1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28 #include "llvm/CodeGen/ValueTypes.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/DiagnosticPrinter.h"
31 #include "llvm/IR/IntrinsicsRISCV.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "riscv-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
46                                          const RISCVSubtarget &STI)
47     : TargetLowering(TM), Subtarget(STI) {
48 
49   if (Subtarget.isRV32E())
50     report_fatal_error("Codegen not yet implemented for RV32E");
51 
52   RISCVABI::ABI ABI = Subtarget.getTargetABI();
53   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
54 
55   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
56       !Subtarget.hasStdExtF()) {
57     errs() << "Hard-float 'f' ABI can't be used for a target that "
58                 "doesn't support the F instruction set extension (ignoring "
59                           "target-abi)\n";
60     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
61   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
62              !Subtarget.hasStdExtD()) {
63     errs() << "Hard-float 'd' ABI can't be used for a target that "
64               "doesn't support the D instruction set extension (ignoring "
65               "target-abi)\n";
66     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
67   }
68 
69   switch (ABI) {
70   default:
71     report_fatal_error("Don't know how to lower this ABI");
72   case RISCVABI::ABI_ILP32:
73   case RISCVABI::ABI_ILP32F:
74   case RISCVABI::ABI_ILP32D:
75   case RISCVABI::ABI_LP64:
76   case RISCVABI::ABI_LP64F:
77   case RISCVABI::ABI_LP64D:
78     break;
79   }
80 
81   MVT XLenVT = Subtarget.getXLenVT();
82 
83   // Set up the register classes.
84   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
85 
86   if (Subtarget.hasStdExtZfh())
87     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
88   if (Subtarget.hasStdExtF())
89     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
90   if (Subtarget.hasStdExtD())
91     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
92 
93   static const MVT::SimpleValueType BoolVecVTs[] = {
94       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
95       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
96   static const MVT::SimpleValueType IntVecVTs[] = {
97       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
98       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
99       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
100       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
101       MVT::nxv4i64, MVT::nxv8i64};
102   static const MVT::SimpleValueType F16VecVTs[] = {
103       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
104       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
105   static const MVT::SimpleValueType F32VecVTs[] = {
106       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
107   static const MVT::SimpleValueType F64VecVTs[] = {
108       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
109 
110   if (Subtarget.hasStdExtV()) {
111     auto addRegClassForRVV = [this](MVT VT) {
112       unsigned Size = VT.getSizeInBits().getKnownMinValue();
113       assert(Size <= 512 && isPowerOf2_32(Size));
114       const TargetRegisterClass *RC;
115       if (Size <= 64)
116         RC = &RISCV::VRRegClass;
117       else if (Size == 128)
118         RC = &RISCV::VRM2RegClass;
119       else if (Size == 256)
120         RC = &RISCV::VRM4RegClass;
121       else
122         RC = &RISCV::VRM8RegClass;
123 
124       addRegisterClass(VT, RC);
125     };
126 
127     for (MVT VT : BoolVecVTs)
128       addRegClassForRVV(VT);
129     for (MVT VT : IntVecVTs)
130       addRegClassForRVV(VT);
131 
132     if (Subtarget.hasStdExtZfh())
133       for (MVT VT : F16VecVTs)
134         addRegClassForRVV(VT);
135 
136     if (Subtarget.hasStdExtF())
137       for (MVT VT : F32VecVTs)
138         addRegClassForRVV(VT);
139 
140     if (Subtarget.hasStdExtD())
141       for (MVT VT : F64VecVTs)
142         addRegClassForRVV(VT);
143 
144     if (Subtarget.useRVVForFixedLengthVectors()) {
145       auto addRegClassForFixedVectors = [this](MVT VT) {
146         MVT ContainerVT = getContainerForFixedLengthVector(VT);
147         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
148         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
149         addRegisterClass(VT, TRI.getRegClass(RCID));
150       };
151       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
152         if (useRVVForFixedLengthVectorVT(VT))
153           addRegClassForFixedVectors(VT);
154 
155       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
156         if (useRVVForFixedLengthVectorVT(VT))
157           addRegClassForFixedVectors(VT);
158     }
159   }
160 
161   // Compute derived properties from the register classes.
162   computeRegisterProperties(STI.getRegisterInfo());
163 
164   setStackPointerRegisterToSaveRestore(RISCV::X2);
165 
166   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
167     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
168 
169   // TODO: add all necessary setOperationAction calls.
170   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
171 
172   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
173   setOperationAction(ISD::BR_CC, XLenVT, Expand);
174   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
175   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
176 
177   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
178   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
179 
180   setOperationAction(ISD::VASTART, MVT::Other, Custom);
181   setOperationAction(ISD::VAARG, MVT::Other, Expand);
182   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
183   setOperationAction(ISD::VAEND, MVT::Other, Expand);
184 
185   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
186   if (!Subtarget.hasStdExtZbb()) {
187     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
188     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
189   }
190 
191   if (Subtarget.is64Bit()) {
192     setOperationAction(ISD::ADD, MVT::i32, Custom);
193     setOperationAction(ISD::SUB, MVT::i32, Custom);
194     setOperationAction(ISD::SHL, MVT::i32, Custom);
195     setOperationAction(ISD::SRA, MVT::i32, Custom);
196     setOperationAction(ISD::SRL, MVT::i32, Custom);
197 
198     setOperationAction(ISD::UADDO, MVT::i32, Custom);
199     setOperationAction(ISD::USUBO, MVT::i32, Custom);
200     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
201     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
202   }
203 
204   if (!Subtarget.hasStdExtM()) {
205     setOperationAction(ISD::MUL, XLenVT, Expand);
206     setOperationAction(ISD::MULHS, XLenVT, Expand);
207     setOperationAction(ISD::MULHU, XLenVT, Expand);
208     setOperationAction(ISD::SDIV, XLenVT, Expand);
209     setOperationAction(ISD::UDIV, XLenVT, Expand);
210     setOperationAction(ISD::SREM, XLenVT, Expand);
211     setOperationAction(ISD::UREM, XLenVT, Expand);
212   } else {
213     if (Subtarget.is64Bit()) {
214       setOperationAction(ISD::MUL, MVT::i32, Custom);
215       setOperationAction(ISD::MUL, MVT::i128, Custom);
216 
217       setOperationAction(ISD::SDIV, MVT::i8, Custom);
218       setOperationAction(ISD::UDIV, MVT::i8, Custom);
219       setOperationAction(ISD::UREM, MVT::i8, Custom);
220       setOperationAction(ISD::SDIV, MVT::i16, Custom);
221       setOperationAction(ISD::UDIV, MVT::i16, Custom);
222       setOperationAction(ISD::UREM, MVT::i16, Custom);
223       setOperationAction(ISD::SDIV, MVT::i32, Custom);
224       setOperationAction(ISD::UDIV, MVT::i32, Custom);
225       setOperationAction(ISD::UREM, MVT::i32, Custom);
226     } else {
227       setOperationAction(ISD::MUL, MVT::i64, Custom);
228     }
229   }
230 
231   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
232   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
233   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
234   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
235 
236   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
237   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
238   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
239 
240   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
241     if (Subtarget.is64Bit()) {
242       setOperationAction(ISD::ROTL, MVT::i32, Custom);
243       setOperationAction(ISD::ROTR, MVT::i32, Custom);
244     }
245   } else {
246     setOperationAction(ISD::ROTL, XLenVT, Expand);
247     setOperationAction(ISD::ROTR, XLenVT, Expand);
248   }
249 
250   if (Subtarget.hasStdExtZbp()) {
251     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
252     // more combining.
253     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
254     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
255     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
256     // BSWAP i8 doesn't exist.
257     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
258     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
259 
260     if (Subtarget.is64Bit()) {
261       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
262       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
263     }
264   } else {
265     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
266     // pattern match it directly in isel.
267     setOperationAction(ISD::BSWAP, XLenVT,
268                        Subtarget.hasStdExtZbb() ? Legal : Expand);
269   }
270 
271   if (Subtarget.hasStdExtZbb()) {
272     setOperationAction(ISD::SMIN, XLenVT, Legal);
273     setOperationAction(ISD::SMAX, XLenVT, Legal);
274     setOperationAction(ISD::UMIN, XLenVT, Legal);
275     setOperationAction(ISD::UMAX, XLenVT, Legal);
276 
277     if (Subtarget.is64Bit()) {
278       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
279       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
280       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
281       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
282     }
283   } else {
284     setOperationAction(ISD::CTTZ, XLenVT, Expand);
285     setOperationAction(ISD::CTLZ, XLenVT, Expand);
286     setOperationAction(ISD::CTPOP, XLenVT, Expand);
287   }
288 
289   if (Subtarget.hasStdExtZbt()) {
290     setOperationAction(ISD::FSHL, XLenVT, Custom);
291     setOperationAction(ISD::FSHR, XLenVT, Custom);
292     setOperationAction(ISD::SELECT, XLenVT, Legal);
293 
294     if (Subtarget.is64Bit()) {
295       setOperationAction(ISD::FSHL, MVT::i32, Custom);
296       setOperationAction(ISD::FSHR, MVT::i32, Custom);
297     }
298   } else {
299     setOperationAction(ISD::SELECT, XLenVT, Custom);
300   }
301 
302   ISD::CondCode FPCCToExpand[] = {
303       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
304       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
305       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
306 
307   ISD::NodeType FPOpToExpand[] = {
308       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
309       ISD::FP_TO_FP16};
310 
311   if (Subtarget.hasStdExtZfh())
312     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
313 
314   if (Subtarget.hasStdExtZfh()) {
315     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
316     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
317     setOperationAction(ISD::LRINT, MVT::f16, Legal);
318     setOperationAction(ISD::LLRINT, MVT::f16, Legal);
319     setOperationAction(ISD::LROUND, MVT::f16, Legal);
320     setOperationAction(ISD::LLROUND, MVT::f16, Legal);
321     for (auto CC : FPCCToExpand)
322       setCondCodeAction(CC, MVT::f16, Expand);
323     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
324     setOperationAction(ISD::SELECT, MVT::f16, Custom);
325     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
326     for (auto Op : FPOpToExpand)
327       setOperationAction(Op, MVT::f16, Expand);
328   }
329 
330   if (Subtarget.hasStdExtF()) {
331     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
332     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
333     setOperationAction(ISD::LRINT, MVT::f32, Legal);
334     setOperationAction(ISD::LLRINT, MVT::f32, Legal);
335     setOperationAction(ISD::LROUND, MVT::f32, Legal);
336     setOperationAction(ISD::LLROUND, MVT::f32, Legal);
337     for (auto CC : FPCCToExpand)
338       setCondCodeAction(CC, MVT::f32, Expand);
339     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
340     setOperationAction(ISD::SELECT, MVT::f32, Custom);
341     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
342     for (auto Op : FPOpToExpand)
343       setOperationAction(Op, MVT::f32, Expand);
344     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
345     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
346   }
347 
348   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
349     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
350 
351   if (Subtarget.hasStdExtD()) {
352     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
353     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
354     setOperationAction(ISD::LRINT, MVT::f64, Legal);
355     setOperationAction(ISD::LLRINT, MVT::f64, Legal);
356     setOperationAction(ISD::LROUND, MVT::f64, Legal);
357     setOperationAction(ISD::LLROUND, MVT::f64, Legal);
358     for (auto CC : FPCCToExpand)
359       setCondCodeAction(CC, MVT::f64, Expand);
360     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
361     setOperationAction(ISD::SELECT, MVT::f64, Custom);
362     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
363     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
364     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
365     for (auto Op : FPOpToExpand)
366       setOperationAction(Op, MVT::f64, Expand);
367     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
368     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
369   }
370 
371   if (Subtarget.is64Bit()) {
372     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
373     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
374     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
375     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
376   }
377 
378   if (Subtarget.hasStdExtF()) {
379     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
380     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
381 
382     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
383     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
384   }
385 
386   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
387   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
388   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
389   setOperationAction(ISD::JumpTable, XLenVT, Custom);
390 
391   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
392 
393   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
394   // Unfortunately this can't be determined just from the ISA naming string.
395   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
396                      Subtarget.is64Bit() ? Legal : Custom);
397 
398   setOperationAction(ISD::TRAP, MVT::Other, Legal);
399   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
400   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
401   if (Subtarget.is64Bit())
402     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
403 
404   if (Subtarget.hasStdExtA()) {
405     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
406     setMinCmpXchgSizeInBits(32);
407   } else {
408     setMaxAtomicSizeInBitsSupported(0);
409   }
410 
411   setBooleanContents(ZeroOrOneBooleanContent);
412 
413   if (Subtarget.hasStdExtV()) {
414     setBooleanVectorContents(ZeroOrOneBooleanContent);
415 
416     setOperationAction(ISD::VSCALE, XLenVT, Custom);
417 
418     // RVV intrinsics may have illegal operands.
419     // We also need to custom legalize vmv.x.s.
420     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
421     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
422     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
423     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
424     if (Subtarget.is64Bit()) {
425       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
426     } else {
427       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
428       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
429     }
430 
431     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
432 
433     static unsigned IntegerVPOps[] = {
434         ISD::VP_ADD,  ISD::VP_SUB,  ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV,
435         ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR,   ISD::VP_XOR,
436         ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL};
437 
438     static unsigned FloatingPointVPOps[] = {ISD::VP_FADD, ISD::VP_FSUB,
439                                             ISD::VP_FMUL, ISD::VP_FDIV};
440 
441     if (!Subtarget.is64Bit()) {
442       // We must custom-lower certain vXi64 operations on RV32 due to the vector
443       // element type being illegal.
444       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
445       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
446 
447       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
448       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
449       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
450       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
451       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
452       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
453       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
454       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
455     }
456 
457     for (MVT VT : BoolVecVTs) {
458       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
459 
460       // Mask VTs are custom-expanded into a series of standard nodes
461       setOperationAction(ISD::TRUNCATE, VT, Custom);
462       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
463       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
464       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
465 
466       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
467       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
468 
469       setOperationAction(ISD::SELECT, VT, Custom);
470       setOperationAction(ISD::SELECT_CC, VT, Expand);
471       setOperationAction(ISD::VSELECT, VT, Expand);
472 
473       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
474       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
475       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
476 
477       // RVV has native int->float & float->int conversions where the
478       // element type sizes are within one power-of-two of each other. Any
479       // wider distances between type sizes have to be lowered as sequences
480       // which progressively narrow the gap in stages.
481       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
482       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
483       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
484       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
485 
486       // Expand all extending loads to types larger than this, and truncating
487       // stores from types larger than this.
488       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
489         setTruncStoreAction(OtherVT, VT, Expand);
490         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
491         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
492         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
493       }
494     }
495 
496     for (MVT VT : IntVecVTs) {
497       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
498       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
499 
500       setOperationAction(ISD::SMIN, VT, Legal);
501       setOperationAction(ISD::SMAX, VT, Legal);
502       setOperationAction(ISD::UMIN, VT, Legal);
503       setOperationAction(ISD::UMAX, VT, Legal);
504 
505       setOperationAction(ISD::ROTL, VT, Expand);
506       setOperationAction(ISD::ROTR, VT, Expand);
507 
508       // Custom-lower extensions and truncations from/to mask types.
509       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
510       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
511       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
512 
513       // RVV has native int->float & float->int conversions where the
514       // element type sizes are within one power-of-two of each other. Any
515       // wider distances between type sizes have to be lowered as sequences
516       // which progressively narrow the gap in stages.
517       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
518       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
519       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
520       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
521 
522       setOperationAction(ISD::SADDSAT, VT, Legal);
523       setOperationAction(ISD::UADDSAT, VT, Legal);
524       setOperationAction(ISD::SSUBSAT, VT, Legal);
525       setOperationAction(ISD::USUBSAT, VT, Legal);
526 
527       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
528       // nodes which truncate by one power of two at a time.
529       setOperationAction(ISD::TRUNCATE, VT, Custom);
530 
531       // Custom-lower insert/extract operations to simplify patterns.
532       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
533       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
534 
535       // Custom-lower reduction operations to set up the corresponding custom
536       // nodes' operands.
537       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
538       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
539       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
540       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
541       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
542       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
543       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
544       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
545 
546       for (unsigned VPOpc : IntegerVPOps)
547         setOperationAction(VPOpc, VT, Custom);
548 
549       setOperationAction(ISD::LOAD, VT, Custom);
550       setOperationAction(ISD::STORE, VT, Custom);
551 
552       setOperationAction(ISD::MLOAD, VT, Custom);
553       setOperationAction(ISD::MSTORE, VT, Custom);
554       setOperationAction(ISD::MGATHER, VT, Custom);
555       setOperationAction(ISD::MSCATTER, VT, Custom);
556 
557       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
558       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
559       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
560 
561       setOperationAction(ISD::SELECT, VT, Custom);
562       setOperationAction(ISD::SELECT_CC, VT, Expand);
563 
564       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
565       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
566 
567       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
568         setTruncStoreAction(VT, OtherVT, Expand);
569         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
570         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
571         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
572       }
573     }
574 
575     // Expand various CCs to best match the RVV ISA, which natively supports UNE
576     // but no other unordered comparisons, and supports all ordered comparisons
577     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
578     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
579     // and we pattern-match those back to the "original", swapping operands once
580     // more. This way we catch both operations and both "vf" and "fv" forms with
581     // fewer patterns.
582     ISD::CondCode VFPCCToExpand[] = {
583         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
584         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
585         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
586     };
587 
588     // Sets common operation actions on RVV floating-point vector types.
589     const auto SetCommonVFPActions = [&](MVT VT) {
590       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
591       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
592       // sizes are within one power-of-two of each other. Therefore conversions
593       // between vXf16 and vXf64 must be lowered as sequences which convert via
594       // vXf32.
595       setOperationAction(ISD::FP_ROUND, VT, Custom);
596       setOperationAction(ISD::FP_EXTEND, VT, Custom);
597       // Custom-lower insert/extract operations to simplify patterns.
598       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
599       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
600       // Expand various condition codes (explained above).
601       for (auto CC : VFPCCToExpand)
602         setCondCodeAction(CC, VT, Expand);
603 
604       setOperationAction(ISD::FMINNUM, VT, Legal);
605       setOperationAction(ISD::FMAXNUM, VT, Legal);
606 
607       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
608       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
609       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
610       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
611       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
612 
613       setOperationAction(ISD::LOAD, VT, Custom);
614       setOperationAction(ISD::STORE, VT, Custom);
615 
616       setOperationAction(ISD::MLOAD, VT, Custom);
617       setOperationAction(ISD::MSTORE, VT, Custom);
618       setOperationAction(ISD::MGATHER, VT, Custom);
619       setOperationAction(ISD::MSCATTER, VT, Custom);
620 
621       setOperationAction(ISD::SELECT, VT, Custom);
622       setOperationAction(ISD::SELECT_CC, VT, Expand);
623 
624       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
625       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
626       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
627 
628       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
629 
630       for (unsigned VPOpc : FloatingPointVPOps)
631         setOperationAction(VPOpc, VT, Custom);
632     };
633 
634     // Sets common extload/truncstore actions on RVV floating-point vector
635     // types.
636     const auto SetCommonVFPExtLoadTruncStoreActions =
637         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
638           for (auto SmallVT : SmallerVTs) {
639             setTruncStoreAction(VT, SmallVT, Expand);
640             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
641           }
642         };
643 
644     if (Subtarget.hasStdExtZfh())
645       for (MVT VT : F16VecVTs)
646         SetCommonVFPActions(VT);
647 
648     for (MVT VT : F32VecVTs) {
649       if (Subtarget.hasStdExtF())
650         SetCommonVFPActions(VT);
651       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
652     }
653 
654     for (MVT VT : F64VecVTs) {
655       if (Subtarget.hasStdExtD())
656         SetCommonVFPActions(VT);
657       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
658       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
659     }
660 
661     if (Subtarget.useRVVForFixedLengthVectors()) {
662       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
663         if (!useRVVForFixedLengthVectorVT(VT))
664           continue;
665 
666         // By default everything must be expanded.
667         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
668           setOperationAction(Op, VT, Expand);
669         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
670           setTruncStoreAction(VT, OtherVT, Expand);
671           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
672           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
673           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
674         }
675 
676         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
677         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
678         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
679 
680         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
681         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
682 
683         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
684         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
685 
686         setOperationAction(ISD::LOAD, VT, Custom);
687         setOperationAction(ISD::STORE, VT, Custom);
688 
689         setOperationAction(ISD::SETCC, VT, Custom);
690 
691         setOperationAction(ISD::SELECT, VT, Custom);
692 
693         setOperationAction(ISD::TRUNCATE, VT, Custom);
694 
695         setOperationAction(ISD::BITCAST, VT, Custom);
696 
697         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
698         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
699         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
700 
701         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
702         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
703         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
704         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
705 
706         // Operations below are different for between masks and other vectors.
707         if (VT.getVectorElementType() == MVT::i1) {
708           setOperationAction(ISD::AND, VT, Custom);
709           setOperationAction(ISD::OR, VT, Custom);
710           setOperationAction(ISD::XOR, VT, Custom);
711           continue;
712         }
713 
714         // Use SPLAT_VECTOR to prevent type legalization from destroying the
715         // splats when type legalizing i64 scalar on RV32.
716         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
717         // improvements first.
718         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
719           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
720           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
721         }
722 
723         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
724         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
725 
726         setOperationAction(ISD::MLOAD, VT, Custom);
727         setOperationAction(ISD::MSTORE, VT, Custom);
728         setOperationAction(ISD::MGATHER, VT, Custom);
729         setOperationAction(ISD::MSCATTER, VT, Custom);
730         setOperationAction(ISD::ADD, VT, Custom);
731         setOperationAction(ISD::MUL, VT, Custom);
732         setOperationAction(ISD::SUB, VT, Custom);
733         setOperationAction(ISD::AND, VT, Custom);
734         setOperationAction(ISD::OR, VT, Custom);
735         setOperationAction(ISD::XOR, VT, Custom);
736         setOperationAction(ISD::SDIV, VT, Custom);
737         setOperationAction(ISD::SREM, VT, Custom);
738         setOperationAction(ISD::UDIV, VT, Custom);
739         setOperationAction(ISD::UREM, VT, Custom);
740         setOperationAction(ISD::SHL, VT, Custom);
741         setOperationAction(ISD::SRA, VT, Custom);
742         setOperationAction(ISD::SRL, VT, Custom);
743 
744         setOperationAction(ISD::SMIN, VT, Custom);
745         setOperationAction(ISD::SMAX, VT, Custom);
746         setOperationAction(ISD::UMIN, VT, Custom);
747         setOperationAction(ISD::UMAX, VT, Custom);
748         setOperationAction(ISD::ABS,  VT, Custom);
749 
750         setOperationAction(ISD::MULHS, VT, Custom);
751         setOperationAction(ISD::MULHU, VT, Custom);
752 
753         setOperationAction(ISD::SADDSAT, VT, Custom);
754         setOperationAction(ISD::UADDSAT, VT, Custom);
755         setOperationAction(ISD::SSUBSAT, VT, Custom);
756         setOperationAction(ISD::USUBSAT, VT, Custom);
757 
758         setOperationAction(ISD::VSELECT, VT, Custom);
759         setOperationAction(ISD::SELECT_CC, VT, Expand);
760 
761         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
762         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
763         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
764 
765         // Custom-lower reduction operations to set up the corresponding custom
766         // nodes' operands.
767         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
768         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
769         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
770         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
771         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
772 
773         for (unsigned VPOpc : IntegerVPOps)
774           setOperationAction(VPOpc, VT, Custom);
775       }
776 
777       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
778         if (!useRVVForFixedLengthVectorVT(VT))
779           continue;
780 
781         // By default everything must be expanded.
782         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
783           setOperationAction(Op, VT, Expand);
784         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
785           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
786           setTruncStoreAction(VT, OtherVT, Expand);
787         }
788 
789         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
790         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
791         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
792 
793         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
794         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
795         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
796         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
797 
798         setOperationAction(ISD::LOAD, VT, Custom);
799         setOperationAction(ISD::STORE, VT, Custom);
800         setOperationAction(ISD::MLOAD, VT, Custom);
801         setOperationAction(ISD::MSTORE, VT, Custom);
802         setOperationAction(ISD::MGATHER, VT, Custom);
803         setOperationAction(ISD::MSCATTER, VT, Custom);
804         setOperationAction(ISD::FADD, VT, Custom);
805         setOperationAction(ISD::FSUB, VT, Custom);
806         setOperationAction(ISD::FMUL, VT, Custom);
807         setOperationAction(ISD::FDIV, VT, Custom);
808         setOperationAction(ISD::FNEG, VT, Custom);
809         setOperationAction(ISD::FABS, VT, Custom);
810         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
811         setOperationAction(ISD::FSQRT, VT, Custom);
812         setOperationAction(ISD::FMA, VT, Custom);
813         setOperationAction(ISD::FMINNUM, VT, Custom);
814         setOperationAction(ISD::FMAXNUM, VT, Custom);
815 
816         setOperationAction(ISD::FP_ROUND, VT, Custom);
817         setOperationAction(ISD::FP_EXTEND, VT, Custom);
818 
819         for (auto CC : VFPCCToExpand)
820           setCondCodeAction(CC, VT, Expand);
821 
822         setOperationAction(ISD::VSELECT, VT, Custom);
823         setOperationAction(ISD::SELECT, VT, Custom);
824         setOperationAction(ISD::SELECT_CC, VT, Expand);
825 
826         setOperationAction(ISD::BITCAST, VT, Custom);
827 
828         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
829         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
830         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
831         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
832 
833         for (unsigned VPOpc : FloatingPointVPOps)
834           setOperationAction(VPOpc, VT, Custom);
835       }
836 
837       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
838       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
839       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
840       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
841       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
842       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
843       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
844       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
845     }
846   }
847 
848   // Function alignments.
849   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
850   setMinFunctionAlignment(FunctionAlignment);
851   setPrefFunctionAlignment(FunctionAlignment);
852 
853   setMinimumJumpTableEntries(5);
854 
855   // Jumps are expensive, compared to logic
856   setJumpIsExpensive();
857 
858   // We can use any register for comparisons
859   setHasMultipleConditionRegisters();
860 
861   setTargetDAGCombine(ISD::ADD);
862   setTargetDAGCombine(ISD::SUB);
863   setTargetDAGCombine(ISD::AND);
864   setTargetDAGCombine(ISD::OR);
865   setTargetDAGCombine(ISD::XOR);
866   setTargetDAGCombine(ISD::ANY_EXTEND);
867   setTargetDAGCombine(ISD::ZERO_EXTEND);
868   if (Subtarget.hasStdExtV()) {
869     setTargetDAGCombine(ISD::FCOPYSIGN);
870     setTargetDAGCombine(ISD::MGATHER);
871     setTargetDAGCombine(ISD::MSCATTER);
872     setTargetDAGCombine(ISD::SRA);
873     setTargetDAGCombine(ISD::SRL);
874     setTargetDAGCombine(ISD::SHL);
875   }
876 }
877 
878 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
879                                             LLVMContext &Context,
880                                             EVT VT) const {
881   if (!VT.isVector())
882     return getPointerTy(DL);
883   if (Subtarget.hasStdExtV() &&
884       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
885     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
886   return VT.changeVectorElementTypeToInteger();
887 }
888 
889 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
890   return Subtarget.getXLenVT();
891 }
892 
893 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
894                                              const CallInst &I,
895                                              MachineFunction &MF,
896                                              unsigned Intrinsic) const {
897   switch (Intrinsic) {
898   default:
899     return false;
900   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
901   case Intrinsic::riscv_masked_atomicrmw_add_i32:
902   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
903   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
904   case Intrinsic::riscv_masked_atomicrmw_max_i32:
905   case Intrinsic::riscv_masked_atomicrmw_min_i32:
906   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
907   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
908   case Intrinsic::riscv_masked_cmpxchg_i32: {
909     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
910     Info.opc = ISD::INTRINSIC_W_CHAIN;
911     Info.memVT = MVT::getVT(PtrTy->getElementType());
912     Info.ptrVal = I.getArgOperand(0);
913     Info.offset = 0;
914     Info.align = Align(4);
915     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
916                  MachineMemOperand::MOVolatile;
917     return true;
918   }
919   }
920 }
921 
922 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
923                                                 const AddrMode &AM, Type *Ty,
924                                                 unsigned AS,
925                                                 Instruction *I) const {
926   // No global is ever allowed as a base.
927   if (AM.BaseGV)
928     return false;
929 
930   // Require a 12-bit signed offset.
931   if (!isInt<12>(AM.BaseOffs))
932     return false;
933 
934   switch (AM.Scale) {
935   case 0: // "r+i" or just "i", depending on HasBaseReg.
936     break;
937   case 1:
938     if (!AM.HasBaseReg) // allow "r+i".
939       break;
940     return false; // disallow "r+r" or "r+r+i".
941   default:
942     return false;
943   }
944 
945   return true;
946 }
947 
948 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
949   return isInt<12>(Imm);
950 }
951 
952 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
953   return isInt<12>(Imm);
954 }
955 
956 // On RV32, 64-bit integers are split into their high and low parts and held
957 // in two different registers, so the trunc is free since the low register can
958 // just be used.
959 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
960   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
961     return false;
962   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
963   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
964   return (SrcBits == 64 && DestBits == 32);
965 }
966 
967 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
968   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
969       !SrcVT.isInteger() || !DstVT.isInteger())
970     return false;
971   unsigned SrcBits = SrcVT.getSizeInBits();
972   unsigned DestBits = DstVT.getSizeInBits();
973   return (SrcBits == 64 && DestBits == 32);
974 }
975 
976 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
977   // Zexts are free if they can be combined with a load.
978   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
979     EVT MemVT = LD->getMemoryVT();
980     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
981          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
982         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
983          LD->getExtensionType() == ISD::ZEXTLOAD))
984       return true;
985   }
986 
987   return TargetLowering::isZExtFree(Val, VT2);
988 }
989 
990 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
991   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
992 }
993 
994 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
995   return Subtarget.hasStdExtZbb();
996 }
997 
998 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
999   return Subtarget.hasStdExtZbb();
1000 }
1001 
1002 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1003                                        bool ForCodeSize) const {
1004   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1005     return false;
1006   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1007     return false;
1008   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1009     return false;
1010   if (Imm.isNegZero())
1011     return false;
1012   return Imm.isZero();
1013 }
1014 
1015 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1016   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1017          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1018          (VT == MVT::f64 && Subtarget.hasStdExtD());
1019 }
1020 
1021 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1022                                                       CallingConv::ID CC,
1023                                                       EVT VT) const {
1024   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
1025   // end up using a GPR but that will be decided based on ABI.
1026   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1027     return MVT::f32;
1028 
1029   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1030 }
1031 
1032 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1033                                                            CallingConv::ID CC,
1034                                                            EVT VT) const {
1035   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
1036   // end up using a GPR but that will be decided based on ABI.
1037   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1038     return 1;
1039 
1040   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1041 }
1042 
1043 // Changes the condition code and swaps operands if necessary, so the SetCC
1044 // operation matches one of the comparisons supported directly by branches
1045 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1046 // with 1/-1.
1047 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1048                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1049   // Convert X > -1 to X >= 0.
1050   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1051     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1052     CC = ISD::SETGE;
1053     return;
1054   }
1055   // Convert X < 1 to 0 >= X.
1056   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1057     RHS = LHS;
1058     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1059     CC = ISD::SETGE;
1060     return;
1061   }
1062 
1063   switch (CC) {
1064   default:
1065     break;
1066   case ISD::SETGT:
1067   case ISD::SETLE:
1068   case ISD::SETUGT:
1069   case ISD::SETULE:
1070     CC = ISD::getSetCCSwappedOperands(CC);
1071     std::swap(LHS, RHS);
1072     break;
1073   }
1074 }
1075 
1076 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1077   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1078   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1079   if (VT.getVectorElementType() == MVT::i1)
1080     KnownSize *= 8;
1081 
1082   switch (KnownSize) {
1083   default:
1084     llvm_unreachable("Invalid LMUL.");
1085   case 8:
1086     return RISCVII::VLMUL::LMUL_F8;
1087   case 16:
1088     return RISCVII::VLMUL::LMUL_F4;
1089   case 32:
1090     return RISCVII::VLMUL::LMUL_F2;
1091   case 64:
1092     return RISCVII::VLMUL::LMUL_1;
1093   case 128:
1094     return RISCVII::VLMUL::LMUL_2;
1095   case 256:
1096     return RISCVII::VLMUL::LMUL_4;
1097   case 512:
1098     return RISCVII::VLMUL::LMUL_8;
1099   }
1100 }
1101 
1102 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1103   switch (LMul) {
1104   default:
1105     llvm_unreachable("Invalid LMUL.");
1106   case RISCVII::VLMUL::LMUL_F8:
1107   case RISCVII::VLMUL::LMUL_F4:
1108   case RISCVII::VLMUL::LMUL_F2:
1109   case RISCVII::VLMUL::LMUL_1:
1110     return RISCV::VRRegClassID;
1111   case RISCVII::VLMUL::LMUL_2:
1112     return RISCV::VRM2RegClassID;
1113   case RISCVII::VLMUL::LMUL_4:
1114     return RISCV::VRM4RegClassID;
1115   case RISCVII::VLMUL::LMUL_8:
1116     return RISCV::VRM8RegClassID;
1117   }
1118 }
1119 
1120 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1121   RISCVII::VLMUL LMUL = getLMUL(VT);
1122   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1123       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1124       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1125       LMUL == RISCVII::VLMUL::LMUL_1) {
1126     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1127                   "Unexpected subreg numbering");
1128     return RISCV::sub_vrm1_0 + Index;
1129   }
1130   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1131     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1132                   "Unexpected subreg numbering");
1133     return RISCV::sub_vrm2_0 + Index;
1134   }
1135   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1136     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1137                   "Unexpected subreg numbering");
1138     return RISCV::sub_vrm4_0 + Index;
1139   }
1140   llvm_unreachable("Invalid vector type.");
1141 }
1142 
1143 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1144   if (VT.getVectorElementType() == MVT::i1)
1145     return RISCV::VRRegClassID;
1146   return getRegClassIDForLMUL(getLMUL(VT));
1147 }
1148 
1149 // Attempt to decompose a subvector insert/extract between VecVT and
1150 // SubVecVT via subregister indices. Returns the subregister index that
1151 // can perform the subvector insert/extract with the given element index, as
1152 // well as the index corresponding to any leftover subvectors that must be
1153 // further inserted/extracted within the register class for SubVecVT.
1154 std::pair<unsigned, unsigned>
1155 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1156     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1157     const RISCVRegisterInfo *TRI) {
1158   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1159                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1160                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1161                 "Register classes not ordered");
1162   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1163   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1164   // Try to compose a subregister index that takes us from the incoming
1165   // LMUL>1 register class down to the outgoing one. At each step we half
1166   // the LMUL:
1167   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1168   // Note that this is not guaranteed to find a subregister index, such as
1169   // when we are extracting from one VR type to another.
1170   unsigned SubRegIdx = RISCV::NoSubRegister;
1171   for (const unsigned RCID :
1172        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1173     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1174       VecVT = VecVT.getHalfNumVectorElementsVT();
1175       bool IsHi =
1176           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1177       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1178                                             getSubregIndexByMVT(VecVT, IsHi));
1179       if (IsHi)
1180         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1181     }
1182   return {SubRegIdx, InsertExtractIdx};
1183 }
1184 
1185 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1186 // stores for those types.
1187 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1188   return !Subtarget.useRVVForFixedLengthVectors() ||
1189          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1190 }
1191 
1192 static bool useRVVForFixedLengthVectorVT(MVT VT,
1193                                          const RISCVSubtarget &Subtarget) {
1194   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1195   if (!Subtarget.useRVVForFixedLengthVectors())
1196     return false;
1197 
1198   // We only support a set of vector types with a consistent maximum fixed size
1199   // across all supported vector element types to avoid legalization issues.
1200   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1201   // fixed-length vector type we support is 1024 bytes.
1202   if (VT.getFixedSizeInBits() > 1024 * 8)
1203     return false;
1204 
1205   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1206 
1207   // Don't use RVV for vectors we cannot scalarize if required.
1208   switch (VT.getVectorElementType().SimpleTy) {
1209   // i1 is supported but has different rules.
1210   default:
1211     return false;
1212   case MVT::i1:
1213     // Masks can only use a single register.
1214     if (VT.getVectorNumElements() > MinVLen)
1215       return false;
1216     MinVLen /= 8;
1217     break;
1218   case MVT::i8:
1219   case MVT::i16:
1220   case MVT::i32:
1221   case MVT::i64:
1222     break;
1223   case MVT::f16:
1224     if (!Subtarget.hasStdExtZfh())
1225       return false;
1226     break;
1227   case MVT::f32:
1228     if (!Subtarget.hasStdExtF())
1229       return false;
1230     break;
1231   case MVT::f64:
1232     if (!Subtarget.hasStdExtD())
1233       return false;
1234     break;
1235   }
1236 
1237   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1238   // Don't use RVV for types that don't fit.
1239   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1240     return false;
1241 
1242   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1243   // the base fixed length RVV support in place.
1244   if (!VT.isPow2VectorType())
1245     return false;
1246 
1247   return true;
1248 }
1249 
1250 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1251   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1252 }
1253 
1254 // Return the largest legal scalable vector type that matches VT's element type.
1255 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1256                                             const RISCVSubtarget &Subtarget) {
1257   // This may be called before legal types are setup.
1258   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1259           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1260          "Expected legal fixed length vector!");
1261 
1262   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1263 
1264   MVT EltVT = VT.getVectorElementType();
1265   switch (EltVT.SimpleTy) {
1266   default:
1267     llvm_unreachable("unexpected element type for RVV container");
1268   case MVT::i1:
1269   case MVT::i8:
1270   case MVT::i16:
1271   case MVT::i32:
1272   case MVT::i64:
1273   case MVT::f16:
1274   case MVT::f32:
1275   case MVT::f64: {
1276     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1277     // narrower types, but we can't have a fractional LMUL with demoninator less
1278     // than 64/SEW.
1279     unsigned NumElts =
1280         divideCeil(VT.getVectorNumElements(), MinVLen / RISCV::RVVBitsPerBlock);
1281     return MVT::getScalableVectorVT(EltVT, NumElts);
1282   }
1283   }
1284 }
1285 
1286 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1287                                             const RISCVSubtarget &Subtarget) {
1288   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1289                                           Subtarget);
1290 }
1291 
1292 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1293   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1294 }
1295 
1296 // Grow V to consume an entire RVV register.
1297 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1298                                        const RISCVSubtarget &Subtarget) {
1299   assert(VT.isScalableVector() &&
1300          "Expected to convert into a scalable vector!");
1301   assert(V.getValueType().isFixedLengthVector() &&
1302          "Expected a fixed length vector operand!");
1303   SDLoc DL(V);
1304   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1305   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1306 }
1307 
1308 // Shrink V so it's just big enough to maintain a VT's worth of data.
1309 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1310                                          const RISCVSubtarget &Subtarget) {
1311   assert(VT.isFixedLengthVector() &&
1312          "Expected to convert into a fixed length vector!");
1313   assert(V.getValueType().isScalableVector() &&
1314          "Expected a scalable vector operand!");
1315   SDLoc DL(V);
1316   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1317   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1318 }
1319 
1320 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1321 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1322 // the vector type that it is contained in.
1323 static std::pair<SDValue, SDValue>
1324 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1325                 const RISCVSubtarget &Subtarget) {
1326   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1327   MVT XLenVT = Subtarget.getXLenVT();
1328   SDValue VL = VecVT.isFixedLengthVector()
1329                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1330                    : DAG.getRegister(RISCV::X0, XLenVT);
1331   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1332   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1333   return {Mask, VL};
1334 }
1335 
1336 // As above but assuming the given type is a scalable vector type.
1337 static std::pair<SDValue, SDValue>
1338 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1339                         const RISCVSubtarget &Subtarget) {
1340   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1341   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1342 }
1343 
1344 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1345 // of either is (currently) supported. This can get us into an infinite loop
1346 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1347 // as a ..., etc.
1348 // Until either (or both) of these can reliably lower any node, reporting that
1349 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1350 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1351 // which is not desirable.
1352 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1353     EVT VT, unsigned DefinedValues) const {
1354   return false;
1355 }
1356 
1357 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1358   // Only splats are currently supported.
1359   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1360     return true;
1361 
1362   return false;
1363 }
1364 
1365 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) {
1366   // RISCV FP-to-int conversions saturate to the destination register size, but
1367   // don't produce 0 for nan. We can use a conversion instruction and fix the
1368   // nan case with a compare and a select.
1369   SDValue Src = Op.getOperand(0);
1370 
1371   EVT DstVT = Op.getValueType();
1372   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1373 
1374   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1375   unsigned Opc;
1376   if (SatVT == DstVT)
1377     Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ;
1378   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1379     Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
1380   else
1381     return SDValue();
1382   // FIXME: Support other SatVTs by clamping before or after the conversion.
1383 
1384   SDLoc DL(Op);
1385   SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src);
1386 
1387   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1388   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1389 }
1390 
1391 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1392                                  const RISCVSubtarget &Subtarget) {
1393   MVT VT = Op.getSimpleValueType();
1394   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1395 
1396   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1397 
1398   SDLoc DL(Op);
1399   SDValue Mask, VL;
1400   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1401 
1402   unsigned Opc =
1403       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1404   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1405   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1406 }
1407 
1408 struct VIDSequence {
1409   int64_t StepNumerator;
1410   unsigned StepDenominator;
1411   int64_t Addend;
1412 };
1413 
1414 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1415 // to the (non-zero) step S and start value X. This can be then lowered as the
1416 // RVV sequence (VID * S) + X, for example.
1417 // The step S is represented as an integer numerator divided by a positive
1418 // denominator. Note that the implementation currently only identifies
1419 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1420 // cannot detect 2/3, for example.
1421 // Note that this method will also match potentially unappealing index
1422 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1423 // determine whether this is worth generating code for.
1424 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1425   unsigned NumElts = Op.getNumOperands();
1426   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1427   if (!Op.getValueType().isInteger())
1428     return None;
1429 
1430   Optional<unsigned> SeqStepDenom;
1431   Optional<int64_t> SeqStepNum, SeqAddend;
1432   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1433   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1434   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1435     // Assume undef elements match the sequence; we just have to be careful
1436     // when interpolating across them.
1437     if (Op.getOperand(Idx).isUndef())
1438       continue;
1439     // The BUILD_VECTOR must be all constants.
1440     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1441       return None;
1442 
1443     uint64_t Val = Op.getConstantOperandVal(Idx) &
1444                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1445 
1446     if (PrevElt) {
1447       // Calculate the step since the last non-undef element, and ensure
1448       // it's consistent across the entire sequence.
1449       unsigned IdxDiff = Idx - PrevElt->second;
1450       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1451 
1452       // A zero-value value difference means that we're somewhere in the middle
1453       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1454       // step change before evaluating the sequence.
1455       if (ValDiff != 0) {
1456         int64_t Remainder = ValDiff % IdxDiff;
1457         // Normalize the step if it's greater than 1.
1458         if (Remainder != ValDiff) {
1459           // The difference must cleanly divide the element span.
1460           if (Remainder != 0)
1461             return None;
1462           ValDiff /= IdxDiff;
1463           IdxDiff = 1;
1464         }
1465 
1466         if (!SeqStepNum)
1467           SeqStepNum = ValDiff;
1468         else if (ValDiff != SeqStepNum)
1469           return None;
1470 
1471         if (!SeqStepDenom)
1472           SeqStepDenom = IdxDiff;
1473         else if (IdxDiff != *SeqStepDenom)
1474           return None;
1475       }
1476     }
1477 
1478     // Record and/or check any addend.
1479     if (SeqStepNum && SeqStepDenom) {
1480       uint64_t ExpectedVal =
1481           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1482       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1483       if (!SeqAddend)
1484         SeqAddend = Addend;
1485       else if (SeqAddend != Addend)
1486         return None;
1487     }
1488 
1489     // Record this non-undef element for later.
1490     if (!PrevElt || PrevElt->first != Val)
1491       PrevElt = std::make_pair(Val, Idx);
1492   }
1493   // We need to have logged both a step and an addend for this to count as
1494   // a legal index sequence.
1495   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1496     return None;
1497 
1498   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1499 }
1500 
1501 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1502                                  const RISCVSubtarget &Subtarget) {
1503   MVT VT = Op.getSimpleValueType();
1504   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1505 
1506   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1507 
1508   SDLoc DL(Op);
1509   SDValue Mask, VL;
1510   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1511 
1512   MVT XLenVT = Subtarget.getXLenVT();
1513   unsigned NumElts = Op.getNumOperands();
1514 
1515   if (VT.getVectorElementType() == MVT::i1) {
1516     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1517       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1518       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1519     }
1520 
1521     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1522       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1523       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1524     }
1525 
1526     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1527     // scalar integer chunks whose bit-width depends on the number of mask
1528     // bits and XLEN.
1529     // First, determine the most appropriate scalar integer type to use. This
1530     // is at most XLenVT, but may be shrunk to a smaller vector element type
1531     // according to the size of the final vector - use i8 chunks rather than
1532     // XLenVT if we're producing a v8i1. This results in more consistent
1533     // codegen across RV32 and RV64.
1534     unsigned NumViaIntegerBits =
1535         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1536     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1537       // If we have to use more than one INSERT_VECTOR_ELT then this
1538       // optimization is likely to increase code size; avoid peforming it in
1539       // such a case. We can use a load from a constant pool in this case.
1540       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1541         return SDValue();
1542       // Now we can create our integer vector type. Note that it may be larger
1543       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1544       MVT IntegerViaVecVT =
1545           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1546                            divideCeil(NumElts, NumViaIntegerBits));
1547 
1548       uint64_t Bits = 0;
1549       unsigned BitPos = 0, IntegerEltIdx = 0;
1550       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1551 
1552       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1553         // Once we accumulate enough bits to fill our scalar type, insert into
1554         // our vector and clear our accumulated data.
1555         if (I != 0 && I % NumViaIntegerBits == 0) {
1556           if (NumViaIntegerBits <= 32)
1557             Bits = SignExtend64(Bits, 32);
1558           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1559           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1560                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1561           Bits = 0;
1562           BitPos = 0;
1563           IntegerEltIdx++;
1564         }
1565         SDValue V = Op.getOperand(I);
1566         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1567         Bits |= ((uint64_t)BitValue << BitPos);
1568       }
1569 
1570       // Insert the (remaining) scalar value into position in our integer
1571       // vector type.
1572       if (NumViaIntegerBits <= 32)
1573         Bits = SignExtend64(Bits, 32);
1574       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1575       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1576                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1577 
1578       if (NumElts < NumViaIntegerBits) {
1579         // If we're producing a smaller vector than our minimum legal integer
1580         // type, bitcast to the equivalent (known-legal) mask type, and extract
1581         // our final mask.
1582         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1583         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1584         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1585                           DAG.getConstant(0, DL, XLenVT));
1586       } else {
1587         // Else we must have produced an integer type with the same size as the
1588         // mask type; bitcast for the final result.
1589         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1590         Vec = DAG.getBitcast(VT, Vec);
1591       }
1592 
1593       return Vec;
1594     }
1595 
1596     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1597     // vector type, we have a legal equivalently-sized i8 type, so we can use
1598     // that.
1599     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
1600     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
1601 
1602     SDValue WideVec;
1603     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1604       // For a splat, perform a scalar truncate before creating the wider
1605       // vector.
1606       assert(Splat.getValueType() == XLenVT &&
1607              "Unexpected type for i1 splat value");
1608       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
1609                           DAG.getConstant(1, DL, XLenVT));
1610       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
1611     } else {
1612       SmallVector<SDValue, 8> Ops(Op->op_values());
1613       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
1614       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
1615       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
1616     }
1617 
1618     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
1619   }
1620 
1621   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1622     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1623                                         : RISCVISD::VMV_V_X_VL;
1624     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1625     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1626   }
1627 
1628   // Try and match index sequences, which we can lower to the vid instruction
1629   // with optional modifications. An all-undef vector is matched by
1630   // getSplatValue, above.
1631   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
1632     int64_t StepNumerator = SimpleVID->StepNumerator;
1633     unsigned StepDenominator = SimpleVID->StepDenominator;
1634     int64_t Addend = SimpleVID->Addend;
1635     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
1636     // threshold since it's the immediate value many RVV instructions accept.
1637     if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) &&
1638         isInt<5>(Addend)) {
1639       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1640       // Convert right out of the scalable type so we can use standard ISD
1641       // nodes for the rest of the computation. If we used scalable types with
1642       // these, we'd lose the fixed-length vector info and generate worse
1643       // vsetvli code.
1644       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
1645       assert(StepNumerator != 0 && "Invalid step");
1646       bool Negate = false;
1647       if (StepNumerator != 1) {
1648         int64_t SplatStepVal = StepNumerator;
1649         unsigned Opcode = ISD::MUL;
1650         if (isPowerOf2_64(std::abs(StepNumerator))) {
1651           Negate = StepNumerator < 0;
1652           Opcode = ISD::SHL;
1653           SplatStepVal = Log2_64(std::abs(StepNumerator));
1654         }
1655         SDValue SplatStep = DAG.getSplatVector(
1656             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
1657         VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep);
1658       }
1659       if (StepDenominator != 1) {
1660         SDValue SplatStep = DAG.getSplatVector(
1661             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
1662         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
1663       }
1664       if (Addend != 0 || Negate) {
1665         SDValue SplatAddend =
1666             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
1667         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
1668       }
1669       return VID;
1670     }
1671   }
1672 
1673   // Attempt to detect "hidden" splats, which only reveal themselves as splats
1674   // when re-interpreted as a vector with a larger element type. For example,
1675   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
1676   // could be instead splat as
1677   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
1678   // TODO: This optimization could also work on non-constant splats, but it
1679   // would require bit-manipulation instructions to construct the splat value.
1680   SmallVector<SDValue> Sequence;
1681   unsigned EltBitSize = VT.getScalarSizeInBits();
1682   const auto *BV = cast<BuildVectorSDNode>(Op);
1683   if (VT.isInteger() && EltBitSize < 64 &&
1684       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1685       BV->getRepeatedSequence(Sequence) &&
1686       (Sequence.size() * EltBitSize) <= 64) {
1687     unsigned SeqLen = Sequence.size();
1688     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
1689     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
1690     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
1691             ViaIntVT == MVT::i64) &&
1692            "Unexpected sequence type");
1693 
1694     unsigned EltIdx = 0;
1695     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
1696     uint64_t SplatValue = 0;
1697     // Construct the amalgamated value which can be splatted as this larger
1698     // vector type.
1699     for (const auto &SeqV : Sequence) {
1700       if (!SeqV.isUndef())
1701         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
1702                        << (EltIdx * EltBitSize));
1703       EltIdx++;
1704     }
1705 
1706     // On RV64, sign-extend from 32 to 64 bits where possible in order to
1707     // achieve better constant materializion.
1708     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
1709       SplatValue = SignExtend64(SplatValue, 32);
1710 
1711     // Since we can't introduce illegal i64 types at this stage, we can only
1712     // perform an i64 splat on RV32 if it is its own sign-extended value. That
1713     // way we can use RVV instructions to splat.
1714     assert((ViaIntVT.bitsLE(XLenVT) ||
1715             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
1716            "Unexpected bitcast sequence");
1717     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
1718       SDValue ViaVL =
1719           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
1720       MVT ViaContainerVT =
1721           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
1722       SDValue Splat =
1723           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
1724                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
1725       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
1726       return DAG.getBitcast(VT, Splat);
1727     }
1728   }
1729 
1730   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1731   // which constitute a large proportion of the elements. In such cases we can
1732   // splat a vector with the dominant element and make up the shortfall with
1733   // INSERT_VECTOR_ELTs.
1734   // Note that this includes vectors of 2 elements by association. The
1735   // upper-most element is the "dominant" one, allowing us to use a splat to
1736   // "insert" the upper element, and an insert of the lower element at position
1737   // 0, which improves codegen.
1738   SDValue DominantValue;
1739   unsigned MostCommonCount = 0;
1740   DenseMap<SDValue, unsigned> ValueCounts;
1741   unsigned NumUndefElts =
1742       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
1743 
1744   // Track the number of scalar loads we know we'd be inserting, estimated as
1745   // any non-zero floating-point constant. Other kinds of element are either
1746   // already in registers or are materialized on demand. The threshold at which
1747   // a vector load is more desirable than several scalar materializion and
1748   // vector-insertion instructions is not known.
1749   unsigned NumScalarLoads = 0;
1750 
1751   for (SDValue V : Op->op_values()) {
1752     if (V.isUndef())
1753       continue;
1754 
1755     ValueCounts.insert(std::make_pair(V, 0));
1756     unsigned &Count = ValueCounts[V];
1757 
1758     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
1759       NumScalarLoads += !CFP->isExactlyValue(+0.0);
1760 
1761     // Is this value dominant? In case of a tie, prefer the highest element as
1762     // it's cheaper to insert near the beginning of a vector than it is at the
1763     // end.
1764     if (++Count >= MostCommonCount) {
1765       DominantValue = V;
1766       MostCommonCount = Count;
1767     }
1768   }
1769 
1770   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
1771   unsigned NumDefElts = NumElts - NumUndefElts;
1772   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
1773 
1774   // Don't perform this optimization when optimizing for size, since
1775   // materializing elements and inserting them tends to cause code bloat.
1776   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
1777       ((MostCommonCount > DominantValueCountThreshold) ||
1778        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
1779     // Start by splatting the most common element.
1780     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
1781 
1782     DenseSet<SDValue> Processed{DominantValue};
1783     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
1784     for (const auto &OpIdx : enumerate(Op->ops())) {
1785       const SDValue &V = OpIdx.value();
1786       if (V.isUndef() || !Processed.insert(V).second)
1787         continue;
1788       if (ValueCounts[V] == 1) {
1789         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
1790                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
1791       } else {
1792         // Blend in all instances of this value using a VSELECT, using a
1793         // mask where each bit signals whether that element is the one
1794         // we're after.
1795         SmallVector<SDValue> Ops;
1796         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
1797           return DAG.getConstant(V == V1, DL, XLenVT);
1798         });
1799         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
1800                           DAG.getBuildVector(SelMaskTy, DL, Ops),
1801                           DAG.getSplatBuildVector(VT, DL, V), Vec);
1802       }
1803     }
1804 
1805     return Vec;
1806   }
1807 
1808   return SDValue();
1809 }
1810 
1811 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
1812                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
1813   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
1814     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
1815     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
1816     // If Hi constant is all the same sign bit as Lo, lower this as a custom
1817     // node in order to try and match RVV vector/scalar instructions.
1818     if ((LoC >> 31) == HiC)
1819       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
1820   }
1821 
1822   // Fall back to a stack store and stride x0 vector load.
1823   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
1824 }
1825 
1826 // Called by type legalization to handle splat of i64 on RV32.
1827 // FIXME: We can optimize this when the type has sign or zero bits in one
1828 // of the halves.
1829 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
1830                                    SDValue VL, SelectionDAG &DAG) {
1831   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
1832   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1833                            DAG.getConstant(0, DL, MVT::i32));
1834   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1835                            DAG.getConstant(1, DL, MVT::i32));
1836   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
1837 }
1838 
1839 // This function lowers a splat of a scalar operand Splat with the vector
1840 // length VL. It ensures the final sequence is type legal, which is useful when
1841 // lowering a splat after type legalization.
1842 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
1843                                 SelectionDAG &DAG,
1844                                 const RISCVSubtarget &Subtarget) {
1845   if (VT.isFloatingPoint())
1846     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
1847 
1848   MVT XLenVT = Subtarget.getXLenVT();
1849 
1850   // Simplest case is that the operand needs to be promoted to XLenVT.
1851   if (Scalar.getValueType().bitsLE(XLenVT)) {
1852     // If the operand is a constant, sign extend to increase our chances
1853     // of being able to use a .vi instruction. ANY_EXTEND would become a
1854     // a zero extend and the simm5 check in isel would fail.
1855     // FIXME: Should we ignore the upper bits in isel instead?
1856     unsigned ExtOpc =
1857         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
1858     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
1859     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
1860   }
1861 
1862   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
1863          "Unexpected scalar for splat lowering!");
1864 
1865   // Otherwise use the more complicated splatting algorithm.
1866   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
1867 }
1868 
1869 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
1870                                    const RISCVSubtarget &Subtarget) {
1871   SDValue V1 = Op.getOperand(0);
1872   SDValue V2 = Op.getOperand(1);
1873   SDLoc DL(Op);
1874   MVT XLenVT = Subtarget.getXLenVT();
1875   MVT VT = Op.getSimpleValueType();
1876   unsigned NumElts = VT.getVectorNumElements();
1877   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
1878 
1879   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1880 
1881   SDValue TrueMask, VL;
1882   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1883 
1884   if (SVN->isSplat()) {
1885     const int Lane = SVN->getSplatIndex();
1886     if (Lane >= 0) {
1887       MVT SVT = VT.getVectorElementType();
1888 
1889       // Turn splatted vector load into a strided load with an X0 stride.
1890       SDValue V = V1;
1891       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
1892       // with undef.
1893       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
1894       int Offset = Lane;
1895       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
1896         int OpElements =
1897             V.getOperand(0).getSimpleValueType().getVectorNumElements();
1898         V = V.getOperand(Offset / OpElements);
1899         Offset %= OpElements;
1900       }
1901 
1902       // We need to ensure the load isn't atomic or volatile.
1903       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
1904         auto *Ld = cast<LoadSDNode>(V);
1905         Offset *= SVT.getStoreSize();
1906         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
1907                                                    TypeSize::Fixed(Offset), DL);
1908 
1909         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
1910         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
1911           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
1912           SDValue IntID =
1913               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
1914           SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
1915                            DAG.getRegister(RISCV::X0, XLenVT), VL};
1916           SDValue NewLoad = DAG.getMemIntrinsicNode(
1917               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
1918               DAG.getMachineFunction().getMachineMemOperand(
1919                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
1920           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
1921           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
1922         }
1923 
1924         // Otherwise use a scalar load and splat. This will give the best
1925         // opportunity to fold a splat into the operation. ISel can turn it into
1926         // the x0 strided load if we aren't able to fold away the select.
1927         if (SVT.isFloatingPoint())
1928           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
1929                           Ld->getPointerInfo().getWithOffset(Offset),
1930                           Ld->getOriginalAlign(),
1931                           Ld->getMemOperand()->getFlags());
1932         else
1933           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
1934                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
1935                              Ld->getOriginalAlign(),
1936                              Ld->getMemOperand()->getFlags());
1937         DAG.makeEquivalentMemoryOrdering(Ld, V);
1938 
1939         unsigned Opc =
1940             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1941         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
1942         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1943       }
1944 
1945       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1946       assert(Lane < (int)NumElts && "Unexpected lane!");
1947       SDValue Gather =
1948           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
1949                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
1950       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1951     }
1952   }
1953 
1954   // Detect shuffles which can be re-expressed as vector selects; these are
1955   // shuffles in which each element in the destination is taken from an element
1956   // at the corresponding index in either source vectors.
1957   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
1958     int MaskIndex = MaskIdx.value();
1959     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
1960   });
1961 
1962   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
1963 
1964   SmallVector<SDValue> MaskVals;
1965   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
1966   // merged with a second vrgather.
1967   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
1968 
1969   // By default we preserve the original operand order, and use a mask to
1970   // select LHS as true and RHS as false. However, since RVV vector selects may
1971   // feature splats but only on the LHS, we may choose to invert our mask and
1972   // instead select between RHS and LHS.
1973   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
1974   bool InvertMask = IsSelect == SwapOps;
1975 
1976   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
1977   // half.
1978   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
1979 
1980   // Now construct the mask that will be used by the vselect or blended
1981   // vrgather operation. For vrgathers, construct the appropriate indices into
1982   // each vector.
1983   for (int MaskIndex : SVN->getMask()) {
1984     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
1985     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
1986     if (!IsSelect) {
1987       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
1988       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
1989                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
1990                                      : DAG.getUNDEF(XLenVT));
1991       GatherIndicesRHS.push_back(
1992           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
1993                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
1994       if (IsLHSOrUndefIndex && MaskIndex >= 0)
1995         ++LHSIndexCounts[MaskIndex];
1996       if (!IsLHSOrUndefIndex)
1997         ++RHSIndexCounts[MaskIndex - NumElts];
1998     }
1999   }
2000 
2001   if (SwapOps) {
2002     std::swap(V1, V2);
2003     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2004   }
2005 
2006   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2007   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2008   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2009 
2010   if (IsSelect)
2011     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2012 
2013   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2014     // On such a large vector we're unable to use i8 as the index type.
2015     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2016     // may involve vector splitting if we're already at LMUL=8, or our
2017     // user-supplied maximum fixed-length LMUL.
2018     return SDValue();
2019   }
2020 
2021   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2022   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2023   MVT IndexVT = VT.changeTypeToInteger();
2024   // Since we can't introduce illegal index types at this stage, use i16 and
2025   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2026   // than XLenVT.
2027   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2028     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2029     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2030   }
2031 
2032   MVT IndexContainerVT =
2033       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2034 
2035   SDValue Gather;
2036   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2037   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2038   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2039     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
2040   } else {
2041     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2042     // If only one index is used, we can use a "splat" vrgather.
2043     // TODO: We can splat the most-common index and fix-up any stragglers, if
2044     // that's beneficial.
2045     if (LHSIndexCounts.size() == 1) {
2046       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2047       Gather =
2048           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2049                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2050     } else {
2051       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2052       LHSIndices =
2053           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2054 
2055       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2056                            TrueMask, VL);
2057     }
2058   }
2059 
2060   // If a second vector operand is used by this shuffle, blend it in with an
2061   // additional vrgather.
2062   if (!V2.isUndef()) {
2063     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2064     // If only one index is used, we can use a "splat" vrgather.
2065     // TODO: We can splat the most-common index and fix-up any stragglers, if
2066     // that's beneficial.
2067     if (RHSIndexCounts.size() == 1) {
2068       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2069       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2070                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2071     } else {
2072       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2073       RHSIndices =
2074           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2075       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2076                        VL);
2077     }
2078 
2079     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2080     SelectMask =
2081         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2082 
2083     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2084                          Gather, VL);
2085   }
2086 
2087   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2088 }
2089 
2090 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2091                                      SDLoc DL, SelectionDAG &DAG,
2092                                      const RISCVSubtarget &Subtarget) {
2093   if (VT.isScalableVector())
2094     return DAG.getFPExtendOrRound(Op, DL, VT);
2095   assert(VT.isFixedLengthVector() &&
2096          "Unexpected value type for RVV FP extend/round lowering");
2097   SDValue Mask, VL;
2098   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2099   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2100                         ? RISCVISD::FP_EXTEND_VL
2101                         : RISCVISD::FP_ROUND_VL;
2102   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2103 }
2104 
2105 // While RVV has alignment restrictions, we should always be able to load as a
2106 // legal equivalently-sized byte-typed vector instead. This method is
2107 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2108 // the load is already correctly-aligned, it returns SDValue().
2109 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2110                                                     SelectionDAG &DAG) const {
2111   auto *Load = cast<LoadSDNode>(Op);
2112   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2113 
2114   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2115                                      Load->getMemoryVT(),
2116                                      *Load->getMemOperand()))
2117     return SDValue();
2118 
2119   SDLoc DL(Op);
2120   MVT VT = Op.getSimpleValueType();
2121   unsigned EltSizeBits = VT.getScalarSizeInBits();
2122   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2123          "Unexpected unaligned RVV load type");
2124   MVT NewVT =
2125       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2126   assert(NewVT.isValid() &&
2127          "Expecting equally-sized RVV vector types to be legal");
2128   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2129                           Load->getPointerInfo(), Load->getOriginalAlign(),
2130                           Load->getMemOperand()->getFlags());
2131   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2132 }
2133 
2134 // While RVV has alignment restrictions, we should always be able to store as a
2135 // legal equivalently-sized byte-typed vector instead. This method is
2136 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2137 // returns SDValue() if the store is already correctly aligned.
2138 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2139                                                      SelectionDAG &DAG) const {
2140   auto *Store = cast<StoreSDNode>(Op);
2141   assert(Store && Store->getValue().getValueType().isVector() &&
2142          "Expected vector store");
2143 
2144   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2145                                      Store->getMemoryVT(),
2146                                      *Store->getMemOperand()))
2147     return SDValue();
2148 
2149   SDLoc DL(Op);
2150   SDValue StoredVal = Store->getValue();
2151   MVT VT = StoredVal.getSimpleValueType();
2152   unsigned EltSizeBits = VT.getScalarSizeInBits();
2153   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2154          "Unexpected unaligned RVV store type");
2155   MVT NewVT =
2156       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2157   assert(NewVT.isValid() &&
2158          "Expecting equally-sized RVV vector types to be legal");
2159   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2160   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2161                       Store->getPointerInfo(), Store->getOriginalAlign(),
2162                       Store->getMemOperand()->getFlags());
2163 }
2164 
2165 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2166                                             SelectionDAG &DAG) const {
2167   switch (Op.getOpcode()) {
2168   default:
2169     report_fatal_error("unimplemented operand");
2170   case ISD::GlobalAddress:
2171     return lowerGlobalAddress(Op, DAG);
2172   case ISD::BlockAddress:
2173     return lowerBlockAddress(Op, DAG);
2174   case ISD::ConstantPool:
2175     return lowerConstantPool(Op, DAG);
2176   case ISD::JumpTable:
2177     return lowerJumpTable(Op, DAG);
2178   case ISD::GlobalTLSAddress:
2179     return lowerGlobalTLSAddress(Op, DAG);
2180   case ISD::SELECT:
2181     return lowerSELECT(Op, DAG);
2182   case ISD::BRCOND:
2183     return lowerBRCOND(Op, DAG);
2184   case ISD::VASTART:
2185     return lowerVASTART(Op, DAG);
2186   case ISD::FRAMEADDR:
2187     return lowerFRAMEADDR(Op, DAG);
2188   case ISD::RETURNADDR:
2189     return lowerRETURNADDR(Op, DAG);
2190   case ISD::SHL_PARTS:
2191     return lowerShiftLeftParts(Op, DAG);
2192   case ISD::SRA_PARTS:
2193     return lowerShiftRightParts(Op, DAG, true);
2194   case ISD::SRL_PARTS:
2195     return lowerShiftRightParts(Op, DAG, false);
2196   case ISD::BITCAST: {
2197     SDLoc DL(Op);
2198     EVT VT = Op.getValueType();
2199     SDValue Op0 = Op.getOperand(0);
2200     EVT Op0VT = Op0.getValueType();
2201     MVT XLenVT = Subtarget.getXLenVT();
2202     if (VT.isFixedLengthVector()) {
2203       // We can handle fixed length vector bitcasts with a simple replacement
2204       // in isel.
2205       if (Op0VT.isFixedLengthVector())
2206         return Op;
2207       // When bitcasting from scalar to fixed-length vector, insert the scalar
2208       // into a one-element vector of the result type, and perform a vector
2209       // bitcast.
2210       if (!Op0VT.isVector()) {
2211         auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2212         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2213                                               DAG.getUNDEF(BVT), Op0,
2214                                               DAG.getConstant(0, DL, XLenVT)));
2215       }
2216       return SDValue();
2217     }
2218     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2219     // thus: bitcast the vector to a one-element vector type whose element type
2220     // is the same as the result type, and extract the first element.
2221     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2222       LLVMContext &Context = *DAG.getContext();
2223       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
2224       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2225                          DAG.getConstant(0, DL, XLenVT));
2226     }
2227     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2228       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2229       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2230       return FPConv;
2231     }
2232     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2233         Subtarget.hasStdExtF()) {
2234       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2235       SDValue FPConv =
2236           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2237       return FPConv;
2238     }
2239     return SDValue();
2240   }
2241   case ISD::INTRINSIC_WO_CHAIN:
2242     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2243   case ISD::INTRINSIC_W_CHAIN:
2244     return LowerINTRINSIC_W_CHAIN(Op, DAG);
2245   case ISD::BSWAP:
2246   case ISD::BITREVERSE: {
2247     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
2248     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
2249     MVT VT = Op.getSimpleValueType();
2250     SDLoc DL(Op);
2251     // Start with the maximum immediate value which is the bitwidth - 1.
2252     unsigned Imm = VT.getSizeInBits() - 1;
2253     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2254     if (Op.getOpcode() == ISD::BSWAP)
2255       Imm &= ~0x7U;
2256     return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
2257                        DAG.getConstant(Imm, DL, VT));
2258   }
2259   case ISD::FSHL:
2260   case ISD::FSHR: {
2261     MVT VT = Op.getSimpleValueType();
2262     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
2263     SDLoc DL(Op);
2264     if (Op.getOperand(2).getOpcode() == ISD::Constant)
2265       return Op;
2266     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2267     // use log(XLen) bits. Mask the shift amount accordingly.
2268     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
2269     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
2270                                 DAG.getConstant(ShAmtWidth, DL, VT));
2271     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
2272     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
2273   }
2274   case ISD::TRUNCATE: {
2275     SDLoc DL(Op);
2276     MVT VT = Op.getSimpleValueType();
2277     // Only custom-lower vector truncates
2278     if (!VT.isVector())
2279       return Op;
2280 
2281     // Truncates to mask types are handled differently
2282     if (VT.getVectorElementType() == MVT::i1)
2283       return lowerVectorMaskTrunc(Op, DAG);
2284 
2285     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2286     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2287     // truncate by one power of two at a time.
2288     MVT DstEltVT = VT.getVectorElementType();
2289 
2290     SDValue Src = Op.getOperand(0);
2291     MVT SrcVT = Src.getSimpleValueType();
2292     MVT SrcEltVT = SrcVT.getVectorElementType();
2293 
2294     assert(DstEltVT.bitsLT(SrcEltVT) &&
2295            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
2296            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
2297            "Unexpected vector truncate lowering");
2298 
2299     MVT ContainerVT = SrcVT;
2300     if (SrcVT.isFixedLengthVector()) {
2301       ContainerVT = getContainerForFixedLengthVector(SrcVT);
2302       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2303     }
2304 
2305     SDValue Result = Src;
2306     SDValue Mask, VL;
2307     std::tie(Mask, VL) =
2308         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
2309     LLVMContext &Context = *DAG.getContext();
2310     const ElementCount Count = ContainerVT.getVectorElementCount();
2311     do {
2312       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
2313       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
2314       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
2315                            Mask, VL);
2316     } while (SrcEltVT != DstEltVT);
2317 
2318     if (SrcVT.isFixedLengthVector())
2319       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
2320 
2321     return Result;
2322   }
2323   case ISD::ANY_EXTEND:
2324   case ISD::ZERO_EXTEND:
2325     if (Op.getOperand(0).getValueType().isVector() &&
2326         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2327       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2328     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2329   case ISD::SIGN_EXTEND:
2330     if (Op.getOperand(0).getValueType().isVector() &&
2331         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2332       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2333     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2334   case ISD::SPLAT_VECTOR_PARTS:
2335     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2336   case ISD::INSERT_VECTOR_ELT:
2337     return lowerINSERT_VECTOR_ELT(Op, DAG);
2338   case ISD::EXTRACT_VECTOR_ELT:
2339     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2340   case ISD::VSCALE: {
2341     MVT VT = Op.getSimpleValueType();
2342     SDLoc DL(Op);
2343     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2344     // We define our scalable vector types for lmul=1 to use a 64 bit known
2345     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2346     // vscale as VLENB / 8.
2347     assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!");
2348     if (isa<ConstantSDNode>(Op.getOperand(0))) {
2349       // We assume VLENB is a multiple of 8. We manually choose the best shift
2350       // here because SimplifyDemandedBits isn't always able to simplify it.
2351       uint64_t Val = Op.getConstantOperandVal(0);
2352       if (isPowerOf2_64(Val)) {
2353         uint64_t Log2 = Log2_64(Val);
2354         if (Log2 < 3)
2355           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
2356                              DAG.getConstant(3 - Log2, DL, VT));
2357         if (Log2 > 3)
2358           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
2359                              DAG.getConstant(Log2 - 3, DL, VT));
2360         return VLENB;
2361       }
2362       // If the multiplier is a multiple of 8, scale it down to avoid needing
2363       // to shift the VLENB value.
2364       if ((Val % 8) == 0)
2365         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
2366                            DAG.getConstant(Val / 8, DL, VT));
2367     }
2368 
2369     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2370                                  DAG.getConstant(3, DL, VT));
2371     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2372   }
2373   case ISD::FP_EXTEND: {
2374     // RVV can only do fp_extend to types double the size as the source. We
2375     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2376     // via f32.
2377     SDLoc DL(Op);
2378     MVT VT = Op.getSimpleValueType();
2379     SDValue Src = Op.getOperand(0);
2380     MVT SrcVT = Src.getSimpleValueType();
2381 
2382     // Prepare any fixed-length vector operands.
2383     MVT ContainerVT = VT;
2384     if (SrcVT.isFixedLengthVector()) {
2385       ContainerVT = getContainerForFixedLengthVector(VT);
2386       MVT SrcContainerVT =
2387           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2388       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2389     }
2390 
2391     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2392         SrcVT.getVectorElementType() != MVT::f16) {
2393       // For scalable vectors, we only need to close the gap between
2394       // vXf16->vXf64.
2395       if (!VT.isFixedLengthVector())
2396         return Op;
2397       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2398       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2399       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2400     }
2401 
2402     MVT InterVT = VT.changeVectorElementType(MVT::f32);
2403     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2404     SDValue IntermediateExtend = getRVVFPExtendOrRound(
2405         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2406 
2407     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2408                                            DL, DAG, Subtarget);
2409     if (VT.isFixedLengthVector())
2410       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2411     return Extend;
2412   }
2413   case ISD::FP_ROUND: {
2414     // RVV can only do fp_round to types half the size as the source. We
2415     // custom-lower f64->f16 rounds via RVV's round-to-odd float
2416     // conversion instruction.
2417     SDLoc DL(Op);
2418     MVT VT = Op.getSimpleValueType();
2419     SDValue Src = Op.getOperand(0);
2420     MVT SrcVT = Src.getSimpleValueType();
2421 
2422     // Prepare any fixed-length vector operands.
2423     MVT ContainerVT = VT;
2424     if (VT.isFixedLengthVector()) {
2425       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2426       ContainerVT =
2427           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2428       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2429     }
2430 
2431     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2432         SrcVT.getVectorElementType() != MVT::f64) {
2433       // For scalable vectors, we only need to close the gap between
2434       // vXf64<->vXf16.
2435       if (!VT.isFixedLengthVector())
2436         return Op;
2437       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2438       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2439       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2440     }
2441 
2442     SDValue Mask, VL;
2443     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2444 
2445     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2446     SDValue IntermediateRound =
2447         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2448     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2449                                           DL, DAG, Subtarget);
2450 
2451     if (VT.isFixedLengthVector())
2452       return convertFromScalableVector(VT, Round, DAG, Subtarget);
2453     return Round;
2454   }
2455   case ISD::FP_TO_SINT:
2456   case ISD::FP_TO_UINT:
2457   case ISD::SINT_TO_FP:
2458   case ISD::UINT_TO_FP: {
2459     // RVV can only do fp<->int conversions to types half/double the size as
2460     // the source. We custom-lower any conversions that do two hops into
2461     // sequences.
2462     MVT VT = Op.getSimpleValueType();
2463     if (!VT.isVector())
2464       return Op;
2465     SDLoc DL(Op);
2466     SDValue Src = Op.getOperand(0);
2467     MVT EltVT = VT.getVectorElementType();
2468     MVT SrcVT = Src.getSimpleValueType();
2469     MVT SrcEltVT = SrcVT.getVectorElementType();
2470     unsigned EltSize = EltVT.getSizeInBits();
2471     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2472     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2473            "Unexpected vector element types");
2474 
2475     bool IsInt2FP = SrcEltVT.isInteger();
2476     // Widening conversions
2477     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2478       if (IsInt2FP) {
2479         // Do a regular integer sign/zero extension then convert to float.
2480         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2481                                       VT.getVectorElementCount());
2482         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2483                                  ? ISD::ZERO_EXTEND
2484                                  : ISD::SIGN_EXTEND;
2485         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2486         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2487       }
2488       // FP2Int
2489       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2490       // Do one doubling fp_extend then complete the operation by converting
2491       // to int.
2492       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2493       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2494       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2495     }
2496 
2497     // Narrowing conversions
2498     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2499       if (IsInt2FP) {
2500         // One narrowing int_to_fp, then an fp_round.
2501         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2502         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2503         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2504         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2505       }
2506       // FP2Int
2507       // One narrowing fp_to_int, then truncate the integer. If the float isn't
2508       // representable by the integer, the result is poison.
2509       MVT IVecVT =
2510           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
2511                            VT.getVectorElementCount());
2512       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
2513       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
2514     }
2515 
2516     // Scalable vectors can exit here. Patterns will handle equally-sized
2517     // conversions halving/doubling ones.
2518     if (!VT.isFixedLengthVector())
2519       return Op;
2520 
2521     // For fixed-length vectors we lower to a custom "VL" node.
2522     unsigned RVVOpc = 0;
2523     switch (Op.getOpcode()) {
2524     default:
2525       llvm_unreachable("Impossible opcode");
2526     case ISD::FP_TO_SINT:
2527       RVVOpc = RISCVISD::FP_TO_SINT_VL;
2528       break;
2529     case ISD::FP_TO_UINT:
2530       RVVOpc = RISCVISD::FP_TO_UINT_VL;
2531       break;
2532     case ISD::SINT_TO_FP:
2533       RVVOpc = RISCVISD::SINT_TO_FP_VL;
2534       break;
2535     case ISD::UINT_TO_FP:
2536       RVVOpc = RISCVISD::UINT_TO_FP_VL;
2537       break;
2538     }
2539 
2540     MVT ContainerVT, SrcContainerVT;
2541     // Derive the reference container type from the larger vector type.
2542     if (SrcEltSize > EltSize) {
2543       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2544       ContainerVT =
2545           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2546     } else {
2547       ContainerVT = getContainerForFixedLengthVector(VT);
2548       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
2549     }
2550 
2551     SDValue Mask, VL;
2552     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2553 
2554     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2555     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
2556     return convertFromScalableVector(VT, Src, DAG, Subtarget);
2557   }
2558   case ISD::FP_TO_SINT_SAT:
2559   case ISD::FP_TO_UINT_SAT:
2560     return lowerFP_TO_INT_SAT(Op, DAG);
2561   case ISD::VECREDUCE_ADD:
2562   case ISD::VECREDUCE_UMAX:
2563   case ISD::VECREDUCE_SMAX:
2564   case ISD::VECREDUCE_UMIN:
2565   case ISD::VECREDUCE_SMIN:
2566     return lowerVECREDUCE(Op, DAG);
2567   case ISD::VECREDUCE_AND:
2568   case ISD::VECREDUCE_OR:
2569   case ISD::VECREDUCE_XOR:
2570     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2571       return lowerVectorMaskVECREDUCE(Op, DAG);
2572     return lowerVECREDUCE(Op, DAG);
2573   case ISD::VECREDUCE_FADD:
2574   case ISD::VECREDUCE_SEQ_FADD:
2575   case ISD::VECREDUCE_FMIN:
2576   case ISD::VECREDUCE_FMAX:
2577     return lowerFPVECREDUCE(Op, DAG);
2578   case ISD::INSERT_SUBVECTOR:
2579     return lowerINSERT_SUBVECTOR(Op, DAG);
2580   case ISD::EXTRACT_SUBVECTOR:
2581     return lowerEXTRACT_SUBVECTOR(Op, DAG);
2582   case ISD::STEP_VECTOR:
2583     return lowerSTEP_VECTOR(Op, DAG);
2584   case ISD::VECTOR_REVERSE:
2585     return lowerVECTOR_REVERSE(Op, DAG);
2586   case ISD::BUILD_VECTOR:
2587     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
2588   case ISD::SPLAT_VECTOR:
2589     if (Op.getValueType().getVectorElementType() == MVT::i1)
2590       return lowerVectorMaskSplat(Op, DAG);
2591     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
2592   case ISD::VECTOR_SHUFFLE:
2593     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
2594   case ISD::CONCAT_VECTORS: {
2595     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
2596     // better than going through the stack, as the default expansion does.
2597     SDLoc DL(Op);
2598     MVT VT = Op.getSimpleValueType();
2599     unsigned NumOpElts =
2600         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
2601     SDValue Vec = DAG.getUNDEF(VT);
2602     for (const auto &OpIdx : enumerate(Op->ops()))
2603       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
2604                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
2605     return Vec;
2606   }
2607   case ISD::LOAD:
2608     if (auto V = expandUnalignedRVVLoad(Op, DAG))
2609       return V;
2610     if (Op.getValueType().isFixedLengthVector())
2611       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
2612     return Op;
2613   case ISD::STORE:
2614     if (auto V = expandUnalignedRVVStore(Op, DAG))
2615       return V;
2616     if (Op.getOperand(1).getValueType().isFixedLengthVector())
2617       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
2618     return Op;
2619   case ISD::MLOAD:
2620     return lowerMLOAD(Op, DAG);
2621   case ISD::MSTORE:
2622     return lowerMSTORE(Op, DAG);
2623   case ISD::SETCC:
2624     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
2625   case ISD::ADD:
2626     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
2627   case ISD::SUB:
2628     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
2629   case ISD::MUL:
2630     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
2631   case ISD::MULHS:
2632     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
2633   case ISD::MULHU:
2634     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
2635   case ISD::AND:
2636     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
2637                                               RISCVISD::AND_VL);
2638   case ISD::OR:
2639     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
2640                                               RISCVISD::OR_VL);
2641   case ISD::XOR:
2642     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
2643                                               RISCVISD::XOR_VL);
2644   case ISD::SDIV:
2645     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
2646   case ISD::SREM:
2647     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
2648   case ISD::UDIV:
2649     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
2650   case ISD::UREM:
2651     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
2652   case ISD::SHL:
2653   case ISD::SRA:
2654   case ISD::SRL:
2655     if (Op.getSimpleValueType().isFixedLengthVector())
2656       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
2657     // This can be called for an i32 shift amount that needs to be promoted.
2658     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
2659            "Unexpected custom legalisation");
2660     return SDValue();
2661   case ISD::SADDSAT:
2662     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
2663   case ISD::UADDSAT:
2664     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
2665   case ISD::SSUBSAT:
2666     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
2667   case ISD::USUBSAT:
2668     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
2669   case ISD::FADD:
2670     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
2671   case ISD::FSUB:
2672     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
2673   case ISD::FMUL:
2674     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
2675   case ISD::FDIV:
2676     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
2677   case ISD::FNEG:
2678     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
2679   case ISD::FABS:
2680     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
2681   case ISD::FSQRT:
2682     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
2683   case ISD::FMA:
2684     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
2685   case ISD::SMIN:
2686     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
2687   case ISD::SMAX:
2688     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
2689   case ISD::UMIN:
2690     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
2691   case ISD::UMAX:
2692     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
2693   case ISD::FMINNUM:
2694     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
2695   case ISD::FMAXNUM:
2696     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
2697   case ISD::ABS:
2698     return lowerABS(Op, DAG);
2699   case ISD::VSELECT:
2700     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
2701   case ISD::FCOPYSIGN:
2702     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
2703   case ISD::MGATHER:
2704     return lowerMGATHER(Op, DAG);
2705   case ISD::MSCATTER:
2706     return lowerMSCATTER(Op, DAG);
2707   case ISD::FLT_ROUNDS_:
2708     return lowerGET_ROUNDING(Op, DAG);
2709   case ISD::SET_ROUNDING:
2710     return lowerSET_ROUNDING(Op, DAG);
2711   case ISD::VP_ADD:
2712     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
2713   case ISD::VP_SUB:
2714     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
2715   case ISD::VP_MUL:
2716     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
2717   case ISD::VP_SDIV:
2718     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
2719   case ISD::VP_UDIV:
2720     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
2721   case ISD::VP_SREM:
2722     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
2723   case ISD::VP_UREM:
2724     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
2725   case ISD::VP_AND:
2726     return lowerVPOp(Op, DAG, RISCVISD::AND_VL);
2727   case ISD::VP_OR:
2728     return lowerVPOp(Op, DAG, RISCVISD::OR_VL);
2729   case ISD::VP_XOR:
2730     return lowerVPOp(Op, DAG, RISCVISD::XOR_VL);
2731   case ISD::VP_ASHR:
2732     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
2733   case ISD::VP_LSHR:
2734     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
2735   case ISD::VP_SHL:
2736     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
2737   case ISD::VP_FADD:
2738     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
2739   case ISD::VP_FSUB:
2740     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
2741   case ISD::VP_FMUL:
2742     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
2743   case ISD::VP_FDIV:
2744     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
2745   }
2746 }
2747 
2748 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
2749                              SelectionDAG &DAG, unsigned Flags) {
2750   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
2751 }
2752 
2753 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
2754                              SelectionDAG &DAG, unsigned Flags) {
2755   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
2756                                    Flags);
2757 }
2758 
2759 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
2760                              SelectionDAG &DAG, unsigned Flags) {
2761   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
2762                                    N->getOffset(), Flags);
2763 }
2764 
2765 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
2766                              SelectionDAG &DAG, unsigned Flags) {
2767   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
2768 }
2769 
2770 template <class NodeTy>
2771 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
2772                                      bool IsLocal) const {
2773   SDLoc DL(N);
2774   EVT Ty = getPointerTy(DAG.getDataLayout());
2775 
2776   if (isPositionIndependent()) {
2777     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2778     if (IsLocal)
2779       // Use PC-relative addressing to access the symbol. This generates the
2780       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
2781       // %pcrel_lo(auipc)).
2782       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2783 
2784     // Use PC-relative addressing to access the GOT for this symbol, then load
2785     // the address from the GOT. This generates the pattern (PseudoLA sym),
2786     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
2787     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
2788   }
2789 
2790   switch (getTargetMachine().getCodeModel()) {
2791   default:
2792     report_fatal_error("Unsupported code model for lowering");
2793   case CodeModel::Small: {
2794     // Generate a sequence for accessing addresses within the first 2 GiB of
2795     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
2796     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
2797     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
2798     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2799     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
2800   }
2801   case CodeModel::Medium: {
2802     // Generate a sequence for accessing addresses within any 2GiB range within
2803     // the address space. This generates the pattern (PseudoLLA sym), which
2804     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
2805     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2806     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2807   }
2808   }
2809 }
2810 
2811 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
2812                                                 SelectionDAG &DAG) const {
2813   SDLoc DL(Op);
2814   EVT Ty = Op.getValueType();
2815   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2816   int64_t Offset = N->getOffset();
2817   MVT XLenVT = Subtarget.getXLenVT();
2818 
2819   const GlobalValue *GV = N->getGlobal();
2820   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
2821   SDValue Addr = getAddr(N, DAG, IsLocal);
2822 
2823   // In order to maximise the opportunity for common subexpression elimination,
2824   // emit a separate ADD node for the global address offset instead of folding
2825   // it in the global address node. Later peephole optimisations may choose to
2826   // fold it back in when profitable.
2827   if (Offset != 0)
2828     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2829                        DAG.getConstant(Offset, DL, XLenVT));
2830   return Addr;
2831 }
2832 
2833 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
2834                                                SelectionDAG &DAG) const {
2835   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2836 
2837   return getAddr(N, DAG);
2838 }
2839 
2840 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
2841                                                SelectionDAG &DAG) const {
2842   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2843 
2844   return getAddr(N, DAG);
2845 }
2846 
2847 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
2848                                             SelectionDAG &DAG) const {
2849   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2850 
2851   return getAddr(N, DAG);
2852 }
2853 
2854 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
2855                                               SelectionDAG &DAG,
2856                                               bool UseGOT) const {
2857   SDLoc DL(N);
2858   EVT Ty = getPointerTy(DAG.getDataLayout());
2859   const GlobalValue *GV = N->getGlobal();
2860   MVT XLenVT = Subtarget.getXLenVT();
2861 
2862   if (UseGOT) {
2863     // Use PC-relative addressing to access the GOT for this TLS symbol, then
2864     // load the address from the GOT and add the thread pointer. This generates
2865     // the pattern (PseudoLA_TLS_IE sym), which expands to
2866     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
2867     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2868     SDValue Load =
2869         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
2870 
2871     // Add the thread pointer.
2872     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2873     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
2874   }
2875 
2876   // Generate a sequence for accessing the address relative to the thread
2877   // pointer, with the appropriate adjustment for the thread pointer offset.
2878   // This generates the pattern
2879   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
2880   SDValue AddrHi =
2881       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
2882   SDValue AddrAdd =
2883       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
2884   SDValue AddrLo =
2885       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
2886 
2887   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2888   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2889   SDValue MNAdd = SDValue(
2890       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
2891       0);
2892   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
2893 }
2894 
2895 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
2896                                                SelectionDAG &DAG) const {
2897   SDLoc DL(N);
2898   EVT Ty = getPointerTy(DAG.getDataLayout());
2899   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
2900   const GlobalValue *GV = N->getGlobal();
2901 
2902   // Use a PC-relative addressing mode to access the global dynamic GOT address.
2903   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
2904   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
2905   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2906   SDValue Load =
2907       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
2908 
2909   // Prepare argument list to generate call.
2910   ArgListTy Args;
2911   ArgListEntry Entry;
2912   Entry.Node = Load;
2913   Entry.Ty = CallTy;
2914   Args.push_back(Entry);
2915 
2916   // Setup call to __tls_get_addr.
2917   TargetLowering::CallLoweringInfo CLI(DAG);
2918   CLI.setDebugLoc(DL)
2919       .setChain(DAG.getEntryNode())
2920       .setLibCallee(CallingConv::C, CallTy,
2921                     DAG.getExternalSymbol("__tls_get_addr", Ty),
2922                     std::move(Args));
2923 
2924   return LowerCallTo(CLI).first;
2925 }
2926 
2927 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
2928                                                    SelectionDAG &DAG) const {
2929   SDLoc DL(Op);
2930   EVT Ty = Op.getValueType();
2931   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2932   int64_t Offset = N->getOffset();
2933   MVT XLenVT = Subtarget.getXLenVT();
2934 
2935   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
2936 
2937   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
2938       CallingConv::GHC)
2939     report_fatal_error("In GHC calling convention TLS is not supported");
2940 
2941   SDValue Addr;
2942   switch (Model) {
2943   case TLSModel::LocalExec:
2944     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
2945     break;
2946   case TLSModel::InitialExec:
2947     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
2948     break;
2949   case TLSModel::LocalDynamic:
2950   case TLSModel::GeneralDynamic:
2951     Addr = getDynamicTLSAddr(N, DAG);
2952     break;
2953   }
2954 
2955   // In order to maximise the opportunity for common subexpression elimination,
2956   // emit a separate ADD node for the global address offset instead of folding
2957   // it in the global address node. Later peephole optimisations may choose to
2958   // fold it back in when profitable.
2959   if (Offset != 0)
2960     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2961                        DAG.getConstant(Offset, DL, XLenVT));
2962   return Addr;
2963 }
2964 
2965 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2966   SDValue CondV = Op.getOperand(0);
2967   SDValue TrueV = Op.getOperand(1);
2968   SDValue FalseV = Op.getOperand(2);
2969   SDLoc DL(Op);
2970   MVT VT = Op.getSimpleValueType();
2971   MVT XLenVT = Subtarget.getXLenVT();
2972 
2973   // Lower vector SELECTs to VSELECTs by splatting the condition.
2974   if (VT.isVector()) {
2975     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
2976     SDValue CondSplat = VT.isScalableVector()
2977                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
2978                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
2979     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
2980   }
2981 
2982   // If the result type is XLenVT and CondV is the output of a SETCC node
2983   // which also operated on XLenVT inputs, then merge the SETCC node into the
2984   // lowered RISCVISD::SELECT_CC to take advantage of the integer
2985   // compare+branch instructions. i.e.:
2986   // (select (setcc lhs, rhs, cc), truev, falsev)
2987   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
2988   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
2989       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
2990     SDValue LHS = CondV.getOperand(0);
2991     SDValue RHS = CondV.getOperand(1);
2992     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
2993     ISD::CondCode CCVal = CC->get();
2994 
2995     // Special case for a select of 2 constants that have a diffence of 1.
2996     // Normally this is done by DAGCombine, but if the select is introduced by
2997     // type legalization or op legalization, we miss it. Restricting to SETLT
2998     // case for now because that is what signed saturating add/sub need.
2999     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3000     // but we would probably want to swap the true/false values if the condition
3001     // is SETGE/SETLE to avoid an XORI.
3002     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3003         CCVal == ISD::SETLT) {
3004       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3005       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3006       if (TrueVal - 1 == FalseVal)
3007         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3008       if (TrueVal + 1 == FalseVal)
3009         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3010     }
3011 
3012     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3013 
3014     SDValue TargetCC = DAG.getCondCode(CCVal);
3015     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3016     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3017   }
3018 
3019   // Otherwise:
3020   // (select condv, truev, falsev)
3021   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3022   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3023   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3024 
3025   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3026 
3027   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3028 }
3029 
3030 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3031   SDValue CondV = Op.getOperand(1);
3032   SDLoc DL(Op);
3033   MVT XLenVT = Subtarget.getXLenVT();
3034 
3035   if (CondV.getOpcode() == ISD::SETCC &&
3036       CondV.getOperand(0).getValueType() == XLenVT) {
3037     SDValue LHS = CondV.getOperand(0);
3038     SDValue RHS = CondV.getOperand(1);
3039     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3040 
3041     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3042 
3043     SDValue TargetCC = DAG.getCondCode(CCVal);
3044     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3045                        LHS, RHS, TargetCC, Op.getOperand(2));
3046   }
3047 
3048   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3049                      CondV, DAG.getConstant(0, DL, XLenVT),
3050                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3051 }
3052 
3053 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3054   MachineFunction &MF = DAG.getMachineFunction();
3055   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3056 
3057   SDLoc DL(Op);
3058   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3059                                  getPointerTy(MF.getDataLayout()));
3060 
3061   // vastart just stores the address of the VarArgsFrameIndex slot into the
3062   // memory location argument.
3063   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3064   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3065                       MachinePointerInfo(SV));
3066 }
3067 
3068 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3069                                             SelectionDAG &DAG) const {
3070   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3071   MachineFunction &MF = DAG.getMachineFunction();
3072   MachineFrameInfo &MFI = MF.getFrameInfo();
3073   MFI.setFrameAddressIsTaken(true);
3074   Register FrameReg = RI.getFrameRegister(MF);
3075   int XLenInBytes = Subtarget.getXLen() / 8;
3076 
3077   EVT VT = Op.getValueType();
3078   SDLoc DL(Op);
3079   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3080   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3081   while (Depth--) {
3082     int Offset = -(XLenInBytes * 2);
3083     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3084                               DAG.getIntPtrConstant(Offset, DL));
3085     FrameAddr =
3086         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3087   }
3088   return FrameAddr;
3089 }
3090 
3091 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3092                                              SelectionDAG &DAG) const {
3093   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3094   MachineFunction &MF = DAG.getMachineFunction();
3095   MachineFrameInfo &MFI = MF.getFrameInfo();
3096   MFI.setReturnAddressIsTaken(true);
3097   MVT XLenVT = Subtarget.getXLenVT();
3098   int XLenInBytes = Subtarget.getXLen() / 8;
3099 
3100   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3101     return SDValue();
3102 
3103   EVT VT = Op.getValueType();
3104   SDLoc DL(Op);
3105   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3106   if (Depth) {
3107     int Off = -XLenInBytes;
3108     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3109     SDValue Offset = DAG.getConstant(Off, DL, VT);
3110     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3111                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3112                        MachinePointerInfo());
3113   }
3114 
3115   // Return the value of the return address register, marking it an implicit
3116   // live-in.
3117   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3118   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3119 }
3120 
3121 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3122                                                  SelectionDAG &DAG) const {
3123   SDLoc DL(Op);
3124   SDValue Lo = Op.getOperand(0);
3125   SDValue Hi = Op.getOperand(1);
3126   SDValue Shamt = Op.getOperand(2);
3127   EVT VT = Lo.getValueType();
3128 
3129   // if Shamt-XLEN < 0: // Shamt < XLEN
3130   //   Lo = Lo << Shamt
3131   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
3132   // else:
3133   //   Lo = 0
3134   //   Hi = Lo << (Shamt-XLEN)
3135 
3136   SDValue Zero = DAG.getConstant(0, DL, VT);
3137   SDValue One = DAG.getConstant(1, DL, VT);
3138   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3139   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3140   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3141   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3142 
3143   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3144   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3145   SDValue ShiftRightLo =
3146       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3147   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3148   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3149   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3150 
3151   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3152 
3153   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3154   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3155 
3156   SDValue Parts[2] = {Lo, Hi};
3157   return DAG.getMergeValues(Parts, DL);
3158 }
3159 
3160 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3161                                                   bool IsSRA) const {
3162   SDLoc DL(Op);
3163   SDValue Lo = Op.getOperand(0);
3164   SDValue Hi = Op.getOperand(1);
3165   SDValue Shamt = Op.getOperand(2);
3166   EVT VT = Lo.getValueType();
3167 
3168   // SRA expansion:
3169   //   if Shamt-XLEN < 0: // Shamt < XLEN
3170   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3171   //     Hi = Hi >>s Shamt
3172   //   else:
3173   //     Lo = Hi >>s (Shamt-XLEN);
3174   //     Hi = Hi >>s (XLEN-1)
3175   //
3176   // SRL expansion:
3177   //   if Shamt-XLEN < 0: // Shamt < XLEN
3178   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3179   //     Hi = Hi >>u Shamt
3180   //   else:
3181   //     Lo = Hi >>u (Shamt-XLEN);
3182   //     Hi = 0;
3183 
3184   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3185 
3186   SDValue Zero = DAG.getConstant(0, DL, VT);
3187   SDValue One = DAG.getConstant(1, DL, VT);
3188   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3189   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3190   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3191   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3192 
3193   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3194   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3195   SDValue ShiftLeftHi =
3196       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3197   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3198   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3199   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3200   SDValue HiFalse =
3201       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3202 
3203   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3204 
3205   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3206   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3207 
3208   SDValue Parts[2] = {Lo, Hi};
3209   return DAG.getMergeValues(Parts, DL);
3210 }
3211 
3212 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3213 // legal equivalently-sized i8 type, so we can use that as a go-between.
3214 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3215                                                   SelectionDAG &DAG) const {
3216   SDLoc DL(Op);
3217   MVT VT = Op.getSimpleValueType();
3218   SDValue SplatVal = Op.getOperand(0);
3219   // All-zeros or all-ones splats are handled specially.
3220   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
3221     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3222     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
3223   }
3224   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
3225     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3226     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
3227   }
3228   MVT XLenVT = Subtarget.getXLenVT();
3229   assert(SplatVal.getValueType() == XLenVT &&
3230          "Unexpected type for i1 splat value");
3231   MVT InterVT = VT.changeVectorElementType(MVT::i8);
3232   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
3233                          DAG.getConstant(1, DL, XLenVT));
3234   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
3235   SDValue Zero = DAG.getConstant(0, DL, InterVT);
3236   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
3237 }
3238 
3239 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
3240 // illegal (currently only vXi64 RV32).
3241 // FIXME: We could also catch non-constant sign-extended i32 values and lower
3242 // them to SPLAT_VECTOR_I64
3243 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
3244                                                      SelectionDAG &DAG) const {
3245   SDLoc DL(Op);
3246   MVT VecVT = Op.getSimpleValueType();
3247   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
3248          "Unexpected SPLAT_VECTOR_PARTS lowering");
3249 
3250   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
3251   SDValue Lo = Op.getOperand(0);
3252   SDValue Hi = Op.getOperand(1);
3253 
3254   if (VecVT.isFixedLengthVector()) {
3255     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3256     SDLoc DL(Op);
3257     SDValue Mask, VL;
3258     std::tie(Mask, VL) =
3259         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3260 
3261     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
3262     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
3263   }
3264 
3265   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
3266     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
3267     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
3268     // If Hi constant is all the same sign bit as Lo, lower this as a custom
3269     // node in order to try and match RVV vector/scalar instructions.
3270     if ((LoC >> 31) == HiC)
3271       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3272   }
3273 
3274   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
3275   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
3276       isa<ConstantSDNode>(Hi.getOperand(1)) &&
3277       Hi.getConstantOperandVal(1) == 31)
3278     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3279 
3280   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
3281   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
3282                      DAG.getRegister(RISCV::X0, MVT::i64));
3283 }
3284 
3285 // Custom-lower extensions from mask vectors by using a vselect either with 1
3286 // for zero/any-extension or -1 for sign-extension:
3287 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
3288 // Note that any-extension is lowered identically to zero-extension.
3289 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
3290                                                 int64_t ExtTrueVal) const {
3291   SDLoc DL(Op);
3292   MVT VecVT = Op.getSimpleValueType();
3293   SDValue Src = Op.getOperand(0);
3294   // Only custom-lower extensions from mask types
3295   assert(Src.getValueType().isVector() &&
3296          Src.getValueType().getVectorElementType() == MVT::i1);
3297 
3298   MVT XLenVT = Subtarget.getXLenVT();
3299   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
3300   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
3301 
3302   if (VecVT.isScalableVector()) {
3303     // Be careful not to introduce illegal scalar types at this stage, and be
3304     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
3305     // illegal and must be expanded. Since we know that the constants are
3306     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
3307     bool IsRV32E64 =
3308         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
3309 
3310     if (!IsRV32E64) {
3311       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
3312       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
3313     } else {
3314       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
3315       SplatTrueVal =
3316           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
3317     }
3318 
3319     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
3320   }
3321 
3322   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3323   MVT I1ContainerVT =
3324       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3325 
3326   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
3327 
3328   SDValue Mask, VL;
3329   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3330 
3331   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
3332   SplatTrueVal =
3333       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
3334   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
3335                                SplatTrueVal, SplatZero, VL);
3336 
3337   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
3338 }
3339 
3340 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3341     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
3342   MVT ExtVT = Op.getSimpleValueType();
3343   // Only custom-lower extensions from fixed-length vector types.
3344   if (!ExtVT.isFixedLengthVector())
3345     return Op;
3346   MVT VT = Op.getOperand(0).getSimpleValueType();
3347   // Grab the canonical container type for the extended type. Infer the smaller
3348   // type from that to ensure the same number of vector elements, as we know
3349   // the LMUL will be sufficient to hold the smaller type.
3350   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
3351   // Get the extended container type manually to ensure the same number of
3352   // vector elements between source and dest.
3353   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
3354                                      ContainerExtVT.getVectorElementCount());
3355 
3356   SDValue Op1 =
3357       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3358 
3359   SDLoc DL(Op);
3360   SDValue Mask, VL;
3361   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3362 
3363   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
3364 
3365   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
3366 }
3367 
3368 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3369 // setcc operation:
3370 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
3371 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
3372                                                   SelectionDAG &DAG) const {
3373   SDLoc DL(Op);
3374   EVT MaskVT = Op.getValueType();
3375   // Only expect to custom-lower truncations to mask types
3376   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
3377          "Unexpected type for vector mask lowering");
3378   SDValue Src = Op.getOperand(0);
3379   MVT VecVT = Src.getSimpleValueType();
3380 
3381   // If this is a fixed vector, we need to convert it to a scalable vector.
3382   MVT ContainerVT = VecVT;
3383   if (VecVT.isFixedLengthVector()) {
3384     ContainerVT = getContainerForFixedLengthVector(VecVT);
3385     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3386   }
3387 
3388   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
3389   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
3390 
3391   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
3392   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
3393 
3394   if (VecVT.isScalableVector()) {
3395     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
3396     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
3397   }
3398 
3399   SDValue Mask, VL;
3400   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3401 
3402   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3403   SDValue Trunc =
3404       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
3405   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
3406                       DAG.getCondCode(ISD::SETNE), Mask, VL);
3407   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
3408 }
3409 
3410 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3411 // first position of a vector, and that vector is slid up to the insert index.
3412 // By limiting the active vector length to index+1 and merging with the
3413 // original vector (with an undisturbed tail policy for elements >= VL), we
3414 // achieve the desired result of leaving all elements untouched except the one
3415 // at VL-1, which is replaced with the desired value.
3416 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3417                                                     SelectionDAG &DAG) const {
3418   SDLoc DL(Op);
3419   MVT VecVT = Op.getSimpleValueType();
3420   SDValue Vec = Op.getOperand(0);
3421   SDValue Val = Op.getOperand(1);
3422   SDValue Idx = Op.getOperand(2);
3423 
3424   if (VecVT.getVectorElementType() == MVT::i1) {
3425     // FIXME: For now we just promote to an i8 vector and insert into that,
3426     // but this is probably not optimal.
3427     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3428     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3429     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
3430     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
3431   }
3432 
3433   MVT ContainerVT = VecVT;
3434   // If the operand is a fixed-length vector, convert to a scalable one.
3435   if (VecVT.isFixedLengthVector()) {
3436     ContainerVT = getContainerForFixedLengthVector(VecVT);
3437     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3438   }
3439 
3440   MVT XLenVT = Subtarget.getXLenVT();
3441 
3442   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3443   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
3444   // Even i64-element vectors on RV32 can be lowered without scalar
3445   // legalization if the most-significant 32 bits of the value are not affected
3446   // by the sign-extension of the lower 32 bits.
3447   // TODO: We could also catch sign extensions of a 32-bit value.
3448   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
3449     const auto *CVal = cast<ConstantSDNode>(Val);
3450     if (isInt<32>(CVal->getSExtValue())) {
3451       IsLegalInsert = true;
3452       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3453     }
3454   }
3455 
3456   SDValue Mask, VL;
3457   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3458 
3459   SDValue ValInVec;
3460 
3461   if (IsLegalInsert) {
3462     unsigned Opc =
3463         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
3464     if (isNullConstant(Idx)) {
3465       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
3466       if (!VecVT.isFixedLengthVector())
3467         return Vec;
3468       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
3469     }
3470     ValInVec =
3471         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
3472   } else {
3473     // On RV32, i64-element vectors must be specially handled to place the
3474     // value at element 0, by using two vslide1up instructions in sequence on
3475     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3476     // this.
3477     SDValue One = DAG.getConstant(1, DL, XLenVT);
3478     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
3479     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
3480     MVT I32ContainerVT =
3481         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
3482     SDValue I32Mask =
3483         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
3484     // Limit the active VL to two.
3485     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
3486     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
3487     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
3488     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
3489                            InsertI64VL);
3490     // First slide in the hi value, then the lo in underneath it.
3491     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3492                            ValHi, I32Mask, InsertI64VL);
3493     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3494                            ValLo, I32Mask, InsertI64VL);
3495     // Bitcast back to the right container type.
3496     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
3497   }
3498 
3499   // Now that the value is in a vector, slide it into position.
3500   SDValue InsertVL =
3501       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
3502   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3503                                 ValInVec, Idx, Mask, InsertVL);
3504   if (!VecVT.isFixedLengthVector())
3505     return Slideup;
3506   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3507 }
3508 
3509 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
3510 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
3511 // types this is done using VMV_X_S to allow us to glean information about the
3512 // sign bits of the result.
3513 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
3514                                                      SelectionDAG &DAG) const {
3515   SDLoc DL(Op);
3516   SDValue Idx = Op.getOperand(1);
3517   SDValue Vec = Op.getOperand(0);
3518   EVT EltVT = Op.getValueType();
3519   MVT VecVT = Vec.getSimpleValueType();
3520   MVT XLenVT = Subtarget.getXLenVT();
3521 
3522   if (VecVT.getVectorElementType() == MVT::i1) {
3523     // FIXME: For now we just promote to an i8 vector and extract from that,
3524     // but this is probably not optimal.
3525     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3526     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3527     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
3528   }
3529 
3530   // If this is a fixed vector, we need to convert it to a scalable vector.
3531   MVT ContainerVT = VecVT;
3532   if (VecVT.isFixedLengthVector()) {
3533     ContainerVT = getContainerForFixedLengthVector(VecVT);
3534     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3535   }
3536 
3537   // If the index is 0, the vector is already in the right position.
3538   if (!isNullConstant(Idx)) {
3539     // Use a VL of 1 to avoid processing more elements than we need.
3540     SDValue VL = DAG.getConstant(1, DL, XLenVT);
3541     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3542     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3543     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3544                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
3545   }
3546 
3547   if (!EltVT.isInteger()) {
3548     // Floating-point extracts are handled in TableGen.
3549     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
3550                        DAG.getConstant(0, DL, XLenVT));
3551   }
3552 
3553   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3554   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
3555 }
3556 
3557 // Some RVV intrinsics may claim that they want an integer operand to be
3558 // promoted or expanded.
3559 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
3560                                           const RISCVSubtarget &Subtarget) {
3561   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3562           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
3563          "Unexpected opcode");
3564 
3565   if (!Subtarget.hasStdExtV())
3566     return SDValue();
3567 
3568   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
3569   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
3570   SDLoc DL(Op);
3571 
3572   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
3573       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
3574   if (!II || !II->SplatOperand)
3575     return SDValue();
3576 
3577   unsigned SplatOp = II->SplatOperand + HasChain;
3578   assert(SplatOp < Op.getNumOperands());
3579 
3580   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
3581   SDValue &ScalarOp = Operands[SplatOp];
3582   MVT OpVT = ScalarOp.getSimpleValueType();
3583   MVT XLenVT = Subtarget.getXLenVT();
3584 
3585   // If this isn't a scalar, or its type is XLenVT we're done.
3586   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
3587     return SDValue();
3588 
3589   // Simplest case is that the operand needs to be promoted to XLenVT.
3590   if (OpVT.bitsLT(XLenVT)) {
3591     // If the operand is a constant, sign extend to increase our chances
3592     // of being able to use a .vi instruction. ANY_EXTEND would become a
3593     // a zero extend and the simm5 check in isel would fail.
3594     // FIXME: Should we ignore the upper bits in isel instead?
3595     unsigned ExtOpc =
3596         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
3597     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
3598     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3599   }
3600 
3601   // Use the previous operand to get the vXi64 VT. The result might be a mask
3602   // VT for compares. Using the previous operand assumes that the previous
3603   // operand will never have a smaller element size than a scalar operand and
3604   // that a widening operation never uses SEW=64.
3605   // NOTE: If this fails the below assert, we can probably just find the
3606   // element count from any operand or result and use it to construct the VT.
3607   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
3608   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
3609 
3610   // The more complex case is when the scalar is larger than XLenVT.
3611   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
3612          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
3613 
3614   // If this is a sign-extended 32-bit constant, we can truncate it and rely
3615   // on the instruction to sign-extend since SEW>XLEN.
3616   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
3617     if (isInt<32>(CVal->getSExtValue())) {
3618       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3619       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3620     }
3621   }
3622 
3623   // We need to convert the scalar to a splat vector.
3624   // FIXME: Can we implicitly truncate the scalar if it is known to
3625   // be sign extended?
3626   // VL should be the last operand.
3627   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
3628   assert(VL.getValueType() == XLenVT);
3629   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
3630   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3631 }
3632 
3633 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3634                                                      SelectionDAG &DAG) const {
3635   unsigned IntNo = Op.getConstantOperandVal(0);
3636   SDLoc DL(Op);
3637   MVT XLenVT = Subtarget.getXLenVT();
3638 
3639   switch (IntNo) {
3640   default:
3641     break; // Don't custom lower most intrinsics.
3642   case Intrinsic::thread_pointer: {
3643     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3644     return DAG.getRegister(RISCV::X4, PtrVT);
3645   }
3646   case Intrinsic::riscv_orc_b:
3647     // Lower to the GORCI encoding for orc.b.
3648     return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
3649                        DAG.getConstant(7, DL, XLenVT));
3650   case Intrinsic::riscv_grev:
3651   case Intrinsic::riscv_gorc: {
3652     unsigned Opc =
3653         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
3654     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3655   }
3656   case Intrinsic::riscv_shfl:
3657   case Intrinsic::riscv_unshfl: {
3658     unsigned Opc =
3659         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
3660     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3661   }
3662   case Intrinsic::riscv_bcompress:
3663   case Intrinsic::riscv_bdecompress: {
3664     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
3665                                                        : RISCVISD::BDECOMPRESS;
3666     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3667   }
3668   case Intrinsic::riscv_vmv_x_s:
3669     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
3670     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
3671                        Op.getOperand(1));
3672   case Intrinsic::riscv_vmv_v_x:
3673     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
3674                             Op.getSimpleValueType(), DL, DAG, Subtarget);
3675   case Intrinsic::riscv_vfmv_v_f:
3676     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
3677                        Op.getOperand(1), Op.getOperand(2));
3678   case Intrinsic::riscv_vmv_s_x: {
3679     SDValue Scalar = Op.getOperand(2);
3680 
3681     if (Scalar.getValueType().bitsLE(XLenVT)) {
3682       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
3683       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
3684                          Op.getOperand(1), Scalar, Op.getOperand(3));
3685     }
3686 
3687     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
3688 
3689     // This is an i64 value that lives in two scalar registers. We have to
3690     // insert this in a convoluted way. First we build vXi64 splat containing
3691     // the/ two values that we assemble using some bit math. Next we'll use
3692     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
3693     // to merge element 0 from our splat into the source vector.
3694     // FIXME: This is probably not the best way to do this, but it is
3695     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
3696     // point.
3697     //   sw lo, (a0)
3698     //   sw hi, 4(a0)
3699     //   vlse vX, (a0)
3700     //
3701     //   vid.v      vVid
3702     //   vmseq.vx   mMask, vVid, 0
3703     //   vmerge.vvm vDest, vSrc, vVal, mMask
3704     MVT VT = Op.getSimpleValueType();
3705     SDValue Vec = Op.getOperand(1);
3706     SDValue VL = Op.getOperand(3);
3707 
3708     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
3709     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
3710                                       DAG.getConstant(0, DL, MVT::i32), VL);
3711 
3712     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
3713     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3714     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3715     SDValue SelectCond =
3716         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
3717                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
3718     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
3719                        Vec, VL);
3720   }
3721   case Intrinsic::riscv_vslide1up:
3722   case Intrinsic::riscv_vslide1down:
3723   case Intrinsic::riscv_vslide1up_mask:
3724   case Intrinsic::riscv_vslide1down_mask: {
3725     // We need to special case these when the scalar is larger than XLen.
3726     unsigned NumOps = Op.getNumOperands();
3727     bool IsMasked = NumOps == 6;
3728     unsigned OpOffset = IsMasked ? 1 : 0;
3729     SDValue Scalar = Op.getOperand(2 + OpOffset);
3730     if (Scalar.getValueType().bitsLE(XLenVT))
3731       break;
3732 
3733     // Splatting a sign extended constant is fine.
3734     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
3735       if (isInt<32>(CVal->getSExtValue()))
3736         break;
3737 
3738     MVT VT = Op.getSimpleValueType();
3739     assert(VT.getVectorElementType() == MVT::i64 &&
3740            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
3741 
3742     // Convert the vector source to the equivalent nxvXi32 vector.
3743     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
3744     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
3745 
3746     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3747                                    DAG.getConstant(0, DL, XLenVT));
3748     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3749                                    DAG.getConstant(1, DL, XLenVT));
3750 
3751     // Double the VL since we halved SEW.
3752     SDValue VL = Op.getOperand(NumOps - 1);
3753     SDValue I32VL =
3754         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
3755 
3756     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
3757     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
3758 
3759     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
3760     // instructions.
3761     if (IntNo == Intrinsic::riscv_vslide1up ||
3762         IntNo == Intrinsic::riscv_vslide1up_mask) {
3763       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
3764                         I32Mask, I32VL);
3765       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
3766                         I32Mask, I32VL);
3767     } else {
3768       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
3769                         I32Mask, I32VL);
3770       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
3771                         I32Mask, I32VL);
3772     }
3773 
3774     // Convert back to nxvXi64.
3775     Vec = DAG.getBitcast(VT, Vec);
3776 
3777     if (!IsMasked)
3778       return Vec;
3779 
3780     // Apply mask after the operation.
3781     SDValue Mask = Op.getOperand(NumOps - 2);
3782     SDValue MaskedOff = Op.getOperand(1);
3783     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
3784   }
3785   }
3786 
3787   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3788 }
3789 
3790 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
3791                                                     SelectionDAG &DAG) const {
3792   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3793 }
3794 
3795 static MVT getLMUL1VT(MVT VT) {
3796   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
3797          "Unexpected vector MVT");
3798   return MVT::getScalableVectorVT(
3799       VT.getVectorElementType(),
3800       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
3801 }
3802 
3803 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
3804   switch (ISDOpcode) {
3805   default:
3806     llvm_unreachable("Unhandled reduction");
3807   case ISD::VECREDUCE_ADD:
3808     return RISCVISD::VECREDUCE_ADD_VL;
3809   case ISD::VECREDUCE_UMAX:
3810     return RISCVISD::VECREDUCE_UMAX_VL;
3811   case ISD::VECREDUCE_SMAX:
3812     return RISCVISD::VECREDUCE_SMAX_VL;
3813   case ISD::VECREDUCE_UMIN:
3814     return RISCVISD::VECREDUCE_UMIN_VL;
3815   case ISD::VECREDUCE_SMIN:
3816     return RISCVISD::VECREDUCE_SMIN_VL;
3817   case ISD::VECREDUCE_AND:
3818     return RISCVISD::VECREDUCE_AND_VL;
3819   case ISD::VECREDUCE_OR:
3820     return RISCVISD::VECREDUCE_OR_VL;
3821   case ISD::VECREDUCE_XOR:
3822     return RISCVISD::VECREDUCE_XOR_VL;
3823   }
3824 }
3825 
3826 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op,
3827                                                       SelectionDAG &DAG) const {
3828   SDLoc DL(Op);
3829   SDValue Vec = Op.getOperand(0);
3830   MVT VecVT = Vec.getSimpleValueType();
3831   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
3832           Op.getOpcode() == ISD::VECREDUCE_OR ||
3833           Op.getOpcode() == ISD::VECREDUCE_XOR) &&
3834          "Unexpected reduction lowering");
3835 
3836   MVT XLenVT = Subtarget.getXLenVT();
3837   assert(Op.getValueType() == XLenVT &&
3838          "Expected reduction output to be legalized to XLenVT");
3839 
3840   MVT ContainerVT = VecVT;
3841   if (VecVT.isFixedLengthVector()) {
3842     ContainerVT = getContainerForFixedLengthVector(VecVT);
3843     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3844   }
3845 
3846   SDValue Mask, VL;
3847   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3848   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3849 
3850   switch (Op.getOpcode()) {
3851   default:
3852     llvm_unreachable("Unhandled reduction");
3853   case ISD::VECREDUCE_AND:
3854     // vpopc ~x == 0
3855     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL);
3856     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3857     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ);
3858   case ISD::VECREDUCE_OR:
3859     // vpopc x != 0
3860     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3861     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3862   case ISD::VECREDUCE_XOR: {
3863     // ((vpopc x) & 1) != 0
3864     SDValue One = DAG.getConstant(1, DL, XLenVT);
3865     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3866     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
3867     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3868   }
3869   }
3870 }
3871 
3872 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
3873                                             SelectionDAG &DAG) const {
3874   SDLoc DL(Op);
3875   SDValue Vec = Op.getOperand(0);
3876   EVT VecEVT = Vec.getValueType();
3877 
3878   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
3879 
3880   // Due to ordering in legalize types we may have a vector type that needs to
3881   // be split. Do that manually so we can get down to a legal type.
3882   while (getTypeAction(*DAG.getContext(), VecEVT) ==
3883          TargetLowering::TypeSplitVector) {
3884     SDValue Lo, Hi;
3885     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
3886     VecEVT = Lo.getValueType();
3887     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
3888   }
3889 
3890   // TODO: The type may need to be widened rather than split. Or widened before
3891   // it can be split.
3892   if (!isTypeLegal(VecEVT))
3893     return SDValue();
3894 
3895   MVT VecVT = VecEVT.getSimpleVT();
3896   MVT VecEltVT = VecVT.getVectorElementType();
3897   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
3898 
3899   MVT ContainerVT = VecVT;
3900   if (VecVT.isFixedLengthVector()) {
3901     ContainerVT = getContainerForFixedLengthVector(VecVT);
3902     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3903   }
3904 
3905   MVT M1VT = getLMUL1VT(ContainerVT);
3906 
3907   SDValue Mask, VL;
3908   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3909 
3910   // FIXME: This is a VLMAX splat which might be too large and can prevent
3911   // vsetvli removal.
3912   SDValue NeutralElem =
3913       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
3914   SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
3915   SDValue Reduction =
3916       DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL);
3917   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3918                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3919   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
3920 }
3921 
3922 // Given a reduction op, this function returns the matching reduction opcode,
3923 // the vector SDValue and the scalar SDValue required to lower this to a
3924 // RISCVISD node.
3925 static std::tuple<unsigned, SDValue, SDValue>
3926 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
3927   SDLoc DL(Op);
3928   auto Flags = Op->getFlags();
3929   unsigned Opcode = Op.getOpcode();
3930   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
3931   switch (Opcode) {
3932   default:
3933     llvm_unreachable("Unhandled reduction");
3934   case ISD::VECREDUCE_FADD:
3935     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
3936                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3937   case ISD::VECREDUCE_SEQ_FADD:
3938     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
3939                            Op.getOperand(0));
3940   case ISD::VECREDUCE_FMIN:
3941     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
3942                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3943   case ISD::VECREDUCE_FMAX:
3944     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
3945                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3946   }
3947 }
3948 
3949 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
3950                                               SelectionDAG &DAG) const {
3951   SDLoc DL(Op);
3952   MVT VecEltVT = Op.getSimpleValueType();
3953 
3954   unsigned RVVOpcode;
3955   SDValue VectorVal, ScalarVal;
3956   std::tie(RVVOpcode, VectorVal, ScalarVal) =
3957       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
3958   MVT VecVT = VectorVal.getSimpleValueType();
3959 
3960   MVT ContainerVT = VecVT;
3961   if (VecVT.isFixedLengthVector()) {
3962     ContainerVT = getContainerForFixedLengthVector(VecVT);
3963     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
3964   }
3965 
3966   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
3967 
3968   SDValue Mask, VL;
3969   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3970 
3971   // FIXME: This is a VLMAX splat which might be too large and can prevent
3972   // vsetvli removal.
3973   SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
3974   SDValue Reduction =
3975       DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL);
3976   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3977                      DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3978 }
3979 
3980 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
3981                                                    SelectionDAG &DAG) const {
3982   SDValue Vec = Op.getOperand(0);
3983   SDValue SubVec = Op.getOperand(1);
3984   MVT VecVT = Vec.getSimpleValueType();
3985   MVT SubVecVT = SubVec.getSimpleValueType();
3986 
3987   SDLoc DL(Op);
3988   MVT XLenVT = Subtarget.getXLenVT();
3989   unsigned OrigIdx = Op.getConstantOperandVal(2);
3990   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3991 
3992   // We don't have the ability to slide mask vectors up indexed by their i1
3993   // elements; the smallest we can do is i8. Often we are able to bitcast to
3994   // equivalent i8 vectors. Note that when inserting a fixed-length vector
3995   // into a scalable one, we might not necessarily have enough scalable
3996   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
3997   if (SubVecVT.getVectorElementType() == MVT::i1 &&
3998       (OrigIdx != 0 || !Vec.isUndef())) {
3999     if (VecVT.getVectorMinNumElements() >= 8 &&
4000         SubVecVT.getVectorMinNumElements() >= 8) {
4001       assert(OrigIdx % 8 == 0 && "Invalid index");
4002       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4003              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4004              "Unexpected mask vector lowering");
4005       OrigIdx /= 8;
4006       SubVecVT =
4007           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4008                            SubVecVT.isScalableVector());
4009       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4010                                VecVT.isScalableVector());
4011       Vec = DAG.getBitcast(VecVT, Vec);
4012       SubVec = DAG.getBitcast(SubVecVT, SubVec);
4013     } else {
4014       // We can't slide this mask vector up indexed by its i1 elements.
4015       // This poses a problem when we wish to insert a scalable vector which
4016       // can't be re-expressed as a larger type. Just choose the slow path and
4017       // extend to a larger type, then truncate back down.
4018       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4019       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4020       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4021       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
4022       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
4023                         Op.getOperand(2));
4024       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
4025       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
4026     }
4027   }
4028 
4029   // If the subvector vector is a fixed-length type, we cannot use subregister
4030   // manipulation to simplify the codegen; we don't know which register of a
4031   // LMUL group contains the specific subvector as we only know the minimum
4032   // register size. Therefore we must slide the vector group up the full
4033   // amount.
4034   if (SubVecVT.isFixedLengthVector()) {
4035     if (OrigIdx == 0 && Vec.isUndef())
4036       return Op;
4037     MVT ContainerVT = VecVT;
4038     if (VecVT.isFixedLengthVector()) {
4039       ContainerVT = getContainerForFixedLengthVector(VecVT);
4040       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4041     }
4042     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
4043                          DAG.getUNDEF(ContainerVT), SubVec,
4044                          DAG.getConstant(0, DL, XLenVT));
4045     SDValue Mask =
4046         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4047     // Set the vector length to only the number of elements we care about. Note
4048     // that for slideup this includes the offset.
4049     SDValue VL =
4050         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
4051     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4052     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4053                                   SubVec, SlideupAmt, Mask, VL);
4054     if (VecVT.isFixedLengthVector())
4055       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4056     return DAG.getBitcast(Op.getValueType(), Slideup);
4057   }
4058 
4059   unsigned SubRegIdx, RemIdx;
4060   std::tie(SubRegIdx, RemIdx) =
4061       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4062           VecVT, SubVecVT, OrigIdx, TRI);
4063 
4064   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
4065   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
4066                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
4067                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
4068 
4069   // 1. If the Idx has been completely eliminated and this subvector's size is
4070   // a vector register or a multiple thereof, or the surrounding elements are
4071   // undef, then this is a subvector insert which naturally aligns to a vector
4072   // register. These can easily be handled using subregister manipulation.
4073   // 2. If the subvector is smaller than a vector register, then the insertion
4074   // must preserve the undisturbed elements of the register. We do this by
4075   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
4076   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
4077   // subvector within the vector register, and an INSERT_SUBVECTOR of that
4078   // LMUL=1 type back into the larger vector (resolving to another subregister
4079   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
4080   // to avoid allocating a large register group to hold our subvector.
4081   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
4082     return Op;
4083 
4084   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
4085   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
4086   // (in our case undisturbed). This means we can set up a subvector insertion
4087   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
4088   // size of the subvector.
4089   MVT InterSubVT = VecVT;
4090   SDValue AlignedExtract = Vec;
4091   unsigned AlignedIdx = OrigIdx - RemIdx;
4092   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4093     InterSubVT = getLMUL1VT(VecVT);
4094     // Extract a subvector equal to the nearest full vector register type. This
4095     // should resolve to a EXTRACT_SUBREG instruction.
4096     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4097                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
4098   }
4099 
4100   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4101   // For scalable vectors this must be further multiplied by vscale.
4102   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
4103 
4104   SDValue Mask, VL;
4105   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4106 
4107   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
4108   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
4109   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
4110   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
4111 
4112   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
4113                        DAG.getUNDEF(InterSubVT), SubVec,
4114                        DAG.getConstant(0, DL, XLenVT));
4115 
4116   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
4117                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
4118 
4119   // If required, insert this subvector back into the correct vector register.
4120   // This should resolve to an INSERT_SUBREG instruction.
4121   if (VecVT.bitsGT(InterSubVT))
4122     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
4123                           DAG.getConstant(AlignedIdx, DL, XLenVT));
4124 
4125   // We might have bitcast from a mask type: cast back to the original type if
4126   // required.
4127   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
4128 }
4129 
4130 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
4131                                                     SelectionDAG &DAG) const {
4132   SDValue Vec = Op.getOperand(0);
4133   MVT SubVecVT = Op.getSimpleValueType();
4134   MVT VecVT = Vec.getSimpleValueType();
4135 
4136   SDLoc DL(Op);
4137   MVT XLenVT = Subtarget.getXLenVT();
4138   unsigned OrigIdx = Op.getConstantOperandVal(1);
4139   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4140 
4141   // We don't have the ability to slide mask vectors down indexed by their i1
4142   // elements; the smallest we can do is i8. Often we are able to bitcast to
4143   // equivalent i8 vectors. Note that when extracting a fixed-length vector
4144   // from a scalable one, we might not necessarily have enough scalable
4145   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
4146   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
4147     if (VecVT.getVectorMinNumElements() >= 8 &&
4148         SubVecVT.getVectorMinNumElements() >= 8) {
4149       assert(OrigIdx % 8 == 0 && "Invalid index");
4150       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4151              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4152              "Unexpected mask vector lowering");
4153       OrigIdx /= 8;
4154       SubVecVT =
4155           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4156                            SubVecVT.isScalableVector());
4157       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4158                                VecVT.isScalableVector());
4159       Vec = DAG.getBitcast(VecVT, Vec);
4160     } else {
4161       // We can't slide this mask vector down, indexed by its i1 elements.
4162       // This poses a problem when we wish to extract a scalable vector which
4163       // can't be re-expressed as a larger type. Just choose the slow path and
4164       // extend to a larger type, then truncate back down.
4165       // TODO: We could probably improve this when extracting certain fixed
4166       // from fixed, where we can extract as i8 and shift the correct element
4167       // right to reach the desired subvector?
4168       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4169       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4170       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4171       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
4172                         Op.getOperand(1));
4173       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
4174       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
4175     }
4176   }
4177 
4178   // If the subvector vector is a fixed-length type, we cannot use subregister
4179   // manipulation to simplify the codegen; we don't know which register of a
4180   // LMUL group contains the specific subvector as we only know the minimum
4181   // register size. Therefore we must slide the vector group down the full
4182   // amount.
4183   if (SubVecVT.isFixedLengthVector()) {
4184     // With an index of 0 this is a cast-like subvector, which can be performed
4185     // with subregister operations.
4186     if (OrigIdx == 0)
4187       return Op;
4188     MVT ContainerVT = VecVT;
4189     if (VecVT.isFixedLengthVector()) {
4190       ContainerVT = getContainerForFixedLengthVector(VecVT);
4191       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4192     }
4193     SDValue Mask =
4194         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4195     // Set the vector length to only the number of elements we care about. This
4196     // avoids sliding down elements we're going to discard straight away.
4197     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
4198     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4199     SDValue Slidedown =
4200         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4201                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
4202     // Now we can use a cast-like subvector extract to get the result.
4203     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4204                             DAG.getConstant(0, DL, XLenVT));
4205     return DAG.getBitcast(Op.getValueType(), Slidedown);
4206   }
4207 
4208   unsigned SubRegIdx, RemIdx;
4209   std::tie(SubRegIdx, RemIdx) =
4210       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4211           VecVT, SubVecVT, OrigIdx, TRI);
4212 
4213   // If the Idx has been completely eliminated then this is a subvector extract
4214   // which naturally aligns to a vector register. These can easily be handled
4215   // using subregister manipulation.
4216   if (RemIdx == 0)
4217     return Op;
4218 
4219   // Else we must shift our vector register directly to extract the subvector.
4220   // Do this using VSLIDEDOWN.
4221 
4222   // If the vector type is an LMUL-group type, extract a subvector equal to the
4223   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
4224   // instruction.
4225   MVT InterSubVT = VecVT;
4226   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4227     InterSubVT = getLMUL1VT(VecVT);
4228     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4229                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
4230   }
4231 
4232   // Slide this vector register down by the desired number of elements in order
4233   // to place the desired subvector starting at element 0.
4234   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4235   // For scalable vectors this must be further multiplied by vscale.
4236   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
4237 
4238   SDValue Mask, VL;
4239   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
4240   SDValue Slidedown =
4241       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
4242                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
4243 
4244   // Now the vector is in the right position, extract our final subvector. This
4245   // should resolve to a COPY.
4246   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4247                           DAG.getConstant(0, DL, XLenVT));
4248 
4249   // We might have bitcast from a mask type: cast back to the original type if
4250   // required.
4251   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
4252 }
4253 
4254 // Lower step_vector to the vid instruction. Any non-identity step value must
4255 // be accounted for my manual expansion.
4256 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
4257                                               SelectionDAG &DAG) const {
4258   SDLoc DL(Op);
4259   MVT VT = Op.getSimpleValueType();
4260   MVT XLenVT = Subtarget.getXLenVT();
4261   SDValue Mask, VL;
4262   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
4263   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4264   uint64_t StepValImm = Op.getConstantOperandVal(0);
4265   if (StepValImm != 1) {
4266     if (isPowerOf2_64(StepValImm)) {
4267       SDValue StepVal =
4268           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4269                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
4270       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
4271     } else {
4272       SDValue StepVal = lowerScalarSplat(
4273           DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT,
4274           DL, DAG, Subtarget);
4275       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
4276     }
4277   }
4278   return StepVec;
4279 }
4280 
4281 // Implement vector_reverse using vrgather.vv with indices determined by
4282 // subtracting the id of each element from (VLMAX-1). This will convert
4283 // the indices like so:
4284 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
4285 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
4286 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
4287                                                  SelectionDAG &DAG) const {
4288   SDLoc DL(Op);
4289   MVT VecVT = Op.getSimpleValueType();
4290   unsigned EltSize = VecVT.getScalarSizeInBits();
4291   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
4292 
4293   unsigned MaxVLMAX = 0;
4294   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
4295   if (VectorBitsMax != 0)
4296     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
4297 
4298   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
4299   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
4300 
4301   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
4302   // to use vrgatherei16.vv.
4303   // TODO: It's also possible to use vrgatherei16.vv for other types to
4304   // decrease register width for the index calculation.
4305   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
4306     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
4307     // Reverse each half, then reassemble them in reverse order.
4308     // NOTE: It's also possible that after splitting that VLMAX no longer
4309     // requires vrgatherei16.vv.
4310     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
4311       SDValue Lo, Hi;
4312       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4313       EVT LoVT, HiVT;
4314       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
4315       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
4316       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
4317       // Reassemble the low and high pieces reversed.
4318       // FIXME: This is a CONCAT_VECTORS.
4319       SDValue Res =
4320           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
4321                       DAG.getIntPtrConstant(0, DL));
4322       return DAG.getNode(
4323           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
4324           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
4325     }
4326 
4327     // Just promote the int type to i16 which will double the LMUL.
4328     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
4329     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
4330   }
4331 
4332   MVT XLenVT = Subtarget.getXLenVT();
4333   SDValue Mask, VL;
4334   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4335 
4336   // Calculate VLMAX-1 for the desired SEW.
4337   unsigned MinElts = VecVT.getVectorMinNumElements();
4338   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
4339                               DAG.getConstant(MinElts, DL, XLenVT));
4340   SDValue VLMinus1 =
4341       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
4342 
4343   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
4344   bool IsRV32E64 =
4345       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
4346   SDValue SplatVL;
4347   if (!IsRV32E64)
4348     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
4349   else
4350     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
4351 
4352   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
4353   SDValue Indices =
4354       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
4355 
4356   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
4357 }
4358 
4359 SDValue
4360 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
4361                                                      SelectionDAG &DAG) const {
4362   SDLoc DL(Op);
4363   auto *Load = cast<LoadSDNode>(Op);
4364 
4365   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4366                                         Load->getMemoryVT(),
4367                                         *Load->getMemOperand()) &&
4368          "Expecting a correctly-aligned load");
4369 
4370   MVT VT = Op.getSimpleValueType();
4371   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4372 
4373   SDValue VL =
4374       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4375 
4376   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4377   SDValue NewLoad = DAG.getMemIntrinsicNode(
4378       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
4379       Load->getMemoryVT(), Load->getMemOperand());
4380 
4381   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
4382   return DAG.getMergeValues({Result, Load->getChain()}, DL);
4383 }
4384 
4385 SDValue
4386 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
4387                                                       SelectionDAG &DAG) const {
4388   SDLoc DL(Op);
4389   auto *Store = cast<StoreSDNode>(Op);
4390 
4391   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4392                                         Store->getMemoryVT(),
4393                                         *Store->getMemOperand()) &&
4394          "Expecting a correctly-aligned store");
4395 
4396   SDValue StoreVal = Store->getValue();
4397   MVT VT = StoreVal.getSimpleValueType();
4398 
4399   // If the size less than a byte, we need to pad with zeros to make a byte.
4400   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
4401     VT = MVT::v8i1;
4402     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
4403                            DAG.getConstant(0, DL, VT), StoreVal,
4404                            DAG.getIntPtrConstant(0, DL));
4405   }
4406 
4407   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4408 
4409   SDValue VL =
4410       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4411 
4412   SDValue NewValue =
4413       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
4414   return DAG.getMemIntrinsicNode(
4415       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
4416       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
4417       Store->getMemoryVT(), Store->getMemOperand());
4418 }
4419 
4420 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const {
4421   auto *Load = cast<MaskedLoadSDNode>(Op);
4422 
4423   SDLoc DL(Op);
4424   MVT VT = Op.getSimpleValueType();
4425   MVT XLenVT = Subtarget.getXLenVT();
4426 
4427   SDValue Mask = Load->getMask();
4428   SDValue PassThru = Load->getPassThru();
4429   SDValue VL;
4430 
4431   MVT ContainerVT = VT;
4432   if (VT.isFixedLengthVector()) {
4433     ContainerVT = getContainerForFixedLengthVector(VT);
4434     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4435 
4436     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4437     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4438     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4439   } else
4440     VL = DAG.getRegister(RISCV::X0, XLenVT);
4441 
4442   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4443   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT);
4444   SDValue Ops[] = {Load->getChain(),   IntID, PassThru,
4445                    Load->getBasePtr(), Mask,  VL};
4446   SDValue Result =
4447       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4448                               Load->getMemoryVT(), Load->getMemOperand());
4449   SDValue Chain = Result.getValue(1);
4450 
4451   if (VT.isFixedLengthVector())
4452     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4453 
4454   return DAG.getMergeValues({Result, Chain}, DL);
4455 }
4456 
4457 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const {
4458   auto *Store = cast<MaskedStoreSDNode>(Op);
4459 
4460   SDLoc DL(Op);
4461   SDValue Val = Store->getValue();
4462   SDValue Mask = Store->getMask();
4463   MVT VT = Val.getSimpleValueType();
4464   MVT XLenVT = Subtarget.getXLenVT();
4465   SDValue VL;
4466 
4467   MVT ContainerVT = VT;
4468   if (VT.isFixedLengthVector()) {
4469     ContainerVT = getContainerForFixedLengthVector(VT);
4470     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4471 
4472     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4473     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4474     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4475   } else
4476     VL = DAG.getRegister(RISCV::X0, XLenVT);
4477 
4478   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT);
4479   return DAG.getMemIntrinsicNode(
4480       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
4481       {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL},
4482       Store->getMemoryVT(), Store->getMemOperand());
4483 }
4484 
4485 SDValue
4486 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
4487                                                       SelectionDAG &DAG) const {
4488   MVT InVT = Op.getOperand(0).getSimpleValueType();
4489   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
4490 
4491   MVT VT = Op.getSimpleValueType();
4492 
4493   SDValue Op1 =
4494       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4495   SDValue Op2 =
4496       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4497 
4498   SDLoc DL(Op);
4499   SDValue VL =
4500       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4501 
4502   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4503   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4504 
4505   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
4506                             Op.getOperand(2), Mask, VL);
4507 
4508   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
4509 }
4510 
4511 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
4512     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
4513   MVT VT = Op.getSimpleValueType();
4514 
4515   if (VT.getVectorElementType() == MVT::i1)
4516     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
4517 
4518   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
4519 }
4520 
4521 SDValue
4522 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
4523                                                       SelectionDAG &DAG) const {
4524   unsigned Opc;
4525   switch (Op.getOpcode()) {
4526   default: llvm_unreachable("Unexpected opcode!");
4527   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
4528   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
4529   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
4530   }
4531 
4532   return lowerToScalableOp(Op, DAG, Opc);
4533 }
4534 
4535 // Lower vector ABS to smax(X, sub(0, X)).
4536 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
4537   SDLoc DL(Op);
4538   MVT VT = Op.getSimpleValueType();
4539   SDValue X = Op.getOperand(0);
4540 
4541   assert(VT.isFixedLengthVector() && "Unexpected type");
4542 
4543   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4544   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
4545 
4546   SDValue Mask, VL;
4547   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4548 
4549   SDValue SplatZero =
4550       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4551                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4552   SDValue NegX =
4553       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
4554   SDValue Max =
4555       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
4556 
4557   return convertFromScalableVector(VT, Max, DAG, Subtarget);
4558 }
4559 
4560 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
4561     SDValue Op, SelectionDAG &DAG) const {
4562   SDLoc DL(Op);
4563   MVT VT = Op.getSimpleValueType();
4564   SDValue Mag = Op.getOperand(0);
4565   SDValue Sign = Op.getOperand(1);
4566   assert(Mag.getValueType() == Sign.getValueType() &&
4567          "Can only handle COPYSIGN with matching types.");
4568 
4569   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4570   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
4571   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
4572 
4573   SDValue Mask, VL;
4574   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4575 
4576   SDValue CopySign =
4577       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
4578 
4579   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
4580 }
4581 
4582 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
4583     SDValue Op, SelectionDAG &DAG) const {
4584   MVT VT = Op.getSimpleValueType();
4585   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4586 
4587   MVT I1ContainerVT =
4588       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4589 
4590   SDValue CC =
4591       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
4592   SDValue Op1 =
4593       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4594   SDValue Op2 =
4595       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
4596 
4597   SDLoc DL(Op);
4598   SDValue Mask, VL;
4599   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4600 
4601   SDValue Select =
4602       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
4603 
4604   return convertFromScalableVector(VT, Select, DAG, Subtarget);
4605 }
4606 
4607 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
4608                                                unsigned NewOpc,
4609                                                bool HasMask) const {
4610   MVT VT = Op.getSimpleValueType();
4611   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4612 
4613   // Create list of operands by converting existing ones to scalable types.
4614   SmallVector<SDValue, 6> Ops;
4615   for (const SDValue &V : Op->op_values()) {
4616     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
4617 
4618     // Pass through non-vector operands.
4619     if (!V.getValueType().isVector()) {
4620       Ops.push_back(V);
4621       continue;
4622     }
4623 
4624     // "cast" fixed length vector to a scalable vector.
4625     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
4626            "Only fixed length vectors are supported!");
4627     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
4628   }
4629 
4630   SDLoc DL(Op);
4631   SDValue Mask, VL;
4632   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4633   if (HasMask)
4634     Ops.push_back(Mask);
4635   Ops.push_back(VL);
4636 
4637   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
4638   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
4639 }
4640 
4641 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
4642 // * Operands of each node are assumed to be in the same order.
4643 // * The EVL operand is promoted from i32 to i64 on RV64.
4644 // * Fixed-length vectors are converted to their scalable-vector container
4645 //   types.
4646 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
4647                                        unsigned RISCVISDOpc) const {
4648   SDLoc DL(Op);
4649   MVT VT = Op.getSimpleValueType();
4650   SmallVector<SDValue, 4> Ops;
4651 
4652   for (const auto &OpIdx : enumerate(Op->ops())) {
4653     SDValue V = OpIdx.value();
4654     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
4655     // Pass through operands which aren't fixed-length vectors.
4656     if (!V.getValueType().isFixedLengthVector()) {
4657       Ops.push_back(V);
4658       continue;
4659     }
4660     // "cast" fixed length vector to a scalable vector.
4661     MVT OpVT = V.getSimpleValueType();
4662     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
4663     assert(useRVVForFixedLengthVectorVT(OpVT) &&
4664            "Only fixed length vectors are supported!");
4665     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
4666   }
4667 
4668   if (!VT.isFixedLengthVector())
4669     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
4670 
4671   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4672 
4673   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
4674 
4675   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
4676 }
4677 
4678 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to
4679 // a RVV indexed load. The RVV indexed load instructions only support the
4680 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4681 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4682 // indexing is extended to the XLEN value type and scaled accordingly.
4683 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const {
4684   auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
4685   SDLoc DL(Op);
4686 
4687   SDValue Index = MGN->getIndex();
4688   SDValue Mask = MGN->getMask();
4689   SDValue PassThru = MGN->getPassThru();
4690 
4691   MVT VT = Op.getSimpleValueType();
4692   MVT IndexVT = Index.getSimpleValueType();
4693   MVT XLenVT = Subtarget.getXLenVT();
4694 
4695   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4696          "Unexpected VTs!");
4697   assert(MGN->getBasePtr().getSimpleValueType() == XLenVT &&
4698          "Unexpected pointer type");
4699   // Targets have to explicitly opt-in for extending vector loads.
4700   assert(MGN->getExtensionType() == ISD::NON_EXTLOAD &&
4701          "Unexpected extending MGATHER");
4702 
4703   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4704   // the selection of the masked intrinsics doesn't do this for us.
4705   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4706 
4707   SDValue VL;
4708   MVT ContainerVT = VT;
4709   if (VT.isFixedLengthVector()) {
4710     // We need to use the larger of the result and index type to determine the
4711     // scalable type to use so we don't increase LMUL for any operand/result.
4712     if (VT.bitsGE(IndexVT)) {
4713       ContainerVT = getContainerForFixedLengthVector(VT);
4714       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4715                                  ContainerVT.getVectorElementCount());
4716     } else {
4717       IndexVT = getContainerForFixedLengthVector(IndexVT);
4718       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
4719                                      IndexVT.getVectorElementCount());
4720     }
4721 
4722     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4723 
4724     if (!IsUnmasked) {
4725       MVT MaskVT =
4726           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4727       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4728       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4729     }
4730 
4731     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4732   } else
4733     VL = DAG.getRegister(RISCV::X0, XLenVT);
4734 
4735   unsigned IntID =
4736       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
4737   SmallVector<SDValue, 8> Ops{MGN->getChain(),
4738                               DAG.getTargetConstant(IntID, DL, XLenVT)};
4739   if (!IsUnmasked)
4740     Ops.push_back(PassThru);
4741   Ops.push_back(MGN->getBasePtr());
4742   Ops.push_back(Index);
4743   if (!IsUnmasked)
4744     Ops.push_back(Mask);
4745   Ops.push_back(VL);
4746 
4747   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4748   SDValue Result =
4749       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4750                               MGN->getMemoryVT(), MGN->getMemOperand());
4751   SDValue Chain = Result.getValue(1);
4752 
4753   if (VT.isFixedLengthVector())
4754     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4755 
4756   return DAG.getMergeValues({Result, Chain}, DL);
4757 }
4758 
4759 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to
4760 // a RVV indexed store. The RVV indexed store instructions only support the
4761 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4762 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4763 // indexing is extended to the XLEN value type and scaled accordingly.
4764 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op,
4765                                            SelectionDAG &DAG) const {
4766   auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
4767   SDLoc DL(Op);
4768   SDValue Index = MSN->getIndex();
4769   SDValue Mask = MSN->getMask();
4770   SDValue Val = MSN->getValue();
4771 
4772   MVT VT = Val.getSimpleValueType();
4773   MVT IndexVT = Index.getSimpleValueType();
4774   MVT XLenVT = Subtarget.getXLenVT();
4775 
4776   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4777          "Unexpected VTs!");
4778   assert(MSN->getBasePtr().getSimpleValueType() == XLenVT &&
4779          "Unexpected pointer type");
4780   // Targets have to explicitly opt-in for extending vector loads and
4781   // truncating vector stores.
4782   assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER");
4783 
4784   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4785   // the selection of the masked intrinsics doesn't do this for us.
4786   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4787 
4788   SDValue VL;
4789   if (VT.isFixedLengthVector()) {
4790     // We need to use the larger of the value and index type to determine the
4791     // scalable type to use so we don't increase LMUL for any operand/result.
4792     MVT ContainerVT;
4793     if (VT.bitsGE(IndexVT)) {
4794       ContainerVT = getContainerForFixedLengthVector(VT);
4795       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4796                                  ContainerVT.getVectorElementCount());
4797     } else {
4798       IndexVT = getContainerForFixedLengthVector(IndexVT);
4799       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4800                                      IndexVT.getVectorElementCount());
4801     }
4802 
4803     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4804     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4805 
4806     if (!IsUnmasked) {
4807       MVT MaskVT =
4808           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4809       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4810     }
4811 
4812     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4813   } else
4814     VL = DAG.getRegister(RISCV::X0, XLenVT);
4815 
4816   unsigned IntID =
4817       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
4818   SmallVector<SDValue, 8> Ops{MSN->getChain(),
4819                               DAG.getTargetConstant(IntID, DL, XLenVT)};
4820   Ops.push_back(Val);
4821   Ops.push_back(MSN->getBasePtr());
4822   Ops.push_back(Index);
4823   if (!IsUnmasked)
4824     Ops.push_back(Mask);
4825   Ops.push_back(VL);
4826 
4827   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops,
4828                                  MSN->getMemoryVT(), MSN->getMemOperand());
4829 }
4830 
4831 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
4832                                                SelectionDAG &DAG) const {
4833   const MVT XLenVT = Subtarget.getXLenVT();
4834   SDLoc DL(Op);
4835   SDValue Chain = Op->getOperand(0);
4836   SDValue SysRegNo = DAG.getConstant(
4837       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4838   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
4839   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
4840 
4841   // Encoding used for rounding mode in RISCV differs from that used in
4842   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
4843   // table, which consists of a sequence of 4-bit fields, each representing
4844   // corresponding FLT_ROUNDS mode.
4845   static const int Table =
4846       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
4847       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
4848       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
4849       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
4850       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
4851 
4852   SDValue Shift =
4853       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
4854   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4855                                 DAG.getConstant(Table, DL, XLenVT), Shift);
4856   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4857                                DAG.getConstant(7, DL, XLenVT));
4858 
4859   return DAG.getMergeValues({Masked, Chain}, DL);
4860 }
4861 
4862 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
4863                                                SelectionDAG &DAG) const {
4864   const MVT XLenVT = Subtarget.getXLenVT();
4865   SDLoc DL(Op);
4866   SDValue Chain = Op->getOperand(0);
4867   SDValue RMValue = Op->getOperand(1);
4868   SDValue SysRegNo = DAG.getConstant(
4869       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4870 
4871   // Encoding used for rounding mode in RISCV differs from that used in
4872   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
4873   // a table, which consists of a sequence of 4-bit fields, each representing
4874   // corresponding RISCV mode.
4875   static const unsigned Table =
4876       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
4877       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
4878       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
4879       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
4880       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
4881 
4882   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
4883                               DAG.getConstant(2, DL, XLenVT));
4884   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4885                                 DAG.getConstant(Table, DL, XLenVT), Shift);
4886   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4887                         DAG.getConstant(0x7, DL, XLenVT));
4888   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
4889                      RMValue);
4890 }
4891 
4892 // Returns the opcode of the target-specific SDNode that implements the 32-bit
4893 // form of the given Opcode.
4894 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
4895   switch (Opcode) {
4896   default:
4897     llvm_unreachable("Unexpected opcode");
4898   case ISD::SHL:
4899     return RISCVISD::SLLW;
4900   case ISD::SRA:
4901     return RISCVISD::SRAW;
4902   case ISD::SRL:
4903     return RISCVISD::SRLW;
4904   case ISD::SDIV:
4905     return RISCVISD::DIVW;
4906   case ISD::UDIV:
4907     return RISCVISD::DIVUW;
4908   case ISD::UREM:
4909     return RISCVISD::REMUW;
4910   case ISD::ROTL:
4911     return RISCVISD::ROLW;
4912   case ISD::ROTR:
4913     return RISCVISD::RORW;
4914   case RISCVISD::GREV:
4915     return RISCVISD::GREVW;
4916   case RISCVISD::GORC:
4917     return RISCVISD::GORCW;
4918   }
4919 }
4920 
4921 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
4922 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
4923 // otherwise be promoted to i64, making it difficult to select the
4924 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
4925 // type i8/i16/i32 is lost.
4926 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
4927                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
4928   SDLoc DL(N);
4929   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
4930   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
4931   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
4932   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
4933   // ReplaceNodeResults requires we maintain the same type for the return value.
4934   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
4935 }
4936 
4937 // Converts the given 32-bit operation to a i64 operation with signed extension
4938 // semantic to reduce the signed extension instructions.
4939 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
4940   SDLoc DL(N);
4941   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4942   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4943   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
4944   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
4945                                DAG.getValueType(MVT::i32));
4946   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
4947 }
4948 
4949 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
4950                                              SmallVectorImpl<SDValue> &Results,
4951                                              SelectionDAG &DAG) const {
4952   SDLoc DL(N);
4953   switch (N->getOpcode()) {
4954   default:
4955     llvm_unreachable("Don't know how to custom type legalize this operation!");
4956   case ISD::STRICT_FP_TO_SINT:
4957   case ISD::STRICT_FP_TO_UINT:
4958   case ISD::FP_TO_SINT:
4959   case ISD::FP_TO_UINT: {
4960     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4961            "Unexpected custom legalisation");
4962     bool IsStrict = N->isStrictFPOpcode();
4963     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
4964                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
4965     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
4966     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
4967         TargetLowering::TypeSoftenFloat) {
4968       // FIXME: Support strict FP.
4969       if (IsStrict)
4970         return;
4971       if (!isTypeLegal(Op0.getValueType()))
4972         return;
4973       unsigned Opc =
4974           IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
4975       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0);
4976       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4977       return;
4978     }
4979     // If the FP type needs to be softened, emit a library call using the 'si'
4980     // version. If we left it to default legalization we'd end up with 'di'. If
4981     // the FP type doesn't need to be softened just let generic type
4982     // legalization promote the result type.
4983     RTLIB::Libcall LC;
4984     if (IsSigned)
4985       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
4986     else
4987       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
4988     MakeLibCallOptions CallOptions;
4989     EVT OpVT = Op0.getValueType();
4990     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
4991     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4992     SDValue Result;
4993     std::tie(Result, Chain) =
4994         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
4995     Results.push_back(Result);
4996     if (IsStrict)
4997       Results.push_back(Chain);
4998     break;
4999   }
5000   case ISD::READCYCLECOUNTER: {
5001     assert(!Subtarget.is64Bit() &&
5002            "READCYCLECOUNTER only has custom type legalization on riscv32");
5003 
5004     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5005     SDValue RCW =
5006         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
5007 
5008     Results.push_back(
5009         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
5010     Results.push_back(RCW.getValue(2));
5011     break;
5012   }
5013   case ISD::MUL: {
5014     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
5015     unsigned XLen = Subtarget.getXLen();
5016     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
5017     if (Size > XLen) {
5018       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
5019       SDValue LHS = N->getOperand(0);
5020       SDValue RHS = N->getOperand(1);
5021       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
5022 
5023       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
5024       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
5025       // We need exactly one side to be unsigned.
5026       if (LHSIsU == RHSIsU)
5027         return;
5028 
5029       auto MakeMULPair = [&](SDValue S, SDValue U) {
5030         MVT XLenVT = Subtarget.getXLenVT();
5031         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
5032         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
5033         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
5034         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
5035         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
5036       };
5037 
5038       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
5039       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
5040 
5041       // The other operand should be signed, but still prefer MULH when
5042       // possible.
5043       if (RHSIsU && LHSIsS && !RHSIsS)
5044         Results.push_back(MakeMULPair(LHS, RHS));
5045       else if (LHSIsU && RHSIsS && !LHSIsS)
5046         Results.push_back(MakeMULPair(RHS, LHS));
5047 
5048       return;
5049     }
5050     LLVM_FALLTHROUGH;
5051   }
5052   case ISD::ADD:
5053   case ISD::SUB:
5054     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5055            "Unexpected custom legalisation");
5056     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
5057     break;
5058   case ISD::SHL:
5059   case ISD::SRA:
5060   case ISD::SRL:
5061     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5062            "Unexpected custom legalisation");
5063     if (N->getOperand(1).getOpcode() == ISD::Constant)
5064       return;
5065     Results.push_back(customLegalizeToWOp(N, DAG));
5066     break;
5067   case ISD::ROTL:
5068   case ISD::ROTR:
5069     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5070            "Unexpected custom legalisation");
5071     Results.push_back(customLegalizeToWOp(N, DAG));
5072     break;
5073   case ISD::CTTZ:
5074   case ISD::CTTZ_ZERO_UNDEF:
5075   case ISD::CTLZ:
5076   case ISD::CTLZ_ZERO_UNDEF: {
5077     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5078            "Unexpected custom legalisation");
5079 
5080     SDValue NewOp0 =
5081         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5082     bool IsCTZ =
5083         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
5084     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
5085     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
5086     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5087     return;
5088   }
5089   case ISD::SDIV:
5090   case ISD::UDIV:
5091   case ISD::UREM: {
5092     MVT VT = N->getSimpleValueType(0);
5093     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
5094            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
5095            "Unexpected custom legalisation");
5096     // Don't promote division/remainder by constant since we should expand those
5097     // to multiply by magic constant.
5098     // FIXME: What if the expansion is disabled for minsize.
5099     if (N->getOperand(1).getOpcode() == ISD::Constant)
5100       return;
5101 
5102     // If the input is i32, use ANY_EXTEND since the W instructions don't read
5103     // the upper 32 bits. For other types we need to sign or zero extend
5104     // based on the opcode.
5105     unsigned ExtOpc = ISD::ANY_EXTEND;
5106     if (VT != MVT::i32)
5107       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
5108                                            : ISD::ZERO_EXTEND;
5109 
5110     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
5111     break;
5112   }
5113   case ISD::UADDO:
5114   case ISD::USUBO: {
5115     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5116            "Unexpected custom legalisation");
5117     bool IsAdd = N->getOpcode() == ISD::UADDO;
5118     // Create an ADDW or SUBW.
5119     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5120     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5121     SDValue Res =
5122         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
5123     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
5124                       DAG.getValueType(MVT::i32));
5125 
5126     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
5127     // Since the inputs are sign extended from i32, this is equivalent to
5128     // comparing the lower 32 bits.
5129     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5130     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
5131                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
5132 
5133     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5134     Results.push_back(Overflow);
5135     return;
5136   }
5137   case ISD::UADDSAT:
5138   case ISD::USUBSAT: {
5139     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5140            "Unexpected custom legalisation");
5141     if (Subtarget.hasStdExtZbb()) {
5142       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
5143       // sign extend allows overflow of the lower 32 bits to be detected on
5144       // the promoted size.
5145       SDValue LHS =
5146           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5147       SDValue RHS =
5148           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
5149       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
5150       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5151       return;
5152     }
5153 
5154     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
5155     // promotion for UADDO/USUBO.
5156     Results.push_back(expandAddSubSat(N, DAG));
5157     return;
5158   }
5159   case ISD::BITCAST: {
5160     EVT VT = N->getValueType(0);
5161     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
5162     SDValue Op0 = N->getOperand(0);
5163     EVT Op0VT = Op0.getValueType();
5164     MVT XLenVT = Subtarget.getXLenVT();
5165     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
5166       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
5167       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
5168     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
5169                Subtarget.hasStdExtF()) {
5170       SDValue FPConv =
5171           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
5172       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
5173     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
5174                isTypeLegal(Op0VT)) {
5175       // Custom-legalize bitcasts from fixed-length vector types to illegal
5176       // scalar types in order to improve codegen. Bitcast the vector to a
5177       // one-element vector type whose element type is the same as the result
5178       // type, and extract the first element.
5179       LLVMContext &Context = *DAG.getContext();
5180       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
5181       Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
5182                                     DAG.getConstant(0, DL, XLenVT)));
5183     }
5184     break;
5185   }
5186   case RISCVISD::GREV:
5187   case RISCVISD::GORC: {
5188     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5189            "Unexpected custom legalisation");
5190     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5191     // This is similar to customLegalizeToWOp, except that we pass the second
5192     // operand (a TargetConstant) straight through: it is already of type
5193     // XLenVT.
5194     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5195     SDValue NewOp0 =
5196         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5197     SDValue NewOp1 =
5198         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5199     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5200     // ReplaceNodeResults requires we maintain the same type for the return
5201     // value.
5202     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5203     break;
5204   }
5205   case RISCVISD::SHFL: {
5206     // There is no SHFLIW instruction, but we can just promote the operation.
5207     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5208            "Unexpected custom legalisation");
5209     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5210     SDValue NewOp0 =
5211         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5212     SDValue NewOp1 =
5213         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5214     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
5215     // ReplaceNodeResults requires we maintain the same type for the return
5216     // value.
5217     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5218     break;
5219   }
5220   case ISD::BSWAP:
5221   case ISD::BITREVERSE: {
5222     MVT VT = N->getSimpleValueType(0);
5223     MVT XLenVT = Subtarget.getXLenVT();
5224     assert((VT == MVT::i8 || VT == MVT::i16 ||
5225             (VT == MVT::i32 && Subtarget.is64Bit())) &&
5226            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
5227     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
5228     unsigned Imm = VT.getSizeInBits() - 1;
5229     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
5230     if (N->getOpcode() == ISD::BSWAP)
5231       Imm &= ~0x7U;
5232     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
5233     SDValue GREVI =
5234         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
5235     // ReplaceNodeResults requires we maintain the same type for the return
5236     // value.
5237     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
5238     break;
5239   }
5240   case ISD::FSHL:
5241   case ISD::FSHR: {
5242     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5243            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
5244     SDValue NewOp0 =
5245         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5246     SDValue NewOp1 =
5247         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5248     SDValue NewOp2 =
5249         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5250     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
5251     // Mask the shift amount to 5 bits.
5252     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5253                          DAG.getConstant(0x1f, DL, MVT::i64));
5254     unsigned Opc =
5255         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
5256     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
5257     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
5258     break;
5259   }
5260   case ISD::EXTRACT_VECTOR_ELT: {
5261     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
5262     // type is illegal (currently only vXi64 RV32).
5263     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
5264     // transferred to the destination register. We issue two of these from the
5265     // upper- and lower- halves of the SEW-bit vector element, slid down to the
5266     // first element.
5267     SDValue Vec = N->getOperand(0);
5268     SDValue Idx = N->getOperand(1);
5269 
5270     // The vector type hasn't been legalized yet so we can't issue target
5271     // specific nodes if it needs legalization.
5272     // FIXME: We would manually legalize if it's important.
5273     if (!isTypeLegal(Vec.getValueType()))
5274       return;
5275 
5276     MVT VecVT = Vec.getSimpleValueType();
5277 
5278     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
5279            VecVT.getVectorElementType() == MVT::i64 &&
5280            "Unexpected EXTRACT_VECTOR_ELT legalization");
5281 
5282     // If this is a fixed vector, we need to convert it to a scalable vector.
5283     MVT ContainerVT = VecVT;
5284     if (VecVT.isFixedLengthVector()) {
5285       ContainerVT = getContainerForFixedLengthVector(VecVT);
5286       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5287     }
5288 
5289     MVT XLenVT = Subtarget.getXLenVT();
5290 
5291     // Use a VL of 1 to avoid processing more elements than we need.
5292     MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5293     SDValue VL = DAG.getConstant(1, DL, XLenVT);
5294     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5295 
5296     // Unless the index is known to be 0, we must slide the vector down to get
5297     // the desired element into index 0.
5298     if (!isNullConstant(Idx)) {
5299       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5300                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
5301     }
5302 
5303     // Extract the lower XLEN bits of the correct vector element.
5304     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5305 
5306     // To extract the upper XLEN bits of the vector element, shift the first
5307     // element right by 32 bits and re-extract the lower XLEN bits.
5308     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5309                                      DAG.getConstant(32, DL, XLenVT), VL);
5310     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
5311                                  ThirtyTwoV, Mask, VL);
5312 
5313     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5314 
5315     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5316     break;
5317   }
5318   case ISD::INTRINSIC_WO_CHAIN: {
5319     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5320     switch (IntNo) {
5321     default:
5322       llvm_unreachable(
5323           "Don't know how to custom type legalize this intrinsic!");
5324     case Intrinsic::riscv_orc_b: {
5325       // Lower to the GORCI encoding for orc.b with the operand extended.
5326       SDValue NewOp =
5327           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5328       // If Zbp is enabled, use GORCIW which will sign extend the result.
5329       unsigned Opc =
5330           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
5331       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
5332                                 DAG.getConstant(7, DL, MVT::i64));
5333       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5334       return;
5335     }
5336     case Intrinsic::riscv_grev:
5337     case Intrinsic::riscv_gorc: {
5338       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5339              "Unexpected custom legalisation");
5340       SDValue NewOp1 =
5341           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5342       SDValue NewOp2 =
5343           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5344       unsigned Opc =
5345           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
5346       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5347       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5348       break;
5349     }
5350     case Intrinsic::riscv_shfl:
5351     case Intrinsic::riscv_unshfl: {
5352       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5353              "Unexpected custom legalisation");
5354       SDValue NewOp1 =
5355           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5356       SDValue NewOp2 =
5357           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5358       unsigned Opc =
5359           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
5360       if (isa<ConstantSDNode>(N->getOperand(2))) {
5361         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5362                              DAG.getConstant(0xf, DL, MVT::i64));
5363         Opc =
5364             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
5365       }
5366       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5367       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5368       break;
5369     }
5370     case Intrinsic::riscv_bcompress:
5371     case Intrinsic::riscv_bdecompress: {
5372       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5373              "Unexpected custom legalisation");
5374       SDValue NewOp1 =
5375           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5376       SDValue NewOp2 =
5377           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5378       unsigned Opc = IntNo == Intrinsic::riscv_bcompress
5379                          ? RISCVISD::BCOMPRESSW
5380                          : RISCVISD::BDECOMPRESSW;
5381       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5382       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5383       break;
5384     }
5385     case Intrinsic::riscv_vmv_x_s: {
5386       EVT VT = N->getValueType(0);
5387       MVT XLenVT = Subtarget.getXLenVT();
5388       if (VT.bitsLT(XLenVT)) {
5389         // Simple case just extract using vmv.x.s and truncate.
5390         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
5391                                       Subtarget.getXLenVT(), N->getOperand(1));
5392         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
5393         return;
5394       }
5395 
5396       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
5397              "Unexpected custom legalization");
5398 
5399       // We need to do the move in two steps.
5400       SDValue Vec = N->getOperand(1);
5401       MVT VecVT = Vec.getSimpleValueType();
5402 
5403       // First extract the lower XLEN bits of the element.
5404       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5405 
5406       // To extract the upper XLEN bits of the vector element, shift the first
5407       // element right by 32 bits and re-extract the lower XLEN bits.
5408       SDValue VL = DAG.getConstant(1, DL, XLenVT);
5409       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5410       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5411       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
5412                                        DAG.getConstant(32, DL, XLenVT), VL);
5413       SDValue LShr32 =
5414           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
5415       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5416 
5417       Results.push_back(
5418           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5419       break;
5420     }
5421     }
5422     break;
5423   }
5424   case ISD::VECREDUCE_ADD:
5425   case ISD::VECREDUCE_AND:
5426   case ISD::VECREDUCE_OR:
5427   case ISD::VECREDUCE_XOR:
5428   case ISD::VECREDUCE_SMAX:
5429   case ISD::VECREDUCE_UMAX:
5430   case ISD::VECREDUCE_SMIN:
5431   case ISD::VECREDUCE_UMIN:
5432     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
5433       Results.push_back(V);
5434     break;
5435   case ISD::FLT_ROUNDS_: {
5436     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
5437     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
5438     Results.push_back(Res.getValue(0));
5439     Results.push_back(Res.getValue(1));
5440     break;
5441   }
5442   }
5443 }
5444 
5445 // A structure to hold one of the bit-manipulation patterns below. Together, a
5446 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
5447 //   (or (and (shl x, 1), 0xAAAAAAAA),
5448 //       (and (srl x, 1), 0x55555555))
5449 struct RISCVBitmanipPat {
5450   SDValue Op;
5451   unsigned ShAmt;
5452   bool IsSHL;
5453 
5454   bool formsPairWith(const RISCVBitmanipPat &Other) const {
5455     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
5456   }
5457 };
5458 
5459 // Matches patterns of the form
5460 //   (and (shl x, C2), (C1 << C2))
5461 //   (and (srl x, C2), C1)
5462 //   (shl (and x, C1), C2)
5463 //   (srl (and x, (C1 << C2)), C2)
5464 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
5465 // The expected masks for each shift amount are specified in BitmanipMasks where
5466 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
5467 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
5468 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
5469 // XLen is 64.
5470 static Optional<RISCVBitmanipPat>
5471 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
5472   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
5473          "Unexpected number of masks");
5474   Optional<uint64_t> Mask;
5475   // Optionally consume a mask around the shift operation.
5476   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
5477     Mask = Op.getConstantOperandVal(1);
5478     Op = Op.getOperand(0);
5479   }
5480   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
5481     return None;
5482   bool IsSHL = Op.getOpcode() == ISD::SHL;
5483 
5484   if (!isa<ConstantSDNode>(Op.getOperand(1)))
5485     return None;
5486   uint64_t ShAmt = Op.getConstantOperandVal(1);
5487 
5488   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
5489   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
5490     return None;
5491   // If we don't have enough masks for 64 bit, then we must be trying to
5492   // match SHFL so we're only allowed to shift 1/4 of the width.
5493   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
5494     return None;
5495 
5496   SDValue Src = Op.getOperand(0);
5497 
5498   // The expected mask is shifted left when the AND is found around SHL
5499   // patterns.
5500   //   ((x >> 1) & 0x55555555)
5501   //   ((x << 1) & 0xAAAAAAAA)
5502   bool SHLExpMask = IsSHL;
5503 
5504   if (!Mask) {
5505     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
5506     // the mask is all ones: consume that now.
5507     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
5508       Mask = Src.getConstantOperandVal(1);
5509       Src = Src.getOperand(0);
5510       // The expected mask is now in fact shifted left for SRL, so reverse the
5511       // decision.
5512       //   ((x & 0xAAAAAAAA) >> 1)
5513       //   ((x & 0x55555555) << 1)
5514       SHLExpMask = !SHLExpMask;
5515     } else {
5516       // Use a default shifted mask of all-ones if there's no AND, truncated
5517       // down to the expected width. This simplifies the logic later on.
5518       Mask = maskTrailingOnes<uint64_t>(Width);
5519       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
5520     }
5521   }
5522 
5523   unsigned MaskIdx = Log2_32(ShAmt);
5524   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
5525 
5526   if (SHLExpMask)
5527     ExpMask <<= ShAmt;
5528 
5529   if (Mask != ExpMask)
5530     return None;
5531 
5532   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
5533 }
5534 
5535 // Matches any of the following bit-manipulation patterns:
5536 //   (and (shl x, 1), (0x55555555 << 1))
5537 //   (and (srl x, 1), 0x55555555)
5538 //   (shl (and x, 0x55555555), 1)
5539 //   (srl (and x, (0x55555555 << 1)), 1)
5540 // where the shift amount and mask may vary thus:
5541 //   [1]  = 0x55555555 / 0xAAAAAAAA
5542 //   [2]  = 0x33333333 / 0xCCCCCCCC
5543 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
5544 //   [8]  = 0x00FF00FF / 0xFF00FF00
5545 //   [16] = 0x0000FFFF / 0xFFFFFFFF
5546 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
5547 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
5548   // These are the unshifted masks which we use to match bit-manipulation
5549   // patterns. They may be shifted left in certain circumstances.
5550   static const uint64_t BitmanipMasks[] = {
5551       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
5552       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
5553 
5554   return matchRISCVBitmanipPat(Op, BitmanipMasks);
5555 }
5556 
5557 // Match the following pattern as a GREVI(W) operation
5558 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
5559 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
5560                                const RISCVSubtarget &Subtarget) {
5561   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5562   EVT VT = Op.getValueType();
5563 
5564   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
5565     auto LHS = matchGREVIPat(Op.getOperand(0));
5566     auto RHS = matchGREVIPat(Op.getOperand(1));
5567     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
5568       SDLoc DL(Op);
5569       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
5570                          DAG.getConstant(LHS->ShAmt, DL, VT));
5571     }
5572   }
5573   return SDValue();
5574 }
5575 
5576 // Matches any the following pattern as a GORCI(W) operation
5577 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
5578 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
5579 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
5580 // Note that with the variant of 3.,
5581 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
5582 // the inner pattern will first be matched as GREVI and then the outer
5583 // pattern will be matched to GORC via the first rule above.
5584 // 4.  (or (rotl/rotr x, bitwidth/2), x)
5585 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
5586                                const RISCVSubtarget &Subtarget) {
5587   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5588   EVT VT = Op.getValueType();
5589 
5590   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
5591     SDLoc DL(Op);
5592     SDValue Op0 = Op.getOperand(0);
5593     SDValue Op1 = Op.getOperand(1);
5594 
5595     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
5596       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
5597           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
5598           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
5599         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
5600       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
5601       if ((Reverse.getOpcode() == ISD::ROTL ||
5602            Reverse.getOpcode() == ISD::ROTR) &&
5603           Reverse.getOperand(0) == X &&
5604           isa<ConstantSDNode>(Reverse.getOperand(1))) {
5605         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
5606         if (RotAmt == (VT.getSizeInBits() / 2))
5607           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
5608                              DAG.getConstant(RotAmt, DL, VT));
5609       }
5610       return SDValue();
5611     };
5612 
5613     // Check for either commutable permutation of (or (GREVI x, shamt), x)
5614     if (SDValue V = MatchOROfReverse(Op0, Op1))
5615       return V;
5616     if (SDValue V = MatchOROfReverse(Op1, Op0))
5617       return V;
5618 
5619     // OR is commutable so canonicalize its OR operand to the left
5620     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
5621       std::swap(Op0, Op1);
5622     if (Op0.getOpcode() != ISD::OR)
5623       return SDValue();
5624     SDValue OrOp0 = Op0.getOperand(0);
5625     SDValue OrOp1 = Op0.getOperand(1);
5626     auto LHS = matchGREVIPat(OrOp0);
5627     // OR is commutable so swap the operands and try again: x might have been
5628     // on the left
5629     if (!LHS) {
5630       std::swap(OrOp0, OrOp1);
5631       LHS = matchGREVIPat(OrOp0);
5632     }
5633     auto RHS = matchGREVIPat(Op1);
5634     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
5635       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
5636                          DAG.getConstant(LHS->ShAmt, DL, VT));
5637     }
5638   }
5639   return SDValue();
5640 }
5641 
5642 // Matches any of the following bit-manipulation patterns:
5643 //   (and (shl x, 1), (0x22222222 << 1))
5644 //   (and (srl x, 1), 0x22222222)
5645 //   (shl (and x, 0x22222222), 1)
5646 //   (srl (and x, (0x22222222 << 1)), 1)
5647 // where the shift amount and mask may vary thus:
5648 //   [1]  = 0x22222222 / 0x44444444
5649 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
5650 //   [4]  = 0x00F000F0 / 0x0F000F00
5651 //   [8]  = 0x0000FF00 / 0x00FF0000
5652 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
5653 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
5654   // These are the unshifted masks which we use to match bit-manipulation
5655   // patterns. They may be shifted left in certain circumstances.
5656   static const uint64_t BitmanipMasks[] = {
5657       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
5658       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
5659 
5660   return matchRISCVBitmanipPat(Op, BitmanipMasks);
5661 }
5662 
5663 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
5664 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
5665                                const RISCVSubtarget &Subtarget) {
5666   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5667   EVT VT = Op.getValueType();
5668 
5669   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
5670     return SDValue();
5671 
5672   SDValue Op0 = Op.getOperand(0);
5673   SDValue Op1 = Op.getOperand(1);
5674 
5675   // Or is commutable so canonicalize the second OR to the LHS.
5676   if (Op0.getOpcode() != ISD::OR)
5677     std::swap(Op0, Op1);
5678   if (Op0.getOpcode() != ISD::OR)
5679     return SDValue();
5680 
5681   // We found an inner OR, so our operands are the operands of the inner OR
5682   // and the other operand of the outer OR.
5683   SDValue A = Op0.getOperand(0);
5684   SDValue B = Op0.getOperand(1);
5685   SDValue C = Op1;
5686 
5687   auto Match1 = matchSHFLPat(A);
5688   auto Match2 = matchSHFLPat(B);
5689 
5690   // If neither matched, we failed.
5691   if (!Match1 && !Match2)
5692     return SDValue();
5693 
5694   // We had at least one match. if one failed, try the remaining C operand.
5695   if (!Match1) {
5696     std::swap(A, C);
5697     Match1 = matchSHFLPat(A);
5698     if (!Match1)
5699       return SDValue();
5700   } else if (!Match2) {
5701     std::swap(B, C);
5702     Match2 = matchSHFLPat(B);
5703     if (!Match2)
5704       return SDValue();
5705   }
5706   assert(Match1 && Match2);
5707 
5708   // Make sure our matches pair up.
5709   if (!Match1->formsPairWith(*Match2))
5710     return SDValue();
5711 
5712   // All the remains is to make sure C is an AND with the same input, that masks
5713   // out the bits that are being shuffled.
5714   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
5715       C.getOperand(0) != Match1->Op)
5716     return SDValue();
5717 
5718   uint64_t Mask = C.getConstantOperandVal(1);
5719 
5720   static const uint64_t BitmanipMasks[] = {
5721       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
5722       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
5723   };
5724 
5725   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
5726   unsigned MaskIdx = Log2_32(Match1->ShAmt);
5727   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
5728 
5729   if (Mask != ExpMask)
5730     return SDValue();
5731 
5732   SDLoc DL(Op);
5733   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
5734                      DAG.getConstant(Match1->ShAmt, DL, VT));
5735 }
5736 
5737 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
5738 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
5739 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
5740 // not undo itself, but they are redundant.
5741 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
5742   SDValue Src = N->getOperand(0);
5743 
5744   if (Src.getOpcode() != N->getOpcode())
5745     return SDValue();
5746 
5747   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
5748       !isa<ConstantSDNode>(Src.getOperand(1)))
5749     return SDValue();
5750 
5751   unsigned ShAmt1 = N->getConstantOperandVal(1);
5752   unsigned ShAmt2 = Src.getConstantOperandVal(1);
5753   Src = Src.getOperand(0);
5754 
5755   unsigned CombinedShAmt;
5756   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
5757     CombinedShAmt = ShAmt1 | ShAmt2;
5758   else
5759     CombinedShAmt = ShAmt1 ^ ShAmt2;
5760 
5761   if (CombinedShAmt == 0)
5762     return Src;
5763 
5764   SDLoc DL(N);
5765   return DAG.getNode(
5766       N->getOpcode(), DL, N->getValueType(0), Src,
5767       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
5768 }
5769 
5770 // Combine a constant select operand into its use:
5771 //
5772 // (and (select cond, -1, c), x)
5773 //   -> (select cond, x, (and x, c))  [AllOnes=1]
5774 // (or  (select cond, 0, c), x)
5775 //   -> (select cond, x, (or x, c))  [AllOnes=0]
5776 // (xor (select cond, 0, c), x)
5777 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
5778 // (add (select cond, 0, c), x)
5779 //   -> (select cond, x, (add x, c))  [AllOnes=0]
5780 // (sub x, (select cond, 0, c))
5781 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
5782 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
5783                                    SelectionDAG &DAG, bool AllOnes) {
5784   EVT VT = N->getValueType(0);
5785 
5786   // Skip vectors.
5787   if (VT.isVector())
5788     return SDValue();
5789 
5790   if ((Slct.getOpcode() != ISD::SELECT &&
5791        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
5792       !Slct.hasOneUse())
5793     return SDValue();
5794 
5795   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
5796     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
5797   };
5798 
5799   bool SwapSelectOps;
5800   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
5801   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
5802   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
5803   SDValue NonConstantVal;
5804   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
5805     SwapSelectOps = false;
5806     NonConstantVal = FalseVal;
5807   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
5808     SwapSelectOps = true;
5809     NonConstantVal = TrueVal;
5810   } else
5811     return SDValue();
5812 
5813   // Slct is now know to be the desired identity constant when CC is true.
5814   TrueVal = OtherOp;
5815   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
5816   // Unless SwapSelectOps says the condition should be false.
5817   if (SwapSelectOps)
5818     std::swap(TrueVal, FalseVal);
5819 
5820   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
5821     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
5822                        {Slct.getOperand(0), Slct.getOperand(1),
5823                         Slct.getOperand(2), TrueVal, FalseVal});
5824 
5825   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
5826                      {Slct.getOperand(0), TrueVal, FalseVal});
5827 }
5828 
5829 // Attempt combineSelectAndUse on each operand of a commutative operator N.
5830 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
5831                                               bool AllOnes) {
5832   SDValue N0 = N->getOperand(0);
5833   SDValue N1 = N->getOperand(1);
5834   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
5835     return Result;
5836   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
5837     return Result;
5838   return SDValue();
5839 }
5840 
5841 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG) {
5842   // fold (add (select lhs, rhs, cc, 0, y), x) ->
5843   //      (select lhs, rhs, cc, x, (add x, y))
5844   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
5845 }
5846 
5847 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
5848   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
5849   //      (select lhs, rhs, cc, x, (sub x, y))
5850   SDValue N0 = N->getOperand(0);
5851   SDValue N1 = N->getOperand(1);
5852   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
5853 }
5854 
5855 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
5856   // fold (and (select lhs, rhs, cc, -1, y), x) ->
5857   //      (select lhs, rhs, cc, x, (and x, y))
5858   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
5859 }
5860 
5861 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
5862                                 const RISCVSubtarget &Subtarget) {
5863   if (Subtarget.hasStdExtZbp()) {
5864     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
5865       return GREV;
5866     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
5867       return GORC;
5868     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
5869       return SHFL;
5870   }
5871 
5872   // fold (or (select cond, 0, y), x) ->
5873   //      (select cond, x, (or x, y))
5874   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
5875 }
5876 
5877 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
5878   // fold (xor (select cond, 0, y), x) ->
5879   //      (select cond, x, (xor x, y))
5880   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
5881 }
5882 
5883 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
5884 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
5885 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
5886 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
5887 // ADDW/SUBW/MULW.
5888 static SDValue performANY_EXTENDCombine(SDNode *N,
5889                                         TargetLowering::DAGCombinerInfo &DCI,
5890                                         const RISCVSubtarget &Subtarget) {
5891   if (!Subtarget.is64Bit())
5892     return SDValue();
5893 
5894   SelectionDAG &DAG = DCI.DAG;
5895 
5896   SDValue Src = N->getOperand(0);
5897   EVT VT = N->getValueType(0);
5898   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
5899     return SDValue();
5900 
5901   // The opcode must be one that can implicitly sign_extend.
5902   // FIXME: Additional opcodes.
5903   switch (Src.getOpcode()) {
5904   default:
5905     return SDValue();
5906   case ISD::MUL:
5907     if (!Subtarget.hasStdExtM())
5908       return SDValue();
5909     LLVM_FALLTHROUGH;
5910   case ISD::ADD:
5911   case ISD::SUB:
5912     break;
5913   }
5914 
5915   // Only handle cases where the result is used by a CopyToReg. That likely
5916   // means the value is a liveout of the basic block. This helps prevent
5917   // infinite combine loops like PR51206.
5918   if (none_of(N->uses(),
5919               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
5920     return SDValue();
5921 
5922   SmallVector<SDNode *, 4> SetCCs;
5923   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
5924                             UE = Src.getNode()->use_end();
5925        UI != UE; ++UI) {
5926     SDNode *User = *UI;
5927     if (User == N)
5928       continue;
5929     if (UI.getUse().getResNo() != Src.getResNo())
5930       continue;
5931     // All i32 setccs are legalized by sign extending operands.
5932     if (User->getOpcode() == ISD::SETCC) {
5933       SetCCs.push_back(User);
5934       continue;
5935     }
5936     // We don't know if we can extend this user.
5937     break;
5938   }
5939 
5940   // If we don't have any SetCCs, this isn't worthwhile.
5941   if (SetCCs.empty())
5942     return SDValue();
5943 
5944   SDLoc DL(N);
5945   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
5946   DCI.CombineTo(N, SExt);
5947 
5948   // Promote all the setccs.
5949   for (SDNode *SetCC : SetCCs) {
5950     SmallVector<SDValue, 4> Ops;
5951 
5952     for (unsigned j = 0; j != 2; ++j) {
5953       SDValue SOp = SetCC->getOperand(j);
5954       if (SOp == Src)
5955         Ops.push_back(SExt);
5956       else
5957         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
5958     }
5959 
5960     Ops.push_back(SetCC->getOperand(2));
5961     DCI.CombineTo(SetCC,
5962                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
5963   }
5964   return SDValue(N, 0);
5965 }
5966 
5967 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
5968                                                DAGCombinerInfo &DCI) const {
5969   SelectionDAG &DAG = DCI.DAG;
5970 
5971   // Helper to call SimplifyDemandedBits on an operand of N where only some low
5972   // bits are demanded. N will be added to the Worklist if it was not deleted.
5973   // Caller should return SDValue(N, 0) if this returns true.
5974   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
5975     SDValue Op = N->getOperand(OpNo);
5976     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
5977     if (!SimplifyDemandedBits(Op, Mask, DCI))
5978       return false;
5979 
5980     if (N->getOpcode() != ISD::DELETED_NODE)
5981       DCI.AddToWorklist(N);
5982     return true;
5983   };
5984 
5985   switch (N->getOpcode()) {
5986   default:
5987     break;
5988   case RISCVISD::SplitF64: {
5989     SDValue Op0 = N->getOperand(0);
5990     // If the input to SplitF64 is just BuildPairF64 then the operation is
5991     // redundant. Instead, use BuildPairF64's operands directly.
5992     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
5993       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
5994 
5995     SDLoc DL(N);
5996 
5997     // It's cheaper to materialise two 32-bit integers than to load a double
5998     // from the constant pool and transfer it to integer registers through the
5999     // stack.
6000     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
6001       APInt V = C->getValueAPF().bitcastToAPInt();
6002       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
6003       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
6004       return DCI.CombineTo(N, Lo, Hi);
6005     }
6006 
6007     // This is a target-specific version of a DAGCombine performed in
6008     // DAGCombiner::visitBITCAST. It performs the equivalent of:
6009     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6010     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6011     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
6012         !Op0.getNode()->hasOneUse())
6013       break;
6014     SDValue NewSplitF64 =
6015         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
6016                     Op0.getOperand(0));
6017     SDValue Lo = NewSplitF64.getValue(0);
6018     SDValue Hi = NewSplitF64.getValue(1);
6019     APInt SignBit = APInt::getSignMask(32);
6020     if (Op0.getOpcode() == ISD::FNEG) {
6021       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
6022                                   DAG.getConstant(SignBit, DL, MVT::i32));
6023       return DCI.CombineTo(N, Lo, NewHi);
6024     }
6025     assert(Op0.getOpcode() == ISD::FABS);
6026     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
6027                                 DAG.getConstant(~SignBit, DL, MVT::i32));
6028     return DCI.CombineTo(N, Lo, NewHi);
6029   }
6030   case RISCVISD::SLLW:
6031   case RISCVISD::SRAW:
6032   case RISCVISD::SRLW:
6033   case RISCVISD::ROLW:
6034   case RISCVISD::RORW: {
6035     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6036     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6037         SimplifyDemandedLowBitsHelper(1, 5))
6038       return SDValue(N, 0);
6039     break;
6040   }
6041   case RISCVISD::CLZW:
6042   case RISCVISD::CTZW: {
6043     // Only the lower 32 bits of the first operand are read
6044     if (SimplifyDemandedLowBitsHelper(0, 32))
6045       return SDValue(N, 0);
6046     break;
6047   }
6048   case RISCVISD::FSL:
6049   case RISCVISD::FSR: {
6050     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
6051     unsigned BitWidth = N->getOperand(2).getValueSizeInBits();
6052     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6053     if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1))
6054       return SDValue(N, 0);
6055     break;
6056   }
6057   case RISCVISD::FSLW:
6058   case RISCVISD::FSRW: {
6059     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
6060     // read.
6061     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6062         SimplifyDemandedLowBitsHelper(1, 32) ||
6063         SimplifyDemandedLowBitsHelper(2, 6))
6064       return SDValue(N, 0);
6065     break;
6066   }
6067   case RISCVISD::GREV:
6068   case RISCVISD::GORC: {
6069     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
6070     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
6071     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6072     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
6073       return SDValue(N, 0);
6074 
6075     return combineGREVI_GORCI(N, DCI.DAG);
6076   }
6077   case RISCVISD::GREVW:
6078   case RISCVISD::GORCW: {
6079     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6080     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6081         SimplifyDemandedLowBitsHelper(1, 5))
6082       return SDValue(N, 0);
6083 
6084     return combineGREVI_GORCI(N, DCI.DAG);
6085   }
6086   case RISCVISD::SHFL:
6087   case RISCVISD::UNSHFL: {
6088     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
6089     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
6090     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6091     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
6092       return SDValue(N, 0);
6093 
6094     break;
6095   }
6096   case RISCVISD::SHFLW:
6097   case RISCVISD::UNSHFLW: {
6098     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
6099     SDValue LHS = N->getOperand(0);
6100     SDValue RHS = N->getOperand(1);
6101     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
6102     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
6103     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6104         SimplifyDemandedLowBitsHelper(1, 4))
6105       return SDValue(N, 0);
6106 
6107     break;
6108   }
6109   case RISCVISD::BCOMPRESSW:
6110   case RISCVISD::BDECOMPRESSW: {
6111     // Only the lower 32 bits of LHS and RHS are read.
6112     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6113         SimplifyDemandedLowBitsHelper(1, 32))
6114       return SDValue(N, 0);
6115 
6116     break;
6117   }
6118   case RISCVISD::FMV_X_ANYEXTH:
6119   case RISCVISD::FMV_X_ANYEXTW_RV64: {
6120     SDLoc DL(N);
6121     SDValue Op0 = N->getOperand(0);
6122     MVT VT = N->getSimpleValueType(0);
6123     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
6124     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
6125     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
6126     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
6127          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
6128         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
6129          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
6130       assert(Op0.getOperand(0).getValueType() == VT &&
6131              "Unexpected value type!");
6132       return Op0.getOperand(0);
6133     }
6134 
6135     // This is a target-specific version of a DAGCombine performed in
6136     // DAGCombiner::visitBITCAST. It performs the equivalent of:
6137     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6138     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6139     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
6140         !Op0.getNode()->hasOneUse())
6141       break;
6142     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
6143     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
6144     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
6145     if (Op0.getOpcode() == ISD::FNEG)
6146       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
6147                          DAG.getConstant(SignBit, DL, VT));
6148 
6149     assert(Op0.getOpcode() == ISD::FABS);
6150     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
6151                        DAG.getConstant(~SignBit, DL, VT));
6152   }
6153   case ISD::ADD:
6154     return performADDCombine(N, DAG);
6155   case ISD::SUB:
6156     return performSUBCombine(N, DAG);
6157   case ISD::AND:
6158     return performANDCombine(N, DAG);
6159   case ISD::OR:
6160     return performORCombine(N, DAG, Subtarget);
6161   case ISD::XOR:
6162     return performXORCombine(N, DAG);
6163   case ISD::ANY_EXTEND:
6164     return performANY_EXTENDCombine(N, DCI, Subtarget);
6165   case ISD::ZERO_EXTEND:
6166     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
6167     // type legalization. This is safe because fp_to_uint produces poison if
6168     // it overflows.
6169     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() &&
6170         N->getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
6171         isTypeLegal(N->getOperand(0).getOperand(0).getValueType()))
6172       return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
6173                          N->getOperand(0).getOperand(0));
6174     return SDValue();
6175   case RISCVISD::SELECT_CC: {
6176     // Transform
6177     SDValue LHS = N->getOperand(0);
6178     SDValue RHS = N->getOperand(1);
6179     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
6180     if (!ISD::isIntEqualitySetCC(CCVal))
6181       break;
6182 
6183     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
6184     //      (select_cc X, Y, lt, trueV, falseV)
6185     // Sometimes the setcc is introduced after select_cc has been formed.
6186     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
6187         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
6188       // If we're looking for eq 0 instead of ne 0, we need to invert the
6189       // condition.
6190       bool Invert = CCVal == ISD::SETEQ;
6191       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
6192       if (Invert)
6193         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6194 
6195       SDLoc DL(N);
6196       RHS = LHS.getOperand(1);
6197       LHS = LHS.getOperand(0);
6198       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
6199 
6200       SDValue TargetCC = DAG.getCondCode(CCVal);
6201       return DAG.getNode(
6202           RISCVISD::SELECT_CC, DL, N->getValueType(0),
6203           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
6204     }
6205 
6206     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
6207     //      (select_cc X, Y, eq/ne, trueV, falseV)
6208     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
6209       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
6210                          {LHS.getOperand(0), LHS.getOperand(1),
6211                           N->getOperand(2), N->getOperand(3),
6212                           N->getOperand(4)});
6213     // (select_cc X, 1, setne, trueV, falseV) ->
6214     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
6215     // This can occur when legalizing some floating point comparisons.
6216     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
6217     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
6218       SDLoc DL(N);
6219       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6220       SDValue TargetCC = DAG.getCondCode(CCVal);
6221       RHS = DAG.getConstant(0, DL, LHS.getValueType());
6222       return DAG.getNode(
6223           RISCVISD::SELECT_CC, DL, N->getValueType(0),
6224           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
6225     }
6226 
6227     break;
6228   }
6229   case RISCVISD::BR_CC: {
6230     SDValue LHS = N->getOperand(1);
6231     SDValue RHS = N->getOperand(2);
6232     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
6233     if (!ISD::isIntEqualitySetCC(CCVal))
6234       break;
6235 
6236     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
6237     //      (br_cc X, Y, lt, dest)
6238     // Sometimes the setcc is introduced after br_cc has been formed.
6239     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
6240         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
6241       // If we're looking for eq 0 instead of ne 0, we need to invert the
6242       // condition.
6243       bool Invert = CCVal == ISD::SETEQ;
6244       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
6245       if (Invert)
6246         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6247 
6248       SDLoc DL(N);
6249       RHS = LHS.getOperand(1);
6250       LHS = LHS.getOperand(0);
6251       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
6252 
6253       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
6254                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
6255                          N->getOperand(4));
6256     }
6257 
6258     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
6259     //      (br_cc X, Y, eq/ne, trueV, falseV)
6260     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
6261       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
6262                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
6263                          N->getOperand(3), N->getOperand(4));
6264 
6265     // (br_cc X, 1, setne, br_cc) ->
6266     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
6267     // This can occur when legalizing some floating point comparisons.
6268     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
6269     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
6270       SDLoc DL(N);
6271       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6272       SDValue TargetCC = DAG.getCondCode(CCVal);
6273       RHS = DAG.getConstant(0, DL, LHS.getValueType());
6274       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
6275                          N->getOperand(0), LHS, RHS, TargetCC,
6276                          N->getOperand(4));
6277     }
6278     break;
6279   }
6280   case ISD::FCOPYSIGN: {
6281     EVT VT = N->getValueType(0);
6282     if (!VT.isVector())
6283       break;
6284     // There is a form of VFSGNJ which injects the negated sign of its second
6285     // operand. Try and bubble any FNEG up after the extend/round to produce
6286     // this optimized pattern. Avoid modifying cases where FP_ROUND and
6287     // TRUNC=1.
6288     SDValue In2 = N->getOperand(1);
6289     // Avoid cases where the extend/round has multiple uses, as duplicating
6290     // those is typically more expensive than removing a fneg.
6291     if (!In2.hasOneUse())
6292       break;
6293     if (In2.getOpcode() != ISD::FP_EXTEND &&
6294         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
6295       break;
6296     In2 = In2.getOperand(0);
6297     if (In2.getOpcode() != ISD::FNEG)
6298       break;
6299     SDLoc DL(N);
6300     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
6301     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
6302                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
6303   }
6304   case ISD::MGATHER:
6305   case ISD::MSCATTER: {
6306     if (!DCI.isBeforeLegalize())
6307       break;
6308     MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N);
6309     SDValue Index = MGSN->getIndex();
6310     EVT IndexVT = Index.getValueType();
6311     MVT XLenVT = Subtarget.getXLenVT();
6312     // RISCV indexed loads only support the "unsigned unscaled" addressing
6313     // mode, so anything else must be manually legalized.
6314     bool NeedsIdxLegalization = MGSN->isIndexScaled() ||
6315                                 (MGSN->isIndexSigned() &&
6316                                  IndexVT.getVectorElementType().bitsLT(XLenVT));
6317     if (!NeedsIdxLegalization)
6318       break;
6319 
6320     SDLoc DL(N);
6321 
6322     // Any index legalization should first promote to XLenVT, so we don't lose
6323     // bits when scaling. This may create an illegal index type so we let
6324     // LLVM's legalization take care of the splitting.
6325     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
6326       IndexVT = IndexVT.changeVectorElementType(XLenVT);
6327       Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND
6328                                                 : ISD::ZERO_EXTEND,
6329                           DL, IndexVT, Index);
6330     }
6331 
6332     unsigned Scale = N->getConstantOperandVal(5);
6333     if (MGSN->isIndexScaled() && Scale != 1) {
6334       // Manually scale the indices by the element size.
6335       // TODO: Sanitize the scale operand here?
6336       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
6337       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
6338       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
6339     }
6340 
6341     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
6342     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) {
6343       return DAG.getMaskedGather(
6344           N->getVTList(), MGSN->getMemoryVT(), DL,
6345           {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(),
6346            MGSN->getBasePtr(), Index, MGN->getScale()},
6347           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
6348     }
6349     const auto *MSN = cast<MaskedScatterSDNode>(N);
6350     return DAG.getMaskedScatter(
6351         N->getVTList(), MGSN->getMemoryVT(), DL,
6352         {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(),
6353          Index, MGSN->getScale()},
6354         MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
6355   }
6356   case RISCVISD::SRA_VL:
6357   case RISCVISD::SRL_VL:
6358   case RISCVISD::SHL_VL: {
6359     SDValue ShAmt = N->getOperand(1);
6360     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
6361       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
6362       SDLoc DL(N);
6363       SDValue VL = N->getOperand(3);
6364       EVT VT = N->getValueType(0);
6365       ShAmt =
6366           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
6367       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
6368                          N->getOperand(2), N->getOperand(3));
6369     }
6370     break;
6371   }
6372   case ISD::SRA:
6373   case ISD::SRL:
6374   case ISD::SHL: {
6375     SDValue ShAmt = N->getOperand(1);
6376     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
6377       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
6378       SDLoc DL(N);
6379       EVT VT = N->getValueType(0);
6380       ShAmt =
6381           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0));
6382       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
6383     }
6384     break;
6385   }
6386   case RISCVISD::MUL_VL: {
6387     // Try to form VWMUL or VWMULU.
6388     // FIXME: Look for splat of extended scalar as well.
6389     // FIXME: Support VWMULSU.
6390     SDValue Op0 = N->getOperand(0);
6391     SDValue Op1 = N->getOperand(1);
6392     bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
6393     bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
6394     if ((!IsSignExt && !IsZeroExt) || Op0.getOpcode() != Op1.getOpcode())
6395       return SDValue();
6396 
6397     // Make sure the extends have a single use.
6398     if (!Op0.hasOneUse() || !Op1.hasOneUse())
6399       return SDValue();
6400 
6401     SDValue Mask = N->getOperand(2);
6402     SDValue VL = N->getOperand(3);
6403     if (Op0.getOperand(1) != Mask || Op1.getOperand(1) != Mask ||
6404         Op0.getOperand(2) != VL || Op1.getOperand(2) != VL)
6405       return SDValue();
6406 
6407     Op0 = Op0.getOperand(0);
6408     Op1 = Op1.getOperand(0);
6409 
6410     MVT VT = N->getSimpleValueType(0);
6411     MVT NarrowVT =
6412         MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits() / 2),
6413                          VT.getVectorElementCount());
6414 
6415     SDLoc DL(N);
6416 
6417     // Re-introduce narrower extends if needed.
6418     unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
6419     if (Op0.getValueType() != NarrowVT)
6420       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
6421     if (Op1.getValueType() != NarrowVT)
6422       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
6423 
6424     unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
6425     return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
6426   }
6427   }
6428 
6429   return SDValue();
6430 }
6431 
6432 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
6433     const SDNode *N, CombineLevel Level) const {
6434   // The following folds are only desirable if `(OP _, c1 << c2)` can be
6435   // materialised in fewer instructions than `(OP _, c1)`:
6436   //
6437   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
6438   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
6439   SDValue N0 = N->getOperand(0);
6440   EVT Ty = N0.getValueType();
6441   if (Ty.isScalarInteger() &&
6442       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
6443     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6444     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
6445     if (C1 && C2) {
6446       const APInt &C1Int = C1->getAPIntValue();
6447       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
6448 
6449       // We can materialise `c1 << c2` into an add immediate, so it's "free",
6450       // and the combine should happen, to potentially allow further combines
6451       // later.
6452       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
6453           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
6454         return true;
6455 
6456       // We can materialise `c1` in an add immediate, so it's "free", and the
6457       // combine should be prevented.
6458       if (C1Int.getMinSignedBits() <= 64 &&
6459           isLegalAddImmediate(C1Int.getSExtValue()))
6460         return false;
6461 
6462       // Neither constant will fit into an immediate, so find materialisation
6463       // costs.
6464       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
6465                                               Subtarget.getFeatureBits(),
6466                                               /*CompressionCost*/true);
6467       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
6468           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
6469           /*CompressionCost*/true);
6470 
6471       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
6472       // combine should be prevented.
6473       if (C1Cost < ShiftedC1Cost)
6474         return false;
6475     }
6476   }
6477   return true;
6478 }
6479 
6480 bool RISCVTargetLowering::targetShrinkDemandedConstant(
6481     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
6482     TargetLoweringOpt &TLO) const {
6483   // Delay this optimization as late as possible.
6484   if (!TLO.LegalOps)
6485     return false;
6486 
6487   EVT VT = Op.getValueType();
6488   if (VT.isVector())
6489     return false;
6490 
6491   // Only handle AND for now.
6492   if (Op.getOpcode() != ISD::AND)
6493     return false;
6494 
6495   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6496   if (!C)
6497     return false;
6498 
6499   const APInt &Mask = C->getAPIntValue();
6500 
6501   // Clear all non-demanded bits initially.
6502   APInt ShrunkMask = Mask & DemandedBits;
6503 
6504   // Try to make a smaller immediate by setting undemanded bits.
6505 
6506   APInt ExpandedMask = Mask | ~DemandedBits;
6507 
6508   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
6509     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
6510   };
6511   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
6512     if (NewMask == Mask)
6513       return true;
6514     SDLoc DL(Op);
6515     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
6516     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
6517     return TLO.CombineTo(Op, NewOp);
6518   };
6519 
6520   // If the shrunk mask fits in sign extended 12 bits, let the target
6521   // independent code apply it.
6522   if (ShrunkMask.isSignedIntN(12))
6523     return false;
6524 
6525   // Preserve (and X, 0xffff) when zext.h is supported.
6526   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
6527     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
6528     if (IsLegalMask(NewMask))
6529       return UseMask(NewMask);
6530   }
6531 
6532   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
6533   if (VT == MVT::i64) {
6534     APInt NewMask = APInt(64, 0xffffffff);
6535     if (IsLegalMask(NewMask))
6536       return UseMask(NewMask);
6537   }
6538 
6539   // For the remaining optimizations, we need to be able to make a negative
6540   // number through a combination of mask and undemanded bits.
6541   if (!ExpandedMask.isNegative())
6542     return false;
6543 
6544   // What is the fewest number of bits we need to represent the negative number.
6545   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
6546 
6547   // Try to make a 12 bit negative immediate. If that fails try to make a 32
6548   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
6549   APInt NewMask = ShrunkMask;
6550   if (MinSignedBits <= 12)
6551     NewMask.setBitsFrom(11);
6552   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
6553     NewMask.setBitsFrom(31);
6554   else
6555     return false;
6556 
6557   // Sanity check that our new mask is a subset of the demanded mask.
6558   assert(IsLegalMask(NewMask));
6559   return UseMask(NewMask);
6560 }
6561 
6562 static void computeGREV(APInt &Src, unsigned ShAmt) {
6563   ShAmt &= Src.getBitWidth() - 1;
6564   uint64_t x = Src.getZExtValue();
6565   if (ShAmt & 1)
6566     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
6567   if (ShAmt & 2)
6568     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
6569   if (ShAmt & 4)
6570     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
6571   if (ShAmt & 8)
6572     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
6573   if (ShAmt & 16)
6574     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
6575   if (ShAmt & 32)
6576     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
6577   Src = x;
6578 }
6579 
6580 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6581                                                         KnownBits &Known,
6582                                                         const APInt &DemandedElts,
6583                                                         const SelectionDAG &DAG,
6584                                                         unsigned Depth) const {
6585   unsigned BitWidth = Known.getBitWidth();
6586   unsigned Opc = Op.getOpcode();
6587   assert((Opc >= ISD::BUILTIN_OP_END ||
6588           Opc == ISD::INTRINSIC_WO_CHAIN ||
6589           Opc == ISD::INTRINSIC_W_CHAIN ||
6590           Opc == ISD::INTRINSIC_VOID) &&
6591          "Should use MaskedValueIsZero if you don't know whether Op"
6592          " is a target node!");
6593 
6594   Known.resetAll();
6595   switch (Opc) {
6596   default: break;
6597   case RISCVISD::SELECT_CC: {
6598     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
6599     // If we don't know any bits, early out.
6600     if (Known.isUnknown())
6601       break;
6602     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
6603 
6604     // Only known if known in both the LHS and RHS.
6605     Known = KnownBits::commonBits(Known, Known2);
6606     break;
6607   }
6608   case RISCVISD::REMUW: {
6609     KnownBits Known2;
6610     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
6611     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
6612     // We only care about the lower 32 bits.
6613     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
6614     // Restore the original width by sign extending.
6615     Known = Known.sext(BitWidth);
6616     break;
6617   }
6618   case RISCVISD::DIVUW: {
6619     KnownBits Known2;
6620     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
6621     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
6622     // We only care about the lower 32 bits.
6623     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
6624     // Restore the original width by sign extending.
6625     Known = Known.sext(BitWidth);
6626     break;
6627   }
6628   case RISCVISD::CTZW: {
6629     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6630     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
6631     unsigned LowBits = Log2_32(PossibleTZ) + 1;
6632     Known.Zero.setBitsFrom(LowBits);
6633     break;
6634   }
6635   case RISCVISD::CLZW: {
6636     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6637     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
6638     unsigned LowBits = Log2_32(PossibleLZ) + 1;
6639     Known.Zero.setBitsFrom(LowBits);
6640     break;
6641   }
6642   case RISCVISD::GREV:
6643   case RISCVISD::GREVW: {
6644     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6645       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6646       if (Opc == RISCVISD::GREVW)
6647         Known = Known.trunc(32);
6648       unsigned ShAmt = C->getZExtValue();
6649       computeGREV(Known.Zero, ShAmt);
6650       computeGREV(Known.One, ShAmt);
6651       if (Opc == RISCVISD::GREVW)
6652         Known = Known.sext(BitWidth);
6653     }
6654     break;
6655   }
6656   case RISCVISD::READ_VLENB:
6657     // We assume VLENB is at least 16 bytes.
6658     Known.Zero.setLowBits(4);
6659     // We assume VLENB is no more than 65536 / 8 bytes.
6660     Known.Zero.setBitsFrom(14);
6661     break;
6662   case ISD::INTRINSIC_W_CHAIN: {
6663     unsigned IntNo = Op.getConstantOperandVal(1);
6664     switch (IntNo) {
6665     default:
6666       // We can't do anything for most intrinsics.
6667       break;
6668     case Intrinsic::riscv_vsetvli:
6669     case Intrinsic::riscv_vsetvlimax:
6670       // Assume that VL output is positive and would fit in an int32_t.
6671       // TODO: VLEN might be capped at 16 bits in a future V spec update.
6672       if (BitWidth >= 32)
6673         Known.Zero.setBitsFrom(31);
6674       break;
6675     }
6676     break;
6677   }
6678   }
6679 }
6680 
6681 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
6682     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6683     unsigned Depth) const {
6684   switch (Op.getOpcode()) {
6685   default:
6686     break;
6687   case RISCVISD::SELECT_CC: {
6688     unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
6689     if (Tmp == 1) return 1;  // Early out.
6690     unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
6691     return std::min(Tmp, Tmp2);
6692   }
6693   case RISCVISD::SLLW:
6694   case RISCVISD::SRAW:
6695   case RISCVISD::SRLW:
6696   case RISCVISD::DIVW:
6697   case RISCVISD::DIVUW:
6698   case RISCVISD::REMUW:
6699   case RISCVISD::ROLW:
6700   case RISCVISD::RORW:
6701   case RISCVISD::GREVW:
6702   case RISCVISD::GORCW:
6703   case RISCVISD::FSLW:
6704   case RISCVISD::FSRW:
6705   case RISCVISD::SHFLW:
6706   case RISCVISD::UNSHFLW:
6707   case RISCVISD::BCOMPRESSW:
6708   case RISCVISD::BDECOMPRESSW:
6709   case RISCVISD::FCVT_W_RTZ_RV64:
6710   case RISCVISD::FCVT_WU_RTZ_RV64:
6711     // TODO: As the result is sign-extended, this is conservatively correct. A
6712     // more precise answer could be calculated for SRAW depending on known
6713     // bits in the shift amount.
6714     return 33;
6715   case RISCVISD::SHFL:
6716   case RISCVISD::UNSHFL: {
6717     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
6718     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
6719     // will stay within the upper 32 bits. If there were more than 32 sign bits
6720     // before there will be at least 33 sign bits after.
6721     if (Op.getValueType() == MVT::i64 &&
6722         isa<ConstantSDNode>(Op.getOperand(1)) &&
6723         (Op.getConstantOperandVal(1) & 0x10) == 0) {
6724       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
6725       if (Tmp > 32)
6726         return 33;
6727     }
6728     break;
6729   }
6730   case RISCVISD::VMV_X_S:
6731     // The number of sign bits of the scalar result is computed by obtaining the
6732     // element type of the input vector operand, subtracting its width from the
6733     // XLEN, and then adding one (sign bit within the element type). If the
6734     // element type is wider than XLen, the least-significant XLEN bits are
6735     // taken.
6736     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
6737       return 1;
6738     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
6739   }
6740 
6741   return 1;
6742 }
6743 
6744 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
6745                                                   MachineBasicBlock *BB) {
6746   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
6747 
6748   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
6749   // Should the count have wrapped while it was being read, we need to try
6750   // again.
6751   // ...
6752   // read:
6753   // rdcycleh x3 # load high word of cycle
6754   // rdcycle  x2 # load low word of cycle
6755   // rdcycleh x4 # load high word of cycle
6756   // bne x3, x4, read # check if high word reads match, otherwise try again
6757   // ...
6758 
6759   MachineFunction &MF = *BB->getParent();
6760   const BasicBlock *LLVM_BB = BB->getBasicBlock();
6761   MachineFunction::iterator It = ++BB->getIterator();
6762 
6763   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
6764   MF.insert(It, LoopMBB);
6765 
6766   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
6767   MF.insert(It, DoneMBB);
6768 
6769   // Transfer the remainder of BB and its successor edges to DoneMBB.
6770   DoneMBB->splice(DoneMBB->begin(), BB,
6771                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
6772   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
6773 
6774   BB->addSuccessor(LoopMBB);
6775 
6776   MachineRegisterInfo &RegInfo = MF.getRegInfo();
6777   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
6778   Register LoReg = MI.getOperand(0).getReg();
6779   Register HiReg = MI.getOperand(1).getReg();
6780   DebugLoc DL = MI.getDebugLoc();
6781 
6782   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
6783   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
6784       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
6785       .addReg(RISCV::X0);
6786   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
6787       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
6788       .addReg(RISCV::X0);
6789   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
6790       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
6791       .addReg(RISCV::X0);
6792 
6793   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
6794       .addReg(HiReg)
6795       .addReg(ReadAgainReg)
6796       .addMBB(LoopMBB);
6797 
6798   LoopMBB->addSuccessor(LoopMBB);
6799   LoopMBB->addSuccessor(DoneMBB);
6800 
6801   MI.eraseFromParent();
6802 
6803   return DoneMBB;
6804 }
6805 
6806 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
6807                                              MachineBasicBlock *BB) {
6808   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
6809 
6810   MachineFunction &MF = *BB->getParent();
6811   DebugLoc DL = MI.getDebugLoc();
6812   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6813   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
6814   Register LoReg = MI.getOperand(0).getReg();
6815   Register HiReg = MI.getOperand(1).getReg();
6816   Register SrcReg = MI.getOperand(2).getReg();
6817   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
6818   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
6819 
6820   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
6821                           RI);
6822   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
6823   MachineMemOperand *MMOLo =
6824       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
6825   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
6826       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
6827   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
6828       .addFrameIndex(FI)
6829       .addImm(0)
6830       .addMemOperand(MMOLo);
6831   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
6832       .addFrameIndex(FI)
6833       .addImm(4)
6834       .addMemOperand(MMOHi);
6835   MI.eraseFromParent(); // The pseudo instruction is gone now.
6836   return BB;
6837 }
6838 
6839 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
6840                                                  MachineBasicBlock *BB) {
6841   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
6842          "Unexpected instruction");
6843 
6844   MachineFunction &MF = *BB->getParent();
6845   DebugLoc DL = MI.getDebugLoc();
6846   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6847   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
6848   Register DstReg = MI.getOperand(0).getReg();
6849   Register LoReg = MI.getOperand(1).getReg();
6850   Register HiReg = MI.getOperand(2).getReg();
6851   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
6852   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
6853 
6854   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
6855   MachineMemOperand *MMOLo =
6856       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
6857   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
6858       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
6859   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
6860       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
6861       .addFrameIndex(FI)
6862       .addImm(0)
6863       .addMemOperand(MMOLo);
6864   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
6865       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
6866       .addFrameIndex(FI)
6867       .addImm(4)
6868       .addMemOperand(MMOHi);
6869   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
6870   MI.eraseFromParent(); // The pseudo instruction is gone now.
6871   return BB;
6872 }
6873 
6874 static bool isSelectPseudo(MachineInstr &MI) {
6875   switch (MI.getOpcode()) {
6876   default:
6877     return false;
6878   case RISCV::Select_GPR_Using_CC_GPR:
6879   case RISCV::Select_FPR16_Using_CC_GPR:
6880   case RISCV::Select_FPR32_Using_CC_GPR:
6881   case RISCV::Select_FPR64_Using_CC_GPR:
6882     return true;
6883   }
6884 }
6885 
6886 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
6887                                            MachineBasicBlock *BB,
6888                                            const RISCVSubtarget &Subtarget) {
6889   // To "insert" Select_* instructions, we actually have to insert the triangle
6890   // control-flow pattern.  The incoming instructions know the destination vreg
6891   // to set, the condition code register to branch on, the true/false values to
6892   // select between, and the condcode to use to select the appropriate branch.
6893   //
6894   // We produce the following control flow:
6895   //     HeadMBB
6896   //     |  \
6897   //     |  IfFalseMBB
6898   //     | /
6899   //    TailMBB
6900   //
6901   // When we find a sequence of selects we attempt to optimize their emission
6902   // by sharing the control flow. Currently we only handle cases where we have
6903   // multiple selects with the exact same condition (same LHS, RHS and CC).
6904   // The selects may be interleaved with other instructions if the other
6905   // instructions meet some requirements we deem safe:
6906   // - They are debug instructions. Otherwise,
6907   // - They do not have side-effects, do not access memory and their inputs do
6908   //   not depend on the results of the select pseudo-instructions.
6909   // The TrueV/FalseV operands of the selects cannot depend on the result of
6910   // previous selects in the sequence.
6911   // These conditions could be further relaxed. See the X86 target for a
6912   // related approach and more information.
6913   Register LHS = MI.getOperand(1).getReg();
6914   Register RHS = MI.getOperand(2).getReg();
6915   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
6916 
6917   SmallVector<MachineInstr *, 4> SelectDebugValues;
6918   SmallSet<Register, 4> SelectDests;
6919   SelectDests.insert(MI.getOperand(0).getReg());
6920 
6921   MachineInstr *LastSelectPseudo = &MI;
6922 
6923   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
6924        SequenceMBBI != E; ++SequenceMBBI) {
6925     if (SequenceMBBI->isDebugInstr())
6926       continue;
6927     else if (isSelectPseudo(*SequenceMBBI)) {
6928       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
6929           SequenceMBBI->getOperand(2).getReg() != RHS ||
6930           SequenceMBBI->getOperand(3).getImm() != CC ||
6931           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
6932           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
6933         break;
6934       LastSelectPseudo = &*SequenceMBBI;
6935       SequenceMBBI->collectDebugValues(SelectDebugValues);
6936       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
6937     } else {
6938       if (SequenceMBBI->hasUnmodeledSideEffects() ||
6939           SequenceMBBI->mayLoadOrStore())
6940         break;
6941       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
6942             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
6943           }))
6944         break;
6945     }
6946   }
6947 
6948   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
6949   const BasicBlock *LLVM_BB = BB->getBasicBlock();
6950   DebugLoc DL = MI.getDebugLoc();
6951   MachineFunction::iterator I = ++BB->getIterator();
6952 
6953   MachineBasicBlock *HeadMBB = BB;
6954   MachineFunction *F = BB->getParent();
6955   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
6956   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
6957 
6958   F->insert(I, IfFalseMBB);
6959   F->insert(I, TailMBB);
6960 
6961   // Transfer debug instructions associated with the selects to TailMBB.
6962   for (MachineInstr *DebugInstr : SelectDebugValues) {
6963     TailMBB->push_back(DebugInstr->removeFromParent());
6964   }
6965 
6966   // Move all instructions after the sequence to TailMBB.
6967   TailMBB->splice(TailMBB->end(), HeadMBB,
6968                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
6969   // Update machine-CFG edges by transferring all successors of the current
6970   // block to the new block which will contain the Phi nodes for the selects.
6971   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
6972   // Set the successors for HeadMBB.
6973   HeadMBB->addSuccessor(IfFalseMBB);
6974   HeadMBB->addSuccessor(TailMBB);
6975 
6976   // Insert appropriate branch.
6977   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
6978     .addReg(LHS)
6979     .addReg(RHS)
6980     .addMBB(TailMBB);
6981 
6982   // IfFalseMBB just falls through to TailMBB.
6983   IfFalseMBB->addSuccessor(TailMBB);
6984 
6985   // Create PHIs for all of the select pseudo-instructions.
6986   auto SelectMBBI = MI.getIterator();
6987   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
6988   auto InsertionPoint = TailMBB->begin();
6989   while (SelectMBBI != SelectEnd) {
6990     auto Next = std::next(SelectMBBI);
6991     if (isSelectPseudo(*SelectMBBI)) {
6992       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
6993       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
6994               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
6995           .addReg(SelectMBBI->getOperand(4).getReg())
6996           .addMBB(HeadMBB)
6997           .addReg(SelectMBBI->getOperand(5).getReg())
6998           .addMBB(IfFalseMBB);
6999       SelectMBBI->eraseFromParent();
7000     }
7001     SelectMBBI = Next;
7002   }
7003 
7004   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7005   return TailMBB;
7006 }
7007 
7008 MachineBasicBlock *
7009 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
7010                                                  MachineBasicBlock *BB) const {
7011   switch (MI.getOpcode()) {
7012   default:
7013     llvm_unreachable("Unexpected instr type to insert");
7014   case RISCV::ReadCycleWide:
7015     assert(!Subtarget.is64Bit() &&
7016            "ReadCycleWrite is only to be used on riscv32");
7017     return emitReadCycleWidePseudo(MI, BB);
7018   case RISCV::Select_GPR_Using_CC_GPR:
7019   case RISCV::Select_FPR16_Using_CC_GPR:
7020   case RISCV::Select_FPR32_Using_CC_GPR:
7021   case RISCV::Select_FPR64_Using_CC_GPR:
7022     return emitSelectPseudo(MI, BB, Subtarget);
7023   case RISCV::BuildPairF64Pseudo:
7024     return emitBuildPairF64Pseudo(MI, BB);
7025   case RISCV::SplitF64Pseudo:
7026     return emitSplitF64Pseudo(MI, BB);
7027   }
7028 }
7029 
7030 // Calling Convention Implementation.
7031 // The expectations for frontend ABI lowering vary from target to target.
7032 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
7033 // details, but this is a longer term goal. For now, we simply try to keep the
7034 // role of the frontend as simple and well-defined as possible. The rules can
7035 // be summarised as:
7036 // * Never split up large scalar arguments. We handle them here.
7037 // * If a hardfloat calling convention is being used, and the struct may be
7038 // passed in a pair of registers (fp+fp, int+fp), and both registers are
7039 // available, then pass as two separate arguments. If either the GPRs or FPRs
7040 // are exhausted, then pass according to the rule below.
7041 // * If a struct could never be passed in registers or directly in a stack
7042 // slot (as it is larger than 2*XLEN and the floating point rules don't
7043 // apply), then pass it using a pointer with the byval attribute.
7044 // * If a struct is less than 2*XLEN, then coerce to either a two-element
7045 // word-sized array or a 2*XLEN scalar (depending on alignment).
7046 // * The frontend can determine whether a struct is returned by reference or
7047 // not based on its size and fields. If it will be returned by reference, the
7048 // frontend must modify the prototype so a pointer with the sret annotation is
7049 // passed as the first argument. This is not necessary for large scalar
7050 // returns.
7051 // * Struct return values and varargs should be coerced to structs containing
7052 // register-size fields in the same situations they would be for fixed
7053 // arguments.
7054 
7055 static const MCPhysReg ArgGPRs[] = {
7056   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
7057   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
7058 };
7059 static const MCPhysReg ArgFPR16s[] = {
7060   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
7061   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
7062 };
7063 static const MCPhysReg ArgFPR32s[] = {
7064   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
7065   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
7066 };
7067 static const MCPhysReg ArgFPR64s[] = {
7068   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
7069   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
7070 };
7071 // This is an interim calling convention and it may be changed in the future.
7072 static const MCPhysReg ArgVRs[] = {
7073     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
7074     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
7075     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
7076 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
7077                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
7078                                      RISCV::V20M2, RISCV::V22M2};
7079 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
7080                                      RISCV::V20M4};
7081 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
7082 
7083 // Pass a 2*XLEN argument that has been split into two XLEN values through
7084 // registers or the stack as necessary.
7085 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
7086                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
7087                                 MVT ValVT2, MVT LocVT2,
7088                                 ISD::ArgFlagsTy ArgFlags2) {
7089   unsigned XLenInBytes = XLen / 8;
7090   if (Register Reg = State.AllocateReg(ArgGPRs)) {
7091     // At least one half can be passed via register.
7092     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
7093                                      VA1.getLocVT(), CCValAssign::Full));
7094   } else {
7095     // Both halves must be passed on the stack, with proper alignment.
7096     Align StackAlign =
7097         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
7098     State.addLoc(
7099         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
7100                             State.AllocateStack(XLenInBytes, StackAlign),
7101                             VA1.getLocVT(), CCValAssign::Full));
7102     State.addLoc(CCValAssign::getMem(
7103         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7104         LocVT2, CCValAssign::Full));
7105     return false;
7106   }
7107 
7108   if (Register Reg = State.AllocateReg(ArgGPRs)) {
7109     // The second half can also be passed via register.
7110     State.addLoc(
7111         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
7112   } else {
7113     // The second half is passed via the stack, without additional alignment.
7114     State.addLoc(CCValAssign::getMem(
7115         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7116         LocVT2, CCValAssign::Full));
7117   }
7118 
7119   return false;
7120 }
7121 
7122 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
7123                                Optional<unsigned> FirstMaskArgument,
7124                                CCState &State, const RISCVTargetLowering &TLI) {
7125   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
7126   if (RC == &RISCV::VRRegClass) {
7127     // Assign the first mask argument to V0.
7128     // This is an interim calling convention and it may be changed in the
7129     // future.
7130     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
7131       return State.AllocateReg(RISCV::V0);
7132     return State.AllocateReg(ArgVRs);
7133   }
7134   if (RC == &RISCV::VRM2RegClass)
7135     return State.AllocateReg(ArgVRM2s);
7136   if (RC == &RISCV::VRM4RegClass)
7137     return State.AllocateReg(ArgVRM4s);
7138   if (RC == &RISCV::VRM8RegClass)
7139     return State.AllocateReg(ArgVRM8s);
7140   llvm_unreachable("Unhandled register class for ValueType");
7141 }
7142 
7143 // Implements the RISC-V calling convention. Returns true upon failure.
7144 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
7145                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
7146                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
7147                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
7148                      Optional<unsigned> FirstMaskArgument) {
7149   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
7150   assert(XLen == 32 || XLen == 64);
7151   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
7152 
7153   // Any return value split in to more than two values can't be returned
7154   // directly. Vectors are returned via the available vector registers.
7155   if (!LocVT.isVector() && IsRet && ValNo > 1)
7156     return true;
7157 
7158   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
7159   // variadic argument, or if no F16/F32 argument registers are available.
7160   bool UseGPRForF16_F32 = true;
7161   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
7162   // variadic argument, or if no F64 argument registers are available.
7163   bool UseGPRForF64 = true;
7164 
7165   switch (ABI) {
7166   default:
7167     llvm_unreachable("Unexpected ABI");
7168   case RISCVABI::ABI_ILP32:
7169   case RISCVABI::ABI_LP64:
7170     break;
7171   case RISCVABI::ABI_ILP32F:
7172   case RISCVABI::ABI_LP64F:
7173     UseGPRForF16_F32 = !IsFixed;
7174     break;
7175   case RISCVABI::ABI_ILP32D:
7176   case RISCVABI::ABI_LP64D:
7177     UseGPRForF16_F32 = !IsFixed;
7178     UseGPRForF64 = !IsFixed;
7179     break;
7180   }
7181 
7182   // FPR16, FPR32, and FPR64 alias each other.
7183   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
7184     UseGPRForF16_F32 = true;
7185     UseGPRForF64 = true;
7186   }
7187 
7188   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
7189   // similar local variables rather than directly checking against the target
7190   // ABI.
7191 
7192   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
7193     LocVT = XLenVT;
7194     LocInfo = CCValAssign::BCvt;
7195   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
7196     LocVT = MVT::i64;
7197     LocInfo = CCValAssign::BCvt;
7198   }
7199 
7200   // If this is a variadic argument, the RISC-V calling convention requires
7201   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
7202   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
7203   // be used regardless of whether the original argument was split during
7204   // legalisation or not. The argument will not be passed by registers if the
7205   // original type is larger than 2*XLEN, so the register alignment rule does
7206   // not apply.
7207   unsigned TwoXLenInBytes = (2 * XLen) / 8;
7208   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
7209       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
7210     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
7211     // Skip 'odd' register if necessary.
7212     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
7213       State.AllocateReg(ArgGPRs);
7214   }
7215 
7216   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
7217   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
7218       State.getPendingArgFlags();
7219 
7220   assert(PendingLocs.size() == PendingArgFlags.size() &&
7221          "PendingLocs and PendingArgFlags out of sync");
7222 
7223   // Handle passing f64 on RV32D with a soft float ABI or when floating point
7224   // registers are exhausted.
7225   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
7226     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
7227            "Can't lower f64 if it is split");
7228     // Depending on available argument GPRS, f64 may be passed in a pair of
7229     // GPRs, split between a GPR and the stack, or passed completely on the
7230     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
7231     // cases.
7232     Register Reg = State.AllocateReg(ArgGPRs);
7233     LocVT = MVT::i32;
7234     if (!Reg) {
7235       unsigned StackOffset = State.AllocateStack(8, Align(8));
7236       State.addLoc(
7237           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
7238       return false;
7239     }
7240     if (!State.AllocateReg(ArgGPRs))
7241       State.AllocateStack(4, Align(4));
7242     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7243     return false;
7244   }
7245 
7246   // Fixed-length vectors are located in the corresponding scalable-vector
7247   // container types.
7248   if (ValVT.isFixedLengthVector())
7249     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
7250 
7251   // Split arguments might be passed indirectly, so keep track of the pending
7252   // values. Split vectors are passed via a mix of registers and indirectly, so
7253   // treat them as we would any other argument.
7254   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
7255     LocVT = XLenVT;
7256     LocInfo = CCValAssign::Indirect;
7257     PendingLocs.push_back(
7258         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
7259     PendingArgFlags.push_back(ArgFlags);
7260     if (!ArgFlags.isSplitEnd()) {
7261       return false;
7262     }
7263   }
7264 
7265   // If the split argument only had two elements, it should be passed directly
7266   // in registers or on the stack.
7267   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
7268       PendingLocs.size() <= 2) {
7269     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
7270     // Apply the normal calling convention rules to the first half of the
7271     // split argument.
7272     CCValAssign VA = PendingLocs[0];
7273     ISD::ArgFlagsTy AF = PendingArgFlags[0];
7274     PendingLocs.clear();
7275     PendingArgFlags.clear();
7276     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
7277                                ArgFlags);
7278   }
7279 
7280   // Allocate to a register if possible, or else a stack slot.
7281   Register Reg;
7282   unsigned StoreSizeBytes = XLen / 8;
7283   Align StackAlign = Align(XLen / 8);
7284 
7285   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
7286     Reg = State.AllocateReg(ArgFPR16s);
7287   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
7288     Reg = State.AllocateReg(ArgFPR32s);
7289   else if (ValVT == MVT::f64 && !UseGPRForF64)
7290     Reg = State.AllocateReg(ArgFPR64s);
7291   else if (ValVT.isVector()) {
7292     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
7293     if (!Reg) {
7294       // For return values, the vector must be passed fully via registers or
7295       // via the stack.
7296       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
7297       // but we're using all of them.
7298       if (IsRet)
7299         return true;
7300       // Try using a GPR to pass the address
7301       if ((Reg = State.AllocateReg(ArgGPRs))) {
7302         LocVT = XLenVT;
7303         LocInfo = CCValAssign::Indirect;
7304       } else if (ValVT.isScalableVector()) {
7305         report_fatal_error("Unable to pass scalable vector types on the stack");
7306       } else {
7307         // Pass fixed-length vectors on the stack.
7308         LocVT = ValVT;
7309         StoreSizeBytes = ValVT.getStoreSize();
7310         // Align vectors to their element sizes, being careful for vXi1
7311         // vectors.
7312         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
7313       }
7314     }
7315   } else {
7316     Reg = State.AllocateReg(ArgGPRs);
7317   }
7318 
7319   unsigned StackOffset =
7320       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
7321 
7322   // If we reach this point and PendingLocs is non-empty, we must be at the
7323   // end of a split argument that must be passed indirectly.
7324   if (!PendingLocs.empty()) {
7325     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
7326     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
7327 
7328     for (auto &It : PendingLocs) {
7329       if (Reg)
7330         It.convertToReg(Reg);
7331       else
7332         It.convertToMem(StackOffset);
7333       State.addLoc(It);
7334     }
7335     PendingLocs.clear();
7336     PendingArgFlags.clear();
7337     return false;
7338   }
7339 
7340   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
7341           (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) &&
7342          "Expected an XLenVT or vector types at this stage");
7343 
7344   if (Reg) {
7345     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7346     return false;
7347   }
7348 
7349   // When a floating-point value is passed on the stack, no bit-conversion is
7350   // needed.
7351   if (ValVT.isFloatingPoint()) {
7352     LocVT = ValVT;
7353     LocInfo = CCValAssign::Full;
7354   }
7355   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
7356   return false;
7357 }
7358 
7359 template <typename ArgTy>
7360 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
7361   for (const auto &ArgIdx : enumerate(Args)) {
7362     MVT ArgVT = ArgIdx.value().VT;
7363     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
7364       return ArgIdx.index();
7365   }
7366   return None;
7367 }
7368 
7369 void RISCVTargetLowering::analyzeInputArgs(
7370     MachineFunction &MF, CCState &CCInfo,
7371     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
7372     RISCVCCAssignFn Fn) const {
7373   unsigned NumArgs = Ins.size();
7374   FunctionType *FType = MF.getFunction().getFunctionType();
7375 
7376   Optional<unsigned> FirstMaskArgument;
7377   if (Subtarget.hasStdExtV())
7378     FirstMaskArgument = preAssignMask(Ins);
7379 
7380   for (unsigned i = 0; i != NumArgs; ++i) {
7381     MVT ArgVT = Ins[i].VT;
7382     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
7383 
7384     Type *ArgTy = nullptr;
7385     if (IsRet)
7386       ArgTy = FType->getReturnType();
7387     else if (Ins[i].isOrigArg())
7388       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
7389 
7390     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
7391     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
7392            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
7393            FirstMaskArgument)) {
7394       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
7395                         << EVT(ArgVT).getEVTString() << '\n');
7396       llvm_unreachable(nullptr);
7397     }
7398   }
7399 }
7400 
7401 void RISCVTargetLowering::analyzeOutputArgs(
7402     MachineFunction &MF, CCState &CCInfo,
7403     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
7404     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
7405   unsigned NumArgs = Outs.size();
7406 
7407   Optional<unsigned> FirstMaskArgument;
7408   if (Subtarget.hasStdExtV())
7409     FirstMaskArgument = preAssignMask(Outs);
7410 
7411   for (unsigned i = 0; i != NumArgs; i++) {
7412     MVT ArgVT = Outs[i].VT;
7413     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
7414     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
7415 
7416     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
7417     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
7418            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
7419            FirstMaskArgument)) {
7420       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
7421                         << EVT(ArgVT).getEVTString() << "\n");
7422       llvm_unreachable(nullptr);
7423     }
7424   }
7425 }
7426 
7427 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
7428 // values.
7429 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
7430                                    const CCValAssign &VA, const SDLoc &DL,
7431                                    const RISCVSubtarget &Subtarget) {
7432   switch (VA.getLocInfo()) {
7433   default:
7434     llvm_unreachable("Unexpected CCValAssign::LocInfo");
7435   case CCValAssign::Full:
7436     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
7437       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
7438     break;
7439   case CCValAssign::BCvt:
7440     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
7441       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
7442     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
7443       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
7444     else
7445       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
7446     break;
7447   }
7448   return Val;
7449 }
7450 
7451 // The caller is responsible for loading the full value if the argument is
7452 // passed with CCValAssign::Indirect.
7453 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
7454                                 const CCValAssign &VA, const SDLoc &DL,
7455                                 const RISCVTargetLowering &TLI) {
7456   MachineFunction &MF = DAG.getMachineFunction();
7457   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7458   EVT LocVT = VA.getLocVT();
7459   SDValue Val;
7460   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
7461   Register VReg = RegInfo.createVirtualRegister(RC);
7462   RegInfo.addLiveIn(VA.getLocReg(), VReg);
7463   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
7464 
7465   if (VA.getLocInfo() == CCValAssign::Indirect)
7466     return Val;
7467 
7468   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
7469 }
7470 
7471 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
7472                                    const CCValAssign &VA, const SDLoc &DL,
7473                                    const RISCVSubtarget &Subtarget) {
7474   EVT LocVT = VA.getLocVT();
7475 
7476   switch (VA.getLocInfo()) {
7477   default:
7478     llvm_unreachable("Unexpected CCValAssign::LocInfo");
7479   case CCValAssign::Full:
7480     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
7481       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
7482     break;
7483   case CCValAssign::BCvt:
7484     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
7485       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
7486     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
7487       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
7488     else
7489       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
7490     break;
7491   }
7492   return Val;
7493 }
7494 
7495 // The caller is responsible for loading the full value if the argument is
7496 // passed with CCValAssign::Indirect.
7497 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
7498                                 const CCValAssign &VA, const SDLoc &DL) {
7499   MachineFunction &MF = DAG.getMachineFunction();
7500   MachineFrameInfo &MFI = MF.getFrameInfo();
7501   EVT LocVT = VA.getLocVT();
7502   EVT ValVT = VA.getValVT();
7503   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
7504   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
7505                                  /*Immutable=*/true);
7506   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7507   SDValue Val;
7508 
7509   ISD::LoadExtType ExtType;
7510   switch (VA.getLocInfo()) {
7511   default:
7512     llvm_unreachable("Unexpected CCValAssign::LocInfo");
7513   case CCValAssign::Full:
7514   case CCValAssign::Indirect:
7515   case CCValAssign::BCvt:
7516     ExtType = ISD::NON_EXTLOAD;
7517     break;
7518   }
7519   Val = DAG.getExtLoad(
7520       ExtType, DL, LocVT, Chain, FIN,
7521       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
7522   return Val;
7523 }
7524 
7525 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
7526                                        const CCValAssign &VA, const SDLoc &DL) {
7527   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
7528          "Unexpected VA");
7529   MachineFunction &MF = DAG.getMachineFunction();
7530   MachineFrameInfo &MFI = MF.getFrameInfo();
7531   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7532 
7533   if (VA.isMemLoc()) {
7534     // f64 is passed on the stack.
7535     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
7536     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
7537     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
7538                        MachinePointerInfo::getFixedStack(MF, FI));
7539   }
7540 
7541   assert(VA.isRegLoc() && "Expected register VA assignment");
7542 
7543   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7544   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
7545   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
7546   SDValue Hi;
7547   if (VA.getLocReg() == RISCV::X17) {
7548     // Second half of f64 is passed on the stack.
7549     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
7550     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
7551     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
7552                      MachinePointerInfo::getFixedStack(MF, FI));
7553   } else {
7554     // Second half of f64 is passed in another GPR.
7555     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7556     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
7557     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
7558   }
7559   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
7560 }
7561 
7562 // FastCC has less than 1% performance improvement for some particular
7563 // benchmark. But theoretically, it may has benenfit for some cases.
7564 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
7565                             unsigned ValNo, MVT ValVT, MVT LocVT,
7566                             CCValAssign::LocInfo LocInfo,
7567                             ISD::ArgFlagsTy ArgFlags, CCState &State,
7568                             bool IsFixed, bool IsRet, Type *OrigTy,
7569                             const RISCVTargetLowering &TLI,
7570                             Optional<unsigned> FirstMaskArgument) {
7571 
7572   // X5 and X6 might be used for save-restore libcall.
7573   static const MCPhysReg GPRList[] = {
7574       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
7575       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
7576       RISCV::X29, RISCV::X30, RISCV::X31};
7577 
7578   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7579     if (unsigned Reg = State.AllocateReg(GPRList)) {
7580       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7581       return false;
7582     }
7583   }
7584 
7585   if (LocVT == MVT::f16) {
7586     static const MCPhysReg FPR16List[] = {
7587         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
7588         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
7589         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
7590         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
7591     if (unsigned Reg = State.AllocateReg(FPR16List)) {
7592       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7593       return false;
7594     }
7595   }
7596 
7597   if (LocVT == MVT::f32) {
7598     static const MCPhysReg FPR32List[] = {
7599         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
7600         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
7601         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
7602         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
7603     if (unsigned Reg = State.AllocateReg(FPR32List)) {
7604       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7605       return false;
7606     }
7607   }
7608 
7609   if (LocVT == MVT::f64) {
7610     static const MCPhysReg FPR64List[] = {
7611         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
7612         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
7613         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
7614         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
7615     if (unsigned Reg = State.AllocateReg(FPR64List)) {
7616       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7617       return false;
7618     }
7619   }
7620 
7621   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
7622     unsigned Offset4 = State.AllocateStack(4, Align(4));
7623     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
7624     return false;
7625   }
7626 
7627   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
7628     unsigned Offset5 = State.AllocateStack(8, Align(8));
7629     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
7630     return false;
7631   }
7632 
7633   if (LocVT.isVector()) {
7634     if (unsigned Reg =
7635             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
7636       // Fixed-length vectors are located in the corresponding scalable-vector
7637       // container types.
7638       if (ValVT.isFixedLengthVector())
7639         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
7640       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7641     } else {
7642       // Try and pass the address via a "fast" GPR.
7643       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
7644         LocInfo = CCValAssign::Indirect;
7645         LocVT = TLI.getSubtarget().getXLenVT();
7646         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
7647       } else if (ValVT.isFixedLengthVector()) {
7648         auto StackAlign =
7649             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
7650         unsigned StackOffset =
7651             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
7652         State.addLoc(
7653             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
7654       } else {
7655         // Can't pass scalable vectors on the stack.
7656         return true;
7657       }
7658     }
7659 
7660     return false;
7661   }
7662 
7663   return true; // CC didn't match.
7664 }
7665 
7666 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
7667                          CCValAssign::LocInfo LocInfo,
7668                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
7669 
7670   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7671     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
7672     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
7673     static const MCPhysReg GPRList[] = {
7674         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
7675         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
7676     if (unsigned Reg = State.AllocateReg(GPRList)) {
7677       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7678       return false;
7679     }
7680   }
7681 
7682   if (LocVT == MVT::f32) {
7683     // Pass in STG registers: F1, ..., F6
7684     //                        fs0 ... fs5
7685     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
7686                                           RISCV::F18_F, RISCV::F19_F,
7687                                           RISCV::F20_F, RISCV::F21_F};
7688     if (unsigned Reg = State.AllocateReg(FPR32List)) {
7689       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7690       return false;
7691     }
7692   }
7693 
7694   if (LocVT == MVT::f64) {
7695     // Pass in STG registers: D1, ..., D6
7696     //                        fs6 ... fs11
7697     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
7698                                           RISCV::F24_D, RISCV::F25_D,
7699                                           RISCV::F26_D, RISCV::F27_D};
7700     if (unsigned Reg = State.AllocateReg(FPR64List)) {
7701       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7702       return false;
7703     }
7704   }
7705 
7706   report_fatal_error("No registers left in GHC calling convention");
7707   return true;
7708 }
7709 
7710 // Transform physical registers into virtual registers.
7711 SDValue RISCVTargetLowering::LowerFormalArguments(
7712     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
7713     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
7714     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7715 
7716   MachineFunction &MF = DAG.getMachineFunction();
7717 
7718   switch (CallConv) {
7719   default:
7720     report_fatal_error("Unsupported calling convention");
7721   case CallingConv::C:
7722   case CallingConv::Fast:
7723     break;
7724   case CallingConv::GHC:
7725     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
7726         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
7727       report_fatal_error(
7728         "GHC calling convention requires the F and D instruction set extensions");
7729   }
7730 
7731   const Function &Func = MF.getFunction();
7732   if (Func.hasFnAttribute("interrupt")) {
7733     if (!Func.arg_empty())
7734       report_fatal_error(
7735         "Functions with the interrupt attribute cannot have arguments!");
7736 
7737     StringRef Kind =
7738       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
7739 
7740     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
7741       report_fatal_error(
7742         "Function interrupt attribute argument not supported!");
7743   }
7744 
7745   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7746   MVT XLenVT = Subtarget.getXLenVT();
7747   unsigned XLenInBytes = Subtarget.getXLen() / 8;
7748   // Used with vargs to acumulate store chains.
7749   std::vector<SDValue> OutChains;
7750 
7751   // Assign locations to all of the incoming arguments.
7752   SmallVector<CCValAssign, 16> ArgLocs;
7753   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
7754 
7755   if (CallConv == CallingConv::GHC)
7756     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
7757   else
7758     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
7759                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
7760                                                    : CC_RISCV);
7761 
7762   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
7763     CCValAssign &VA = ArgLocs[i];
7764     SDValue ArgValue;
7765     // Passing f64 on RV32D with a soft float ABI must be handled as a special
7766     // case.
7767     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
7768       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
7769     else if (VA.isRegLoc())
7770       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
7771     else
7772       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
7773 
7774     if (VA.getLocInfo() == CCValAssign::Indirect) {
7775       // If the original argument was split and passed by reference (e.g. i128
7776       // on RV32), we need to load all parts of it here (using the same
7777       // address). Vectors may be partly split to registers and partly to the
7778       // stack, in which case the base address is partly offset and subsequent
7779       // stores are relative to that.
7780       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
7781                                    MachinePointerInfo()));
7782       unsigned ArgIndex = Ins[i].OrigArgIndex;
7783       unsigned ArgPartOffset = Ins[i].PartOffset;
7784       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
7785       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
7786         CCValAssign &PartVA = ArgLocs[i + 1];
7787         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
7788         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
7789         if (PartVA.getValVT().isScalableVector())
7790           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
7791         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
7792         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
7793                                      MachinePointerInfo()));
7794         ++i;
7795       }
7796       continue;
7797     }
7798     InVals.push_back(ArgValue);
7799   }
7800 
7801   if (IsVarArg) {
7802     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
7803     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
7804     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
7805     MachineFrameInfo &MFI = MF.getFrameInfo();
7806     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7807     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
7808 
7809     // Offset of the first variable argument from stack pointer, and size of
7810     // the vararg save area. For now, the varargs save area is either zero or
7811     // large enough to hold a0-a7.
7812     int VaArgOffset, VarArgsSaveSize;
7813 
7814     // If all registers are allocated, then all varargs must be passed on the
7815     // stack and we don't need to save any argregs.
7816     if (ArgRegs.size() == Idx) {
7817       VaArgOffset = CCInfo.getNextStackOffset();
7818       VarArgsSaveSize = 0;
7819     } else {
7820       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
7821       VaArgOffset = -VarArgsSaveSize;
7822     }
7823 
7824     // Record the frame index of the first variable argument
7825     // which is a value necessary to VASTART.
7826     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
7827     RVFI->setVarArgsFrameIndex(FI);
7828 
7829     // If saving an odd number of registers then create an extra stack slot to
7830     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
7831     // offsets to even-numbered registered remain 2*XLEN-aligned.
7832     if (Idx % 2) {
7833       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
7834       VarArgsSaveSize += XLenInBytes;
7835     }
7836 
7837     // Copy the integer registers that may have been used for passing varargs
7838     // to the vararg save area.
7839     for (unsigned I = Idx; I < ArgRegs.size();
7840          ++I, VaArgOffset += XLenInBytes) {
7841       const Register Reg = RegInfo.createVirtualRegister(RC);
7842       RegInfo.addLiveIn(ArgRegs[I], Reg);
7843       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
7844       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
7845       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
7846       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
7847                                    MachinePointerInfo::getFixedStack(MF, FI));
7848       cast<StoreSDNode>(Store.getNode())
7849           ->getMemOperand()
7850           ->setValue((Value *)nullptr);
7851       OutChains.push_back(Store);
7852     }
7853     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
7854   }
7855 
7856   // All stores are grouped in one node to allow the matching between
7857   // the size of Ins and InVals. This only happens for vararg functions.
7858   if (!OutChains.empty()) {
7859     OutChains.push_back(Chain);
7860     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
7861   }
7862 
7863   return Chain;
7864 }
7865 
7866 /// isEligibleForTailCallOptimization - Check whether the call is eligible
7867 /// for tail call optimization.
7868 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
7869 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
7870     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
7871     const SmallVector<CCValAssign, 16> &ArgLocs) const {
7872 
7873   auto &Callee = CLI.Callee;
7874   auto CalleeCC = CLI.CallConv;
7875   auto &Outs = CLI.Outs;
7876   auto &Caller = MF.getFunction();
7877   auto CallerCC = Caller.getCallingConv();
7878 
7879   // Exception-handling functions need a special set of instructions to
7880   // indicate a return to the hardware. Tail-calling another function would
7881   // probably break this.
7882   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
7883   // should be expanded as new function attributes are introduced.
7884   if (Caller.hasFnAttribute("interrupt"))
7885     return false;
7886 
7887   // Do not tail call opt if the stack is used to pass parameters.
7888   if (CCInfo.getNextStackOffset() != 0)
7889     return false;
7890 
7891   // Do not tail call opt if any parameters need to be passed indirectly.
7892   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
7893   // passed indirectly. So the address of the value will be passed in a
7894   // register, or if not available, then the address is put on the stack. In
7895   // order to pass indirectly, space on the stack often needs to be allocated
7896   // in order to store the value. In this case the CCInfo.getNextStackOffset()
7897   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
7898   // are passed CCValAssign::Indirect.
7899   for (auto &VA : ArgLocs)
7900     if (VA.getLocInfo() == CCValAssign::Indirect)
7901       return false;
7902 
7903   // Do not tail call opt if either caller or callee uses struct return
7904   // semantics.
7905   auto IsCallerStructRet = Caller.hasStructRetAttr();
7906   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
7907   if (IsCallerStructRet || IsCalleeStructRet)
7908     return false;
7909 
7910   // Externally-defined functions with weak linkage should not be
7911   // tail-called. The behaviour of branch instructions in this situation (as
7912   // used for tail calls) is implementation-defined, so we cannot rely on the
7913   // linker replacing the tail call with a return.
7914   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
7915     const GlobalValue *GV = G->getGlobal();
7916     if (GV->hasExternalWeakLinkage())
7917       return false;
7918   }
7919 
7920   // The callee has to preserve all registers the caller needs to preserve.
7921   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
7922   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
7923   if (CalleeCC != CallerCC) {
7924     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
7925     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
7926       return false;
7927   }
7928 
7929   // Byval parameters hand the function a pointer directly into the stack area
7930   // we want to reuse during a tail call. Working around this *is* possible
7931   // but less efficient and uglier in LowerCall.
7932   for (auto &Arg : Outs)
7933     if (Arg.Flags.isByVal())
7934       return false;
7935 
7936   return true;
7937 }
7938 
7939 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
7940   return DAG.getDataLayout().getPrefTypeAlign(
7941       VT.getTypeForEVT(*DAG.getContext()));
7942 }
7943 
7944 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
7945 // and output parameter nodes.
7946 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
7947                                        SmallVectorImpl<SDValue> &InVals) const {
7948   SelectionDAG &DAG = CLI.DAG;
7949   SDLoc &DL = CLI.DL;
7950   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
7951   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
7952   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
7953   SDValue Chain = CLI.Chain;
7954   SDValue Callee = CLI.Callee;
7955   bool &IsTailCall = CLI.IsTailCall;
7956   CallingConv::ID CallConv = CLI.CallConv;
7957   bool IsVarArg = CLI.IsVarArg;
7958   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7959   MVT XLenVT = Subtarget.getXLenVT();
7960 
7961   MachineFunction &MF = DAG.getMachineFunction();
7962 
7963   // Analyze the operands of the call, assigning locations to each operand.
7964   SmallVector<CCValAssign, 16> ArgLocs;
7965   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
7966 
7967   if (CallConv == CallingConv::GHC)
7968     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
7969   else
7970     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
7971                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
7972                                                     : CC_RISCV);
7973 
7974   // Check if it's really possible to do a tail call.
7975   if (IsTailCall)
7976     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
7977 
7978   if (IsTailCall)
7979     ++NumTailCalls;
7980   else if (CLI.CB && CLI.CB->isMustTailCall())
7981     report_fatal_error("failed to perform tail call elimination on a call "
7982                        "site marked musttail");
7983 
7984   // Get a count of how many bytes are to be pushed on the stack.
7985   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
7986 
7987   // Create local copies for byval args
7988   SmallVector<SDValue, 8> ByValArgs;
7989   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
7990     ISD::ArgFlagsTy Flags = Outs[i].Flags;
7991     if (!Flags.isByVal())
7992       continue;
7993 
7994     SDValue Arg = OutVals[i];
7995     unsigned Size = Flags.getByValSize();
7996     Align Alignment = Flags.getNonZeroByValAlign();
7997 
7998     int FI =
7999         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
8000     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
8001     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
8002 
8003     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
8004                           /*IsVolatile=*/false,
8005                           /*AlwaysInline=*/false, IsTailCall,
8006                           MachinePointerInfo(), MachinePointerInfo());
8007     ByValArgs.push_back(FIPtr);
8008   }
8009 
8010   if (!IsTailCall)
8011     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
8012 
8013   // Copy argument values to their designated locations.
8014   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
8015   SmallVector<SDValue, 8> MemOpChains;
8016   SDValue StackPtr;
8017   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
8018     CCValAssign &VA = ArgLocs[i];
8019     SDValue ArgValue = OutVals[i];
8020     ISD::ArgFlagsTy Flags = Outs[i].Flags;
8021 
8022     // Handle passing f64 on RV32D with a soft float ABI as a special case.
8023     bool IsF64OnRV32DSoftABI =
8024         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
8025     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
8026       SDValue SplitF64 = DAG.getNode(
8027           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
8028       SDValue Lo = SplitF64.getValue(0);
8029       SDValue Hi = SplitF64.getValue(1);
8030 
8031       Register RegLo = VA.getLocReg();
8032       RegsToPass.push_back(std::make_pair(RegLo, Lo));
8033 
8034       if (RegLo == RISCV::X17) {
8035         // Second half of f64 is passed on the stack.
8036         // Work out the address of the stack slot.
8037         if (!StackPtr.getNode())
8038           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
8039         // Emit the store.
8040         MemOpChains.push_back(
8041             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
8042       } else {
8043         // Second half of f64 is passed in another GPR.
8044         assert(RegLo < RISCV::X31 && "Invalid register pair");
8045         Register RegHigh = RegLo + 1;
8046         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
8047       }
8048       continue;
8049     }
8050 
8051     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
8052     // as any other MemLoc.
8053 
8054     // Promote the value if needed.
8055     // For now, only handle fully promoted and indirect arguments.
8056     if (VA.getLocInfo() == CCValAssign::Indirect) {
8057       // Store the argument in a stack slot and pass its address.
8058       Align StackAlign =
8059           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
8060                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
8061       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
8062       // If the original argument was split (e.g. i128), we need
8063       // to store the required parts of it here (and pass just one address).
8064       // Vectors may be partly split to registers and partly to the stack, in
8065       // which case the base address is partly offset and subsequent stores are
8066       // relative to that.
8067       unsigned ArgIndex = Outs[i].OrigArgIndex;
8068       unsigned ArgPartOffset = Outs[i].PartOffset;
8069       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
8070       // Calculate the total size to store. We don't have access to what we're
8071       // actually storing other than performing the loop and collecting the
8072       // info.
8073       SmallVector<std::pair<SDValue, SDValue>> Parts;
8074       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
8075         SDValue PartValue = OutVals[i + 1];
8076         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
8077         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
8078         EVT PartVT = PartValue.getValueType();
8079         if (PartVT.isScalableVector())
8080           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
8081         StoredSize += PartVT.getStoreSize();
8082         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
8083         Parts.push_back(std::make_pair(PartValue, Offset));
8084         ++i;
8085       }
8086       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
8087       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
8088       MemOpChains.push_back(
8089           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
8090                        MachinePointerInfo::getFixedStack(MF, FI)));
8091       for (const auto &Part : Parts) {
8092         SDValue PartValue = Part.first;
8093         SDValue PartOffset = Part.second;
8094         SDValue Address =
8095             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
8096         MemOpChains.push_back(
8097             DAG.getStore(Chain, DL, PartValue, Address,
8098                          MachinePointerInfo::getFixedStack(MF, FI)));
8099       }
8100       ArgValue = SpillSlot;
8101     } else {
8102       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
8103     }
8104 
8105     // Use local copy if it is a byval arg.
8106     if (Flags.isByVal())
8107       ArgValue = ByValArgs[j++];
8108 
8109     if (VA.isRegLoc()) {
8110       // Queue up the argument copies and emit them at the end.
8111       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
8112     } else {
8113       assert(VA.isMemLoc() && "Argument not register or memory");
8114       assert(!IsTailCall && "Tail call not allowed if stack is used "
8115                             "for passing parameters");
8116 
8117       // Work out the address of the stack slot.
8118       if (!StackPtr.getNode())
8119         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
8120       SDValue Address =
8121           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
8122                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
8123 
8124       // Emit the store.
8125       MemOpChains.push_back(
8126           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
8127     }
8128   }
8129 
8130   // Join the stores, which are independent of one another.
8131   if (!MemOpChains.empty())
8132     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
8133 
8134   SDValue Glue;
8135 
8136   // Build a sequence of copy-to-reg nodes, chained and glued together.
8137   for (auto &Reg : RegsToPass) {
8138     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
8139     Glue = Chain.getValue(1);
8140   }
8141 
8142   // Validate that none of the argument registers have been marked as
8143   // reserved, if so report an error. Do the same for the return address if this
8144   // is not a tailcall.
8145   validateCCReservedRegs(RegsToPass, MF);
8146   if (!IsTailCall &&
8147       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
8148     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
8149         MF.getFunction(),
8150         "Return address register required, but has been reserved."});
8151 
8152   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
8153   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
8154   // split it and then direct call can be matched by PseudoCALL.
8155   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
8156     const GlobalValue *GV = S->getGlobal();
8157 
8158     unsigned OpFlags = RISCVII::MO_CALL;
8159     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
8160       OpFlags = RISCVII::MO_PLT;
8161 
8162     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
8163   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
8164     unsigned OpFlags = RISCVII::MO_CALL;
8165 
8166     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
8167                                                  nullptr))
8168       OpFlags = RISCVII::MO_PLT;
8169 
8170     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
8171   }
8172 
8173   // The first call operand is the chain and the second is the target address.
8174   SmallVector<SDValue, 8> Ops;
8175   Ops.push_back(Chain);
8176   Ops.push_back(Callee);
8177 
8178   // Add argument registers to the end of the list so that they are
8179   // known live into the call.
8180   for (auto &Reg : RegsToPass)
8181     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
8182 
8183   if (!IsTailCall) {
8184     // Add a register mask operand representing the call-preserved registers.
8185     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
8186     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
8187     assert(Mask && "Missing call preserved mask for calling convention");
8188     Ops.push_back(DAG.getRegisterMask(Mask));
8189   }
8190 
8191   // Glue the call to the argument copies, if any.
8192   if (Glue.getNode())
8193     Ops.push_back(Glue);
8194 
8195   // Emit the call.
8196   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8197 
8198   if (IsTailCall) {
8199     MF.getFrameInfo().setHasTailCall();
8200     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
8201   }
8202 
8203   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
8204   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
8205   Glue = Chain.getValue(1);
8206 
8207   // Mark the end of the call, which is glued to the call itself.
8208   Chain = DAG.getCALLSEQ_END(Chain,
8209                              DAG.getConstant(NumBytes, DL, PtrVT, true),
8210                              DAG.getConstant(0, DL, PtrVT, true),
8211                              Glue, DL);
8212   Glue = Chain.getValue(1);
8213 
8214   // Assign locations to each value returned by this call.
8215   SmallVector<CCValAssign, 16> RVLocs;
8216   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
8217   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
8218 
8219   // Copy all of the result registers out of their specified physreg.
8220   for (auto &VA : RVLocs) {
8221     // Copy the value out
8222     SDValue RetValue =
8223         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
8224     // Glue the RetValue to the end of the call sequence
8225     Chain = RetValue.getValue(1);
8226     Glue = RetValue.getValue(2);
8227 
8228     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
8229       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
8230       SDValue RetValue2 =
8231           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
8232       Chain = RetValue2.getValue(1);
8233       Glue = RetValue2.getValue(2);
8234       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
8235                              RetValue2);
8236     }
8237 
8238     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
8239 
8240     InVals.push_back(RetValue);
8241   }
8242 
8243   return Chain;
8244 }
8245 
8246 bool RISCVTargetLowering::CanLowerReturn(
8247     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
8248     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
8249   SmallVector<CCValAssign, 16> RVLocs;
8250   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
8251 
8252   Optional<unsigned> FirstMaskArgument;
8253   if (Subtarget.hasStdExtV())
8254     FirstMaskArgument = preAssignMask(Outs);
8255 
8256   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
8257     MVT VT = Outs[i].VT;
8258     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
8259     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8260     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
8261                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
8262                  *this, FirstMaskArgument))
8263       return false;
8264   }
8265   return true;
8266 }
8267 
8268 SDValue
8269 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
8270                                  bool IsVarArg,
8271                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
8272                                  const SmallVectorImpl<SDValue> &OutVals,
8273                                  const SDLoc &DL, SelectionDAG &DAG) const {
8274   const MachineFunction &MF = DAG.getMachineFunction();
8275   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
8276 
8277   // Stores the assignment of the return value to a location.
8278   SmallVector<CCValAssign, 16> RVLocs;
8279 
8280   // Info about the registers and stack slot.
8281   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
8282                  *DAG.getContext());
8283 
8284   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
8285                     nullptr, CC_RISCV);
8286 
8287   if (CallConv == CallingConv::GHC && !RVLocs.empty())
8288     report_fatal_error("GHC functions return void only");
8289 
8290   SDValue Glue;
8291   SmallVector<SDValue, 4> RetOps(1, Chain);
8292 
8293   // Copy the result values into the output registers.
8294   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
8295     SDValue Val = OutVals[i];
8296     CCValAssign &VA = RVLocs[i];
8297     assert(VA.isRegLoc() && "Can only return in registers!");
8298 
8299     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
8300       // Handle returning f64 on RV32D with a soft float ABI.
8301       assert(VA.isRegLoc() && "Expected return via registers");
8302       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
8303                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
8304       SDValue Lo = SplitF64.getValue(0);
8305       SDValue Hi = SplitF64.getValue(1);
8306       Register RegLo = VA.getLocReg();
8307       assert(RegLo < RISCV::X31 && "Invalid register pair");
8308       Register RegHi = RegLo + 1;
8309 
8310       if (STI.isRegisterReservedByUser(RegLo) ||
8311           STI.isRegisterReservedByUser(RegHi))
8312         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
8313             MF.getFunction(),
8314             "Return value register required, but has been reserved."});
8315 
8316       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
8317       Glue = Chain.getValue(1);
8318       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
8319       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
8320       Glue = Chain.getValue(1);
8321       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
8322     } else {
8323       // Handle a 'normal' return.
8324       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
8325       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
8326 
8327       if (STI.isRegisterReservedByUser(VA.getLocReg()))
8328         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
8329             MF.getFunction(),
8330             "Return value register required, but has been reserved."});
8331 
8332       // Guarantee that all emitted copies are stuck together.
8333       Glue = Chain.getValue(1);
8334       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
8335     }
8336   }
8337 
8338   RetOps[0] = Chain; // Update chain.
8339 
8340   // Add the glue node if we have it.
8341   if (Glue.getNode()) {
8342     RetOps.push_back(Glue);
8343   }
8344 
8345   unsigned RetOpc = RISCVISD::RET_FLAG;
8346   // Interrupt service routines use different return instructions.
8347   const Function &Func = DAG.getMachineFunction().getFunction();
8348   if (Func.hasFnAttribute("interrupt")) {
8349     if (!Func.getReturnType()->isVoidTy())
8350       report_fatal_error(
8351           "Functions with the interrupt attribute must have void return type!");
8352 
8353     MachineFunction &MF = DAG.getMachineFunction();
8354     StringRef Kind =
8355       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
8356 
8357     if (Kind == "user")
8358       RetOpc = RISCVISD::URET_FLAG;
8359     else if (Kind == "supervisor")
8360       RetOpc = RISCVISD::SRET_FLAG;
8361     else
8362       RetOpc = RISCVISD::MRET_FLAG;
8363   }
8364 
8365   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
8366 }
8367 
8368 void RISCVTargetLowering::validateCCReservedRegs(
8369     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
8370     MachineFunction &MF) const {
8371   const Function &F = MF.getFunction();
8372   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
8373 
8374   if (llvm::any_of(Regs, [&STI](auto Reg) {
8375         return STI.isRegisterReservedByUser(Reg.first);
8376       }))
8377     F.getContext().diagnose(DiagnosticInfoUnsupported{
8378         F, "Argument register required, but has been reserved."});
8379 }
8380 
8381 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
8382   return CI->isTailCall();
8383 }
8384 
8385 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
8386 #define NODE_NAME_CASE(NODE)                                                   \
8387   case RISCVISD::NODE:                                                         \
8388     return "RISCVISD::" #NODE;
8389   // clang-format off
8390   switch ((RISCVISD::NodeType)Opcode) {
8391   case RISCVISD::FIRST_NUMBER:
8392     break;
8393   NODE_NAME_CASE(RET_FLAG)
8394   NODE_NAME_CASE(URET_FLAG)
8395   NODE_NAME_CASE(SRET_FLAG)
8396   NODE_NAME_CASE(MRET_FLAG)
8397   NODE_NAME_CASE(CALL)
8398   NODE_NAME_CASE(SELECT_CC)
8399   NODE_NAME_CASE(BR_CC)
8400   NODE_NAME_CASE(BuildPairF64)
8401   NODE_NAME_CASE(SplitF64)
8402   NODE_NAME_CASE(TAIL)
8403   NODE_NAME_CASE(MULHSU)
8404   NODE_NAME_CASE(SLLW)
8405   NODE_NAME_CASE(SRAW)
8406   NODE_NAME_CASE(SRLW)
8407   NODE_NAME_CASE(DIVW)
8408   NODE_NAME_CASE(DIVUW)
8409   NODE_NAME_CASE(REMUW)
8410   NODE_NAME_CASE(ROLW)
8411   NODE_NAME_CASE(RORW)
8412   NODE_NAME_CASE(CLZW)
8413   NODE_NAME_CASE(CTZW)
8414   NODE_NAME_CASE(FSLW)
8415   NODE_NAME_CASE(FSRW)
8416   NODE_NAME_CASE(FSL)
8417   NODE_NAME_CASE(FSR)
8418   NODE_NAME_CASE(FMV_H_X)
8419   NODE_NAME_CASE(FMV_X_ANYEXTH)
8420   NODE_NAME_CASE(FMV_W_X_RV64)
8421   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
8422   NODE_NAME_CASE(FCVT_X_RTZ)
8423   NODE_NAME_CASE(FCVT_XU_RTZ)
8424   NODE_NAME_CASE(FCVT_W_RTZ_RV64)
8425   NODE_NAME_CASE(FCVT_WU_RTZ_RV64)
8426   NODE_NAME_CASE(READ_CYCLE_WIDE)
8427   NODE_NAME_CASE(GREV)
8428   NODE_NAME_CASE(GREVW)
8429   NODE_NAME_CASE(GORC)
8430   NODE_NAME_CASE(GORCW)
8431   NODE_NAME_CASE(SHFL)
8432   NODE_NAME_CASE(SHFLW)
8433   NODE_NAME_CASE(UNSHFL)
8434   NODE_NAME_CASE(UNSHFLW)
8435   NODE_NAME_CASE(BCOMPRESS)
8436   NODE_NAME_CASE(BCOMPRESSW)
8437   NODE_NAME_CASE(BDECOMPRESS)
8438   NODE_NAME_CASE(BDECOMPRESSW)
8439   NODE_NAME_CASE(VMV_V_X_VL)
8440   NODE_NAME_CASE(VFMV_V_F_VL)
8441   NODE_NAME_CASE(VMV_X_S)
8442   NODE_NAME_CASE(VMV_S_X_VL)
8443   NODE_NAME_CASE(VFMV_S_F_VL)
8444   NODE_NAME_CASE(SPLAT_VECTOR_I64)
8445   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
8446   NODE_NAME_CASE(READ_VLENB)
8447   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
8448   NODE_NAME_CASE(VSLIDEUP_VL)
8449   NODE_NAME_CASE(VSLIDE1UP_VL)
8450   NODE_NAME_CASE(VSLIDEDOWN_VL)
8451   NODE_NAME_CASE(VSLIDE1DOWN_VL)
8452   NODE_NAME_CASE(VID_VL)
8453   NODE_NAME_CASE(VFNCVT_ROD_VL)
8454   NODE_NAME_CASE(VECREDUCE_ADD_VL)
8455   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
8456   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
8457   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
8458   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
8459   NODE_NAME_CASE(VECREDUCE_AND_VL)
8460   NODE_NAME_CASE(VECREDUCE_OR_VL)
8461   NODE_NAME_CASE(VECREDUCE_XOR_VL)
8462   NODE_NAME_CASE(VECREDUCE_FADD_VL)
8463   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
8464   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
8465   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
8466   NODE_NAME_CASE(ADD_VL)
8467   NODE_NAME_CASE(AND_VL)
8468   NODE_NAME_CASE(MUL_VL)
8469   NODE_NAME_CASE(OR_VL)
8470   NODE_NAME_CASE(SDIV_VL)
8471   NODE_NAME_CASE(SHL_VL)
8472   NODE_NAME_CASE(SREM_VL)
8473   NODE_NAME_CASE(SRA_VL)
8474   NODE_NAME_CASE(SRL_VL)
8475   NODE_NAME_CASE(SUB_VL)
8476   NODE_NAME_CASE(UDIV_VL)
8477   NODE_NAME_CASE(UREM_VL)
8478   NODE_NAME_CASE(XOR_VL)
8479   NODE_NAME_CASE(SADDSAT_VL)
8480   NODE_NAME_CASE(UADDSAT_VL)
8481   NODE_NAME_CASE(SSUBSAT_VL)
8482   NODE_NAME_CASE(USUBSAT_VL)
8483   NODE_NAME_CASE(FADD_VL)
8484   NODE_NAME_CASE(FSUB_VL)
8485   NODE_NAME_CASE(FMUL_VL)
8486   NODE_NAME_CASE(FDIV_VL)
8487   NODE_NAME_CASE(FNEG_VL)
8488   NODE_NAME_CASE(FABS_VL)
8489   NODE_NAME_CASE(FSQRT_VL)
8490   NODE_NAME_CASE(FMA_VL)
8491   NODE_NAME_CASE(FCOPYSIGN_VL)
8492   NODE_NAME_CASE(SMIN_VL)
8493   NODE_NAME_CASE(SMAX_VL)
8494   NODE_NAME_CASE(UMIN_VL)
8495   NODE_NAME_CASE(UMAX_VL)
8496   NODE_NAME_CASE(FMINNUM_VL)
8497   NODE_NAME_CASE(FMAXNUM_VL)
8498   NODE_NAME_CASE(MULHS_VL)
8499   NODE_NAME_CASE(MULHU_VL)
8500   NODE_NAME_CASE(FP_TO_SINT_VL)
8501   NODE_NAME_CASE(FP_TO_UINT_VL)
8502   NODE_NAME_CASE(SINT_TO_FP_VL)
8503   NODE_NAME_CASE(UINT_TO_FP_VL)
8504   NODE_NAME_CASE(FP_EXTEND_VL)
8505   NODE_NAME_CASE(FP_ROUND_VL)
8506   NODE_NAME_CASE(VWMUL_VL)
8507   NODE_NAME_CASE(VWMULU_VL)
8508   NODE_NAME_CASE(SETCC_VL)
8509   NODE_NAME_CASE(VSELECT_VL)
8510   NODE_NAME_CASE(VMAND_VL)
8511   NODE_NAME_CASE(VMOR_VL)
8512   NODE_NAME_CASE(VMXOR_VL)
8513   NODE_NAME_CASE(VMCLR_VL)
8514   NODE_NAME_CASE(VMSET_VL)
8515   NODE_NAME_CASE(VRGATHER_VX_VL)
8516   NODE_NAME_CASE(VRGATHER_VV_VL)
8517   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
8518   NODE_NAME_CASE(VSEXT_VL)
8519   NODE_NAME_CASE(VZEXT_VL)
8520   NODE_NAME_CASE(VPOPC_VL)
8521   NODE_NAME_CASE(VLE_VL)
8522   NODE_NAME_CASE(VSE_VL)
8523   NODE_NAME_CASE(READ_CSR)
8524   NODE_NAME_CASE(WRITE_CSR)
8525   NODE_NAME_CASE(SWAP_CSR)
8526   }
8527   // clang-format on
8528   return nullptr;
8529 #undef NODE_NAME_CASE
8530 }
8531 
8532 /// getConstraintType - Given a constraint letter, return the type of
8533 /// constraint it is for this target.
8534 RISCVTargetLowering::ConstraintType
8535 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
8536   if (Constraint.size() == 1) {
8537     switch (Constraint[0]) {
8538     default:
8539       break;
8540     case 'f':
8541       return C_RegisterClass;
8542     case 'I':
8543     case 'J':
8544     case 'K':
8545       return C_Immediate;
8546     case 'A':
8547       return C_Memory;
8548     case 'S': // A symbolic address
8549       return C_Other;
8550     }
8551   } else {
8552     if (Constraint == "vr" || Constraint == "vm")
8553       return C_RegisterClass;
8554   }
8555   return TargetLowering::getConstraintType(Constraint);
8556 }
8557 
8558 std::pair<unsigned, const TargetRegisterClass *>
8559 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
8560                                                   StringRef Constraint,
8561                                                   MVT VT) const {
8562   // First, see if this is a constraint that directly corresponds to a
8563   // RISCV register class.
8564   if (Constraint.size() == 1) {
8565     switch (Constraint[0]) {
8566     case 'r':
8567       return std::make_pair(0U, &RISCV::GPRRegClass);
8568     case 'f':
8569       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
8570         return std::make_pair(0U, &RISCV::FPR16RegClass);
8571       if (Subtarget.hasStdExtF() && VT == MVT::f32)
8572         return std::make_pair(0U, &RISCV::FPR32RegClass);
8573       if (Subtarget.hasStdExtD() && VT == MVT::f64)
8574         return std::make_pair(0U, &RISCV::FPR64RegClass);
8575       break;
8576     default:
8577       break;
8578     }
8579   } else {
8580     if (Constraint == "vr") {
8581       for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
8582                              &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
8583         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
8584           return std::make_pair(0U, RC);
8585       }
8586     } else if (Constraint == "vm") {
8587       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
8588         return std::make_pair(0U, &RISCV::VMRegClass);
8589     }
8590   }
8591 
8592   // Clang will correctly decode the usage of register name aliases into their
8593   // official names. However, other frontends like `rustc` do not. This allows
8594   // users of these frontends to use the ABI names for registers in LLVM-style
8595   // register constraints.
8596   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
8597                                .Case("{zero}", RISCV::X0)
8598                                .Case("{ra}", RISCV::X1)
8599                                .Case("{sp}", RISCV::X2)
8600                                .Case("{gp}", RISCV::X3)
8601                                .Case("{tp}", RISCV::X4)
8602                                .Case("{t0}", RISCV::X5)
8603                                .Case("{t1}", RISCV::X6)
8604                                .Case("{t2}", RISCV::X7)
8605                                .Cases("{s0}", "{fp}", RISCV::X8)
8606                                .Case("{s1}", RISCV::X9)
8607                                .Case("{a0}", RISCV::X10)
8608                                .Case("{a1}", RISCV::X11)
8609                                .Case("{a2}", RISCV::X12)
8610                                .Case("{a3}", RISCV::X13)
8611                                .Case("{a4}", RISCV::X14)
8612                                .Case("{a5}", RISCV::X15)
8613                                .Case("{a6}", RISCV::X16)
8614                                .Case("{a7}", RISCV::X17)
8615                                .Case("{s2}", RISCV::X18)
8616                                .Case("{s3}", RISCV::X19)
8617                                .Case("{s4}", RISCV::X20)
8618                                .Case("{s5}", RISCV::X21)
8619                                .Case("{s6}", RISCV::X22)
8620                                .Case("{s7}", RISCV::X23)
8621                                .Case("{s8}", RISCV::X24)
8622                                .Case("{s9}", RISCV::X25)
8623                                .Case("{s10}", RISCV::X26)
8624                                .Case("{s11}", RISCV::X27)
8625                                .Case("{t3}", RISCV::X28)
8626                                .Case("{t4}", RISCV::X29)
8627                                .Case("{t5}", RISCV::X30)
8628                                .Case("{t6}", RISCV::X31)
8629                                .Default(RISCV::NoRegister);
8630   if (XRegFromAlias != RISCV::NoRegister)
8631     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
8632 
8633   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
8634   // TableGen record rather than the AsmName to choose registers for InlineAsm
8635   // constraints, plus we want to match those names to the widest floating point
8636   // register type available, manually select floating point registers here.
8637   //
8638   // The second case is the ABI name of the register, so that frontends can also
8639   // use the ABI names in register constraint lists.
8640   if (Subtarget.hasStdExtF()) {
8641     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
8642                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
8643                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
8644                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
8645                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
8646                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
8647                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
8648                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
8649                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
8650                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
8651                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
8652                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
8653                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
8654                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
8655                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
8656                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
8657                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
8658                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
8659                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
8660                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
8661                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
8662                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
8663                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
8664                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
8665                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
8666                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
8667                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
8668                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
8669                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
8670                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
8671                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
8672                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
8673                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
8674                         .Default(RISCV::NoRegister);
8675     if (FReg != RISCV::NoRegister) {
8676       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
8677       if (Subtarget.hasStdExtD()) {
8678         unsigned RegNo = FReg - RISCV::F0_F;
8679         unsigned DReg = RISCV::F0_D + RegNo;
8680         return std::make_pair(DReg, &RISCV::FPR64RegClass);
8681       }
8682       return std::make_pair(FReg, &RISCV::FPR32RegClass);
8683     }
8684   }
8685 
8686   if (Subtarget.hasStdExtV()) {
8687     Register VReg = StringSwitch<Register>(Constraint.lower())
8688                         .Case("{v0}", RISCV::V0)
8689                         .Case("{v1}", RISCV::V1)
8690                         .Case("{v2}", RISCV::V2)
8691                         .Case("{v3}", RISCV::V3)
8692                         .Case("{v4}", RISCV::V4)
8693                         .Case("{v5}", RISCV::V5)
8694                         .Case("{v6}", RISCV::V6)
8695                         .Case("{v7}", RISCV::V7)
8696                         .Case("{v8}", RISCV::V8)
8697                         .Case("{v9}", RISCV::V9)
8698                         .Case("{v10}", RISCV::V10)
8699                         .Case("{v11}", RISCV::V11)
8700                         .Case("{v12}", RISCV::V12)
8701                         .Case("{v13}", RISCV::V13)
8702                         .Case("{v14}", RISCV::V14)
8703                         .Case("{v15}", RISCV::V15)
8704                         .Case("{v16}", RISCV::V16)
8705                         .Case("{v17}", RISCV::V17)
8706                         .Case("{v18}", RISCV::V18)
8707                         .Case("{v19}", RISCV::V19)
8708                         .Case("{v20}", RISCV::V20)
8709                         .Case("{v21}", RISCV::V21)
8710                         .Case("{v22}", RISCV::V22)
8711                         .Case("{v23}", RISCV::V23)
8712                         .Case("{v24}", RISCV::V24)
8713                         .Case("{v25}", RISCV::V25)
8714                         .Case("{v26}", RISCV::V26)
8715                         .Case("{v27}", RISCV::V27)
8716                         .Case("{v28}", RISCV::V28)
8717                         .Case("{v29}", RISCV::V29)
8718                         .Case("{v30}", RISCV::V30)
8719                         .Case("{v31}", RISCV::V31)
8720                         .Default(RISCV::NoRegister);
8721     if (VReg != RISCV::NoRegister) {
8722       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
8723         return std::make_pair(VReg, &RISCV::VMRegClass);
8724       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
8725         return std::make_pair(VReg, &RISCV::VRRegClass);
8726       for (const auto *RC :
8727            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
8728         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
8729           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
8730           return std::make_pair(VReg, RC);
8731         }
8732       }
8733     }
8734   }
8735 
8736   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
8737 }
8738 
8739 unsigned
8740 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
8741   // Currently only support length 1 constraints.
8742   if (ConstraintCode.size() == 1) {
8743     switch (ConstraintCode[0]) {
8744     case 'A':
8745       return InlineAsm::Constraint_A;
8746     default:
8747       break;
8748     }
8749   }
8750 
8751   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
8752 }
8753 
8754 void RISCVTargetLowering::LowerAsmOperandForConstraint(
8755     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
8756     SelectionDAG &DAG) const {
8757   // Currently only support length 1 constraints.
8758   if (Constraint.length() == 1) {
8759     switch (Constraint[0]) {
8760     case 'I':
8761       // Validate & create a 12-bit signed immediate operand.
8762       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
8763         uint64_t CVal = C->getSExtValue();
8764         if (isInt<12>(CVal))
8765           Ops.push_back(
8766               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
8767       }
8768       return;
8769     case 'J':
8770       // Validate & create an integer zero operand.
8771       if (auto *C = dyn_cast<ConstantSDNode>(Op))
8772         if (C->getZExtValue() == 0)
8773           Ops.push_back(
8774               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
8775       return;
8776     case 'K':
8777       // Validate & create a 5-bit unsigned immediate operand.
8778       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
8779         uint64_t CVal = C->getZExtValue();
8780         if (isUInt<5>(CVal))
8781           Ops.push_back(
8782               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
8783       }
8784       return;
8785     case 'S':
8786       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
8787         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
8788                                                  GA->getValueType(0)));
8789       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
8790         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
8791                                                 BA->getValueType(0)));
8792       }
8793       return;
8794     default:
8795       break;
8796     }
8797   }
8798   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8799 }
8800 
8801 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
8802                                                    Instruction *Inst,
8803                                                    AtomicOrdering Ord) const {
8804   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
8805     return Builder.CreateFence(Ord);
8806   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
8807     return Builder.CreateFence(AtomicOrdering::Release);
8808   return nullptr;
8809 }
8810 
8811 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
8812                                                     Instruction *Inst,
8813                                                     AtomicOrdering Ord) const {
8814   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
8815     return Builder.CreateFence(AtomicOrdering::Acquire);
8816   return nullptr;
8817 }
8818 
8819 TargetLowering::AtomicExpansionKind
8820 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
8821   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
8822   // point operations can't be used in an lr/sc sequence without breaking the
8823   // forward-progress guarantee.
8824   if (AI->isFloatingPointOperation())
8825     return AtomicExpansionKind::CmpXChg;
8826 
8827   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
8828   if (Size == 8 || Size == 16)
8829     return AtomicExpansionKind::MaskedIntrinsic;
8830   return AtomicExpansionKind::None;
8831 }
8832 
8833 static Intrinsic::ID
8834 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
8835   if (XLen == 32) {
8836     switch (BinOp) {
8837     default:
8838       llvm_unreachable("Unexpected AtomicRMW BinOp");
8839     case AtomicRMWInst::Xchg:
8840       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
8841     case AtomicRMWInst::Add:
8842       return Intrinsic::riscv_masked_atomicrmw_add_i32;
8843     case AtomicRMWInst::Sub:
8844       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
8845     case AtomicRMWInst::Nand:
8846       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
8847     case AtomicRMWInst::Max:
8848       return Intrinsic::riscv_masked_atomicrmw_max_i32;
8849     case AtomicRMWInst::Min:
8850       return Intrinsic::riscv_masked_atomicrmw_min_i32;
8851     case AtomicRMWInst::UMax:
8852       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
8853     case AtomicRMWInst::UMin:
8854       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
8855     }
8856   }
8857 
8858   if (XLen == 64) {
8859     switch (BinOp) {
8860     default:
8861       llvm_unreachable("Unexpected AtomicRMW BinOp");
8862     case AtomicRMWInst::Xchg:
8863       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
8864     case AtomicRMWInst::Add:
8865       return Intrinsic::riscv_masked_atomicrmw_add_i64;
8866     case AtomicRMWInst::Sub:
8867       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
8868     case AtomicRMWInst::Nand:
8869       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
8870     case AtomicRMWInst::Max:
8871       return Intrinsic::riscv_masked_atomicrmw_max_i64;
8872     case AtomicRMWInst::Min:
8873       return Intrinsic::riscv_masked_atomicrmw_min_i64;
8874     case AtomicRMWInst::UMax:
8875       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
8876     case AtomicRMWInst::UMin:
8877       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
8878     }
8879   }
8880 
8881   llvm_unreachable("Unexpected XLen\n");
8882 }
8883 
8884 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
8885     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
8886     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
8887   unsigned XLen = Subtarget.getXLen();
8888   Value *Ordering =
8889       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
8890   Type *Tys[] = {AlignedAddr->getType()};
8891   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
8892       AI->getModule(),
8893       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
8894 
8895   if (XLen == 64) {
8896     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
8897     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8898     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
8899   }
8900 
8901   Value *Result;
8902 
8903   // Must pass the shift amount needed to sign extend the loaded value prior
8904   // to performing a signed comparison for min/max. ShiftAmt is the number of
8905   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
8906   // is the number of bits to left+right shift the value in order to
8907   // sign-extend.
8908   if (AI->getOperation() == AtomicRMWInst::Min ||
8909       AI->getOperation() == AtomicRMWInst::Max) {
8910     const DataLayout &DL = AI->getModule()->getDataLayout();
8911     unsigned ValWidth =
8912         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
8913     Value *SextShamt =
8914         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
8915     Result = Builder.CreateCall(LrwOpScwLoop,
8916                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
8917   } else {
8918     Result =
8919         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
8920   }
8921 
8922   if (XLen == 64)
8923     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8924   return Result;
8925 }
8926 
8927 TargetLowering::AtomicExpansionKind
8928 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
8929     AtomicCmpXchgInst *CI) const {
8930   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
8931   if (Size == 8 || Size == 16)
8932     return AtomicExpansionKind::MaskedIntrinsic;
8933   return AtomicExpansionKind::None;
8934 }
8935 
8936 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
8937     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
8938     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
8939   unsigned XLen = Subtarget.getXLen();
8940   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
8941   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
8942   if (XLen == 64) {
8943     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
8944     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
8945     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8946     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
8947   }
8948   Type *Tys[] = {AlignedAddr->getType()};
8949   Function *MaskedCmpXchg =
8950       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
8951   Value *Result = Builder.CreateCall(
8952       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
8953   if (XLen == 64)
8954     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8955   return Result;
8956 }
8957 
8958 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
8959   return false;
8960 }
8961 
8962 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
8963                                                      EVT VT) const {
8964   VT = VT.getScalarType();
8965 
8966   if (!VT.isSimple())
8967     return false;
8968 
8969   switch (VT.getSimpleVT().SimpleTy) {
8970   case MVT::f16:
8971     return Subtarget.hasStdExtZfh();
8972   case MVT::f32:
8973     return Subtarget.hasStdExtF();
8974   case MVT::f64:
8975     return Subtarget.hasStdExtD();
8976   default:
8977     break;
8978   }
8979 
8980   return false;
8981 }
8982 
8983 Register RISCVTargetLowering::getExceptionPointerRegister(
8984     const Constant *PersonalityFn) const {
8985   return RISCV::X10;
8986 }
8987 
8988 Register RISCVTargetLowering::getExceptionSelectorRegister(
8989     const Constant *PersonalityFn) const {
8990   return RISCV::X11;
8991 }
8992 
8993 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
8994   // Return false to suppress the unnecessary extensions if the LibCall
8995   // arguments or return value is f32 type for LP64 ABI.
8996   RISCVABI::ABI ABI = Subtarget.getTargetABI();
8997   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
8998     return false;
8999 
9000   return true;
9001 }
9002 
9003 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
9004   if (Subtarget.is64Bit() && Type == MVT::i32)
9005     return true;
9006 
9007   return IsSigned;
9008 }
9009 
9010 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
9011                                                  SDValue C) const {
9012   // Check integral scalar types.
9013   if (VT.isScalarInteger()) {
9014     // Omit the optimization if the sub target has the M extension and the data
9015     // size exceeds XLen.
9016     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
9017       return false;
9018     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
9019       // Break the MUL to a SLLI and an ADD/SUB.
9020       const APInt &Imm = ConstNode->getAPIntValue();
9021       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
9022           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
9023         return true;
9024       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
9025       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
9026           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
9027            (Imm - 8).isPowerOf2()))
9028         return true;
9029       // Omit the following optimization if the sub target has the M extension
9030       // and the data size >= XLen.
9031       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
9032         return false;
9033       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
9034       // a pair of LUI/ADDI.
9035       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
9036         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
9037         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
9038             (1 - ImmS).isPowerOf2())
9039         return true;
9040       }
9041     }
9042   }
9043 
9044   return false;
9045 }
9046 
9047 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
9048     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
9049     bool *Fast) const {
9050   if (!VT.isVector())
9051     return false;
9052 
9053   EVT ElemVT = VT.getVectorElementType();
9054   if (Alignment >= ElemVT.getStoreSize()) {
9055     if (Fast)
9056       *Fast = true;
9057     return true;
9058   }
9059 
9060   return false;
9061 }
9062 
9063 bool RISCVTargetLowering::splitValueIntoRegisterParts(
9064     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
9065     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
9066   bool IsABIRegCopy = CC.hasValue();
9067   EVT ValueVT = Val.getValueType();
9068   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
9069     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
9070     // and cast to f32.
9071     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
9072     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
9073     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
9074                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
9075     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
9076     Parts[0] = Val;
9077     return true;
9078   }
9079 
9080   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
9081     LLVMContext &Context = *DAG.getContext();
9082     EVT ValueEltVT = ValueVT.getVectorElementType();
9083     EVT PartEltVT = PartVT.getVectorElementType();
9084     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
9085     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
9086     if (PartVTBitSize % ValueVTBitSize == 0) {
9087       // If the element types are different, bitcast to the same element type of
9088       // PartVT first.
9089       if (ValueEltVT != PartEltVT) {
9090         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
9091         assert(Count != 0 && "The number of element should not be zero.");
9092         EVT SameEltTypeVT =
9093             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
9094         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
9095       }
9096       Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
9097                         Val, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
9098       Parts[0] = Val;
9099       return true;
9100     }
9101   }
9102   return false;
9103 }
9104 
9105 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
9106     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
9107     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
9108   bool IsABIRegCopy = CC.hasValue();
9109   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
9110     SDValue Val = Parts[0];
9111 
9112     // Cast the f32 to i32, truncate to i16, and cast back to f16.
9113     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
9114     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
9115     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
9116     return Val;
9117   }
9118 
9119   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
9120     LLVMContext &Context = *DAG.getContext();
9121     SDValue Val = Parts[0];
9122     EVT ValueEltVT = ValueVT.getVectorElementType();
9123     EVT PartEltVT = PartVT.getVectorElementType();
9124     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
9125     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
9126     if (PartVTBitSize % ValueVTBitSize == 0) {
9127       EVT SameEltTypeVT = ValueVT;
9128       // If the element types are different, convert it to the same element type
9129       // of PartVT.
9130       if (ValueEltVT != PartEltVT) {
9131         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
9132         assert(Count != 0 && "The number of element should not be zero.");
9133         SameEltTypeVT =
9134             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
9135       }
9136       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val,
9137                         DAG.getConstant(0, DL, Subtarget.getXLenVT()));
9138       if (ValueEltVT != PartEltVT)
9139         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
9140       return Val;
9141     }
9142   }
9143   return SDValue();
9144 }
9145 
9146 #define GET_REGISTER_MATCHER
9147 #include "RISCVGenAsmMatcher.inc"
9148 
9149 Register
9150 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
9151                                        const MachineFunction &MF) const {
9152   Register Reg = MatchRegisterAltName(RegName);
9153   if (Reg == RISCV::NoRegister)
9154     Reg = MatchRegisterName(RegName);
9155   if (Reg == RISCV::NoRegister)
9156     report_fatal_error(
9157         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
9158   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
9159   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
9160     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
9161                              StringRef(RegName) + "\"."));
9162   return Reg;
9163 }
9164 
9165 namespace llvm {
9166 namespace RISCVVIntrinsicsTable {
9167 
9168 #define GET_RISCVVIntrinsicsTable_IMPL
9169 #include "RISCVGenSearchableTables.inc"
9170 
9171 } // namespace RISCVVIntrinsicsTable
9172 
9173 } // namespace llvm
9174