1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 if (Subtarget.hasStdExtV()) { 94 addRegisterClass(RISCVVMVTs::vbool64_t, &RISCV::VRRegClass); 95 addRegisterClass(RISCVVMVTs::vbool32_t, &RISCV::VRRegClass); 96 addRegisterClass(RISCVVMVTs::vbool16_t, &RISCV::VRRegClass); 97 addRegisterClass(RISCVVMVTs::vbool8_t, &RISCV::VRRegClass); 98 addRegisterClass(RISCVVMVTs::vbool4_t, &RISCV::VRRegClass); 99 addRegisterClass(RISCVVMVTs::vbool2_t, &RISCV::VRRegClass); 100 addRegisterClass(RISCVVMVTs::vbool1_t, &RISCV::VRRegClass); 101 102 addRegisterClass(RISCVVMVTs::vint8mf8_t, &RISCV::VRRegClass); 103 addRegisterClass(RISCVVMVTs::vint8mf4_t, &RISCV::VRRegClass); 104 addRegisterClass(RISCVVMVTs::vint8mf2_t, &RISCV::VRRegClass); 105 addRegisterClass(RISCVVMVTs::vint8m1_t, &RISCV::VRRegClass); 106 addRegisterClass(RISCVVMVTs::vint8m2_t, &RISCV::VRM2RegClass); 107 addRegisterClass(RISCVVMVTs::vint8m4_t, &RISCV::VRM4RegClass); 108 addRegisterClass(RISCVVMVTs::vint8m8_t, &RISCV::VRM8RegClass); 109 110 addRegisterClass(RISCVVMVTs::vint16mf4_t, &RISCV::VRRegClass); 111 addRegisterClass(RISCVVMVTs::vint16mf2_t, &RISCV::VRRegClass); 112 addRegisterClass(RISCVVMVTs::vint16m1_t, &RISCV::VRRegClass); 113 addRegisterClass(RISCVVMVTs::vint16m2_t, &RISCV::VRM2RegClass); 114 addRegisterClass(RISCVVMVTs::vint16m4_t, &RISCV::VRM4RegClass); 115 addRegisterClass(RISCVVMVTs::vint16m8_t, &RISCV::VRM8RegClass); 116 117 addRegisterClass(RISCVVMVTs::vint32mf2_t, &RISCV::VRRegClass); 118 addRegisterClass(RISCVVMVTs::vint32m1_t, &RISCV::VRRegClass); 119 addRegisterClass(RISCVVMVTs::vint32m2_t, &RISCV::VRM2RegClass); 120 addRegisterClass(RISCVVMVTs::vint32m4_t, &RISCV::VRM4RegClass); 121 addRegisterClass(RISCVVMVTs::vint32m8_t, &RISCV::VRM8RegClass); 122 123 addRegisterClass(RISCVVMVTs::vint64m1_t, &RISCV::VRRegClass); 124 addRegisterClass(RISCVVMVTs::vint64m2_t, &RISCV::VRM2RegClass); 125 addRegisterClass(RISCVVMVTs::vint64m4_t, &RISCV::VRM4RegClass); 126 addRegisterClass(RISCVVMVTs::vint64m8_t, &RISCV::VRM8RegClass); 127 128 if (Subtarget.hasStdExtZfh()) { 129 addRegisterClass(RISCVVMVTs::vfloat16mf4_t, &RISCV::VRRegClass); 130 addRegisterClass(RISCVVMVTs::vfloat16mf2_t, &RISCV::VRRegClass); 131 addRegisterClass(RISCVVMVTs::vfloat16m1_t, &RISCV::VRRegClass); 132 addRegisterClass(RISCVVMVTs::vfloat16m2_t, &RISCV::VRM2RegClass); 133 addRegisterClass(RISCVVMVTs::vfloat16m4_t, &RISCV::VRM4RegClass); 134 addRegisterClass(RISCVVMVTs::vfloat16m8_t, &RISCV::VRM8RegClass); 135 } 136 137 if (Subtarget.hasStdExtF()) { 138 addRegisterClass(RISCVVMVTs::vfloat32mf2_t, &RISCV::VRRegClass); 139 addRegisterClass(RISCVVMVTs::vfloat32m1_t, &RISCV::VRRegClass); 140 addRegisterClass(RISCVVMVTs::vfloat32m2_t, &RISCV::VRM2RegClass); 141 addRegisterClass(RISCVVMVTs::vfloat32m4_t, &RISCV::VRM4RegClass); 142 addRegisterClass(RISCVVMVTs::vfloat32m8_t, &RISCV::VRM8RegClass); 143 } 144 145 if (Subtarget.hasStdExtD()) { 146 addRegisterClass(RISCVVMVTs::vfloat64m1_t, &RISCV::VRRegClass); 147 addRegisterClass(RISCVVMVTs::vfloat64m2_t, &RISCV::VRM2RegClass); 148 addRegisterClass(RISCVVMVTs::vfloat64m4_t, &RISCV::VRM4RegClass); 149 addRegisterClass(RISCVVMVTs::vfloat64m8_t, &RISCV::VRM8RegClass); 150 } 151 } 152 153 // Compute derived properties from the register classes. 154 computeRegisterProperties(STI.getRegisterInfo()); 155 156 setStackPointerRegisterToSaveRestore(RISCV::X2); 157 158 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 159 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 160 161 // TODO: add all necessary setOperationAction calls. 162 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 163 164 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 165 setOperationAction(ISD::BR_CC, XLenVT, Expand); 166 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 167 168 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 169 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 170 171 setOperationAction(ISD::VASTART, MVT::Other, Custom); 172 setOperationAction(ISD::VAARG, MVT::Other, Expand); 173 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 174 setOperationAction(ISD::VAEND, MVT::Other, Expand); 175 176 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 177 if (!Subtarget.hasStdExtZbb()) { 178 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 179 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 180 } 181 182 if (Subtarget.is64Bit()) { 183 setOperationAction(ISD::ADD, MVT::i32, Custom); 184 setOperationAction(ISD::SUB, MVT::i32, Custom); 185 setOperationAction(ISD::SHL, MVT::i32, Custom); 186 setOperationAction(ISD::SRA, MVT::i32, Custom); 187 setOperationAction(ISD::SRL, MVT::i32, Custom); 188 } 189 190 if (!Subtarget.hasStdExtM()) { 191 setOperationAction(ISD::MUL, XLenVT, Expand); 192 setOperationAction(ISD::MULHS, XLenVT, Expand); 193 setOperationAction(ISD::MULHU, XLenVT, Expand); 194 setOperationAction(ISD::SDIV, XLenVT, Expand); 195 setOperationAction(ISD::UDIV, XLenVT, Expand); 196 setOperationAction(ISD::SREM, XLenVT, Expand); 197 setOperationAction(ISD::UREM, XLenVT, Expand); 198 } 199 200 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 201 setOperationAction(ISD::MUL, MVT::i32, Custom); 202 203 setOperationAction(ISD::SDIV, MVT::i8, Custom); 204 setOperationAction(ISD::UDIV, MVT::i8, Custom); 205 setOperationAction(ISD::UREM, MVT::i8, Custom); 206 setOperationAction(ISD::SDIV, MVT::i16, Custom); 207 setOperationAction(ISD::UDIV, MVT::i16, Custom); 208 setOperationAction(ISD::UREM, MVT::i16, Custom); 209 setOperationAction(ISD::SDIV, MVT::i32, Custom); 210 setOperationAction(ISD::UDIV, MVT::i32, Custom); 211 setOperationAction(ISD::UREM, MVT::i32, Custom); 212 } 213 214 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 215 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 216 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 217 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 218 219 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 220 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 221 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 222 223 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 224 if (Subtarget.is64Bit()) { 225 setOperationAction(ISD::ROTL, MVT::i32, Custom); 226 setOperationAction(ISD::ROTR, MVT::i32, Custom); 227 } 228 } else { 229 setOperationAction(ISD::ROTL, XLenVT, Expand); 230 setOperationAction(ISD::ROTR, XLenVT, Expand); 231 } 232 233 if (Subtarget.hasStdExtZbp()) { 234 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 235 // more combining. 236 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 237 setOperationAction(ISD::BSWAP, XLenVT, Custom); 238 239 if (Subtarget.is64Bit()) { 240 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 241 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 242 } 243 } else { 244 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 245 // pattern match it directly in isel. 246 setOperationAction(ISD::BSWAP, XLenVT, 247 Subtarget.hasStdExtZbb() ? Legal : Expand); 248 } 249 250 if (Subtarget.hasStdExtZbb()) { 251 setOperationAction(ISD::SMIN, XLenVT, Legal); 252 setOperationAction(ISD::SMAX, XLenVT, Legal); 253 setOperationAction(ISD::UMIN, XLenVT, Legal); 254 setOperationAction(ISD::UMAX, XLenVT, Legal); 255 } else { 256 setOperationAction(ISD::CTTZ, XLenVT, Expand); 257 setOperationAction(ISD::CTLZ, XLenVT, Expand); 258 setOperationAction(ISD::CTPOP, XLenVT, Expand); 259 } 260 261 if (Subtarget.hasStdExtZbt()) { 262 setOperationAction(ISD::FSHL, XLenVT, Legal); 263 setOperationAction(ISD::FSHR, XLenVT, Legal); 264 setOperationAction(ISD::SELECT, XLenVT, Legal); 265 266 if (Subtarget.is64Bit()) { 267 setOperationAction(ISD::FSHL, MVT::i32, Custom); 268 setOperationAction(ISD::FSHR, MVT::i32, Custom); 269 } 270 } else { 271 setOperationAction(ISD::SELECT, XLenVT, Custom); 272 } 273 274 ISD::CondCode FPCCToExpand[] = { 275 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 276 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 277 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 278 279 ISD::NodeType FPOpToExpand[] = { 280 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 281 ISD::FP_TO_FP16}; 282 283 if (Subtarget.hasStdExtZfh()) 284 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 285 286 if (Subtarget.hasStdExtZfh()) { 287 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 288 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 289 for (auto CC : FPCCToExpand) 290 setCondCodeAction(CC, MVT::f16, Expand); 291 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 292 setOperationAction(ISD::SELECT, MVT::f16, Custom); 293 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 294 for (auto Op : FPOpToExpand) 295 setOperationAction(Op, MVT::f16, Expand); 296 } 297 298 if (Subtarget.hasStdExtF()) { 299 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 300 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 301 for (auto CC : FPCCToExpand) 302 setCondCodeAction(CC, MVT::f32, Expand); 303 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 304 setOperationAction(ISD::SELECT, MVT::f32, Custom); 305 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 306 for (auto Op : FPOpToExpand) 307 setOperationAction(Op, MVT::f32, Expand); 308 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 309 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 310 } 311 312 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 313 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 314 315 if (Subtarget.hasStdExtD()) { 316 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 317 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 318 for (auto CC : FPCCToExpand) 319 setCondCodeAction(CC, MVT::f64, Expand); 320 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 321 setOperationAction(ISD::SELECT, MVT::f64, Custom); 322 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 323 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 324 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 325 for (auto Op : FPOpToExpand) 326 setOperationAction(Op, MVT::f64, Expand); 327 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 328 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 329 } 330 331 if (Subtarget.is64Bit()) { 332 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 333 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 334 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 335 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 336 } 337 338 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 339 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 340 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 341 setOperationAction(ISD::JumpTable, XLenVT, Custom); 342 343 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 344 345 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 346 // Unfortunately this can't be determined just from the ISA naming string. 347 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 348 Subtarget.is64Bit() ? Legal : Custom); 349 350 setOperationAction(ISD::TRAP, MVT::Other, Legal); 351 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 352 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 353 354 if (Subtarget.hasStdExtA()) { 355 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 356 setMinCmpXchgSizeInBits(32); 357 } else { 358 setMaxAtomicSizeInBitsSupported(0); 359 } 360 361 setBooleanContents(ZeroOrOneBooleanContent); 362 363 if (Subtarget.hasStdExtV()) { 364 setBooleanVectorContents(ZeroOrOneBooleanContent); 365 366 setOperationAction(ISD::VSCALE, XLenVT, Custom); 367 368 // RVV intrinsics may have illegal operands. 369 // We also need to custom legalize vmv.x.s. 370 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 371 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 372 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 373 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 374 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 375 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 376 377 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 378 379 if (Subtarget.is64Bit()) { 380 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 381 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 382 } 383 384 for (auto VT : MVT::integer_scalable_vector_valuetypes()) { 385 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 386 387 setOperationAction(ISD::SMIN, VT, Legal); 388 setOperationAction(ISD::SMAX, VT, Legal); 389 setOperationAction(ISD::UMIN, VT, Legal); 390 setOperationAction(ISD::UMAX, VT, Legal); 391 392 setOperationAction(ISD::ROTL, VT, Expand); 393 setOperationAction(ISD::ROTR, VT, Expand); 394 395 if (isTypeLegal(VT)) { 396 // Custom-lower extensions and truncations from/to mask types. 397 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 398 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 399 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 400 401 // We custom-lower all legally-typed vector truncates: 402 // 1. Mask VTs are custom-expanded into a series of standard nodes 403 // 2. Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR" 404 // nodes which truncate by one power of two at a time. 405 setOperationAction(ISD::TRUNCATE, VT, Custom); 406 407 // Custom-lower insert/extract operations to simplify patterns. 408 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 409 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 410 } 411 } 412 413 // We must custom-lower certain vXi64 operations on RV32 due to the vector 414 // element type being illegal. 415 if (!Subtarget.is64Bit()) { 416 setOperationAction(ISD::SPLAT_VECTOR, MVT::i64, Custom); 417 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 418 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 419 } 420 421 // Expand various CCs to best match the RVV ISA, which natively supports UNE 422 // but no other unordered comparisons, and supports all ordered comparisons 423 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 424 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 425 // and we pattern-match those back to the "original", swapping operands once 426 // more. This way we catch both operations and both "vf" and "fv" forms with 427 // fewer patterns. 428 ISD::CondCode VFPCCToExpand[] = { 429 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 430 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 431 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 432 }; 433 434 // Sets common operation actions on RVV floating-point vector types. 435 const auto SetCommonVFPActions = [&](MVT VT) { 436 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 437 // Custom-lower insert/extract operations to simplify patterns. 438 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 439 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 440 for (auto CC : VFPCCToExpand) 441 setCondCodeAction(CC, VT, Expand); 442 }; 443 444 if (Subtarget.hasStdExtZfh()) { 445 for (auto VT : {RISCVVMVTs::vfloat16mf4_t, RISCVVMVTs::vfloat16mf2_t, 446 RISCVVMVTs::vfloat16m1_t, RISCVVMVTs::vfloat16m2_t, 447 RISCVVMVTs::vfloat16m4_t, RISCVVMVTs::vfloat16m8_t}) 448 SetCommonVFPActions(VT); 449 } 450 451 if (Subtarget.hasStdExtF()) { 452 for (auto VT : {RISCVVMVTs::vfloat32mf2_t, RISCVVMVTs::vfloat32m1_t, 453 RISCVVMVTs::vfloat32m2_t, RISCVVMVTs::vfloat32m4_t, 454 RISCVVMVTs::vfloat32m8_t}) 455 SetCommonVFPActions(VT); 456 } 457 458 if (Subtarget.hasStdExtD()) { 459 for (auto VT : {RISCVVMVTs::vfloat64m1_t, RISCVVMVTs::vfloat64m2_t, 460 RISCVVMVTs::vfloat64m4_t, RISCVVMVTs::vfloat64m8_t}) 461 SetCommonVFPActions(VT); 462 } 463 } 464 465 // Function alignments. 466 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 467 setMinFunctionAlignment(FunctionAlignment); 468 setPrefFunctionAlignment(FunctionAlignment); 469 470 setMinimumJumpTableEntries(5); 471 472 // Jumps are expensive, compared to logic 473 setJumpIsExpensive(); 474 475 // We can use any register for comparisons 476 setHasMultipleConditionRegisters(); 477 478 setTargetDAGCombine(ISD::SETCC); 479 if (Subtarget.hasStdExtZbp()) { 480 setTargetDAGCombine(ISD::OR); 481 } 482 } 483 484 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 485 EVT VT) const { 486 if (!VT.isVector()) 487 return getPointerTy(DL); 488 if (Subtarget.hasStdExtV()) 489 return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 490 return VT.changeVectorElementTypeToInteger(); 491 } 492 493 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 494 const CallInst &I, 495 MachineFunction &MF, 496 unsigned Intrinsic) const { 497 switch (Intrinsic) { 498 default: 499 return false; 500 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 501 case Intrinsic::riscv_masked_atomicrmw_add_i32: 502 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 503 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 504 case Intrinsic::riscv_masked_atomicrmw_max_i32: 505 case Intrinsic::riscv_masked_atomicrmw_min_i32: 506 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 507 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 508 case Intrinsic::riscv_masked_cmpxchg_i32: 509 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 510 Info.opc = ISD::INTRINSIC_W_CHAIN; 511 Info.memVT = MVT::getVT(PtrTy->getElementType()); 512 Info.ptrVal = I.getArgOperand(0); 513 Info.offset = 0; 514 Info.align = Align(4); 515 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 516 MachineMemOperand::MOVolatile; 517 return true; 518 } 519 } 520 521 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 522 const AddrMode &AM, Type *Ty, 523 unsigned AS, 524 Instruction *I) const { 525 // No global is ever allowed as a base. 526 if (AM.BaseGV) 527 return false; 528 529 // Require a 12-bit signed offset. 530 if (!isInt<12>(AM.BaseOffs)) 531 return false; 532 533 switch (AM.Scale) { 534 case 0: // "r+i" or just "i", depending on HasBaseReg. 535 break; 536 case 1: 537 if (!AM.HasBaseReg) // allow "r+i". 538 break; 539 return false; // disallow "r+r" or "r+r+i". 540 default: 541 return false; 542 } 543 544 return true; 545 } 546 547 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 548 return isInt<12>(Imm); 549 } 550 551 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 552 return isInt<12>(Imm); 553 } 554 555 // On RV32, 64-bit integers are split into their high and low parts and held 556 // in two different registers, so the trunc is free since the low register can 557 // just be used. 558 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 559 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 560 return false; 561 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 562 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 563 return (SrcBits == 64 && DestBits == 32); 564 } 565 566 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 567 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 568 !SrcVT.isInteger() || !DstVT.isInteger()) 569 return false; 570 unsigned SrcBits = SrcVT.getSizeInBits(); 571 unsigned DestBits = DstVT.getSizeInBits(); 572 return (SrcBits == 64 && DestBits == 32); 573 } 574 575 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 576 // Zexts are free if they can be combined with a load. 577 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 578 EVT MemVT = LD->getMemoryVT(); 579 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 580 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 581 (LD->getExtensionType() == ISD::NON_EXTLOAD || 582 LD->getExtensionType() == ISD::ZEXTLOAD)) 583 return true; 584 } 585 586 return TargetLowering::isZExtFree(Val, VT2); 587 } 588 589 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 590 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 591 } 592 593 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 594 return Subtarget.hasStdExtZbb(); 595 } 596 597 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 598 return Subtarget.hasStdExtZbb(); 599 } 600 601 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 602 bool ForCodeSize) const { 603 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 604 return false; 605 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 606 return false; 607 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 608 return false; 609 if (Imm.isNegZero()) 610 return false; 611 return Imm.isZero(); 612 } 613 614 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 615 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 616 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 617 (VT == MVT::f64 && Subtarget.hasStdExtD()); 618 } 619 620 // Changes the condition code and swaps operands if necessary, so the SetCC 621 // operation matches one of the comparisons supported directly in the RISC-V 622 // ISA. 623 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 624 switch (CC) { 625 default: 626 break; 627 case ISD::SETGT: 628 case ISD::SETLE: 629 case ISD::SETUGT: 630 case ISD::SETULE: 631 CC = ISD::getSetCCSwappedOperands(CC); 632 std::swap(LHS, RHS); 633 break; 634 } 635 } 636 637 // Return the RISC-V branch opcode that matches the given DAG integer 638 // condition code. The CondCode must be one of those supported by the RISC-V 639 // ISA (see normaliseSetCC). 640 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 641 switch (CC) { 642 default: 643 llvm_unreachable("Unsupported CondCode"); 644 case ISD::SETEQ: 645 return RISCV::BEQ; 646 case ISD::SETNE: 647 return RISCV::BNE; 648 case ISD::SETLT: 649 return RISCV::BLT; 650 case ISD::SETGE: 651 return RISCV::BGE; 652 case ISD::SETULT: 653 return RISCV::BLTU; 654 case ISD::SETUGE: 655 return RISCV::BGEU; 656 } 657 } 658 659 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 660 SelectionDAG &DAG) const { 661 switch (Op.getOpcode()) { 662 default: 663 report_fatal_error("unimplemented operand"); 664 case ISD::GlobalAddress: 665 return lowerGlobalAddress(Op, DAG); 666 case ISD::BlockAddress: 667 return lowerBlockAddress(Op, DAG); 668 case ISD::ConstantPool: 669 return lowerConstantPool(Op, DAG); 670 case ISD::JumpTable: 671 return lowerJumpTable(Op, DAG); 672 case ISD::GlobalTLSAddress: 673 return lowerGlobalTLSAddress(Op, DAG); 674 case ISD::SELECT: 675 return lowerSELECT(Op, DAG); 676 case ISD::VASTART: 677 return lowerVASTART(Op, DAG); 678 case ISD::FRAMEADDR: 679 return lowerFRAMEADDR(Op, DAG); 680 case ISD::RETURNADDR: 681 return lowerRETURNADDR(Op, DAG); 682 case ISD::SHL_PARTS: 683 return lowerShiftLeftParts(Op, DAG); 684 case ISD::SRA_PARTS: 685 return lowerShiftRightParts(Op, DAG, true); 686 case ISD::SRL_PARTS: 687 return lowerShiftRightParts(Op, DAG, false); 688 case ISD::BITCAST: { 689 assert(((Subtarget.is64Bit() && Subtarget.hasStdExtF()) || 690 Subtarget.hasStdExtZfh()) && 691 "Unexpected custom legalisation"); 692 SDLoc DL(Op); 693 SDValue Op0 = Op.getOperand(0); 694 if (Op.getValueType() == MVT::f16 && Subtarget.hasStdExtZfh()) { 695 if (Op0.getValueType() != MVT::i16) 696 return SDValue(); 697 SDValue NewOp0 = 698 DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Op0); 699 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 700 return FPConv; 701 } else if (Op.getValueType() == MVT::f32 && Subtarget.is64Bit() && 702 Subtarget.hasStdExtF()) { 703 if (Op0.getValueType() != MVT::i32) 704 return SDValue(); 705 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 706 SDValue FPConv = 707 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 708 return FPConv; 709 } 710 return SDValue(); 711 } 712 case ISD::INTRINSIC_WO_CHAIN: 713 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 714 case ISD::INTRINSIC_W_CHAIN: 715 return LowerINTRINSIC_W_CHAIN(Op, DAG); 716 case ISD::BSWAP: 717 case ISD::BITREVERSE: { 718 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 719 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 720 MVT VT = Op.getSimpleValueType(); 721 SDLoc DL(Op); 722 // Start with the maximum immediate value which is the bitwidth - 1. 723 unsigned Imm = VT.getSizeInBits() - 1; 724 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 725 if (Op.getOpcode() == ISD::BSWAP) 726 Imm &= ~0x7U; 727 return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0), 728 DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT())); 729 } 730 case ISD::TRUNCATE: { 731 SDLoc DL(Op); 732 EVT VT = Op.getValueType(); 733 // Only custom-lower vector truncates 734 if (!VT.isVector()) 735 return Op; 736 737 // Truncates to mask types are handled differently 738 if (VT.getVectorElementType() == MVT::i1) 739 return lowerVectorMaskTrunc(Op, DAG); 740 741 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 742 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR" nodes which 743 // truncate by one power of two at a time. 744 EVT DstEltVT = VT.getVectorElementType(); 745 746 SDValue Src = Op.getOperand(0); 747 EVT SrcVT = Src.getValueType(); 748 EVT SrcEltVT = SrcVT.getVectorElementType(); 749 750 assert(DstEltVT.bitsLT(SrcEltVT) && 751 isPowerOf2_64(DstEltVT.getSizeInBits()) && 752 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 753 "Unexpected vector truncate lowering"); 754 755 SDValue Result = Src; 756 LLVMContext &Context = *DAG.getContext(); 757 const ElementCount Count = SrcVT.getVectorElementCount(); 758 do { 759 SrcEltVT = EVT::getIntegerVT(Context, SrcEltVT.getSizeInBits() / 2); 760 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 761 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR, DL, ResultVT, Result); 762 } while (SrcEltVT != DstEltVT); 763 764 return Result; 765 } 766 case ISD::ANY_EXTEND: 767 case ISD::ZERO_EXTEND: 768 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 769 case ISD::SIGN_EXTEND: 770 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 771 case ISD::SPLAT_VECTOR: 772 return lowerSPLATVECTOR(Op, DAG); 773 case ISD::INSERT_VECTOR_ELT: 774 return lowerINSERT_VECTOR_ELT(Op, DAG); 775 case ISD::EXTRACT_VECTOR_ELT: 776 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 777 case ISD::VSCALE: { 778 MVT VT = Op.getSimpleValueType(); 779 SDLoc DL(Op); 780 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 781 // We define our scalable vector types for lmul=1 to use a 64 bit known 782 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 783 // vscale as VLENB / 8. 784 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 785 DAG.getConstant(3, DL, VT)); 786 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 787 } 788 } 789 } 790 791 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 792 SelectionDAG &DAG, unsigned Flags) { 793 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 794 } 795 796 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 797 SelectionDAG &DAG, unsigned Flags) { 798 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 799 Flags); 800 } 801 802 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 803 SelectionDAG &DAG, unsigned Flags) { 804 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 805 N->getOffset(), Flags); 806 } 807 808 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 809 SelectionDAG &DAG, unsigned Flags) { 810 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 811 } 812 813 template <class NodeTy> 814 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 815 bool IsLocal) const { 816 SDLoc DL(N); 817 EVT Ty = getPointerTy(DAG.getDataLayout()); 818 819 if (isPositionIndependent()) { 820 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 821 if (IsLocal) 822 // Use PC-relative addressing to access the symbol. This generates the 823 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 824 // %pcrel_lo(auipc)). 825 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 826 827 // Use PC-relative addressing to access the GOT for this symbol, then load 828 // the address from the GOT. This generates the pattern (PseudoLA sym), 829 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 830 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 831 } 832 833 switch (getTargetMachine().getCodeModel()) { 834 default: 835 report_fatal_error("Unsupported code model for lowering"); 836 case CodeModel::Small: { 837 // Generate a sequence for accessing addresses within the first 2 GiB of 838 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 839 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 840 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 841 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 842 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 843 } 844 case CodeModel::Medium: { 845 // Generate a sequence for accessing addresses within any 2GiB range within 846 // the address space. This generates the pattern (PseudoLLA sym), which 847 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 848 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 849 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 850 } 851 } 852 } 853 854 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 855 SelectionDAG &DAG) const { 856 SDLoc DL(Op); 857 EVT Ty = Op.getValueType(); 858 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 859 int64_t Offset = N->getOffset(); 860 MVT XLenVT = Subtarget.getXLenVT(); 861 862 const GlobalValue *GV = N->getGlobal(); 863 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 864 SDValue Addr = getAddr(N, DAG, IsLocal); 865 866 // In order to maximise the opportunity for common subexpression elimination, 867 // emit a separate ADD node for the global address offset instead of folding 868 // it in the global address node. Later peephole optimisations may choose to 869 // fold it back in when profitable. 870 if (Offset != 0) 871 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 872 DAG.getConstant(Offset, DL, XLenVT)); 873 return Addr; 874 } 875 876 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 877 SelectionDAG &DAG) const { 878 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 879 880 return getAddr(N, DAG); 881 } 882 883 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 884 SelectionDAG &DAG) const { 885 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 886 887 return getAddr(N, DAG); 888 } 889 890 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 891 SelectionDAG &DAG) const { 892 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 893 894 return getAddr(N, DAG); 895 } 896 897 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 898 SelectionDAG &DAG, 899 bool UseGOT) const { 900 SDLoc DL(N); 901 EVT Ty = getPointerTy(DAG.getDataLayout()); 902 const GlobalValue *GV = N->getGlobal(); 903 MVT XLenVT = Subtarget.getXLenVT(); 904 905 if (UseGOT) { 906 // Use PC-relative addressing to access the GOT for this TLS symbol, then 907 // load the address from the GOT and add the thread pointer. This generates 908 // the pattern (PseudoLA_TLS_IE sym), which expands to 909 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 910 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 911 SDValue Load = 912 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 913 914 // Add the thread pointer. 915 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 916 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 917 } 918 919 // Generate a sequence for accessing the address relative to the thread 920 // pointer, with the appropriate adjustment for the thread pointer offset. 921 // This generates the pattern 922 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 923 SDValue AddrHi = 924 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 925 SDValue AddrAdd = 926 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 927 SDValue AddrLo = 928 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 929 930 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 931 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 932 SDValue MNAdd = SDValue( 933 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 934 0); 935 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 936 } 937 938 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 939 SelectionDAG &DAG) const { 940 SDLoc DL(N); 941 EVT Ty = getPointerTy(DAG.getDataLayout()); 942 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 943 const GlobalValue *GV = N->getGlobal(); 944 945 // Use a PC-relative addressing mode to access the global dynamic GOT address. 946 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 947 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 948 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 949 SDValue Load = 950 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 951 952 // Prepare argument list to generate call. 953 ArgListTy Args; 954 ArgListEntry Entry; 955 Entry.Node = Load; 956 Entry.Ty = CallTy; 957 Args.push_back(Entry); 958 959 // Setup call to __tls_get_addr. 960 TargetLowering::CallLoweringInfo CLI(DAG); 961 CLI.setDebugLoc(DL) 962 .setChain(DAG.getEntryNode()) 963 .setLibCallee(CallingConv::C, CallTy, 964 DAG.getExternalSymbol("__tls_get_addr", Ty), 965 std::move(Args)); 966 967 return LowerCallTo(CLI).first; 968 } 969 970 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 971 SelectionDAG &DAG) const { 972 SDLoc DL(Op); 973 EVT Ty = Op.getValueType(); 974 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 975 int64_t Offset = N->getOffset(); 976 MVT XLenVT = Subtarget.getXLenVT(); 977 978 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 979 980 if (DAG.getMachineFunction().getFunction().getCallingConv() == 981 CallingConv::GHC) 982 report_fatal_error("In GHC calling convention TLS is not supported"); 983 984 SDValue Addr; 985 switch (Model) { 986 case TLSModel::LocalExec: 987 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 988 break; 989 case TLSModel::InitialExec: 990 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 991 break; 992 case TLSModel::LocalDynamic: 993 case TLSModel::GeneralDynamic: 994 Addr = getDynamicTLSAddr(N, DAG); 995 break; 996 } 997 998 // In order to maximise the opportunity for common subexpression elimination, 999 // emit a separate ADD node for the global address offset instead of folding 1000 // it in the global address node. Later peephole optimisations may choose to 1001 // fold it back in when profitable. 1002 if (Offset != 0) 1003 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 1004 DAG.getConstant(Offset, DL, XLenVT)); 1005 return Addr; 1006 } 1007 1008 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 1009 SDValue CondV = Op.getOperand(0); 1010 SDValue TrueV = Op.getOperand(1); 1011 SDValue FalseV = Op.getOperand(2); 1012 SDLoc DL(Op); 1013 MVT XLenVT = Subtarget.getXLenVT(); 1014 1015 // If the result type is XLenVT and CondV is the output of a SETCC node 1016 // which also operated on XLenVT inputs, then merge the SETCC node into the 1017 // lowered RISCVISD::SELECT_CC to take advantage of the integer 1018 // compare+branch instructions. i.e.: 1019 // (select (setcc lhs, rhs, cc), truev, falsev) 1020 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 1021 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 1022 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 1023 SDValue LHS = CondV.getOperand(0); 1024 SDValue RHS = CondV.getOperand(1); 1025 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 1026 ISD::CondCode CCVal = CC->get(); 1027 1028 normaliseSetCC(LHS, RHS, CCVal); 1029 1030 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 1031 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 1032 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 1033 } 1034 1035 // Otherwise: 1036 // (select condv, truev, falsev) 1037 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 1038 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 1039 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 1040 1041 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 1042 1043 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 1044 } 1045 1046 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1047 MachineFunction &MF = DAG.getMachineFunction(); 1048 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 1049 1050 SDLoc DL(Op); 1051 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1052 getPointerTy(MF.getDataLayout())); 1053 1054 // vastart just stores the address of the VarArgsFrameIndex slot into the 1055 // memory location argument. 1056 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1057 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 1058 MachinePointerInfo(SV)); 1059 } 1060 1061 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 1062 SelectionDAG &DAG) const { 1063 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 1064 MachineFunction &MF = DAG.getMachineFunction(); 1065 MachineFrameInfo &MFI = MF.getFrameInfo(); 1066 MFI.setFrameAddressIsTaken(true); 1067 Register FrameReg = RI.getFrameRegister(MF); 1068 int XLenInBytes = Subtarget.getXLen() / 8; 1069 1070 EVT VT = Op.getValueType(); 1071 SDLoc DL(Op); 1072 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 1073 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1074 while (Depth--) { 1075 int Offset = -(XLenInBytes * 2); 1076 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1077 DAG.getIntPtrConstant(Offset, DL)); 1078 FrameAddr = 1079 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1080 } 1081 return FrameAddr; 1082 } 1083 1084 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 1085 SelectionDAG &DAG) const { 1086 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 1087 MachineFunction &MF = DAG.getMachineFunction(); 1088 MachineFrameInfo &MFI = MF.getFrameInfo(); 1089 MFI.setReturnAddressIsTaken(true); 1090 MVT XLenVT = Subtarget.getXLenVT(); 1091 int XLenInBytes = Subtarget.getXLen() / 8; 1092 1093 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1094 return SDValue(); 1095 1096 EVT VT = Op.getValueType(); 1097 SDLoc DL(Op); 1098 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1099 if (Depth) { 1100 int Off = -XLenInBytes; 1101 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 1102 SDValue Offset = DAG.getConstant(Off, DL, VT); 1103 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 1104 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 1105 MachinePointerInfo()); 1106 } 1107 1108 // Return the value of the return address register, marking it an implicit 1109 // live-in. 1110 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 1111 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 1112 } 1113 1114 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 1115 SelectionDAG &DAG) const { 1116 SDLoc DL(Op); 1117 SDValue Lo = Op.getOperand(0); 1118 SDValue Hi = Op.getOperand(1); 1119 SDValue Shamt = Op.getOperand(2); 1120 EVT VT = Lo.getValueType(); 1121 1122 // if Shamt-XLEN < 0: // Shamt < XLEN 1123 // Lo = Lo << Shamt 1124 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 1125 // else: 1126 // Lo = 0 1127 // Hi = Lo << (Shamt-XLEN) 1128 1129 SDValue Zero = DAG.getConstant(0, DL, VT); 1130 SDValue One = DAG.getConstant(1, DL, VT); 1131 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 1132 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 1133 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 1134 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 1135 1136 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 1137 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 1138 SDValue ShiftRightLo = 1139 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 1140 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 1141 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 1142 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 1143 1144 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1145 1146 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 1147 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1148 1149 SDValue Parts[2] = {Lo, Hi}; 1150 return DAG.getMergeValues(Parts, DL); 1151 } 1152 1153 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 1154 bool IsSRA) const { 1155 SDLoc DL(Op); 1156 SDValue Lo = Op.getOperand(0); 1157 SDValue Hi = Op.getOperand(1); 1158 SDValue Shamt = Op.getOperand(2); 1159 EVT VT = Lo.getValueType(); 1160 1161 // SRA expansion: 1162 // if Shamt-XLEN < 0: // Shamt < XLEN 1163 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1164 // Hi = Hi >>s Shamt 1165 // else: 1166 // Lo = Hi >>s (Shamt-XLEN); 1167 // Hi = Hi >>s (XLEN-1) 1168 // 1169 // SRL expansion: 1170 // if Shamt-XLEN < 0: // Shamt < XLEN 1171 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1172 // Hi = Hi >>u Shamt 1173 // else: 1174 // Lo = Hi >>u (Shamt-XLEN); 1175 // Hi = 0; 1176 1177 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 1178 1179 SDValue Zero = DAG.getConstant(0, DL, VT); 1180 SDValue One = DAG.getConstant(1, DL, VT); 1181 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 1182 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 1183 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 1184 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 1185 1186 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 1187 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 1188 SDValue ShiftLeftHi = 1189 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 1190 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 1191 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 1192 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 1193 SDValue HiFalse = 1194 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 1195 1196 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1197 1198 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 1199 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1200 1201 SDValue Parts[2] = {Lo, Hi}; 1202 return DAG.getMergeValues(Parts, DL); 1203 } 1204 1205 // Custom-lower a SPLAT_VECTOR where XLEN<SEW, as the SEW element type is 1206 // illegal (currently only vXi64 RV32). 1207 // FIXME: We could also catch non-constant sign-extended i32 values and lower 1208 // them to SPLAT_VECTOR_I64 1209 SDValue RISCVTargetLowering::lowerSPLATVECTOR(SDValue Op, 1210 SelectionDAG &DAG) const { 1211 SDLoc DL(Op); 1212 EVT VecVT = Op.getValueType(); 1213 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 1214 "Unexpected SPLAT_VECTOR lowering"); 1215 SDValue SplatVal = Op.getOperand(0); 1216 1217 // If we can prove that the value is a sign-extended 32-bit value, lower this 1218 // as a custom node in order to try and match RVV vector/scalar instructions. 1219 if (auto *CVal = dyn_cast<ConstantSDNode>(SplatVal)) { 1220 if (isInt<32>(CVal->getSExtValue())) 1221 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 1222 DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32)); 1223 } 1224 1225 if (SplatVal.getOpcode() == ISD::SIGN_EXTEND && 1226 SplatVal.getOperand(0).getValueType() == MVT::i32) { 1227 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 1228 SplatVal.getOperand(0)); 1229 } 1230 1231 // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not 1232 // to accidentally sign-extend the 32-bit halves to the e64 SEW: 1233 // vmv.v.x vX, hi 1234 // vsll.vx vX, vX, /*32*/ 1235 // vmv.v.x vY, lo 1236 // vsll.vx vY, vY, /*32*/ 1237 // vsrl.vx vY, vY, /*32*/ 1238 // vor.vv vX, vX, vY 1239 SDValue One = DAG.getConstant(1, DL, MVT::i32); 1240 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 1241 SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT); 1242 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, Zero); 1243 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, One); 1244 1245 Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 1246 Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV); 1247 Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV); 1248 1249 if (isNullConstant(Hi)) 1250 return Lo; 1251 1252 Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi); 1253 Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV); 1254 1255 return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi); 1256 } 1257 1258 // Custom-lower extensions from mask vectors by using a vselect either with 1 1259 // for zero/any-extension or -1 for sign-extension: 1260 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 1261 // Note that any-extension is lowered identically to zero-extension. 1262 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 1263 int64_t ExtTrueVal) const { 1264 SDLoc DL(Op); 1265 EVT VecVT = Op.getValueType(); 1266 SDValue Src = Op.getOperand(0); 1267 // Only custom-lower extensions from mask types 1268 if (!Src.getValueType().isVector() || 1269 Src.getValueType().getVectorElementType() != MVT::i1) 1270 return Op; 1271 1272 // Be careful not to introduce illegal scalar types at this stage, and be 1273 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 1274 // illegal and must be expanded. Since we know that the constants are 1275 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 1276 bool IsRV32E64 = 1277 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 1278 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1279 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, Subtarget.getXLenVT()); 1280 1281 if (!IsRV32E64) { 1282 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 1283 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 1284 } else { 1285 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 1286 SplatTrueVal = 1287 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 1288 } 1289 1290 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 1291 } 1292 1293 // Custom-lower truncations from vectors to mask vectors by using a mask and a 1294 // setcc operation: 1295 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 1296 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 1297 SelectionDAG &DAG) const { 1298 SDLoc DL(Op); 1299 EVT MaskVT = Op.getValueType(); 1300 // Only expect to custom-lower truncations to mask types 1301 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 1302 "Unexpected type for vector mask lowering"); 1303 SDValue Src = Op.getOperand(0); 1304 EVT VecVT = Src.getValueType(); 1305 1306 // Be careful not to introduce illegal scalar types at this stage, and be 1307 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 1308 // illegal and must be expanded. Since we know that the constants are 1309 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 1310 bool IsRV32E64 = 1311 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 1312 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 1313 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1314 1315 if (!IsRV32E64) { 1316 SplatOne = DAG.getSplatVector(VecVT, DL, SplatOne); 1317 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 1318 } else { 1319 SplatOne = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatOne); 1320 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 1321 } 1322 1323 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 1324 1325 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 1326 } 1327 1328 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 1329 SelectionDAG &DAG) const { 1330 SDLoc DL(Op); 1331 EVT VecVT = Op.getValueType(); 1332 SDValue Vec = Op.getOperand(0); 1333 SDValue Val = Op.getOperand(1); 1334 SDValue Idx = Op.getOperand(2); 1335 1336 // Custom-legalize INSERT_VECTOR_ELT where XLEN>=SEW, so that the vector is 1337 // first slid down into position, the value is inserted into the first 1338 // position, and the vector is slid back up. We do this to simplify patterns. 1339 // (slideup vec, (insertelt (slidedown impdef, vec, idx), val, 0), idx), 1340 if (Subtarget.is64Bit() || VecVT.getVectorElementType() != MVT::i64) { 1341 if (isNullConstant(Idx)) 1342 return Op; 1343 SDValue Slidedown = DAG.getNode(RISCVISD::VSLIDEDOWN, DL, VecVT, 1344 DAG.getUNDEF(VecVT), Vec, Idx); 1345 SDValue InsertElt0 = 1346 DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecVT, Slidedown, Val, 1347 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 1348 1349 return DAG.getNode(RISCVISD::VSLIDEUP, DL, VecVT, Vec, InsertElt0, Idx); 1350 } 1351 1352 // Custom-legalize INSERT_VECTOR_ELT where XLEN<SEW, as the SEW element type 1353 // is illegal (currently only vXi64 RV32). 1354 // Since there is no easy way of getting a single element into a vector when 1355 // XLEN<SEW, we lower the operation to the following sequence: 1356 // splat vVal, rVal 1357 // vid.v vVid 1358 // vmseq.vx mMask, vVid, rIdx 1359 // vmerge.vvm vDest, vSrc, vVal, mMask 1360 // This essentially merges the original vector with the inserted element by 1361 // using a mask whose only set bit is that corresponding to the insert 1362 // index. 1363 SDValue SplattedVal = DAG.getSplatVector(VecVT, DL, Val); 1364 SDValue SplattedIdx = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Idx); 1365 1366 SDValue VID = DAG.getNode(RISCVISD::VID, DL, VecVT); 1367 auto SetCCVT = 1368 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VecVT); 1369 SDValue Mask = DAG.getSetCC(DL, SetCCVT, VID, SplattedIdx, ISD::SETEQ); 1370 1371 return DAG.getNode(ISD::VSELECT, DL, VecVT, Mask, SplattedVal, Vec); 1372 } 1373 1374 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 1375 // extract the first element: (extractelt (slidedown vec, idx), 0). This is 1376 // done to maintain partity with the legalization of RV32 vXi64 legalization. 1377 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 1378 SelectionDAG &DAG) const { 1379 SDLoc DL(Op); 1380 SDValue Idx = Op.getOperand(1); 1381 if (isNullConstant(Idx)) 1382 return Op; 1383 1384 SDValue Vec = Op.getOperand(0); 1385 EVT EltVT = Op.getValueType(); 1386 EVT VecVT = Vec.getValueType(); 1387 SDValue Slidedown = DAG.getNode(RISCVISD::VSLIDEDOWN, DL, VecVT, 1388 DAG.getUNDEF(VecVT), Vec, Idx); 1389 1390 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Slidedown, 1391 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 1392 } 1393 1394 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 1395 SelectionDAG &DAG) const { 1396 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1397 SDLoc DL(Op); 1398 1399 if (Subtarget.hasStdExtV()) { 1400 // Some RVV intrinsics may claim that they want an integer operand to be 1401 // extended. 1402 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1403 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 1404 if (II->ExtendedOperand) { 1405 assert(II->ExtendedOperand < Op.getNumOperands()); 1406 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 1407 SDValue &ScalarOp = Operands[II->ExtendedOperand]; 1408 EVT OpVT = ScalarOp.getValueType(); 1409 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 1410 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 1411 // If the operand is a constant, sign extend to increase our chances 1412 // of being able to use a .vi instruction. ANY_EXTEND would become a 1413 // a zero extend and the simm5 check in isel would fail. 1414 // FIXME: Should we ignore the upper bits in isel instead? 1415 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 1416 : ISD::ANY_EXTEND; 1417 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 1418 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), 1419 Operands); 1420 } 1421 } 1422 } 1423 } 1424 1425 switch (IntNo) { 1426 default: 1427 return SDValue(); // Don't custom lower most intrinsics. 1428 case Intrinsic::thread_pointer: { 1429 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1430 return DAG.getRegister(RISCV::X4, PtrVT); 1431 } 1432 case Intrinsic::riscv_vmv_x_s: 1433 assert(Op.getValueType() == Subtarget.getXLenVT() && "Unexpected VT!"); 1434 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 1435 Op.getOperand(1)); 1436 } 1437 } 1438 1439 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 1440 SelectionDAG &DAG) const { 1441 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1442 SDLoc DL(Op); 1443 1444 if (Subtarget.hasStdExtV()) { 1445 // Some RVV intrinsics may claim that they want an integer operand to be 1446 // extended. 1447 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1448 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 1449 if (II->ExtendedOperand) { 1450 // The operands start from the second argument in INTRINSIC_W_CHAIN. 1451 unsigned ExtendOp = II->ExtendedOperand + 1; 1452 assert(ExtendOp < Op.getNumOperands()); 1453 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 1454 SDValue &ScalarOp = Operands[ExtendOp]; 1455 EVT OpVT = ScalarOp.getValueType(); 1456 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 1457 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 1458 // If the operand is a constant, sign extend to increase our chances 1459 // of being able to use a .vi instruction. ANY_EXTEND would become a 1460 // a zero extend and the simm5 check in isel would fail. 1461 // FIXME: Should we ignore the upper bits in isel instead? 1462 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 1463 : ISD::ANY_EXTEND; 1464 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 1465 return DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, Op->getVTList(), 1466 Operands); 1467 } 1468 } 1469 } 1470 } 1471 1472 switch (IntNo) { 1473 default: 1474 return SDValue(); // Don't custom lower most intrinsics. 1475 case Intrinsic::riscv_vleff: { 1476 SDLoc DL(Op); 1477 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Other, MVT::Glue); 1478 SDValue Load = DAG.getNode(RISCVISD::VLEFF, DL, VTs, Op.getOperand(0), 1479 Op.getOperand(2), Op.getOperand(3)); 1480 VTs = DAG.getVTList(Op->getValueType(1), MVT::Other); 1481 SDValue ReadVL = DAG.getNode(RISCVISD::READ_VL, DL, VTs, Load.getValue(2)); 1482 return DAG.getMergeValues({Load, ReadVL, Load.getValue(1)}, DL); 1483 } 1484 case Intrinsic::riscv_vleff_mask: { 1485 SDLoc DL(Op); 1486 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Other, MVT::Glue); 1487 SDValue Load = DAG.getNode(RISCVISD::VLEFF_MASK, DL, VTs, Op.getOperand(0), 1488 Op.getOperand(2), Op.getOperand(3), 1489 Op.getOperand(4), Op.getOperand(5)); 1490 VTs = DAG.getVTList(Op->getValueType(1), MVT::Other); 1491 SDValue ReadVL = DAG.getNode(RISCVISD::READ_VL, DL, VTs, Load.getValue(2)); 1492 return DAG.getMergeValues({Load, ReadVL, Load.getValue(1)}, DL); 1493 } 1494 } 1495 } 1496 1497 // Returns the opcode of the target-specific SDNode that implements the 32-bit 1498 // form of the given Opcode. 1499 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 1500 switch (Opcode) { 1501 default: 1502 llvm_unreachable("Unexpected opcode"); 1503 case ISD::SHL: 1504 return RISCVISD::SLLW; 1505 case ISD::SRA: 1506 return RISCVISD::SRAW; 1507 case ISD::SRL: 1508 return RISCVISD::SRLW; 1509 case ISD::SDIV: 1510 return RISCVISD::DIVW; 1511 case ISD::UDIV: 1512 return RISCVISD::DIVUW; 1513 case ISD::UREM: 1514 return RISCVISD::REMUW; 1515 case ISD::ROTL: 1516 return RISCVISD::ROLW; 1517 case ISD::ROTR: 1518 return RISCVISD::RORW; 1519 case RISCVISD::GREVI: 1520 return RISCVISD::GREVIW; 1521 case RISCVISD::GORCI: 1522 return RISCVISD::GORCIW; 1523 } 1524 } 1525 1526 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 1527 // Because i32 isn't a legal type for RV64, these operations would otherwise 1528 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 1529 // later one because the fact the operation was originally of type i32 is 1530 // lost. 1531 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 1532 unsigned ExtOpc = ISD::ANY_EXTEND) { 1533 SDLoc DL(N); 1534 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1535 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 1536 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 1537 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 1538 // ReplaceNodeResults requires we maintain the same type for the return value. 1539 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 1540 } 1541 1542 // Converts the given 32-bit operation to a i64 operation with signed extension 1543 // semantic to reduce the signed extension instructions. 1544 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 1545 SDLoc DL(N); 1546 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1547 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1548 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 1549 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 1550 DAG.getValueType(MVT::i32)); 1551 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 1552 } 1553 1554 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 1555 SmallVectorImpl<SDValue> &Results, 1556 SelectionDAG &DAG) const { 1557 SDLoc DL(N); 1558 switch (N->getOpcode()) { 1559 default: 1560 llvm_unreachable("Don't know how to custom type legalize this operation!"); 1561 case ISD::STRICT_FP_TO_SINT: 1562 case ISD::STRICT_FP_TO_UINT: 1563 case ISD::FP_TO_SINT: 1564 case ISD::FP_TO_UINT: { 1565 bool IsStrict = N->isStrictFPOpcode(); 1566 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1567 "Unexpected custom legalisation"); 1568 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 1569 // If the FP type needs to be softened, emit a library call using the 'si' 1570 // version. If we left it to default legalization we'd end up with 'di'. If 1571 // the FP type doesn't need to be softened just let generic type 1572 // legalization promote the result type. 1573 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 1574 TargetLowering::TypeSoftenFloat) 1575 return; 1576 RTLIB::Libcall LC; 1577 if (N->getOpcode() == ISD::FP_TO_SINT || 1578 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 1579 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 1580 else 1581 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 1582 MakeLibCallOptions CallOptions; 1583 EVT OpVT = Op0.getValueType(); 1584 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 1585 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 1586 SDValue Result; 1587 std::tie(Result, Chain) = 1588 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 1589 Results.push_back(Result); 1590 if (IsStrict) 1591 Results.push_back(Chain); 1592 break; 1593 } 1594 case ISD::READCYCLECOUNTER: { 1595 assert(!Subtarget.is64Bit() && 1596 "READCYCLECOUNTER only has custom type legalization on riscv32"); 1597 1598 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 1599 SDValue RCW = 1600 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 1601 1602 Results.push_back( 1603 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 1604 Results.push_back(RCW.getValue(2)); 1605 break; 1606 } 1607 case ISD::ADD: 1608 case ISD::SUB: 1609 case ISD::MUL: 1610 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1611 "Unexpected custom legalisation"); 1612 if (N->getOperand(1).getOpcode() == ISD::Constant) 1613 return; 1614 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 1615 break; 1616 case ISD::SHL: 1617 case ISD::SRA: 1618 case ISD::SRL: 1619 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1620 "Unexpected custom legalisation"); 1621 if (N->getOperand(1).getOpcode() == ISD::Constant) 1622 return; 1623 Results.push_back(customLegalizeToWOp(N, DAG)); 1624 break; 1625 case ISD::ROTL: 1626 case ISD::ROTR: 1627 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1628 "Unexpected custom legalisation"); 1629 Results.push_back(customLegalizeToWOp(N, DAG)); 1630 break; 1631 case ISD::SDIV: 1632 case ISD::UDIV: 1633 case ISD::UREM: { 1634 MVT VT = N->getSimpleValueType(0); 1635 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 1636 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 1637 "Unexpected custom legalisation"); 1638 if (N->getOperand(0).getOpcode() == ISD::Constant || 1639 N->getOperand(1).getOpcode() == ISD::Constant) 1640 return; 1641 1642 // If the input is i32, use ANY_EXTEND since the W instructions don't read 1643 // the upper 32 bits. For other types we need to sign or zero extend 1644 // based on the opcode. 1645 unsigned ExtOpc = ISD::ANY_EXTEND; 1646 if (VT != MVT::i32) 1647 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 1648 : ISD::ZERO_EXTEND; 1649 1650 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 1651 break; 1652 } 1653 case ISD::BITCAST: { 1654 assert(((N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1655 Subtarget.hasStdExtF()) || 1656 (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh())) && 1657 "Unexpected custom legalisation"); 1658 SDValue Op0 = N->getOperand(0); 1659 if (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh()) { 1660 if (Op0.getValueType() != MVT::f16) 1661 return; 1662 SDValue FPConv = 1663 DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Op0); 1664 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 1665 } else if (N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1666 Subtarget.hasStdExtF()) { 1667 if (Op0.getValueType() != MVT::f32) 1668 return; 1669 SDValue FPConv = 1670 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 1671 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 1672 } 1673 break; 1674 } 1675 case RISCVISD::GREVI: 1676 case RISCVISD::GORCI: { 1677 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1678 "Unexpected custom legalisation"); 1679 // This is similar to customLegalizeToWOp, except that we pass the second 1680 // operand (a TargetConstant) straight through: it is already of type 1681 // XLenVT. 1682 SDLoc DL(N); 1683 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1684 SDValue NewOp0 = 1685 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1686 SDValue NewRes = 1687 DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1)); 1688 // ReplaceNodeResults requires we maintain the same type for the return 1689 // value. 1690 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 1691 break; 1692 } 1693 case ISD::BSWAP: 1694 case ISD::BITREVERSE: { 1695 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1696 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1697 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 1698 N->getOperand(0)); 1699 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 1700 SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0, 1701 DAG.getTargetConstant(Imm, DL, 1702 Subtarget.getXLenVT())); 1703 // ReplaceNodeResults requires we maintain the same type for the return 1704 // value. 1705 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 1706 break; 1707 } 1708 case ISD::FSHL: 1709 case ISD::FSHR: { 1710 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1711 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 1712 SDValue NewOp0 = 1713 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1714 SDValue NewOp1 = 1715 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1716 SDValue NewOp2 = 1717 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 1718 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 1719 // Mask the shift amount to 5 bits. 1720 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 1721 DAG.getConstant(0x1f, DL, MVT::i64)); 1722 unsigned Opc = 1723 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 1724 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 1725 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 1726 break; 1727 } 1728 case ISD::EXTRACT_VECTOR_ELT: { 1729 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 1730 // type is illegal (currently only vXi64 RV32). 1731 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 1732 // transferred to the destination register. We issue two of these from the 1733 // upper- and lower- halves of the SEW-bit vector element, slid down to the 1734 // first element. 1735 SDLoc DL(N); 1736 SDValue Vec = N->getOperand(0); 1737 SDValue Idx = N->getOperand(1); 1738 EVT VecVT = Vec.getValueType(); 1739 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 1740 VecVT.getVectorElementType() == MVT::i64 && 1741 "Unexpected EXTRACT_VECTOR_ELT legalization"); 1742 1743 SDValue Slidedown = Vec; 1744 // Unless the index is known to be 0, we must slide the vector down to get 1745 // the desired element into index 0. 1746 if (!isNullConstant(Idx)) 1747 Slidedown = DAG.getNode(RISCVISD::VSLIDEDOWN, DL, VecVT, 1748 DAG.getUNDEF(VecVT), Vec, Idx); 1749 1750 MVT XLenVT = Subtarget.getXLenVT(); 1751 // Extract the lower XLEN bits of the correct vector element. 1752 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Slidedown, Idx); 1753 1754 // To extract the upper XLEN bits of the vector element, shift the first 1755 // element right by 32 bits and re-extract the lower XLEN bits. 1756 SDValue ThirtyTwoV = 1757 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 1758 DAG.getConstant(32, DL, Subtarget.getXLenVT())); 1759 SDValue LShr32 = DAG.getNode(ISD::SRL, DL, VecVT, Slidedown, ThirtyTwoV); 1760 1761 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32, Idx); 1762 1763 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 1764 break; 1765 } 1766 case ISD::INTRINSIC_WO_CHAIN: { 1767 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 1768 switch (IntNo) { 1769 default: 1770 llvm_unreachable( 1771 "Don't know how to custom type legalize this intrinsic!"); 1772 case Intrinsic::riscv_vmv_x_s: { 1773 EVT VT = N->getValueType(0); 1774 assert((VT == MVT::i8 || VT == MVT::i16 || 1775 (Subtarget.is64Bit() && VT == MVT::i32)) && 1776 "Unexpected custom legalisation!"); 1777 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 1778 Subtarget.getXLenVT(), N->getOperand(1)); 1779 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 1780 break; 1781 } 1782 } 1783 break; 1784 } 1785 } 1786 } 1787 1788 // A structure to hold one of the bit-manipulation patterns below. Together, a 1789 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 1790 // (or (and (shl x, 1), 0xAAAAAAAA), 1791 // (and (srl x, 1), 0x55555555)) 1792 struct RISCVBitmanipPat { 1793 SDValue Op; 1794 unsigned ShAmt; 1795 bool IsSHL; 1796 1797 bool formsPairWith(const RISCVBitmanipPat &Other) const { 1798 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 1799 } 1800 }; 1801 1802 // Matches any of the following bit-manipulation patterns: 1803 // (and (shl x, 1), (0x55555555 << 1)) 1804 // (and (srl x, 1), 0x55555555) 1805 // (shl (and x, 0x55555555), 1) 1806 // (srl (and x, (0x55555555 << 1)), 1) 1807 // where the shift amount and mask may vary thus: 1808 // [1] = 0x55555555 / 0xAAAAAAAA 1809 // [2] = 0x33333333 / 0xCCCCCCCC 1810 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 1811 // [8] = 0x00FF00FF / 0xFF00FF00 1812 // [16] = 0x0000FFFF / 0xFFFFFFFF 1813 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 1814 static Optional<RISCVBitmanipPat> matchRISCVBitmanipPat(SDValue Op) { 1815 Optional<uint64_t> Mask; 1816 // Optionally consume a mask around the shift operation. 1817 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 1818 Mask = Op.getConstantOperandVal(1); 1819 Op = Op.getOperand(0); 1820 } 1821 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 1822 return None; 1823 bool IsSHL = Op.getOpcode() == ISD::SHL; 1824 1825 if (!isa<ConstantSDNode>(Op.getOperand(1))) 1826 return None; 1827 auto ShAmt = Op.getConstantOperandVal(1); 1828 1829 if (!isPowerOf2_64(ShAmt)) 1830 return None; 1831 1832 // These are the unshifted masks which we use to match bit-manipulation 1833 // patterns. They may be shifted left in certain circumstances. 1834 static const uint64_t BitmanipMasks[] = { 1835 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 1836 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL, 1837 }; 1838 1839 unsigned MaskIdx = Log2_64(ShAmt); 1840 if (MaskIdx >= array_lengthof(BitmanipMasks)) 1841 return None; 1842 1843 auto Src = Op.getOperand(0); 1844 1845 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 1846 auto ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 1847 1848 // The expected mask is shifted left when the AND is found around SHL 1849 // patterns. 1850 // ((x >> 1) & 0x55555555) 1851 // ((x << 1) & 0xAAAAAAAA) 1852 bool SHLExpMask = IsSHL; 1853 1854 if (!Mask) { 1855 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 1856 // the mask is all ones: consume that now. 1857 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 1858 Mask = Src.getConstantOperandVal(1); 1859 Src = Src.getOperand(0); 1860 // The expected mask is now in fact shifted left for SRL, so reverse the 1861 // decision. 1862 // ((x & 0xAAAAAAAA) >> 1) 1863 // ((x & 0x55555555) << 1) 1864 SHLExpMask = !SHLExpMask; 1865 } else { 1866 // Use a default shifted mask of all-ones if there's no AND, truncated 1867 // down to the expected width. This simplifies the logic later on. 1868 Mask = maskTrailingOnes<uint64_t>(Width); 1869 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 1870 } 1871 } 1872 1873 if (SHLExpMask) 1874 ExpMask <<= ShAmt; 1875 1876 if (Mask != ExpMask) 1877 return None; 1878 1879 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 1880 } 1881 1882 // Match the following pattern as a GREVI(W) operation 1883 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 1884 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 1885 const RISCVSubtarget &Subtarget) { 1886 EVT VT = Op.getValueType(); 1887 1888 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 1889 auto LHS = matchRISCVBitmanipPat(Op.getOperand(0)); 1890 auto RHS = matchRISCVBitmanipPat(Op.getOperand(1)); 1891 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 1892 SDLoc DL(Op); 1893 return DAG.getNode( 1894 RISCVISD::GREVI, DL, VT, LHS->Op, 1895 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1896 } 1897 } 1898 return SDValue(); 1899 } 1900 1901 // Matches any the following pattern as a GORCI(W) operation 1902 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 1903 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 1904 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 1905 // Note that with the variant of 3., 1906 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 1907 // the inner pattern will first be matched as GREVI and then the outer 1908 // pattern will be matched to GORC via the first rule above. 1909 // 4. (or (rotl/rotr x, bitwidth/2), x) 1910 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 1911 const RISCVSubtarget &Subtarget) { 1912 EVT VT = Op.getValueType(); 1913 1914 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 1915 SDLoc DL(Op); 1916 SDValue Op0 = Op.getOperand(0); 1917 SDValue Op1 = Op.getOperand(1); 1918 1919 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 1920 if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X && 1921 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 1922 return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1)); 1923 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 1924 if ((Reverse.getOpcode() == ISD::ROTL || 1925 Reverse.getOpcode() == ISD::ROTR) && 1926 Reverse.getOperand(0) == X && 1927 isa<ConstantSDNode>(Reverse.getOperand(1))) { 1928 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 1929 if (RotAmt == (VT.getSizeInBits() / 2)) 1930 return DAG.getNode( 1931 RISCVISD::GORCI, DL, VT, X, 1932 DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT())); 1933 } 1934 return SDValue(); 1935 }; 1936 1937 // Check for either commutable permutation of (or (GREVI x, shamt), x) 1938 if (SDValue V = MatchOROfReverse(Op0, Op1)) 1939 return V; 1940 if (SDValue V = MatchOROfReverse(Op1, Op0)) 1941 return V; 1942 1943 // OR is commutable so canonicalize its OR operand to the left 1944 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 1945 std::swap(Op0, Op1); 1946 if (Op0.getOpcode() != ISD::OR) 1947 return SDValue(); 1948 SDValue OrOp0 = Op0.getOperand(0); 1949 SDValue OrOp1 = Op0.getOperand(1); 1950 auto LHS = matchRISCVBitmanipPat(OrOp0); 1951 // OR is commutable so swap the operands and try again: x might have been 1952 // on the left 1953 if (!LHS) { 1954 std::swap(OrOp0, OrOp1); 1955 LHS = matchRISCVBitmanipPat(OrOp0); 1956 } 1957 auto RHS = matchRISCVBitmanipPat(Op1); 1958 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 1959 return DAG.getNode( 1960 RISCVISD::GORCI, DL, VT, LHS->Op, 1961 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1962 } 1963 } 1964 return SDValue(); 1965 } 1966 1967 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 1968 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 1969 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 1970 // not undo itself, but they are redundant. 1971 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 1972 unsigned ShAmt1 = N->getConstantOperandVal(1); 1973 SDValue Src = N->getOperand(0); 1974 1975 if (Src.getOpcode() != N->getOpcode()) 1976 return SDValue(); 1977 1978 unsigned ShAmt2 = Src.getConstantOperandVal(1); 1979 Src = Src.getOperand(0); 1980 1981 unsigned CombinedShAmt; 1982 if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW) 1983 CombinedShAmt = ShAmt1 | ShAmt2; 1984 else 1985 CombinedShAmt = ShAmt1 ^ ShAmt2; 1986 1987 if (CombinedShAmt == 0) 1988 return Src; 1989 1990 SDLoc DL(N); 1991 return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src, 1992 DAG.getTargetConstant(CombinedShAmt, DL, 1993 N->getOperand(1).getValueType())); 1994 } 1995 1996 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 1997 DAGCombinerInfo &DCI) const { 1998 SelectionDAG &DAG = DCI.DAG; 1999 2000 switch (N->getOpcode()) { 2001 default: 2002 break; 2003 case RISCVISD::SplitF64: { 2004 SDValue Op0 = N->getOperand(0); 2005 // If the input to SplitF64 is just BuildPairF64 then the operation is 2006 // redundant. Instead, use BuildPairF64's operands directly. 2007 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 2008 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 2009 2010 SDLoc DL(N); 2011 2012 // It's cheaper to materialise two 32-bit integers than to load a double 2013 // from the constant pool and transfer it to integer registers through the 2014 // stack. 2015 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 2016 APInt V = C->getValueAPF().bitcastToAPInt(); 2017 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 2018 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 2019 return DCI.CombineTo(N, Lo, Hi); 2020 } 2021 2022 // This is a target-specific version of a DAGCombine performed in 2023 // DAGCombiner::visitBITCAST. It performs the equivalent of: 2024 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 2025 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 2026 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 2027 !Op0.getNode()->hasOneUse()) 2028 break; 2029 SDValue NewSplitF64 = 2030 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 2031 Op0.getOperand(0)); 2032 SDValue Lo = NewSplitF64.getValue(0); 2033 SDValue Hi = NewSplitF64.getValue(1); 2034 APInt SignBit = APInt::getSignMask(32); 2035 if (Op0.getOpcode() == ISD::FNEG) { 2036 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 2037 DAG.getConstant(SignBit, DL, MVT::i32)); 2038 return DCI.CombineTo(N, Lo, NewHi); 2039 } 2040 assert(Op0.getOpcode() == ISD::FABS); 2041 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 2042 DAG.getConstant(~SignBit, DL, MVT::i32)); 2043 return DCI.CombineTo(N, Lo, NewHi); 2044 } 2045 case RISCVISD::SLLW: 2046 case RISCVISD::SRAW: 2047 case RISCVISD::SRLW: 2048 case RISCVISD::ROLW: 2049 case RISCVISD::RORW: { 2050 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 2051 SDValue LHS = N->getOperand(0); 2052 SDValue RHS = N->getOperand(1); 2053 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 2054 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 2055 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 2056 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 2057 if (N->getOpcode() != ISD::DELETED_NODE) 2058 DCI.AddToWorklist(N); 2059 return SDValue(N, 0); 2060 } 2061 break; 2062 } 2063 case RISCVISD::FSLW: 2064 case RISCVISD::FSRW: { 2065 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 2066 // read. 2067 SDValue Op0 = N->getOperand(0); 2068 SDValue Op1 = N->getOperand(1); 2069 SDValue ShAmt = N->getOperand(2); 2070 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 2071 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 2072 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 2073 SimplifyDemandedBits(Op1, OpMask, DCI) || 2074 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 2075 if (N->getOpcode() != ISD::DELETED_NODE) 2076 DCI.AddToWorklist(N); 2077 return SDValue(N, 0); 2078 } 2079 break; 2080 } 2081 case RISCVISD::GREVIW: 2082 case RISCVISD::GORCIW: { 2083 // Only the lower 32 bits of the first operand are read 2084 SDValue Op0 = N->getOperand(0); 2085 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 2086 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 2087 if (N->getOpcode() != ISD::DELETED_NODE) 2088 DCI.AddToWorklist(N); 2089 return SDValue(N, 0); 2090 } 2091 2092 return combineGREVI_GORCI(N, DCI.DAG); 2093 } 2094 case RISCVISD::FMV_X_ANYEXTW_RV64: { 2095 SDLoc DL(N); 2096 SDValue Op0 = N->getOperand(0); 2097 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 2098 // conversion is unnecessary and can be replaced with an ANY_EXTEND 2099 // of the FMV_W_X_RV64 operand. 2100 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 2101 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 2102 "Unexpected value type!"); 2103 return Op0.getOperand(0); 2104 } 2105 2106 // This is a target-specific version of a DAGCombine performed in 2107 // DAGCombiner::visitBITCAST. It performs the equivalent of: 2108 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 2109 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 2110 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 2111 !Op0.getNode()->hasOneUse()) 2112 break; 2113 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 2114 Op0.getOperand(0)); 2115 APInt SignBit = APInt::getSignMask(32).sext(64); 2116 if (Op0.getOpcode() == ISD::FNEG) 2117 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 2118 DAG.getConstant(SignBit, DL, MVT::i64)); 2119 2120 assert(Op0.getOpcode() == ISD::FABS); 2121 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 2122 DAG.getConstant(~SignBit, DL, MVT::i64)); 2123 } 2124 case RISCVISD::GREVI: 2125 case RISCVISD::GORCI: 2126 return combineGREVI_GORCI(N, DCI.DAG); 2127 case ISD::OR: 2128 if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget)) 2129 return GREV; 2130 if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget)) 2131 return GORC; 2132 break; 2133 case RISCVISD::SELECT_CC: { 2134 // Transform 2135 // (select_cc (xor X, 1), 0, setne, trueV, falseV) -> 2136 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 2137 // This can occur when legalizing some floating point comparisons. 2138 SDValue LHS = N->getOperand(0); 2139 SDValue RHS = N->getOperand(1); 2140 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 2141 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 2142 if (ISD::isIntEqualitySetCC(CCVal) && isNullConstant(RHS) && 2143 LHS.getOpcode() == ISD::XOR && isOneConstant(LHS.getOperand(1)) && 2144 DAG.MaskedValueIsZero(LHS.getOperand(0), Mask)) { 2145 SDLoc DL(N); 2146 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 2147 SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT()); 2148 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 2149 {LHS.getOperand(0), RHS, TargetCC, N->getOperand(3), 2150 N->getOperand(4)}); 2151 } 2152 break; 2153 } 2154 case ISD::SETCC: { 2155 // (setcc X, 1, setne) -> (setcc X, 0, seteq) if we can prove X is 0/1. 2156 // Comparing with 0 may allow us to fold into bnez/beqz. 2157 SDValue LHS = N->getOperand(0); 2158 SDValue RHS = N->getOperand(1); 2159 if (LHS.getValueType().isScalableVector()) 2160 break; 2161 auto CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 2162 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 2163 if (isOneConstant(RHS) && ISD::isIntEqualitySetCC(CC) && 2164 DAG.MaskedValueIsZero(LHS, Mask)) { 2165 SDLoc DL(N); 2166 SDValue Zero = DAG.getConstant(0, DL, LHS.getValueType()); 2167 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 2168 return DAG.getSetCC(DL, N->getValueType(0), LHS, Zero, CC); 2169 } 2170 break; 2171 } 2172 } 2173 2174 return SDValue(); 2175 } 2176 2177 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 2178 const SDNode *N, CombineLevel Level) const { 2179 // The following folds are only desirable if `(OP _, c1 << c2)` can be 2180 // materialised in fewer instructions than `(OP _, c1)`: 2181 // 2182 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 2183 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 2184 SDValue N0 = N->getOperand(0); 2185 EVT Ty = N0.getValueType(); 2186 if (Ty.isScalarInteger() && 2187 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 2188 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 2189 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2190 if (C1 && C2) { 2191 const APInt &C1Int = C1->getAPIntValue(); 2192 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 2193 2194 // We can materialise `c1 << c2` into an add immediate, so it's "free", 2195 // and the combine should happen, to potentially allow further combines 2196 // later. 2197 if (ShiftedC1Int.getMinSignedBits() <= 64 && 2198 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 2199 return true; 2200 2201 // We can materialise `c1` in an add immediate, so it's "free", and the 2202 // combine should be prevented. 2203 if (C1Int.getMinSignedBits() <= 64 && 2204 isLegalAddImmediate(C1Int.getSExtValue())) 2205 return false; 2206 2207 // Neither constant will fit into an immediate, so find materialisation 2208 // costs. 2209 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 2210 Subtarget.is64Bit()); 2211 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 2212 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 2213 2214 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 2215 // combine should be prevented. 2216 if (C1Cost < ShiftedC1Cost) 2217 return false; 2218 } 2219 } 2220 return true; 2221 } 2222 2223 bool RISCVTargetLowering::targetShrinkDemandedConstant( 2224 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2225 TargetLoweringOpt &TLO) const { 2226 // Delay this optimization as late as possible. 2227 if (!TLO.LegalOps) 2228 return false; 2229 2230 EVT VT = Op.getValueType(); 2231 if (VT.isVector()) 2232 return false; 2233 2234 // Only handle AND for now. 2235 if (Op.getOpcode() != ISD::AND) 2236 return false; 2237 2238 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2239 if (!C) 2240 return false; 2241 2242 const APInt &Mask = C->getAPIntValue(); 2243 2244 // Clear all non-demanded bits initially. 2245 APInt ShrunkMask = Mask & DemandedBits; 2246 2247 // If the shrunk mask fits in sign extended 12 bits, let the target 2248 // independent code apply it. 2249 if (ShrunkMask.isSignedIntN(12)) 2250 return false; 2251 2252 // Try to make a smaller immediate by setting undemanded bits. 2253 2254 // We need to be able to make a negative number through a combination of mask 2255 // and undemanded bits. 2256 APInt ExpandedMask = Mask | ~DemandedBits; 2257 if (!ExpandedMask.isNegative()) 2258 return false; 2259 2260 // What is the fewest number of bits we need to represent the negative number. 2261 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 2262 2263 // Try to make a 12 bit negative immediate. If that fails try to make a 32 2264 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 2265 APInt NewMask = ShrunkMask; 2266 if (MinSignedBits <= 12) 2267 NewMask.setBitsFrom(11); 2268 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 2269 NewMask.setBitsFrom(31); 2270 else 2271 return false; 2272 2273 // Sanity check that our new mask is a subset of the demanded mask. 2274 assert(NewMask.isSubsetOf(ExpandedMask)); 2275 2276 // If we aren't changing the mask, just return true to keep it and prevent 2277 // the caller from optimizing. 2278 if (NewMask == Mask) 2279 return true; 2280 2281 // Replace the constant with the new mask. 2282 SDLoc DL(Op); 2283 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 2284 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 2285 return TLO.CombineTo(Op, NewOp); 2286 } 2287 2288 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2289 KnownBits &Known, 2290 const APInt &DemandedElts, 2291 const SelectionDAG &DAG, 2292 unsigned Depth) const { 2293 unsigned BitWidth = Known.getBitWidth(); 2294 unsigned Opc = Op.getOpcode(); 2295 assert((Opc >= ISD::BUILTIN_OP_END || 2296 Opc == ISD::INTRINSIC_WO_CHAIN || 2297 Opc == ISD::INTRINSIC_W_CHAIN || 2298 Opc == ISD::INTRINSIC_VOID) && 2299 "Should use MaskedValueIsZero if you don't know whether Op" 2300 " is a target node!"); 2301 2302 Known.resetAll(); 2303 switch (Opc) { 2304 default: break; 2305 case RISCVISD::REMUW: { 2306 KnownBits Known2; 2307 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2308 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2309 // We only care about the lower 32 bits. 2310 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 2311 // Restore the original width by sign extending. 2312 Known = Known.sext(BitWidth); 2313 break; 2314 } 2315 case RISCVISD::DIVUW: { 2316 KnownBits Known2; 2317 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2318 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2319 // We only care about the lower 32 bits. 2320 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 2321 // Restore the original width by sign extending. 2322 Known = Known.sext(BitWidth); 2323 break; 2324 } 2325 case RISCVISD::READ_VLENB: 2326 // We assume VLENB is at least 8 bytes. 2327 // FIXME: The 1.0 draft spec defines minimum VLEN as 128 bits. 2328 Known.Zero.setLowBits(3); 2329 break; 2330 } 2331 } 2332 2333 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 2334 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 2335 unsigned Depth) const { 2336 switch (Op.getOpcode()) { 2337 default: 2338 break; 2339 case RISCVISD::SLLW: 2340 case RISCVISD::SRAW: 2341 case RISCVISD::SRLW: 2342 case RISCVISD::DIVW: 2343 case RISCVISD::DIVUW: 2344 case RISCVISD::REMUW: 2345 case RISCVISD::ROLW: 2346 case RISCVISD::RORW: 2347 case RISCVISD::GREVIW: 2348 case RISCVISD::GORCIW: 2349 case RISCVISD::FSLW: 2350 case RISCVISD::FSRW: 2351 // TODO: As the result is sign-extended, this is conservatively correct. A 2352 // more precise answer could be calculated for SRAW depending on known 2353 // bits in the shift amount. 2354 return 33; 2355 case RISCVISD::VMV_X_S: 2356 // The number of sign bits of the scalar result is computed by obtaining the 2357 // element type of the input vector operand, subtracting its width from the 2358 // XLEN, and then adding one (sign bit within the element type). If the 2359 // element type is wider than XLen, the least-significant XLEN bits are 2360 // taken. 2361 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 2362 return 1; 2363 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 2364 } 2365 2366 return 1; 2367 } 2368 2369 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 2370 MachineBasicBlock *BB) { 2371 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 2372 2373 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 2374 // Should the count have wrapped while it was being read, we need to try 2375 // again. 2376 // ... 2377 // read: 2378 // rdcycleh x3 # load high word of cycle 2379 // rdcycle x2 # load low word of cycle 2380 // rdcycleh x4 # load high word of cycle 2381 // bne x3, x4, read # check if high word reads match, otherwise try again 2382 // ... 2383 2384 MachineFunction &MF = *BB->getParent(); 2385 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 2386 MachineFunction::iterator It = ++BB->getIterator(); 2387 2388 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 2389 MF.insert(It, LoopMBB); 2390 2391 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 2392 MF.insert(It, DoneMBB); 2393 2394 // Transfer the remainder of BB and its successor edges to DoneMBB. 2395 DoneMBB->splice(DoneMBB->begin(), BB, 2396 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 2397 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 2398 2399 BB->addSuccessor(LoopMBB); 2400 2401 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2402 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2403 Register LoReg = MI.getOperand(0).getReg(); 2404 Register HiReg = MI.getOperand(1).getReg(); 2405 DebugLoc DL = MI.getDebugLoc(); 2406 2407 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2408 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 2409 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 2410 .addReg(RISCV::X0); 2411 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 2412 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 2413 .addReg(RISCV::X0); 2414 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 2415 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 2416 .addReg(RISCV::X0); 2417 2418 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 2419 .addReg(HiReg) 2420 .addReg(ReadAgainReg) 2421 .addMBB(LoopMBB); 2422 2423 LoopMBB->addSuccessor(LoopMBB); 2424 LoopMBB->addSuccessor(DoneMBB); 2425 2426 MI.eraseFromParent(); 2427 2428 return DoneMBB; 2429 } 2430 2431 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 2432 MachineBasicBlock *BB) { 2433 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 2434 2435 MachineFunction &MF = *BB->getParent(); 2436 DebugLoc DL = MI.getDebugLoc(); 2437 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2438 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 2439 Register LoReg = MI.getOperand(0).getReg(); 2440 Register HiReg = MI.getOperand(1).getReg(); 2441 Register SrcReg = MI.getOperand(2).getReg(); 2442 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 2443 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 2444 2445 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 2446 RI); 2447 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 2448 MachineMemOperand *MMOLo = 2449 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 2450 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 2451 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 2452 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 2453 .addFrameIndex(FI) 2454 .addImm(0) 2455 .addMemOperand(MMOLo); 2456 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 2457 .addFrameIndex(FI) 2458 .addImm(4) 2459 .addMemOperand(MMOHi); 2460 MI.eraseFromParent(); // The pseudo instruction is gone now. 2461 return BB; 2462 } 2463 2464 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 2465 MachineBasicBlock *BB) { 2466 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 2467 "Unexpected instruction"); 2468 2469 MachineFunction &MF = *BB->getParent(); 2470 DebugLoc DL = MI.getDebugLoc(); 2471 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2472 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 2473 Register DstReg = MI.getOperand(0).getReg(); 2474 Register LoReg = MI.getOperand(1).getReg(); 2475 Register HiReg = MI.getOperand(2).getReg(); 2476 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 2477 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 2478 2479 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 2480 MachineMemOperand *MMOLo = 2481 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 2482 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 2483 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 2484 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 2485 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 2486 .addFrameIndex(FI) 2487 .addImm(0) 2488 .addMemOperand(MMOLo); 2489 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 2490 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 2491 .addFrameIndex(FI) 2492 .addImm(4) 2493 .addMemOperand(MMOHi); 2494 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 2495 MI.eraseFromParent(); // The pseudo instruction is gone now. 2496 return BB; 2497 } 2498 2499 static bool isSelectPseudo(MachineInstr &MI) { 2500 switch (MI.getOpcode()) { 2501 default: 2502 return false; 2503 case RISCV::Select_GPR_Using_CC_GPR: 2504 case RISCV::Select_FPR16_Using_CC_GPR: 2505 case RISCV::Select_FPR32_Using_CC_GPR: 2506 case RISCV::Select_FPR64_Using_CC_GPR: 2507 return true; 2508 } 2509 } 2510 2511 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 2512 MachineBasicBlock *BB) { 2513 // To "insert" Select_* instructions, we actually have to insert the triangle 2514 // control-flow pattern. The incoming instructions know the destination vreg 2515 // to set, the condition code register to branch on, the true/false values to 2516 // select between, and the condcode to use to select the appropriate branch. 2517 // 2518 // We produce the following control flow: 2519 // HeadMBB 2520 // | \ 2521 // | IfFalseMBB 2522 // | / 2523 // TailMBB 2524 // 2525 // When we find a sequence of selects we attempt to optimize their emission 2526 // by sharing the control flow. Currently we only handle cases where we have 2527 // multiple selects with the exact same condition (same LHS, RHS and CC). 2528 // The selects may be interleaved with other instructions if the other 2529 // instructions meet some requirements we deem safe: 2530 // - They are debug instructions. Otherwise, 2531 // - They do not have side-effects, do not access memory and their inputs do 2532 // not depend on the results of the select pseudo-instructions. 2533 // The TrueV/FalseV operands of the selects cannot depend on the result of 2534 // previous selects in the sequence. 2535 // These conditions could be further relaxed. See the X86 target for a 2536 // related approach and more information. 2537 Register LHS = MI.getOperand(1).getReg(); 2538 Register RHS = MI.getOperand(2).getReg(); 2539 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 2540 2541 SmallVector<MachineInstr *, 4> SelectDebugValues; 2542 SmallSet<Register, 4> SelectDests; 2543 SelectDests.insert(MI.getOperand(0).getReg()); 2544 2545 MachineInstr *LastSelectPseudo = &MI; 2546 2547 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 2548 SequenceMBBI != E; ++SequenceMBBI) { 2549 if (SequenceMBBI->isDebugInstr()) 2550 continue; 2551 else if (isSelectPseudo(*SequenceMBBI)) { 2552 if (SequenceMBBI->getOperand(1).getReg() != LHS || 2553 SequenceMBBI->getOperand(2).getReg() != RHS || 2554 SequenceMBBI->getOperand(3).getImm() != CC || 2555 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 2556 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 2557 break; 2558 LastSelectPseudo = &*SequenceMBBI; 2559 SequenceMBBI->collectDebugValues(SelectDebugValues); 2560 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 2561 } else { 2562 if (SequenceMBBI->hasUnmodeledSideEffects() || 2563 SequenceMBBI->mayLoadOrStore()) 2564 break; 2565 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 2566 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 2567 })) 2568 break; 2569 } 2570 } 2571 2572 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 2573 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 2574 DebugLoc DL = MI.getDebugLoc(); 2575 MachineFunction::iterator I = ++BB->getIterator(); 2576 2577 MachineBasicBlock *HeadMBB = BB; 2578 MachineFunction *F = BB->getParent(); 2579 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 2580 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 2581 2582 F->insert(I, IfFalseMBB); 2583 F->insert(I, TailMBB); 2584 2585 // Transfer debug instructions associated with the selects to TailMBB. 2586 for (MachineInstr *DebugInstr : SelectDebugValues) { 2587 TailMBB->push_back(DebugInstr->removeFromParent()); 2588 } 2589 2590 // Move all instructions after the sequence to TailMBB. 2591 TailMBB->splice(TailMBB->end(), HeadMBB, 2592 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 2593 // Update machine-CFG edges by transferring all successors of the current 2594 // block to the new block which will contain the Phi nodes for the selects. 2595 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 2596 // Set the successors for HeadMBB. 2597 HeadMBB->addSuccessor(IfFalseMBB); 2598 HeadMBB->addSuccessor(TailMBB); 2599 2600 // Insert appropriate branch. 2601 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 2602 2603 BuildMI(HeadMBB, DL, TII.get(Opcode)) 2604 .addReg(LHS) 2605 .addReg(RHS) 2606 .addMBB(TailMBB); 2607 2608 // IfFalseMBB just falls through to TailMBB. 2609 IfFalseMBB->addSuccessor(TailMBB); 2610 2611 // Create PHIs for all of the select pseudo-instructions. 2612 auto SelectMBBI = MI.getIterator(); 2613 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 2614 auto InsertionPoint = TailMBB->begin(); 2615 while (SelectMBBI != SelectEnd) { 2616 auto Next = std::next(SelectMBBI); 2617 if (isSelectPseudo(*SelectMBBI)) { 2618 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 2619 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 2620 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 2621 .addReg(SelectMBBI->getOperand(4).getReg()) 2622 .addMBB(HeadMBB) 2623 .addReg(SelectMBBI->getOperand(5).getReg()) 2624 .addMBB(IfFalseMBB); 2625 SelectMBBI->eraseFromParent(); 2626 } 2627 SelectMBBI = Next; 2628 } 2629 2630 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 2631 return TailMBB; 2632 } 2633 2634 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB, 2635 int VLIndex, unsigned SEWIndex, 2636 RISCVVLMUL VLMul, bool WritesElement0) { 2637 MachineFunction &MF = *BB->getParent(); 2638 DebugLoc DL = MI.getDebugLoc(); 2639 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2640 2641 unsigned SEW = MI.getOperand(SEWIndex).getImm(); 2642 assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW"); 2643 RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8)); 2644 2645 MachineRegisterInfo &MRI = MF.getRegInfo(); 2646 2647 // VL and VTYPE are alive here. 2648 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)); 2649 2650 if (VLIndex >= 0) { 2651 // Set VL (rs1 != X0). 2652 Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 2653 MIB.addReg(DestReg, RegState::Define | RegState::Dead) 2654 .addReg(MI.getOperand(VLIndex).getReg()); 2655 } else 2656 // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0). 2657 MIB.addReg(RISCV::X0, RegState::Define | RegState::Dead) 2658 .addReg(RISCV::X0, RegState::Kill); 2659 2660 // Default to tail agnostic unless the destination is tied to a source. In 2661 // that case the user would have some control over the tail values. The tail 2662 // policy is also ignored on instructions that only update element 0 like 2663 // vmv.s.x or reductions so use agnostic there to match the common case. 2664 // FIXME: This is conservatively correct, but we might want to detect that 2665 // the input is undefined. 2666 bool TailAgnostic = true; 2667 unsigned UseOpIdx; 2668 if (MI.isRegTiedToUseOperand(0, &UseOpIdx) && !WritesElement0) { 2669 TailAgnostic = false; 2670 // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic. 2671 const MachineOperand &UseMO = MI.getOperand(UseOpIdx); 2672 MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg()); 2673 if (UseMI && UseMI->isImplicitDef()) 2674 TailAgnostic = true; 2675 } 2676 2677 // For simplicity we reuse the vtype representation here. 2678 MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth, 2679 /*TailAgnostic*/ TailAgnostic, 2680 /*MaskAgnostic*/ false)); 2681 2682 // Remove (now) redundant operands from pseudo 2683 MI.getOperand(SEWIndex).setImm(-1); 2684 if (VLIndex >= 0) { 2685 MI.getOperand(VLIndex).setReg(RISCV::NoRegister); 2686 MI.getOperand(VLIndex).setIsKill(false); 2687 } 2688 2689 return BB; 2690 } 2691 2692 MachineBasicBlock * 2693 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 2694 MachineBasicBlock *BB) const { 2695 uint64_t TSFlags = MI.getDesc().TSFlags; 2696 2697 if (TSFlags & RISCVII::HasSEWOpMask) { 2698 unsigned NumOperands = MI.getNumExplicitOperands(); 2699 int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1; 2700 unsigned SEWIndex = NumOperands - 1; 2701 bool WritesElement0 = TSFlags & RISCVII::WritesElement0Mask; 2702 2703 RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >> 2704 RISCVII::VLMulShift); 2705 return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, WritesElement0); 2706 } 2707 2708 switch (MI.getOpcode()) { 2709 default: 2710 llvm_unreachable("Unexpected instr type to insert"); 2711 case RISCV::ReadCycleWide: 2712 assert(!Subtarget.is64Bit() && 2713 "ReadCycleWrite is only to be used on riscv32"); 2714 return emitReadCycleWidePseudo(MI, BB); 2715 case RISCV::Select_GPR_Using_CC_GPR: 2716 case RISCV::Select_FPR16_Using_CC_GPR: 2717 case RISCV::Select_FPR32_Using_CC_GPR: 2718 case RISCV::Select_FPR64_Using_CC_GPR: 2719 return emitSelectPseudo(MI, BB); 2720 case RISCV::BuildPairF64Pseudo: 2721 return emitBuildPairF64Pseudo(MI, BB); 2722 case RISCV::SplitF64Pseudo: 2723 return emitSplitF64Pseudo(MI, BB); 2724 } 2725 } 2726 2727 // Calling Convention Implementation. 2728 // The expectations for frontend ABI lowering vary from target to target. 2729 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 2730 // details, but this is a longer term goal. For now, we simply try to keep the 2731 // role of the frontend as simple and well-defined as possible. The rules can 2732 // be summarised as: 2733 // * Never split up large scalar arguments. We handle them here. 2734 // * If a hardfloat calling convention is being used, and the struct may be 2735 // passed in a pair of registers (fp+fp, int+fp), and both registers are 2736 // available, then pass as two separate arguments. If either the GPRs or FPRs 2737 // are exhausted, then pass according to the rule below. 2738 // * If a struct could never be passed in registers or directly in a stack 2739 // slot (as it is larger than 2*XLEN and the floating point rules don't 2740 // apply), then pass it using a pointer with the byval attribute. 2741 // * If a struct is less than 2*XLEN, then coerce to either a two-element 2742 // word-sized array or a 2*XLEN scalar (depending on alignment). 2743 // * The frontend can determine whether a struct is returned by reference or 2744 // not based on its size and fields. If it will be returned by reference, the 2745 // frontend must modify the prototype so a pointer with the sret annotation is 2746 // passed as the first argument. This is not necessary for large scalar 2747 // returns. 2748 // * Struct return values and varargs should be coerced to structs containing 2749 // register-size fields in the same situations they would be for fixed 2750 // arguments. 2751 2752 static const MCPhysReg ArgGPRs[] = { 2753 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 2754 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 2755 }; 2756 static const MCPhysReg ArgFPR16s[] = { 2757 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 2758 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 2759 }; 2760 static const MCPhysReg ArgFPR32s[] = { 2761 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 2762 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 2763 }; 2764 static const MCPhysReg ArgFPR64s[] = { 2765 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 2766 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 2767 }; 2768 // This is an interim calling convention and it may be changed in the future. 2769 static const MCPhysReg ArgVRs[] = { 2770 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 2771 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 2772 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 2773 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 2774 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 2775 RISCV::V20M2, RISCV::V22M2}; 2776 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 2777 RISCV::V20M4}; 2778 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 2779 2780 // Pass a 2*XLEN argument that has been split into two XLEN values through 2781 // registers or the stack as necessary. 2782 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 2783 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 2784 MVT ValVT2, MVT LocVT2, 2785 ISD::ArgFlagsTy ArgFlags2) { 2786 unsigned XLenInBytes = XLen / 8; 2787 if (Register Reg = State.AllocateReg(ArgGPRs)) { 2788 // At least one half can be passed via register. 2789 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 2790 VA1.getLocVT(), CCValAssign::Full)); 2791 } else { 2792 // Both halves must be passed on the stack, with proper alignment. 2793 Align StackAlign = 2794 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 2795 State.addLoc( 2796 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 2797 State.AllocateStack(XLenInBytes, StackAlign), 2798 VA1.getLocVT(), CCValAssign::Full)); 2799 State.addLoc(CCValAssign::getMem( 2800 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 2801 LocVT2, CCValAssign::Full)); 2802 return false; 2803 } 2804 2805 if (Register Reg = State.AllocateReg(ArgGPRs)) { 2806 // The second half can also be passed via register. 2807 State.addLoc( 2808 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 2809 } else { 2810 // The second half is passed via the stack, without additional alignment. 2811 State.addLoc(CCValAssign::getMem( 2812 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 2813 LocVT2, CCValAssign::Full)); 2814 } 2815 2816 return false; 2817 } 2818 2819 // Implements the RISC-V calling convention. Returns true upon failure. 2820 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 2821 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 2822 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 2823 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 2824 Optional<unsigned> FirstMaskArgument) { 2825 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 2826 assert(XLen == 32 || XLen == 64); 2827 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 2828 2829 // Any return value split in to more than two values can't be returned 2830 // directly. 2831 if (IsRet && ValNo > 1) 2832 return true; 2833 2834 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 2835 // variadic argument, or if no F16/F32 argument registers are available. 2836 bool UseGPRForF16_F32 = true; 2837 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 2838 // variadic argument, or if no F64 argument registers are available. 2839 bool UseGPRForF64 = true; 2840 2841 switch (ABI) { 2842 default: 2843 llvm_unreachable("Unexpected ABI"); 2844 case RISCVABI::ABI_ILP32: 2845 case RISCVABI::ABI_LP64: 2846 break; 2847 case RISCVABI::ABI_ILP32F: 2848 case RISCVABI::ABI_LP64F: 2849 UseGPRForF16_F32 = !IsFixed; 2850 break; 2851 case RISCVABI::ABI_ILP32D: 2852 case RISCVABI::ABI_LP64D: 2853 UseGPRForF16_F32 = !IsFixed; 2854 UseGPRForF64 = !IsFixed; 2855 break; 2856 } 2857 2858 // FPR16, FPR32, and FPR64 alias each other. 2859 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 2860 UseGPRForF16_F32 = true; 2861 UseGPRForF64 = true; 2862 } 2863 2864 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 2865 // similar local variables rather than directly checking against the target 2866 // ABI. 2867 2868 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 2869 LocVT = XLenVT; 2870 LocInfo = CCValAssign::BCvt; 2871 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 2872 LocVT = MVT::i64; 2873 LocInfo = CCValAssign::BCvt; 2874 } 2875 2876 // If this is a variadic argument, the RISC-V calling convention requires 2877 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 2878 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 2879 // be used regardless of whether the original argument was split during 2880 // legalisation or not. The argument will not be passed by registers if the 2881 // original type is larger than 2*XLEN, so the register alignment rule does 2882 // not apply. 2883 unsigned TwoXLenInBytes = (2 * XLen) / 8; 2884 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 2885 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 2886 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 2887 // Skip 'odd' register if necessary. 2888 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 2889 State.AllocateReg(ArgGPRs); 2890 } 2891 2892 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 2893 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 2894 State.getPendingArgFlags(); 2895 2896 assert(PendingLocs.size() == PendingArgFlags.size() && 2897 "PendingLocs and PendingArgFlags out of sync"); 2898 2899 // Handle passing f64 on RV32D with a soft float ABI or when floating point 2900 // registers are exhausted. 2901 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 2902 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 2903 "Can't lower f64 if it is split"); 2904 // Depending on available argument GPRS, f64 may be passed in a pair of 2905 // GPRs, split between a GPR and the stack, or passed completely on the 2906 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 2907 // cases. 2908 Register Reg = State.AllocateReg(ArgGPRs); 2909 LocVT = MVT::i32; 2910 if (!Reg) { 2911 unsigned StackOffset = State.AllocateStack(8, Align(8)); 2912 State.addLoc( 2913 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 2914 return false; 2915 } 2916 if (!State.AllocateReg(ArgGPRs)) 2917 State.AllocateStack(4, Align(4)); 2918 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2919 return false; 2920 } 2921 2922 // Split arguments might be passed indirectly, so keep track of the pending 2923 // values. 2924 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 2925 LocVT = XLenVT; 2926 LocInfo = CCValAssign::Indirect; 2927 PendingLocs.push_back( 2928 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 2929 PendingArgFlags.push_back(ArgFlags); 2930 if (!ArgFlags.isSplitEnd()) { 2931 return false; 2932 } 2933 } 2934 2935 // If the split argument only had two elements, it should be passed directly 2936 // in registers or on the stack. 2937 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 2938 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 2939 // Apply the normal calling convention rules to the first half of the 2940 // split argument. 2941 CCValAssign VA = PendingLocs[0]; 2942 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 2943 PendingLocs.clear(); 2944 PendingArgFlags.clear(); 2945 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 2946 ArgFlags); 2947 } 2948 2949 // Allocate to a register if possible, or else a stack slot. 2950 Register Reg; 2951 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 2952 Reg = State.AllocateReg(ArgFPR16s); 2953 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 2954 Reg = State.AllocateReg(ArgFPR32s); 2955 else if (ValVT == MVT::f64 && !UseGPRForF64) 2956 Reg = State.AllocateReg(ArgFPR64s); 2957 else if (ValVT.isScalableVector()) { 2958 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 2959 if (RC == &RISCV::VRRegClass) { 2960 // Assign the first mask argument to V0. 2961 // This is an interim calling convention and it may be changed in the 2962 // future. 2963 if (FirstMaskArgument.hasValue() && 2964 ValNo == FirstMaskArgument.getValue()) { 2965 Reg = State.AllocateReg(RISCV::V0); 2966 } else { 2967 Reg = State.AllocateReg(ArgVRs); 2968 } 2969 } else if (RC == &RISCV::VRM2RegClass) { 2970 Reg = State.AllocateReg(ArgVRM2s); 2971 } else if (RC == &RISCV::VRM4RegClass) { 2972 Reg = State.AllocateReg(ArgVRM4s); 2973 } else if (RC == &RISCV::VRM8RegClass) { 2974 Reg = State.AllocateReg(ArgVRM8s); 2975 } else { 2976 llvm_unreachable("Unhandled class register for ValueType"); 2977 } 2978 if (!Reg) { 2979 LocInfo = CCValAssign::Indirect; 2980 // Try using a GPR to pass the address 2981 Reg = State.AllocateReg(ArgGPRs); 2982 LocVT = XLenVT; 2983 } 2984 } else 2985 Reg = State.AllocateReg(ArgGPRs); 2986 unsigned StackOffset = 2987 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 2988 2989 // If we reach this point and PendingLocs is non-empty, we must be at the 2990 // end of a split argument that must be passed indirectly. 2991 if (!PendingLocs.empty()) { 2992 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 2993 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 2994 2995 for (auto &It : PendingLocs) { 2996 if (Reg) 2997 It.convertToReg(Reg); 2998 else 2999 It.convertToMem(StackOffset); 3000 State.addLoc(It); 3001 } 3002 PendingLocs.clear(); 3003 PendingArgFlags.clear(); 3004 return false; 3005 } 3006 3007 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 3008 (TLI.getSubtarget().hasStdExtV() && ValVT.isScalableVector())) && 3009 "Expected an XLenVT or scalable vector types at this stage"); 3010 3011 if (Reg) { 3012 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3013 return false; 3014 } 3015 3016 // When a floating-point value is passed on the stack, no bit-conversion is 3017 // needed. 3018 if (ValVT.isFloatingPoint()) { 3019 LocVT = ValVT; 3020 LocInfo = CCValAssign::Full; 3021 } 3022 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 3023 return false; 3024 } 3025 3026 template <typename ArgTy> 3027 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 3028 for (const auto &ArgIdx : enumerate(Args)) { 3029 MVT ArgVT = ArgIdx.value().VT; 3030 if (ArgVT.isScalableVector() && 3031 ArgVT.getVectorElementType().SimpleTy == MVT::i1) 3032 return ArgIdx.index(); 3033 } 3034 return None; 3035 } 3036 3037 void RISCVTargetLowering::analyzeInputArgs( 3038 MachineFunction &MF, CCState &CCInfo, 3039 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 3040 unsigned NumArgs = Ins.size(); 3041 FunctionType *FType = MF.getFunction().getFunctionType(); 3042 3043 Optional<unsigned> FirstMaskArgument; 3044 if (Subtarget.hasStdExtV()) 3045 FirstMaskArgument = preAssignMask(Ins); 3046 3047 for (unsigned i = 0; i != NumArgs; ++i) { 3048 MVT ArgVT = Ins[i].VT; 3049 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 3050 3051 Type *ArgTy = nullptr; 3052 if (IsRet) 3053 ArgTy = FType->getReturnType(); 3054 else if (Ins[i].isOrigArg()) 3055 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 3056 3057 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 3058 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 3059 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 3060 FirstMaskArgument)) { 3061 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 3062 << EVT(ArgVT).getEVTString() << '\n'); 3063 llvm_unreachable(nullptr); 3064 } 3065 } 3066 } 3067 3068 void RISCVTargetLowering::analyzeOutputArgs( 3069 MachineFunction &MF, CCState &CCInfo, 3070 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 3071 CallLoweringInfo *CLI) const { 3072 unsigned NumArgs = Outs.size(); 3073 3074 Optional<unsigned> FirstMaskArgument; 3075 if (Subtarget.hasStdExtV()) 3076 FirstMaskArgument = preAssignMask(Outs); 3077 3078 for (unsigned i = 0; i != NumArgs; i++) { 3079 MVT ArgVT = Outs[i].VT; 3080 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3081 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 3082 3083 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 3084 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 3085 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 3086 FirstMaskArgument)) { 3087 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 3088 << EVT(ArgVT).getEVTString() << "\n"); 3089 llvm_unreachable(nullptr); 3090 } 3091 } 3092 } 3093 3094 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 3095 // values. 3096 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 3097 const CCValAssign &VA, const SDLoc &DL) { 3098 switch (VA.getLocInfo()) { 3099 default: 3100 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 3101 case CCValAssign::Full: 3102 break; 3103 case CCValAssign::BCvt: 3104 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 3105 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 3106 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 3107 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 3108 else 3109 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 3110 break; 3111 } 3112 return Val; 3113 } 3114 3115 // The caller is responsible for loading the full value if the argument is 3116 // passed with CCValAssign::Indirect. 3117 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 3118 const CCValAssign &VA, const SDLoc &DL, 3119 const RISCVTargetLowering &TLI) { 3120 MachineFunction &MF = DAG.getMachineFunction(); 3121 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3122 EVT LocVT = VA.getLocVT(); 3123 SDValue Val; 3124 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 3125 Register VReg = RegInfo.createVirtualRegister(RC); 3126 RegInfo.addLiveIn(VA.getLocReg(), VReg); 3127 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 3128 3129 if (VA.getLocInfo() == CCValAssign::Indirect) 3130 return Val; 3131 3132 return convertLocVTToValVT(DAG, Val, VA, DL); 3133 } 3134 3135 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 3136 const CCValAssign &VA, const SDLoc &DL) { 3137 EVT LocVT = VA.getLocVT(); 3138 3139 switch (VA.getLocInfo()) { 3140 default: 3141 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 3142 case CCValAssign::Full: 3143 break; 3144 case CCValAssign::BCvt: 3145 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 3146 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 3147 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 3148 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 3149 else 3150 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 3151 break; 3152 } 3153 return Val; 3154 } 3155 3156 // The caller is responsible for loading the full value if the argument is 3157 // passed with CCValAssign::Indirect. 3158 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 3159 const CCValAssign &VA, const SDLoc &DL) { 3160 MachineFunction &MF = DAG.getMachineFunction(); 3161 MachineFrameInfo &MFI = MF.getFrameInfo(); 3162 EVT LocVT = VA.getLocVT(); 3163 EVT ValVT = VA.getValVT(); 3164 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 3165 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 3166 VA.getLocMemOffset(), /*Immutable=*/true); 3167 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3168 SDValue Val; 3169 3170 ISD::LoadExtType ExtType; 3171 switch (VA.getLocInfo()) { 3172 default: 3173 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 3174 case CCValAssign::Full: 3175 case CCValAssign::Indirect: 3176 case CCValAssign::BCvt: 3177 ExtType = ISD::NON_EXTLOAD; 3178 break; 3179 } 3180 Val = DAG.getExtLoad( 3181 ExtType, DL, LocVT, Chain, FIN, 3182 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 3183 return Val; 3184 } 3185 3186 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 3187 const CCValAssign &VA, const SDLoc &DL) { 3188 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 3189 "Unexpected VA"); 3190 MachineFunction &MF = DAG.getMachineFunction(); 3191 MachineFrameInfo &MFI = MF.getFrameInfo(); 3192 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3193 3194 if (VA.isMemLoc()) { 3195 // f64 is passed on the stack. 3196 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 3197 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 3198 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 3199 MachinePointerInfo::getFixedStack(MF, FI)); 3200 } 3201 3202 assert(VA.isRegLoc() && "Expected register VA assignment"); 3203 3204 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 3205 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 3206 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 3207 SDValue Hi; 3208 if (VA.getLocReg() == RISCV::X17) { 3209 // Second half of f64 is passed on the stack. 3210 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 3211 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 3212 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 3213 MachinePointerInfo::getFixedStack(MF, FI)); 3214 } else { 3215 // Second half of f64 is passed in another GPR. 3216 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 3217 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 3218 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 3219 } 3220 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 3221 } 3222 3223 // FastCC has less than 1% performance improvement for some particular 3224 // benchmark. But theoretically, it may has benenfit for some cases. 3225 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 3226 CCValAssign::LocInfo LocInfo, 3227 ISD::ArgFlagsTy ArgFlags, CCState &State) { 3228 3229 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 3230 // X5 and X6 might be used for save-restore libcall. 3231 static const MCPhysReg GPRList[] = { 3232 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 3233 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 3234 RISCV::X29, RISCV::X30, RISCV::X31}; 3235 if (unsigned Reg = State.AllocateReg(GPRList)) { 3236 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3237 return false; 3238 } 3239 } 3240 3241 if (LocVT == MVT::f16) { 3242 static const MCPhysReg FPR16List[] = { 3243 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 3244 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 3245 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 3246 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 3247 if (unsigned Reg = State.AllocateReg(FPR16List)) { 3248 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3249 return false; 3250 } 3251 } 3252 3253 if (LocVT == MVT::f32) { 3254 static const MCPhysReg FPR32List[] = { 3255 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 3256 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 3257 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 3258 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 3259 if (unsigned Reg = State.AllocateReg(FPR32List)) { 3260 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3261 return false; 3262 } 3263 } 3264 3265 if (LocVT == MVT::f64) { 3266 static const MCPhysReg FPR64List[] = { 3267 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 3268 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 3269 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 3270 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 3271 if (unsigned Reg = State.AllocateReg(FPR64List)) { 3272 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3273 return false; 3274 } 3275 } 3276 3277 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 3278 unsigned Offset4 = State.AllocateStack(4, Align(4)); 3279 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 3280 return false; 3281 } 3282 3283 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 3284 unsigned Offset5 = State.AllocateStack(8, Align(8)); 3285 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 3286 return false; 3287 } 3288 3289 return true; // CC didn't match. 3290 } 3291 3292 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 3293 CCValAssign::LocInfo LocInfo, 3294 ISD::ArgFlagsTy ArgFlags, CCState &State) { 3295 3296 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 3297 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 3298 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 3299 static const MCPhysReg GPRList[] = { 3300 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 3301 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 3302 if (unsigned Reg = State.AllocateReg(GPRList)) { 3303 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3304 return false; 3305 } 3306 } 3307 3308 if (LocVT == MVT::f32) { 3309 // Pass in STG registers: F1, ..., F6 3310 // fs0 ... fs5 3311 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 3312 RISCV::F18_F, RISCV::F19_F, 3313 RISCV::F20_F, RISCV::F21_F}; 3314 if (unsigned Reg = State.AllocateReg(FPR32List)) { 3315 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3316 return false; 3317 } 3318 } 3319 3320 if (LocVT == MVT::f64) { 3321 // Pass in STG registers: D1, ..., D6 3322 // fs6 ... fs11 3323 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 3324 RISCV::F24_D, RISCV::F25_D, 3325 RISCV::F26_D, RISCV::F27_D}; 3326 if (unsigned Reg = State.AllocateReg(FPR64List)) { 3327 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3328 return false; 3329 } 3330 } 3331 3332 report_fatal_error("No registers left in GHC calling convention"); 3333 return true; 3334 } 3335 3336 // Transform physical registers into virtual registers. 3337 SDValue RISCVTargetLowering::LowerFormalArguments( 3338 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 3339 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3340 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3341 3342 MachineFunction &MF = DAG.getMachineFunction(); 3343 3344 switch (CallConv) { 3345 default: 3346 report_fatal_error("Unsupported calling convention"); 3347 case CallingConv::C: 3348 case CallingConv::Fast: 3349 break; 3350 case CallingConv::GHC: 3351 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 3352 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 3353 report_fatal_error( 3354 "GHC calling convention requires the F and D instruction set extensions"); 3355 } 3356 3357 const Function &Func = MF.getFunction(); 3358 if (Func.hasFnAttribute("interrupt")) { 3359 if (!Func.arg_empty()) 3360 report_fatal_error( 3361 "Functions with the interrupt attribute cannot have arguments!"); 3362 3363 StringRef Kind = 3364 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 3365 3366 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 3367 report_fatal_error( 3368 "Function interrupt attribute argument not supported!"); 3369 } 3370 3371 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3372 MVT XLenVT = Subtarget.getXLenVT(); 3373 unsigned XLenInBytes = Subtarget.getXLen() / 8; 3374 // Used with vargs to acumulate store chains. 3375 std::vector<SDValue> OutChains; 3376 3377 // Assign locations to all of the incoming arguments. 3378 SmallVector<CCValAssign, 16> ArgLocs; 3379 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3380 3381 if (CallConv == CallingConv::Fast) 3382 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 3383 else if (CallConv == CallingConv::GHC) 3384 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 3385 else 3386 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 3387 3388 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3389 CCValAssign &VA = ArgLocs[i]; 3390 SDValue ArgValue; 3391 // Passing f64 on RV32D with a soft float ABI must be handled as a special 3392 // case. 3393 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 3394 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 3395 else if (VA.isRegLoc()) 3396 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 3397 else 3398 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 3399 3400 if (VA.getLocInfo() == CCValAssign::Indirect) { 3401 // If the original argument was split and passed by reference (e.g. i128 3402 // on RV32), we need to load all parts of it here (using the same 3403 // address). 3404 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 3405 MachinePointerInfo())); 3406 unsigned ArgIndex = Ins[i].OrigArgIndex; 3407 assert(Ins[i].PartOffset == 0); 3408 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 3409 CCValAssign &PartVA = ArgLocs[i + 1]; 3410 unsigned PartOffset = Ins[i + 1].PartOffset; 3411 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 3412 DAG.getIntPtrConstant(PartOffset, DL)); 3413 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 3414 MachinePointerInfo())); 3415 ++i; 3416 } 3417 continue; 3418 } 3419 InVals.push_back(ArgValue); 3420 } 3421 3422 if (IsVarArg) { 3423 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 3424 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 3425 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 3426 MachineFrameInfo &MFI = MF.getFrameInfo(); 3427 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3428 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 3429 3430 // Offset of the first variable argument from stack pointer, and size of 3431 // the vararg save area. For now, the varargs save area is either zero or 3432 // large enough to hold a0-a7. 3433 int VaArgOffset, VarArgsSaveSize; 3434 3435 // If all registers are allocated, then all varargs must be passed on the 3436 // stack and we don't need to save any argregs. 3437 if (ArgRegs.size() == Idx) { 3438 VaArgOffset = CCInfo.getNextStackOffset(); 3439 VarArgsSaveSize = 0; 3440 } else { 3441 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 3442 VaArgOffset = -VarArgsSaveSize; 3443 } 3444 3445 // Record the frame index of the first variable argument 3446 // which is a value necessary to VASTART. 3447 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 3448 RVFI->setVarArgsFrameIndex(FI); 3449 3450 // If saving an odd number of registers then create an extra stack slot to 3451 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 3452 // offsets to even-numbered registered remain 2*XLEN-aligned. 3453 if (Idx % 2) { 3454 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 3455 VarArgsSaveSize += XLenInBytes; 3456 } 3457 3458 // Copy the integer registers that may have been used for passing varargs 3459 // to the vararg save area. 3460 for (unsigned I = Idx; I < ArgRegs.size(); 3461 ++I, VaArgOffset += XLenInBytes) { 3462 const Register Reg = RegInfo.createVirtualRegister(RC); 3463 RegInfo.addLiveIn(ArgRegs[I], Reg); 3464 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 3465 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 3466 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3467 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 3468 MachinePointerInfo::getFixedStack(MF, FI)); 3469 cast<StoreSDNode>(Store.getNode()) 3470 ->getMemOperand() 3471 ->setValue((Value *)nullptr); 3472 OutChains.push_back(Store); 3473 } 3474 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 3475 } 3476 3477 // All stores are grouped in one node to allow the matching between 3478 // the size of Ins and InVals. This only happens for vararg functions. 3479 if (!OutChains.empty()) { 3480 OutChains.push_back(Chain); 3481 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 3482 } 3483 3484 return Chain; 3485 } 3486 3487 /// isEligibleForTailCallOptimization - Check whether the call is eligible 3488 /// for tail call optimization. 3489 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 3490 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 3491 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 3492 const SmallVector<CCValAssign, 16> &ArgLocs) const { 3493 3494 auto &Callee = CLI.Callee; 3495 auto CalleeCC = CLI.CallConv; 3496 auto &Outs = CLI.Outs; 3497 auto &Caller = MF.getFunction(); 3498 auto CallerCC = Caller.getCallingConv(); 3499 3500 // Exception-handling functions need a special set of instructions to 3501 // indicate a return to the hardware. Tail-calling another function would 3502 // probably break this. 3503 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 3504 // should be expanded as new function attributes are introduced. 3505 if (Caller.hasFnAttribute("interrupt")) 3506 return false; 3507 3508 // Do not tail call opt if the stack is used to pass parameters. 3509 if (CCInfo.getNextStackOffset() != 0) 3510 return false; 3511 3512 // Do not tail call opt if any parameters need to be passed indirectly. 3513 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 3514 // passed indirectly. So the address of the value will be passed in a 3515 // register, or if not available, then the address is put on the stack. In 3516 // order to pass indirectly, space on the stack often needs to be allocated 3517 // in order to store the value. In this case the CCInfo.getNextStackOffset() 3518 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 3519 // are passed CCValAssign::Indirect. 3520 for (auto &VA : ArgLocs) 3521 if (VA.getLocInfo() == CCValAssign::Indirect) 3522 return false; 3523 3524 // Do not tail call opt if either caller or callee uses struct return 3525 // semantics. 3526 auto IsCallerStructRet = Caller.hasStructRetAttr(); 3527 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 3528 if (IsCallerStructRet || IsCalleeStructRet) 3529 return false; 3530 3531 // Externally-defined functions with weak linkage should not be 3532 // tail-called. The behaviour of branch instructions in this situation (as 3533 // used for tail calls) is implementation-defined, so we cannot rely on the 3534 // linker replacing the tail call with a return. 3535 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 3536 const GlobalValue *GV = G->getGlobal(); 3537 if (GV->hasExternalWeakLinkage()) 3538 return false; 3539 } 3540 3541 // The callee has to preserve all registers the caller needs to preserve. 3542 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3543 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 3544 if (CalleeCC != CallerCC) { 3545 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 3546 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 3547 return false; 3548 } 3549 3550 // Byval parameters hand the function a pointer directly into the stack area 3551 // we want to reuse during a tail call. Working around this *is* possible 3552 // but less efficient and uglier in LowerCall. 3553 for (auto &Arg : Outs) 3554 if (Arg.Flags.isByVal()) 3555 return false; 3556 3557 return true; 3558 } 3559 3560 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 3561 // and output parameter nodes. 3562 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 3563 SmallVectorImpl<SDValue> &InVals) const { 3564 SelectionDAG &DAG = CLI.DAG; 3565 SDLoc &DL = CLI.DL; 3566 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 3567 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 3568 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 3569 SDValue Chain = CLI.Chain; 3570 SDValue Callee = CLI.Callee; 3571 bool &IsTailCall = CLI.IsTailCall; 3572 CallingConv::ID CallConv = CLI.CallConv; 3573 bool IsVarArg = CLI.IsVarArg; 3574 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3575 MVT XLenVT = Subtarget.getXLenVT(); 3576 3577 MachineFunction &MF = DAG.getMachineFunction(); 3578 3579 // Analyze the operands of the call, assigning locations to each operand. 3580 SmallVector<CCValAssign, 16> ArgLocs; 3581 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3582 3583 if (CallConv == CallingConv::Fast) 3584 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 3585 else if (CallConv == CallingConv::GHC) 3586 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 3587 else 3588 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 3589 3590 // Check if it's really possible to do a tail call. 3591 if (IsTailCall) 3592 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 3593 3594 if (IsTailCall) 3595 ++NumTailCalls; 3596 else if (CLI.CB && CLI.CB->isMustTailCall()) 3597 report_fatal_error("failed to perform tail call elimination on a call " 3598 "site marked musttail"); 3599 3600 // Get a count of how many bytes are to be pushed on the stack. 3601 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 3602 3603 // Create local copies for byval args 3604 SmallVector<SDValue, 8> ByValArgs; 3605 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 3606 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3607 if (!Flags.isByVal()) 3608 continue; 3609 3610 SDValue Arg = OutVals[i]; 3611 unsigned Size = Flags.getByValSize(); 3612 Align Alignment = Flags.getNonZeroByValAlign(); 3613 3614 int FI = 3615 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 3616 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3617 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 3618 3619 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 3620 /*IsVolatile=*/false, 3621 /*AlwaysInline=*/false, IsTailCall, 3622 MachinePointerInfo(), MachinePointerInfo()); 3623 ByValArgs.push_back(FIPtr); 3624 } 3625 3626 if (!IsTailCall) 3627 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 3628 3629 // Copy argument values to their designated locations. 3630 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 3631 SmallVector<SDValue, 8> MemOpChains; 3632 SDValue StackPtr; 3633 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 3634 CCValAssign &VA = ArgLocs[i]; 3635 SDValue ArgValue = OutVals[i]; 3636 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3637 3638 // Handle passing f64 on RV32D with a soft float ABI as a special case. 3639 bool IsF64OnRV32DSoftABI = 3640 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 3641 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 3642 SDValue SplitF64 = DAG.getNode( 3643 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 3644 SDValue Lo = SplitF64.getValue(0); 3645 SDValue Hi = SplitF64.getValue(1); 3646 3647 Register RegLo = VA.getLocReg(); 3648 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 3649 3650 if (RegLo == RISCV::X17) { 3651 // Second half of f64 is passed on the stack. 3652 // Work out the address of the stack slot. 3653 if (!StackPtr.getNode()) 3654 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 3655 // Emit the store. 3656 MemOpChains.push_back( 3657 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 3658 } else { 3659 // Second half of f64 is passed in another GPR. 3660 assert(RegLo < RISCV::X31 && "Invalid register pair"); 3661 Register RegHigh = RegLo + 1; 3662 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 3663 } 3664 continue; 3665 } 3666 3667 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 3668 // as any other MemLoc. 3669 3670 // Promote the value if needed. 3671 // For now, only handle fully promoted and indirect arguments. 3672 if (VA.getLocInfo() == CCValAssign::Indirect) { 3673 // Store the argument in a stack slot and pass its address. 3674 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 3675 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 3676 MemOpChains.push_back( 3677 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 3678 MachinePointerInfo::getFixedStack(MF, FI))); 3679 // If the original argument was split (e.g. i128), we need 3680 // to store all parts of it here (and pass just one address). 3681 unsigned ArgIndex = Outs[i].OrigArgIndex; 3682 assert(Outs[i].PartOffset == 0); 3683 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 3684 SDValue PartValue = OutVals[i + 1]; 3685 unsigned PartOffset = Outs[i + 1].PartOffset; 3686 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 3687 DAG.getIntPtrConstant(PartOffset, DL)); 3688 MemOpChains.push_back( 3689 DAG.getStore(Chain, DL, PartValue, Address, 3690 MachinePointerInfo::getFixedStack(MF, FI))); 3691 ++i; 3692 } 3693 ArgValue = SpillSlot; 3694 } else { 3695 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 3696 } 3697 3698 // Use local copy if it is a byval arg. 3699 if (Flags.isByVal()) 3700 ArgValue = ByValArgs[j++]; 3701 3702 if (VA.isRegLoc()) { 3703 // Queue up the argument copies and emit them at the end. 3704 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 3705 } else { 3706 assert(VA.isMemLoc() && "Argument not register or memory"); 3707 assert(!IsTailCall && "Tail call not allowed if stack is used " 3708 "for passing parameters"); 3709 3710 // Work out the address of the stack slot. 3711 if (!StackPtr.getNode()) 3712 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 3713 SDValue Address = 3714 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 3715 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 3716 3717 // Emit the store. 3718 MemOpChains.push_back( 3719 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 3720 } 3721 } 3722 3723 // Join the stores, which are independent of one another. 3724 if (!MemOpChains.empty()) 3725 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3726 3727 SDValue Glue; 3728 3729 // Build a sequence of copy-to-reg nodes, chained and glued together. 3730 for (auto &Reg : RegsToPass) { 3731 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 3732 Glue = Chain.getValue(1); 3733 } 3734 3735 // Validate that none of the argument registers have been marked as 3736 // reserved, if so report an error. Do the same for the return address if this 3737 // is not a tailcall. 3738 validateCCReservedRegs(RegsToPass, MF); 3739 if (!IsTailCall && 3740 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 3741 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3742 MF.getFunction(), 3743 "Return address register required, but has been reserved."}); 3744 3745 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 3746 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 3747 // split it and then direct call can be matched by PseudoCALL. 3748 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 3749 const GlobalValue *GV = S->getGlobal(); 3750 3751 unsigned OpFlags = RISCVII::MO_CALL; 3752 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 3753 OpFlags = RISCVII::MO_PLT; 3754 3755 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 3756 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 3757 unsigned OpFlags = RISCVII::MO_CALL; 3758 3759 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 3760 nullptr)) 3761 OpFlags = RISCVII::MO_PLT; 3762 3763 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 3764 } 3765 3766 // The first call operand is the chain and the second is the target address. 3767 SmallVector<SDValue, 8> Ops; 3768 Ops.push_back(Chain); 3769 Ops.push_back(Callee); 3770 3771 // Add argument registers to the end of the list so that they are 3772 // known live into the call. 3773 for (auto &Reg : RegsToPass) 3774 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 3775 3776 if (!IsTailCall) { 3777 // Add a register mask operand representing the call-preserved registers. 3778 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3779 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3780 assert(Mask && "Missing call preserved mask for calling convention"); 3781 Ops.push_back(DAG.getRegisterMask(Mask)); 3782 } 3783 3784 // Glue the call to the argument copies, if any. 3785 if (Glue.getNode()) 3786 Ops.push_back(Glue); 3787 3788 // Emit the call. 3789 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3790 3791 if (IsTailCall) { 3792 MF.getFrameInfo().setHasTailCall(); 3793 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 3794 } 3795 3796 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 3797 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 3798 Glue = Chain.getValue(1); 3799 3800 // Mark the end of the call, which is glued to the call itself. 3801 Chain = DAG.getCALLSEQ_END(Chain, 3802 DAG.getConstant(NumBytes, DL, PtrVT, true), 3803 DAG.getConstant(0, DL, PtrVT, true), 3804 Glue, DL); 3805 Glue = Chain.getValue(1); 3806 3807 // Assign locations to each value returned by this call. 3808 SmallVector<CCValAssign, 16> RVLocs; 3809 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 3810 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 3811 3812 // Copy all of the result registers out of their specified physreg. 3813 for (auto &VA : RVLocs) { 3814 // Copy the value out 3815 SDValue RetValue = 3816 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 3817 // Glue the RetValue to the end of the call sequence 3818 Chain = RetValue.getValue(1); 3819 Glue = RetValue.getValue(2); 3820 3821 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 3822 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 3823 SDValue RetValue2 = 3824 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 3825 Chain = RetValue2.getValue(1); 3826 Glue = RetValue2.getValue(2); 3827 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 3828 RetValue2); 3829 } 3830 3831 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 3832 3833 InVals.push_back(RetValue); 3834 } 3835 3836 return Chain; 3837 } 3838 3839 bool RISCVTargetLowering::CanLowerReturn( 3840 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 3841 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 3842 SmallVector<CCValAssign, 16> RVLocs; 3843 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 3844 3845 Optional<unsigned> FirstMaskArgument; 3846 if (Subtarget.hasStdExtV()) 3847 FirstMaskArgument = preAssignMask(Outs); 3848 3849 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 3850 MVT VT = Outs[i].VT; 3851 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3852 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 3853 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 3854 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 3855 *this, FirstMaskArgument)) 3856 return false; 3857 } 3858 return true; 3859 } 3860 3861 SDValue 3862 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 3863 bool IsVarArg, 3864 const SmallVectorImpl<ISD::OutputArg> &Outs, 3865 const SmallVectorImpl<SDValue> &OutVals, 3866 const SDLoc &DL, SelectionDAG &DAG) const { 3867 const MachineFunction &MF = DAG.getMachineFunction(); 3868 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 3869 3870 // Stores the assignment of the return value to a location. 3871 SmallVector<CCValAssign, 16> RVLocs; 3872 3873 // Info about the registers and stack slot. 3874 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 3875 *DAG.getContext()); 3876 3877 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 3878 nullptr); 3879 3880 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 3881 report_fatal_error("GHC functions return void only"); 3882 3883 SDValue Glue; 3884 SmallVector<SDValue, 4> RetOps(1, Chain); 3885 3886 // Copy the result values into the output registers. 3887 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 3888 SDValue Val = OutVals[i]; 3889 CCValAssign &VA = RVLocs[i]; 3890 assert(VA.isRegLoc() && "Can only return in registers!"); 3891 3892 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 3893 // Handle returning f64 on RV32D with a soft float ABI. 3894 assert(VA.isRegLoc() && "Expected return via registers"); 3895 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 3896 DAG.getVTList(MVT::i32, MVT::i32), Val); 3897 SDValue Lo = SplitF64.getValue(0); 3898 SDValue Hi = SplitF64.getValue(1); 3899 Register RegLo = VA.getLocReg(); 3900 assert(RegLo < RISCV::X31 && "Invalid register pair"); 3901 Register RegHi = RegLo + 1; 3902 3903 if (STI.isRegisterReservedByUser(RegLo) || 3904 STI.isRegisterReservedByUser(RegHi)) 3905 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3906 MF.getFunction(), 3907 "Return value register required, but has been reserved."}); 3908 3909 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 3910 Glue = Chain.getValue(1); 3911 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 3912 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 3913 Glue = Chain.getValue(1); 3914 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 3915 } else { 3916 // Handle a 'normal' return. 3917 Val = convertValVTToLocVT(DAG, Val, VA, DL); 3918 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 3919 3920 if (STI.isRegisterReservedByUser(VA.getLocReg())) 3921 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3922 MF.getFunction(), 3923 "Return value register required, but has been reserved."}); 3924 3925 // Guarantee that all emitted copies are stuck together. 3926 Glue = Chain.getValue(1); 3927 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 3928 } 3929 } 3930 3931 RetOps[0] = Chain; // Update chain. 3932 3933 // Add the glue node if we have it. 3934 if (Glue.getNode()) { 3935 RetOps.push_back(Glue); 3936 } 3937 3938 // Interrupt service routines use different return instructions. 3939 const Function &Func = DAG.getMachineFunction().getFunction(); 3940 if (Func.hasFnAttribute("interrupt")) { 3941 if (!Func.getReturnType()->isVoidTy()) 3942 report_fatal_error( 3943 "Functions with the interrupt attribute must have void return type!"); 3944 3945 MachineFunction &MF = DAG.getMachineFunction(); 3946 StringRef Kind = 3947 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 3948 3949 unsigned RetOpc; 3950 if (Kind == "user") 3951 RetOpc = RISCVISD::URET_FLAG; 3952 else if (Kind == "supervisor") 3953 RetOpc = RISCVISD::SRET_FLAG; 3954 else 3955 RetOpc = RISCVISD::MRET_FLAG; 3956 3957 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 3958 } 3959 3960 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 3961 } 3962 3963 void RISCVTargetLowering::validateCCReservedRegs( 3964 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 3965 MachineFunction &MF) const { 3966 const Function &F = MF.getFunction(); 3967 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 3968 3969 if (llvm::any_of(Regs, [&STI](auto Reg) { 3970 return STI.isRegisterReservedByUser(Reg.first); 3971 })) 3972 F.getContext().diagnose(DiagnosticInfoUnsupported{ 3973 F, "Argument register required, but has been reserved."}); 3974 } 3975 3976 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 3977 return CI->isTailCall(); 3978 } 3979 3980 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 3981 #define NODE_NAME_CASE(NODE) \ 3982 case RISCVISD::NODE: \ 3983 return "RISCVISD::" #NODE; 3984 // clang-format off 3985 switch ((RISCVISD::NodeType)Opcode) { 3986 case RISCVISD::FIRST_NUMBER: 3987 break; 3988 NODE_NAME_CASE(RET_FLAG) 3989 NODE_NAME_CASE(URET_FLAG) 3990 NODE_NAME_CASE(SRET_FLAG) 3991 NODE_NAME_CASE(MRET_FLAG) 3992 NODE_NAME_CASE(CALL) 3993 NODE_NAME_CASE(SELECT_CC) 3994 NODE_NAME_CASE(BuildPairF64) 3995 NODE_NAME_CASE(SplitF64) 3996 NODE_NAME_CASE(TAIL) 3997 NODE_NAME_CASE(SLLW) 3998 NODE_NAME_CASE(SRAW) 3999 NODE_NAME_CASE(SRLW) 4000 NODE_NAME_CASE(DIVW) 4001 NODE_NAME_CASE(DIVUW) 4002 NODE_NAME_CASE(REMUW) 4003 NODE_NAME_CASE(ROLW) 4004 NODE_NAME_CASE(RORW) 4005 NODE_NAME_CASE(FSLW) 4006 NODE_NAME_CASE(FSRW) 4007 NODE_NAME_CASE(FMV_H_X) 4008 NODE_NAME_CASE(FMV_X_ANYEXTH) 4009 NODE_NAME_CASE(FMV_W_X_RV64) 4010 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 4011 NODE_NAME_CASE(READ_CYCLE_WIDE) 4012 NODE_NAME_CASE(GREVI) 4013 NODE_NAME_CASE(GREVIW) 4014 NODE_NAME_CASE(GORCI) 4015 NODE_NAME_CASE(GORCIW) 4016 NODE_NAME_CASE(VMV_X_S) 4017 NODE_NAME_CASE(SPLAT_VECTOR_I64) 4018 NODE_NAME_CASE(READ_VLENB) 4019 NODE_NAME_CASE(TRUNCATE_VECTOR) 4020 NODE_NAME_CASE(VLEFF) 4021 NODE_NAME_CASE(VLEFF_MASK) 4022 NODE_NAME_CASE(READ_VL) 4023 NODE_NAME_CASE(VSLIDEUP) 4024 NODE_NAME_CASE(VSLIDEDOWN) 4025 NODE_NAME_CASE(VID) 4026 } 4027 // clang-format on 4028 return nullptr; 4029 #undef NODE_NAME_CASE 4030 } 4031 4032 /// getConstraintType - Given a constraint letter, return the type of 4033 /// constraint it is for this target. 4034 RISCVTargetLowering::ConstraintType 4035 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 4036 if (Constraint.size() == 1) { 4037 switch (Constraint[0]) { 4038 default: 4039 break; 4040 case 'f': 4041 return C_RegisterClass; 4042 case 'I': 4043 case 'J': 4044 case 'K': 4045 return C_Immediate; 4046 case 'A': 4047 return C_Memory; 4048 } 4049 } 4050 return TargetLowering::getConstraintType(Constraint); 4051 } 4052 4053 std::pair<unsigned, const TargetRegisterClass *> 4054 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 4055 StringRef Constraint, 4056 MVT VT) const { 4057 // First, see if this is a constraint that directly corresponds to a 4058 // RISCV register class. 4059 if (Constraint.size() == 1) { 4060 switch (Constraint[0]) { 4061 case 'r': 4062 return std::make_pair(0U, &RISCV::GPRRegClass); 4063 case 'f': 4064 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 4065 return std::make_pair(0U, &RISCV::FPR16RegClass); 4066 if (Subtarget.hasStdExtF() && VT == MVT::f32) 4067 return std::make_pair(0U, &RISCV::FPR32RegClass); 4068 if (Subtarget.hasStdExtD() && VT == MVT::f64) 4069 return std::make_pair(0U, &RISCV::FPR64RegClass); 4070 break; 4071 default: 4072 break; 4073 } 4074 } 4075 4076 // Clang will correctly decode the usage of register name aliases into their 4077 // official names. However, other frontends like `rustc` do not. This allows 4078 // users of these frontends to use the ABI names for registers in LLVM-style 4079 // register constraints. 4080 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 4081 .Case("{zero}", RISCV::X0) 4082 .Case("{ra}", RISCV::X1) 4083 .Case("{sp}", RISCV::X2) 4084 .Case("{gp}", RISCV::X3) 4085 .Case("{tp}", RISCV::X4) 4086 .Case("{t0}", RISCV::X5) 4087 .Case("{t1}", RISCV::X6) 4088 .Case("{t2}", RISCV::X7) 4089 .Cases("{s0}", "{fp}", RISCV::X8) 4090 .Case("{s1}", RISCV::X9) 4091 .Case("{a0}", RISCV::X10) 4092 .Case("{a1}", RISCV::X11) 4093 .Case("{a2}", RISCV::X12) 4094 .Case("{a3}", RISCV::X13) 4095 .Case("{a4}", RISCV::X14) 4096 .Case("{a5}", RISCV::X15) 4097 .Case("{a6}", RISCV::X16) 4098 .Case("{a7}", RISCV::X17) 4099 .Case("{s2}", RISCV::X18) 4100 .Case("{s3}", RISCV::X19) 4101 .Case("{s4}", RISCV::X20) 4102 .Case("{s5}", RISCV::X21) 4103 .Case("{s6}", RISCV::X22) 4104 .Case("{s7}", RISCV::X23) 4105 .Case("{s8}", RISCV::X24) 4106 .Case("{s9}", RISCV::X25) 4107 .Case("{s10}", RISCV::X26) 4108 .Case("{s11}", RISCV::X27) 4109 .Case("{t3}", RISCV::X28) 4110 .Case("{t4}", RISCV::X29) 4111 .Case("{t5}", RISCV::X30) 4112 .Case("{t6}", RISCV::X31) 4113 .Default(RISCV::NoRegister); 4114 if (XRegFromAlias != RISCV::NoRegister) 4115 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 4116 4117 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 4118 // TableGen record rather than the AsmName to choose registers for InlineAsm 4119 // constraints, plus we want to match those names to the widest floating point 4120 // register type available, manually select floating point registers here. 4121 // 4122 // The second case is the ABI name of the register, so that frontends can also 4123 // use the ABI names in register constraint lists. 4124 if (Subtarget.hasStdExtF()) { 4125 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 4126 .Cases("{f0}", "{ft0}", RISCV::F0_F) 4127 .Cases("{f1}", "{ft1}", RISCV::F1_F) 4128 .Cases("{f2}", "{ft2}", RISCV::F2_F) 4129 .Cases("{f3}", "{ft3}", RISCV::F3_F) 4130 .Cases("{f4}", "{ft4}", RISCV::F4_F) 4131 .Cases("{f5}", "{ft5}", RISCV::F5_F) 4132 .Cases("{f6}", "{ft6}", RISCV::F6_F) 4133 .Cases("{f7}", "{ft7}", RISCV::F7_F) 4134 .Cases("{f8}", "{fs0}", RISCV::F8_F) 4135 .Cases("{f9}", "{fs1}", RISCV::F9_F) 4136 .Cases("{f10}", "{fa0}", RISCV::F10_F) 4137 .Cases("{f11}", "{fa1}", RISCV::F11_F) 4138 .Cases("{f12}", "{fa2}", RISCV::F12_F) 4139 .Cases("{f13}", "{fa3}", RISCV::F13_F) 4140 .Cases("{f14}", "{fa4}", RISCV::F14_F) 4141 .Cases("{f15}", "{fa5}", RISCV::F15_F) 4142 .Cases("{f16}", "{fa6}", RISCV::F16_F) 4143 .Cases("{f17}", "{fa7}", RISCV::F17_F) 4144 .Cases("{f18}", "{fs2}", RISCV::F18_F) 4145 .Cases("{f19}", "{fs3}", RISCV::F19_F) 4146 .Cases("{f20}", "{fs4}", RISCV::F20_F) 4147 .Cases("{f21}", "{fs5}", RISCV::F21_F) 4148 .Cases("{f22}", "{fs6}", RISCV::F22_F) 4149 .Cases("{f23}", "{fs7}", RISCV::F23_F) 4150 .Cases("{f24}", "{fs8}", RISCV::F24_F) 4151 .Cases("{f25}", "{fs9}", RISCV::F25_F) 4152 .Cases("{f26}", "{fs10}", RISCV::F26_F) 4153 .Cases("{f27}", "{fs11}", RISCV::F27_F) 4154 .Cases("{f28}", "{ft8}", RISCV::F28_F) 4155 .Cases("{f29}", "{ft9}", RISCV::F29_F) 4156 .Cases("{f30}", "{ft10}", RISCV::F30_F) 4157 .Cases("{f31}", "{ft11}", RISCV::F31_F) 4158 .Default(RISCV::NoRegister); 4159 if (FReg != RISCV::NoRegister) { 4160 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 4161 if (Subtarget.hasStdExtD()) { 4162 unsigned RegNo = FReg - RISCV::F0_F; 4163 unsigned DReg = RISCV::F0_D + RegNo; 4164 return std::make_pair(DReg, &RISCV::FPR64RegClass); 4165 } 4166 return std::make_pair(FReg, &RISCV::FPR32RegClass); 4167 } 4168 } 4169 4170 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 4171 } 4172 4173 unsigned 4174 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 4175 // Currently only support length 1 constraints. 4176 if (ConstraintCode.size() == 1) { 4177 switch (ConstraintCode[0]) { 4178 case 'A': 4179 return InlineAsm::Constraint_A; 4180 default: 4181 break; 4182 } 4183 } 4184 4185 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 4186 } 4187 4188 void RISCVTargetLowering::LowerAsmOperandForConstraint( 4189 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 4190 SelectionDAG &DAG) const { 4191 // Currently only support length 1 constraints. 4192 if (Constraint.length() == 1) { 4193 switch (Constraint[0]) { 4194 case 'I': 4195 // Validate & create a 12-bit signed immediate operand. 4196 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 4197 uint64_t CVal = C->getSExtValue(); 4198 if (isInt<12>(CVal)) 4199 Ops.push_back( 4200 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 4201 } 4202 return; 4203 case 'J': 4204 // Validate & create an integer zero operand. 4205 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 4206 if (C->getZExtValue() == 0) 4207 Ops.push_back( 4208 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 4209 return; 4210 case 'K': 4211 // Validate & create a 5-bit unsigned immediate operand. 4212 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 4213 uint64_t CVal = C->getZExtValue(); 4214 if (isUInt<5>(CVal)) 4215 Ops.push_back( 4216 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 4217 } 4218 return; 4219 default: 4220 break; 4221 } 4222 } 4223 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 4224 } 4225 4226 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 4227 Instruction *Inst, 4228 AtomicOrdering Ord) const { 4229 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 4230 return Builder.CreateFence(Ord); 4231 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 4232 return Builder.CreateFence(AtomicOrdering::Release); 4233 return nullptr; 4234 } 4235 4236 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 4237 Instruction *Inst, 4238 AtomicOrdering Ord) const { 4239 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 4240 return Builder.CreateFence(AtomicOrdering::Acquire); 4241 return nullptr; 4242 } 4243 4244 TargetLowering::AtomicExpansionKind 4245 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 4246 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 4247 // point operations can't be used in an lr/sc sequence without breaking the 4248 // forward-progress guarantee. 4249 if (AI->isFloatingPointOperation()) 4250 return AtomicExpansionKind::CmpXChg; 4251 4252 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 4253 if (Size == 8 || Size == 16) 4254 return AtomicExpansionKind::MaskedIntrinsic; 4255 return AtomicExpansionKind::None; 4256 } 4257 4258 static Intrinsic::ID 4259 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 4260 if (XLen == 32) { 4261 switch (BinOp) { 4262 default: 4263 llvm_unreachable("Unexpected AtomicRMW BinOp"); 4264 case AtomicRMWInst::Xchg: 4265 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 4266 case AtomicRMWInst::Add: 4267 return Intrinsic::riscv_masked_atomicrmw_add_i32; 4268 case AtomicRMWInst::Sub: 4269 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 4270 case AtomicRMWInst::Nand: 4271 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 4272 case AtomicRMWInst::Max: 4273 return Intrinsic::riscv_masked_atomicrmw_max_i32; 4274 case AtomicRMWInst::Min: 4275 return Intrinsic::riscv_masked_atomicrmw_min_i32; 4276 case AtomicRMWInst::UMax: 4277 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 4278 case AtomicRMWInst::UMin: 4279 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 4280 } 4281 } 4282 4283 if (XLen == 64) { 4284 switch (BinOp) { 4285 default: 4286 llvm_unreachable("Unexpected AtomicRMW BinOp"); 4287 case AtomicRMWInst::Xchg: 4288 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 4289 case AtomicRMWInst::Add: 4290 return Intrinsic::riscv_masked_atomicrmw_add_i64; 4291 case AtomicRMWInst::Sub: 4292 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 4293 case AtomicRMWInst::Nand: 4294 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 4295 case AtomicRMWInst::Max: 4296 return Intrinsic::riscv_masked_atomicrmw_max_i64; 4297 case AtomicRMWInst::Min: 4298 return Intrinsic::riscv_masked_atomicrmw_min_i64; 4299 case AtomicRMWInst::UMax: 4300 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 4301 case AtomicRMWInst::UMin: 4302 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 4303 } 4304 } 4305 4306 llvm_unreachable("Unexpected XLen\n"); 4307 } 4308 4309 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 4310 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 4311 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 4312 unsigned XLen = Subtarget.getXLen(); 4313 Value *Ordering = 4314 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 4315 Type *Tys[] = {AlignedAddr->getType()}; 4316 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 4317 AI->getModule(), 4318 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 4319 4320 if (XLen == 64) { 4321 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 4322 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 4323 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 4324 } 4325 4326 Value *Result; 4327 4328 // Must pass the shift amount needed to sign extend the loaded value prior 4329 // to performing a signed comparison for min/max. ShiftAmt is the number of 4330 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 4331 // is the number of bits to left+right shift the value in order to 4332 // sign-extend. 4333 if (AI->getOperation() == AtomicRMWInst::Min || 4334 AI->getOperation() == AtomicRMWInst::Max) { 4335 const DataLayout &DL = AI->getModule()->getDataLayout(); 4336 unsigned ValWidth = 4337 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 4338 Value *SextShamt = 4339 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 4340 Result = Builder.CreateCall(LrwOpScwLoop, 4341 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 4342 } else { 4343 Result = 4344 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 4345 } 4346 4347 if (XLen == 64) 4348 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 4349 return Result; 4350 } 4351 4352 TargetLowering::AtomicExpansionKind 4353 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 4354 AtomicCmpXchgInst *CI) const { 4355 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 4356 if (Size == 8 || Size == 16) 4357 return AtomicExpansionKind::MaskedIntrinsic; 4358 return AtomicExpansionKind::None; 4359 } 4360 4361 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 4362 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 4363 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 4364 unsigned XLen = Subtarget.getXLen(); 4365 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 4366 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 4367 if (XLen == 64) { 4368 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 4369 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 4370 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 4371 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 4372 } 4373 Type *Tys[] = {AlignedAddr->getType()}; 4374 Function *MaskedCmpXchg = 4375 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 4376 Value *Result = Builder.CreateCall( 4377 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 4378 if (XLen == 64) 4379 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 4380 return Result; 4381 } 4382 4383 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4384 EVT VT) const { 4385 VT = VT.getScalarType(); 4386 4387 if (!VT.isSimple()) 4388 return false; 4389 4390 switch (VT.getSimpleVT().SimpleTy) { 4391 case MVT::f16: 4392 return Subtarget.hasStdExtZfh(); 4393 case MVT::f32: 4394 return Subtarget.hasStdExtF(); 4395 case MVT::f64: 4396 return Subtarget.hasStdExtD(); 4397 default: 4398 break; 4399 } 4400 4401 return false; 4402 } 4403 4404 Register RISCVTargetLowering::getExceptionPointerRegister( 4405 const Constant *PersonalityFn) const { 4406 return RISCV::X10; 4407 } 4408 4409 Register RISCVTargetLowering::getExceptionSelectorRegister( 4410 const Constant *PersonalityFn) const { 4411 return RISCV::X11; 4412 } 4413 4414 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 4415 // Return false to suppress the unnecessary extensions if the LibCall 4416 // arguments or return value is f32 type for LP64 ABI. 4417 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 4418 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 4419 return false; 4420 4421 return true; 4422 } 4423 4424 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 4425 if (Subtarget.is64Bit() && Type == MVT::i32) 4426 return true; 4427 4428 return IsSigned; 4429 } 4430 4431 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 4432 SDValue C) const { 4433 // Check integral scalar types. 4434 if (VT.isScalarInteger()) { 4435 // Omit the optimization if the sub target has the M extension and the data 4436 // size exceeds XLen. 4437 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 4438 return false; 4439 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 4440 // Break the MUL to a SLLI and an ADD/SUB. 4441 const APInt &Imm = ConstNode->getAPIntValue(); 4442 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 4443 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 4444 return true; 4445 // Omit the following optimization if the sub target has the M extension 4446 // and the data size >= XLen. 4447 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 4448 return false; 4449 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 4450 // a pair of LUI/ADDI. 4451 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 4452 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 4453 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 4454 (1 - ImmS).isPowerOf2()) 4455 return true; 4456 } 4457 } 4458 } 4459 4460 return false; 4461 } 4462 4463 #define GET_REGISTER_MATCHER 4464 #include "RISCVGenAsmMatcher.inc" 4465 4466 Register 4467 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 4468 const MachineFunction &MF) const { 4469 Register Reg = MatchRegisterAltName(RegName); 4470 if (Reg == RISCV::NoRegister) 4471 Reg = MatchRegisterName(RegName); 4472 if (Reg == RISCV::NoRegister) 4473 report_fatal_error( 4474 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 4475 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 4476 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 4477 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 4478 StringRef(RegName) + "\".")); 4479 return Reg; 4480 } 4481 4482 namespace llvm { 4483 namespace RISCVVIntrinsicsTable { 4484 4485 #define GET_RISCVVIntrinsicsTable_IMPL 4486 #include "RISCVGenSearchableTables.inc" 4487 4488 } // namespace RISCVVIntrinsicsTable 4489 4490 namespace RISCVZvlssegTable { 4491 4492 #define GET_RISCVZvlssegTable_IMPL 4493 #include "RISCVGenSearchableTables.inc" 4494 4495 } // namespace RISCVZvlssegTable 4496 } // namespace llvm 4497