1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "RISCV.h" 16 #include "RISCVMachineFunctionInfo.h" 17 #include "RISCVRegisterInfo.h" 18 #include "RISCVSubtarget.h" 19 #include "RISCVTargetMachine.h" 20 #include "Utils/RISCVMatInt.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "riscv-lower" 41 42 STATISTIC(NumTailCalls, "Number of tail calls"); 43 44 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 45 const RISCVSubtarget &STI) 46 : TargetLowering(TM), Subtarget(STI) { 47 48 if (Subtarget.isRV32E()) 49 report_fatal_error("Codegen not yet implemented for RV32E"); 50 51 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 52 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 53 54 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 55 !Subtarget.hasStdExtF()) { 56 errs() << "Hard-float 'f' ABI can't be used for a target that " 57 "doesn't support the F instruction set extension (ignoring " 58 "target-abi)\n"; 59 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 60 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 61 !Subtarget.hasStdExtD()) { 62 errs() << "Hard-float 'd' ABI can't be used for a target that " 63 "doesn't support the D instruction set extension (ignoring " 64 "target-abi)\n"; 65 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 66 } 67 68 switch (ABI) { 69 default: 70 report_fatal_error("Don't know how to lower this ABI"); 71 case RISCVABI::ABI_ILP32: 72 case RISCVABI::ABI_ILP32F: 73 case RISCVABI::ABI_ILP32D: 74 case RISCVABI::ABI_LP64: 75 case RISCVABI::ABI_LP64F: 76 case RISCVABI::ABI_LP64D: 77 break; 78 } 79 80 MVT XLenVT = Subtarget.getXLenVT(); 81 82 // Set up the register classes. 83 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 84 85 if (Subtarget.hasStdExtZfh()) 86 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 87 if (Subtarget.hasStdExtF()) 88 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 89 if (Subtarget.hasStdExtD()) 90 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 91 92 if (Subtarget.hasStdExtV()) { 93 addRegisterClass(RISCVVMVTs::vbool64_t, &RISCV::VRRegClass); 94 addRegisterClass(RISCVVMVTs::vbool32_t, &RISCV::VRRegClass); 95 addRegisterClass(RISCVVMVTs::vbool16_t, &RISCV::VRRegClass); 96 addRegisterClass(RISCVVMVTs::vbool8_t, &RISCV::VRRegClass); 97 addRegisterClass(RISCVVMVTs::vbool4_t, &RISCV::VRRegClass); 98 addRegisterClass(RISCVVMVTs::vbool2_t, &RISCV::VRRegClass); 99 addRegisterClass(RISCVVMVTs::vbool1_t, &RISCV::VRRegClass); 100 101 addRegisterClass(RISCVVMVTs::vint8mf8_t, &RISCV::VRRegClass); 102 addRegisterClass(RISCVVMVTs::vint8mf4_t, &RISCV::VRRegClass); 103 addRegisterClass(RISCVVMVTs::vint8mf2_t, &RISCV::VRRegClass); 104 addRegisterClass(RISCVVMVTs::vint8m1_t, &RISCV::VRRegClass); 105 addRegisterClass(RISCVVMVTs::vint8m2_t, &RISCV::VRM2RegClass); 106 addRegisterClass(RISCVVMVTs::vint8m4_t, &RISCV::VRM4RegClass); 107 addRegisterClass(RISCVVMVTs::vint8m8_t, &RISCV::VRM8RegClass); 108 109 addRegisterClass(RISCVVMVTs::vint16mf4_t, &RISCV::VRRegClass); 110 addRegisterClass(RISCVVMVTs::vint16mf2_t, &RISCV::VRRegClass); 111 addRegisterClass(RISCVVMVTs::vint16m1_t, &RISCV::VRRegClass); 112 addRegisterClass(RISCVVMVTs::vint16m2_t, &RISCV::VRM2RegClass); 113 addRegisterClass(RISCVVMVTs::vint16m4_t, &RISCV::VRM4RegClass); 114 addRegisterClass(RISCVVMVTs::vint16m8_t, &RISCV::VRM8RegClass); 115 116 addRegisterClass(RISCVVMVTs::vint32mf2_t, &RISCV::VRRegClass); 117 addRegisterClass(RISCVVMVTs::vint32m1_t, &RISCV::VRRegClass); 118 addRegisterClass(RISCVVMVTs::vint32m2_t, &RISCV::VRM2RegClass); 119 addRegisterClass(RISCVVMVTs::vint32m4_t, &RISCV::VRM4RegClass); 120 addRegisterClass(RISCVVMVTs::vint32m8_t, &RISCV::VRM8RegClass); 121 122 addRegisterClass(RISCVVMVTs::vint64m1_t, &RISCV::VRRegClass); 123 addRegisterClass(RISCVVMVTs::vint64m2_t, &RISCV::VRM2RegClass); 124 addRegisterClass(RISCVVMVTs::vint64m4_t, &RISCV::VRM4RegClass); 125 addRegisterClass(RISCVVMVTs::vint64m8_t, &RISCV::VRM8RegClass); 126 127 if (Subtarget.hasStdExtZfh()) { 128 addRegisterClass(RISCVVMVTs::vfloat16mf4_t, &RISCV::VRRegClass); 129 addRegisterClass(RISCVVMVTs::vfloat16mf2_t, &RISCV::VRRegClass); 130 addRegisterClass(RISCVVMVTs::vfloat16m1_t, &RISCV::VRRegClass); 131 addRegisterClass(RISCVVMVTs::vfloat16m2_t, &RISCV::VRM2RegClass); 132 addRegisterClass(RISCVVMVTs::vfloat16m4_t, &RISCV::VRM4RegClass); 133 addRegisterClass(RISCVVMVTs::vfloat16m8_t, &RISCV::VRM8RegClass); 134 } 135 136 if (Subtarget.hasStdExtF()) { 137 addRegisterClass(RISCVVMVTs::vfloat32mf2_t, &RISCV::VRRegClass); 138 addRegisterClass(RISCVVMVTs::vfloat32m1_t, &RISCV::VRRegClass); 139 addRegisterClass(RISCVVMVTs::vfloat32m2_t, &RISCV::VRM2RegClass); 140 addRegisterClass(RISCVVMVTs::vfloat32m4_t, &RISCV::VRM4RegClass); 141 addRegisterClass(RISCVVMVTs::vfloat32m8_t, &RISCV::VRM8RegClass); 142 } 143 144 if (Subtarget.hasStdExtD()) { 145 addRegisterClass(RISCVVMVTs::vfloat64m1_t, &RISCV::VRRegClass); 146 addRegisterClass(RISCVVMVTs::vfloat64m2_t, &RISCV::VRM2RegClass); 147 addRegisterClass(RISCVVMVTs::vfloat64m4_t, &RISCV::VRM4RegClass); 148 addRegisterClass(RISCVVMVTs::vfloat64m8_t, &RISCV::VRM8RegClass); 149 } 150 } 151 152 // Compute derived properties from the register classes. 153 computeRegisterProperties(STI.getRegisterInfo()); 154 155 setStackPointerRegisterToSaveRestore(RISCV::X2); 156 157 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 158 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 159 160 // TODO: add all necessary setOperationAction calls. 161 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 162 163 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 164 setOperationAction(ISD::BR_CC, XLenVT, Expand); 165 setOperationAction(ISD::SELECT, XLenVT, Custom); 166 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 167 168 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 169 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 170 171 setOperationAction(ISD::VASTART, MVT::Other, Custom); 172 setOperationAction(ISD::VAARG, MVT::Other, Expand); 173 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 174 setOperationAction(ISD::VAEND, MVT::Other, Expand); 175 176 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 177 if (!Subtarget.hasStdExtZbb()) { 178 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 179 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 180 } 181 182 if (Subtarget.is64Bit()) { 183 setOperationAction(ISD::ADD, MVT::i32, Custom); 184 setOperationAction(ISD::SUB, MVT::i32, Custom); 185 setOperationAction(ISD::SHL, MVT::i32, Custom); 186 setOperationAction(ISD::SRA, MVT::i32, Custom); 187 setOperationAction(ISD::SRL, MVT::i32, Custom); 188 } 189 190 if (!Subtarget.hasStdExtM()) { 191 setOperationAction(ISD::MUL, XLenVT, Expand); 192 setOperationAction(ISD::MULHS, XLenVT, Expand); 193 setOperationAction(ISD::MULHU, XLenVT, Expand); 194 setOperationAction(ISD::SDIV, XLenVT, Expand); 195 setOperationAction(ISD::UDIV, XLenVT, Expand); 196 setOperationAction(ISD::SREM, XLenVT, Expand); 197 setOperationAction(ISD::UREM, XLenVT, Expand); 198 } 199 200 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 201 setOperationAction(ISD::MUL, MVT::i32, Custom); 202 setOperationAction(ISD::SDIV, MVT::i32, Custom); 203 setOperationAction(ISD::UDIV, MVT::i32, Custom); 204 setOperationAction(ISD::UREM, MVT::i32, Custom); 205 } 206 207 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 208 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 209 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 210 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 211 212 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 213 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 214 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 215 216 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 217 if (Subtarget.is64Bit()) { 218 setOperationAction(ISD::ROTL, MVT::i32, Custom); 219 setOperationAction(ISD::ROTR, MVT::i32, Custom); 220 } 221 } else { 222 setOperationAction(ISD::ROTL, XLenVT, Expand); 223 setOperationAction(ISD::ROTR, XLenVT, Expand); 224 } 225 226 if (Subtarget.hasStdExtZbp()) { 227 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 228 setOperationAction(ISD::BSWAP, XLenVT, Custom); 229 230 if (Subtarget.is64Bit()) { 231 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 232 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 233 } 234 } else { 235 setOperationAction(ISD::BSWAP, XLenVT, Expand); 236 } 237 238 if (Subtarget.hasStdExtZbb()) { 239 setOperationAction(ISD::SMIN, XLenVT, Legal); 240 setOperationAction(ISD::SMAX, XLenVT, Legal); 241 setOperationAction(ISD::UMIN, XLenVT, Legal); 242 setOperationAction(ISD::UMAX, XLenVT, Legal); 243 } else { 244 setOperationAction(ISD::CTTZ, XLenVT, Expand); 245 setOperationAction(ISD::CTLZ, XLenVT, Expand); 246 setOperationAction(ISD::CTPOP, XLenVT, Expand); 247 } 248 249 if (Subtarget.hasStdExtZbt()) { 250 setOperationAction(ISD::FSHL, XLenVT, Legal); 251 setOperationAction(ISD::FSHR, XLenVT, Legal); 252 253 if (Subtarget.is64Bit()) { 254 setOperationAction(ISD::FSHL, MVT::i32, Custom); 255 setOperationAction(ISD::FSHR, MVT::i32, Custom); 256 } 257 } 258 259 ISD::CondCode FPCCToExpand[] = { 260 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 261 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 262 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 263 264 ISD::NodeType FPOpToExpand[] = { 265 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 266 ISD::FP_TO_FP16}; 267 268 if (Subtarget.hasStdExtZfh()) 269 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 270 271 if (Subtarget.hasStdExtZfh()) { 272 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 273 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 274 for (auto CC : FPCCToExpand) 275 setCondCodeAction(CC, MVT::f16, Expand); 276 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 277 setOperationAction(ISD::SELECT, MVT::f16, Custom); 278 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 279 for (auto Op : FPOpToExpand) 280 setOperationAction(Op, MVT::f16, Expand); 281 } 282 283 if (Subtarget.hasStdExtF()) { 284 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 285 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 286 for (auto CC : FPCCToExpand) 287 setCondCodeAction(CC, MVT::f32, Expand); 288 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 289 setOperationAction(ISD::SELECT, MVT::f32, Custom); 290 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 291 for (auto Op : FPOpToExpand) 292 setOperationAction(Op, MVT::f32, Expand); 293 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 294 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 295 } 296 297 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 298 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 299 300 if (Subtarget.hasStdExtD()) { 301 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 302 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 303 for (auto CC : FPCCToExpand) 304 setCondCodeAction(CC, MVT::f64, Expand); 305 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 306 setOperationAction(ISD::SELECT, MVT::f64, Custom); 307 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 308 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 309 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 310 for (auto Op : FPOpToExpand) 311 setOperationAction(Op, MVT::f64, Expand); 312 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 313 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 314 } 315 316 if (Subtarget.is64Bit()) { 317 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 318 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 319 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 320 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 321 } 322 323 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 324 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 325 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 326 setOperationAction(ISD::JumpTable, XLenVT, Custom); 327 328 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 329 330 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 331 // Unfortunately this can't be determined just from the ISA naming string. 332 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 333 Subtarget.is64Bit() ? Legal : Custom); 334 335 setOperationAction(ISD::TRAP, MVT::Other, Legal); 336 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 337 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 338 339 if (Subtarget.hasStdExtA()) { 340 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 341 setMinCmpXchgSizeInBits(32); 342 } else { 343 setMaxAtomicSizeInBitsSupported(0); 344 } 345 346 setBooleanContents(ZeroOrOneBooleanContent); 347 348 if (Subtarget.hasStdExtV()) { 349 setBooleanVectorContents(ZeroOrOneBooleanContent); 350 351 // RVV intrinsics may have illegal operands. 352 // We also need to custom legalize vmv.x.s. 353 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 354 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 355 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 356 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 357 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 358 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 359 360 if (Subtarget.is64Bit()) { 361 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 362 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 363 } 364 365 for (auto VT : MVT::integer_scalable_vector_valuetypes()) { 366 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 367 368 setOperationAction(ISD::SMIN, VT, Legal); 369 setOperationAction(ISD::SMAX, VT, Legal); 370 setOperationAction(ISD::UMIN, VT, Legal); 371 setOperationAction(ISD::UMAX, VT, Legal); 372 } 373 374 // We must custom-lower SPLAT_VECTOR vXi64 on RV32 375 if (!Subtarget.is64Bit()) 376 setOperationAction(ISD::SPLAT_VECTOR, MVT::i64, Custom); 377 } 378 379 // Function alignments. 380 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 381 setMinFunctionAlignment(FunctionAlignment); 382 setPrefFunctionAlignment(FunctionAlignment); 383 384 setMinimumJumpTableEntries(5); 385 386 // Jumps are expensive, compared to logic 387 setJumpIsExpensive(); 388 389 // We can use any register for comparisons 390 setHasMultipleConditionRegisters(); 391 392 if (Subtarget.hasStdExtZbp()) { 393 setTargetDAGCombine(ISD::OR); 394 } 395 } 396 397 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 398 EVT VT) const { 399 if (!VT.isVector()) 400 return getPointerTy(DL); 401 return VT.changeVectorElementTypeToInteger(); 402 } 403 404 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 405 const CallInst &I, 406 MachineFunction &MF, 407 unsigned Intrinsic) const { 408 switch (Intrinsic) { 409 default: 410 return false; 411 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 412 case Intrinsic::riscv_masked_atomicrmw_add_i32: 413 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 414 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 415 case Intrinsic::riscv_masked_atomicrmw_max_i32: 416 case Intrinsic::riscv_masked_atomicrmw_min_i32: 417 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 418 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 419 case Intrinsic::riscv_masked_cmpxchg_i32: 420 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 421 Info.opc = ISD::INTRINSIC_W_CHAIN; 422 Info.memVT = MVT::getVT(PtrTy->getElementType()); 423 Info.ptrVal = I.getArgOperand(0); 424 Info.offset = 0; 425 Info.align = Align(4); 426 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 427 MachineMemOperand::MOVolatile; 428 return true; 429 } 430 } 431 432 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 433 const AddrMode &AM, Type *Ty, 434 unsigned AS, 435 Instruction *I) const { 436 // No global is ever allowed as a base. 437 if (AM.BaseGV) 438 return false; 439 440 // Require a 12-bit signed offset. 441 if (!isInt<12>(AM.BaseOffs)) 442 return false; 443 444 switch (AM.Scale) { 445 case 0: // "r+i" or just "i", depending on HasBaseReg. 446 break; 447 case 1: 448 if (!AM.HasBaseReg) // allow "r+i". 449 break; 450 return false; // disallow "r+r" or "r+r+i". 451 default: 452 return false; 453 } 454 455 return true; 456 } 457 458 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 459 return isInt<12>(Imm); 460 } 461 462 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 463 return isInt<12>(Imm); 464 } 465 466 // On RV32, 64-bit integers are split into their high and low parts and held 467 // in two different registers, so the trunc is free since the low register can 468 // just be used. 469 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 470 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 471 return false; 472 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 473 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 474 return (SrcBits == 64 && DestBits == 32); 475 } 476 477 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 478 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 479 !SrcVT.isInteger() || !DstVT.isInteger()) 480 return false; 481 unsigned SrcBits = SrcVT.getSizeInBits(); 482 unsigned DestBits = DstVT.getSizeInBits(); 483 return (SrcBits == 64 && DestBits == 32); 484 } 485 486 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 487 // Zexts are free if they can be combined with a load. 488 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 489 EVT MemVT = LD->getMemoryVT(); 490 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 491 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 492 (LD->getExtensionType() == ISD::NON_EXTLOAD || 493 LD->getExtensionType() == ISD::ZEXTLOAD)) 494 return true; 495 } 496 497 return TargetLowering::isZExtFree(Val, VT2); 498 } 499 500 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 501 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 502 } 503 504 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 505 return Subtarget.hasStdExtZbb(); 506 } 507 508 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 509 return Subtarget.hasStdExtZbb(); 510 } 511 512 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 513 bool ForCodeSize) const { 514 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 515 return false; 516 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 517 return false; 518 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 519 return false; 520 if (Imm.isNegZero()) 521 return false; 522 return Imm.isZero(); 523 } 524 525 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 526 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 527 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 528 (VT == MVT::f64 && Subtarget.hasStdExtD()); 529 } 530 531 // Changes the condition code and swaps operands if necessary, so the SetCC 532 // operation matches one of the comparisons supported directly in the RISC-V 533 // ISA. 534 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 535 switch (CC) { 536 default: 537 break; 538 case ISD::SETGT: 539 case ISD::SETLE: 540 case ISD::SETUGT: 541 case ISD::SETULE: 542 CC = ISD::getSetCCSwappedOperands(CC); 543 std::swap(LHS, RHS); 544 break; 545 } 546 } 547 548 // Return the RISC-V branch opcode that matches the given DAG integer 549 // condition code. The CondCode must be one of those supported by the RISC-V 550 // ISA (see normaliseSetCC). 551 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 552 switch (CC) { 553 default: 554 llvm_unreachable("Unsupported CondCode"); 555 case ISD::SETEQ: 556 return RISCV::BEQ; 557 case ISD::SETNE: 558 return RISCV::BNE; 559 case ISD::SETLT: 560 return RISCV::BLT; 561 case ISD::SETGE: 562 return RISCV::BGE; 563 case ISD::SETULT: 564 return RISCV::BLTU; 565 case ISD::SETUGE: 566 return RISCV::BGEU; 567 } 568 } 569 570 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 571 SelectionDAG &DAG) const { 572 switch (Op.getOpcode()) { 573 default: 574 report_fatal_error("unimplemented operand"); 575 case ISD::GlobalAddress: 576 return lowerGlobalAddress(Op, DAG); 577 case ISD::BlockAddress: 578 return lowerBlockAddress(Op, DAG); 579 case ISD::ConstantPool: 580 return lowerConstantPool(Op, DAG); 581 case ISD::JumpTable: 582 return lowerJumpTable(Op, DAG); 583 case ISD::GlobalTLSAddress: 584 return lowerGlobalTLSAddress(Op, DAG); 585 case ISD::SELECT: 586 return lowerSELECT(Op, DAG); 587 case ISD::VASTART: 588 return lowerVASTART(Op, DAG); 589 case ISD::FRAMEADDR: 590 return lowerFRAMEADDR(Op, DAG); 591 case ISD::RETURNADDR: 592 return lowerRETURNADDR(Op, DAG); 593 case ISD::SHL_PARTS: 594 return lowerShiftLeftParts(Op, DAG); 595 case ISD::SRA_PARTS: 596 return lowerShiftRightParts(Op, DAG, true); 597 case ISD::SRL_PARTS: 598 return lowerShiftRightParts(Op, DAG, false); 599 case ISD::BITCAST: { 600 assert(((Subtarget.is64Bit() && Subtarget.hasStdExtF()) || 601 Subtarget.hasStdExtZfh()) && 602 "Unexpected custom legalisation"); 603 SDLoc DL(Op); 604 SDValue Op0 = Op.getOperand(0); 605 if (Op.getValueType() == MVT::f16 && Subtarget.hasStdExtZfh()) { 606 if (Op0.getValueType() != MVT::i16) 607 return SDValue(); 608 SDValue NewOp0 = 609 DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Op0); 610 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 611 return FPConv; 612 } else if (Op.getValueType() == MVT::f32 && Subtarget.is64Bit() && 613 Subtarget.hasStdExtF()) { 614 if (Op0.getValueType() != MVT::i32) 615 return SDValue(); 616 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 617 SDValue FPConv = 618 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 619 return FPConv; 620 } 621 return SDValue(); 622 } 623 case ISD::INTRINSIC_WO_CHAIN: 624 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 625 case ISD::INTRINSIC_W_CHAIN: 626 return LowerINTRINSIC_W_CHAIN(Op, DAG); 627 case ISD::BSWAP: 628 case ISD::BITREVERSE: { 629 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 630 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 631 MVT VT = Op.getSimpleValueType(); 632 SDLoc DL(Op); 633 // Start with the maximum immediate value which is the bitwidth - 1. 634 unsigned Imm = VT.getSizeInBits() - 1; 635 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 636 if (Op.getOpcode() == ISD::BSWAP) 637 Imm &= ~0x7U; 638 return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0), 639 DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT())); 640 } 641 case ISD::SPLAT_VECTOR: 642 return lowerSPLATVECTOR(Op, DAG); 643 } 644 } 645 646 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 647 SelectionDAG &DAG, unsigned Flags) { 648 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 649 } 650 651 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 652 SelectionDAG &DAG, unsigned Flags) { 653 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 654 Flags); 655 } 656 657 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 658 SelectionDAG &DAG, unsigned Flags) { 659 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 660 N->getOffset(), Flags); 661 } 662 663 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 664 SelectionDAG &DAG, unsigned Flags) { 665 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 666 } 667 668 template <class NodeTy> 669 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 670 bool IsLocal) const { 671 SDLoc DL(N); 672 EVT Ty = getPointerTy(DAG.getDataLayout()); 673 674 if (isPositionIndependent()) { 675 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 676 if (IsLocal) 677 // Use PC-relative addressing to access the symbol. This generates the 678 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 679 // %pcrel_lo(auipc)). 680 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 681 682 // Use PC-relative addressing to access the GOT for this symbol, then load 683 // the address from the GOT. This generates the pattern (PseudoLA sym), 684 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 685 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 686 } 687 688 switch (getTargetMachine().getCodeModel()) { 689 default: 690 report_fatal_error("Unsupported code model for lowering"); 691 case CodeModel::Small: { 692 // Generate a sequence for accessing addresses within the first 2 GiB of 693 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 694 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 695 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 696 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 697 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 698 } 699 case CodeModel::Medium: { 700 // Generate a sequence for accessing addresses within any 2GiB range within 701 // the address space. This generates the pattern (PseudoLLA sym), which 702 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 703 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 704 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 705 } 706 } 707 } 708 709 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 710 SelectionDAG &DAG) const { 711 SDLoc DL(Op); 712 EVT Ty = Op.getValueType(); 713 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 714 int64_t Offset = N->getOffset(); 715 MVT XLenVT = Subtarget.getXLenVT(); 716 717 const GlobalValue *GV = N->getGlobal(); 718 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 719 SDValue Addr = getAddr(N, DAG, IsLocal); 720 721 // In order to maximise the opportunity for common subexpression elimination, 722 // emit a separate ADD node for the global address offset instead of folding 723 // it in the global address node. Later peephole optimisations may choose to 724 // fold it back in when profitable. 725 if (Offset != 0) 726 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 727 DAG.getConstant(Offset, DL, XLenVT)); 728 return Addr; 729 } 730 731 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 732 SelectionDAG &DAG) const { 733 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 734 735 return getAddr(N, DAG); 736 } 737 738 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 739 SelectionDAG &DAG) const { 740 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 741 742 return getAddr(N, DAG); 743 } 744 745 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 746 SelectionDAG &DAG) const { 747 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 748 749 return getAddr(N, DAG); 750 } 751 752 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 753 SelectionDAG &DAG, 754 bool UseGOT) const { 755 SDLoc DL(N); 756 EVT Ty = getPointerTy(DAG.getDataLayout()); 757 const GlobalValue *GV = N->getGlobal(); 758 MVT XLenVT = Subtarget.getXLenVT(); 759 760 if (UseGOT) { 761 // Use PC-relative addressing to access the GOT for this TLS symbol, then 762 // load the address from the GOT and add the thread pointer. This generates 763 // the pattern (PseudoLA_TLS_IE sym), which expands to 764 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 765 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 766 SDValue Load = 767 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 768 769 // Add the thread pointer. 770 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 771 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 772 } 773 774 // Generate a sequence for accessing the address relative to the thread 775 // pointer, with the appropriate adjustment for the thread pointer offset. 776 // This generates the pattern 777 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 778 SDValue AddrHi = 779 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 780 SDValue AddrAdd = 781 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 782 SDValue AddrLo = 783 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 784 785 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 786 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 787 SDValue MNAdd = SDValue( 788 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 789 0); 790 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 791 } 792 793 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 794 SelectionDAG &DAG) const { 795 SDLoc DL(N); 796 EVT Ty = getPointerTy(DAG.getDataLayout()); 797 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 798 const GlobalValue *GV = N->getGlobal(); 799 800 // Use a PC-relative addressing mode to access the global dynamic GOT address. 801 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 802 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 803 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 804 SDValue Load = 805 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 806 807 // Prepare argument list to generate call. 808 ArgListTy Args; 809 ArgListEntry Entry; 810 Entry.Node = Load; 811 Entry.Ty = CallTy; 812 Args.push_back(Entry); 813 814 // Setup call to __tls_get_addr. 815 TargetLowering::CallLoweringInfo CLI(DAG); 816 CLI.setDebugLoc(DL) 817 .setChain(DAG.getEntryNode()) 818 .setLibCallee(CallingConv::C, CallTy, 819 DAG.getExternalSymbol("__tls_get_addr", Ty), 820 std::move(Args)); 821 822 return LowerCallTo(CLI).first; 823 } 824 825 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 826 SelectionDAG &DAG) const { 827 SDLoc DL(Op); 828 EVT Ty = Op.getValueType(); 829 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 830 int64_t Offset = N->getOffset(); 831 MVT XLenVT = Subtarget.getXLenVT(); 832 833 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 834 835 if (DAG.getMachineFunction().getFunction().getCallingConv() == 836 CallingConv::GHC) 837 report_fatal_error("In GHC calling convention TLS is not supported"); 838 839 SDValue Addr; 840 switch (Model) { 841 case TLSModel::LocalExec: 842 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 843 break; 844 case TLSModel::InitialExec: 845 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 846 break; 847 case TLSModel::LocalDynamic: 848 case TLSModel::GeneralDynamic: 849 Addr = getDynamicTLSAddr(N, DAG); 850 break; 851 } 852 853 // In order to maximise the opportunity for common subexpression elimination, 854 // emit a separate ADD node for the global address offset instead of folding 855 // it in the global address node. Later peephole optimisations may choose to 856 // fold it back in when profitable. 857 if (Offset != 0) 858 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 859 DAG.getConstant(Offset, DL, XLenVT)); 860 return Addr; 861 } 862 863 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 864 SDValue CondV = Op.getOperand(0); 865 SDValue TrueV = Op.getOperand(1); 866 SDValue FalseV = Op.getOperand(2); 867 SDLoc DL(Op); 868 MVT XLenVT = Subtarget.getXLenVT(); 869 870 // If the result type is XLenVT and CondV is the output of a SETCC node 871 // which also operated on XLenVT inputs, then merge the SETCC node into the 872 // lowered RISCVISD::SELECT_CC to take advantage of the integer 873 // compare+branch instructions. i.e.: 874 // (select (setcc lhs, rhs, cc), truev, falsev) 875 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 876 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 877 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 878 SDValue LHS = CondV.getOperand(0); 879 SDValue RHS = CondV.getOperand(1); 880 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 881 ISD::CondCode CCVal = CC->get(); 882 883 normaliseSetCC(LHS, RHS, CCVal); 884 885 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 886 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 887 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 888 } 889 890 // Otherwise: 891 // (select condv, truev, falsev) 892 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 893 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 894 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 895 896 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 897 898 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 899 } 900 901 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 902 MachineFunction &MF = DAG.getMachineFunction(); 903 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 904 905 SDLoc DL(Op); 906 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 907 getPointerTy(MF.getDataLayout())); 908 909 // vastart just stores the address of the VarArgsFrameIndex slot into the 910 // memory location argument. 911 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 912 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 913 MachinePointerInfo(SV)); 914 } 915 916 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 917 SelectionDAG &DAG) const { 918 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 919 MachineFunction &MF = DAG.getMachineFunction(); 920 MachineFrameInfo &MFI = MF.getFrameInfo(); 921 MFI.setFrameAddressIsTaken(true); 922 Register FrameReg = RI.getFrameRegister(MF); 923 int XLenInBytes = Subtarget.getXLen() / 8; 924 925 EVT VT = Op.getValueType(); 926 SDLoc DL(Op); 927 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 928 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 929 while (Depth--) { 930 int Offset = -(XLenInBytes * 2); 931 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 932 DAG.getIntPtrConstant(Offset, DL)); 933 FrameAddr = 934 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 935 } 936 return FrameAddr; 937 } 938 939 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 940 SelectionDAG &DAG) const { 941 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 942 MachineFunction &MF = DAG.getMachineFunction(); 943 MachineFrameInfo &MFI = MF.getFrameInfo(); 944 MFI.setReturnAddressIsTaken(true); 945 MVT XLenVT = Subtarget.getXLenVT(); 946 int XLenInBytes = Subtarget.getXLen() / 8; 947 948 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 949 return SDValue(); 950 951 EVT VT = Op.getValueType(); 952 SDLoc DL(Op); 953 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 954 if (Depth) { 955 int Off = -XLenInBytes; 956 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 957 SDValue Offset = DAG.getConstant(Off, DL, VT); 958 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 959 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 960 MachinePointerInfo()); 961 } 962 963 // Return the value of the return address register, marking it an implicit 964 // live-in. 965 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 966 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 967 } 968 969 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 970 SelectionDAG &DAG) const { 971 SDLoc DL(Op); 972 SDValue Lo = Op.getOperand(0); 973 SDValue Hi = Op.getOperand(1); 974 SDValue Shamt = Op.getOperand(2); 975 EVT VT = Lo.getValueType(); 976 977 // if Shamt-XLEN < 0: // Shamt < XLEN 978 // Lo = Lo << Shamt 979 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 980 // else: 981 // Lo = 0 982 // Hi = Lo << (Shamt-XLEN) 983 984 SDValue Zero = DAG.getConstant(0, DL, VT); 985 SDValue One = DAG.getConstant(1, DL, VT); 986 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 987 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 988 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 989 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 990 991 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 992 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 993 SDValue ShiftRightLo = 994 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 995 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 996 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 997 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 998 999 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1000 1001 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 1002 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1003 1004 SDValue Parts[2] = {Lo, Hi}; 1005 return DAG.getMergeValues(Parts, DL); 1006 } 1007 1008 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 1009 bool IsSRA) const { 1010 SDLoc DL(Op); 1011 SDValue Lo = Op.getOperand(0); 1012 SDValue Hi = Op.getOperand(1); 1013 SDValue Shamt = Op.getOperand(2); 1014 EVT VT = Lo.getValueType(); 1015 1016 // SRA expansion: 1017 // if Shamt-XLEN < 0: // Shamt < XLEN 1018 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1019 // Hi = Hi >>s Shamt 1020 // else: 1021 // Lo = Hi >>s (Shamt-XLEN); 1022 // Hi = Hi >>s (XLEN-1) 1023 // 1024 // SRL expansion: 1025 // if Shamt-XLEN < 0: // Shamt < XLEN 1026 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1027 // Hi = Hi >>u Shamt 1028 // else: 1029 // Lo = Hi >>u (Shamt-XLEN); 1030 // Hi = 0; 1031 1032 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 1033 1034 SDValue Zero = DAG.getConstant(0, DL, VT); 1035 SDValue One = DAG.getConstant(1, DL, VT); 1036 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 1037 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 1038 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 1039 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 1040 1041 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 1042 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 1043 SDValue ShiftLeftHi = 1044 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 1045 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 1046 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 1047 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 1048 SDValue HiFalse = 1049 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 1050 1051 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1052 1053 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 1054 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1055 1056 SDValue Parts[2] = {Lo, Hi}; 1057 return DAG.getMergeValues(Parts, DL); 1058 } 1059 1060 // Custom-lower a SPLAT_VECTOR where XLEN<SEW, as the SEW element type is 1061 // illegal (currently only vXi64 RV32). 1062 // FIXME: We could also catch non-constant sign-extended i32 values and lower 1063 // them to SPLAT_VECTOR_I64 1064 SDValue RISCVTargetLowering::lowerSPLATVECTOR(SDValue Op, 1065 SelectionDAG &DAG) const { 1066 SDLoc DL(Op); 1067 EVT VecVT = Op.getValueType(); 1068 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 1069 "Unexpected SPLAT_VECTOR lowering"); 1070 SDValue SplatVal = Op.getOperand(0); 1071 1072 // If we can prove that the value is a sign-extended 32-bit value, lower this 1073 // as a custom node in order to try and match RVV vector/scalar instructions. 1074 if (auto *CVal = dyn_cast<ConstantSDNode>(SplatVal)) { 1075 if (isInt<32>(CVal->getSExtValue())) 1076 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 1077 DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32)); 1078 } 1079 1080 // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not 1081 // to accidentally sign-extend the 32-bit halves to the e64 SEW: 1082 // vmv.v.x vX, hi 1083 // vsll.vx vX, vX, /*32*/ 1084 // vmv.v.x vY, lo 1085 // vsll.vx vY, vY, /*32*/ 1086 // vsrl.vx vY, vY, /*32*/ 1087 // vor.vv vX, vX, vY 1088 SDValue One = DAG.getConstant(1, DL, MVT::i32); 1089 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 1090 SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT); 1091 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, Zero); 1092 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, One); 1093 1094 Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 1095 Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV); 1096 Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV); 1097 1098 if (isNullConstant(Hi)) 1099 return Lo; 1100 1101 Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi); 1102 Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV); 1103 1104 return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi); 1105 } 1106 1107 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 1108 SelectionDAG &DAG) const { 1109 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1110 SDLoc DL(Op); 1111 1112 if (Subtarget.hasStdExtV()) { 1113 // Some RVV intrinsics may claim that they want an integer operand to be 1114 // extended. 1115 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1116 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 1117 if (II->ExtendedOperand) { 1118 assert(II->ExtendedOperand < Op.getNumOperands()); 1119 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 1120 SDValue &ScalarOp = Operands[II->ExtendedOperand]; 1121 EVT OpVT = ScalarOp.getValueType(); 1122 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 1123 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 1124 // If the operand is a constant, sign extend to increase our chances 1125 // of being able to use a .vi instruction. ANY_EXTEND would become a 1126 // a zero extend and the simm5 check in isel would fail. 1127 // FIXME: Should we ignore the upper bits in isel instead? 1128 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 1129 : ISD::ANY_EXTEND; 1130 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 1131 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), 1132 Operands); 1133 } 1134 } 1135 } 1136 } 1137 1138 switch (IntNo) { 1139 default: 1140 return SDValue(); // Don't custom lower most intrinsics. 1141 case Intrinsic::thread_pointer: { 1142 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1143 return DAG.getRegister(RISCV::X4, PtrVT); 1144 } 1145 case Intrinsic::riscv_vmv_x_s: 1146 assert(Op.getValueType() == Subtarget.getXLenVT() && "Unexpected VT!"); 1147 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 1148 Op.getOperand(1)); 1149 } 1150 } 1151 1152 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 1153 SelectionDAG &DAG) const { 1154 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1155 SDLoc DL(Op); 1156 1157 if (Subtarget.hasStdExtV()) { 1158 // Some RVV intrinsics may claim that they want an integer operand to be 1159 // extended. 1160 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1161 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 1162 if (II->ExtendedOperand) { 1163 // The operands start from the second argument in INTRINSIC_W_CHAIN. 1164 unsigned ExtendOp = II->ExtendedOperand + 1; 1165 assert(ExtendOp < Op.getNumOperands()); 1166 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 1167 SDValue &ScalarOp = Operands[ExtendOp]; 1168 EVT OpVT = ScalarOp.getValueType(); 1169 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 1170 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 1171 // If the operand is a constant, sign extend to increase our chances 1172 // of being able to use a .vi instruction. ANY_EXTEND would become a 1173 // a zero extend and the simm5 check in isel would fail. 1174 // FIXME: Should we ignore the upper bits in isel instead? 1175 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 1176 : ISD::ANY_EXTEND; 1177 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 1178 return DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, Op->getVTList(), 1179 Operands); 1180 } 1181 } 1182 } 1183 } 1184 1185 return SDValue(); 1186 } 1187 1188 // Returns the opcode of the target-specific SDNode that implements the 32-bit 1189 // form of the given Opcode. 1190 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 1191 switch (Opcode) { 1192 default: 1193 llvm_unreachable("Unexpected opcode"); 1194 case ISD::SHL: 1195 return RISCVISD::SLLW; 1196 case ISD::SRA: 1197 return RISCVISD::SRAW; 1198 case ISD::SRL: 1199 return RISCVISD::SRLW; 1200 case ISD::SDIV: 1201 return RISCVISD::DIVW; 1202 case ISD::UDIV: 1203 return RISCVISD::DIVUW; 1204 case ISD::UREM: 1205 return RISCVISD::REMUW; 1206 case ISD::ROTL: 1207 return RISCVISD::ROLW; 1208 case ISD::ROTR: 1209 return RISCVISD::RORW; 1210 case RISCVISD::GREVI: 1211 return RISCVISD::GREVIW; 1212 case RISCVISD::GORCI: 1213 return RISCVISD::GORCIW; 1214 } 1215 } 1216 1217 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 1218 // Because i32 isn't a legal type for RV64, these operations would otherwise 1219 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 1220 // later one because the fact the operation was originally of type i32 is 1221 // lost. 1222 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { 1223 SDLoc DL(N); 1224 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1225 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1226 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1227 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 1228 // ReplaceNodeResults requires we maintain the same type for the return value. 1229 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 1230 } 1231 1232 // Converts the given 32-bit operation to a i64 operation with signed extension 1233 // semantic to reduce the signed extension instructions. 1234 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 1235 SDLoc DL(N); 1236 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1237 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1238 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 1239 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 1240 DAG.getValueType(MVT::i32)); 1241 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 1242 } 1243 1244 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 1245 SmallVectorImpl<SDValue> &Results, 1246 SelectionDAG &DAG) const { 1247 SDLoc DL(N); 1248 switch (N->getOpcode()) { 1249 default: 1250 llvm_unreachable("Don't know how to custom type legalize this operation!"); 1251 case ISD::STRICT_FP_TO_SINT: 1252 case ISD::STRICT_FP_TO_UINT: 1253 case ISD::FP_TO_SINT: 1254 case ISD::FP_TO_UINT: { 1255 bool IsStrict = N->isStrictFPOpcode(); 1256 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1257 "Unexpected custom legalisation"); 1258 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 1259 // If the FP type needs to be softened, emit a library call using the 'si' 1260 // version. If we left it to default legalization we'd end up with 'di'. If 1261 // the FP type doesn't need to be softened just let generic type 1262 // legalization promote the result type. 1263 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 1264 TargetLowering::TypeSoftenFloat) 1265 return; 1266 RTLIB::Libcall LC; 1267 if (N->getOpcode() == ISD::FP_TO_SINT || 1268 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 1269 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 1270 else 1271 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 1272 MakeLibCallOptions CallOptions; 1273 EVT OpVT = Op0.getValueType(); 1274 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 1275 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 1276 SDValue Result; 1277 std::tie(Result, Chain) = 1278 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 1279 Results.push_back(Result); 1280 if (IsStrict) 1281 Results.push_back(Chain); 1282 break; 1283 } 1284 case ISD::READCYCLECOUNTER: { 1285 assert(!Subtarget.is64Bit() && 1286 "READCYCLECOUNTER only has custom type legalization on riscv32"); 1287 1288 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 1289 SDValue RCW = 1290 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 1291 1292 Results.push_back( 1293 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 1294 Results.push_back(RCW.getValue(2)); 1295 break; 1296 } 1297 case ISD::ADD: 1298 case ISD::SUB: 1299 case ISD::MUL: 1300 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1301 "Unexpected custom legalisation"); 1302 if (N->getOperand(1).getOpcode() == ISD::Constant) 1303 return; 1304 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 1305 break; 1306 case ISD::SHL: 1307 case ISD::SRA: 1308 case ISD::SRL: 1309 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1310 "Unexpected custom legalisation"); 1311 if (N->getOperand(1).getOpcode() == ISD::Constant) 1312 return; 1313 Results.push_back(customLegalizeToWOp(N, DAG)); 1314 break; 1315 case ISD::ROTL: 1316 case ISD::ROTR: 1317 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1318 "Unexpected custom legalisation"); 1319 Results.push_back(customLegalizeToWOp(N, DAG)); 1320 break; 1321 case ISD::SDIV: 1322 case ISD::UDIV: 1323 case ISD::UREM: 1324 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1325 Subtarget.hasStdExtM() && "Unexpected custom legalisation"); 1326 if (N->getOperand(0).getOpcode() == ISD::Constant || 1327 N->getOperand(1).getOpcode() == ISD::Constant) 1328 return; 1329 Results.push_back(customLegalizeToWOp(N, DAG)); 1330 break; 1331 case ISD::BITCAST: { 1332 assert(((N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1333 Subtarget.hasStdExtF()) || 1334 (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh())) && 1335 "Unexpected custom legalisation"); 1336 SDValue Op0 = N->getOperand(0); 1337 if (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh()) { 1338 if (Op0.getValueType() != MVT::f16) 1339 return; 1340 SDValue FPConv = 1341 DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Op0); 1342 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 1343 } else if (N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1344 Subtarget.hasStdExtF()) { 1345 if (Op0.getValueType() != MVT::f32) 1346 return; 1347 SDValue FPConv = 1348 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 1349 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 1350 } 1351 break; 1352 } 1353 case RISCVISD::GREVI: 1354 case RISCVISD::GORCI: { 1355 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1356 "Unexpected custom legalisation"); 1357 // This is similar to customLegalizeToWOp, except that we pass the second 1358 // operand (a TargetConstant) straight through: it is already of type 1359 // XLenVT. 1360 SDLoc DL(N); 1361 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1362 SDValue NewOp0 = 1363 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1364 SDValue NewRes = 1365 DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1)); 1366 // ReplaceNodeResults requires we maintain the same type for the return 1367 // value. 1368 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 1369 break; 1370 } 1371 case ISD::BSWAP: 1372 case ISD::BITREVERSE: { 1373 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1374 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1375 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 1376 N->getOperand(0)); 1377 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 1378 SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0, 1379 DAG.getTargetConstant(Imm, DL, 1380 Subtarget.getXLenVT())); 1381 // ReplaceNodeResults requires we maintain the same type for the return 1382 // value. 1383 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 1384 break; 1385 } 1386 case ISD::FSHL: 1387 case ISD::FSHR: { 1388 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1389 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 1390 SDValue NewOp0 = 1391 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1392 SDValue NewOp1 = 1393 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1394 SDValue NewOp2 = 1395 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 1396 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 1397 // Mask the shift amount to 5 bits. 1398 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 1399 DAG.getConstant(0x1f, DL, MVT::i64)); 1400 unsigned Opc = 1401 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 1402 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 1403 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 1404 break; 1405 } 1406 case ISD::INTRINSIC_WO_CHAIN: { 1407 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 1408 switch (IntNo) { 1409 default: 1410 llvm_unreachable( 1411 "Don't know how to custom type legalize this intrinsic!"); 1412 case Intrinsic::riscv_vmv_x_s: { 1413 EVT VT = N->getValueType(0); 1414 assert((VT == MVT::i8 || VT == MVT::i16 || 1415 (Subtarget.is64Bit() && VT == MVT::i32)) && 1416 "Unexpected custom legalisation!"); 1417 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 1418 Subtarget.getXLenVT(), N->getOperand(1)); 1419 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 1420 break; 1421 } 1422 } 1423 break; 1424 } 1425 } 1426 } 1427 1428 // A structure to hold one of the bit-manipulation patterns below. Together, a 1429 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 1430 // (or (and (shl x, 1), 0xAAAAAAAA), 1431 // (and (srl x, 1), 0x55555555)) 1432 struct RISCVBitmanipPat { 1433 SDValue Op; 1434 unsigned ShAmt; 1435 bool IsSHL; 1436 1437 bool formsPairWith(const RISCVBitmanipPat &Other) const { 1438 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 1439 } 1440 }; 1441 1442 // Matches any of the following bit-manipulation patterns: 1443 // (and (shl x, 1), (0x55555555 << 1)) 1444 // (and (srl x, 1), 0x55555555) 1445 // (shl (and x, 0x55555555), 1) 1446 // (srl (and x, (0x55555555 << 1)), 1) 1447 // where the shift amount and mask may vary thus: 1448 // [1] = 0x55555555 / 0xAAAAAAAA 1449 // [2] = 0x33333333 / 0xCCCCCCCC 1450 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 1451 // [8] = 0x00FF00FF / 0xFF00FF00 1452 // [16] = 0x0000FFFF / 0xFFFFFFFF 1453 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 1454 static Optional<RISCVBitmanipPat> matchRISCVBitmanipPat(SDValue Op) { 1455 Optional<uint64_t> Mask; 1456 // Optionally consume a mask around the shift operation. 1457 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 1458 Mask = Op.getConstantOperandVal(1); 1459 Op = Op.getOperand(0); 1460 } 1461 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 1462 return None; 1463 bool IsSHL = Op.getOpcode() == ISD::SHL; 1464 1465 if (!isa<ConstantSDNode>(Op.getOperand(1))) 1466 return None; 1467 auto ShAmt = Op.getConstantOperandVal(1); 1468 1469 if (!isPowerOf2_64(ShAmt)) 1470 return None; 1471 1472 // These are the unshifted masks which we use to match bit-manipulation 1473 // patterns. They may be shifted left in certain circumstances. 1474 static const uint64_t BitmanipMasks[] = { 1475 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 1476 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL, 1477 }; 1478 1479 unsigned MaskIdx = Log2_64(ShAmt); 1480 if (MaskIdx >= array_lengthof(BitmanipMasks)) 1481 return None; 1482 1483 auto Src = Op.getOperand(0); 1484 1485 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 1486 auto ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 1487 1488 // The expected mask is shifted left when the AND is found around SHL 1489 // patterns. 1490 // ((x >> 1) & 0x55555555) 1491 // ((x << 1) & 0xAAAAAAAA) 1492 bool SHLExpMask = IsSHL; 1493 1494 if (!Mask) { 1495 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 1496 // the mask is all ones: consume that now. 1497 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 1498 Mask = Src.getConstantOperandVal(1); 1499 Src = Src.getOperand(0); 1500 // The expected mask is now in fact shifted left for SRL, so reverse the 1501 // decision. 1502 // ((x & 0xAAAAAAAA) >> 1) 1503 // ((x & 0x55555555) << 1) 1504 SHLExpMask = !SHLExpMask; 1505 } else { 1506 // Use a default shifted mask of all-ones if there's no AND, truncated 1507 // down to the expected width. This simplifies the logic later on. 1508 Mask = maskTrailingOnes<uint64_t>(Width); 1509 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 1510 } 1511 } 1512 1513 if (SHLExpMask) 1514 ExpMask <<= ShAmt; 1515 1516 if (Mask != ExpMask) 1517 return None; 1518 1519 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 1520 } 1521 1522 // Match the following pattern as a GREVI(W) operation 1523 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 1524 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 1525 const RISCVSubtarget &Subtarget) { 1526 EVT VT = Op.getValueType(); 1527 1528 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 1529 auto LHS = matchRISCVBitmanipPat(Op.getOperand(0)); 1530 auto RHS = matchRISCVBitmanipPat(Op.getOperand(1)); 1531 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 1532 SDLoc DL(Op); 1533 return DAG.getNode( 1534 RISCVISD::GREVI, DL, VT, LHS->Op, 1535 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1536 } 1537 } 1538 return SDValue(); 1539 } 1540 1541 // Matches any the following pattern as a GORCI(W) operation 1542 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 1543 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 1544 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 1545 // Note that with the variant of 3., 1546 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 1547 // the inner pattern will first be matched as GREVI and then the outer 1548 // pattern will be matched to GORC via the first rule above. 1549 // 4. (or (rotl/rotr x, bitwidth/2), x) 1550 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 1551 const RISCVSubtarget &Subtarget) { 1552 EVT VT = Op.getValueType(); 1553 1554 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 1555 SDLoc DL(Op); 1556 SDValue Op0 = Op.getOperand(0); 1557 SDValue Op1 = Op.getOperand(1); 1558 1559 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 1560 if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X && 1561 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 1562 return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1)); 1563 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 1564 if ((Reverse.getOpcode() == ISD::ROTL || 1565 Reverse.getOpcode() == ISD::ROTR) && 1566 Reverse.getOperand(0) == X && 1567 isa<ConstantSDNode>(Reverse.getOperand(1))) { 1568 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 1569 if (RotAmt == (VT.getSizeInBits() / 2)) 1570 return DAG.getNode( 1571 RISCVISD::GORCI, DL, VT, X, 1572 DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT())); 1573 } 1574 return SDValue(); 1575 }; 1576 1577 // Check for either commutable permutation of (or (GREVI x, shamt), x) 1578 if (SDValue V = MatchOROfReverse(Op0, Op1)) 1579 return V; 1580 if (SDValue V = MatchOROfReverse(Op1, Op0)) 1581 return V; 1582 1583 // OR is commutable so canonicalize its OR operand to the left 1584 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 1585 std::swap(Op0, Op1); 1586 if (Op0.getOpcode() != ISD::OR) 1587 return SDValue(); 1588 SDValue OrOp0 = Op0.getOperand(0); 1589 SDValue OrOp1 = Op0.getOperand(1); 1590 auto LHS = matchRISCVBitmanipPat(OrOp0); 1591 // OR is commutable so swap the operands and try again: x might have been 1592 // on the left 1593 if (!LHS) { 1594 std::swap(OrOp0, OrOp1); 1595 LHS = matchRISCVBitmanipPat(OrOp0); 1596 } 1597 auto RHS = matchRISCVBitmanipPat(Op1); 1598 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 1599 return DAG.getNode( 1600 RISCVISD::GORCI, DL, VT, LHS->Op, 1601 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1602 } 1603 } 1604 return SDValue(); 1605 } 1606 1607 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 1608 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 1609 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 1610 // not undo itself, but they are redundant. 1611 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 1612 unsigned ShAmt1 = N->getConstantOperandVal(1); 1613 SDValue Src = N->getOperand(0); 1614 1615 if (Src.getOpcode() != N->getOpcode()) 1616 return SDValue(); 1617 1618 unsigned ShAmt2 = Src.getConstantOperandVal(1); 1619 Src = Src.getOperand(0); 1620 1621 unsigned CombinedShAmt; 1622 if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW) 1623 CombinedShAmt = ShAmt1 | ShAmt2; 1624 else 1625 CombinedShAmt = ShAmt1 ^ ShAmt2; 1626 1627 if (CombinedShAmt == 0) 1628 return Src; 1629 1630 SDLoc DL(N); 1631 return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src, 1632 DAG.getTargetConstant(CombinedShAmt, DL, 1633 N->getOperand(1).getValueType())); 1634 } 1635 1636 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 1637 DAGCombinerInfo &DCI) const { 1638 SelectionDAG &DAG = DCI.DAG; 1639 1640 switch (N->getOpcode()) { 1641 default: 1642 break; 1643 case RISCVISD::SplitF64: { 1644 SDValue Op0 = N->getOperand(0); 1645 // If the input to SplitF64 is just BuildPairF64 then the operation is 1646 // redundant. Instead, use BuildPairF64's operands directly. 1647 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 1648 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 1649 1650 SDLoc DL(N); 1651 1652 // It's cheaper to materialise two 32-bit integers than to load a double 1653 // from the constant pool and transfer it to integer registers through the 1654 // stack. 1655 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 1656 APInt V = C->getValueAPF().bitcastToAPInt(); 1657 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 1658 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 1659 return DCI.CombineTo(N, Lo, Hi); 1660 } 1661 1662 // This is a target-specific version of a DAGCombine performed in 1663 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1664 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1665 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1666 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1667 !Op0.getNode()->hasOneUse()) 1668 break; 1669 SDValue NewSplitF64 = 1670 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 1671 Op0.getOperand(0)); 1672 SDValue Lo = NewSplitF64.getValue(0); 1673 SDValue Hi = NewSplitF64.getValue(1); 1674 APInt SignBit = APInt::getSignMask(32); 1675 if (Op0.getOpcode() == ISD::FNEG) { 1676 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 1677 DAG.getConstant(SignBit, DL, MVT::i32)); 1678 return DCI.CombineTo(N, Lo, NewHi); 1679 } 1680 assert(Op0.getOpcode() == ISD::FABS); 1681 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 1682 DAG.getConstant(~SignBit, DL, MVT::i32)); 1683 return DCI.CombineTo(N, Lo, NewHi); 1684 } 1685 case RISCVISD::SLLW: 1686 case RISCVISD::SRAW: 1687 case RISCVISD::SRLW: 1688 case RISCVISD::ROLW: 1689 case RISCVISD::RORW: { 1690 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 1691 SDValue LHS = N->getOperand(0); 1692 SDValue RHS = N->getOperand(1); 1693 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 1694 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 1695 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 1696 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 1697 if (N->getOpcode() != ISD::DELETED_NODE) 1698 DCI.AddToWorklist(N); 1699 return SDValue(N, 0); 1700 } 1701 break; 1702 } 1703 case RISCVISD::FSLW: 1704 case RISCVISD::FSRW: { 1705 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 1706 // read. 1707 SDValue Op0 = N->getOperand(0); 1708 SDValue Op1 = N->getOperand(1); 1709 SDValue ShAmt = N->getOperand(2); 1710 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 1711 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 1712 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 1713 SimplifyDemandedBits(Op1, OpMask, DCI) || 1714 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 1715 if (N->getOpcode() != ISD::DELETED_NODE) 1716 DCI.AddToWorklist(N); 1717 return SDValue(N, 0); 1718 } 1719 break; 1720 } 1721 case RISCVISD::GREVIW: 1722 case RISCVISD::GORCIW: { 1723 // Only the lower 32 bits of the first operand are read 1724 SDValue Op0 = N->getOperand(0); 1725 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 1726 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 1727 if (N->getOpcode() != ISD::DELETED_NODE) 1728 DCI.AddToWorklist(N); 1729 return SDValue(N, 0); 1730 } 1731 1732 return combineGREVI_GORCI(N, DCI.DAG); 1733 } 1734 case RISCVISD::FMV_X_ANYEXTW_RV64: { 1735 SDLoc DL(N); 1736 SDValue Op0 = N->getOperand(0); 1737 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 1738 // conversion is unnecessary and can be replaced with an ANY_EXTEND 1739 // of the FMV_W_X_RV64 operand. 1740 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 1741 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 1742 "Unexpected value type!"); 1743 return Op0.getOperand(0); 1744 } 1745 1746 // This is a target-specific version of a DAGCombine performed in 1747 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1748 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1749 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1750 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1751 !Op0.getNode()->hasOneUse()) 1752 break; 1753 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 1754 Op0.getOperand(0)); 1755 APInt SignBit = APInt::getSignMask(32).sext(64); 1756 if (Op0.getOpcode() == ISD::FNEG) 1757 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 1758 DAG.getConstant(SignBit, DL, MVT::i64)); 1759 1760 assert(Op0.getOpcode() == ISD::FABS); 1761 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 1762 DAG.getConstant(~SignBit, DL, MVT::i64)); 1763 } 1764 case RISCVISD::GREVI: 1765 case RISCVISD::GORCI: 1766 return combineGREVI_GORCI(N, DCI.DAG); 1767 case ISD::OR: 1768 if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget)) 1769 return GREV; 1770 if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget)) 1771 return GORC; 1772 break; 1773 } 1774 1775 return SDValue(); 1776 } 1777 1778 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 1779 const SDNode *N, CombineLevel Level) const { 1780 // The following folds are only desirable if `(OP _, c1 << c2)` can be 1781 // materialised in fewer instructions than `(OP _, c1)`: 1782 // 1783 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 1784 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 1785 SDValue N0 = N->getOperand(0); 1786 EVT Ty = N0.getValueType(); 1787 if (Ty.isScalarInteger() && 1788 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 1789 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 1790 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1791 if (C1 && C2) { 1792 APInt C1Int = C1->getAPIntValue(); 1793 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 1794 1795 // We can materialise `c1 << c2` into an add immediate, so it's "free", 1796 // and the combine should happen, to potentially allow further combines 1797 // later. 1798 if (ShiftedC1Int.getMinSignedBits() <= 64 && 1799 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 1800 return true; 1801 1802 // We can materialise `c1` in an add immediate, so it's "free", and the 1803 // combine should be prevented. 1804 if (C1Int.getMinSignedBits() <= 64 && 1805 isLegalAddImmediate(C1Int.getSExtValue())) 1806 return false; 1807 1808 // Neither constant will fit into an immediate, so find materialisation 1809 // costs. 1810 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 1811 Subtarget.is64Bit()); 1812 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 1813 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 1814 1815 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 1816 // combine should be prevented. 1817 if (C1Cost < ShiftedC1Cost) 1818 return false; 1819 } 1820 } 1821 return true; 1822 } 1823 1824 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 1825 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 1826 unsigned Depth) const { 1827 switch (Op.getOpcode()) { 1828 default: 1829 break; 1830 case RISCVISD::SLLW: 1831 case RISCVISD::SRAW: 1832 case RISCVISD::SRLW: 1833 case RISCVISD::DIVW: 1834 case RISCVISD::DIVUW: 1835 case RISCVISD::REMUW: 1836 case RISCVISD::ROLW: 1837 case RISCVISD::RORW: 1838 case RISCVISD::GREVIW: 1839 case RISCVISD::GORCIW: 1840 case RISCVISD::FSLW: 1841 case RISCVISD::FSRW: 1842 // TODO: As the result is sign-extended, this is conservatively correct. A 1843 // more precise answer could be calculated for SRAW depending on known 1844 // bits in the shift amount. 1845 return 33; 1846 case RISCVISD::VMV_X_S: 1847 // The number of sign bits of the scalar result is computed by obtaining the 1848 // element type of the input vector operand, substracting its width from the 1849 // XLEN, and then adding one (sign bit within the element type). 1850 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 1851 } 1852 1853 return 1; 1854 } 1855 1856 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 1857 MachineBasicBlock *BB) { 1858 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 1859 1860 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 1861 // Should the count have wrapped while it was being read, we need to try 1862 // again. 1863 // ... 1864 // read: 1865 // rdcycleh x3 # load high word of cycle 1866 // rdcycle x2 # load low word of cycle 1867 // rdcycleh x4 # load high word of cycle 1868 // bne x3, x4, read # check if high word reads match, otherwise try again 1869 // ... 1870 1871 MachineFunction &MF = *BB->getParent(); 1872 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1873 MachineFunction::iterator It = ++BB->getIterator(); 1874 1875 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1876 MF.insert(It, LoopMBB); 1877 1878 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1879 MF.insert(It, DoneMBB); 1880 1881 // Transfer the remainder of BB and its successor edges to DoneMBB. 1882 DoneMBB->splice(DoneMBB->begin(), BB, 1883 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1884 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 1885 1886 BB->addSuccessor(LoopMBB); 1887 1888 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1889 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1890 Register LoReg = MI.getOperand(0).getReg(); 1891 Register HiReg = MI.getOperand(1).getReg(); 1892 DebugLoc DL = MI.getDebugLoc(); 1893 1894 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1895 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 1896 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1897 .addReg(RISCV::X0); 1898 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 1899 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 1900 .addReg(RISCV::X0); 1901 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 1902 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1903 .addReg(RISCV::X0); 1904 1905 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 1906 .addReg(HiReg) 1907 .addReg(ReadAgainReg) 1908 .addMBB(LoopMBB); 1909 1910 LoopMBB->addSuccessor(LoopMBB); 1911 LoopMBB->addSuccessor(DoneMBB); 1912 1913 MI.eraseFromParent(); 1914 1915 return DoneMBB; 1916 } 1917 1918 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 1919 MachineBasicBlock *BB) { 1920 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 1921 1922 MachineFunction &MF = *BB->getParent(); 1923 DebugLoc DL = MI.getDebugLoc(); 1924 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1925 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1926 Register LoReg = MI.getOperand(0).getReg(); 1927 Register HiReg = MI.getOperand(1).getReg(); 1928 Register SrcReg = MI.getOperand(2).getReg(); 1929 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 1930 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 1931 1932 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 1933 RI); 1934 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 1935 MachineMemOperand *MMOLo = 1936 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 1937 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 1938 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 1939 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 1940 .addFrameIndex(FI) 1941 .addImm(0) 1942 .addMemOperand(MMOLo); 1943 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 1944 .addFrameIndex(FI) 1945 .addImm(4) 1946 .addMemOperand(MMOHi); 1947 MI.eraseFromParent(); // The pseudo instruction is gone now. 1948 return BB; 1949 } 1950 1951 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 1952 MachineBasicBlock *BB) { 1953 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 1954 "Unexpected instruction"); 1955 1956 MachineFunction &MF = *BB->getParent(); 1957 DebugLoc DL = MI.getDebugLoc(); 1958 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1959 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1960 Register DstReg = MI.getOperand(0).getReg(); 1961 Register LoReg = MI.getOperand(1).getReg(); 1962 Register HiReg = MI.getOperand(2).getReg(); 1963 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 1964 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 1965 1966 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 1967 MachineMemOperand *MMOLo = 1968 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 1969 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 1970 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 1971 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1972 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 1973 .addFrameIndex(FI) 1974 .addImm(0) 1975 .addMemOperand(MMOLo); 1976 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1977 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 1978 .addFrameIndex(FI) 1979 .addImm(4) 1980 .addMemOperand(MMOHi); 1981 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 1982 MI.eraseFromParent(); // The pseudo instruction is gone now. 1983 return BB; 1984 } 1985 1986 static bool isSelectPseudo(MachineInstr &MI) { 1987 switch (MI.getOpcode()) { 1988 default: 1989 return false; 1990 case RISCV::Select_GPR_Using_CC_GPR: 1991 case RISCV::Select_FPR16_Using_CC_GPR: 1992 case RISCV::Select_FPR32_Using_CC_GPR: 1993 case RISCV::Select_FPR64_Using_CC_GPR: 1994 return true; 1995 } 1996 } 1997 1998 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 1999 MachineBasicBlock *BB) { 2000 // To "insert" Select_* instructions, we actually have to insert the triangle 2001 // control-flow pattern. The incoming instructions know the destination vreg 2002 // to set, the condition code register to branch on, the true/false values to 2003 // select between, and the condcode to use to select the appropriate branch. 2004 // 2005 // We produce the following control flow: 2006 // HeadMBB 2007 // | \ 2008 // | IfFalseMBB 2009 // | / 2010 // TailMBB 2011 // 2012 // When we find a sequence of selects we attempt to optimize their emission 2013 // by sharing the control flow. Currently we only handle cases where we have 2014 // multiple selects with the exact same condition (same LHS, RHS and CC). 2015 // The selects may be interleaved with other instructions if the other 2016 // instructions meet some requirements we deem safe: 2017 // - They are debug instructions. Otherwise, 2018 // - They do not have side-effects, do not access memory and their inputs do 2019 // not depend on the results of the select pseudo-instructions. 2020 // The TrueV/FalseV operands of the selects cannot depend on the result of 2021 // previous selects in the sequence. 2022 // These conditions could be further relaxed. See the X86 target for a 2023 // related approach and more information. 2024 Register LHS = MI.getOperand(1).getReg(); 2025 Register RHS = MI.getOperand(2).getReg(); 2026 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 2027 2028 SmallVector<MachineInstr *, 4> SelectDebugValues; 2029 SmallSet<Register, 4> SelectDests; 2030 SelectDests.insert(MI.getOperand(0).getReg()); 2031 2032 MachineInstr *LastSelectPseudo = &MI; 2033 2034 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 2035 SequenceMBBI != E; ++SequenceMBBI) { 2036 if (SequenceMBBI->isDebugInstr()) 2037 continue; 2038 else if (isSelectPseudo(*SequenceMBBI)) { 2039 if (SequenceMBBI->getOperand(1).getReg() != LHS || 2040 SequenceMBBI->getOperand(2).getReg() != RHS || 2041 SequenceMBBI->getOperand(3).getImm() != CC || 2042 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 2043 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 2044 break; 2045 LastSelectPseudo = &*SequenceMBBI; 2046 SequenceMBBI->collectDebugValues(SelectDebugValues); 2047 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 2048 } else { 2049 if (SequenceMBBI->hasUnmodeledSideEffects() || 2050 SequenceMBBI->mayLoadOrStore()) 2051 break; 2052 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 2053 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 2054 })) 2055 break; 2056 } 2057 } 2058 2059 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 2060 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 2061 DebugLoc DL = MI.getDebugLoc(); 2062 MachineFunction::iterator I = ++BB->getIterator(); 2063 2064 MachineBasicBlock *HeadMBB = BB; 2065 MachineFunction *F = BB->getParent(); 2066 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 2067 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 2068 2069 F->insert(I, IfFalseMBB); 2070 F->insert(I, TailMBB); 2071 2072 // Transfer debug instructions associated with the selects to TailMBB. 2073 for (MachineInstr *DebugInstr : SelectDebugValues) { 2074 TailMBB->push_back(DebugInstr->removeFromParent()); 2075 } 2076 2077 // Move all instructions after the sequence to TailMBB. 2078 TailMBB->splice(TailMBB->end(), HeadMBB, 2079 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 2080 // Update machine-CFG edges by transferring all successors of the current 2081 // block to the new block which will contain the Phi nodes for the selects. 2082 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 2083 // Set the successors for HeadMBB. 2084 HeadMBB->addSuccessor(IfFalseMBB); 2085 HeadMBB->addSuccessor(TailMBB); 2086 2087 // Insert appropriate branch. 2088 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 2089 2090 BuildMI(HeadMBB, DL, TII.get(Opcode)) 2091 .addReg(LHS) 2092 .addReg(RHS) 2093 .addMBB(TailMBB); 2094 2095 // IfFalseMBB just falls through to TailMBB. 2096 IfFalseMBB->addSuccessor(TailMBB); 2097 2098 // Create PHIs for all of the select pseudo-instructions. 2099 auto SelectMBBI = MI.getIterator(); 2100 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 2101 auto InsertionPoint = TailMBB->begin(); 2102 while (SelectMBBI != SelectEnd) { 2103 auto Next = std::next(SelectMBBI); 2104 if (isSelectPseudo(*SelectMBBI)) { 2105 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 2106 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 2107 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 2108 .addReg(SelectMBBI->getOperand(4).getReg()) 2109 .addMBB(HeadMBB) 2110 .addReg(SelectMBBI->getOperand(5).getReg()) 2111 .addMBB(IfFalseMBB); 2112 SelectMBBI->eraseFromParent(); 2113 } 2114 SelectMBBI = Next; 2115 } 2116 2117 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 2118 return TailMBB; 2119 } 2120 2121 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB, 2122 int VLIndex, unsigned SEWIndex, 2123 unsigned VLMul, bool WritesElement0) { 2124 MachineFunction &MF = *BB->getParent(); 2125 DebugLoc DL = MI.getDebugLoc(); 2126 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2127 2128 unsigned SEW = MI.getOperand(SEWIndex).getImm(); 2129 assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW"); 2130 RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8)); 2131 2132 // LMUL should already be encoded correctly. 2133 RISCVVLMUL Multiplier = static_cast<RISCVVLMUL>(VLMul); 2134 2135 MachineRegisterInfo &MRI = MF.getRegInfo(); 2136 2137 // VL and VTYPE are alive here. 2138 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)); 2139 2140 if (VLIndex >= 0) { 2141 // Set VL (rs1 != X0). 2142 Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 2143 MIB.addReg(DestReg, RegState::Define | RegState::Dead) 2144 .addReg(MI.getOperand(VLIndex).getReg()); 2145 } else 2146 // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0). 2147 MIB.addReg(RISCV::X0, RegState::Define | RegState::Dead) 2148 .addReg(RISCV::X0, RegState::Kill); 2149 2150 // Default to tail agnostic unless the destination is tied to a source. In 2151 // that case the user would have some control over the tail values. The tail 2152 // policy is also ignored on instructions that only update element 0 like 2153 // vmv.s.x or reductions so use agnostic there to match the common case. 2154 // FIXME: This is conservatively correct, but we might want to detect that 2155 // the input is undefined. 2156 bool TailAgnostic = true; 2157 if (MI.isRegTiedToUseOperand(0) && !WritesElement0) 2158 TailAgnostic = false; 2159 2160 // For simplicity we reuse the vtype representation here. 2161 MIB.addImm(RISCVVType::encodeVTYPE(Multiplier, ElementWidth, 2162 /*TailAgnostic*/ TailAgnostic, 2163 /*MaskAgnostic*/ false)); 2164 2165 // Remove (now) redundant operands from pseudo 2166 MI.getOperand(SEWIndex).setImm(-1); 2167 if (VLIndex >= 0) { 2168 MI.getOperand(VLIndex).setReg(RISCV::NoRegister); 2169 MI.getOperand(VLIndex).setIsKill(false); 2170 } 2171 2172 return BB; 2173 } 2174 2175 MachineBasicBlock * 2176 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 2177 MachineBasicBlock *BB) const { 2178 2179 if (const RISCVVPseudosTable::PseudoInfo *RVV = 2180 RISCVVPseudosTable::getPseudoInfo(MI.getOpcode())) { 2181 int VLIndex = RVV->getVLIndex(); 2182 int SEWIndex = RVV->getSEWIndex(); 2183 bool WritesElement0 = RVV->writesElement0(); 2184 2185 assert(SEWIndex >= 0 && "SEWIndex must be >= 0"); 2186 return addVSetVL(MI, BB, VLIndex, SEWIndex, RVV->VLMul, WritesElement0); 2187 } 2188 2189 switch (MI.getOpcode()) { 2190 default: 2191 llvm_unreachable("Unexpected instr type to insert"); 2192 case RISCV::ReadCycleWide: 2193 assert(!Subtarget.is64Bit() && 2194 "ReadCycleWrite is only to be used on riscv32"); 2195 return emitReadCycleWidePseudo(MI, BB); 2196 case RISCV::Select_GPR_Using_CC_GPR: 2197 case RISCV::Select_FPR16_Using_CC_GPR: 2198 case RISCV::Select_FPR32_Using_CC_GPR: 2199 case RISCV::Select_FPR64_Using_CC_GPR: 2200 return emitSelectPseudo(MI, BB); 2201 case RISCV::BuildPairF64Pseudo: 2202 return emitBuildPairF64Pseudo(MI, BB); 2203 case RISCV::SplitF64Pseudo: 2204 return emitSplitF64Pseudo(MI, BB); 2205 } 2206 } 2207 2208 // Calling Convention Implementation. 2209 // The expectations for frontend ABI lowering vary from target to target. 2210 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 2211 // details, but this is a longer term goal. For now, we simply try to keep the 2212 // role of the frontend as simple and well-defined as possible. The rules can 2213 // be summarised as: 2214 // * Never split up large scalar arguments. We handle them here. 2215 // * If a hardfloat calling convention is being used, and the struct may be 2216 // passed in a pair of registers (fp+fp, int+fp), and both registers are 2217 // available, then pass as two separate arguments. If either the GPRs or FPRs 2218 // are exhausted, then pass according to the rule below. 2219 // * If a struct could never be passed in registers or directly in a stack 2220 // slot (as it is larger than 2*XLEN and the floating point rules don't 2221 // apply), then pass it using a pointer with the byval attribute. 2222 // * If a struct is less than 2*XLEN, then coerce to either a two-element 2223 // word-sized array or a 2*XLEN scalar (depending on alignment). 2224 // * The frontend can determine whether a struct is returned by reference or 2225 // not based on its size and fields. If it will be returned by reference, the 2226 // frontend must modify the prototype so a pointer with the sret annotation is 2227 // passed as the first argument. This is not necessary for large scalar 2228 // returns. 2229 // * Struct return values and varargs should be coerced to structs containing 2230 // register-size fields in the same situations they would be for fixed 2231 // arguments. 2232 2233 static const MCPhysReg ArgGPRs[] = { 2234 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 2235 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 2236 }; 2237 static const MCPhysReg ArgFPR16s[] = { 2238 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 2239 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 2240 }; 2241 static const MCPhysReg ArgFPR32s[] = { 2242 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 2243 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 2244 }; 2245 static const MCPhysReg ArgFPR64s[] = { 2246 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 2247 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 2248 }; 2249 // This is an interim calling convention and it may be changed in the future. 2250 static const MCPhysReg ArgVRs[] = { 2251 RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, RISCV::V20, 2252 RISCV::V21, RISCV::V22, RISCV::V23 2253 }; 2254 static const MCPhysReg ArgVRM2s[] = { 2255 RISCV::V16M2, RISCV::V18M2, RISCV::V20M2, RISCV::V22M2 2256 }; 2257 static const MCPhysReg ArgVRM4s[] = {RISCV::V16M4, RISCV::V20M4}; 2258 static const MCPhysReg ArgVRM8s[] = {RISCV::V16M8}; 2259 2260 // Pass a 2*XLEN argument that has been split into two XLEN values through 2261 // registers or the stack as necessary. 2262 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 2263 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 2264 MVT ValVT2, MVT LocVT2, 2265 ISD::ArgFlagsTy ArgFlags2) { 2266 unsigned XLenInBytes = XLen / 8; 2267 if (Register Reg = State.AllocateReg(ArgGPRs)) { 2268 // At least one half can be passed via register. 2269 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 2270 VA1.getLocVT(), CCValAssign::Full)); 2271 } else { 2272 // Both halves must be passed on the stack, with proper alignment. 2273 Align StackAlign = 2274 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 2275 State.addLoc( 2276 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 2277 State.AllocateStack(XLenInBytes, StackAlign), 2278 VA1.getLocVT(), CCValAssign::Full)); 2279 State.addLoc(CCValAssign::getMem( 2280 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 2281 LocVT2, CCValAssign::Full)); 2282 return false; 2283 } 2284 2285 if (Register Reg = State.AllocateReg(ArgGPRs)) { 2286 // The second half can also be passed via register. 2287 State.addLoc( 2288 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 2289 } else { 2290 // The second half is passed via the stack, without additional alignment. 2291 State.addLoc(CCValAssign::getMem( 2292 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 2293 LocVT2, CCValAssign::Full)); 2294 } 2295 2296 return false; 2297 } 2298 2299 // Implements the RISC-V calling convention. Returns true upon failure. 2300 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 2301 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 2302 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 2303 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 2304 Optional<unsigned> FirstMaskArgument) { 2305 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 2306 assert(XLen == 32 || XLen == 64); 2307 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 2308 2309 // Any return value split in to more than two values can't be returned 2310 // directly. 2311 if (IsRet && ValNo > 1) 2312 return true; 2313 2314 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 2315 // variadic argument, or if no F16/F32 argument registers are available. 2316 bool UseGPRForF16_F32 = true; 2317 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 2318 // variadic argument, or if no F64 argument registers are available. 2319 bool UseGPRForF64 = true; 2320 2321 switch (ABI) { 2322 default: 2323 llvm_unreachable("Unexpected ABI"); 2324 case RISCVABI::ABI_ILP32: 2325 case RISCVABI::ABI_LP64: 2326 break; 2327 case RISCVABI::ABI_ILP32F: 2328 case RISCVABI::ABI_LP64F: 2329 UseGPRForF16_F32 = !IsFixed; 2330 break; 2331 case RISCVABI::ABI_ILP32D: 2332 case RISCVABI::ABI_LP64D: 2333 UseGPRForF16_F32 = !IsFixed; 2334 UseGPRForF64 = !IsFixed; 2335 break; 2336 } 2337 2338 // FPR16, FPR32, and FPR64 alias each other. 2339 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 2340 UseGPRForF16_F32 = true; 2341 UseGPRForF64 = true; 2342 } 2343 2344 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 2345 // similar local variables rather than directly checking against the target 2346 // ABI. 2347 2348 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 2349 LocVT = XLenVT; 2350 LocInfo = CCValAssign::BCvt; 2351 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 2352 LocVT = MVT::i64; 2353 LocInfo = CCValAssign::BCvt; 2354 } 2355 2356 // If this is a variadic argument, the RISC-V calling convention requires 2357 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 2358 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 2359 // be used regardless of whether the original argument was split during 2360 // legalisation or not. The argument will not be passed by registers if the 2361 // original type is larger than 2*XLEN, so the register alignment rule does 2362 // not apply. 2363 unsigned TwoXLenInBytes = (2 * XLen) / 8; 2364 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 2365 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 2366 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 2367 // Skip 'odd' register if necessary. 2368 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 2369 State.AllocateReg(ArgGPRs); 2370 } 2371 2372 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 2373 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 2374 State.getPendingArgFlags(); 2375 2376 assert(PendingLocs.size() == PendingArgFlags.size() && 2377 "PendingLocs and PendingArgFlags out of sync"); 2378 2379 // Handle passing f64 on RV32D with a soft float ABI or when floating point 2380 // registers are exhausted. 2381 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 2382 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 2383 "Can't lower f64 if it is split"); 2384 // Depending on available argument GPRS, f64 may be passed in a pair of 2385 // GPRs, split between a GPR and the stack, or passed completely on the 2386 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 2387 // cases. 2388 Register Reg = State.AllocateReg(ArgGPRs); 2389 LocVT = MVT::i32; 2390 if (!Reg) { 2391 unsigned StackOffset = State.AllocateStack(8, Align(8)); 2392 State.addLoc( 2393 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 2394 return false; 2395 } 2396 if (!State.AllocateReg(ArgGPRs)) 2397 State.AllocateStack(4, Align(4)); 2398 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2399 return false; 2400 } 2401 2402 // Split arguments might be passed indirectly, so keep track of the pending 2403 // values. 2404 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 2405 LocVT = XLenVT; 2406 LocInfo = CCValAssign::Indirect; 2407 PendingLocs.push_back( 2408 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 2409 PendingArgFlags.push_back(ArgFlags); 2410 if (!ArgFlags.isSplitEnd()) { 2411 return false; 2412 } 2413 } 2414 2415 // If the split argument only had two elements, it should be passed directly 2416 // in registers or on the stack. 2417 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 2418 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 2419 // Apply the normal calling convention rules to the first half of the 2420 // split argument. 2421 CCValAssign VA = PendingLocs[0]; 2422 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 2423 PendingLocs.clear(); 2424 PendingArgFlags.clear(); 2425 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 2426 ArgFlags); 2427 } 2428 2429 // Allocate to a register if possible, or else a stack slot. 2430 Register Reg; 2431 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 2432 Reg = State.AllocateReg(ArgFPR16s); 2433 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 2434 Reg = State.AllocateReg(ArgFPR32s); 2435 else if (ValVT == MVT::f64 && !UseGPRForF64) 2436 Reg = State.AllocateReg(ArgFPR64s); 2437 else if (ValVT.isScalableVector()) { 2438 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 2439 if (RC == &RISCV::VRRegClass) { 2440 // Assign the first mask argument to V0. 2441 // This is an interim calling convention and it may be changed in the 2442 // future. 2443 if (FirstMaskArgument.hasValue() && 2444 ValNo == FirstMaskArgument.getValue()) { 2445 Reg = State.AllocateReg(RISCV::V0); 2446 } else { 2447 Reg = State.AllocateReg(ArgVRs); 2448 } 2449 } else if (RC == &RISCV::VRM2RegClass) { 2450 Reg = State.AllocateReg(ArgVRM2s); 2451 } else if (RC == &RISCV::VRM4RegClass) { 2452 Reg = State.AllocateReg(ArgVRM4s); 2453 } else if (RC == &RISCV::VRM8RegClass) { 2454 Reg = State.AllocateReg(ArgVRM8s); 2455 } else { 2456 llvm_unreachable("Unhandled class register for ValueType"); 2457 } 2458 if (!Reg) { 2459 LocInfo = CCValAssign::Indirect; 2460 // Try using a GPR to pass the address 2461 Reg = State.AllocateReg(ArgGPRs); 2462 LocVT = XLenVT; 2463 } 2464 } else 2465 Reg = State.AllocateReg(ArgGPRs); 2466 unsigned StackOffset = 2467 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 2468 2469 // If we reach this point and PendingLocs is non-empty, we must be at the 2470 // end of a split argument that must be passed indirectly. 2471 if (!PendingLocs.empty()) { 2472 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 2473 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 2474 2475 for (auto &It : PendingLocs) { 2476 if (Reg) 2477 It.convertToReg(Reg); 2478 else 2479 It.convertToMem(StackOffset); 2480 State.addLoc(It); 2481 } 2482 PendingLocs.clear(); 2483 PendingArgFlags.clear(); 2484 return false; 2485 } 2486 2487 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 2488 (TLI.getSubtarget().hasStdExtV() && ValVT.isScalableVector())) && 2489 "Expected an XLenVT or scalable vector types at this stage"); 2490 2491 if (Reg) { 2492 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2493 return false; 2494 } 2495 2496 // When a floating-point value is passed on the stack, no bit-conversion is 2497 // needed. 2498 if (ValVT.isFloatingPoint()) { 2499 LocVT = ValVT; 2500 LocInfo = CCValAssign::Full; 2501 } 2502 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 2503 return false; 2504 } 2505 2506 template <typename ArgTy> 2507 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 2508 for (const auto &ArgIdx : enumerate(Args)) { 2509 MVT ArgVT = ArgIdx.value().VT; 2510 if (ArgVT.isScalableVector() && 2511 ArgVT.getVectorElementType().SimpleTy == MVT::i1) 2512 return ArgIdx.index(); 2513 } 2514 return None; 2515 } 2516 2517 void RISCVTargetLowering::analyzeInputArgs( 2518 MachineFunction &MF, CCState &CCInfo, 2519 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 2520 unsigned NumArgs = Ins.size(); 2521 FunctionType *FType = MF.getFunction().getFunctionType(); 2522 2523 Optional<unsigned> FirstMaskArgument; 2524 if (Subtarget.hasStdExtV()) 2525 FirstMaskArgument = preAssignMask(Ins); 2526 2527 for (unsigned i = 0; i != NumArgs; ++i) { 2528 MVT ArgVT = Ins[i].VT; 2529 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 2530 2531 Type *ArgTy = nullptr; 2532 if (IsRet) 2533 ArgTy = FType->getReturnType(); 2534 else if (Ins[i].isOrigArg()) 2535 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 2536 2537 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2538 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 2539 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 2540 FirstMaskArgument)) { 2541 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 2542 << EVT(ArgVT).getEVTString() << '\n'); 2543 llvm_unreachable(nullptr); 2544 } 2545 } 2546 } 2547 2548 void RISCVTargetLowering::analyzeOutputArgs( 2549 MachineFunction &MF, CCState &CCInfo, 2550 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 2551 CallLoweringInfo *CLI) const { 2552 unsigned NumArgs = Outs.size(); 2553 2554 Optional<unsigned> FirstMaskArgument; 2555 if (Subtarget.hasStdExtV()) 2556 FirstMaskArgument = preAssignMask(Outs); 2557 2558 for (unsigned i = 0; i != NumArgs; i++) { 2559 MVT ArgVT = Outs[i].VT; 2560 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2561 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 2562 2563 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2564 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 2565 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 2566 FirstMaskArgument)) { 2567 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 2568 << EVT(ArgVT).getEVTString() << "\n"); 2569 llvm_unreachable(nullptr); 2570 } 2571 } 2572 } 2573 2574 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 2575 // values. 2576 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 2577 const CCValAssign &VA, const SDLoc &DL) { 2578 switch (VA.getLocInfo()) { 2579 default: 2580 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2581 case CCValAssign::Full: 2582 break; 2583 case CCValAssign::BCvt: 2584 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 2585 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 2586 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 2587 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 2588 else 2589 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2590 break; 2591 } 2592 return Val; 2593 } 2594 2595 // The caller is responsible for loading the full value if the argument is 2596 // passed with CCValAssign::Indirect. 2597 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 2598 const CCValAssign &VA, const SDLoc &DL, 2599 const RISCVTargetLowering &TLI) { 2600 MachineFunction &MF = DAG.getMachineFunction(); 2601 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2602 EVT LocVT = VA.getLocVT(); 2603 SDValue Val; 2604 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 2605 Register VReg = RegInfo.createVirtualRegister(RC); 2606 RegInfo.addLiveIn(VA.getLocReg(), VReg); 2607 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 2608 2609 if (VA.getLocInfo() == CCValAssign::Indirect) 2610 return Val; 2611 2612 return convertLocVTToValVT(DAG, Val, VA, DL); 2613 } 2614 2615 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 2616 const CCValAssign &VA, const SDLoc &DL) { 2617 EVT LocVT = VA.getLocVT(); 2618 2619 switch (VA.getLocInfo()) { 2620 default: 2621 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2622 case CCValAssign::Full: 2623 break; 2624 case CCValAssign::BCvt: 2625 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 2626 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 2627 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 2628 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 2629 else 2630 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 2631 break; 2632 } 2633 return Val; 2634 } 2635 2636 // The caller is responsible for loading the full value if the argument is 2637 // passed with CCValAssign::Indirect. 2638 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 2639 const CCValAssign &VA, const SDLoc &DL) { 2640 MachineFunction &MF = DAG.getMachineFunction(); 2641 MachineFrameInfo &MFI = MF.getFrameInfo(); 2642 EVT LocVT = VA.getLocVT(); 2643 EVT ValVT = VA.getValVT(); 2644 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 2645 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 2646 VA.getLocMemOffset(), /*Immutable=*/true); 2647 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2648 SDValue Val; 2649 2650 ISD::LoadExtType ExtType; 2651 switch (VA.getLocInfo()) { 2652 default: 2653 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2654 case CCValAssign::Full: 2655 case CCValAssign::Indirect: 2656 case CCValAssign::BCvt: 2657 ExtType = ISD::NON_EXTLOAD; 2658 break; 2659 } 2660 Val = DAG.getExtLoad( 2661 ExtType, DL, LocVT, Chain, FIN, 2662 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 2663 return Val; 2664 } 2665 2666 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 2667 const CCValAssign &VA, const SDLoc &DL) { 2668 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 2669 "Unexpected VA"); 2670 MachineFunction &MF = DAG.getMachineFunction(); 2671 MachineFrameInfo &MFI = MF.getFrameInfo(); 2672 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2673 2674 if (VA.isMemLoc()) { 2675 // f64 is passed on the stack. 2676 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 2677 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 2678 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 2679 MachinePointerInfo::getFixedStack(MF, FI)); 2680 } 2681 2682 assert(VA.isRegLoc() && "Expected register VA assignment"); 2683 2684 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2685 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 2686 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 2687 SDValue Hi; 2688 if (VA.getLocReg() == RISCV::X17) { 2689 // Second half of f64 is passed on the stack. 2690 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 2691 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 2692 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 2693 MachinePointerInfo::getFixedStack(MF, FI)); 2694 } else { 2695 // Second half of f64 is passed in another GPR. 2696 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2697 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 2698 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 2699 } 2700 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 2701 } 2702 2703 // FastCC has less than 1% performance improvement for some particular 2704 // benchmark. But theoretically, it may has benenfit for some cases. 2705 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 2706 CCValAssign::LocInfo LocInfo, 2707 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2708 2709 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 2710 // X5 and X6 might be used for save-restore libcall. 2711 static const MCPhysReg GPRList[] = { 2712 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 2713 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 2714 RISCV::X29, RISCV::X30, RISCV::X31}; 2715 if (unsigned Reg = State.AllocateReg(GPRList)) { 2716 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2717 return false; 2718 } 2719 } 2720 2721 if (LocVT == MVT::f16) { 2722 static const MCPhysReg FPR16List[] = { 2723 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 2724 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 2725 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 2726 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 2727 if (unsigned Reg = State.AllocateReg(FPR16List)) { 2728 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2729 return false; 2730 } 2731 } 2732 2733 if (LocVT == MVT::f32) { 2734 static const MCPhysReg FPR32List[] = { 2735 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 2736 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 2737 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 2738 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 2739 if (unsigned Reg = State.AllocateReg(FPR32List)) { 2740 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2741 return false; 2742 } 2743 } 2744 2745 if (LocVT == MVT::f64) { 2746 static const MCPhysReg FPR64List[] = { 2747 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 2748 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 2749 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 2750 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 2751 if (unsigned Reg = State.AllocateReg(FPR64List)) { 2752 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2753 return false; 2754 } 2755 } 2756 2757 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 2758 unsigned Offset4 = State.AllocateStack(4, Align(4)); 2759 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 2760 return false; 2761 } 2762 2763 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 2764 unsigned Offset5 = State.AllocateStack(8, Align(8)); 2765 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 2766 return false; 2767 } 2768 2769 return true; // CC didn't match. 2770 } 2771 2772 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 2773 CCValAssign::LocInfo LocInfo, 2774 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2775 2776 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 2777 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 2778 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 2779 static const MCPhysReg GPRList[] = { 2780 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 2781 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 2782 if (unsigned Reg = State.AllocateReg(GPRList)) { 2783 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2784 return false; 2785 } 2786 } 2787 2788 if (LocVT == MVT::f32) { 2789 // Pass in STG registers: F1, ..., F6 2790 // fs0 ... fs5 2791 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 2792 RISCV::F18_F, RISCV::F19_F, 2793 RISCV::F20_F, RISCV::F21_F}; 2794 if (unsigned Reg = State.AllocateReg(FPR32List)) { 2795 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2796 return false; 2797 } 2798 } 2799 2800 if (LocVT == MVT::f64) { 2801 // Pass in STG registers: D1, ..., D6 2802 // fs6 ... fs11 2803 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 2804 RISCV::F24_D, RISCV::F25_D, 2805 RISCV::F26_D, RISCV::F27_D}; 2806 if (unsigned Reg = State.AllocateReg(FPR64List)) { 2807 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2808 return false; 2809 } 2810 } 2811 2812 report_fatal_error("No registers left in GHC calling convention"); 2813 return true; 2814 } 2815 2816 // Transform physical registers into virtual registers. 2817 SDValue RISCVTargetLowering::LowerFormalArguments( 2818 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 2819 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2820 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2821 2822 MachineFunction &MF = DAG.getMachineFunction(); 2823 2824 switch (CallConv) { 2825 default: 2826 report_fatal_error("Unsupported calling convention"); 2827 case CallingConv::C: 2828 case CallingConv::Fast: 2829 break; 2830 case CallingConv::GHC: 2831 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 2832 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 2833 report_fatal_error( 2834 "GHC calling convention requires the F and D instruction set extensions"); 2835 } 2836 2837 const Function &Func = MF.getFunction(); 2838 if (Func.hasFnAttribute("interrupt")) { 2839 if (!Func.arg_empty()) 2840 report_fatal_error( 2841 "Functions with the interrupt attribute cannot have arguments!"); 2842 2843 StringRef Kind = 2844 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2845 2846 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 2847 report_fatal_error( 2848 "Function interrupt attribute argument not supported!"); 2849 } 2850 2851 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2852 MVT XLenVT = Subtarget.getXLenVT(); 2853 unsigned XLenInBytes = Subtarget.getXLen() / 8; 2854 // Used with vargs to acumulate store chains. 2855 std::vector<SDValue> OutChains; 2856 2857 // Assign locations to all of the incoming arguments. 2858 SmallVector<CCValAssign, 16> ArgLocs; 2859 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2860 2861 if (CallConv == CallingConv::Fast) 2862 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 2863 else if (CallConv == CallingConv::GHC) 2864 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 2865 else 2866 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 2867 2868 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2869 CCValAssign &VA = ArgLocs[i]; 2870 SDValue ArgValue; 2871 // Passing f64 on RV32D with a soft float ABI must be handled as a special 2872 // case. 2873 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 2874 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 2875 else if (VA.isRegLoc()) 2876 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 2877 else 2878 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 2879 2880 if (VA.getLocInfo() == CCValAssign::Indirect) { 2881 // If the original argument was split and passed by reference (e.g. i128 2882 // on RV32), we need to load all parts of it here (using the same 2883 // address). 2884 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 2885 MachinePointerInfo())); 2886 unsigned ArgIndex = Ins[i].OrigArgIndex; 2887 assert(Ins[i].PartOffset == 0); 2888 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 2889 CCValAssign &PartVA = ArgLocs[i + 1]; 2890 unsigned PartOffset = Ins[i + 1].PartOffset; 2891 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 2892 DAG.getIntPtrConstant(PartOffset, DL)); 2893 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 2894 MachinePointerInfo())); 2895 ++i; 2896 } 2897 continue; 2898 } 2899 InVals.push_back(ArgValue); 2900 } 2901 2902 if (IsVarArg) { 2903 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 2904 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 2905 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 2906 MachineFrameInfo &MFI = MF.getFrameInfo(); 2907 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2908 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 2909 2910 // Offset of the first variable argument from stack pointer, and size of 2911 // the vararg save area. For now, the varargs save area is either zero or 2912 // large enough to hold a0-a7. 2913 int VaArgOffset, VarArgsSaveSize; 2914 2915 // If all registers are allocated, then all varargs must be passed on the 2916 // stack and we don't need to save any argregs. 2917 if (ArgRegs.size() == Idx) { 2918 VaArgOffset = CCInfo.getNextStackOffset(); 2919 VarArgsSaveSize = 0; 2920 } else { 2921 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 2922 VaArgOffset = -VarArgsSaveSize; 2923 } 2924 2925 // Record the frame index of the first variable argument 2926 // which is a value necessary to VASTART. 2927 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 2928 RVFI->setVarArgsFrameIndex(FI); 2929 2930 // If saving an odd number of registers then create an extra stack slot to 2931 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 2932 // offsets to even-numbered registered remain 2*XLEN-aligned. 2933 if (Idx % 2) { 2934 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 2935 VarArgsSaveSize += XLenInBytes; 2936 } 2937 2938 // Copy the integer registers that may have been used for passing varargs 2939 // to the vararg save area. 2940 for (unsigned I = Idx; I < ArgRegs.size(); 2941 ++I, VaArgOffset += XLenInBytes) { 2942 const Register Reg = RegInfo.createVirtualRegister(RC); 2943 RegInfo.addLiveIn(ArgRegs[I], Reg); 2944 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 2945 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 2946 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2947 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 2948 MachinePointerInfo::getFixedStack(MF, FI)); 2949 cast<StoreSDNode>(Store.getNode()) 2950 ->getMemOperand() 2951 ->setValue((Value *)nullptr); 2952 OutChains.push_back(Store); 2953 } 2954 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 2955 } 2956 2957 // All stores are grouped in one node to allow the matching between 2958 // the size of Ins and InVals. This only happens for vararg functions. 2959 if (!OutChains.empty()) { 2960 OutChains.push_back(Chain); 2961 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 2962 } 2963 2964 return Chain; 2965 } 2966 2967 /// isEligibleForTailCallOptimization - Check whether the call is eligible 2968 /// for tail call optimization. 2969 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 2970 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 2971 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 2972 const SmallVector<CCValAssign, 16> &ArgLocs) const { 2973 2974 auto &Callee = CLI.Callee; 2975 auto CalleeCC = CLI.CallConv; 2976 auto &Outs = CLI.Outs; 2977 auto &Caller = MF.getFunction(); 2978 auto CallerCC = Caller.getCallingConv(); 2979 2980 // Exception-handling functions need a special set of instructions to 2981 // indicate a return to the hardware. Tail-calling another function would 2982 // probably break this. 2983 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 2984 // should be expanded as new function attributes are introduced. 2985 if (Caller.hasFnAttribute("interrupt")) 2986 return false; 2987 2988 // Do not tail call opt if the stack is used to pass parameters. 2989 if (CCInfo.getNextStackOffset() != 0) 2990 return false; 2991 2992 // Do not tail call opt if any parameters need to be passed indirectly. 2993 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 2994 // passed indirectly. So the address of the value will be passed in a 2995 // register, or if not available, then the address is put on the stack. In 2996 // order to pass indirectly, space on the stack often needs to be allocated 2997 // in order to store the value. In this case the CCInfo.getNextStackOffset() 2998 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 2999 // are passed CCValAssign::Indirect. 3000 for (auto &VA : ArgLocs) 3001 if (VA.getLocInfo() == CCValAssign::Indirect) 3002 return false; 3003 3004 // Do not tail call opt if either caller or callee uses struct return 3005 // semantics. 3006 auto IsCallerStructRet = Caller.hasStructRetAttr(); 3007 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 3008 if (IsCallerStructRet || IsCalleeStructRet) 3009 return false; 3010 3011 // Externally-defined functions with weak linkage should not be 3012 // tail-called. The behaviour of branch instructions in this situation (as 3013 // used for tail calls) is implementation-defined, so we cannot rely on the 3014 // linker replacing the tail call with a return. 3015 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 3016 const GlobalValue *GV = G->getGlobal(); 3017 if (GV->hasExternalWeakLinkage()) 3018 return false; 3019 } 3020 3021 // The callee has to preserve all registers the caller needs to preserve. 3022 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3023 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 3024 if (CalleeCC != CallerCC) { 3025 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 3026 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 3027 return false; 3028 } 3029 3030 // Byval parameters hand the function a pointer directly into the stack area 3031 // we want to reuse during a tail call. Working around this *is* possible 3032 // but less efficient and uglier in LowerCall. 3033 for (auto &Arg : Outs) 3034 if (Arg.Flags.isByVal()) 3035 return false; 3036 3037 return true; 3038 } 3039 3040 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 3041 // and output parameter nodes. 3042 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 3043 SmallVectorImpl<SDValue> &InVals) const { 3044 SelectionDAG &DAG = CLI.DAG; 3045 SDLoc &DL = CLI.DL; 3046 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 3047 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 3048 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 3049 SDValue Chain = CLI.Chain; 3050 SDValue Callee = CLI.Callee; 3051 bool &IsTailCall = CLI.IsTailCall; 3052 CallingConv::ID CallConv = CLI.CallConv; 3053 bool IsVarArg = CLI.IsVarArg; 3054 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3055 MVT XLenVT = Subtarget.getXLenVT(); 3056 3057 MachineFunction &MF = DAG.getMachineFunction(); 3058 3059 // Analyze the operands of the call, assigning locations to each operand. 3060 SmallVector<CCValAssign, 16> ArgLocs; 3061 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3062 3063 if (CallConv == CallingConv::Fast) 3064 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 3065 else if (CallConv == CallingConv::GHC) 3066 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 3067 else 3068 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 3069 3070 // Check if it's really possible to do a tail call. 3071 if (IsTailCall) 3072 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 3073 3074 if (IsTailCall) 3075 ++NumTailCalls; 3076 else if (CLI.CB && CLI.CB->isMustTailCall()) 3077 report_fatal_error("failed to perform tail call elimination on a call " 3078 "site marked musttail"); 3079 3080 // Get a count of how many bytes are to be pushed on the stack. 3081 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 3082 3083 // Create local copies for byval args 3084 SmallVector<SDValue, 8> ByValArgs; 3085 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 3086 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3087 if (!Flags.isByVal()) 3088 continue; 3089 3090 SDValue Arg = OutVals[i]; 3091 unsigned Size = Flags.getByValSize(); 3092 Align Alignment = Flags.getNonZeroByValAlign(); 3093 3094 int FI = 3095 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 3096 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3097 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 3098 3099 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 3100 /*IsVolatile=*/false, 3101 /*AlwaysInline=*/false, IsTailCall, 3102 MachinePointerInfo(), MachinePointerInfo()); 3103 ByValArgs.push_back(FIPtr); 3104 } 3105 3106 if (!IsTailCall) 3107 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 3108 3109 // Copy argument values to their designated locations. 3110 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 3111 SmallVector<SDValue, 8> MemOpChains; 3112 SDValue StackPtr; 3113 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 3114 CCValAssign &VA = ArgLocs[i]; 3115 SDValue ArgValue = OutVals[i]; 3116 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3117 3118 // Handle passing f64 on RV32D with a soft float ABI as a special case. 3119 bool IsF64OnRV32DSoftABI = 3120 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 3121 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 3122 SDValue SplitF64 = DAG.getNode( 3123 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 3124 SDValue Lo = SplitF64.getValue(0); 3125 SDValue Hi = SplitF64.getValue(1); 3126 3127 Register RegLo = VA.getLocReg(); 3128 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 3129 3130 if (RegLo == RISCV::X17) { 3131 // Second half of f64 is passed on the stack. 3132 // Work out the address of the stack slot. 3133 if (!StackPtr.getNode()) 3134 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 3135 // Emit the store. 3136 MemOpChains.push_back( 3137 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 3138 } else { 3139 // Second half of f64 is passed in another GPR. 3140 assert(RegLo < RISCV::X31 && "Invalid register pair"); 3141 Register RegHigh = RegLo + 1; 3142 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 3143 } 3144 continue; 3145 } 3146 3147 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 3148 // as any other MemLoc. 3149 3150 // Promote the value if needed. 3151 // For now, only handle fully promoted and indirect arguments. 3152 if (VA.getLocInfo() == CCValAssign::Indirect) { 3153 // Store the argument in a stack slot and pass its address. 3154 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 3155 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 3156 MemOpChains.push_back( 3157 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 3158 MachinePointerInfo::getFixedStack(MF, FI))); 3159 // If the original argument was split (e.g. i128), we need 3160 // to store all parts of it here (and pass just one address). 3161 unsigned ArgIndex = Outs[i].OrigArgIndex; 3162 assert(Outs[i].PartOffset == 0); 3163 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 3164 SDValue PartValue = OutVals[i + 1]; 3165 unsigned PartOffset = Outs[i + 1].PartOffset; 3166 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 3167 DAG.getIntPtrConstant(PartOffset, DL)); 3168 MemOpChains.push_back( 3169 DAG.getStore(Chain, DL, PartValue, Address, 3170 MachinePointerInfo::getFixedStack(MF, FI))); 3171 ++i; 3172 } 3173 ArgValue = SpillSlot; 3174 } else { 3175 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 3176 } 3177 3178 // Use local copy if it is a byval arg. 3179 if (Flags.isByVal()) 3180 ArgValue = ByValArgs[j++]; 3181 3182 if (VA.isRegLoc()) { 3183 // Queue up the argument copies and emit them at the end. 3184 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 3185 } else { 3186 assert(VA.isMemLoc() && "Argument not register or memory"); 3187 assert(!IsTailCall && "Tail call not allowed if stack is used " 3188 "for passing parameters"); 3189 3190 // Work out the address of the stack slot. 3191 if (!StackPtr.getNode()) 3192 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 3193 SDValue Address = 3194 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 3195 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 3196 3197 // Emit the store. 3198 MemOpChains.push_back( 3199 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 3200 } 3201 } 3202 3203 // Join the stores, which are independent of one another. 3204 if (!MemOpChains.empty()) 3205 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3206 3207 SDValue Glue; 3208 3209 // Build a sequence of copy-to-reg nodes, chained and glued together. 3210 for (auto &Reg : RegsToPass) { 3211 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 3212 Glue = Chain.getValue(1); 3213 } 3214 3215 // Validate that none of the argument registers have been marked as 3216 // reserved, if so report an error. Do the same for the return address if this 3217 // is not a tailcall. 3218 validateCCReservedRegs(RegsToPass, MF); 3219 if (!IsTailCall && 3220 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 3221 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3222 MF.getFunction(), 3223 "Return address register required, but has been reserved."}); 3224 3225 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 3226 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 3227 // split it and then direct call can be matched by PseudoCALL. 3228 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 3229 const GlobalValue *GV = S->getGlobal(); 3230 3231 unsigned OpFlags = RISCVII::MO_CALL; 3232 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 3233 OpFlags = RISCVII::MO_PLT; 3234 3235 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 3236 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 3237 unsigned OpFlags = RISCVII::MO_CALL; 3238 3239 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 3240 nullptr)) 3241 OpFlags = RISCVII::MO_PLT; 3242 3243 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 3244 } 3245 3246 // The first call operand is the chain and the second is the target address. 3247 SmallVector<SDValue, 8> Ops; 3248 Ops.push_back(Chain); 3249 Ops.push_back(Callee); 3250 3251 // Add argument registers to the end of the list so that they are 3252 // known live into the call. 3253 for (auto &Reg : RegsToPass) 3254 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 3255 3256 if (!IsTailCall) { 3257 // Add a register mask operand representing the call-preserved registers. 3258 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3259 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3260 assert(Mask && "Missing call preserved mask for calling convention"); 3261 Ops.push_back(DAG.getRegisterMask(Mask)); 3262 } 3263 3264 // Glue the call to the argument copies, if any. 3265 if (Glue.getNode()) 3266 Ops.push_back(Glue); 3267 3268 // Emit the call. 3269 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3270 3271 if (IsTailCall) { 3272 MF.getFrameInfo().setHasTailCall(); 3273 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 3274 } 3275 3276 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 3277 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 3278 Glue = Chain.getValue(1); 3279 3280 // Mark the end of the call, which is glued to the call itself. 3281 Chain = DAG.getCALLSEQ_END(Chain, 3282 DAG.getConstant(NumBytes, DL, PtrVT, true), 3283 DAG.getConstant(0, DL, PtrVT, true), 3284 Glue, DL); 3285 Glue = Chain.getValue(1); 3286 3287 // Assign locations to each value returned by this call. 3288 SmallVector<CCValAssign, 16> RVLocs; 3289 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 3290 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 3291 3292 // Copy all of the result registers out of their specified physreg. 3293 for (auto &VA : RVLocs) { 3294 // Copy the value out 3295 SDValue RetValue = 3296 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 3297 // Glue the RetValue to the end of the call sequence 3298 Chain = RetValue.getValue(1); 3299 Glue = RetValue.getValue(2); 3300 3301 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 3302 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 3303 SDValue RetValue2 = 3304 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 3305 Chain = RetValue2.getValue(1); 3306 Glue = RetValue2.getValue(2); 3307 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 3308 RetValue2); 3309 } 3310 3311 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 3312 3313 InVals.push_back(RetValue); 3314 } 3315 3316 return Chain; 3317 } 3318 3319 bool RISCVTargetLowering::CanLowerReturn( 3320 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 3321 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 3322 SmallVector<CCValAssign, 16> RVLocs; 3323 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 3324 3325 Optional<unsigned> FirstMaskArgument; 3326 if (Subtarget.hasStdExtV()) 3327 FirstMaskArgument = preAssignMask(Outs); 3328 3329 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 3330 MVT VT = Outs[i].VT; 3331 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3332 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 3333 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 3334 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 3335 *this, FirstMaskArgument)) 3336 return false; 3337 } 3338 return true; 3339 } 3340 3341 SDValue 3342 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 3343 bool IsVarArg, 3344 const SmallVectorImpl<ISD::OutputArg> &Outs, 3345 const SmallVectorImpl<SDValue> &OutVals, 3346 const SDLoc &DL, SelectionDAG &DAG) const { 3347 const MachineFunction &MF = DAG.getMachineFunction(); 3348 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 3349 3350 // Stores the assignment of the return value to a location. 3351 SmallVector<CCValAssign, 16> RVLocs; 3352 3353 // Info about the registers and stack slot. 3354 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 3355 *DAG.getContext()); 3356 3357 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 3358 nullptr); 3359 3360 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 3361 report_fatal_error("GHC functions return void only"); 3362 3363 SDValue Glue; 3364 SmallVector<SDValue, 4> RetOps(1, Chain); 3365 3366 // Copy the result values into the output registers. 3367 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 3368 SDValue Val = OutVals[i]; 3369 CCValAssign &VA = RVLocs[i]; 3370 assert(VA.isRegLoc() && "Can only return in registers!"); 3371 3372 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 3373 // Handle returning f64 on RV32D with a soft float ABI. 3374 assert(VA.isRegLoc() && "Expected return via registers"); 3375 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 3376 DAG.getVTList(MVT::i32, MVT::i32), Val); 3377 SDValue Lo = SplitF64.getValue(0); 3378 SDValue Hi = SplitF64.getValue(1); 3379 Register RegLo = VA.getLocReg(); 3380 assert(RegLo < RISCV::X31 && "Invalid register pair"); 3381 Register RegHi = RegLo + 1; 3382 3383 if (STI.isRegisterReservedByUser(RegLo) || 3384 STI.isRegisterReservedByUser(RegHi)) 3385 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3386 MF.getFunction(), 3387 "Return value register required, but has been reserved."}); 3388 3389 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 3390 Glue = Chain.getValue(1); 3391 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 3392 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 3393 Glue = Chain.getValue(1); 3394 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 3395 } else { 3396 // Handle a 'normal' return. 3397 Val = convertValVTToLocVT(DAG, Val, VA, DL); 3398 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 3399 3400 if (STI.isRegisterReservedByUser(VA.getLocReg())) 3401 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3402 MF.getFunction(), 3403 "Return value register required, but has been reserved."}); 3404 3405 // Guarantee that all emitted copies are stuck together. 3406 Glue = Chain.getValue(1); 3407 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 3408 } 3409 } 3410 3411 RetOps[0] = Chain; // Update chain. 3412 3413 // Add the glue node if we have it. 3414 if (Glue.getNode()) { 3415 RetOps.push_back(Glue); 3416 } 3417 3418 // Interrupt service routines use different return instructions. 3419 const Function &Func = DAG.getMachineFunction().getFunction(); 3420 if (Func.hasFnAttribute("interrupt")) { 3421 if (!Func.getReturnType()->isVoidTy()) 3422 report_fatal_error( 3423 "Functions with the interrupt attribute must have void return type!"); 3424 3425 MachineFunction &MF = DAG.getMachineFunction(); 3426 StringRef Kind = 3427 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 3428 3429 unsigned RetOpc; 3430 if (Kind == "user") 3431 RetOpc = RISCVISD::URET_FLAG; 3432 else if (Kind == "supervisor") 3433 RetOpc = RISCVISD::SRET_FLAG; 3434 else 3435 RetOpc = RISCVISD::MRET_FLAG; 3436 3437 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 3438 } 3439 3440 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 3441 } 3442 3443 void RISCVTargetLowering::validateCCReservedRegs( 3444 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 3445 MachineFunction &MF) const { 3446 const Function &F = MF.getFunction(); 3447 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 3448 3449 if (llvm::any_of(Regs, [&STI](auto Reg) { 3450 return STI.isRegisterReservedByUser(Reg.first); 3451 })) 3452 F.getContext().diagnose(DiagnosticInfoUnsupported{ 3453 F, "Argument register required, but has been reserved."}); 3454 } 3455 3456 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 3457 return CI->isTailCall(); 3458 } 3459 3460 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 3461 #define NODE_NAME_CASE(NODE) \ 3462 case RISCVISD::NODE: \ 3463 return "RISCVISD::" #NODE; 3464 // clang-format off 3465 switch ((RISCVISD::NodeType)Opcode) { 3466 case RISCVISD::FIRST_NUMBER: 3467 break; 3468 NODE_NAME_CASE(RET_FLAG) 3469 NODE_NAME_CASE(URET_FLAG) 3470 NODE_NAME_CASE(SRET_FLAG) 3471 NODE_NAME_CASE(MRET_FLAG) 3472 NODE_NAME_CASE(CALL) 3473 NODE_NAME_CASE(SELECT_CC) 3474 NODE_NAME_CASE(BuildPairF64) 3475 NODE_NAME_CASE(SplitF64) 3476 NODE_NAME_CASE(TAIL) 3477 NODE_NAME_CASE(SLLW) 3478 NODE_NAME_CASE(SRAW) 3479 NODE_NAME_CASE(SRLW) 3480 NODE_NAME_CASE(DIVW) 3481 NODE_NAME_CASE(DIVUW) 3482 NODE_NAME_CASE(REMUW) 3483 NODE_NAME_CASE(ROLW) 3484 NODE_NAME_CASE(RORW) 3485 NODE_NAME_CASE(FSLW) 3486 NODE_NAME_CASE(FSRW) 3487 NODE_NAME_CASE(FMV_H_X) 3488 NODE_NAME_CASE(FMV_X_ANYEXTH) 3489 NODE_NAME_CASE(FMV_W_X_RV64) 3490 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 3491 NODE_NAME_CASE(READ_CYCLE_WIDE) 3492 NODE_NAME_CASE(GREVI) 3493 NODE_NAME_CASE(GREVIW) 3494 NODE_NAME_CASE(GORCI) 3495 NODE_NAME_CASE(GORCIW) 3496 NODE_NAME_CASE(VMV_X_S) 3497 NODE_NAME_CASE(SPLAT_VECTOR_I64) 3498 } 3499 // clang-format on 3500 return nullptr; 3501 #undef NODE_NAME_CASE 3502 } 3503 3504 /// getConstraintType - Given a constraint letter, return the type of 3505 /// constraint it is for this target. 3506 RISCVTargetLowering::ConstraintType 3507 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 3508 if (Constraint.size() == 1) { 3509 switch (Constraint[0]) { 3510 default: 3511 break; 3512 case 'f': 3513 return C_RegisterClass; 3514 case 'I': 3515 case 'J': 3516 case 'K': 3517 return C_Immediate; 3518 case 'A': 3519 return C_Memory; 3520 } 3521 } 3522 return TargetLowering::getConstraintType(Constraint); 3523 } 3524 3525 std::pair<unsigned, const TargetRegisterClass *> 3526 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3527 StringRef Constraint, 3528 MVT VT) const { 3529 // First, see if this is a constraint that directly corresponds to a 3530 // RISCV register class. 3531 if (Constraint.size() == 1) { 3532 switch (Constraint[0]) { 3533 case 'r': 3534 return std::make_pair(0U, &RISCV::GPRRegClass); 3535 case 'f': 3536 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 3537 return std::make_pair(0U, &RISCV::FPR16RegClass); 3538 if (Subtarget.hasStdExtF() && VT == MVT::f32) 3539 return std::make_pair(0U, &RISCV::FPR32RegClass); 3540 if (Subtarget.hasStdExtD() && VT == MVT::f64) 3541 return std::make_pair(0U, &RISCV::FPR64RegClass); 3542 break; 3543 default: 3544 break; 3545 } 3546 } 3547 3548 // Clang will correctly decode the usage of register name aliases into their 3549 // official names. However, other frontends like `rustc` do not. This allows 3550 // users of these frontends to use the ABI names for registers in LLVM-style 3551 // register constraints. 3552 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 3553 .Case("{zero}", RISCV::X0) 3554 .Case("{ra}", RISCV::X1) 3555 .Case("{sp}", RISCV::X2) 3556 .Case("{gp}", RISCV::X3) 3557 .Case("{tp}", RISCV::X4) 3558 .Case("{t0}", RISCV::X5) 3559 .Case("{t1}", RISCV::X6) 3560 .Case("{t2}", RISCV::X7) 3561 .Cases("{s0}", "{fp}", RISCV::X8) 3562 .Case("{s1}", RISCV::X9) 3563 .Case("{a0}", RISCV::X10) 3564 .Case("{a1}", RISCV::X11) 3565 .Case("{a2}", RISCV::X12) 3566 .Case("{a3}", RISCV::X13) 3567 .Case("{a4}", RISCV::X14) 3568 .Case("{a5}", RISCV::X15) 3569 .Case("{a6}", RISCV::X16) 3570 .Case("{a7}", RISCV::X17) 3571 .Case("{s2}", RISCV::X18) 3572 .Case("{s3}", RISCV::X19) 3573 .Case("{s4}", RISCV::X20) 3574 .Case("{s5}", RISCV::X21) 3575 .Case("{s6}", RISCV::X22) 3576 .Case("{s7}", RISCV::X23) 3577 .Case("{s8}", RISCV::X24) 3578 .Case("{s9}", RISCV::X25) 3579 .Case("{s10}", RISCV::X26) 3580 .Case("{s11}", RISCV::X27) 3581 .Case("{t3}", RISCV::X28) 3582 .Case("{t4}", RISCV::X29) 3583 .Case("{t5}", RISCV::X30) 3584 .Case("{t6}", RISCV::X31) 3585 .Default(RISCV::NoRegister); 3586 if (XRegFromAlias != RISCV::NoRegister) 3587 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 3588 3589 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 3590 // TableGen record rather than the AsmName to choose registers for InlineAsm 3591 // constraints, plus we want to match those names to the widest floating point 3592 // register type available, manually select floating point registers here. 3593 // 3594 // The second case is the ABI name of the register, so that frontends can also 3595 // use the ABI names in register constraint lists. 3596 if (Subtarget.hasStdExtF()) { 3597 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 3598 .Cases("{f0}", "{ft0}", RISCV::F0_F) 3599 .Cases("{f1}", "{ft1}", RISCV::F1_F) 3600 .Cases("{f2}", "{ft2}", RISCV::F2_F) 3601 .Cases("{f3}", "{ft3}", RISCV::F3_F) 3602 .Cases("{f4}", "{ft4}", RISCV::F4_F) 3603 .Cases("{f5}", "{ft5}", RISCV::F5_F) 3604 .Cases("{f6}", "{ft6}", RISCV::F6_F) 3605 .Cases("{f7}", "{ft7}", RISCV::F7_F) 3606 .Cases("{f8}", "{fs0}", RISCV::F8_F) 3607 .Cases("{f9}", "{fs1}", RISCV::F9_F) 3608 .Cases("{f10}", "{fa0}", RISCV::F10_F) 3609 .Cases("{f11}", "{fa1}", RISCV::F11_F) 3610 .Cases("{f12}", "{fa2}", RISCV::F12_F) 3611 .Cases("{f13}", "{fa3}", RISCV::F13_F) 3612 .Cases("{f14}", "{fa4}", RISCV::F14_F) 3613 .Cases("{f15}", "{fa5}", RISCV::F15_F) 3614 .Cases("{f16}", "{fa6}", RISCV::F16_F) 3615 .Cases("{f17}", "{fa7}", RISCV::F17_F) 3616 .Cases("{f18}", "{fs2}", RISCV::F18_F) 3617 .Cases("{f19}", "{fs3}", RISCV::F19_F) 3618 .Cases("{f20}", "{fs4}", RISCV::F20_F) 3619 .Cases("{f21}", "{fs5}", RISCV::F21_F) 3620 .Cases("{f22}", "{fs6}", RISCV::F22_F) 3621 .Cases("{f23}", "{fs7}", RISCV::F23_F) 3622 .Cases("{f24}", "{fs8}", RISCV::F24_F) 3623 .Cases("{f25}", "{fs9}", RISCV::F25_F) 3624 .Cases("{f26}", "{fs10}", RISCV::F26_F) 3625 .Cases("{f27}", "{fs11}", RISCV::F27_F) 3626 .Cases("{f28}", "{ft8}", RISCV::F28_F) 3627 .Cases("{f29}", "{ft9}", RISCV::F29_F) 3628 .Cases("{f30}", "{ft10}", RISCV::F30_F) 3629 .Cases("{f31}", "{ft11}", RISCV::F31_F) 3630 .Default(RISCV::NoRegister); 3631 if (FReg != RISCV::NoRegister) { 3632 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 3633 if (Subtarget.hasStdExtD()) { 3634 unsigned RegNo = FReg - RISCV::F0_F; 3635 unsigned DReg = RISCV::F0_D + RegNo; 3636 return std::make_pair(DReg, &RISCV::FPR64RegClass); 3637 } 3638 return std::make_pair(FReg, &RISCV::FPR32RegClass); 3639 } 3640 } 3641 3642 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3643 } 3644 3645 unsigned 3646 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 3647 // Currently only support length 1 constraints. 3648 if (ConstraintCode.size() == 1) { 3649 switch (ConstraintCode[0]) { 3650 case 'A': 3651 return InlineAsm::Constraint_A; 3652 default: 3653 break; 3654 } 3655 } 3656 3657 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 3658 } 3659 3660 void RISCVTargetLowering::LowerAsmOperandForConstraint( 3661 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 3662 SelectionDAG &DAG) const { 3663 // Currently only support length 1 constraints. 3664 if (Constraint.length() == 1) { 3665 switch (Constraint[0]) { 3666 case 'I': 3667 // Validate & create a 12-bit signed immediate operand. 3668 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3669 uint64_t CVal = C->getSExtValue(); 3670 if (isInt<12>(CVal)) 3671 Ops.push_back( 3672 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 3673 } 3674 return; 3675 case 'J': 3676 // Validate & create an integer zero operand. 3677 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 3678 if (C->getZExtValue() == 0) 3679 Ops.push_back( 3680 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 3681 return; 3682 case 'K': 3683 // Validate & create a 5-bit unsigned immediate operand. 3684 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3685 uint64_t CVal = C->getZExtValue(); 3686 if (isUInt<5>(CVal)) 3687 Ops.push_back( 3688 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 3689 } 3690 return; 3691 default: 3692 break; 3693 } 3694 } 3695 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3696 } 3697 3698 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 3699 Instruction *Inst, 3700 AtomicOrdering Ord) const { 3701 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 3702 return Builder.CreateFence(Ord); 3703 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 3704 return Builder.CreateFence(AtomicOrdering::Release); 3705 return nullptr; 3706 } 3707 3708 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 3709 Instruction *Inst, 3710 AtomicOrdering Ord) const { 3711 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 3712 return Builder.CreateFence(AtomicOrdering::Acquire); 3713 return nullptr; 3714 } 3715 3716 TargetLowering::AtomicExpansionKind 3717 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 3718 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 3719 // point operations can't be used in an lr/sc sequence without breaking the 3720 // forward-progress guarantee. 3721 if (AI->isFloatingPointOperation()) 3722 return AtomicExpansionKind::CmpXChg; 3723 3724 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 3725 if (Size == 8 || Size == 16) 3726 return AtomicExpansionKind::MaskedIntrinsic; 3727 return AtomicExpansionKind::None; 3728 } 3729 3730 static Intrinsic::ID 3731 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 3732 if (XLen == 32) { 3733 switch (BinOp) { 3734 default: 3735 llvm_unreachable("Unexpected AtomicRMW BinOp"); 3736 case AtomicRMWInst::Xchg: 3737 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 3738 case AtomicRMWInst::Add: 3739 return Intrinsic::riscv_masked_atomicrmw_add_i32; 3740 case AtomicRMWInst::Sub: 3741 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 3742 case AtomicRMWInst::Nand: 3743 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 3744 case AtomicRMWInst::Max: 3745 return Intrinsic::riscv_masked_atomicrmw_max_i32; 3746 case AtomicRMWInst::Min: 3747 return Intrinsic::riscv_masked_atomicrmw_min_i32; 3748 case AtomicRMWInst::UMax: 3749 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 3750 case AtomicRMWInst::UMin: 3751 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 3752 } 3753 } 3754 3755 if (XLen == 64) { 3756 switch (BinOp) { 3757 default: 3758 llvm_unreachable("Unexpected AtomicRMW BinOp"); 3759 case AtomicRMWInst::Xchg: 3760 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 3761 case AtomicRMWInst::Add: 3762 return Intrinsic::riscv_masked_atomicrmw_add_i64; 3763 case AtomicRMWInst::Sub: 3764 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 3765 case AtomicRMWInst::Nand: 3766 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 3767 case AtomicRMWInst::Max: 3768 return Intrinsic::riscv_masked_atomicrmw_max_i64; 3769 case AtomicRMWInst::Min: 3770 return Intrinsic::riscv_masked_atomicrmw_min_i64; 3771 case AtomicRMWInst::UMax: 3772 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 3773 case AtomicRMWInst::UMin: 3774 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 3775 } 3776 } 3777 3778 llvm_unreachable("Unexpected XLen\n"); 3779 } 3780 3781 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 3782 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 3783 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 3784 unsigned XLen = Subtarget.getXLen(); 3785 Value *Ordering = 3786 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 3787 Type *Tys[] = {AlignedAddr->getType()}; 3788 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 3789 AI->getModule(), 3790 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 3791 3792 if (XLen == 64) { 3793 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 3794 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 3795 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 3796 } 3797 3798 Value *Result; 3799 3800 // Must pass the shift amount needed to sign extend the loaded value prior 3801 // to performing a signed comparison for min/max. ShiftAmt is the number of 3802 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 3803 // is the number of bits to left+right shift the value in order to 3804 // sign-extend. 3805 if (AI->getOperation() == AtomicRMWInst::Min || 3806 AI->getOperation() == AtomicRMWInst::Max) { 3807 const DataLayout &DL = AI->getModule()->getDataLayout(); 3808 unsigned ValWidth = 3809 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 3810 Value *SextShamt = 3811 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 3812 Result = Builder.CreateCall(LrwOpScwLoop, 3813 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 3814 } else { 3815 Result = 3816 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 3817 } 3818 3819 if (XLen == 64) 3820 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 3821 return Result; 3822 } 3823 3824 TargetLowering::AtomicExpansionKind 3825 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 3826 AtomicCmpXchgInst *CI) const { 3827 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 3828 if (Size == 8 || Size == 16) 3829 return AtomicExpansionKind::MaskedIntrinsic; 3830 return AtomicExpansionKind::None; 3831 } 3832 3833 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 3834 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 3835 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 3836 unsigned XLen = Subtarget.getXLen(); 3837 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 3838 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 3839 if (XLen == 64) { 3840 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 3841 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 3842 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 3843 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 3844 } 3845 Type *Tys[] = {AlignedAddr->getType()}; 3846 Function *MaskedCmpXchg = 3847 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 3848 Value *Result = Builder.CreateCall( 3849 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 3850 if (XLen == 64) 3851 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 3852 return Result; 3853 } 3854 3855 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 3856 EVT VT) const { 3857 VT = VT.getScalarType(); 3858 3859 if (!VT.isSimple()) 3860 return false; 3861 3862 switch (VT.getSimpleVT().SimpleTy) { 3863 case MVT::f16: 3864 return Subtarget.hasStdExtZfh(); 3865 case MVT::f32: 3866 return Subtarget.hasStdExtF(); 3867 case MVT::f64: 3868 return Subtarget.hasStdExtD(); 3869 default: 3870 break; 3871 } 3872 3873 return false; 3874 } 3875 3876 Register RISCVTargetLowering::getExceptionPointerRegister( 3877 const Constant *PersonalityFn) const { 3878 return RISCV::X10; 3879 } 3880 3881 Register RISCVTargetLowering::getExceptionSelectorRegister( 3882 const Constant *PersonalityFn) const { 3883 return RISCV::X11; 3884 } 3885 3886 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 3887 // Return false to suppress the unnecessary extensions if the LibCall 3888 // arguments or return value is f32 type for LP64 ABI. 3889 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 3890 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 3891 return false; 3892 3893 return true; 3894 } 3895 3896 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 3897 SDValue C) const { 3898 // Check integral scalar types. 3899 if (VT.isScalarInteger()) { 3900 // Do not perform the transformation on riscv32 with the M extension. 3901 if (!Subtarget.is64Bit() && Subtarget.hasStdExtM()) 3902 return false; 3903 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 3904 if (ConstNode->getAPIntValue().getBitWidth() > 8 * sizeof(int64_t)) 3905 return false; 3906 int64_t Imm = ConstNode->getSExtValue(); 3907 if (isPowerOf2_64(Imm + 1) || isPowerOf2_64(Imm - 1) || 3908 isPowerOf2_64(1 - Imm) || isPowerOf2_64(-1 - Imm)) 3909 return true; 3910 } 3911 } 3912 3913 return false; 3914 } 3915 3916 #define GET_REGISTER_MATCHER 3917 #include "RISCVGenAsmMatcher.inc" 3918 3919 Register 3920 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 3921 const MachineFunction &MF) const { 3922 Register Reg = MatchRegisterAltName(RegName); 3923 if (Reg == RISCV::NoRegister) 3924 Reg = MatchRegisterName(RegName); 3925 if (Reg == RISCV::NoRegister) 3926 report_fatal_error( 3927 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 3928 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 3929 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 3930 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 3931 StringRef(RegName) + "\".")); 3932 return Reg; 3933 } 3934 3935 namespace llvm { 3936 namespace RISCVVIntrinsicsTable { 3937 3938 #define GET_RISCVVIntrinsicsTable_IMPL 3939 #include "RISCVGenSearchableTables.inc" 3940 3941 } // namespace RISCVVIntrinsicsTable 3942 } // namespace llvm 3943