3]; 4726 SDValue MaskedOff = Operands[1]; 4727 // Assume Policy operand is the last operand. 4728 uint64_t Policy = 4729 cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue(); 4730 // We don't need to select maskedoff if it's undef. 4731 if (MaskedOff.isUndef()) 4732 return Vec; 4733 // TAMU 4734 if (Policy == RISCVII::TAIL_AGNOSTIC) 4735 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, 4736 AVL); 4737 // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma. 4738 // It's fine because vmerge does not care mask policy. 4739 return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, 4740 AVL); 4741 } 4742 } 4743 4744 // We need to convert the scalar to a splat vector. 4745 SDValue VL = getVLOperand(Op); 4746 assert(VL.getValueType() == XLenVT); 4747 ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG); 4748 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4749 } 4750 4751 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4752 SelectionDAG &DAG) const { 4753 unsigned IntNo = Op.getConstantOperandVal(0); 4754 SDLoc DL(Op); 4755 MVT XLenVT = Subtarget.getXLenVT(); 4756 4757 switch (IntNo) { 4758 default: 4759 break; // Don't custom lower most intrinsics. 4760 case Intrinsic::thread_pointer: { 4761 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4762 return DAG.getRegister(RISCV::X4, PtrVT); 4763 } 4764 case Intrinsic::riscv_orc_b: 4765 case Intrinsic::riscv_brev8: { 4766 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4767 unsigned Opc = 4768 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4769 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4770 DAG.getConstant(7, DL, XLenVT)); 4771 } 4772 case Intrinsic::riscv_grev: 4773 case Intrinsic::riscv_gorc: { 4774 unsigned Opc = 4775 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4776 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4777 } 4778 case Intrinsic::riscv_zip: 4779 case Intrinsic::riscv_unzip: { 4780 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4781 // For i32 the immediate is 15. For i64 the immediate is 31. 4782 unsigned Opc = 4783 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4784 unsigned BitWidth = Op.getValueSizeInBits(); 4785 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4786 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4787 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4788 } 4789 case Intrinsic::riscv_shfl: 4790 case Intrinsic::riscv_unshfl: { 4791 unsigned Opc = 4792 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4793 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4794 } 4795 case Intrinsic::riscv_bcompress: 4796 case Intrinsic::riscv_bdecompress: { 4797 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4798 : RISCVISD::BDECOMPRESS; 4799 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4800 } 4801 case Intrinsic::riscv_bfp: 4802 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4803 Op.getOperand(2)); 4804 case Intrinsic::riscv_fsl: 4805 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4806 Op.getOperand(2), Op.getOperand(3)); 4807 case Intrinsic::riscv_fsr: 4808 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4809 Op.getOperand(2), Op.getOperand(3)); 4810 case Intrinsic::riscv_vmv_x_s: 4811 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4812 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4813 Op.getOperand(1)); 4814 case Intrinsic::riscv_vmv_v_x: 4815 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4816 Op.getOperand(3), Op.getSimpleValueType(), DL, DAG, 4817 Subtarget); 4818 case Intrinsic::riscv_vfmv_v_f: 4819 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4820 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4821 case Intrinsic::riscv_vmv_s_x: { 4822 SDValue Scalar = Op.getOperand(2); 4823 4824 if (Scalar.getValueType().bitsLE(XLenVT)) { 4825 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4826 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4827 Op.getOperand(1), Scalar, Op.getOperand(3)); 4828 } 4829 4830 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4831 4832 // This is an i64 value that lives in two scalar registers. We have to 4833 // insert this in a convoluted way. First we build vXi64 splat containing 4834 // the two values that we assemble using some bit math. Next we'll use 4835 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4836 // to merge element 0 from our splat into the source vector. 4837 // FIXME: This is probably not the best way to do this, but it is 4838 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4839 // point. 4840 // sw lo, (a0) 4841 // sw hi, 4(a0) 4842 // vlse vX, (a0) 4843 // 4844 // vid.v vVid 4845 // vmseq.vx mMask, vVid, 0 4846 // vmerge.vvm vDest, vSrc, vVal, mMask 4847 MVT VT = Op.getSimpleValueType(); 4848 SDValue Vec = Op.getOperand(1); 4849 SDValue VL = getVLOperand(Op); 4850 4851 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG); 4852 if (Op.getOperand(1).isUndef()) 4853 return SplattedVal; 4854 SDValue SplattedIdx = 4855 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 4856 DAG.getConstant(0, DL, MVT::i32), VL); 4857 4858 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4859 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4860 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4861 SDValue SelectCond = 4862 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4863 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4864 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4865 Vec, VL); 4866 } 4867 } 4868 4869 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4870 } 4871 4872 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4873 SelectionDAG &DAG) const { 4874 unsigned IntNo = Op.getConstantOperandVal(1); 4875 switch (IntNo) { 4876 default: 4877 break; 4878 case Intrinsic::riscv_masked_strided_load: { 4879 SDLoc DL(Op); 4880 MVT XLenVT = Subtarget.getXLenVT(); 4881 4882 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4883 // the selection of the masked intrinsics doesn't do this for us. 4884 SDValue Mask = Op.getOperand(5); 4885 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4886 4887 MVT VT = Op->getSimpleValueType(0); 4888 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4889 4890 SDValue PassThru = Op.getOperand(2); 4891 if (!IsUnmasked) { 4892 MVT MaskVT = 4893 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4894 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4895 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4896 } 4897 4898 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4899 4900 SDValue IntID = DAG.getTargetConstant( 4901 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4902 XLenVT); 4903 4904 auto *Load = cast<MemIntrinsicSDNode>(Op); 4905 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4906 if (IsUnmasked) 4907 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4908 else 4909 Ops.push_back(PassThru); 4910 Ops.push_back(Op.getOperand(3)); // Ptr 4911 Ops.push_back(Op.getOperand(4)); // Stride 4912 if (!IsUnmasked) 4913 Ops.push_back(Mask); 4914 Ops.push_back(VL); 4915 if (!IsUnmasked) { 4916 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4917 Ops.push_back(Policy); 4918 } 4919 4920 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4921 SDValue Result = 4922 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4923 Load->getMemoryVT(), Load->getMemOperand()); 4924 SDValue Chain = Result.getValue(1); 4925 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4926 return DAG.getMergeValues({Result, Chain}, DL); 4927 } 4928 case Intrinsic::riscv_seg2_load: 4929 case Intrinsic::riscv_seg3_load: 4930 case Intrinsic::riscv_seg4_load: 4931 case Intrinsic::riscv_seg5_load: 4932 case Intrinsic::riscv_seg6_load: 4933 case Intrinsic::riscv_seg7_load: 4934 case Intrinsic::riscv_seg8_load: { 4935 SDLoc DL(Op); 4936 static const Intrinsic::ID VlsegInts[7] = { 4937 Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, 4938 Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, 4939 Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, 4940 Intrinsic::riscv_vlseg8}; 4941 unsigned NF = Op->getNumValues() - 1; 4942 assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); 4943 MVT XLenVT = Subtarget.getXLenVT(); 4944 MVT VT = Op->getSimpleValueType(0); 4945 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4946 4947 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4948 SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT); 4949 auto *Load = cast<MemIntrinsicSDNode>(Op); 4950 SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT); 4951 ContainerVTs.push_back(MVT::Other); 4952 SDVTList VTs = DAG.getVTList(ContainerVTs); 4953 SDValue Result = 4954 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, 4955 {Load->getChain(), IntID, Op.getOperand(2), VL}, 4956 Load->getMemoryVT(), Load->getMemOperand()); 4957 SmallVector<SDValue, 9> Results; 4958 for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++) 4959 Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx), 4960 DAG, Subtarget)); 4961 Results.push_back(Result.getValue(NF)); 4962 return DAG.getMergeValues(Results, DL); 4963 } 4964 } 4965 4966 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4967 } 4968 4969 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4970 SelectionDAG &DAG) const { 4971 unsigned IntNo = Op.getConstantOperandVal(1); 4972 switch (IntNo) { 4973 default: 4974 break; 4975 case Intrinsic::riscv_masked_strided_store: { 4976 SDLoc DL(Op); 4977 MVT XLenVT = Subtarget.getXLenVT(); 4978 4979 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4980 // the selection of the masked intrinsics doesn't do this for us. 4981 SDValue Mask = Op.getOperand(5); 4982 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4983 4984 SDValue Val = Op.getOperand(2); 4985 MVT VT = Val.getSimpleValueType(); 4986 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4987 4988 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4989 if (!IsUnmasked) { 4990 MVT MaskVT = 4991 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4992 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4993 } 4994 4995 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4996 4997 SDValue IntID = DAG.getTargetConstant( 4998 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4999 XLenVT); 5000 5001 auto *Store = cast<MemIntrinsicSDNode>(Op); 5002 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 5003 Ops.push_back(Val); 5004 Ops.push_back(Op.getOperand(3)); // Ptr 5005 Ops.push_back(Op.getOperand(4)); // Stride 5006 if (!IsUnmasked) 5007 Ops.push_back(Mask); 5008 Ops.push_back(VL); 5009 5010 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 5011 Ops, Store->getMemoryVT(), 5012 Store->getMemOperand()); 5013 } 5014 } 5015 5016 return SDValue(); 5017 } 5018 5019 static MVT getLMUL1VT(MVT VT) { 5020 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 5021 "Unexpected vector MVT"); 5022 return MVT::getScalableVectorVT( 5023 VT.getVectorElementType(), 5024 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 5025 } 5026 5027 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 5028 switch (ISDOpcode) { 5029 default: 5030 llvm_unreachable("Unhandled reduction"); 5031 case ISD::VECREDUCE_ADD: 5032 return RISCVISD::VECREDUCE_ADD_VL; 5033 case ISD::VECREDUCE_UMAX: 5034 return RISCVISD::VECREDUCE_UMAX_VL; 5035 case ISD::VECREDUCE_SMAX: 5036 return RISCVISD::VECREDUCE_SMAX_VL; 5037 case ISD::VECREDUCE_UMIN: 5038 return RISCVISD::VECREDUCE_UMIN_VL; 5039 case ISD::VECREDUCE_SMIN: 5040 return RISCVISD::VECREDUCE_SMIN_VL; 5041 case ISD::VECREDUCE_AND: 5042 return RISCVISD::VECREDUCE_AND_VL; 5043 case ISD::VECREDUCE_OR: 5044 return RISCVISD::VECREDUCE_OR_VL; 5045 case ISD::VECREDUCE_XOR: 5046 return RISCVISD::VECREDUCE_XOR_VL; 5047 } 5048 } 5049 5050 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 5051 SelectionDAG &DAG, 5052 bool IsVP) const { 5053 SDLoc DL(Op); 5054 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 5055 MVT VecVT = Vec.getSimpleValueType(); 5056 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 5057 Op.getOpcode() == ISD::VECREDUCE_OR || 5058 Op.getOpcode() == ISD::VECREDUCE_XOR || 5059 Op.getOpcode() == ISD::VP_REDUCE_AND || 5060 Op.getOpcode() == ISD::VP_REDUCE_OR || 5061 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 5062 "Unexpected reduction lowering"); 5063 5064 MVT XLenVT = Subtarget.getXLenVT(); 5065 assert(Op.getValueType() == XLenVT && 5066 "Expected reduction output to be legalized to XLenVT"); 5067 5068 MVT ContainerVT = VecVT; 5069 if (VecVT.isFixedLengthVector()) { 5070 ContainerVT = getContainerForFixedLengthVector(VecVT); 5071 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5072 } 5073 5074 SDValue Mask, VL; 5075 if (IsVP) { 5076 Mask = Op.getOperand(2); 5077 VL = Op.getOperand(3); 5078 } else { 5079 std::tie(Mask, VL) = 5080 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5081 } 5082 5083 unsigned BaseOpc; 5084 ISD::CondCode CC; 5085 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 5086 5087 switch (Op.getOpcode()) { 5088 default: 5089 llvm_unreachable("Unhandled reduction"); 5090 case ISD::VECREDUCE_AND: 5091 case ISD::VP_REDUCE_AND: { 5092 // vcpop ~x == 0 5093 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 5094 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 5095 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5096 CC = ISD::SETEQ; 5097 BaseOpc = ISD::AND; 5098 break; 5099 } 5100 case ISD::VECREDUCE_OR: 5101 case ISD::VP_REDUCE_OR: 5102 // vcpop x != 0 5103 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5104 CC = ISD::SETNE; 5105 BaseOpc = ISD::OR; 5106 break; 5107 case ISD::VECREDUCE_XOR: 5108 case ISD::VP_REDUCE_XOR: { 5109 // ((vcpop x) & 1) != 0 5110 SDValue One = DAG.getConstant(1, DL, XLenVT); 5111 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5112 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 5113 CC = ISD::SETNE; 5114 BaseOpc = ISD::XOR; 5115 break; 5116 } 5117 } 5118 5119 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 5120 5121 if (!IsVP) 5122 return SetCC; 5123 5124 // Now include the start value in the operation. 5125 // Note that we must return the start value when no elements are operated 5126 // upon. The vcpop instructions we've emitted in each case above will return 5127 // 0 for an inactive vector, and so we've already received the neutral value: 5128 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 5129 // can simply include the start value. 5130 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 5131 } 5132 5133 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 5134 SelectionDAG &DAG) const { 5135 SDLoc DL(Op); 5136 SDValue Vec = Op.getOperand(0); 5137 EVT VecEVT = Vec.getValueType(); 5138 5139 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 5140 5141 // Due to ordering in legalize types we may have a vector type that needs to 5142 // be split. Do that manually so we can get down to a legal type. 5143 while (getTypeAction(*DAG.getContext(), VecEVT) == 5144 TargetLowering::TypeSplitVector) { 5145 SDValue Lo, Hi; 5146 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 5147 VecEVT = Lo.getValueType(); 5148 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 5149 } 5150 5151 // TODO: The type may need to be widened rather than split. Or widened before 5152 // it can be split. 5153 if (!isTypeLegal(VecEVT)) 5154 return SDValue(); 5155 5156 MVT VecVT = VecEVT.getSimpleVT(); 5157 MVT VecEltVT = VecVT.getVectorElementType(); 5158 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 5159 5160 MVT ContainerVT = VecVT; 5161 if (VecVT.isFixedLengthVector()) { 5162 ContainerVT = getContainerForFixedLengthVector(VecVT); 5163 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5164 } 5165 5166 MVT M1VT = getLMUL1VT(ContainerVT); 5167 MVT XLenVT = Subtarget.getXLenVT(); 5168 5169 SDValue Mask, VL; 5170 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5171 5172 SDValue NeutralElem = 5173 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 5174 SDValue IdentitySplat = 5175 lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT), 5176 M1VT, DL, DAG, Subtarget); 5177 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 5178 IdentitySplat, Mask, VL); 5179 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5180 DAG.getConstant(0, DL, XLenVT)); 5181 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5182 } 5183 5184 // Given a reduction op, this function returns the matching reduction opcode, 5185 // the vector SDValue and the scalar SDValue required to lower this to a 5186 // RISCVISD node. 5187 static std::tuple<unsigned, SDValue, SDValue> 5188 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 5189 SDLoc DL(Op); 5190 auto Flags = Op->getFlags(); 5191 unsigned Opcode = Op.getOpcode(); 5192 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 5193 switch (Opcode) { 5194 default: 5195 llvm_unreachable("Unhandled reduction"); 5196 case ISD::VECREDUCE_FADD: { 5197 // Use positive zero if we can. It is cheaper to materialize. 5198 SDValue Zero = 5199 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 5200 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 5201 } 5202 case ISD::VECREDUCE_SEQ_FADD: 5203 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 5204 Op.getOperand(0)); 5205 case ISD::VECREDUCE_FMIN: 5206 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 5207 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5208 case ISD::VECREDUCE_FMAX: 5209 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 5210 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5211 } 5212 } 5213 5214 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 5215 SelectionDAG &DAG) const { 5216 SDLoc DL(Op); 5217 MVT VecEltVT = Op.getSimpleValueType(); 5218 5219 unsigned RVVOpcode; 5220 SDValue VectorVal, ScalarVal; 5221 std::tie(RVVOpcode, VectorVal, ScalarVal) = 5222 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 5223 MVT VecVT = VectorVal.getSimpleValueType(); 5224 5225 MVT ContainerVT = VecVT; 5226 if (VecVT.isFixedLengthVector()) { 5227 ContainerVT = getContainerForFixedLengthVector(VecVT); 5228 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 5229 } 5230 5231 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 5232 MVT XLenVT = Subtarget.getXLenVT(); 5233 5234 SDValue Mask, VL; 5235 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5236 5237 SDValue ScalarSplat = 5238 lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT), 5239 M1VT, DL, DAG, Subtarget); 5240 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 5241 VectorVal, ScalarSplat, Mask, VL); 5242 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5243 DAG.getConstant(0, DL, XLenVT)); 5244 } 5245 5246 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 5247 switch (ISDOpcode) { 5248 default: 5249 llvm_unreachable("Unhandled reduction"); 5250 case ISD::VP_REDUCE_ADD: 5251 return RISCVISD::VECREDUCE_ADD_VL; 5252 case ISD::VP_REDUCE_UMAX: 5253 return RISCVISD::VECREDUCE_UMAX_VL; 5254 case ISD::VP_REDUCE_SMAX: 5255 return RISCVISD::VECREDUCE_SMAX_VL; 5256 case ISD::VP_REDUCE_UMIN: 5257 return RISCVISD::VECREDUCE_UMIN_VL; 5258 case ISD::VP_REDUCE_SMIN: 5259 return RISCVISD::VECREDUCE_SMIN_VL; 5260 case ISD::VP_REDUCE_AND: 5261 return RISCVISD::VECREDUCE_AND_VL; 5262 case ISD::VP_REDUCE_OR: 5263 return RISCVISD::VECREDUCE_OR_VL; 5264 case ISD::VP_REDUCE_XOR: 5265 return RISCVISD::VECREDUCE_XOR_VL; 5266 case ISD::VP_REDUCE_FADD: 5267 return RISCVISD::VECREDUCE_FADD_VL; 5268 case ISD::VP_REDUCE_SEQ_FADD: 5269 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 5270 case ISD::VP_REDUCE_FMAX: 5271 return RISCVISD::VECREDUCE_FMAX_VL; 5272 case ISD::VP_REDUCE_FMIN: 5273 return RISCVISD::VECREDUCE_FMIN_VL; 5274 } 5275 } 5276 5277 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5278 SelectionDAG &DAG) const { 5279 SDLoc DL(Op); 5280 SDValue Vec = Op.getOperand(1); 5281 EVT VecEVT = Vec.getValueType(); 5282 5283 // TODO: The type may need to be widened rather than split. Or widened before 5284 // it can be split. 5285 if (!isTypeLegal(VecEVT)) 5286 return SDValue(); 5287 5288 MVT VecVT = VecEVT.getSimpleVT(); 5289 MVT VecEltVT = VecVT.getVectorElementType(); 5290 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5291 5292 MVT ContainerVT = VecVT; 5293 if (VecVT.isFixedLengthVector()) { 5294 ContainerVT = getContainerForFixedLengthVector(VecVT); 5295 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5296 } 5297 5298 SDValue VL = Op.getOperand(3); 5299 SDValue Mask = Op.getOperand(2); 5300 5301 MVT M1VT = getLMUL1VT(ContainerVT); 5302 MVT XLenVT = Subtarget.getXLenVT(); 5303 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5304 5305 SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0), 5306 DAG.getConstant(1, DL, XLenVT), M1VT, 5307 DL, DAG, Subtarget); 5308 SDValue Reduction = 5309 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5310 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5311 DAG.getConstant(0, DL, XLenVT)); 5312 if (!VecVT.isInteger()) 5313 return Elt0; 5314 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5315 } 5316 5317 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5318 SelectionDAG &DAG) const { 5319 SDValue Vec = Op.getOperand(0); 5320 SDValue SubVec = Op.getOperand(1); 5321 MVT VecVT = Vec.getSimpleValueType(); 5322 MVT SubVecVT = SubVec.getSimpleValueType(); 5323 5324 SDLoc DL(Op); 5325 MVT XLenVT = Subtarget.getXLenVT(); 5326 unsigned OrigIdx = Op.getConstantOperandVal(2); 5327 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5328 5329 // We don't have the ability to slide mask vectors up indexed by their i1 5330 // elements; the smallest we can do is i8. Often we are able to bitcast to 5331 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5332 // into a scalable one, we might not necessarily have enough scalable 5333 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5334 if (SubVecVT.getVectorElementType() == MVT::i1 && 5335 (OrigIdx != 0 || !Vec.isUndef())) { 5336 if (VecVT.getVectorMinNumElements() >= 8 && 5337 SubVecVT.getVectorMinNumElements() >= 8) { 5338 assert(OrigIdx % 8 == 0 && "Invalid index"); 5339 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5340 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5341 "Unexpected mask vector lowering"); 5342 OrigIdx /= 8; 5343 SubVecVT = 5344 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5345 SubVecVT.isScalableVector()); 5346 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5347 VecVT.isScalableVector()); 5348 Vec = DAG.getBitcast(VecVT, Vec); 5349 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5350 } else { 5351 // We can't slide this mask vector up indexed by its i1 elements. 5352 // This poses a problem when we wish to insert a scalable vector which 5353 // can't be re-expressed as a larger type. Just choose the slow path and 5354 // extend to a larger type, then truncate back down. 5355 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5356 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5357 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5358 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5359 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5360 Op.getOperand(2)); 5361 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5362 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5363 } 5364 } 5365 5366 // If the subvector vector is a fixed-length type, we cannot use subregister 5367 // manipulation to simplify the codegen; we don't know which register of a 5368 // LMUL group contains the specific subvector as we only know the minimum 5369 // register size. Therefore we must slide the vector group up the full 5370 // amount. 5371 if (SubVecVT.isFixedLengthVector()) { 5372 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5373 return Op; 5374 MVT ContainerVT = VecVT; 5375 if (VecVT.isFixedLengthVector()) { 5376 ContainerVT = getContainerForFixedLengthVector(VecVT); 5377 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5378 } 5379 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5380 DAG.getUNDEF(ContainerVT), SubVec, 5381 DAG.getConstant(0, DL, XLenVT)); 5382 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5383 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5384 return DAG.getBitcast(Op.getValueType(), SubVec); 5385 } 5386 SDValue Mask = 5387 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5388 // Set the vector length to only the number of elements we care about. Note 5389 // that for slideup this includes the offset. 5390 SDValue VL = 5391 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5392 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5393 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5394 SubVec, SlideupAmt, Mask, VL); 5395 if (VecVT.isFixedLengthVector()) 5396 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5397 return DAG.getBitcast(Op.getValueType(), Slideup); 5398 } 5399 5400 unsigned SubRegIdx, RemIdx; 5401 std::tie(SubRegIdx, RemIdx) = 5402 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5403 VecVT, SubVecVT, OrigIdx, TRI); 5404 5405 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5406 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5407 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5408 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5409 5410 // 1. If the Idx has been completely eliminated and this subvector's size is 5411 // a vector register or a multiple thereof, or the surrounding elements are 5412 // undef, then this is a subvector insert which naturally aligns to a vector 5413 // register. These can easily be handled using subregister manipulation. 5414 // 2. If the subvector is smaller than a vector register, then the insertion 5415 // must preserve the undisturbed elements of the register. We do this by 5416 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5417 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5418 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5419 // LMUL=1 type back into the larger vector (resolving to another subregister 5420 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5421 // to avoid allocating a large register group to hold our subvector. 5422 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5423 return Op; 5424 5425 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5426 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5427 // (in our case undisturbed). This means we can set up a subvector insertion 5428 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5429 // size of the subvector. 5430 MVT InterSubVT = VecVT; 5431 SDValue AlignedExtract = Vec; 5432 unsigned AlignedIdx = OrigIdx - RemIdx; 5433 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5434 InterSubVT = getLMUL1VT(VecVT); 5435 // Extract a subvector equal to the nearest full vector register type. This 5436 // should resolve to a EXTRACT_SUBREG instruction. 5437 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5438 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5439 } 5440 5441 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5442 // For scalable vectors this must be further multiplied by vscale. 5443 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5444 5445 SDValue Mask, VL; 5446 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5447 5448 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5449 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5450 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5451 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5452 5453 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5454 DAG.getUNDEF(InterSubVT), SubVec, 5455 DAG.getConstant(0, DL, XLenVT)); 5456 5457 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5458 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5459 5460 // If required, insert this subvector back into the correct vector register. 5461 // This should resolve to an INSERT_SUBREG instruction. 5462 if (VecVT.bitsGT(InterSubVT)) 5463 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5464 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5465 5466 // We might have bitcast from a mask type: cast back to the original type if 5467 // required. 5468 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5469 } 5470 5471 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5472 SelectionDAG &DAG) const { 5473 SDValue Vec = Op.getOperand(0); 5474 MVT SubVecVT = Op.getSimpleValueType(); 5475 MVT VecVT = Vec.getSimpleValueType(); 5476 5477 SDLoc DL(Op); 5478 MVT XLenVT = Subtarget.getXLenVT(); 5479 unsigned OrigIdx = Op.getConstantOperandVal(1); 5480 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5481 5482 // We don't have the ability to slide mask vectors down indexed by their i1 5483 // elements; the smallest we can do is i8. Often we are able to bitcast to 5484 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5485 // from a scalable one, we might not necessarily have enough scalable 5486 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5487 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5488 if (VecVT.getVectorMinNumElements() >= 8 && 5489 SubVecVT.getVectorMinNumElements() >= 8) { 5490 assert(OrigIdx % 8 == 0 && "Invalid index"); 5491 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5492 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5493 "Unexpected mask vector lowering"); 5494 OrigIdx /= 8; 5495 SubVecVT = 5496 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5497 SubVecVT.isScalableVector()); 5498 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5499 VecVT.isScalableVector()); 5500 Vec = DAG.getBitcast(VecVT, Vec); 5501 } else { 5502 // We can't slide this mask vector down, indexed by its i1 elements. 5503 // This poses a problem when we wish to extract a scalable vector which 5504 // can't be re-expressed as a larger type. Just choose the slow path and 5505 // extend to a larger type, then truncate back down. 5506 // TODO: We could probably improve this when extracting certain fixed 5507 // from fixed, where we can extract as i8 and shift the correct element 5508 // right to reach the desired subvector? 5509 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5510 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5511 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5512 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5513 Op.getOperand(1)); 5514 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5515 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5516 } 5517 } 5518 5519 // If the subvector vector is a fixed-length type, we cannot use subregister 5520 // manipulation to simplify the codegen; we don't know which register of a 5521 // LMUL group contains the specific subvector as we only know the minimum 5522 // register size. Therefore we must slide the vector group down the full 5523 // amount. 5524 if (SubVecVT.isFixedLengthVector()) { 5525 // With an index of 0 this is a cast-like subvector, which can be performed 5526 // with subregister operations. 5527 if (OrigIdx == 0) 5528 return Op; 5529 MVT ContainerVT = VecVT; 5530 if (VecVT.isFixedLengthVector()) { 5531 ContainerVT = getContainerForFixedLengthVector(VecVT); 5532 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5533 } 5534 SDValue Mask = 5535 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5536 // Set the vector length to only the number of elements we care about. This 5537 // avoids sliding down elements we're going to discard straight away. 5538 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5539 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5540 SDValue Slidedown = 5541 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5542 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5543 // Now we can use a cast-like subvector extract to get the result. 5544 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5545 DAG.getConstant(0, DL, XLenVT)); 5546 return DAG.getBitcast(Op.getValueType(), Slidedown); 5547 } 5548 5549 unsigned SubRegIdx, RemIdx; 5550 std::tie(SubRegIdx, RemIdx) = 5551 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5552 VecVT, SubVecVT, OrigIdx, TRI); 5553 5554 // If the Idx has been completely eliminated then this is a subvector extract 5555 // which naturally aligns to a vector register. These can easily be handled 5556 // using subregister manipulation. 5557 if (RemIdx == 0) 5558 return Op; 5559 5560 // Else we must shift our vector register directly to extract the subvector. 5561 // Do this using VSLIDEDOWN. 5562 5563 // If the vector type is an LMUL-group type, extract a subvector equal to the 5564 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5565 // instruction. 5566 MVT InterSubVT = VecVT; 5567 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5568 InterSubVT = getLMUL1VT(VecVT); 5569 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5570 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5571 } 5572 5573 // Slide this vector register down by the desired number of elements in order 5574 // to place the desired subvector starting at element 0. 5575 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5576 // For scalable vectors this must be further multiplied by vscale. 5577 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5578 5579 SDValue Mask, VL; 5580 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5581 SDValue Slidedown = 5582 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5583 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5584 5585 // Now the vector is in the right position, extract our final subvector. This 5586 // should resolve to a COPY. 5587 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5588 DAG.getConstant(0, DL, XLenVT)); 5589 5590 // We might have bitcast from a mask type: cast back to the original type if 5591 // required. 5592 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5593 } 5594 5595 // Lower step_vector to the vid instruction. Any non-identity step value must 5596 // be accounted for my manual expansion. 5597 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5598 SelectionDAG &DAG) const { 5599 SDLoc DL(Op); 5600 MVT VT = Op.getSimpleValueType(); 5601 MVT XLenVT = Subtarget.getXLenVT(); 5602 SDValue Mask, VL; 5603 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5604 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5605 uint64_t StepValImm = Op.getConstantOperandVal(0); 5606 if (StepValImm != 1) { 5607 if (isPowerOf2_64(StepValImm)) { 5608 SDValue StepVal = 5609 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 5610 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5611 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5612 } else { 5613 SDValue StepVal = lowerScalarSplat( 5614 SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), 5615 VL, VT, DL, DAG, Subtarget); 5616 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5617 } 5618 } 5619 return StepVec; 5620 } 5621 5622 // Implement vector_reverse using vrgather.vv with indices determined by 5623 // subtracting the id of each element from (VLMAX-1). This will convert 5624 // the indices like so: 5625 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5626 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5627 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5628 SelectionDAG &DAG) const { 5629 SDLoc DL(Op); 5630 MVT VecVT = Op.getSimpleValueType(); 5631 unsigned EltSize = VecVT.getScalarSizeInBits(); 5632 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5633 5634 unsigned MaxVLMAX = 0; 5635 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5636 if (VectorBitsMax != 0) 5637 MaxVLMAX = 5638 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 5639 5640 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5641 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5642 5643 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5644 // to use vrgatherei16.vv. 5645 // TODO: It's also possible to use vrgatherei16.vv for other types to 5646 // decrease register width for the index calculation. 5647 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5648 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5649 // Reverse each half, then reassemble them in reverse order. 5650 // NOTE: It's also possible that after splitting that VLMAX no longer 5651 // requires vrgatherei16.vv. 5652 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5653 SDValue Lo, Hi; 5654 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5655 EVT LoVT, HiVT; 5656 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5657 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5658 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5659 // Reassemble the low and high pieces reversed. 5660 // FIXME: This is a CONCAT_VECTORS. 5661 SDValue Res = 5662 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5663 DAG.getIntPtrConstant(0, DL)); 5664 return DAG.getNode( 5665 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5666 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5667 } 5668 5669 // Just promote the int type to i16 which will double the LMUL. 5670 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5671 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5672 } 5673 5674 MVT XLenVT = Subtarget.getXLenVT(); 5675 SDValue Mask, VL; 5676 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5677 5678 // Calculate VLMAX-1 for the desired SEW. 5679 unsigned MinElts = VecVT.getVectorMinNumElements(); 5680 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5681 DAG.getConstant(MinElts, DL, XLenVT)); 5682 SDValue VLMinus1 = 5683 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5684 5685 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5686 bool IsRV32E64 = 5687 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5688 SDValue SplatVL; 5689 if (!IsRV32E64) 5690 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5691 else 5692 SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), 5693 VLMinus1, DAG.getRegister(RISCV::X0, XLenVT)); 5694 5695 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5696 SDValue Indices = 5697 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5698 5699 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5700 } 5701 5702 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op, 5703 SelectionDAG &DAG) const { 5704 SDLoc DL(Op); 5705 SDValue V1 = Op.getOperand(0); 5706 SDValue V2 = Op.getOperand(1); 5707 MVT XLenVT = Subtarget.getXLenVT(); 5708 MVT VecVT = Op.getSimpleValueType(); 5709 5710 unsigned MinElts = VecVT.getVectorMinNumElements(); 5711 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5712 DAG.getConstant(MinElts, DL, XLenVT)); 5713 5714 int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue(); 5715 SDValue DownOffset, UpOffset; 5716 if (ImmValue >= 0) { 5717 // The operand is a TargetConstant, we need to rebuild it as a regular 5718 // constant. 5719 DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); 5720 UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset); 5721 } else { 5722 // The operand is a TargetConstant, we need to rebuild it as a regular 5723 // constant rather than negating the original operand. 5724 UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); 5725 DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset); 5726 } 5727 5728 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5729 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax); 5730 5731 SDValue SlideDown = 5732 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1, 5733 DownOffset, TrueMask, UpOffset); 5734 return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset, 5735 TrueMask, 5736 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT)); 5737 } 5738 5739 SDValue 5740 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5741 SelectionDAG &DAG) const { 5742 SDLoc DL(Op); 5743 auto *Load = cast<LoadSDNode>(Op); 5744 5745 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5746 Load->getMemoryVT(), 5747 *Load->getMemOperand()) && 5748 "Expecting a correctly-aligned load"); 5749 5750 MVT VT = Op.getSimpleValueType(); 5751 MVT XLenVT = Subtarget.getXLenVT(); 5752 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5753 5754 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5755 5756 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5757 SDValue IntID = DAG.getTargetConstant( 5758 IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT); 5759 SmallVector<SDValue, 4> Ops{Load->getChain(), IntID}; 5760 if (!IsMaskOp) 5761 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5762 Ops.push_back(Load->getBasePtr()); 5763 Ops.push_back(VL); 5764 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5765 SDValue NewLoad = 5766 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 5767 Load->getMemoryVT(), Load->getMemOperand()); 5768 5769 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5770 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5771 } 5772 5773 SDValue 5774 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5775 SelectionDAG &DAG) const { 5776 SDLoc DL(Op); 5777 auto *Store = cast<StoreSDNode>(Op); 5778 5779 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5780 Store->getMemoryVT(), 5781 *Store->getMemOperand()) && 5782 "Expecting a correctly-aligned store"); 5783 5784 SDValue StoreVal = Store->getValue(); 5785 MVT VT = StoreVal.getSimpleValueType(); 5786 MVT XLenVT = Subtarget.getXLenVT(); 5787 5788 // If the size less than a byte, we need to pad with zeros to make a byte. 5789 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5790 VT = MVT::v8i1; 5791 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5792 DAG.getConstant(0, DL, VT), StoreVal, 5793 DAG.getIntPtrConstant(0, DL)); 5794 } 5795 5796 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5797 5798 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5799 5800 SDValue NewValue = 5801 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5802 5803 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5804 SDValue IntID = DAG.getTargetConstant( 5805 IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT); 5806 return DAG.getMemIntrinsicNode( 5807 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 5808 {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL}, 5809 Store->getMemoryVT(), Store->getMemOperand()); 5810 } 5811 5812 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5813 SelectionDAG &DAG) const { 5814 SDLoc DL(Op); 5815 MVT VT = Op.getSimpleValueType(); 5816 5817 const auto *MemSD = cast<MemSDNode>(Op); 5818 EVT MemVT = MemSD->getMemoryVT(); 5819 MachineMemOperand *MMO = MemSD->getMemOperand(); 5820 SDValue Chain = MemSD->getChain(); 5821 SDValue BasePtr = MemSD->getBasePtr(); 5822 5823 SDValue Mask, PassThru, VL; 5824 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5825 Mask = VPLoad->getMask(); 5826 PassThru = DAG.getUNDEF(VT); 5827 VL = VPLoad->getVectorLength(); 5828 } else { 5829 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5830 Mask = MLoad->getMask(); 5831 PassThru = MLoad->getPassThru(); 5832 } 5833 5834 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5835 5836 MVT XLenVT = Subtarget.getXLenVT(); 5837 5838 MVT ContainerVT = VT; 5839 if (VT.isFixedLengthVector()) { 5840 ContainerVT = getContainerForFixedLengthVector(VT); 5841 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5842 if (!IsUnmasked) { 5843 MVT MaskVT = 5844 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5845 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5846 } 5847 } 5848 5849 if (!VL) 5850 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5851 5852 unsigned IntID = 5853 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5854 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5855 if (IsUnmasked) 5856 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5857 else 5858 Ops.push_back(PassThru); 5859 Ops.push_back(BasePtr); 5860 if (!IsUnmasked) 5861 Ops.push_back(Mask); 5862 Ops.push_back(VL); 5863 if (!IsUnmasked) 5864 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5865 5866 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5867 5868 SDValue Result = 5869 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5870 Chain = Result.getValue(1); 5871 5872 if (VT.isFixedLengthVector()) 5873 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5874 5875 return DAG.getMergeValues({Result, Chain}, DL); 5876 } 5877 5878 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5879 SelectionDAG &DAG) const { 5880 SDLoc DL(Op); 5881 5882 const auto *MemSD = cast<MemSDNode>(Op); 5883 EVT MemVT = MemSD->getMemoryVT(); 5884 MachineMemOperand *MMO = MemSD->getMemOperand(); 5885 SDValue Chain = MemSD->getChain(); 5886 SDValue BasePtr = MemSD->getBasePtr(); 5887 SDValue Val, Mask, VL; 5888 5889 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5890 Val = VPStore->getValue(); 5891 Mask = VPStore->getMask(); 5892 VL = VPStore->getVectorLength(); 5893 } else { 5894 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5895 Val = MStore->getValue(); 5896 Mask = MStore->getMask(); 5897 } 5898 5899 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5900 5901 MVT VT = Val.getSimpleValueType(); 5902 MVT XLenVT = Subtarget.getXLenVT(); 5903 5904 MVT ContainerVT = VT; 5905 if (VT.isFixedLengthVector()) { 5906 ContainerVT = getContainerForFixedLengthVector(VT); 5907 5908 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5909 if (!IsUnmasked) { 5910 MVT MaskVT = 5911 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5912 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5913 } 5914 } 5915 5916 if (!VL) 5917 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5918 5919 unsigned IntID = 5920 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5921 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5922 Ops.push_back(Val); 5923 Ops.push_back(BasePtr); 5924 if (!IsUnmasked) 5925 Ops.push_back(Mask); 5926 Ops.push_back(VL); 5927 5928 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5929 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5930 } 5931 5932 SDValue 5933 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5934 SelectionDAG &DAG) const { 5935 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5936 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5937 5938 MVT VT = Op.getSimpleValueType(); 5939 5940 SDValue Op1 = 5941 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5942 SDValue Op2 = 5943 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5944 5945 SDLoc DL(Op); 5946 SDValue VL = 5947 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5948 5949 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5950 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5951 5952 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5953 Op.getOperand(2), Mask, VL); 5954 5955 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5956 } 5957 5958 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5959 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5960 MVT VT = Op.getSimpleValueType(); 5961 5962 if (VT.getVectorElementType() == MVT::i1) 5963 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5964 5965 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5966 } 5967 5968 SDValue 5969 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5970 SelectionDAG &DAG) const { 5971 unsigned Opc; 5972 switch (Op.getOpcode()) { 5973 default: llvm_unreachable("Unexpected opcode!"); 5974 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5975 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5976 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5977 } 5978 5979 return lowerToScalableOp(Op, DAG, Opc); 5980 } 5981 5982 // Lower vector ABS to smax(X, sub(0, X)). 5983 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5984 SDLoc DL(Op); 5985 MVT VT = Op.getSimpleValueType(); 5986 SDValue X = Op.getOperand(0); 5987 5988 assert(VT.isFixedLengthVector() && "Unexpected type"); 5989 5990 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5991 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5992 5993 SDValue Mask, VL; 5994 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5995 5996 SDValue SplatZero = DAG.getNode( 5997 RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 5998 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5999 SDValue NegX = 6000 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 6001 SDValue Max = 6002 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 6003 6004 return convertFromScalableVector(VT, Max, DAG, Subtarget); 6005 } 6006 6007 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 6008 SDValue Op, SelectionDAG &DAG) const { 6009 SDLoc DL(Op); 6010 MVT VT = Op.getSimpleValueType(); 6011 SDValue Mag = Op.getOperand(0); 6012 SDValue Sign = Op.getOperand(1); 6013 assert(Mag.getValueType() == Sign.getValueType() && 6014 "Can only handle COPYSIGN with matching types."); 6015 6016 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6017 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 6018 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 6019 6020 SDValue Mask, VL; 6021 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6022 6023 SDValue CopySign = 6024 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 6025 6026 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 6027 } 6028 6029 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 6030 SDValue Op, SelectionDAG &DAG) const { 6031 MVT VT = Op.getSimpleValueType(); 6032 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6033 6034 MVT I1ContainerVT = 6035 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6036 6037 SDValue CC = 6038 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 6039 SDValue Op1 = 6040 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 6041 SDValue Op2 = 6042 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 6043 6044 SDLoc DL(Op); 6045 SDValue Mask, VL; 6046 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6047 6048 SDValue Select = 6049 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 6050 6051 return convertFromScalableVector(VT, Select, DAG, Subtarget); 6052 } 6053 6054 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 6055 unsigned NewOpc, 6056 bool HasMask) const { 6057 MVT VT = Op.getSimpleValueType(); 6058 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6059 6060 // Create list of operands by converting existing ones to scalable types. 6061 SmallVector<SDValue, 6> Ops; 6062 for (const SDValue &V : Op->op_values()) { 6063 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6064 6065 // Pass through non-vector operands. 6066 if (!V.getValueType().isVector()) { 6067 Ops.push_back(V); 6068 continue; 6069 } 6070 6071 // "cast" fixed length vector to a scalable vector. 6072 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 6073 "Only fixed length vectors are supported!"); 6074 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6075 } 6076 6077 SDLoc DL(Op); 6078 SDValue Mask, VL; 6079 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6080 if (HasMask) 6081 Ops.push_back(Mask); 6082 Ops.push_back(VL); 6083 6084 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 6085 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 6086 } 6087 6088 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 6089 // * Operands of each node are assumed to be in the same order. 6090 // * The EVL operand is promoted from i32 to i64 on RV64. 6091 // * Fixed-length vectors are converted to their scalable-vector container 6092 // types. 6093 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 6094 unsigned RISCVISDOpc) const { 6095 SDLoc DL(Op); 6096 MVT VT = Op.getSimpleValueType(); 6097 SmallVector<SDValue, 4> Ops; 6098 6099 for (const auto &OpIdx : enumerate(Op->ops())) { 6100 SDValue V = OpIdx.value(); 6101 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6102 // Pass through operands which aren't fixed-length vectors. 6103 if (!V.getValueType().isFixedLengthVector()) { 6104 Ops.push_back(V); 6105 continue; 6106 } 6107 // "cast" fixed length vector to a scalable vector. 6108 MVT OpVT = V.getSimpleValueType(); 6109 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 6110 assert(useRVVForFixedLengthVectorVT(OpVT) && 6111 "Only fixed length vectors are supported!"); 6112 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6113 } 6114 6115 if (!VT.isFixedLengthVector()) 6116 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 6117 6118 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6119 6120 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 6121 6122 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 6123 } 6124 6125 // Lower Floating-Point/Integer Type-Convert VP SDNodes 6126 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG, 6127 unsigned RISCVISDOpc) const { 6128 SDLoc DL(Op); 6129 6130 SDValue Src = Op.getOperand(0); 6131 SDValue Mask = Op.getOperand(1); 6132 SDValue VL = Op.getOperand(2); 6133 6134 MVT DstVT = Op.getSimpleValueType(); 6135 MVT SrcVT = Src.getSimpleValueType(); 6136 if (DstVT.isFixedLengthVector()) { 6137 DstVT = getContainerForFixedLengthVector(DstVT); 6138 SrcVT = getContainerForFixedLengthVector(SrcVT); 6139 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 6140 MVT MaskVT = MVT::getVectorVT(MVT::i1, DstVT.getVectorElementCount()); 6141 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6142 } 6143 6144 unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL || 6145 RISCVISDOpc == RISCVISD::FP_TO_SINT_VL) 6146 ? RISCVISD::VSEXT_VL 6147 : RISCVISD::VZEXT_VL; 6148 6149 unsigned DstEltSize = DstVT.getScalarSizeInBits(); 6150 unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); 6151 6152 SDValue Result; 6153 if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion. 6154 if (SrcVT.isInteger()) { 6155 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6156 6157 // Do we need to do any pre-widening before converting? 6158 if (SrcEltSize == 1) { 6159 MVT IntVT = DstVT.changeVectorElementTypeToInteger(); 6160 MVT XLenVT = Subtarget.getXLenVT(); 6161 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 6162 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6163 DAG.getUNDEF(IntVT), Zero, VL); 6164 SDValue One = DAG.getConstant( 6165 RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT); 6166 SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6167 DAG.getUNDEF(IntVT), One, VL); 6168 Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat, 6169 ZeroSplat, VL); 6170 } else if (DstEltSize > (2 * SrcEltSize)) { 6171 // Widen before converting. 6172 MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2), 6173 DstVT.getVectorElementCount()); 6174 Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, {Src, Mask, VL}); 6175 } 6176 6177 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, {Src, Mask, VL}); 6178 } else { 6179 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6180 "Wrong input/output vector types"); 6181 6182 // Convert f16 to f32 then convert f32 to i64. 6183 if (DstEltSize > (2 * SrcEltSize)) { 6184 assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6185 MVT InterimFVT = 6186 MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6187 Src = DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, 6188 {Src, Mask, VL}); 6189 } 6190 6191 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, {Src, Mask, VL}); 6192 } 6193 } else { // Narrowing + Conversion 6194 if (SrcVT.isInteger()) { 6195 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6196 // First do a narrowing convert to an FP type half the size, then round 6197 // the FP type to a small FP type if needed. 6198 6199 MVT InterimFVT = DstVT; 6200 if (SrcEltSize > (2 * DstEltSize)) { 6201 assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!"); 6202 assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6203 InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6204 } 6205 6206 Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, {Src, Mask, VL}); 6207 6208 if (InterimFVT != DstVT) { 6209 Src = Result; 6210 Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, {Src, Mask, VL}); 6211 } 6212 } else { 6213 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6214 "Wrong input/output vector types"); 6215 // First do a narrowing conversion to an integer half the size, then 6216 // truncate if needed. 6217 6218 // TODO: Handle mask vectors 6219 assert(DstVT.getVectorElementType() != MVT::i1 && 6220 "Don't know how to handle masks yet!"); 6221 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6222 DstVT.getVectorElementCount()); 6223 6224 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, {Src, Mask, VL}); 6225 6226 while (InterimIVT != DstVT) { 6227 SrcEltSize /= 2; 6228 Src = Result; 6229 InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6230 DstVT.getVectorElementCount()); 6231 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT, 6232 {Src, Mask, VL}); 6233 } 6234 } 6235 } 6236 6237 MVT VT = Op.getSimpleValueType(); 6238 if (!VT.isFixedLengthVector()) 6239 return Result; 6240 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6241 } 6242 6243 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 6244 unsigned MaskOpc, 6245 unsigned VecOpc) const { 6246 MVT VT = Op.getSimpleValueType(); 6247 if (VT.getVectorElementType() != MVT::i1) 6248 return lowerVPOp(Op, DAG, VecOpc); 6249 6250 // It is safe to drop mask parameter as masked-off elements are undef. 6251 SDValue Op1 = Op->getOperand(0); 6252 SDValue Op2 = Op->getOperand(1); 6253 SDValue VL = Op->getOperand(3); 6254 6255 MVT ContainerVT = VT; 6256 const bool IsFixed = VT.isFixedLengthVector(); 6257 if (IsFixed) { 6258 ContainerVT = getContainerForFixedLengthVector(VT); 6259 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6260 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6261 } 6262 6263 SDLoc DL(Op); 6264 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 6265 if (!IsFixed) 6266 return Val; 6267 return convertFromScalableVector(VT, Val, DAG, Subtarget); 6268 } 6269 6270 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 6271 // matched to a RVV indexed load. The RVV indexed load instructions only 6272 // support the "unsigned unscaled" addressing mode; indices are implicitly 6273 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6274 // signed or scaled indexing is extended to the XLEN value type and scaled 6275 // accordingly. 6276 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 6277 SelectionDAG &DAG) const { 6278 SDLoc DL(Op); 6279 MVT VT = Op.getSimpleValueType(); 6280 6281 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6282 EVT MemVT = MemSD->getMemoryVT(); 6283 MachineMemOperand *MMO = MemSD->getMemOperand(); 6284 SDValue Chain = MemSD->getChain(); 6285 SDValue BasePtr = MemSD->getBasePtr(); 6286 6287 ISD::LoadExtType LoadExtType; 6288 SDValue Index, Mask, PassThru, VL; 6289 6290 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 6291 Index = VPGN->getIndex(); 6292 Mask = VPGN->getMask(); 6293 PassThru = DAG.getUNDEF(VT); 6294 VL = VPGN->getVectorLength(); 6295 // VP doesn't support extending loads. 6296 LoadExtType = ISD::NON_EXTLOAD; 6297 } else { 6298 // Else it must be a MGATHER. 6299 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 6300 Index = MGN->getIndex(); 6301 Mask = MGN->getMask(); 6302 PassThru = MGN->getPassThru(); 6303 LoadExtType = MGN->getExtensionType(); 6304 } 6305 6306 MVT IndexVT = Index.getSimpleValueType(); 6307 MVT XLenVT = Subtarget.getXLenVT(); 6308 6309 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6310 "Unexpected VTs!"); 6311 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6312 // Targets have to explicitly opt-in for extending vector loads. 6313 assert(LoadExtType == ISD::NON_EXTLOAD && 6314 "Unexpected extending MGATHER/VP_GATHER"); 6315 (void)LoadExtType; 6316 6317 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6318 // the selection of the masked intrinsics doesn't do this for us. 6319 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6320 6321 MVT ContainerVT = VT; 6322 if (VT.isFixedLengthVector()) { 6323 // We need to use the larger of the result and index type to determine the 6324 // scalable type to use so we don't increase LMUL for any operand/result. 6325 if (VT.bitsGE(IndexVT)) { 6326 ContainerVT = getContainerForFixedLengthVector(VT); 6327 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6328 ContainerVT.getVectorElementCount()); 6329 } else { 6330 IndexVT = getContainerForFixedLengthVector(IndexVT); 6331 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 6332 IndexVT.getVectorElementCount()); 6333 } 6334 6335 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6336 6337 if (!IsUnmasked) { 6338 MVT MaskVT = 6339 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6340 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6341 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 6342 } 6343 } 6344 6345 if (!VL) 6346 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6347 6348 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6349 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6350 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6351 VL); 6352 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6353 TrueMask, VL); 6354 } 6355 6356 unsigned IntID = 6357 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 6358 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6359 if (IsUnmasked) 6360 Ops.push_back(DAG.getUNDEF(ContainerVT)); 6361 else 6362 Ops.push_back(PassThru); 6363 Ops.push_back(BasePtr); 6364 Ops.push_back(Index); 6365 if (!IsUnmasked) 6366 Ops.push_back(Mask); 6367 Ops.push_back(VL); 6368 if (!IsUnmasked) 6369 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 6370 6371 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 6372 SDValue Result = 6373 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 6374 Chain = Result.getValue(1); 6375 6376 if (VT.isFixedLengthVector()) 6377 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 6378 6379 return DAG.getMergeValues({Result, Chain}, DL); 6380 } 6381 6382 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 6383 // matched to a RVV indexed store. The RVV indexed store instructions only 6384 // support the "unsigned unscaled" addressing mode; indices are implicitly 6385 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6386 // signed or scaled indexing is extended to the XLEN value type and scaled 6387 // accordingly. 6388 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 6389 SelectionDAG &DAG) const { 6390 SDLoc DL(Op); 6391 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6392 EVT MemVT = MemSD->getMemoryVT(); 6393 MachineMemOperand *MMO = MemSD->getMemOperand(); 6394 SDValue Chain = MemSD->getChain(); 6395 SDValue BasePtr = MemSD->getBasePtr(); 6396 6397 bool IsTruncatingStore = false; 6398 SDValue Index, Mask, Val, VL; 6399 6400 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 6401 Index = VPSN->getIndex(); 6402 Mask = VPSN->getMask(); 6403 Val = VPSN->getValue(); 6404 VL = VPSN->getVectorLength(); 6405 // VP doesn't support truncating stores. 6406 IsTruncatingStore = false; 6407 } else { 6408 // Else it must be a MSCATTER. 6409 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 6410 Index = MSN->getIndex(); 6411 Mask = MSN->getMask(); 6412 Val = MSN->getValue(); 6413 IsTruncatingStore = MSN->isTruncatingStore(); 6414 } 6415 6416 MVT VT = Val.getSimpleValueType(); 6417 MVT IndexVT = Index.getSimpleValueType(); 6418 MVT XLenVT = Subtarget.getXLenVT(); 6419 6420 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6421 "Unexpected VTs!"); 6422 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6423 // Targets have to explicitly opt-in for extending vector loads and 6424 // truncating vector stores. 6425 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 6426 (void)IsTruncatingStore; 6427 6428 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6429 // the selection of the masked intrinsics doesn't do this for us. 6430 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6431 6432 MVT ContainerVT = VT; 6433 if (VT.isFixedLengthVector()) { 6434 // We need to use the larger of the value and index type to determine the 6435 // scalable type to use so we don't increase LMUL for any operand/result. 6436 if (VT.bitsGE(IndexVT)) { 6437 ContainerVT = getContainerForFixedLengthVector(VT); 6438 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6439 ContainerVT.getVectorElementCount()); 6440 } else { 6441 IndexVT = getContainerForFixedLengthVector(IndexVT); 6442 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 6443 IndexVT.getVectorElementCount()); 6444 } 6445 6446 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6447 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6448 6449 if (!IsUnmasked) { 6450 MVT MaskVT = 6451 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6452 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6453 } 6454 } 6455 6456 if (!VL) 6457 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6458 6459 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6460 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6461 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6462 VL); 6463 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6464 TrueMask, VL); 6465 } 6466 6467 unsigned IntID = 6468 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6469 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6470 Ops.push_back(Val); 6471 Ops.push_back(BasePtr); 6472 Ops.push_back(Index); 6473 if (!IsUnmasked) 6474 Ops.push_back(Mask); 6475 Ops.push_back(VL); 6476 6477 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6478 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6479 } 6480 6481 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6482 SelectionDAG &DAG) const { 6483 const MVT XLenVT = Subtarget.getXLenVT(); 6484 SDLoc DL(Op); 6485 SDValue Chain = Op->getOperand(0); 6486 SDValue SysRegNo = DAG.getTargetConstant( 6487 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6488 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6489 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6490 6491 // Encoding used for rounding mode in RISCV differs from that used in 6492 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6493 // table, which consists of a sequence of 4-bit fields, each representing 6494 // corresponding FLT_ROUNDS mode. 6495 static const int Table = 6496 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6497 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6498 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6499 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6500 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6501 6502 SDValue Shift = 6503 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6504 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6505 DAG.getConstant(Table, DL, XLenVT), Shift); 6506 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6507 DAG.getConstant(7, DL, XLenVT)); 6508 6509 return DAG.getMergeValues({Masked, Chain}, DL); 6510 } 6511 6512 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6513 SelectionDAG &DAG) const { 6514 const MVT XLenVT = Subtarget.getXLenVT(); 6515 SDLoc DL(Op); 6516 SDValue Chain = Op->getOperand(0); 6517 SDValue RMValue = Op->getOperand(1); 6518 SDValue SysRegNo = DAG.getTargetConstant( 6519 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6520 6521 // Encoding used for rounding mode in RISCV differs from that used in 6522 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6523 // a table, which consists of a sequence of 4-bit fields, each representing 6524 // corresponding RISCV mode. 6525 static const unsigned Table = 6526 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6527 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6528 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6529 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6530 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6531 6532 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6533 DAG.getConstant(2, DL, XLenVT)); 6534 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6535 DAG.getConstant(Table, DL, XLenVT), Shift); 6536 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6537 DAG.getConstant(0x7, DL, XLenVT)); 6538 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6539 RMValue); 6540 } 6541 6542 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6543 switch (IntNo) { 6544 default: 6545 llvm_unreachable("Unexpected Intrinsic"); 6546 case Intrinsic::riscv_bcompress: 6547 return RISCVISD::BCOMPRESSW; 6548 case Intrinsic::riscv_bdecompress: 6549 return RISCVISD::BDECOMPRESSW; 6550 case Intrinsic::riscv_bfp: 6551 return RISCVISD::BFPW; 6552 case Intrinsic::riscv_fsl: 6553 return RISCVISD::FSLW; 6554 case Intrinsic::riscv_fsr: 6555 return RISCVISD::FSRW; 6556 } 6557 } 6558 6559 // Converts the given intrinsic to a i64 operation with any extension. 6560 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6561 unsigned IntNo) { 6562 SDLoc DL(N); 6563 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6564 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6565 SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6566 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); 6567 // ReplaceNodeResults requires we maintain the same type for the return value. 6568 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6569 } 6570 6571 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6572 // form of the given Opcode. 6573 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6574 switch (Opcode) { 6575 default: 6576 llvm_unreachable("Unexpected opcode"); 6577 case ISD::SHL: 6578 return RISCVISD::SLLW; 6579 case ISD::SRA: 6580 return RISCVISD::SRAW; 6581 case ISD::SRL: 6582 return RISCVISD::SRLW; 6583 case ISD::SDIV: 6584 return RISCVISD::DIVW; 6585 case ISD::UDIV: 6586 return RISCVISD::DIVUW; 6587 case ISD::UREM: 6588 return RISCVISD::REMUW; 6589 case ISD::ROTL: 6590 return RISCVISD::ROLW; 6591 case ISD::ROTR: 6592 return RISCVISD::RORW; 6593 } 6594 } 6595 6596 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6597 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6598 // otherwise be promoted to i64, making it difficult to select the 6599 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6600 // type i8/i16/i32 is lost. 6601 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6602 unsigned ExtOpc = ISD::ANY_EXTEND) { 6603 SDLoc DL(N); 6604 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6605 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6606 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6607 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6608 // ReplaceNodeResults requires we maintain the same type for the return value. 6609 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6610 } 6611 6612 // Converts the given 32-bit operation to a i64 operation with signed extension 6613 // semantic to reduce the signed extension instructions. 6614 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6615 SDLoc DL(N); 6616 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6617 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6618 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6619 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6620 DAG.getValueType(MVT::i32)); 6621 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6622 } 6623 6624 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6625 SmallVectorImpl<SDValue> &Results, 6626 SelectionDAG &DAG) const { 6627 SDLoc DL(N); 6628 switch (N->getOpcode()) { 6629 default: 6630 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6631 case ISD::STRICT_FP_TO_SINT: 6632 case ISD::STRICT_FP_TO_UINT: 6633 case ISD::FP_TO_SINT: 6634 case ISD::FP_TO_UINT: { 6635 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6636 "Unexpected custom legalisation"); 6637 bool IsStrict = N->isStrictFPOpcode(); 6638 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6639 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6640 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6641 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6642 TargetLowering::TypeSoftenFloat) { 6643 if (!isTypeLegal(Op0.getValueType())) 6644 return; 6645 if (IsStrict) { 6646 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6647 : RISCVISD::STRICT_FCVT_WU_RV64; 6648 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6649 SDValue Res = DAG.getNode( 6650 Opc, DL, VTs, N->getOperand(0), Op0, 6651 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6652 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6653 Results.push_back(Res.getValue(1)); 6654 return; 6655 } 6656 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6657 SDValue Res = 6658 DAG.getNode(Opc, DL, MVT::i64, Op0, 6659 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6660 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6661 return; 6662 } 6663 // If the FP type needs to be softened, emit a library call using the 'si' 6664 // version. If we left it to default legalization we'd end up with 'di'. If 6665 // the FP type doesn't need to be softened just let generic type 6666 // legalization promote the result type. 6667 RTLIB::Libcall LC; 6668 if (IsSigned) 6669 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6670 else 6671 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6672 MakeLibCallOptions CallOptions; 6673 EVT OpVT = Op0.getValueType(); 6674 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6675 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6676 SDValue Result; 6677 std::tie(Result, Chain) = 6678 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6679 Results.push_back(Result); 6680 if (IsStrict) 6681 Results.push_back(Chain); 6682 break; 6683 } 6684 case ISD::READCYCLECOUNTER: { 6685 assert(!Subtarget.is64Bit() && 6686 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6687 6688 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6689 SDValue RCW = 6690 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6691 6692 Results.push_back( 6693 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6694 Results.push_back(RCW.getValue(2)); 6695 break; 6696 } 6697 case ISD::MUL: { 6698 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6699 unsigned XLen = Subtarget.getXLen(); 6700 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6701 if (Size > XLen) { 6702 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6703 SDValue LHS = N->getOperand(0); 6704 SDValue RHS = N->getOperand(1); 6705 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6706 6707 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6708 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6709 // We need exactly one side to be unsigned. 6710 if (LHSIsU == RHSIsU) 6711 return; 6712 6713 auto MakeMULPair = [&](SDValue S, SDValue U) { 6714 MVT XLenVT = Subtarget.getXLenVT(); 6715 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6716 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6717 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6718 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6719 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6720 }; 6721 6722 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6723 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6724 6725 // The other operand should be signed, but still prefer MULH when 6726 // possible. 6727 if (RHSIsU && LHSIsS && !RHSIsS) 6728 Results.push_back(MakeMULPair(LHS, RHS)); 6729 else if (LHSIsU && RHSIsS && !LHSIsS) 6730 Results.push_back(MakeMULPair(RHS, LHS)); 6731 6732 return; 6733 } 6734 LLVM_FALLTHROUGH; 6735 } 6736 case ISD::ADD: 6737 case ISD::SUB: 6738 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6739 "Unexpected custom legalisation"); 6740 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6741 break; 6742 case ISD::SHL: 6743 case ISD::SRA: 6744 case ISD::SRL: 6745 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6746 "Unexpected custom legalisation"); 6747 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6748 Results.push_back(customLegalizeToWOp(N, DAG)); 6749 break; 6750 } 6751 6752 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6753 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6754 // shift amount. 6755 if (N->getOpcode() == ISD::SHL) { 6756 SDLoc DL(N); 6757 SDValue NewOp0 = 6758 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6759 SDValue NewOp1 = 6760 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6761 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6762 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6763 DAG.getValueType(MVT::i32)); 6764 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6765 } 6766 6767 break; 6768 case ISD::ROTL: 6769 case ISD::ROTR: 6770 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6771 "Unexpected custom legalisation"); 6772 Results.push_back(customLegalizeToWOp(N, DAG)); 6773 break; 6774 case ISD::CTTZ: 6775 case ISD::CTTZ_ZERO_UNDEF: 6776 case ISD::CTLZ: 6777 case ISD::CTLZ_ZERO_UNDEF: { 6778 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6779 "Unexpected custom legalisation"); 6780 6781 SDValue NewOp0 = 6782 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6783 bool IsCTZ = 6784 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6785 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6786 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6787 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6788 return; 6789 } 6790 case ISD::SDIV: 6791 case ISD::UDIV: 6792 case ISD::UREM: { 6793 MVT VT = N->getSimpleValueType(0); 6794 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6795 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6796 "Unexpected custom legalisation"); 6797 // Don't promote division/remainder by constant since we should expand those 6798 // to multiply by magic constant. 6799 // FIXME: What if the expansion is disabled for minsize. 6800 if (N->getOperand(1).getOpcode() == ISD::Constant) 6801 return; 6802 6803 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6804 // the upper 32 bits. For other types we need to sign or zero extend 6805 // based on the opcode. 6806 unsigned ExtOpc = ISD::ANY_EXTEND; 6807 if (VT != MVT::i32) 6808 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6809 : ISD::ZERO_EXTEND; 6810 6811 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6812 break; 6813 } 6814 case ISD::UADDO: 6815 case ISD::USUBO: { 6816 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6817 "Unexpected custom legalisation"); 6818 bool IsAdd = N->getOpcode() == ISD::UADDO; 6819 // Create an ADDW or SUBW. 6820 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6821 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6822 SDValue Res = 6823 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6824 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6825 DAG.getValueType(MVT::i32)); 6826 6827 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6828 // Since the inputs are sign extended from i32, this is equivalent to 6829 // comparing the lower 32 bits. 6830 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6831 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6832 IsAdd ? ISD::SETULT : ISD::SETUGT); 6833 6834 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6835 Results.push_back(Overflow); 6836 return; 6837 } 6838 case ISD::UADDSAT: 6839 case ISD::USUBSAT: { 6840 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6841 "Unexpected custom legalisation"); 6842 if (Subtarget.hasStdExtZbb()) { 6843 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6844 // sign extend allows overflow of the lower 32 bits to be detected on 6845 // the promoted size. 6846 SDValue LHS = 6847 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6848 SDValue RHS = 6849 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6850 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6851 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6852 return; 6853 } 6854 6855 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6856 // promotion for UADDO/USUBO. 6857 Results.push_back(expandAddSubSat(N, DAG)); 6858 return; 6859 } 6860 case ISD::ABS: { 6861 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6862 "Unexpected custom legalisation"); 6863 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6864 6865 // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y) 6866 6867 SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6868 6869 // Freeze the source so we can increase it's use count. 6870 Src = DAG.getFreeze(Src); 6871 6872 // Copy sign bit to all bits using the sraiw pattern. 6873 SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src, 6874 DAG.getValueType(MVT::i32)); 6875 SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill, 6876 DAG.getConstant(31, DL, MVT::i64)); 6877 6878 SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill); 6879 NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill); 6880 6881 // NOTE: The result is only required to be anyextended, but sext is 6882 // consistent with type legalization of sub. 6883 NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes, 6884 DAG.getValueType(MVT::i32)); 6885 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6886 return; 6887 } 6888 case ISD::BITCAST: { 6889 EVT VT = N->getValueType(0); 6890 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6891 SDValue Op0 = N->getOperand(0); 6892 EVT Op0VT = Op0.getValueType(); 6893 MVT XLenVT = Subtarget.getXLenVT(); 6894 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6895 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6896 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6897 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6898 Subtarget.hasStdExtF()) { 6899 SDValue FPConv = 6900 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6901 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6902 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6903 isTypeLegal(Op0VT)) { 6904 // Custom-legalize bitcasts from fixed-length vector types to illegal 6905 // scalar types in order to improve codegen. Bitcast the vector to a 6906 // one-element vector type whose element type is the same as the result 6907 // type, and extract the first element. 6908 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6909 if (isTypeLegal(BVT)) { 6910 SDValue BVec = DAG.getBitcast(BVT, Op0); 6911 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6912 DAG.getConstant(0, DL, XLenVT))); 6913 } 6914 } 6915 break; 6916 } 6917 case RISCVISD::GREV: 6918 case RISCVISD::GORC: 6919 case RISCVISD::SHFL: { 6920 MVT VT = N->getSimpleValueType(0); 6921 MVT XLenVT = Subtarget.getXLenVT(); 6922 assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) && 6923 "Unexpected custom legalisation"); 6924 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6925 assert((Subtarget.hasStdExtZbp() || 6926 (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV && 6927 N->getConstantOperandVal(1) == 7)) && 6928 "Unexpected extension"); 6929 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6930 SDValue NewOp1 = 6931 DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1)); 6932 SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1); 6933 // ReplaceNodeResults requires we maintain the same type for the return 6934 // value. 6935 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes)); 6936 break; 6937 } 6938 case ISD::BSWAP: 6939 case ISD::BITREVERSE: { 6940 MVT VT = N->getSimpleValueType(0); 6941 MVT XLenVT = Subtarget.getXLenVT(); 6942 assert((VT == MVT::i8 || VT == MVT::i16 || 6943 (VT == MVT::i32 && Subtarget.is64Bit())) && 6944 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6945 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6946 unsigned Imm = VT.getSizeInBits() - 1; 6947 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6948 if (N->getOpcode() == ISD::BSWAP) 6949 Imm &= ~0x7U; 6950 SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0, 6951 DAG.getConstant(Imm, DL, XLenVT)); 6952 // ReplaceNodeResults requires we maintain the same type for the return 6953 // value. 6954 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6955 break; 6956 } 6957 case ISD::FSHL: 6958 case ISD::FSHR: { 6959 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6960 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6961 SDValue NewOp0 = 6962 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6963 SDValue NewOp1 = 6964 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6965 SDValue NewShAmt = 6966 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6967 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6968 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 6969 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 6970 DAG.getConstant(0x1f, DL, MVT::i64)); 6971 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 6972 // instruction use different orders. fshl will return its first operand for 6973 // shift of zero, fshr will return its second operand. fsl and fsr both 6974 // return rs1 so the ISD nodes need to have different operand orders. 6975 // Shift amount is in rs2. 6976 unsigned Opc = RISCVISD::FSLW; 6977 if (N->getOpcode() == ISD::FSHR) { 6978 std::swap(NewOp0, NewOp1); 6979 Opc = RISCVISD::FSRW; 6980 } 6981 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 6982 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6983 break; 6984 } 6985 case ISD::EXTRACT_VECTOR_ELT: { 6986 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6987 // type is illegal (currently only vXi64 RV32). 6988 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6989 // transferred to the destination register. We issue two of these from the 6990 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6991 // first element. 6992 SDValue Vec = N->getOperand(0); 6993 SDValue Idx = N->getOperand(1); 6994 6995 // The vector type hasn't been legalized yet so we can't issue target 6996 // specific nodes if it needs legalization. 6997 // FIXME: We would manually legalize if it's important. 6998 if (!isTypeLegal(Vec.getValueType())) 6999 return; 7000 7001 MVT VecVT = Vec.getSimpleValueType(); 7002 7003 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 7004 VecVT.getVectorElementType() == MVT::i64 && 7005 "Unexpected EXTRACT_VECTOR_ELT legalization"); 7006 7007 // If this is a fixed vector, we need to convert it to a scalable vector. 7008 MVT ContainerVT = VecVT; 7009 if (VecVT.isFixedLengthVector()) { 7010 ContainerVT = getContainerForFixedLengthVector(VecVT); 7011 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 7012 } 7013 7014 MVT XLenVT = Subtarget.getXLenVT(); 7015 7016 // Use a VL of 1 to avoid processing more elements than we need. 7017 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 7018 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7019 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 7020 7021 // Unless the index is known to be 0, we must slide the vector down to get 7022 // the desired element into index 0. 7023 if (!isNullConstant(Idx)) { 7024 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 7025 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 7026 } 7027 7028 // Extract the lower XLEN bits of the correct vector element. 7029 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7030 7031 // To extract the upper XLEN bits of the vector element, shift the first 7032 // element right by 32 bits and re-extract the lower XLEN bits. 7033 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 7034 DAG.getUNDEF(ContainerVT), 7035 DAG.getConstant(32, DL, XLenVT), VL); 7036 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 7037 ThirtyTwoV, Mask, VL); 7038 7039 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7040 7041 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7042 break; 7043 } 7044 case ISD::INTRINSIC_WO_CHAIN: { 7045 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 7046 switch (IntNo) { 7047 default: 7048 llvm_unreachable( 7049 "Don't know how to custom type legalize this intrinsic!"); 7050 case Intrinsic::riscv_grev: 7051 case Intrinsic::riscv_gorc: { 7052 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7053 "Unexpected custom legalisation"); 7054 SDValue NewOp1 = 7055 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7056 SDValue NewOp2 = 7057 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7058 unsigned Opc = 7059 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 7060 // If the control is a constant, promote the node by clearing any extra 7061 // bits bits in the control. isel will form greviw/gorciw if the result is 7062 // sign extended. 7063 if (isa<ConstantSDNode>(NewOp2)) { 7064 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7065 DAG.getConstant(0x1f, DL, MVT::i64)); 7066 Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 7067 } 7068 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7069 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7070 break; 7071 } 7072 case Intrinsic::riscv_bcompress: 7073 case Intrinsic::riscv_bdecompress: 7074 case Intrinsic::riscv_bfp: { 7075 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7076 "Unexpected custom legalisation"); 7077 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 7078 break; 7079 } 7080 case Intrinsic::riscv_fsl: 7081 case Intrinsic::riscv_fsr: { 7082 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7083 "Unexpected custom legalisation"); 7084 SDValue NewOp1 = 7085 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7086 SDValue NewOp2 = 7087 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7088 SDValue NewOp3 = 7089 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)); 7090 unsigned Opc = getRISCVWOpcodeByIntr(IntNo); 7091 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3); 7092 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7093 break; 7094 } 7095 case Intrinsic::riscv_orc_b: { 7096 // Lower to the GORCI encoding for orc.b with the operand extended. 7097 SDValue NewOp = 7098 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7099 SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp, 7100 DAG.getConstant(7, DL, MVT::i64)); 7101 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7102 return; 7103 } 7104 case Intrinsic::riscv_shfl: 7105 case Intrinsic::riscv_unshfl: { 7106 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7107 "Unexpected custom legalisation"); 7108 SDValue NewOp1 = 7109 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7110 SDValue NewOp2 = 7111 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7112 unsigned Opc = 7113 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 7114 // There is no (UN)SHFLIW. If the control word is a constant, we can use 7115 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 7116 // will be shuffled the same way as the lower 32 bit half, but the two 7117 // halves won't cross. 7118 if (isa<ConstantSDNode>(NewOp2)) { 7119 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7120 DAG.getConstant(0xf, DL, MVT::i64)); 7121 Opc = 7122 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 7123 } 7124 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7125 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7126 break; 7127 } 7128 case Intrinsic::riscv_vmv_x_s: { 7129 EVT VT = N->getValueType(0); 7130 MVT XLenVT = Subtarget.getXLenVT(); 7131 if (VT.bitsLT(XLenVT)) { 7132 // Simple case just extract using vmv.x.s and truncate. 7133 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 7134 Subtarget.getXLenVT(), N->getOperand(1)); 7135 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 7136 return; 7137 } 7138 7139 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 7140 "Unexpected custom legalization"); 7141 7142 // We need to do the move in two steps. 7143 SDValue Vec = N->getOperand(1); 7144 MVT VecVT = Vec.getSimpleValueType(); 7145 7146 // First extract the lower XLEN bits of the element. 7147 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7148 7149 // To extract the upper XLEN bits of the vector element, shift the first 7150 // element right by 32 bits and re-extract the lower XLEN bits. 7151 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7152 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7153 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 7154 SDValue ThirtyTwoV = 7155 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 7156 DAG.getConstant(32, DL, XLenVT), VL); 7157 SDValue LShr32 = 7158 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 7159 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7160 7161 Results.push_back( 7162 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7163 break; 7164 } 7165 } 7166 break; 7167 } 7168 case ISD::VECREDUCE_ADD: 7169 case ISD::VECREDUCE_AND: 7170 case ISD::VECREDUCE_OR: 7171 case ISD::VECREDUCE_XOR: 7172 case ISD::VECREDUCE_SMAX: 7173 case ISD::VECREDUCE_UMAX: 7174 case ISD::VECREDUCE_SMIN: 7175 case ISD::VECREDUCE_UMIN: 7176 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 7177 Results.push_back(V); 7178 break; 7179 case ISD::VP_REDUCE_ADD: 7180 case ISD::VP_REDUCE_AND: 7181 case ISD::VP_REDUCE_OR: 7182 case ISD::VP_REDUCE_XOR: 7183 case ISD::VP_REDUCE_SMAX: 7184 case ISD::VP_REDUCE_UMAX: 7185 case ISD::VP_REDUCE_SMIN: 7186 case ISD::VP_REDUCE_UMIN: 7187 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 7188 Results.push_back(V); 7189 break; 7190 case ISD::FLT_ROUNDS_: { 7191 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 7192 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 7193 Results.push_back(Res.getValue(0)); 7194 Results.push_back(Res.getValue(1)); 7195 break; 7196 } 7197 } 7198 } 7199 7200 // A structure to hold one of the bit-manipulation patterns below. Together, a 7201 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 7202 // (or (and (shl x, 1), 0xAAAAAAAA), 7203 // (and (srl x, 1), 0x55555555)) 7204 struct RISCVBitmanipPat { 7205 SDValue Op; 7206 unsigned ShAmt; 7207 bool IsSHL; 7208 7209 bool formsPairWith(const RISCVBitmanipPat &Other) const { 7210 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 7211 } 7212 }; 7213 7214 // Matches patterns of the form 7215 // (and (shl x, C2), (C1 << C2)) 7216 // (and (srl x, C2), C1) 7217 // (shl (and x, C1), C2) 7218 // (srl (and x, (C1 << C2)), C2) 7219 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 7220 // The expected masks for each shift amount are specified in BitmanipMasks where 7221 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 7222 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 7223 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 7224 // XLen is 64. 7225 static Optional<RISCVBitmanipPat> 7226 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 7227 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 7228 "Unexpected number of masks"); 7229 Optional<uint64_t> Mask; 7230 // Optionally consume a mask around the shift operation. 7231 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 7232 Mask = Op.getConstantOperandVal(1); 7233 Op = Op.getOperand(0); 7234 } 7235 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 7236 return None; 7237 bool IsSHL = Op.getOpcode() == ISD::SHL; 7238 7239 if (!isa<ConstantSDNode>(Op.getOperand(1))) 7240 return None; 7241 uint64_t ShAmt = Op.getConstantOperandVal(1); 7242 7243 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7244 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 7245 return None; 7246 // If we don't have enough masks for 64 bit, then we must be trying to 7247 // match SHFL so we're only allowed to shift 1/4 of the width. 7248 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 7249 return None; 7250 7251 SDValue Src = Op.getOperand(0); 7252 7253 // The expected mask is shifted left when the AND is found around SHL 7254 // patterns. 7255 // ((x >> 1) & 0x55555555) 7256 // ((x << 1) & 0xAAAAAAAA) 7257 bool SHLExpMask = IsSHL; 7258 7259 if (!Mask) { 7260 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 7261 // the mask is all ones: consume that now. 7262 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 7263 Mask = Src.getConstantOperandVal(1); 7264 Src = Src.getOperand(0); 7265 // The expected mask is now in fact shifted left for SRL, so reverse the 7266 // decision. 7267 // ((x & 0xAAAAAAAA) >> 1) 7268 // ((x & 0x55555555) << 1) 7269 SHLExpMask = !SHLExpMask; 7270 } else { 7271 // Use a default shifted mask of all-ones if there's no AND, truncated 7272 // down to the expected width. This simplifies the logic later on. 7273 Mask = maskTrailingOnes<uint64_t>(Width); 7274 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 7275 } 7276 } 7277 7278 unsigned MaskIdx = Log2_32(ShAmt); 7279 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7280 7281 if (SHLExpMask) 7282 ExpMask <<= ShAmt; 7283 7284 if (Mask != ExpMask) 7285 return None; 7286 7287 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 7288 } 7289 7290 // Matches any of the following bit-manipulation patterns: 7291 // (and (shl x, 1), (0x55555555 << 1)) 7292 // (and (srl x, 1), 0x55555555) 7293 // (shl (and x, 0x55555555), 1) 7294 // (srl (and x, (0x55555555 << 1)), 1) 7295 // where the shift amount and mask may vary thus: 7296 // [1] = 0x55555555 / 0xAAAAAAAA 7297 // [2] = 0x33333333 / 0xCCCCCCCC 7298 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 7299 // [8] = 0x00FF00FF / 0xFF00FF00 7300 // [16] = 0x0000FFFF / 0xFFFFFFFF 7301 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 7302 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 7303 // These are the unshifted masks which we use to match bit-manipulation 7304 // patterns. They may be shifted left in certain circumstances. 7305 static const uint64_t BitmanipMasks[] = { 7306 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 7307 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 7308 7309 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7310 } 7311 7312 // Match the following pattern as a GREVI(W) operation 7313 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 7314 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 7315 const RISCVSubtarget &Subtarget) { 7316 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7317 EVT VT = Op.getValueType(); 7318 7319 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7320 auto LHS = matchGREVIPat(Op.getOperand(0)); 7321 auto RHS = matchGREVIPat(Op.getOperand(1)); 7322 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 7323 SDLoc DL(Op); 7324 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 7325 DAG.getConstant(LHS->ShAmt, DL, VT)); 7326 } 7327 } 7328 return SDValue(); 7329 } 7330 7331 // Matches any the following pattern as a GORCI(W) operation 7332 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 7333 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 7334 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 7335 // Note that with the variant of 3., 7336 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 7337 // the inner pattern will first be matched as GREVI and then the outer 7338 // pattern will be matched to GORC via the first rule above. 7339 // 4. (or (rotl/rotr x, bitwidth/2), x) 7340 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 7341 const RISCVSubtarget &Subtarget) { 7342 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7343 EVT VT = Op.getValueType(); 7344 7345 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7346 SDLoc DL(Op); 7347 SDValue Op0 = Op.getOperand(0); 7348 SDValue Op1 = Op.getOperand(1); 7349 7350 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 7351 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 7352 isa<ConstantSDNode>(Reverse.getOperand(1)) && 7353 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 7354 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 7355 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 7356 if ((Reverse.getOpcode() == ISD::ROTL || 7357 Reverse.getOpcode() == ISD::ROTR) && 7358 Reverse.getOperand(0) == X && 7359 isa<ConstantSDNode>(Reverse.getOperand(1))) { 7360 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 7361 if (RotAmt == (VT.getSizeInBits() / 2)) 7362 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 7363 DAG.getConstant(RotAmt, DL, VT)); 7364 } 7365 return SDValue(); 7366 }; 7367 7368 // Check for either commutable permutation of (or (GREVI x, shamt), x) 7369 if (SDValue V = MatchOROfReverse(Op0, Op1)) 7370 return V; 7371 if (SDValue V = MatchOROfReverse(Op1, Op0)) 7372 return V; 7373 7374 // OR is commutable so canonicalize its OR operand to the left 7375 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 7376 std::swap(Op0, Op1); 7377 if (Op0.getOpcode() != ISD::OR) 7378 return SDValue(); 7379 SDValue OrOp0 = Op0.getOperand(0); 7380 SDValue OrOp1 = Op0.getOperand(1); 7381 auto LHS = matchGREVIPat(OrOp0); 7382 // OR is commutable so swap the operands and try again: x might have been 7383 // on the left 7384 if (!LHS) { 7385 std::swap(OrOp0, OrOp1); 7386 LHS = matchGREVIPat(OrOp0); 7387 } 7388 auto RHS = matchGREVIPat(Op1); 7389 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 7390 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 7391 DAG.getConstant(LHS->ShAmt, DL, VT)); 7392 } 7393 } 7394 return SDValue(); 7395 } 7396 7397 // Matches any of the following bit-manipulation patterns: 7398 // (and (shl x, 1), (0x22222222 << 1)) 7399 // (and (srl x, 1), 0x22222222) 7400 // (shl (and x, 0x22222222), 1) 7401 // (srl (and x, (0x22222222 << 1)), 1) 7402 // where the shift amount and mask may vary thus: 7403 // [1] = 0x22222222 / 0x44444444 7404 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 7405 // [4] = 0x00F000F0 / 0x0F000F00 7406 // [8] = 0x0000FF00 / 0x00FF0000 7407 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 7408 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 7409 // These are the unshifted masks which we use to match bit-manipulation 7410 // patterns. They may be shifted left in certain circumstances. 7411 static const uint64_t BitmanipMasks[] = { 7412 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 7413 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 7414 7415 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7416 } 7417 7418 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 7419 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 7420 const RISCVSubtarget &Subtarget) { 7421 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7422 EVT VT = Op.getValueType(); 7423 7424 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 7425 return SDValue(); 7426 7427 SDValue Op0 = Op.getOperand(0); 7428 SDValue Op1 = Op.getOperand(1); 7429 7430 // Or is commutable so canonicalize the second OR to the LHS. 7431 if (Op0.getOpcode() != ISD::OR) 7432 std::swap(Op0, Op1); 7433 if (Op0.getOpcode() != ISD::OR) 7434 return SDValue(); 7435 7436 // We found an inner OR, so our operands are the operands of the inner OR 7437 // and the other operand of the outer OR. 7438 SDValue A = Op0.getOperand(0); 7439 SDValue B = Op0.getOperand(1); 7440 SDValue C = Op1; 7441 7442 auto Match1 = matchSHFLPat(A); 7443 auto Match2 = matchSHFLPat(B); 7444 7445 // If neither matched, we failed. 7446 if (!Match1 && !Match2) 7447 return SDValue(); 7448 7449 // We had at least one match. if one failed, try the remaining C operand. 7450 if (!Match1) { 7451 std::swap(A, C); 7452 Match1 = matchSHFLPat(A); 7453 if (!Match1) 7454 return SDValue(); 7455 } else if (!Match2) { 7456 std::swap(B, C); 7457 Match2 = matchSHFLPat(B); 7458 if (!Match2) 7459 return SDValue(); 7460 } 7461 assert(Match1 && Match2); 7462 7463 // Make sure our matches pair up. 7464 if (!Match1->formsPairWith(*Match2)) 7465 return SDValue(); 7466 7467 // All the remains is to make sure C is an AND with the same input, that masks 7468 // out the bits that are being shuffled. 7469 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7470 C.getOperand(0) != Match1->Op) 7471 return SDValue(); 7472 7473 uint64_t Mask = C.getConstantOperandVal(1); 7474 7475 static const uint64_t BitmanipMasks[] = { 7476 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7477 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7478 }; 7479 7480 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7481 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7482 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7483 7484 if (Mask != ExpMask) 7485 return SDValue(); 7486 7487 SDLoc DL(Op); 7488 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7489 DAG.getConstant(Match1->ShAmt, DL, VT)); 7490 } 7491 7492 // Optimize (add (shl x, c0), (shl y, c1)) -> 7493 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7494 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7495 const RISCVSubtarget &Subtarget) { 7496 // Perform this optimization only in the zba extension. 7497 if (!Subtarget.hasStdExtZba()) 7498 return SDValue(); 7499 7500 // Skip for vector types and larger types. 7501 EVT VT = N->getValueType(0); 7502 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7503 return SDValue(); 7504 7505 // The two operand nodes must be SHL and have no other use. 7506 SDValue N0 = N->getOperand(0); 7507 SDValue N1 = N->getOperand(1); 7508 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7509 !N0->hasOneUse() || !N1->hasOneUse()) 7510 return SDValue(); 7511 7512 // Check c0 and c1. 7513 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7514 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7515 if (!N0C || !N1C) 7516 return SDValue(); 7517 int64_t C0 = N0C->getSExtValue(); 7518 int64_t C1 = N1C->getSExtValue(); 7519 if (C0 <= 0 || C1 <= 0) 7520 return SDValue(); 7521 7522 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7523 int64_t Bits = std::min(C0, C1); 7524 int64_t Diff = std::abs(C0 - C1); 7525 if (Diff != 1 && Diff != 2 && Diff != 3) 7526 return SDValue(); 7527 7528 // Build nodes. 7529 SDLoc DL(N); 7530 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7531 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7532 SDValue NA0 = 7533 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7534 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7535 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7536 } 7537 7538 // Combine 7539 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7540 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7541 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7542 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7543 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7544 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7545 // The grev patterns represents BSWAP. 7546 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB 7547 // off the grev. 7548 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG, 7549 const RISCVSubtarget &Subtarget) { 7550 bool IsWInstruction = 7551 N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW; 7552 assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL || 7553 IsWInstruction) && 7554 "Unexpected opcode!"); 7555 SDValue Src = N->getOperand(0); 7556 EVT VT = N->getValueType(0); 7557 SDLoc DL(N); 7558 7559 if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV) 7560 return SDValue(); 7561 7562 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7563 !isa<ConstantSDNode>(Src.getOperand(1))) 7564 return SDValue(); 7565 7566 unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits(); 7567 assert(isPowerOf2_32(BitWidth) && "Expected a power of 2"); 7568 7569 // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for 7570 // RORW/ROLW. And the grev should be the encoding for bswap for this width. 7571 unsigned ShAmt1 = N->getConstantOperandVal(1); 7572 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7573 if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8)) 7574 return SDValue(); 7575 7576 Src = Src.getOperand(0); 7577 7578 // Toggle bit the MSB of the shift. 7579 unsigned CombinedShAmt = ShAmt1 ^ ShAmt2; 7580 if (CombinedShAmt == 0) 7581 return Src; 7582 7583 SDValue Res = DAG.getNode( 7584 RISCVISD::GREV, DL, VT, Src, 7585 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7586 if (!IsWInstruction) 7587 return Res; 7588 7589 // Sign extend the result to match the behavior of the rotate. This will be 7590 // selected to GREVIW in isel. 7591 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res, 7592 DAG.getValueType(MVT::i32)); 7593 } 7594 7595 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7596 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7597 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7598 // not undo itself, but they are redundant. 7599 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7600 bool IsGORC = N->getOpcode() == RISCVISD::GORC; 7601 assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode"); 7602 SDValue Src = N->getOperand(0); 7603 7604 if (Src.getOpcode() != N->getOpcode()) 7605 return SDValue(); 7606 7607 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7608 !isa<ConstantSDNode>(Src.getOperand(1))) 7609 return SDValue(); 7610 7611 unsigned ShAmt1 = N->getConstantOperandVal(1); 7612 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7613 Src = Src.getOperand(0); 7614 7615 unsigned CombinedShAmt; 7616 if (IsGORC) 7617 CombinedShAmt = ShAmt1 | ShAmt2; 7618 else 7619 CombinedShAmt = ShAmt1 ^ ShAmt2; 7620 7621 if (CombinedShAmt == 0) 7622 return Src; 7623 7624 SDLoc DL(N); 7625 return DAG.getNode( 7626 N->getOpcode(), DL, N->getValueType(0), Src, 7627 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7628 } 7629 7630 // Combine a constant select operand into its use: 7631 // 7632 // (and (select cond, -1, c), x) 7633 // -> (select cond, x, (and x, c)) [AllOnes=1] 7634 // (or (select cond, 0, c), x) 7635 // -> (select cond, x, (or x, c)) [AllOnes=0] 7636 // (xor (select cond, 0, c), x) 7637 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7638 // (add (select cond, 0, c), x) 7639 // -> (select cond, x, (add x, c)) [AllOnes=0] 7640 // (sub x, (select cond, 0, c)) 7641 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7642 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7643 SelectionDAG &DAG, bool AllOnes) { 7644 EVT VT = N->getValueType(0); 7645 7646 // Skip vectors. 7647 if (VT.isVector()) 7648 return SDValue(); 7649 7650 if ((Slct.getOpcode() != ISD::SELECT && 7651 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7652 !Slct.hasOneUse()) 7653 return SDValue(); 7654 7655 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7656 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7657 }; 7658 7659 bool SwapSelectOps; 7660 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7661 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7662 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7663 SDValue NonConstantVal; 7664 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7665 SwapSelectOps = false; 7666 NonConstantVal = FalseVal; 7667 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7668 SwapSelectOps = true; 7669 NonConstantVal = TrueVal; 7670 } else 7671 return SDValue(); 7672 7673 // Slct is now know to be the desired identity constant when CC is true. 7674 TrueVal = OtherOp; 7675 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7676 // Unless SwapSelectOps says the condition should be false. 7677 if (SwapSelectOps) 7678 std::swap(TrueVal, FalseVal); 7679 7680 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7681 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7682 {Slct.getOperand(0), Slct.getOperand(1), 7683 Slct.getOperand(2), TrueVal, FalseVal}); 7684 7685 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7686 {Slct.getOperand(0), TrueVal, FalseVal}); 7687 } 7688 7689 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7690 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7691 bool AllOnes) { 7692 SDValue N0 = N->getOperand(0); 7693 SDValue N1 = N->getOperand(1); 7694 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7695 return Result; 7696 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7697 return Result; 7698 return SDValue(); 7699 } 7700 7701 // Transform (add (mul x, c0), c1) -> 7702 // (add (mul (add x, c1/c0), c0), c1%c0). 7703 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7704 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7705 // to an infinite loop in DAGCombine if transformed. 7706 // Or transform (add (mul x, c0), c1) -> 7707 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7708 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7709 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7710 // lead to an infinite loop in DAGCombine if transformed. 7711 // Or transform (add (mul x, c0), c1) -> 7712 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7713 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7714 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7715 // lead to an infinite loop in DAGCombine if transformed. 7716 // Or transform (add (mul x, c0), c1) -> 7717 // (mul (add x, c1/c0), c0). 7718 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7719 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7720 const RISCVSubtarget &Subtarget) { 7721 // Skip for vector types and larger types. 7722 EVT VT = N->getValueType(0); 7723 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7724 return SDValue(); 7725 // The first operand node must be a MUL and has no other use. 7726 SDValue N0 = N->getOperand(0); 7727 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7728 return SDValue(); 7729 // Check if c0 and c1 match above conditions. 7730 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7731 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7732 if (!N0C || !N1C) 7733 return SDValue(); 7734 // If N0C has multiple uses it's possible one of the cases in 7735 // DAGCombiner::isMulAddWithConstProfitable will be true, which would result 7736 // in an infinite loop. 7737 if (!N0C->hasOneUse()) 7738 return SDValue(); 7739 int64_t C0 = N0C->getSExtValue(); 7740 int64_t C1 = N1C->getSExtValue(); 7741 int64_t CA, CB; 7742 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7743 return SDValue(); 7744 // Search for proper CA (non-zero) and CB that both are simm12. 7745 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7746 !isInt<12>(C0 * (C1 / C0))) { 7747 CA = C1 / C0; 7748 CB = C1 % C0; 7749 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7750 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7751 CA = C1 / C0 + 1; 7752 CB = C1 % C0 - C0; 7753 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7754 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7755 CA = C1 / C0 - 1; 7756 CB = C1 % C0 + C0; 7757 } else 7758 return SDValue(); 7759 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7760 SDLoc DL(N); 7761 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7762 DAG.getConstant(CA, DL, VT)); 7763 SDValue New1 = 7764 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7765 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7766 } 7767 7768 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7769 const RISCVSubtarget &Subtarget) { 7770 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7771 return V; 7772 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7773 return V; 7774 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7775 // (select lhs, rhs, cc, x, (add x, y)) 7776 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7777 } 7778 7779 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7780 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7781 // (select lhs, rhs, cc, x, (sub x, y)) 7782 SDValue N0 = N->getOperand(0); 7783 SDValue N1 = N->getOperand(1); 7784 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7785 } 7786 7787 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7788 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7789 // (select lhs, rhs, cc, x, (and x, y)) 7790 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7791 } 7792 7793 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7794 const RISCVSubtarget &Subtarget) { 7795 if (Subtarget.hasStdExtZbp()) { 7796 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7797 return GREV; 7798 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7799 return GORC; 7800 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7801 return SHFL; 7802 } 7803 7804 // fold (or (select cond, 0, y), x) -> 7805 // (select cond, x, (or x, y)) 7806 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7807 } 7808 7809 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7810 // fold (xor (select cond, 0, y), x) -> 7811 // (select cond, x, (xor x, y)) 7812 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7813 } 7814 7815 static SDValue 7816 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, 7817 const RISCVSubtarget &Subtarget) { 7818 SDValue Src = N->getOperand(0); 7819 EVT VT = N->getValueType(0); 7820 7821 // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X) 7822 if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7823 cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16)) 7824 return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT, 7825 Src.getOperand(0)); 7826 7827 // Fold (i64 (sext_inreg (abs X), i32)) -> 7828 // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits. 7829 // The (sext_inreg (neg X), i32) will be selected to negw by isel. This 7830 // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user 7831 // of the (i32 (abs X)) is a sext or setcc or something else that causes type 7832 // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have 7833 // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg 7834 // may get combined into an earlier operation so we need to use 7835 // ComputeNumSignBits. 7836 // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for 7837 // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so 7838 // we can't assume that X has 33 sign bits. We must check. 7839 if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() && 7840 Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 && 7841 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 && 7842 DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) { 7843 SDLoc DL(N); 7844 SDValue Freeze = DAG.getFreeze(Src.getOperand(0)); 7845 SDValue Neg = 7846 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze); 7847 Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg, 7848 DAG.getValueType(MVT::i32)); 7849 return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg); 7850 } 7851 7852 return SDValue(); 7853 } 7854 7855 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to 7856 // vwadd(u).vv/vx or vwsub(u).vv/vx. 7857 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG, 7858 bool Commute = false) { 7859 assert((N->getOpcode() == RISCVISD::ADD_VL || 7860 N->getOpcode() == RISCVISD::SUB_VL) && 7861 "Unexpected opcode"); 7862 bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL; 7863 SDValue Op0 = N->getOperand(0); 7864 SDValue Op1 = N->getOperand(1); 7865 if (Commute) 7866 std::swap(Op0, Op1); 7867 7868 MVT VT = N->getSimpleValueType(0); 7869 7870 // Determine the narrow size for a widening add/sub. 7871 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7872 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7873 VT.getVectorElementCount()); 7874 7875 SDValue Mask = N->getOperand(2); 7876 SDValue VL = N->getOperand(3); 7877 7878 SDLoc DL(N); 7879 7880 // If the RHS is a sext or zext, we can form a widening op. 7881 if ((Op1.getOpcode() == RISCVISD::VZEXT_VL || 7882 Op1.getOpcode() == RISCVISD::VSEXT_VL) && 7883 Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) { 7884 unsigned ExtOpc = Op1.getOpcode(); 7885 Op1 = Op1.getOperand(0); 7886 // Re-introduce narrower extends if needed. 7887 if (Op1.getValueType() != NarrowVT) 7888 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7889 7890 unsigned WOpc; 7891 if (ExtOpc == RISCVISD::VSEXT_VL) 7892 WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL; 7893 else 7894 WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL; 7895 7896 return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL); 7897 } 7898 7899 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar 7900 // sext/zext? 7901 7902 return SDValue(); 7903 } 7904 7905 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or 7906 // vwsub(u).vv/vx. 7907 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) { 7908 SDValue Op0 = N->getOperand(0); 7909 SDValue Op1 = N->getOperand(1); 7910 SDValue Mask = N->getOperand(2); 7911 SDValue VL = N->getOperand(3); 7912 7913 MVT VT = N->getSimpleValueType(0); 7914 MVT NarrowVT = Op1.getSimpleValueType(); 7915 unsigned NarrowSize = NarrowVT.getScalarSizeInBits(); 7916 7917 unsigned VOpc; 7918 switch (N->getOpcode()) { 7919 default: llvm_unreachable("Unexpected opcode"); 7920 case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break; 7921 case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break; 7922 case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break; 7923 case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break; 7924 } 7925 7926 bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL || 7927 N->getOpcode() == RISCVISD::VWSUB_W_VL; 7928 7929 SDLoc DL(N); 7930 7931 // If the LHS is a sext or zext, we can narrow this op to the same size as 7932 // the RHS. 7933 if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) || 7934 (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) && 7935 Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) { 7936 unsigned ExtOpc = Op0.getOpcode(); 7937 Op0 = Op0.getOperand(0); 7938 // Re-introduce narrower extends if needed. 7939 if (Op0.getValueType() != NarrowVT) 7940 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7941 return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL); 7942 } 7943 7944 bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL || 7945 N->getOpcode() == RISCVISD::VWADDU_W_VL; 7946 7947 // Look for splats on the left hand side of a vwadd(u).wv. We might be able 7948 // to commute and use a vwadd(u).vx instead. 7949 if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL && 7950 Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) { 7951 Op0 = Op0.getOperand(1); 7952 7953 // See if have enough sign bits or zero bits in the scalar to use a 7954 // widening add/sub by splatting to smaller element size. 7955 unsigned EltBits = VT.getScalarSizeInBits(); 7956 unsigned ScalarBits = Op0.getValueSizeInBits(); 7957 // Make sure we're getting all element bits from the scalar register. 7958 // FIXME: Support implicit sign extension of vmv.v.x? 7959 if (ScalarBits < EltBits) 7960 return SDValue(); 7961 7962 if (IsSigned) { 7963 if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize)) 7964 return SDValue(); 7965 } else { 7966 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7967 if (!DAG.MaskedValueIsZero(Op0, Mask)) 7968 return SDValue(); 7969 } 7970 7971 Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 7972 DAG.getUNDEF(NarrowVT), Op0, VL); 7973 return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL); 7974 } 7975 7976 return SDValue(); 7977 } 7978 7979 // Try to form VWMUL, VWMULU or VWMULSU. 7980 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 7981 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 7982 bool Commute) { 7983 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7984 SDValue Op0 = N->getOperand(0); 7985 SDValue Op1 = N->getOperand(1); 7986 if (Commute) 7987 std::swap(Op0, Op1); 7988 7989 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7990 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7991 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 7992 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7993 return SDValue(); 7994 7995 SDValue Mask = N->getOperand(2); 7996 SDValue VL = N->getOperand(3); 7997 7998 // Make sure the mask and VL match. 7999 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 8000 return SDValue(); 8001 8002 MVT VT = N->getSimpleValueType(0); 8003 8004 // Determine the narrow size for a widening multiply. 8005 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 8006 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 8007 VT.getVectorElementCount()); 8008 8009 SDLoc DL(N); 8010 8011 // See if the other operand is the same opcode. 8012 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 8013 if (!Op1.hasOneUse()) 8014 return SDValue(); 8015 8016 // Make sure the mask and VL match. 8017 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 8018 return SDValue(); 8019 8020 Op1 = Op1.getOperand(0); 8021 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 8022 // The operand is a splat of a scalar. 8023 8024 // The pasthru must be undef for tail agnostic 8025 if (!Op1.getOperand(0).isUndef()) 8026 return SDValue(); 8027 // The VL must be the same. 8028 if (Op1.getOperand(2) != VL) 8029 return SDValue(); 8030 8031 // Get the scalar value. 8032 Op1 = Op1.getOperand(1); 8033 8034 // See if have enough sign bits or zero bits in the scalar to use a 8035 // widening multiply by splatting to smaller element size. 8036 unsigned EltBits = VT.getScalarSizeInBits(); 8037 unsigned ScalarBits = Op1.getValueSizeInBits(); 8038 // Make sure we're getting all element bits from the scalar register. 8039 // FIXME: Support implicit sign extension of vmv.v.x? 8040 if (ScalarBits < EltBits) 8041 return SDValue(); 8042 8043 // If the LHS is a sign extend, try to use vwmul. 8044 if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) { 8045 // Can use vwmul. 8046 } else { 8047 // Otherwise try to use vwmulu or vwmulsu. 8048 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 8049 if (DAG.MaskedValueIsZero(Op1, Mask)) 8050 IsVWMULSU = IsSignExt; 8051 else 8052 return SDValue(); 8053 } 8054 8055 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 8056 DAG.getUNDEF(NarrowVT), Op1, VL); 8057 } else 8058 return SDValue(); 8059 8060 Op0 = Op0.getOperand(0); 8061 8062 // Re-introduce narrower extends if needed. 8063 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 8064 if (Op0.getValueType() != NarrowVT) 8065 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 8066 // vwmulsu requires second operand to be zero extended. 8067 ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc; 8068 if (Op1.getValueType() != NarrowVT) 8069 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 8070 8071 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 8072 if (!IsVWMULSU) 8073 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 8074 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 8075 } 8076 8077 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 8078 switch (Op.getOpcode()) { 8079 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 8080 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 8081 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 8082 case ISD::FCEIL: return RISCVFPRndMode::RUP; 8083 case ISD::FROUND: return RISCVFPRndMode::RMM; 8084 } 8085 8086 return RISCVFPRndMode::Invalid; 8087 } 8088 8089 // Fold 8090 // (fp_to_int (froundeven X)) -> fcvt X, rne 8091 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 8092 // (fp_to_int (ffloor X)) -> fcvt X, rdn 8093 // (fp_to_int (fceil X)) -> fcvt X, rup 8094 // (fp_to_int (fround X)) -> fcvt X, rmm 8095 static SDValue performFP_TO_INTCombine(SDNode *N, 8096 TargetLowering::DAGCombinerInfo &DCI, 8097 const RISCVSubtarget &Subtarget) { 8098 SelectionDAG &DAG = DCI.DAG; 8099 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8100 MVT XLenVT = Subtarget.getXLenVT(); 8101 8102 // Only handle XLen or i32 types. Other types narrower than XLen will 8103 // eventually be legalized to XLenVT. 8104 EVT VT = N->getValueType(0); 8105 if (VT != MVT::i32 && VT != XLenVT) 8106 return SDValue(); 8107 8108 SDValue Src = N->getOperand(0); 8109 8110 // Ensure the FP type is also legal. 8111 if (!TLI.isTypeLegal(Src.getValueType())) 8112 return SDValue(); 8113 8114 // Don't do this for f16 with Zfhmin and not Zfh. 8115 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8116 return SDValue(); 8117 8118 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8119 if (FRM == RISCVFPRndMode::Invalid) 8120 return SDValue(); 8121 8122 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 8123 8124 unsigned Opc; 8125 if (VT == XLenVT) 8126 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8127 else 8128 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8129 8130 SDLoc DL(N); 8131 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 8132 DAG.getTargetConstant(FRM, DL, XLenVT)); 8133 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 8134 } 8135 8136 // Fold 8137 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 8138 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 8139 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 8140 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 8141 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 8142 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 8143 TargetLowering::DAGCombinerInfo &DCI, 8144 const RISCVSubtarget &Subtarget) { 8145 SelectionDAG &DAG = DCI.DAG; 8146 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8147 MVT XLenVT = Subtarget.getXLenVT(); 8148 8149 // Only handle XLen types. Other types narrower than XLen will eventually be 8150 // legalized to XLenVT. 8151 EVT DstVT = N->getValueType(0); 8152 if (DstVT != XLenVT) 8153 return SDValue(); 8154 8155 SDValue Src = N->getOperand(0); 8156 8157 // Ensure the FP type is also legal. 8158 if (!TLI.isTypeLegal(Src.getValueType())) 8159 return SDValue(); 8160 8161 // Don't do this for f16 with Zfhmin and not Zfh. 8162 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8163 return SDValue(); 8164 8165 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 8166 8167 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8168 if (FRM == RISCVFPRndMode::Invalid) 8169 return SDValue(); 8170 8171 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 8172 8173 unsigned Opc; 8174 if (SatVT == DstVT) 8175 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8176 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 8177 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8178 else 8179 return SDValue(); 8180 // FIXME: Support other SatVTs by clamping before or after the conversion. 8181 8182 Src = Src.getOperand(0); 8183 8184 SDLoc DL(N); 8185 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 8186 DAG.getTargetConstant(FRM, DL, XLenVT)); 8187 8188 // RISCV FP-to-int conversions saturate to the destination register size, but 8189 // don't produce 0 for nan. 8190 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 8191 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 8192 } 8193 8194 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is 8195 // smaller than XLenVT. 8196 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG, 8197 const RISCVSubtarget &Subtarget) { 8198 assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); 8199 8200 SDValue Src = N->getOperand(0); 8201 if (Src.getOpcode() != ISD::BSWAP) 8202 return SDValue(); 8203 8204 EVT VT = N->getValueType(0); 8205 if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() || 8206 !isPowerOf2_32(VT.getSizeInBits())) 8207 return SDValue(); 8208 8209 SDLoc DL(N); 8210 return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0), 8211 DAG.getConstant(7, DL, VT)); 8212 } 8213 8214 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 8215 DAGCombinerInfo &DCI) const { 8216 SelectionDAG &DAG = DCI.DAG; 8217 8218 // Helper to call SimplifyDemandedBits on an operand of N where only some low 8219 // bits are demanded. N will be added to the Worklist if it was not deleted. 8220 // Caller should return SDValue(N, 0) if this returns true. 8221 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 8222 SDValue Op = N->getOperand(OpNo); 8223 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 8224 if (!SimplifyDemandedBits(Op, Mask, DCI)) 8225 return false; 8226 8227 if (N->getOpcode() != ISD::DELETED_NODE) 8228 DCI.AddToWorklist(N); 8229 return true; 8230 }; 8231 8232 switch (N->getOpcode()) { 8233 default: 8234 break; 8235 case RISCVISD::SplitF64: { 8236 SDValue Op0 = N->getOperand(0); 8237 // If the input to SplitF64 is just BuildPairF64 then the operation is 8238 // redundant. Instead, use BuildPairF64's operands directly. 8239 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 8240 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 8241 8242 if (Op0->isUndef()) { 8243 SDValue Lo = DAG.getUNDEF(MVT::i32); 8244 SDValue Hi = DAG.getUNDEF(MVT::i32); 8245 return DCI.CombineTo(N, Lo, Hi); 8246 } 8247 8248 SDLoc DL(N); 8249 8250 // It's cheaper to materialise two 32-bit integers than to load a double 8251 // from the constant pool and transfer it to integer registers through the 8252 // stack. 8253 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 8254 APInt V = C->getValueAPF().bitcastToAPInt(); 8255 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 8256 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 8257 return DCI.CombineTo(N, Lo, Hi); 8258 } 8259 8260 // This is a target-specific version of a DAGCombine performed in 8261 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8262 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8263 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8264 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8265 !Op0.getNode()->hasOneUse()) 8266 break; 8267 SDValue NewSplitF64 = 8268 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 8269 Op0.getOperand(0)); 8270 SDValue Lo = NewSplitF64.getValue(0); 8271 SDValue Hi = NewSplitF64.getValue(1); 8272 APInt SignBit = APInt::getSignMask(32); 8273 if (Op0.getOpcode() == ISD::FNEG) { 8274 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 8275 DAG.getConstant(SignBit, DL, MVT::i32)); 8276 return DCI.CombineTo(N, Lo, NewHi); 8277 } 8278 assert(Op0.getOpcode() == ISD::FABS); 8279 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 8280 DAG.getConstant(~SignBit, DL, MVT::i32)); 8281 return DCI.CombineTo(N, Lo, NewHi); 8282 } 8283 case RISCVISD::SLLW: 8284 case RISCVISD::SRAW: 8285 case RISCVISD::SRLW: { 8286 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8287 if (SimplifyDemandedLowBitsHelper(0, 32) || 8288 SimplifyDemandedLowBitsHelper(1, 5)) 8289 return SDValue(N, 0); 8290 8291 break; 8292 } 8293 case ISD::ROTR: 8294 case ISD::ROTL: 8295 case RISCVISD::RORW: 8296 case RISCVISD::ROLW: { 8297 if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) { 8298 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8299 if (SimplifyDemandedLowBitsHelper(0, 32) || 8300 SimplifyDemandedLowBitsHelper(1, 5)) 8301 return SDValue(N, 0); 8302 } 8303 8304 return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget); 8305 } 8306 case RISCVISD::CLZW: 8307 case RISCVISD::CTZW: { 8308 // Only the lower 32 bits of the first operand are read 8309 if (SimplifyDemandedLowBitsHelper(0, 32)) 8310 return SDValue(N, 0); 8311 break; 8312 } 8313 case RISCVISD::GREV: 8314 case RISCVISD::GORC: { 8315 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 8316 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8317 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8318 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 8319 return SDValue(N, 0); 8320 8321 return combineGREVI_GORCI(N, DAG); 8322 } 8323 case RISCVISD::GREVW: 8324 case RISCVISD::GORCW: { 8325 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8326 if (SimplifyDemandedLowBitsHelper(0, 32) || 8327 SimplifyDemandedLowBitsHelper(1, 5)) 8328 return SDValue(N, 0); 8329 8330 break; 8331 } 8332 case RISCVISD::SHFL: 8333 case RISCVISD::UNSHFL: { 8334 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 8335 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8336 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8337 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 8338 return SDValue(N, 0); 8339 8340 break; 8341 } 8342 case RISCVISD::SHFLW: 8343 case RISCVISD::UNSHFLW: { 8344 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 8345 if (SimplifyDemandedLowBitsHelper(0, 32) || 8346 SimplifyDemandedLowBitsHelper(1, 4)) 8347 return SDValue(N, 0); 8348 8349 break; 8350 } 8351 case RISCVISD::BCOMPRESSW: 8352 case RISCVISD::BDECOMPRESSW: { 8353 // Only the lower 32 bits of LHS and RHS are read. 8354 if (SimplifyDemandedLowBitsHelper(0, 32) || 8355 SimplifyDemandedLowBitsHelper(1, 32)) 8356 return SDValue(N, 0); 8357 8358 break; 8359 } 8360 case RISCVISD::FSR: 8361 case RISCVISD::FSL: 8362 case RISCVISD::FSRW: 8363 case RISCVISD::FSLW: { 8364 bool IsWInstruction = 8365 N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW; 8366 unsigned BitWidth = 8367 IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits(); 8368 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8369 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 8370 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1)) 8371 return SDValue(N, 0); 8372 8373 break; 8374 } 8375 case RISCVISD::FMV_X_ANYEXTH: 8376 case RISCVISD::FMV_X_ANYEXTW_RV64: { 8377 SDLoc DL(N); 8378 SDValue Op0 = N->getOperand(0); 8379 MVT VT = N->getSimpleValueType(0); 8380 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 8381 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 8382 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 8383 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 8384 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 8385 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8386 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 8387 assert(Op0.getOperand(0).getValueType() == VT && 8388 "Unexpected value type!"); 8389 return Op0.getOperand(0); 8390 } 8391 8392 // This is a target-specific version of a DAGCombine performed in 8393 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8394 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8395 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8396 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8397 !Op0.getNode()->hasOneUse()) 8398 break; 8399 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 8400 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 8401 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 8402 if (Op0.getOpcode() == ISD::FNEG) 8403 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 8404 DAG.getConstant(SignBit, DL, VT)); 8405 8406 assert(Op0.getOpcode() == ISD::FABS); 8407 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 8408 DAG.getConstant(~SignBit, DL, VT)); 8409 } 8410 case ISD::ADD: 8411 return performADDCombine(N, DAG, Subtarget); 8412 case ISD::SUB: 8413 return performSUBCombine(N, DAG); 8414 case ISD::AND: 8415 return performANDCombine(N, DAG); 8416 case ISD::OR: 8417 return performORCombine(N, DAG, Subtarget); 8418 case ISD::XOR: 8419 return performXORCombine(N, DAG); 8420 case ISD::SIGN_EXTEND_INREG: 8421 return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); 8422 case ISD::ZERO_EXTEND: 8423 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 8424 // type legalization. This is safe because fp_to_uint produces poison if 8425 // it overflows. 8426 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 8427 SDValue Src = N->getOperand(0); 8428 if (Src.getOpcode() == ISD::FP_TO_UINT && 8429 isTypeLegal(Src.getOperand(0).getValueType())) 8430 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 8431 Src.getOperand(0)); 8432 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 8433 isTypeLegal(Src.getOperand(1).getValueType())) { 8434 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 8435 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 8436 Src.getOperand(0), Src.getOperand(1)); 8437 DCI.CombineTo(N, Res); 8438 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 8439 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 8440 return SDValue(N, 0); // Return N so it doesn't get rechecked. 8441 } 8442 } 8443 return SDValue(); 8444 case RISCVISD::SELECT_CC: { 8445 // Transform 8446 SDValue LHS = N->getOperand(0); 8447 SDValue RHS = N->getOperand(1); 8448 SDValue TrueV = N->getOperand(3); 8449 SDValue FalseV = N->getOperand(4); 8450 8451 // If the True and False values are the same, we don't need a select_cc. 8452 if (TrueV == FalseV) 8453 return TrueV; 8454 8455 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 8456 if (!ISD::isIntEqualitySetCC(CCVal)) 8457 break; 8458 8459 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 8460 // (select_cc X, Y, lt, trueV, falseV) 8461 // Sometimes the setcc is introduced after select_cc has been formed. 8462 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8463 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8464 // If we're looking for eq 0 instead of ne 0, we need to invert the 8465 // condition. 8466 bool Invert = CCVal == ISD::SETEQ; 8467 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8468 if (Invert) 8469 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8470 8471 SDLoc DL(N); 8472 RHS = LHS.getOperand(1); 8473 LHS = LHS.getOperand(0); 8474 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8475 8476 SDValue TargetCC = DAG.getCondCode(CCVal); 8477 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8478 {LHS, RHS, TargetCC, TrueV, FalseV}); 8479 } 8480 8481 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 8482 // (select_cc X, Y, eq/ne, trueV, falseV) 8483 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8484 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 8485 {LHS.getOperand(0), LHS.getOperand(1), 8486 N->getOperand(2), TrueV, FalseV}); 8487 // (select_cc X, 1, setne, trueV, falseV) -> 8488 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 8489 // This can occur when legalizing some floating point comparisons. 8490 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8491 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8492 SDLoc DL(N); 8493 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8494 SDValue TargetCC = DAG.getCondCode(CCVal); 8495 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8496 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8497 {LHS, RHS, TargetCC, TrueV, FalseV}); 8498 } 8499 8500 break; 8501 } 8502 case RISCVISD::BR_CC: { 8503 SDValue LHS = N->getOperand(1); 8504 SDValue RHS = N->getOperand(2); 8505 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 8506 if (!ISD::isIntEqualitySetCC(CCVal)) 8507 break; 8508 8509 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 8510 // (br_cc X, Y, lt, dest) 8511 // Sometimes the setcc is introduced after br_cc has been formed. 8512 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8513 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8514 // If we're looking for eq 0 instead of ne 0, we need to invert the 8515 // condition. 8516 bool Invert = CCVal == ISD::SETEQ; 8517 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8518 if (Invert) 8519 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8520 8521 SDLoc DL(N); 8522 RHS = LHS.getOperand(1); 8523 LHS = LHS.getOperand(0); 8524 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8525 8526 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8527 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 8528 N->getOperand(4)); 8529 } 8530 8531 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 8532 // (br_cc X, Y, eq/ne, trueV, falseV) 8533 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8534 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 8535 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 8536 N->getOperand(3), N->getOperand(4)); 8537 8538 // (br_cc X, 1, setne, br_cc) -> 8539 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 8540 // This can occur when legalizing some floating point comparisons. 8541 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8542 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8543 SDLoc DL(N); 8544 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8545 SDValue TargetCC = DAG.getCondCode(CCVal); 8546 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8547 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8548 N->getOperand(0), LHS, RHS, TargetCC, 8549 N->getOperand(4)); 8550 } 8551 break; 8552 } 8553 case ISD::BITREVERSE: 8554 return performBITREVERSECombine(N, DAG, Subtarget); 8555 case ISD::FP_TO_SINT: 8556 case ISD::FP_TO_UINT: 8557 return performFP_TO_INTCombine(N, DCI, Subtarget); 8558 case ISD::FP_TO_SINT_SAT: 8559 case ISD::FP_TO_UINT_SAT: 8560 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 8561 case ISD::FCOPYSIGN: { 8562 EVT VT = N->getValueType(0); 8563 if (!VT.isVector()) 8564 break; 8565 // There is a form of VFSGNJ which injects the negated sign of its second 8566 // operand. Try and bubble any FNEG up after the extend/round to produce 8567 // this optimized pattern. Avoid modifying cases where FP_ROUND and 8568 // TRUNC=1. 8569 SDValue In2 = N->getOperand(1); 8570 // Avoid cases where the extend/round has multiple uses, as duplicating 8571 // those is typically more expensive than removing a fneg. 8572 if (!In2.hasOneUse()) 8573 break; 8574 if (In2.getOpcode() != ISD::FP_EXTEND && 8575 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 8576 break; 8577 In2 = In2.getOperand(0); 8578 if (In2.getOpcode() != ISD::FNEG) 8579 break; 8580 SDLoc DL(N); 8581 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 8582 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 8583 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 8584 } 8585 case ISD::MGATHER: 8586 case ISD::MSCATTER: 8587 case ISD::VP_GATHER: 8588 case ISD::VP_SCATTER: { 8589 if (!DCI.isBeforeLegalize()) 8590 break; 8591 SDValue Index, ScaleOp; 8592 bool IsIndexScaled = false; 8593 bool IsIndexSigned = false; 8594 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 8595 Index = VPGSN->getIndex(); 8596 ScaleOp = VPGSN->getScale(); 8597 IsIndexScaled = VPGSN->isIndexScaled(); 8598 IsIndexSigned = VPGSN->isIndexSigned(); 8599 } else { 8600 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 8601 Index = MGSN->getIndex(); 8602 ScaleOp = MGSN->getScale(); 8603 IsIndexScaled = MGSN->isIndexScaled(); 8604 IsIndexSigned = MGSN->isIndexSigned(); 8605 } 8606 EVT IndexVT = Index.getValueType(); 8607 MVT XLenVT = Subtarget.getXLenVT(); 8608 // RISCV indexed loads only support the "unsigned unscaled" addressing 8609 // mode, so anything else must be manually legalized. 8610 bool NeedsIdxLegalization = 8611 IsIndexScaled || 8612 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 8613 if (!NeedsIdxLegalization) 8614 break; 8615 8616 SDLoc DL(N); 8617 8618 // Any index legalization should first promote to XLenVT, so we don't lose 8619 // bits when scaling. This may create an illegal index type so we let 8620 // LLVM's legalization take care of the splitting. 8621 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 8622 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 8623 IndexVT = IndexVT.changeVectorElementType(XLenVT); 8624 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 8625 DL, IndexVT, Index); 8626 } 8627 8628 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 8629 if (IsIndexScaled && Scale != 1) { 8630 // Manually scale the indices by the element size. 8631 // TODO: Sanitize the scale operand here? 8632 // TODO: For VP nodes, should we use VP_SHL here? 8633 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 8634 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 8635 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 8636 } 8637 8638 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 8639 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 8640 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 8641 {VPGN->getChain(), VPGN->getBasePtr(), Index, 8642 VPGN->getScale(), VPGN->getMask(), 8643 VPGN->getVectorLength()}, 8644 VPGN->getMemOperand(), NewIndexTy); 8645 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 8646 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 8647 {VPSN->getChain(), VPSN->getValue(), 8648 VPSN->getBasePtr(), Index, VPSN->getScale(), 8649 VPSN->getMask(), VPSN->getVectorLength()}, 8650 VPSN->getMemOperand(), NewIndexTy); 8651 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 8652 return DAG.getMaskedGather( 8653 N->getVTList(), MGN->getMemoryVT(), DL, 8654 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 8655 MGN->getBasePtr(), Index, MGN->getScale()}, 8656 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 8657 const auto *MSN = cast<MaskedScatterSDNode>(N); 8658 return DAG.getMaskedScatter( 8659 N->getVTList(), MSN->getMemoryVT(), DL, 8660 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 8661 Index, MSN->getScale()}, 8662 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 8663 } 8664 case RISCVISD::SRA_VL: 8665 case RISCVISD::SRL_VL: 8666 case RISCVISD::SHL_VL: { 8667 SDValue ShAmt = N->getOperand(1); 8668 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8669 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8670 SDLoc DL(N); 8671 SDValue VL = N->getOperand(3); 8672 EVT VT = N->getValueType(0); 8673 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8674 ShAmt.getOperand(1), VL); 8675 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 8676 N->getOperand(2), N->getOperand(3)); 8677 } 8678 break; 8679 } 8680 case ISD::SRA: 8681 case ISD::SRL: 8682 case ISD::SHL: { 8683 SDValue ShAmt = N->getOperand(1); 8684 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8685 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8686 SDLoc DL(N); 8687 EVT VT = N->getValueType(0); 8688 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8689 ShAmt.getOperand(1), 8690 DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); 8691 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 8692 } 8693 break; 8694 } 8695 case RISCVISD::ADD_VL: 8696 if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false)) 8697 return V; 8698 return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true); 8699 case RISCVISD::SUB_VL: 8700 return combineADDSUB_VLToVWADDSUB_VL(N, DAG); 8701 case RISCVISD::VWADD_W_VL: 8702 case RISCVISD::VWADDU_W_VL: 8703 case RISCVISD::VWSUB_W_VL: 8704 case RISCVISD::VWSUBU_W_VL: 8705 return combineVWADD_W_VL_VWSUB_W_VL(N, DAG); 8706 case RISCVISD::MUL_VL: 8707 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 8708 return V; 8709 // Mul is commutative. 8710 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 8711 case ISD::STORE: { 8712 auto *Store = cast<StoreSDNode>(N); 8713 SDValue Val = Store->getValue(); 8714 // Combine store of vmv.x.s to vse with VL of 1. 8715 // FIXME: Support FP. 8716 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 8717 SDValue Src = Val.getOperand(0); 8718 EVT VecVT = Src.getValueType(); 8719 EVT MemVT = Store->getMemoryVT(); 8720 // The memory VT and the element type must match. 8721 if (VecVT.getVectorElementType() == MemVT) { 8722 SDLoc DL(N); 8723 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 8724 return DAG.getStoreVP( 8725 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 8726 DAG.getConstant(1, DL, MaskVT), 8727 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 8728 Store->getMemOperand(), Store->getAddressingMode(), 8729 Store->isTruncatingStore(), /*IsCompress*/ false); 8730 } 8731 } 8732 8733 break; 8734 } 8735 case ISD::SPLAT_VECTOR: { 8736 EVT VT = N->getValueType(0); 8737 // Only perform this combine on legal MVT types. 8738 if (!isTypeLegal(VT)) 8739 break; 8740 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, 8741 DAG, Subtarget)) 8742 return Gather; 8743 break; 8744 } 8745 case RISCVISD::VMV_V_X_VL: { 8746 // Tail agnostic VMV.V.X only demands the vector element bitwidth from the 8747 // scalar input. 8748 unsigned ScalarSize = N->getOperand(1).getValueSizeInBits(); 8749 unsigned EltWidth = N->getValueType(0).getScalarSizeInBits(); 8750 if (ScalarSize > EltWidth && N->getOperand(0).isUndef()) 8751 if (SimplifyDemandedLowBitsHelper(1, EltWidth)) 8752 return SDValue(N, 0); 8753 8754 break; 8755 } 8756 case ISD::INTRINSIC_WO_CHAIN: { 8757 unsigned IntNo = N->getConstantOperandVal(0); 8758 switch (IntNo) { 8759 // By default we do not combine any intrinsic. 8760 default: 8761 return SDValue(); 8762 case Intrinsic::riscv_vcpop: 8763 case Intrinsic::riscv_vcpop_mask: 8764 case Intrinsic::riscv_vfirst: 8765 case Intrinsic::riscv_vfirst_mask: { 8766 SDValue VL = N->getOperand(2); 8767 if (IntNo == Intrinsic::riscv_vcpop_mask || 8768 IntNo == Intrinsic::riscv_vfirst_mask) 8769 VL = N->getOperand(3); 8770 if (!isNullConstant(VL)) 8771 return SDValue(); 8772 // If VL is 0, vcpop -> li 0, vfirst -> li -1. 8773 SDLoc DL(N); 8774 EVT VT = N->getValueType(0); 8775 if (IntNo == Intrinsic::riscv_vfirst || 8776 IntNo == Intrinsic::riscv_vfirst_mask) 8777 return DAG.getConstant(-1, DL, VT); 8778 return DAG.getConstant(0, DL, VT); 8779 } 8780 } 8781 } 8782 } 8783 8784 return SDValue(); 8785 } 8786 8787 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 8788 const SDNode *N, CombineLevel Level) const { 8789 // The following folds are only desirable if `(OP _, c1 << c2)` can be 8790 // materialised in fewer instructions than `(OP _, c1)`: 8791 // 8792 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8793 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8794 SDValue N0 = N->getOperand(0); 8795 EVT Ty = N0.getValueType(); 8796 if (Ty.isScalarInteger() && 8797 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 8798 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 8799 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8800 if (C1 && C2) { 8801 const APInt &C1Int = C1->getAPIntValue(); 8802 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 8803 8804 // We can materialise `c1 << c2` into an add immediate, so it's "free", 8805 // and the combine should happen, to potentially allow further combines 8806 // later. 8807 if (ShiftedC1Int.getMinSignedBits() <= 64 && 8808 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 8809 return true; 8810 8811 // We can materialise `c1` in an add immediate, so it's "free", and the 8812 // combine should be prevented. 8813 if (C1Int.getMinSignedBits() <= 64 && 8814 isLegalAddImmediate(C1Int.getSExtValue())) 8815 return false; 8816 8817 // Neither constant will fit into an immediate, so find materialisation 8818 // costs. 8819 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 8820 Subtarget.getFeatureBits(), 8821 /*CompressionCost*/true); 8822 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 8823 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 8824 /*CompressionCost*/true); 8825 8826 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 8827 // combine should be prevented. 8828 if (C1Cost < ShiftedC1Cost) 8829 return false; 8830 } 8831 } 8832 return true; 8833 } 8834 8835 bool RISCVTargetLowering::targetShrinkDemandedConstant( 8836 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 8837 TargetLoweringOpt &TLO) const { 8838 // Delay this optimization as late as possible. 8839 if (!TLO.LegalOps) 8840 return false; 8841 8842 EVT VT = Op.getValueType(); 8843 if (VT.isVector()) 8844 return false; 8845 8846 // Only handle AND for now. 8847 if (Op.getOpcode() != ISD::AND) 8848 return false; 8849 8850 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8851 if (!C) 8852 return false; 8853 8854 const APInt &Mask = C->getAPIntValue(); 8855 8856 // Clear all non-demanded bits initially. 8857 APInt ShrunkMask = Mask & DemandedBits; 8858 8859 // Try to make a smaller immediate by setting undemanded bits. 8860 8861 APInt ExpandedMask = Mask | ~DemandedBits; 8862 8863 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 8864 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 8865 }; 8866 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 8867 if (NewMask == Mask) 8868 return true; 8869 SDLoc DL(Op); 8870 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 8871 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 8872 return TLO.CombineTo(Op, NewOp); 8873 }; 8874 8875 // If the shrunk mask fits in sign extended 12 bits, let the target 8876 // independent code apply it. 8877 if (ShrunkMask.isSignedIntN(12)) 8878 return false; 8879 8880 // Preserve (and X, 0xffff) when zext.h is supported. 8881 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 8882 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 8883 if (IsLegalMask(NewMask)) 8884 return UseMask(NewMask); 8885 } 8886 8887 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 8888 if (VT == MVT::i64) { 8889 APInt NewMask = APInt(64, 0xffffffff); 8890 if (IsLegalMask(NewMask)) 8891 return UseMask(NewMask); 8892 } 8893 8894 // For the remaining optimizations, we need to be able to make a negative 8895 // number through a combination of mask and undemanded bits. 8896 if (!ExpandedMask.isNegative()) 8897 return false; 8898 8899 // What is the fewest number of bits we need to represent the negative number. 8900 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 8901 8902 // Try to make a 12 bit negative immediate. If that fails try to make a 32 8903 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 8904 APInt NewMask = ShrunkMask; 8905 if (MinSignedBits <= 12) 8906 NewMask.setBitsFrom(11); 8907 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 8908 NewMask.setBitsFrom(31); 8909 else 8910 return false; 8911 8912 // Check that our new mask is a subset of the demanded mask. 8913 assert(IsLegalMask(NewMask)); 8914 return UseMask(NewMask); 8915 } 8916 8917 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) { 8918 static const uint64_t GREVMasks[] = { 8919 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 8920 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 8921 8922 for (unsigned Stage = 0; Stage != 6; ++Stage) { 8923 unsigned Shift = 1 << Stage; 8924 if (ShAmt & Shift) { 8925 uint64_t Mask = GREVMasks[Stage]; 8926 uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask); 8927 if (IsGORC) 8928 Res |= x; 8929 x = Res; 8930 } 8931 } 8932 8933 return x; 8934 } 8935 8936 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 8937 KnownBits &Known, 8938 const APInt &DemandedElts, 8939 const SelectionDAG &DAG, 8940 unsigned Depth) const { 8941 unsigned BitWidth = Known.getBitWidth(); 8942 unsigned Opc = Op.getOpcode(); 8943 assert((Opc >= ISD::BUILTIN_OP_END || 8944 Opc == ISD::INTRINSIC_WO_CHAIN || 8945 Opc == ISD::INTRINSIC_W_CHAIN || 8946 Opc == ISD::INTRINSIC_VOID) && 8947 "Should use MaskedValueIsZero if you don't know whether Op" 8948 " is a target node!"); 8949 8950 Known.resetAll(); 8951 switch (Opc) { 8952 default: break; 8953 case RISCVISD::SELECT_CC: { 8954 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 8955 // If we don't know any bits, early out. 8956 if (Known.isUnknown()) 8957 break; 8958 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 8959 8960 // Only known if known in both the LHS and RHS. 8961 Known = KnownBits::commonBits(Known, Known2); 8962 break; 8963 } 8964 case RISCVISD::REMUW: { 8965 KnownBits Known2; 8966 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8967 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8968 // We only care about the lower 32 bits. 8969 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 8970 // Restore the original width by sign extending. 8971 Known = Known.sext(BitWidth); 8972 break; 8973 } 8974 case RISCVISD::DIVUW: { 8975 KnownBits Known2; 8976 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8977 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8978 // We only care about the lower 32 bits. 8979 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 8980 // Restore the original width by sign extending. 8981 Known = Known.sext(BitWidth); 8982 break; 8983 } 8984 case RISCVISD::CTZW: { 8985 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8986 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 8987 unsigned LowBits = Log2_32(PossibleTZ) + 1; 8988 Known.Zero.setBitsFrom(LowBits); 8989 break; 8990 } 8991 case RISCVISD::CLZW: { 8992 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8993 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 8994 unsigned LowBits = Log2_32(PossibleLZ) + 1; 8995 Known.Zero.setBitsFrom(LowBits); 8996 break; 8997 } 8998 case RISCVISD::GREV: 8999 case RISCVISD::GORC: { 9000 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 9001 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9002 unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1); 9003 bool IsGORC = Op.getOpcode() == RISCVISD::GORC; 9004 // To compute zeros, we need to invert the value and invert it back after. 9005 Known.Zero = 9006 ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC); 9007 Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC); 9008 } 9009 break; 9010 } 9011 case RISCVISD::READ_VLENB: { 9012 // If we know the minimum VLen from Zvl extensions, we can use that to 9013 // determine the trailing zeros of VLENB. 9014 // FIXME: Limit to 128 bit vectors until we have more testing. 9015 unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8; 9016 if (MinVLenB > 0) 9017 Known.Zero.setLowBits(Log2_32(MinVLenB)); 9018 // We assume VLENB is no more than 65536 / 8 bytes. 9019 Known.Zero.setBitsFrom(14); 9020 break; 9021 } 9022 case ISD::INTRINSIC_W_CHAIN: 9023 case ISD::INTRINSIC_WO_CHAIN: { 9024 unsigned IntNo = 9025 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 9026 switch (IntNo) { 9027 default: 9028 // We can't do anything for most intrinsics. 9029 break; 9030 case Intrinsic::riscv_vsetvli: 9031 case Intrinsic::riscv_vsetvlimax: 9032 case Intrinsic::riscv_vsetvli_opt: 9033 case Intrinsic::riscv_vsetvlimax_opt: 9034 // Assume that VL output is positive and would fit in an int32_t. 9035 // TODO: VLEN might be capped at 16 bits in a future V spec update. 9036 if (BitWidth >= 32) 9037 Known.Zero.setBitsFrom(31); 9038 break; 9039 } 9040 break; 9041 } 9042 } 9043 } 9044 9045 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 9046 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 9047 unsigned Depth) const { 9048 switch (Op.getOpcode()) { 9049 default: 9050 break; 9051 case RISCVISD::SELECT_CC: { 9052 unsigned Tmp = 9053 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 9054 if (Tmp == 1) return 1; // Early out. 9055 unsigned Tmp2 = 9056 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 9057 return std::min(Tmp, Tmp2); 9058 } 9059 case RISCVISD::SLLW: 9060 case RISCVISD::SRAW: 9061 case RISCVISD::SRLW: 9062 case RISCVISD::DIVW: 9063 case RISCVISD::DIVUW: 9064 case RISCVISD::REMUW: 9065 case RISCVISD::ROLW: 9066 case RISCVISD::RORW: 9067 case RISCVISD::GREVW: 9068 case RISCVISD::GORCW: 9069 case RISCVISD::FSLW: 9070 case RISCVISD::FSRW: 9071 case RISCVISD::SHFLW: 9072 case RISCVISD::UNSHFLW: 9073 case RISCVISD::BCOMPRESSW: 9074 case RISCVISD::BDECOMPRESSW: 9075 case RISCVISD::BFPW: 9076 case RISCVISD::FCVT_W_RV64: 9077 case RISCVISD::FCVT_WU_RV64: 9078 case RISCVISD::STRICT_FCVT_W_RV64: 9079 case RISCVISD::STRICT_FCVT_WU_RV64: 9080 // TODO: As the result is sign-extended, this is conservatively correct. A 9081 // more precise answer could be calculated for SRAW depending on known 9082 // bits in the shift amount. 9083 return 33; 9084 case RISCVISD::SHFL: 9085 case RISCVISD::UNSHFL: { 9086 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 9087 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 9088 // will stay within the upper 32 bits. If there were more than 32 sign bits 9089 // before there will be at least 33 sign bits after. 9090 if (Op.getValueType() == MVT::i64 && 9091 isa<ConstantSDNode>(Op.getOperand(1)) && 9092 (Op.getConstantOperandVal(1) & 0x10) == 0) { 9093 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 9094 if (Tmp > 32) 9095 return 33; 9096 } 9097 break; 9098 } 9099 case RISCVISD::VMV_X_S: { 9100 // The number of sign bits of the scalar result is computed by obtaining the 9101 // element type of the input vector operand, subtracting its width from the 9102 // XLEN, and then adding one (sign bit within the element type). If the 9103 // element type is wider than XLen, the least-significant XLEN bits are 9104 // taken. 9105 unsigned XLen = Subtarget.getXLen(); 9106 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 9107 if (EltBits <= XLen) 9108 return XLen - EltBits + 1; 9109 break; 9110 } 9111 } 9112 9113 return 1; 9114 } 9115 9116 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 9117 MachineBasicBlock *BB) { 9118 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 9119 9120 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 9121 // Should the count have wrapped while it was being read, we need to try 9122 // again. 9123 // ... 9124 // read: 9125 // rdcycleh x3 # load high word of cycle 9126 // rdcycle x2 # load low word of cycle 9127 // rdcycleh x4 # load high word of cycle 9128 // bne x3, x4, read # check if high word reads match, otherwise try again 9129 // ... 9130 9131 MachineFunction &MF = *BB->getParent(); 9132 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9133 MachineFunction::iterator It = ++BB->getIterator(); 9134 9135 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9136 MF.insert(It, LoopMBB); 9137 9138 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9139 MF.insert(It, DoneMBB); 9140 9141 // Transfer the remainder of BB and its successor edges to DoneMBB. 9142 DoneMBB->splice(DoneMBB->begin(), BB, 9143 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9144 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 9145 9146 BB->addSuccessor(LoopMBB); 9147 9148 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9149 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9150 Register LoReg = MI.getOperand(0).getReg(); 9151 Register HiReg = MI.getOperand(1).getReg(); 9152 DebugLoc DL = MI.getDebugLoc(); 9153 9154 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 9155 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 9156 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9157 .addReg(RISCV::X0); 9158 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 9159 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 9160 .addReg(RISCV::X0); 9161 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 9162 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9163 .addReg(RISCV::X0); 9164 9165 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 9166 .addReg(HiReg) 9167 .addReg(ReadAgainReg) 9168 .addMBB(LoopMBB); 9169 9170 LoopMBB->addSuccessor(LoopMBB); 9171 LoopMBB->addSuccessor(DoneMBB); 9172 9173 MI.eraseFromParent(); 9174 9175 return DoneMBB; 9176 } 9177 9178 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 9179 MachineBasicBlock *BB) { 9180 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 9181 9182 MachineFunction &MF = *BB->getParent(); 9183 DebugLoc DL = MI.getDebugLoc(); 9184 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9185 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9186 Register LoReg = MI.getOperand(0).getReg(); 9187 Register HiReg = MI.getOperand(1).getReg(); 9188 Register SrcReg = MI.getOperand(2).getReg(); 9189 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 9190 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9191 9192 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 9193 RI); 9194 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9195 MachineMemOperand *MMOLo = 9196 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 9197 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9198 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 9199 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 9200 .addFrameIndex(FI) 9201 .addImm(0) 9202 .addMemOperand(MMOLo); 9203 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 9204 .addFrameIndex(FI) 9205 .addImm(4) 9206 .addMemOperand(MMOHi); 9207 MI.eraseFromParent(); // The pseudo instruction is gone now. 9208 return BB; 9209 } 9210 9211 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 9212 MachineBasicBlock *BB) { 9213 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 9214 "Unexpected instruction"); 9215 9216 MachineFunction &MF = *BB->getParent(); 9217 DebugLoc DL = MI.getDebugLoc(); 9218 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9219 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9220 Register DstReg = MI.getOperand(0).getReg(); 9221 Register LoReg = MI.getOperand(1).getReg(); 9222 Register HiReg = MI.getOperand(2).getReg(); 9223 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 9224 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9225 9226 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9227 MachineMemOperand *MMOLo = 9228 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 9229 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9230 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 9231 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9232 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 9233 .addFrameIndex(FI) 9234 .addImm(0) 9235 .addMemOperand(MMOLo); 9236 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9237 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 9238 .addFrameIndex(FI) 9239 .addImm(4) 9240 .addMemOperand(MMOHi); 9241 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 9242 MI.eraseFromParent(); // The pseudo instruction is gone now. 9243 return BB; 9244 } 9245 9246 static bool isSelectPseudo(MachineInstr &MI) { 9247 switch (MI.getOpcode()) { 9248 default: 9249 return false; 9250 case RISCV::Select_GPR_Using_CC_GPR: 9251 case RISCV::Select_FPR16_Using_CC_GPR: 9252 case RISCV::Select_FPR32_Using_CC_GPR: 9253 case RISCV::Select_FPR64_Using_CC_GPR: 9254 return true; 9255 } 9256 } 9257 9258 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 9259 unsigned RelOpcode, unsigned EqOpcode, 9260 const RISCVSubtarget &Subtarget) { 9261 DebugLoc DL = MI.getDebugLoc(); 9262 Register DstReg = MI.getOperand(0).getReg(); 9263 Register Src1Reg = MI.getOperand(1).getReg(); 9264 Register Src2Reg = MI.getOperand(2).getReg(); 9265 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 9266 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 9267 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 9268 9269 // Save the current FFLAGS. 9270 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 9271 9272 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 9273 .addReg(Src1Reg) 9274 .addReg(Src2Reg); 9275 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9276 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 9277 9278 // Restore the FFLAGS. 9279 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 9280 .addReg(SavedFFlags, RegState::Kill); 9281 9282 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 9283 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 9284 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 9285 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 9286 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9287 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 9288 9289 // Erase the pseudoinstruction. 9290 MI.eraseFromParent(); 9291 return BB; 9292 } 9293 9294 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 9295 MachineBasicBlock *BB, 9296 const RISCVSubtarget &Subtarget) { 9297 // To "insert" Select_* instructions, we actually have to insert the triangle 9298 // control-flow pattern. The incoming instructions know the destination vreg 9299 // to set, the condition code register to branch on, the true/false values to 9300 // select between, and the condcode to use to select the appropriate branch. 9301 // 9302 // We produce the following control flow: 9303 // HeadMBB 9304 // | \ 9305 // | IfFalseMBB 9306 // | / 9307 // TailMBB 9308 // 9309 // When we find a sequence of selects we attempt to optimize their emission 9310 // by sharing the control flow. Currently we only handle cases where we have 9311 // multiple selects with the exact same condition (same LHS, RHS and CC). 9312 // The selects may be interleaved with other instructions if the other 9313 // instructions meet some requirements we deem safe: 9314 // - They are debug instructions. Otherwise, 9315 // - They do not have side-effects, do not access memory and their inputs do 9316 // not depend on the results of the select pseudo-instructions. 9317 // The TrueV/FalseV operands of the selects cannot depend on the result of 9318 // previous selects in the sequence. 9319 // These conditions could be further relaxed. See the X86 target for a 9320 // related approach and more information. 9321 Register LHS = MI.getOperand(1).getReg(); 9322 Register RHS = MI.getOperand(2).getReg(); 9323 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 9324 9325 SmallVector<MachineInstr *, 4> SelectDebugValues; 9326 SmallSet<Register, 4> SelectDests; 9327 SelectDests.insert(MI.getOperand(0).getReg()); 9328 9329 MachineInstr *LastSelectPseudo = &MI; 9330 9331 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 9332 SequenceMBBI != E; ++SequenceMBBI) { 9333 if (SequenceMBBI->isDebugInstr()) 9334 continue; 9335 else if (isSelectPseudo(*SequenceMBBI)) { 9336 if (SequenceMBBI->getOperand(1).getReg() != LHS || 9337 SequenceMBBI->getOperand(2).getReg() != RHS || 9338 SequenceMBBI->getOperand(3).getImm() != CC || 9339 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 9340 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 9341 break; 9342 LastSelectPseudo = &*SequenceMBBI; 9343 SequenceMBBI->collectDebugValues(SelectDebugValues); 9344 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 9345 } else { 9346 if (SequenceMBBI->hasUnmodeledSideEffects() || 9347 SequenceMBBI->mayLoadOrStore()) 9348 break; 9349 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 9350 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 9351 })) 9352 break; 9353 } 9354 } 9355 9356 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 9357 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9358 DebugLoc DL = MI.getDebugLoc(); 9359 MachineFunction::iterator I = ++BB->getIterator(); 9360 9361 MachineBasicBlock *HeadMBB = BB; 9362 MachineFunction *F = BB->getParent(); 9363 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 9364 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 9365 9366 F->insert(I, IfFalseMBB); 9367 F->insert(I, TailMBB); 9368 9369 // Transfer debug instructions associated with the selects to TailMBB. 9370 for (MachineInstr *DebugInstr : SelectDebugValues) { 9371 TailMBB->push_back(DebugInstr->removeFromParent()); 9372 } 9373 9374 // Move all instructions after the sequence to TailMBB. 9375 TailMBB->splice(TailMBB->end(), HeadMBB, 9376 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 9377 // Update machine-CFG edges by transferring all successors of the current 9378 // block to the new block which will contain the Phi nodes for the selects. 9379 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 9380 // Set the successors for HeadMBB. 9381 HeadMBB->addSuccessor(IfFalseMBB); 9382 HeadMBB->addSuccessor(TailMBB); 9383 9384 // Insert appropriate branch. 9385 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 9386 .addReg(LHS) 9387 .addReg(RHS) 9388 .addMBB(TailMBB); 9389 9390 // IfFalseMBB just falls through to TailMBB. 9391 IfFalseMBB->addSuccessor(TailMBB); 9392 9393 // Create PHIs for all of the select pseudo-instructions. 9394 auto SelectMBBI = MI.getIterator(); 9395 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 9396 auto InsertionPoint = TailMBB->begin(); 9397 while (SelectMBBI != SelectEnd) { 9398 auto Next = std::next(SelectMBBI); 9399 if (isSelectPseudo(*SelectMBBI)) { 9400 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 9401 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 9402 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 9403 .addReg(SelectMBBI->getOperand(4).getReg()) 9404 .addMBB(HeadMBB) 9405 .addReg(SelectMBBI->getOperand(5).getReg()) 9406 .addMBB(IfFalseMBB); 9407 SelectMBBI->eraseFromParent(); 9408 } 9409 SelectMBBI = Next; 9410 } 9411 9412 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 9413 return TailMBB; 9414 } 9415 9416 MachineBasicBlock * 9417 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9418 MachineBasicBlock *BB) const { 9419 switch (MI.getOpcode()) { 9420 default: 9421 llvm_unreachable("Unexpected instr type to insert"); 9422 case RISCV::ReadCycleWide: 9423 assert(!Subtarget.is64Bit() && 9424 "ReadCycleWrite is only to be used on riscv32"); 9425 return emitReadCycleWidePseudo(MI, BB); 9426 case RISCV::Select_GPR_Using_CC_GPR: 9427 case RISCV::Select_FPR16_Using_CC_GPR: 9428 case RISCV::Select_FPR32_Using_CC_GPR: 9429 case RISCV::Select_FPR64_Using_CC_GPR: 9430 return emitSelectPseudo(MI, BB, Subtarget); 9431 case RISCV::BuildPairF64Pseudo: 9432 return emitBuildPairF64Pseudo(MI, BB); 9433 case RISCV::SplitF64Pseudo: 9434 return emitSplitF64Pseudo(MI, BB); 9435 case RISCV::PseudoQuietFLE_H: 9436 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 9437 case RISCV::PseudoQuietFLT_H: 9438 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 9439 case RISCV::PseudoQuietFLE_S: 9440 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 9441 case RISCV::PseudoQuietFLT_S: 9442 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 9443 case RISCV::PseudoQuietFLE_D: 9444 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 9445 case RISCV::PseudoQuietFLT_D: 9446 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 9447 } 9448 } 9449 9450 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 9451 SDNode *Node) const { 9452 // Add FRM dependency to any instructions with dynamic rounding mode. 9453 unsigned Opc = MI.getOpcode(); 9454 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 9455 if (Idx < 0) 9456 return; 9457 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 9458 return; 9459 // If the instruction already reads FRM, don't add another read. 9460 if (MI.readsRegister(RISCV::FRM)) 9461 return; 9462 MI.addOperand( 9463 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 9464 } 9465 9466 // Calling Convention Implementation. 9467 // The expectations for frontend ABI lowering vary from target to target. 9468 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 9469 // details, but this is a longer term goal. For now, we simply try to keep the 9470 // role of the frontend as simple and well-defined as possible. The rules can 9471 // be summarised as: 9472 // * Never split up large scalar arguments. We handle them here. 9473 // * If a hardfloat calling convention is being used, and the struct may be 9474 // passed in a pair of registers (fp+fp, int+fp), and both registers are 9475 // available, then pass as two separate arguments. If either the GPRs or FPRs 9476 // are exhausted, then pass according to the rule below. 9477 // * If a struct could never be passed in registers or directly in a stack 9478 // slot (as it is larger than 2*XLEN and the floating point rules don't 9479 // apply), then pass it using a pointer with the byval attribute. 9480 // * If a struct is less than 2*XLEN, then coerce to either a two-element 9481 // word-sized array or a 2*XLEN scalar (depending on alignment). 9482 // * The frontend can determine whether a struct is returned by reference or 9483 // not based on its size and fields. If it will be returned by reference, the 9484 // frontend must modify the prototype so a pointer with the sret annotation is 9485 // passed as the first argument. This is not necessary for large scalar 9486 // returns. 9487 // * Struct return values and varargs should be coerced to structs containing 9488 // register-size fields in the same situations they would be for fixed 9489 // arguments. 9490 9491 static const MCPhysReg ArgGPRs[] = { 9492 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 9493 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 9494 }; 9495 static const MCPhysReg ArgFPR16s[] = { 9496 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 9497 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 9498 }; 9499 static const MCPhysReg ArgFPR32s[] = { 9500 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 9501 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 9502 }; 9503 static const MCPhysReg ArgFPR64s[] = { 9504 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 9505 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 9506 }; 9507 // This is an interim calling convention and it may be changed in the future. 9508 static const MCPhysReg ArgVRs[] = { 9509 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 9510 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 9511 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 9512 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 9513 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 9514 RISCV::V20M2, RISCV::V22M2}; 9515 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 9516 RISCV::V20M4}; 9517 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 9518 9519 // Pass a 2*XLEN argument that has been split into two XLEN values through 9520 // registers or the stack as necessary. 9521 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 9522 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 9523 MVT ValVT2, MVT LocVT2, 9524 ISD::ArgFlagsTy ArgFlags2) { 9525 unsigned XLenInBytes = XLen / 8; 9526 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9527 // At least one half can be passed via register. 9528 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 9529 VA1.getLocVT(), CCValAssign::Full)); 9530 } else { 9531 // Both halves must be passed on the stack, with proper alignment. 9532 Align StackAlign = 9533 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 9534 State.addLoc( 9535 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 9536 State.AllocateStack(XLenInBytes, StackAlign), 9537 VA1.getLocVT(), CCValAssign::Full)); 9538 State.addLoc(CCValAssign::getMem( 9539 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9540 LocVT2, CCValAssign::Full)); 9541 return false; 9542 } 9543 9544 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9545 // The second half can also be passed via register. 9546 State.addLoc( 9547 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 9548 } else { 9549 // The second half is passed via the stack, without additional alignment. 9550 State.addLoc(CCValAssign::getMem( 9551 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9552 LocVT2, CCValAssign::Full)); 9553 } 9554 9555 return false; 9556 } 9557 9558 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 9559 Optional<unsigned> FirstMaskArgument, 9560 CCState &State, const RISCVTargetLowering &TLI) { 9561 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 9562 if (RC == &RISCV::VRRegClass) { 9563 // Assign the first mask argument to V0. 9564 // This is an interim calling convention and it may be changed in the 9565 // future. 9566 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 9567 return State.AllocateReg(RISCV::V0); 9568 return State.AllocateReg(ArgVRs); 9569 } 9570 if (RC == &RISCV::VRM2RegClass) 9571 return State.AllocateReg(ArgVRM2s); 9572 if (RC == &RISCV::VRM4RegClass) 9573 return State.AllocateReg(ArgVRM4s); 9574 if (RC == &RISCV::VRM8RegClass) 9575 return State.AllocateReg(ArgVRM8s); 9576 llvm_unreachable("Unhandled register class for ValueType"); 9577 } 9578 9579 // Implements the RISC-V calling convention. Returns true upon failure. 9580 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 9581 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 9582 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 9583 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 9584 Optional<unsigned> FirstMaskArgument) { 9585 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 9586 assert(XLen == 32 || XLen == 64); 9587 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 9588 9589 // Any return value split in to more than two values can't be returned 9590 // directly. Vectors are returned via the available vector registers. 9591 if (!LocVT.isVector() && IsRet && ValNo > 1) 9592 return true; 9593 9594 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 9595 // variadic argument, or if no F16/F32 argument registers are available. 9596 bool UseGPRForF16_F32 = true; 9597 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 9598 // variadic argument, or if no F64 argument registers are available. 9599 bool UseGPRForF64 = true; 9600 9601 switch (ABI) { 9602 default: 9603 llvm_unreachable("Unexpected ABI"); 9604 case RISCVABI::ABI_ILP32: 9605 case RISCVABI::ABI_LP64: 9606 break; 9607 case RISCVABI::ABI_ILP32F: 9608 case RISCVABI::ABI_LP64F: 9609 UseGPRForF16_F32 = !IsFixed; 9610 break; 9611 case RISCVABI::ABI_ILP32D: 9612 case RISCVABI::ABI_LP64D: 9613 UseGPRForF16_F32 = !IsFixed; 9614 UseGPRForF64 = !IsFixed; 9615 break; 9616 } 9617 9618 // FPR16, FPR32, and FPR64 alias each other. 9619 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 9620 UseGPRForF16_F32 = true; 9621 UseGPRForF64 = true; 9622 } 9623 9624 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 9625 // similar local variables rather than directly checking against the target 9626 // ABI. 9627 9628 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 9629 LocVT = XLenVT; 9630 LocInfo = CCValAssign::BCvt; 9631 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 9632 LocVT = MVT::i64; 9633 LocInfo = CCValAssign::BCvt; 9634 } 9635 9636 // If this is a variadic argument, the RISC-V calling convention requires 9637 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 9638 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 9639 // be used regardless of whether the original argument was split during 9640 // legalisation or not. The argument will not be passed by registers if the 9641 // original type is larger than 2*XLEN, so the register alignment rule does 9642 // not apply. 9643 unsigned TwoXLenInBytes = (2 * XLen) / 8; 9644 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 9645 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 9646 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 9647 // Skip 'odd' register if necessary. 9648 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 9649 State.AllocateReg(ArgGPRs); 9650 } 9651 9652 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 9653 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 9654 State.getPendingArgFlags(); 9655 9656 assert(PendingLocs.size() == PendingArgFlags.size() && 9657 "PendingLocs and PendingArgFlags out of sync"); 9658 9659 // Handle passing f64 on RV32D with a soft float ABI or when floating point 9660 // registers are exhausted. 9661 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 9662 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 9663 "Can't lower f64 if it is split"); 9664 // Depending on available argument GPRS, f64 may be passed in a pair of 9665 // GPRs, split between a GPR and the stack, or passed completely on the 9666 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 9667 // cases. 9668 Register Reg = State.AllocateReg(ArgGPRs); 9669 LocVT = MVT::i32; 9670 if (!Reg) { 9671 unsigned StackOffset = State.AllocateStack(8, Align(8)); 9672 State.addLoc( 9673 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9674 return false; 9675 } 9676 if (!State.AllocateReg(ArgGPRs)) 9677 State.AllocateStack(4, Align(4)); 9678 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9679 return false; 9680 } 9681 9682 // Fixed-length vectors are located in the corresponding scalable-vector 9683 // container types. 9684 if (ValVT.isFixedLengthVector()) 9685 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9686 9687 // Split arguments might be passed indirectly, so keep track of the pending 9688 // values. Split vectors are passed via a mix of registers and indirectly, so 9689 // treat them as we would any other argument. 9690 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 9691 LocVT = XLenVT; 9692 LocInfo = CCValAssign::Indirect; 9693 PendingLocs.push_back( 9694 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 9695 PendingArgFlags.push_back(ArgFlags); 9696 if (!ArgFlags.isSplitEnd()) { 9697 return false; 9698 } 9699 } 9700 9701 // If the split argument only had two elements, it should be passed directly 9702 // in registers or on the stack. 9703 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 9704 PendingLocs.size() <= 2) { 9705 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 9706 // Apply the normal calling convention rules to the first half of the 9707 // split argument. 9708 CCValAssign VA = PendingLocs[0]; 9709 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 9710 PendingLocs.clear(); 9711 PendingArgFlags.clear(); 9712 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 9713 ArgFlags); 9714 } 9715 9716 // Allocate to a register if possible, or else a stack slot. 9717 Register Reg; 9718 unsigned StoreSizeBytes = XLen / 8; 9719 Align StackAlign = Align(XLen / 8); 9720 9721 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 9722 Reg = State.AllocateReg(ArgFPR16s); 9723 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 9724 Reg = State.AllocateReg(ArgFPR32s); 9725 else if (ValVT == MVT::f64 && !UseGPRForF64) 9726 Reg = State.AllocateReg(ArgFPR64s); 9727 else if (ValVT.isVector()) { 9728 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 9729 if (!Reg) { 9730 // For return values, the vector must be passed fully via registers or 9731 // via the stack. 9732 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 9733 // but we're using all of them. 9734 if (IsRet) 9735 return true; 9736 // Try using a GPR to pass the address 9737 if ((Reg = State.AllocateReg(ArgGPRs))) { 9738 LocVT = XLenVT; 9739 LocInfo = CCValAssign::Indirect; 9740 } else if (ValVT.isScalableVector()) { 9741 LocVT = XLenVT; 9742 LocInfo = CCValAssign::Indirect; 9743 } else { 9744 // Pass fixed-length vectors on the stack. 9745 LocVT = ValVT; 9746 StoreSizeBytes = ValVT.getStoreSize(); 9747 // Align vectors to their element sizes, being careful for vXi1 9748 // vectors. 9749 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9750 } 9751 } 9752 } else { 9753 Reg = State.AllocateReg(ArgGPRs); 9754 } 9755 9756 unsigned StackOffset = 9757 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 9758 9759 // If we reach this point and PendingLocs is non-empty, we must be at the 9760 // end of a split argument that must be passed indirectly. 9761 if (!PendingLocs.empty()) { 9762 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 9763 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 9764 9765 for (auto &It : PendingLocs) { 9766 if (Reg) 9767 It.convertToReg(Reg); 9768 else 9769 It.convertToMem(StackOffset); 9770 State.addLoc(It); 9771 } 9772 PendingLocs.clear(); 9773 PendingArgFlags.clear(); 9774 return false; 9775 } 9776 9777 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 9778 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 9779 "Expected an XLenVT or vector types at this stage"); 9780 9781 if (Reg) { 9782 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9783 return false; 9784 } 9785 9786 // When a floating-point value is passed on the stack, no bit-conversion is 9787 // needed. 9788 if (ValVT.isFloatingPoint()) { 9789 LocVT = ValVT; 9790 LocInfo = CCValAssign::Full; 9791 } 9792 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9793 return false; 9794 } 9795 9796 template <typename ArgTy> 9797 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 9798 for (const auto &ArgIdx : enumerate(Args)) { 9799 MVT ArgVT = ArgIdx.value().VT; 9800 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 9801 return ArgIdx.index(); 9802 } 9803 return None; 9804 } 9805 9806 void RISCVTargetLowering::analyzeInputArgs( 9807 MachineFunction &MF, CCState &CCInfo, 9808 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 9809 RISCVCCAssignFn Fn) const { 9810 unsigned NumArgs = Ins.size(); 9811 FunctionType *FType = MF.getFunction().getFunctionType(); 9812 9813 Optional<unsigned> FirstMaskArgument; 9814 if (Subtarget.hasVInstructions()) 9815 FirstMaskArgument = preAssignMask(Ins); 9816 9817 for (unsigned i = 0; i != NumArgs; ++i) { 9818 MVT ArgVT = Ins[i].VT; 9819 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 9820 9821 Type *ArgTy = nullptr; 9822 if (IsRet) 9823 ArgTy = FType->getReturnType(); 9824 else if (Ins[i].isOrigArg()) 9825 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 9826 9827 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9828 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9829 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 9830 FirstMaskArgument)) { 9831 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 9832 << EVT(ArgVT).getEVTString() << '\n'); 9833 llvm_unreachable(nullptr); 9834 } 9835 } 9836 } 9837 9838 void RISCVTargetLowering::analyzeOutputArgs( 9839 MachineFunction &MF, CCState &CCInfo, 9840 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 9841 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 9842 unsigned NumArgs = Outs.size(); 9843 9844 Optional<unsigned> FirstMaskArgument; 9845 if (Subtarget.hasVInstructions()) 9846 FirstMaskArgument = preAssignMask(Outs); 9847 9848 for (unsigned i = 0; i != NumArgs; i++) { 9849 MVT ArgVT = Outs[i].VT; 9850 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9851 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 9852 9853 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9854 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9855 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 9856 FirstMaskArgument)) { 9857 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 9858 << EVT(ArgVT).getEVTString() << "\n"); 9859 llvm_unreachable(nullptr); 9860 } 9861 } 9862 } 9863 9864 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 9865 // values. 9866 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 9867 const CCValAssign &VA, const SDLoc &DL, 9868 const RISCVSubtarget &Subtarget) { 9869 switch (VA.getLocInfo()) { 9870 default: 9871 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9872 case CCValAssign::Full: 9873 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 9874 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 9875 break; 9876 case CCValAssign::BCvt: 9877 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9878 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 9879 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9880 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 9881 else 9882 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 9883 break; 9884 } 9885 return Val; 9886 } 9887 9888 // The caller is responsible for loading the full value if the argument is 9889 // passed with CCValAssign::Indirect. 9890 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 9891 const CCValAssign &VA, const SDLoc &DL, 9892 const RISCVTargetLowering &TLI) { 9893 MachineFunction &MF = DAG.getMachineFunction(); 9894 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9895 EVT LocVT = VA.getLocVT(); 9896 SDValue Val; 9897 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 9898 Register VReg = RegInfo.createVirtualRegister(RC); 9899 RegInfo.addLiveIn(VA.getLocReg(), VReg); 9900 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 9901 9902 if (VA.getLocInfo() == CCValAssign::Indirect) 9903 return Val; 9904 9905 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 9906 } 9907 9908 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 9909 const CCValAssign &VA, const SDLoc &DL, 9910 const RISCVSubtarget &Subtarget) { 9911 EVT LocVT = VA.getLocVT(); 9912 9913 switch (VA.getLocInfo()) { 9914 default: 9915 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9916 case CCValAssign::Full: 9917 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 9918 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 9919 break; 9920 case CCValAssign::BCvt: 9921 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9922 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 9923 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9924 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 9925 else 9926 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 9927 break; 9928 } 9929 return Val; 9930 } 9931 9932 // The caller is responsible for loading the full value if the argument is 9933 // passed with CCValAssign::Indirect. 9934 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 9935 const CCValAssign &VA, const SDLoc &DL) { 9936 MachineFunction &MF = DAG.getMachineFunction(); 9937 MachineFrameInfo &MFI = MF.getFrameInfo(); 9938 EVT LocVT = VA.getLocVT(); 9939 EVT ValVT = VA.getValVT(); 9940 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 9941 if (ValVT.isScalableVector()) { 9942 // When the value is a scalable vector, we save the pointer which points to 9943 // the scalable vector value in the stack. The ValVT will be the pointer 9944 // type, instead of the scalable vector type. 9945 ValVT = LocVT; 9946 } 9947 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 9948 /*IsImmutable=*/true); 9949 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 9950 SDValue Val; 9951 9952 ISD::LoadExtType ExtType; 9953 switch (VA.getLocInfo()) { 9954 default: 9955 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9956 case CCValAssign::Full: 9957 case CCValAssign::Indirect: 9958 case CCValAssign::BCvt: 9959 ExtType = ISD::NON_EXTLOAD; 9960 break; 9961 } 9962 Val = DAG.getExtLoad( 9963 ExtType, DL, LocVT, Chain, FIN, 9964 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 9965 return Val; 9966 } 9967 9968 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 9969 const CCValAssign &VA, const SDLoc &DL) { 9970 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 9971 "Unexpected VA"); 9972 MachineFunction &MF = DAG.getMachineFunction(); 9973 MachineFrameInfo &MFI = MF.getFrameInfo(); 9974 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9975 9976 if (VA.isMemLoc()) { 9977 // f64 is passed on the stack. 9978 int FI = 9979 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 9980 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9981 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 9982 MachinePointerInfo::getFixedStack(MF, FI)); 9983 } 9984 9985 assert(VA.isRegLoc() && "Expected register VA assignment"); 9986 9987 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9988 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 9989 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 9990 SDValue Hi; 9991 if (VA.getLocReg() == RISCV::X17) { 9992 // Second half of f64 is passed on the stack. 9993 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 9994 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9995 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 9996 MachinePointerInfo::getFixedStack(MF, FI)); 9997 } else { 9998 // Second half of f64 is passed in another GPR. 9999 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 10000 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 10001 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 10002 } 10003 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 10004 } 10005 10006 // FastCC has less than 1% performance improvement for some particular 10007 // benchmark. But theoretically, it may has benenfit for some cases. 10008 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 10009 unsigned ValNo, MVT ValVT, MVT LocVT, 10010 CCValAssign::LocInfo LocInfo, 10011 ISD::ArgFlagsTy ArgFlags, CCState &State, 10012 bool IsFixed, bool IsRet, Type *OrigTy, 10013 const RISCVTargetLowering &TLI, 10014 Optional<unsigned> FirstMaskArgument) { 10015 10016 // X5 and X6 might be used for save-restore libcall. 10017 static const MCPhysReg GPRList[] = { 10018 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 10019 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 10020 RISCV::X29, RISCV::X30, RISCV::X31}; 10021 10022 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10023 if (unsigned Reg = State.AllocateReg(GPRList)) { 10024 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10025 return false; 10026 } 10027 } 10028 10029 if (LocVT == MVT::f16) { 10030 static const MCPhysReg FPR16List[] = { 10031 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 10032 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 10033 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 10034 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 10035 if (unsigned Reg = State.AllocateReg(FPR16List)) { 10036 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10037 return false; 10038 } 10039 } 10040 10041 if (LocVT == MVT::f32) { 10042 static const MCPhysReg FPR32List[] = { 10043 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 10044 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 10045 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 10046 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 10047 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10048 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10049 return false; 10050 } 10051 } 10052 10053 if (LocVT == MVT::f64) { 10054 static const MCPhysReg FPR64List[] = { 10055 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 10056 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 10057 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 10058 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 10059 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10060 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10061 return false; 10062 } 10063 } 10064 10065 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 10066 unsigned Offset4 = State.AllocateStack(4, Align(4)); 10067 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 10068 return false; 10069 } 10070 10071 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 10072 unsigned Offset5 = State.AllocateStack(8, Align(8)); 10073 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 10074 return false; 10075 } 10076 10077 if (LocVT.isVector()) { 10078 if (unsigned Reg = 10079 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 10080 // Fixed-length vectors are located in the corresponding scalable-vector 10081 // container types. 10082 if (ValVT.isFixedLengthVector()) 10083 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 10084 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10085 } else { 10086 // Try and pass the address via a "fast" GPR. 10087 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 10088 LocInfo = CCValAssign::Indirect; 10089 LocVT = TLI.getSubtarget().getXLenVT(); 10090 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 10091 } else if (ValVT.isFixedLengthVector()) { 10092 auto StackAlign = 10093 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 10094 unsigned StackOffset = 10095 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 10096 State.addLoc( 10097 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10098 } else { 10099 // Can't pass scalable vectors on the stack. 10100 return true; 10101 } 10102 } 10103 10104 return false; 10105 } 10106 10107 return true; // CC didn't match. 10108 } 10109 10110 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 10111 CCValAssign::LocInfo LocInfo, 10112 ISD::ArgFlagsTy ArgFlags, CCState &State) { 10113 10114 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10115 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 10116 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 10117 static const MCPhysReg GPRList[] = { 10118 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 10119 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 10120 if (unsigned Reg = State.AllocateReg(GPRList)) { 10121 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10122 return false; 10123 } 10124 } 10125 10126 if (LocVT == MVT::f32) { 10127 // Pass in STG registers: F1, ..., F6 10128 // fs0 ... fs5 10129 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 10130 RISCV::F18_F, RISCV::F19_F, 10131 RISCV::F20_F, RISCV::F21_F}; 10132 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10133 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10134 return false; 10135 } 10136 } 10137 10138 if (LocVT == MVT::f64) { 10139 // Pass in STG registers: D1, ..., D6 10140 // fs6 ... fs11 10141 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 10142 RISCV::F24_D, RISCV::F25_D, 10143 RISCV::F26_D, RISCV::F27_D}; 10144 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10145 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10146 return false; 10147 } 10148 } 10149 10150 report_fatal_error("No registers left in GHC calling convention"); 10151 return true; 10152 } 10153 10154 // Transform physical registers into virtual registers. 10155 SDValue RISCVTargetLowering::LowerFormalArguments( 10156 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 10157 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 10158 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 10159 10160 MachineFunction &MF = DAG.getMachineFunction(); 10161 10162 switch (CallConv) { 10163 default: 10164 report_fatal_error("Unsupported calling convention"); 10165 case CallingConv::C: 10166 case CallingConv::Fast: 10167 break; 10168 case CallingConv::GHC: 10169 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 10170 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 10171 report_fatal_error( 10172 "GHC calling convention requires the F and D instruction set extensions"); 10173 } 10174 10175 const Function &Func = MF.getFunction(); 10176 if (Func.hasFnAttribute("interrupt")) { 10177 if (!Func.arg_empty()) 10178 report_fatal_error( 10179 "Functions with the interrupt attribute cannot have arguments!"); 10180 10181 StringRef Kind = 10182 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10183 10184 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 10185 report_fatal_error( 10186 "Function interrupt attribute argument not supported!"); 10187 } 10188 10189 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10190 MVT XLenVT = Subtarget.getXLenVT(); 10191 unsigned XLenInBytes = Subtarget.getXLen() / 8; 10192 // Used with vargs to acumulate store chains. 10193 std::vector<SDValue> OutChains; 10194 10195 // Assign locations to all of the incoming arguments. 10196 SmallVector<CCValAssign, 16> ArgLocs; 10197 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10198 10199 if (CallConv == CallingConv::GHC) 10200 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 10201 else 10202 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 10203 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10204 : CC_RISCV); 10205 10206 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 10207 CCValAssign &VA = ArgLocs[i]; 10208 SDValue ArgValue; 10209 // Passing f64 on RV32D with a soft float ABI must be handled as a special 10210 // case. 10211 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 10212 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 10213 else if (VA.isRegLoc()) 10214 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 10215 else 10216 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 10217 10218 if (VA.getLocInfo() == CCValAssign::Indirect) { 10219 // If the original argument was split and passed by reference (e.g. i128 10220 // on RV32), we need to load all parts of it here (using the same 10221 // address). Vectors may be partly split to registers and partly to the 10222 // stack, in which case the base address is partly offset and subsequent 10223 // stores are relative to that. 10224 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 10225 MachinePointerInfo())); 10226 unsigned ArgIndex = Ins[i].OrigArgIndex; 10227 unsigned ArgPartOffset = Ins[i].PartOffset; 10228 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10229 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 10230 CCValAssign &PartVA = ArgLocs[i + 1]; 10231 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 10232 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10233 if (PartVA.getValVT().isScalableVector()) 10234 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10235 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 10236 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 10237 MachinePointerInfo())); 10238 ++i; 10239 } 10240 continue; 10241 } 10242 InVals.push_back(ArgValue); 10243 } 10244 10245 if (IsVarArg) { 10246 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 10247 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 10248 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 10249 MachineFrameInfo &MFI = MF.getFrameInfo(); 10250 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10251 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 10252 10253 // Offset of the first variable argument from stack pointer, and size of 10254 // the vararg save area. For now, the varargs save area is either zero or 10255 // large enough to hold a0-a7. 10256 int VaArgOffset, VarArgsSaveSize; 10257 10258 // If all registers are allocated, then all varargs must be passed on the 10259 // stack and we don't need to save any argregs. 10260 if (ArgRegs.size() == Idx) { 10261 VaArgOffset = CCInfo.getNextStackOffset(); 10262 VarArgsSaveSize = 0; 10263 } else { 10264 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 10265 VaArgOffset = -VarArgsSaveSize; 10266 } 10267 10268 // Record the frame index of the first variable argument 10269 // which is a value necessary to VASTART. 10270 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10271 RVFI->setVarArgsFrameIndex(FI); 10272 10273 // If saving an odd number of registers then create an extra stack slot to 10274 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 10275 // offsets to even-numbered registered remain 2*XLEN-aligned. 10276 if (Idx % 2) { 10277 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 10278 VarArgsSaveSize += XLenInBytes; 10279 } 10280 10281 // Copy the integer registers that may have been used for passing varargs 10282 // to the vararg save area. 10283 for (unsigned I = Idx; I < ArgRegs.size(); 10284 ++I, VaArgOffset += XLenInBytes) { 10285 const Register Reg = RegInfo.createVirtualRegister(RC); 10286 RegInfo.addLiveIn(ArgRegs[I], Reg); 10287 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 10288 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10289 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10290 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 10291 MachinePointerInfo::getFixedStack(MF, FI)); 10292 cast<StoreSDNode>(Store.getNode()) 10293 ->getMemOperand() 10294 ->setValue((Value *)nullptr); 10295 OutChains.push_back(Store); 10296 } 10297 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 10298 } 10299 10300 // All stores are grouped in one node to allow the matching between 10301 // the size of Ins and InVals. This only happens for vararg functions. 10302 if (!OutChains.empty()) { 10303 OutChains.push_back(Chain); 10304 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 10305 } 10306 10307 return Chain; 10308 } 10309 10310 /// isEligibleForTailCallOptimization - Check whether the call is eligible 10311 /// for tail call optimization. 10312 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 10313 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 10314 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 10315 const SmallVector<CCValAssign, 16> &ArgLocs) const { 10316 10317 auto &Callee = CLI.Callee; 10318 auto CalleeCC = CLI.CallConv; 10319 auto &Outs = CLI.Outs; 10320 auto &Caller = MF.getFunction(); 10321 auto CallerCC = Caller.getCallingConv(); 10322 10323 // Exception-handling functions need a special set of instructions to 10324 // indicate a return to the hardware. Tail-calling another function would 10325 // probably break this. 10326 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 10327 // should be expanded as new function attributes are introduced. 10328 if (Caller.hasFnAttribute("interrupt")) 10329 return false; 10330 10331 // Do not tail call opt if the stack is used to pass parameters. 10332 if (CCInfo.getNextStackOffset() != 0) 10333 return false; 10334 10335 // Do not tail call opt if any parameters need to be passed indirectly. 10336 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 10337 // passed indirectly. So the address of the value will be passed in a 10338 // register, or if not available, then the address is put on the stack. In 10339 // order to pass indirectly, space on the stack often needs to be allocated 10340 // in order to store the value. In this case the CCInfo.getNextStackOffset() 10341 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 10342 // are passed CCValAssign::Indirect. 10343 for (auto &VA : ArgLocs) 10344 if (VA.getLocInfo() == CCValAssign::Indirect) 10345 return false; 10346 10347 // Do not tail call opt if either caller or callee uses struct return 10348 // semantics. 10349 auto IsCallerStructRet = Caller.hasStructRetAttr(); 10350 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 10351 if (IsCallerStructRet || IsCalleeStructRet) 10352 return false; 10353 10354 // Externally-defined functions with weak linkage should not be 10355 // tail-called. The behaviour of branch instructions in this situation (as 10356 // used for tail calls) is implementation-defined, so we cannot rely on the 10357 // linker replacing the tail call with a return. 10358 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 10359 const GlobalValue *GV = G->getGlobal(); 10360 if (GV->hasExternalWeakLinkage()) 10361 return false; 10362 } 10363 10364 // The callee has to preserve all registers the caller needs to preserve. 10365 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10366 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 10367 if (CalleeCC != CallerCC) { 10368 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 10369 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 10370 return false; 10371 } 10372 10373 // Byval parameters hand the function a pointer directly into the stack area 10374 // we want to reuse during a tail call. Working around this *is* possible 10375 // but less efficient and uglier in LowerCall. 10376 for (auto &Arg : Outs) 10377 if (Arg.Flags.isByVal()) 10378 return false; 10379 10380 return true; 10381 } 10382 10383 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 10384 return DAG.getDataLayout().getPrefTypeAlign( 10385 VT.getTypeForEVT(*DAG.getContext())); 10386 } 10387 10388 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 10389 // and output parameter nodes. 10390 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 10391 SmallVectorImpl<SDValue> &InVals) const { 10392 SelectionDAG &DAG = CLI.DAG; 10393 SDLoc &DL = CLI.DL; 10394 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 10395 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 10396 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 10397 SDValue Chain = CLI.Chain; 10398 SDValue Callee = CLI.Callee; 10399 bool &IsTailCall = CLI.IsTailCall; 10400 CallingConv::ID CallConv = CLI.CallConv; 10401 bool IsVarArg = CLI.IsVarArg; 10402 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10403 MVT XLenVT = Subtarget.getXLenVT(); 10404 10405 MachineFunction &MF = DAG.getMachineFunction(); 10406 10407 // Analyze the operands of the call, assigning locations to each operand. 10408 SmallVector<CCValAssign, 16> ArgLocs; 10409 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10410 10411 if (CallConv == CallingConv::GHC) 10412 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 10413 else 10414 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 10415 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10416 : CC_RISCV); 10417 10418 // Check if it's really possible to do a tail call. 10419 if (IsTailCall) 10420 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 10421 10422 if (IsTailCall) 10423 ++NumTailCalls; 10424 else if (CLI.CB && CLI.CB->isMustTailCall()) 10425 report_fatal_error("failed to perform tail call elimination on a call " 10426 "site marked musttail"); 10427 10428 // Get a count of how many bytes are to be pushed on the stack. 10429 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 10430 10431 // Create local copies for byval args 10432 SmallVector<SDValue, 8> ByValArgs; 10433 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10434 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10435 if (!Flags.isByVal()) 10436 continue; 10437 10438 SDValue Arg = OutVals[i]; 10439 unsigned Size = Flags.getByValSize(); 10440 Align Alignment = Flags.getNonZeroByValAlign(); 10441 10442 int FI = 10443 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 10444 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10445 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 10446 10447 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 10448 /*IsVolatile=*/false, 10449 /*AlwaysInline=*/false, IsTailCall, 10450 MachinePointerInfo(), MachinePointerInfo()); 10451 ByValArgs.push_back(FIPtr); 10452 } 10453 10454 if (!IsTailCall) 10455 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 10456 10457 // Copy argument values to their designated locations. 10458 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 10459 SmallVector<SDValue, 8> MemOpChains; 10460 SDValue StackPtr; 10461 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 10462 CCValAssign &VA = ArgLocs[i]; 10463 SDValue ArgValue = OutVals[i]; 10464 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10465 10466 // Handle passing f64 on RV32D with a soft float ABI as a special case. 10467 bool IsF64OnRV32DSoftABI = 10468 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 10469 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 10470 SDValue SplitF64 = DAG.getNode( 10471 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 10472 SDValue Lo = SplitF64.getValue(0); 10473 SDValue Hi = SplitF64.getValue(1); 10474 10475 Register RegLo = VA.getLocReg(); 10476 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 10477 10478 if (RegLo == RISCV::X17) { 10479 // Second half of f64 is passed on the stack. 10480 // Work out the address of the stack slot. 10481 if (!StackPtr.getNode()) 10482 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10483 // Emit the store. 10484 MemOpChains.push_back( 10485 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 10486 } else { 10487 // Second half of f64 is passed in another GPR. 10488 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10489 Register RegHigh = RegLo + 1; 10490 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 10491 } 10492 continue; 10493 } 10494 10495 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 10496 // as any other MemLoc. 10497 10498 // Promote the value if needed. 10499 // For now, only handle fully promoted and indirect arguments. 10500 if (VA.getLocInfo() == CCValAssign::Indirect) { 10501 // Store the argument in a stack slot and pass its address. 10502 Align StackAlign = 10503 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 10504 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 10505 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 10506 // If the original argument was split (e.g. i128), we need 10507 // to store the required parts of it here (and pass just one address). 10508 // Vectors may be partly split to registers and partly to the stack, in 10509 // which case the base address is partly offset and subsequent stores are 10510 // relative to that. 10511 unsigned ArgIndex = Outs[i].OrigArgIndex; 10512 unsigned ArgPartOffset = Outs[i].PartOffset; 10513 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10514 // Calculate the total size to store. We don't have access to what we're 10515 // actually storing other than performing the loop and collecting the 10516 // info. 10517 SmallVector<std::pair<SDValue, SDValue>> Parts; 10518 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 10519 SDValue PartValue = OutVals[i + 1]; 10520 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 10521 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10522 EVT PartVT = PartValue.getValueType(); 10523 if (PartVT.isScalableVector()) 10524 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10525 StoredSize += PartVT.getStoreSize(); 10526 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 10527 Parts.push_back(std::make_pair(PartValue, Offset)); 10528 ++i; 10529 } 10530 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 10531 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 10532 MemOpChains.push_back( 10533 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 10534 MachinePointerInfo::getFixedStack(MF, FI))); 10535 for (const auto &Part : Parts) { 10536 SDValue PartValue = Part.first; 10537 SDValue PartOffset = Part.second; 10538 SDValue Address = 10539 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 10540 MemOpChains.push_back( 10541 DAG.getStore(Chain, DL, PartValue, Address, 10542 MachinePointerInfo::getFixedStack(MF, FI))); 10543 } 10544 ArgValue = SpillSlot; 10545 } else { 10546 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 10547 } 10548 10549 // Use local copy if it is a byval arg. 10550 if (Flags.isByVal()) 10551 ArgValue = ByValArgs[j++]; 10552 10553 if (VA.isRegLoc()) { 10554 // Queue up the argument copies and emit them at the end. 10555 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 10556 } else { 10557 assert(VA.isMemLoc() && "Argument not register or memory"); 10558 assert(!IsTailCall && "Tail call not allowed if stack is used " 10559 "for passing parameters"); 10560 10561 // Work out the address of the stack slot. 10562 if (!StackPtr.getNode()) 10563 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10564 SDValue Address = 10565 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 10566 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 10567 10568 // Emit the store. 10569 MemOpChains.push_back( 10570 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 10571 } 10572 } 10573 10574 // Join the stores, which are independent of one another. 10575 if (!MemOpChains.empty()) 10576 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 10577 10578 SDValue Glue; 10579 10580 // Build a sequence of copy-to-reg nodes, chained and glued together. 10581 for (auto &Reg : RegsToPass) { 10582 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 10583 Glue = Chain.getValue(1); 10584 } 10585 10586 // Validate that none of the argument registers have been marked as 10587 // reserved, if so report an error. Do the same for the return address if this 10588 // is not a tailcall. 10589 validateCCReservedRegs(RegsToPass, MF); 10590 if (!IsTailCall && 10591 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 10592 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10593 MF.getFunction(), 10594 "Return address register required, but has been reserved."}); 10595 10596 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 10597 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 10598 // split it and then direct call can be matched by PseudoCALL. 10599 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 10600 const GlobalValue *GV = S->getGlobal(); 10601 10602 unsigned OpFlags = RISCVII::MO_CALL; 10603 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 10604 OpFlags = RISCVII::MO_PLT; 10605 10606 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 10607 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 10608 unsigned OpFlags = RISCVII::MO_CALL; 10609 10610 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 10611 nullptr)) 10612 OpFlags = RISCVII::MO_PLT; 10613 10614 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 10615 } 10616 10617 // The first call operand is the chain and the second is the target address. 10618 SmallVector<SDValue, 8> Ops; 10619 Ops.push_back(Chain); 10620 Ops.push_back(Callee); 10621 10622 // Add argument registers to the end of the list so that they are 10623 // known live into the call. 10624 for (auto &Reg : RegsToPass) 10625 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 10626 10627 if (!IsTailCall) { 10628 // Add a register mask operand representing the call-preserved registers. 10629 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10630 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 10631 assert(Mask && "Missing call preserved mask for calling convention"); 10632 Ops.push_back(DAG.getRegisterMask(Mask)); 10633 } 10634 10635 // Glue the call to the argument copies, if any. 10636 if (Glue.getNode()) 10637 Ops.push_back(Glue); 10638 10639 // Emit the call. 10640 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10641 10642 if (IsTailCall) { 10643 MF.getFrameInfo().setHasTailCall(); 10644 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 10645 } 10646 10647 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 10648 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 10649 Glue = Chain.getValue(1); 10650 10651 // Mark the end of the call, which is glued to the call itself. 10652 Chain = DAG.getCALLSEQ_END(Chain, 10653 DAG.getConstant(NumBytes, DL, PtrVT, true), 10654 DAG.getConstant(0, DL, PtrVT, true), 10655 Glue, DL); 10656 Glue = Chain.getValue(1); 10657 10658 // Assign locations to each value returned by this call. 10659 SmallVector<CCValAssign, 16> RVLocs; 10660 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 10661 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 10662 10663 // Copy all of the result registers out of their specified physreg. 10664 for (auto &VA : RVLocs) { 10665 // Copy the value out 10666 SDValue RetValue = 10667 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 10668 // Glue the RetValue to the end of the call sequence 10669 Chain = RetValue.getValue(1); 10670 Glue = RetValue.getValue(2); 10671 10672 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10673 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 10674 SDValue RetValue2 = 10675 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 10676 Chain = RetValue2.getValue(1); 10677 Glue = RetValue2.getValue(2); 10678 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 10679 RetValue2); 10680 } 10681 10682 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 10683 10684 InVals.push_back(RetValue); 10685 } 10686 10687 return Chain; 10688 } 10689 10690 bool RISCVTargetLowering::CanLowerReturn( 10691 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 10692 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 10693 SmallVector<CCValAssign, 16> RVLocs; 10694 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 10695 10696 Optional<unsigned> FirstMaskArgument; 10697 if (Subtarget.hasVInstructions()) 10698 FirstMaskArgument = preAssignMask(Outs); 10699 10700 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10701 MVT VT = Outs[i].VT; 10702 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10703 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10704 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 10705 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 10706 *this, FirstMaskArgument)) 10707 return false; 10708 } 10709 return true; 10710 } 10711 10712 SDValue 10713 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 10714 bool IsVarArg, 10715 const SmallVectorImpl<ISD::OutputArg> &Outs, 10716 const SmallVectorImpl<SDValue> &OutVals, 10717 const SDLoc &DL, SelectionDAG &DAG) const { 10718 const MachineFunction &MF = DAG.getMachineFunction(); 10719 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10720 10721 // Stores the assignment of the return value to a location. 10722 SmallVector<CCValAssign, 16> RVLocs; 10723 10724 // Info about the registers and stack slot. 10725 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 10726 *DAG.getContext()); 10727 10728 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 10729 nullptr, CC_RISCV); 10730 10731 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 10732 report_fatal_error("GHC functions return void only"); 10733 10734 SDValue Glue; 10735 SmallVector<SDValue, 4> RetOps(1, Chain); 10736 10737 // Copy the result values into the output registers. 10738 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 10739 SDValue Val = OutVals[i]; 10740 CCValAssign &VA = RVLocs[i]; 10741 assert(VA.isRegLoc() && "Can only return in registers!"); 10742 10743 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10744 // Handle returning f64 on RV32D with a soft float ABI. 10745 assert(VA.isRegLoc() && "Expected return via registers"); 10746 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 10747 DAG.getVTList(MVT::i32, MVT::i32), Val); 10748 SDValue Lo = SplitF64.getValue(0); 10749 SDValue Hi = SplitF64.getValue(1); 10750 Register RegLo = VA.getLocReg(); 10751 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10752 Register RegHi = RegLo + 1; 10753 10754 if (STI.isRegisterReservedByUser(RegLo) || 10755 STI.isRegisterReservedByUser(RegHi)) 10756 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10757 MF.getFunction(), 10758 "Return value register required, but has been reserved."}); 10759 10760 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 10761 Glue = Chain.getValue(1); 10762 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 10763 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 10764 Glue = Chain.getValue(1); 10765 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 10766 } else { 10767 // Handle a 'normal' return. 10768 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 10769 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 10770 10771 if (STI.isRegisterReservedByUser(VA.getLocReg())) 10772 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10773 MF.getFunction(), 10774 "Return value register required, but has been reserved."}); 10775 10776 // Guarantee that all emitted copies are stuck together. 10777 Glue = Chain.getValue(1); 10778 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 10779 } 10780 } 10781 10782 RetOps[0] = Chain; // Update chain. 10783 10784 // Add the glue node if we have it. 10785 if (Glue.getNode()) { 10786 RetOps.push_back(Glue); 10787 } 10788 10789 unsigned RetOpc = RISCVISD::RET_FLAG; 10790 // Interrupt service routines use different return instructions. 10791 const Function &Func = DAG.getMachineFunction().getFunction(); 10792 if (Func.hasFnAttribute("interrupt")) { 10793 if (!Func.getReturnType()->isVoidTy()) 10794 report_fatal_error( 10795 "Functions with the interrupt attribute must have void return type!"); 10796 10797 MachineFunction &MF = DAG.getMachineFunction(); 10798 StringRef Kind = 10799 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10800 10801 if (Kind == "user") 10802 RetOpc = RISCVISD::URET_FLAG; 10803 else if (Kind == "supervisor") 10804 RetOpc = RISCVISD::SRET_FLAG; 10805 else 10806 RetOpc = RISCVISD::MRET_FLAG; 10807 } 10808 10809 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 10810 } 10811 10812 void RISCVTargetLowering::validateCCReservedRegs( 10813 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 10814 MachineFunction &MF) const { 10815 const Function &F = MF.getFunction(); 10816 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10817 10818 if (llvm::any_of(Regs, [&STI](auto Reg) { 10819 return STI.isRegisterReservedByUser(Reg.first); 10820 })) 10821 F.getContext().diagnose(DiagnosticInfoUnsupported{ 10822 F, "Argument register required, but has been reserved."}); 10823 } 10824 10825 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 10826 return CI->isTailCall(); 10827 } 10828 10829 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 10830 #define NODE_NAME_CASE(NODE) \ 10831 case RISCVISD::NODE: \ 10832 return "RISCVISD::" #NODE; 10833 // clang-format off 10834 switch ((RISCVISD::NodeType)Opcode) { 10835 case RISCVISD::FIRST_NUMBER: 10836 break; 10837 NODE_NAME_CASE(RET_FLAG) 10838 NODE_NAME_CASE(URET_FLAG) 10839 NODE_NAME_CASE(SRET_FLAG) 10840 NODE_NAME_CASE(MRET_FLAG) 10841 NODE_NAME_CASE(CALL) 10842 NODE_NAME_CASE(SELECT_CC) 10843 NODE_NAME_CASE(BR_CC) 10844 NODE_NAME_CASE(BuildPairF64) 10845 NODE_NAME_CASE(SplitF64) 10846 NODE_NAME_CASE(TAIL) 10847 NODE_NAME_CASE(MULHSU) 10848 NODE_NAME_CASE(SLLW) 10849 NODE_NAME_CASE(SRAW) 10850 NODE_NAME_CASE(SRLW) 10851 NODE_NAME_CASE(DIVW) 10852 NODE_NAME_CASE(DIVUW) 10853 NODE_NAME_CASE(REMUW) 10854 NODE_NAME_CASE(ROLW) 10855 NODE_NAME_CASE(RORW) 10856 NODE_NAME_CASE(CLZW) 10857 NODE_NAME_CASE(CTZW) 10858 NODE_NAME_CASE(FSLW) 10859 NODE_NAME_CASE(FSRW) 10860 NODE_NAME_CASE(FSL) 10861 NODE_NAME_CASE(FSR) 10862 NODE_NAME_CASE(FMV_H_X) 10863 NODE_NAME_CASE(FMV_X_ANYEXTH) 10864 NODE_NAME_CASE(FMV_X_SIGNEXTH) 10865 NODE_NAME_CASE(FMV_W_X_RV64) 10866 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 10867 NODE_NAME_CASE(FCVT_X) 10868 NODE_NAME_CASE(FCVT_XU) 10869 NODE_NAME_CASE(FCVT_W_RV64) 10870 NODE_NAME_CASE(FCVT_WU_RV64) 10871 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 10872 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 10873 NODE_NAME_CASE(READ_CYCLE_WIDE) 10874 NODE_NAME_CASE(GREV) 10875 NODE_NAME_CASE(GREVW) 10876 NODE_NAME_CASE(GORC) 10877 NODE_NAME_CASE(GORCW) 10878 NODE_NAME_CASE(SHFL) 10879 NODE_NAME_CASE(SHFLW) 10880 NODE_NAME_CASE(UNSHFL) 10881 NODE_NAME_CASE(UNSHFLW) 10882 NODE_NAME_CASE(BFP) 10883 NODE_NAME_CASE(BFPW) 10884 NODE_NAME_CASE(BCOMPRESS) 10885 NODE_NAME_CASE(BCOMPRESSW) 10886 NODE_NAME_CASE(BDECOMPRESS) 10887 NODE_NAME_CASE(BDECOMPRESSW) 10888 NODE_NAME_CASE(VMV_V_X_VL) 10889 NODE_NAME_CASE(VFMV_V_F_VL) 10890 NODE_NAME_CASE(VMV_X_S) 10891 NODE_NAME_CASE(VMV_S_X_VL) 10892 NODE_NAME_CASE(VFMV_S_F_VL) 10893 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 10894 NODE_NAME_CASE(READ_VLENB) 10895 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 10896 NODE_NAME_CASE(VSLIDEUP_VL) 10897 NODE_NAME_CASE(VSLIDE1UP_VL) 10898 NODE_NAME_CASE(VSLIDEDOWN_VL) 10899 NODE_NAME_CASE(VSLIDE1DOWN_VL) 10900 NODE_NAME_CASE(VID_VL) 10901 NODE_NAME_CASE(VFNCVT_ROD_VL) 10902 NODE_NAME_CASE(VECREDUCE_ADD_VL) 10903 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 10904 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 10905 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 10906 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 10907 NODE_NAME_CASE(VECREDUCE_AND_VL) 10908 NODE_NAME_CASE(VECREDUCE_OR_VL) 10909 NODE_NAME_CASE(VECREDUCE_XOR_VL) 10910 NODE_NAME_CASE(VECREDUCE_FADD_VL) 10911 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 10912 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 10913 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 10914 NODE_NAME_CASE(ADD_VL) 10915 NODE_NAME_CASE(AND_VL) 10916 NODE_NAME_CASE(MUL_VL) 10917 NODE_NAME_CASE(OR_VL) 10918 NODE_NAME_CASE(SDIV_VL) 10919 NODE_NAME_CASE(SHL_VL) 10920 NODE_NAME_CASE(SREM_VL) 10921 NODE_NAME_CASE(SRA_VL) 10922 NODE_NAME_CASE(SRL_VL) 10923 NODE_NAME_CASE(SUB_VL) 10924 NODE_NAME_CASE(UDIV_VL) 10925 NODE_NAME_CASE(UREM_VL) 10926 NODE_NAME_CASE(XOR_VL) 10927 NODE_NAME_CASE(SADDSAT_VL) 10928 NODE_NAME_CASE(UADDSAT_VL) 10929 NODE_NAME_CASE(SSUBSAT_VL) 10930 NODE_NAME_CASE(USUBSAT_VL) 10931 NODE_NAME_CASE(FADD_VL) 10932 NODE_NAME_CASE(FSUB_VL) 10933 NODE_NAME_CASE(FMUL_VL) 10934 NODE_NAME_CASE(FDIV_VL) 10935 NODE_NAME_CASE(FNEG_VL) 10936 NODE_NAME_CASE(FABS_VL) 10937 NODE_NAME_CASE(FSQRT_VL) 10938 NODE_NAME_CASE(FMA_VL) 10939 NODE_NAME_CASE(FCOPYSIGN_VL) 10940 NODE_NAME_CASE(SMIN_VL) 10941 NODE_NAME_CASE(SMAX_VL) 10942 NODE_NAME_CASE(UMIN_VL) 10943 NODE_NAME_CASE(UMAX_VL) 10944 NODE_NAME_CASE(FMINNUM_VL) 10945 NODE_NAME_CASE(FMAXNUM_VL) 10946 NODE_NAME_CASE(MULHS_VL) 10947 NODE_NAME_CASE(MULHU_VL) 10948 NODE_NAME_CASE(FP_TO_SINT_VL) 10949 NODE_NAME_CASE(FP_TO_UINT_VL) 10950 NODE_NAME_CASE(SINT_TO_FP_VL) 10951 NODE_NAME_CASE(UINT_TO_FP_VL) 10952 NODE_NAME_CASE(FP_EXTEND_VL) 10953 NODE_NAME_CASE(FP_ROUND_VL) 10954 NODE_NAME_CASE(VWMUL_VL) 10955 NODE_NAME_CASE(VWMULU_VL) 10956 NODE_NAME_CASE(VWMULSU_VL) 10957 NODE_NAME_CASE(VWADD_VL) 10958 NODE_NAME_CASE(VWADDU_VL) 10959 NODE_NAME_CASE(VWSUB_VL) 10960 NODE_NAME_CASE(VWSUBU_VL) 10961 NODE_NAME_CASE(VWADD_W_VL) 10962 NODE_NAME_CASE(VWADDU_W_VL) 10963 NODE_NAME_CASE(VWSUB_W_VL) 10964 NODE_NAME_CASE(VWSUBU_W_VL) 10965 NODE_NAME_CASE(SETCC_VL) 10966 NODE_NAME_CASE(VSELECT_VL) 10967 NODE_NAME_CASE(VP_MERGE_VL) 10968 NODE_NAME_CASE(VMAND_VL) 10969 NODE_NAME_CASE(VMOR_VL) 10970 NODE_NAME_CASE(VMXOR_VL) 10971 NODE_NAME_CASE(VMCLR_VL) 10972 NODE_NAME_CASE(VMSET_VL) 10973 NODE_NAME_CASE(VRGATHER_VX_VL) 10974 NODE_NAME_CASE(VRGATHER_VV_VL) 10975 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 10976 NODE_NAME_CASE(VSEXT_VL) 10977 NODE_NAME_CASE(VZEXT_VL) 10978 NODE_NAME_CASE(VCPOP_VL) 10979 NODE_NAME_CASE(READ_CSR) 10980 NODE_NAME_CASE(WRITE_CSR) 10981 NODE_NAME_CASE(SWAP_CSR) 10982 } 10983 // clang-format on 10984 return nullptr; 10985 #undef NODE_NAME_CASE 10986 } 10987 10988 /// getConstraintType - Given a constraint letter, return the type of 10989 /// constraint it is for this target. 10990 RISCVTargetLowering::ConstraintType 10991 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 10992 if (Constraint.size() == 1) { 10993 switch (Constraint[0]) { 10994 default: 10995 break; 10996 case 'f': 10997 return C_RegisterClass; 10998 case 'I': 10999 case 'J': 11000 case 'K': 11001 return C_Immediate; 11002 case 'A': 11003 return C_Memory; 11004 case 'S': // A symbolic address 11005 return C_Other; 11006 } 11007 } else { 11008 if (Constraint == "vr" || Constraint == "vm") 11009 return C_RegisterClass; 11010 } 11011 return TargetLowering::getConstraintType(Constraint); 11012 } 11013 11014 std::pair<unsigned, const TargetRegisterClass *> 11015 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11016 StringRef Constraint, 11017 MVT VT) const { 11018 // First, see if this is a constraint that directly corresponds to a 11019 // RISCV register class. 11020 if (Constraint.size() == 1) { 11021 switch (Constraint[0]) { 11022 case 'r': 11023 // TODO: Support fixed vectors up to XLen for P extension? 11024 if (VT.isVector()) 11025 break; 11026 return std::make_pair(0U, &RISCV::GPRRegClass); 11027 case 'f': 11028 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 11029 return std::make_pair(0U, &RISCV::FPR16RegClass); 11030 if (Subtarget.hasStdExtF() && VT == MVT::f32) 11031 return std::make_pair(0U, &RISCV::FPR32RegClass); 11032 if (Subtarget.hasStdExtD() && VT == MVT::f64) 11033 return std::make_pair(0U, &RISCV::FPR64RegClass); 11034 break; 11035 default: 11036 break; 11037 } 11038 } else if (Constraint == "vr") { 11039 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 11040 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11041 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 11042 return std::make_pair(0U, RC); 11043 } 11044 } else if (Constraint == "vm") { 11045 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 11046 return std::make_pair(0U, &RISCV::VMV0RegClass); 11047 } 11048 11049 // Clang will correctly decode the usage of register name aliases into their 11050 // official names. However, other frontends like `rustc` do not. This allows 11051 // users of these frontends to use the ABI names for registers in LLVM-style 11052 // register constraints. 11053 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 11054 .Case("{zero}", RISCV::X0) 11055 .Case("{ra}", RISCV::X1) 11056 .Case("{sp}", RISCV::X2) 11057 .Case("{gp}", RISCV::X3) 11058 .Case("{tp}", RISCV::X4) 11059 .Case("{t0}", RISCV::X5) 11060 .Case("{t1}", RISCV::X6) 11061 .Case("{t2}", RISCV::X7) 11062 .Cases("{s0}", "{fp}", RISCV::X8) 11063 .Case("{s1}", RISCV::X9) 11064 .Case("{a0}", RISCV::X10) 11065 .Case("{a1}", RISCV::X11) 11066 .Case("{a2}", RISCV::X12) 11067 .Case("{a3}", RISCV::X13) 11068 .Case("{a4}", RISCV::X14) 11069 .Case("{a5}", RISCV::X15) 11070 .Case("{a6}", RISCV::X16) 11071 .Case("{a7}", RISCV::X17) 11072 .Case("{s2}", RISCV::X18) 11073 .Case("{s3}", RISCV::X19) 11074 .Case("{s4}", RISCV::X20) 11075 .Case("{s5}", RISCV::X21) 11076 .Case("{s6}", RISCV::X22) 11077 .Case("{s7}", RISCV::X23) 11078 .Case("{s8}", RISCV::X24) 11079 .Case("{s9}", RISCV::X25) 11080 .Case("{s10}", RISCV::X26) 11081 .Case("{s11}", RISCV::X27) 11082 .Case("{t3}", RISCV::X28) 11083 .Case("{t4}", RISCV::X29) 11084 .Case("{t5}", RISCV::X30) 11085 .Case("{t6}", RISCV::X31) 11086 .Default(RISCV::NoRegister); 11087 if (XRegFromAlias != RISCV::NoRegister) 11088 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 11089 11090 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 11091 // TableGen record rather than the AsmName to choose registers for InlineAsm 11092 // constraints, plus we want to match those names to the widest floating point 11093 // register type available, manually select floating point registers here. 11094 // 11095 // The second case is the ABI name of the register, so that frontends can also 11096 // use the ABI names in register constraint lists. 11097 if (Subtarget.hasStdExtF()) { 11098 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 11099 .Cases("{f0}", "{ft0}", RISCV::F0_F) 11100 .Cases("{f1}", "{ft1}", RISCV::F1_F) 11101 .Cases("{f2}", "{ft2}", RISCV::F2_F) 11102 .Cases("{f3}", "{ft3}", RISCV::F3_F) 11103 .Cases("{f4}", "{ft4}", RISCV::F4_F) 11104 .Cases("{f5}", "{ft5}", RISCV::F5_F) 11105 .Cases("{f6}", "{ft6}", RISCV::F6_F) 11106 .Cases("{f7}", "{ft7}", RISCV::F7_F) 11107 .Cases("{f8}", "{fs0}", RISCV::F8_F) 11108 .Cases("{f9}", "{fs1}", RISCV::F9_F) 11109 .Cases("{f10}", "{fa0}", RISCV::F10_F) 11110 .Cases("{f11}", "{fa1}", RISCV::F11_F) 11111 .Cases("{f12}", "{fa2}", RISCV::F12_F) 11112 .Cases("{f13}", "{fa3}", RISCV::F13_F) 11113 .Cases("{f14}", "{fa4}", RISCV::F14_F) 11114 .Cases("{f15}", "{fa5}", RISCV::F15_F) 11115 .Cases("{f16}", "{fa6}", RISCV::F16_F) 11116 .Cases("{f17}", "{fa7}", RISCV::F17_F) 11117 .Cases("{f18}", "{fs2}", RISCV::F18_F) 11118 .Cases("{f19}", "{fs3}", RISCV::F19_F) 11119 .Cases("{f20}", "{fs4}", RISCV::F20_F) 11120 .Cases("{f21}", "{fs5}", RISCV::F21_F) 11121 .Cases("{f22}", "{fs6}", RISCV::F22_F) 11122 .Cases("{f23}", "{fs7}", RISCV::F23_F) 11123 .Cases("{f24}", "{fs8}", RISCV::F24_F) 11124 .Cases("{f25}", "{fs9}", RISCV::F25_F) 11125 .Cases("{f26}", "{fs10}", RISCV::F26_F) 11126 .Cases("{f27}", "{fs11}", RISCV::F27_F) 11127 .Cases("{f28}", "{ft8}", RISCV::F28_F) 11128 .Cases("{f29}", "{ft9}", RISCV::F29_F) 11129 .Cases("{f30}", "{ft10}", RISCV::F30_F) 11130 .Cases("{f31}", "{ft11}", RISCV::F31_F) 11131 .Default(RISCV::NoRegister); 11132 if (FReg != RISCV::NoRegister) { 11133 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 11134 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 11135 unsigned RegNo = FReg - RISCV::F0_F; 11136 unsigned DReg = RISCV::F0_D + RegNo; 11137 return std::make_pair(DReg, &RISCV::FPR64RegClass); 11138 } 11139 if (VT == MVT::f32 || VT == MVT::Other) 11140 return std::make_pair(FReg, &RISCV::FPR32RegClass); 11141 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 11142 unsigned RegNo = FReg - RISCV::F0_F; 11143 unsigned HReg = RISCV::F0_H + RegNo; 11144 return std::make_pair(HReg, &RISCV::FPR16RegClass); 11145 } 11146 } 11147 } 11148 11149 if (Subtarget.hasVInstructions()) { 11150 Register VReg = StringSwitch<Register>(Constraint.lower()) 11151 .Case("{v0}", RISCV::V0) 11152 .Case("{v1}", RISCV::V1) 11153 .Case("{v2}", RISCV::V2) 11154 .Case("{v3}", RISCV::V3) 11155 .Case("{v4}", RISCV::V4) 11156 .Case("{v5}", RISCV::V5) 11157 .Case("{v6}", RISCV::V6) 11158 .Case("{v7}", RISCV::V7) 11159 .Case("{v8}", RISCV::V8) 11160 .Case("{v9}", RISCV::V9) 11161 .Case("{v10}", RISCV::V10) 11162 .Case("{v11}", RISCV::V11) 11163 .Case("{v12}", RISCV::V12) 11164 .Case("{v13}", RISCV::V13) 11165 .Case("{v14}", RISCV::V14) 11166 .Case("{v15}", RISCV::V15) 11167 .Case("{v16}", RISCV::V16) 11168 .Case("{v17}", RISCV::V17) 11169 .Case("{v18}", RISCV::V18) 11170 .Case("{v19}", RISCV::V19) 11171 .Case("{v20}", RISCV::V20) 11172 .Case("{v21}", RISCV::V21) 11173 .Case("{v22}", RISCV::V22) 11174 .Case("{v23}", RISCV::V23) 11175 .Case("{v24}", RISCV::V24) 11176 .Case("{v25}", RISCV::V25) 11177 .Case("{v26}", RISCV::V26) 11178 .Case("{v27}", RISCV::V27) 11179 .Case("{v28}", RISCV::V28) 11180 .Case("{v29}", RISCV::V29) 11181 .Case("{v30}", RISCV::V30) 11182 .Case("{v31}", RISCV::V31) 11183 .Default(RISCV::NoRegister); 11184 if (VReg != RISCV::NoRegister) { 11185 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 11186 return std::make_pair(VReg, &RISCV::VMRegClass); 11187 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 11188 return std::make_pair(VReg, &RISCV::VRRegClass); 11189 for (const auto *RC : 11190 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11191 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 11192 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 11193 return std::make_pair(VReg, RC); 11194 } 11195 } 11196 } 11197 } 11198 11199 std::pair<Register, const TargetRegisterClass *> Res = 11200 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11201 11202 // If we picked one of the Zfinx register classes, remap it to the GPR class. 11203 // FIXME: When Zfinx is supported in CodeGen this will need to take the 11204 // Subtarget into account. 11205 if (Res.second == &RISCV::GPRF16RegClass || 11206 Res.second == &RISCV::GPRF32RegClass || 11207 Res.second == &RISCV::GPRF64RegClass) 11208 return std::make_pair(Res.first, &RISCV::GPRRegClass); 11209 11210 return Res; 11211 } 11212 11213 unsigned 11214 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 11215 // Currently only support length 1 constraints. 11216 if (ConstraintCode.size() == 1) { 11217 switch (ConstraintCode[0]) { 11218 case 'A': 11219 return InlineAsm::Constraint_A; 11220 default: 11221 break; 11222 } 11223 } 11224 11225 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 11226 } 11227 11228 void RISCVTargetLowering::LowerAsmOperandForConstraint( 11229 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 11230 SelectionDAG &DAG) const { 11231 // Currently only support length 1 constraints. 11232 if (Constraint.length() == 1) { 11233 switch (Constraint[0]) { 11234 case 'I': 11235 // Validate & create a 12-bit signed immediate operand. 11236 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11237 uint64_t CVal = C->getSExtValue(); 11238 if (isInt<12>(CVal)) 11239 Ops.push_back( 11240 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11241 } 11242 return; 11243 case 'J': 11244 // Validate & create an integer zero operand. 11245 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 11246 if (C->getZExtValue() == 0) 11247 Ops.push_back( 11248 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 11249 return; 11250 case 'K': 11251 // Validate & create a 5-bit unsigned immediate operand. 11252 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11253 uint64_t CVal = C->getZExtValue(); 11254 if (isUInt<5>(CVal)) 11255 Ops.push_back( 11256 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11257 } 11258 return; 11259 case 'S': 11260 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 11261 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 11262 GA->getValueType(0))); 11263 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 11264 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 11265 BA->getValueType(0))); 11266 } 11267 return; 11268 default: 11269 break; 11270 } 11271 } 11272 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11273 } 11274 11275 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11276 Instruction *Inst, 11277 AtomicOrdering Ord) const { 11278 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 11279 return Builder.CreateFence(Ord); 11280 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 11281 return Builder.CreateFence(AtomicOrdering::Release); 11282 return nullptr; 11283 } 11284 11285 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11286 Instruction *Inst, 11287 AtomicOrdering Ord) const { 11288 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 11289 return Builder.CreateFence(AtomicOrdering::Acquire); 11290 return nullptr; 11291 } 11292 11293 TargetLowering::AtomicExpansionKind 11294 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 11295 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 11296 // point operations can't be used in an lr/sc sequence without breaking the 11297 // forward-progress guarantee. 11298 if (AI->isFloatingPointOperation()) 11299 return AtomicExpansionKind::CmpXChg; 11300 11301 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 11302 if (Size == 8 || Size == 16) 11303 return AtomicExpansionKind::MaskedIntrinsic; 11304 return AtomicExpansionKind::None; 11305 } 11306 11307 static Intrinsic::ID 11308 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 11309 if (XLen == 32) { 11310 switch (BinOp) { 11311 default: 11312 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11313 case AtomicRMWInst::Xchg: 11314 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 11315 case AtomicRMWInst::Add: 11316 return Intrinsic::riscv_masked_atomicrmw_add_i32; 11317 case AtomicRMWInst::Sub: 11318 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 11319 case AtomicRMWInst::Nand: 11320 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 11321 case AtomicRMWInst::Max: 11322 return Intrinsic::riscv_masked_atomicrmw_max_i32; 11323 case AtomicRMWInst::Min: 11324 return Intrinsic::riscv_masked_atomicrmw_min_i32; 11325 case AtomicRMWInst::UMax: 11326 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 11327 case AtomicRMWInst::UMin: 11328 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 11329 } 11330 } 11331 11332 if (XLen == 64) { 11333 switch (BinOp) { 11334 default: 11335 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11336 case AtomicRMWInst::Xchg: 11337 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 11338 case AtomicRMWInst::Add: 11339 return Intrinsic::riscv_masked_atomicrmw_add_i64; 11340 case AtomicRMWInst::Sub: 11341 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 11342 case AtomicRMWInst::Nand: 11343 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 11344 case AtomicRMWInst::Max: 11345 return Intrinsic::riscv_masked_atomicrmw_max_i64; 11346 case AtomicRMWInst::Min: 11347 return Intrinsic::riscv_masked_atomicrmw_min_i64; 11348 case AtomicRMWInst::UMax: 11349 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 11350 case AtomicRMWInst::UMin: 11351 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 11352 } 11353 } 11354 11355 llvm_unreachable("Unexpected XLen\n"); 11356 } 11357 11358 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 11359 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 11360 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 11361 unsigned XLen = Subtarget.getXLen(); 11362 Value *Ordering = 11363 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 11364 Type *Tys[] = {AlignedAddr->getType()}; 11365 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 11366 AI->getModule(), 11367 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 11368 11369 if (XLen == 64) { 11370 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 11371 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11372 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 11373 } 11374 11375 Value *Result; 11376 11377 // Must pass the shift amount needed to sign extend the loaded value prior 11378 // to performing a signed comparison for min/max. ShiftAmt is the number of 11379 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 11380 // is the number of bits to left+right shift the value in order to 11381 // sign-extend. 11382 if (AI->getOperation() == AtomicRMWInst::Min || 11383 AI->getOperation() == AtomicRMWInst::Max) { 11384 const DataLayout &DL = AI->getModule()->getDataLayout(); 11385 unsigned ValWidth = 11386 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 11387 Value *SextShamt = 11388 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 11389 Result = Builder.CreateCall(LrwOpScwLoop, 11390 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 11391 } else { 11392 Result = 11393 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 11394 } 11395 11396 if (XLen == 64) 11397 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11398 return Result; 11399 } 11400 11401 TargetLowering::AtomicExpansionKind 11402 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 11403 AtomicCmpXchgInst *CI) const { 11404 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 11405 if (Size == 8 || Size == 16) 11406 return AtomicExpansionKind::MaskedIntrinsic; 11407 return AtomicExpansionKind::None; 11408 } 11409 11410 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 11411 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 11412 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 11413 unsigned XLen = Subtarget.getXLen(); 11414 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 11415 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 11416 if (XLen == 64) { 11417 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 11418 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 11419 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11420 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 11421 } 11422 Type *Tys[] = {AlignedAddr->getType()}; 11423 Function *MaskedCmpXchg = 11424 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 11425 Value *Result = Builder.CreateCall( 11426 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 11427 if (XLen == 64) 11428 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11429 return Result; 11430 } 11431 11432 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 11433 return false; 11434 } 11435 11436 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 11437 EVT VT) const { 11438 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 11439 return false; 11440 11441 switch (FPVT.getSimpleVT().SimpleTy) { 11442 case MVT::f16: 11443 return Subtarget.hasStdExtZfh(); 11444 case MVT::f32: 11445 return Subtarget.hasStdExtF(); 11446 case MVT::f64: 11447 return Subtarget.hasStdExtD(); 11448 default: 11449 return false; 11450 } 11451 } 11452 11453 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 11454 // If we are using the small code model, we can reduce size of jump table 11455 // entry to 4 bytes. 11456 if (Subtarget.is64Bit() && !isPositionIndependent() && 11457 getTargetMachine().getCodeModel() == CodeModel::Small) { 11458 return MachineJumpTableInfo::EK_Custom32; 11459 } 11460 return TargetLowering::getJumpTableEncoding(); 11461 } 11462 11463 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 11464 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 11465 unsigned uid, MCContext &Ctx) const { 11466 assert(Subtarget.is64Bit() && !isPositionIndependent() && 11467 getTargetMachine().getCodeModel() == CodeModel::Small); 11468 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 11469 } 11470 11471 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 11472 EVT VT) const { 11473 VT = VT.getScalarType(); 11474 11475 if (!VT.isSimple()) 11476 return false; 11477 11478 switch (VT.getSimpleVT().SimpleTy) { 11479 case MVT::f16: 11480 return Subtarget.hasStdExtZfh(); 11481 case MVT::f32: 11482 return Subtarget.hasStdExtF(); 11483 case MVT::f64: 11484 return Subtarget.hasStdExtD(); 11485 default: 11486 break; 11487 } 11488 11489 return false; 11490 } 11491 11492 Register RISCVTargetLowering::getExceptionPointerRegister( 11493 const Constant *PersonalityFn) const { 11494 return RISCV::X10; 11495 } 11496 11497 Register RISCVTargetLowering::getExceptionSelectorRegister( 11498 const Constant *PersonalityFn) const { 11499 return RISCV::X11; 11500 } 11501 11502 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 11503 // Return false to suppress the unnecessary extensions if the LibCall 11504 // arguments or return value is f32 type for LP64 ABI. 11505 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 11506 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 11507 return false; 11508 11509 return true; 11510 } 11511 11512 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 11513 if (Subtarget.is64Bit() && Type == MVT::i32) 11514 return true; 11515 11516 return IsSigned; 11517 } 11518 11519 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 11520 SDValue C) const { 11521 // Check integral scalar types. 11522 if (VT.isScalarInteger()) { 11523 // Omit the optimization if the sub target has the M extension and the data 11524 // size exceeds XLen. 11525 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 11526 return false; 11527 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 11528 // Break the MUL to a SLLI and an ADD/SUB. 11529 const APInt &Imm = ConstNode->getAPIntValue(); 11530 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 11531 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 11532 return true; 11533 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 11534 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 11535 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 11536 (Imm - 8).isPowerOf2())) 11537 return true; 11538 // Omit the following optimization if the sub target has the M extension 11539 // and the data size >= XLen. 11540 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 11541 return false; 11542 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 11543 // a pair of LUI/ADDI. 11544 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 11545 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 11546 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 11547 (1 - ImmS).isPowerOf2()) 11548 return true; 11549 } 11550 } 11551 } 11552 11553 return false; 11554 } 11555 11556 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode, 11557 SDValue ConstNode) const { 11558 // Let the DAGCombiner decide for vectors. 11559 EVT VT = AddNode.getValueType(); 11560 if (VT.isVector()) 11561 return true; 11562 11563 // Let the DAGCombiner decide for larger types. 11564 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 11565 return true; 11566 11567 // It is worse if c1 is simm12 while c1*c2 is not. 11568 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 11569 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 11570 const APInt &C1 = C1Node->getAPIntValue(); 11571 const APInt &C2 = C2Node->getAPIntValue(); 11572 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 11573 return false; 11574 11575 // Default to true and let the DAGCombiner decide. 11576 return true; 11577 } 11578 11579 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 11580 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 11581 bool *Fast) const { 11582 if (!VT.isVector()) 11583 return false; 11584 11585 EVT ElemVT = VT.getVectorElementType(); 11586 if (Alignment >= ElemVT.getStoreSize()) { 11587 if (Fast) 11588 *Fast = true; 11589 return true; 11590 } 11591 11592 return false; 11593 } 11594 11595 bool RISCVTargetLowering::splitValueIntoRegisterParts( 11596 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 11597 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 11598 bool IsABIRegCopy = CC.hasValue(); 11599 EVT ValueVT = Val.getValueType(); 11600 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11601 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 11602 // and cast to f32. 11603 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 11604 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 11605 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 11606 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 11607 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 11608 Parts[0] = Val; 11609 return true; 11610 } 11611 11612 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11613 LLVMContext &Context = *DAG.getContext(); 11614 EVT ValueEltVT = ValueVT.getVectorElementType(); 11615 EVT PartEltVT = PartVT.getVectorElementType(); 11616 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11617 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11618 if (PartVTBitSize % ValueVTBitSize == 0) { 11619 assert(PartVTBitSize >= ValueVTBitSize); 11620 // If the element types are different, bitcast to the same element type of 11621 // PartVT first. 11622 // Give an example here, we want copy a <vscale x 1 x i8> value to 11623 // <vscale x 4 x i16>. 11624 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 11625 // subvector, then we can bitcast to <vscale x 4 x i16>. 11626 if (ValueEltVT != PartEltVT) { 11627 if (PartVTBitSize > ValueVTBitSize) { 11628 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11629 assert(Count != 0 && "The number of element should not be zero."); 11630 EVT SameEltTypeVT = 11631 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11632 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 11633 DAG.getUNDEF(SameEltTypeVT), Val, 11634 DAG.getVectorIdxConstant(0, DL)); 11635 } 11636 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 11637 } else { 11638 Val = 11639 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 11640 Val, DAG.getVectorIdxConstant(0, DL)); 11641 } 11642 Parts[0] = Val; 11643 return true; 11644 } 11645 } 11646 return false; 11647 } 11648 11649 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 11650 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 11651 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 11652 bool IsABIRegCopy = CC.hasValue(); 11653 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11654 SDValue Val = Parts[0]; 11655 11656 // Cast the f32 to i32, truncate to i16, and cast back to f16. 11657 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 11658 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 11659 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 11660 return Val; 11661 } 11662 11663 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11664 LLVMContext &Context = *DAG.getContext(); 11665 SDValue Val = Parts[0]; 11666 EVT ValueEltVT = ValueVT.getVectorElementType(); 11667 EVT PartEltVT = PartVT.getVectorElementType(); 11668 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11669 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11670 if (PartVTBitSize % ValueVTBitSize == 0) { 11671 assert(PartVTBitSize >= ValueVTBitSize); 11672 EVT SameEltTypeVT = ValueVT; 11673 // If the element types are different, convert it to the same element type 11674 // of PartVT. 11675 // Give an example here, we want copy a <vscale x 1 x i8> value from 11676 // <vscale x 4 x i16>. 11677 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 11678 // then we can extract <vscale x 1 x i8>. 11679 if (ValueEltVT != PartEltVT) { 11680 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11681 assert(Count != 0 && "The number of element should not be zero."); 11682 SameEltTypeVT = 11683 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11684 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 11685 } 11686 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 11687 DAG.getVectorIdxConstant(0, DL)); 11688 return Val; 11689 } 11690 } 11691 return SDValue(); 11692 } 11693 11694 SDValue 11695 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11696 SelectionDAG &DAG, 11697 SmallVectorImpl<SDNode *> &Created) const { 11698 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 11699 if (isIntDivCheap(N->getValueType(0), Attr)) 11700 return SDValue(N, 0); // Lower SDIV as SDIV 11701 11702 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 11703 "Unexpected divisor!"); 11704 11705 // Conditional move is needed, so do the transformation iff Zbt is enabled. 11706 if (!Subtarget.hasStdExtZbt()) 11707 return SDValue(); 11708 11709 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 11710 // Besides, more critical path instructions will be generated when dividing 11711 // by 2. So we keep using the original DAGs for these cases. 11712 unsigned Lg2 = Divisor.countTrailingZeros(); 11713 if (Lg2 == 1 || Lg2 >= 12) 11714 return SDValue(); 11715 11716 // fold (sdiv X, pow2) 11717 EVT VT = N->getValueType(0); 11718 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 11719 return SDValue(); 11720 11721 SDLoc DL(N); 11722 SDValue N0 = N->getOperand(0); 11723 SDValue Zero = DAG.getConstant(0, DL, VT); 11724 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 11725 11726 // Add (N0 < 0) ? Pow2 - 1 : 0; 11727 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 11728 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 11729 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 11730 11731 Created.push_back(Cmp.getNode()); 11732 Created.push_back(Add.getNode()); 11733 Created.push_back(Sel.getNode()); 11734 11735 // Divide by pow2. 11736 SDValue SRA = 11737 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 11738 11739 // If we're dividing by a positive value, we're done. Otherwise, we must 11740 // negate the result. 11741 if (Divisor.isNonNegative()) 11742 return SRA; 11743 11744 Created.push_back(SRA.getNode()); 11745 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 11746 } 11747 11748 #define GET_REGISTER_MATCHER 11749 #include "RISCVGenAsmMatcher.inc" 11750 11751 Register 11752 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 11753 const MachineFunction &MF) const { 11754 Register Reg = MatchRegisterAltName(RegName); 11755 if (Reg == RISCV::NoRegister) 11756 Reg = MatchRegisterName(RegName); 11757 if (Reg == RISCV::NoRegister) 11758 report_fatal_error( 11759 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 11760 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 11761 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 11762 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 11763 StringRef(RegName) + "\".")); 11764 return Reg; 11765 } 11766 11767 namespace llvm { 11768 namespace RISCVVIntrinsicsTable { 11769 11770 #define GET_RISCVVIntrinsicsTable_IMPL 11771 #include "RISCVGenSearchableTables.inc" 11772 11773 } // namespace RISCVVIntrinsicsTable 11774 11775 } // namespace llvm 11776