1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 28 #include "llvm/CodeGen/ValueTypes.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/DiagnosticPrinter.h" 31 #include "llvm/IR/IntrinsicsRISCV.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 MVT ContainerVT = getContainerForFixedLengthVector(VT); 147 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 148 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 149 addRegisterClass(VT, TRI.getRegClass(RCID)); 150 }; 151 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 152 if (useRVVForFixedLengthVectorVT(VT)) 153 addRegClassForFixedVectors(VT); 154 155 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 156 if (useRVVForFixedLengthVectorVT(VT)) 157 addRegClassForFixedVectors(VT); 158 } 159 } 160 161 // Compute derived properties from the register classes. 162 computeRegisterProperties(STI.getRegisterInfo()); 163 164 setStackPointerRegisterToSaveRestore(RISCV::X2); 165 166 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 167 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 168 169 // TODO: add all necessary setOperationAction calls. 170 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 171 172 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 173 setOperationAction(ISD::BR_CC, XLenVT, Expand); 174 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 175 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 176 177 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 178 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 179 180 setOperationAction(ISD::VASTART, MVT::Other, Custom); 181 setOperationAction(ISD::VAARG, MVT::Other, Expand); 182 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 183 setOperationAction(ISD::VAEND, MVT::Other, Expand); 184 185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 186 if (!Subtarget.hasStdExtZbb()) { 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 189 } 190 191 if (Subtarget.is64Bit()) { 192 setOperationAction(ISD::ADD, MVT::i32, Custom); 193 setOperationAction(ISD::SUB, MVT::i32, Custom); 194 setOperationAction(ISD::SHL, MVT::i32, Custom); 195 setOperationAction(ISD::SRA, MVT::i32, Custom); 196 setOperationAction(ISD::SRL, MVT::i32, Custom); 197 198 setOperationAction(ISD::UADDO, MVT::i32, Custom); 199 setOperationAction(ISD::USUBO, MVT::i32, Custom); 200 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 201 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 202 } 203 204 if (!Subtarget.hasStdExtM()) { 205 setOperationAction(ISD::MUL, XLenVT, Expand); 206 setOperationAction(ISD::MULHS, XLenVT, Expand); 207 setOperationAction(ISD::MULHU, XLenVT, Expand); 208 setOperationAction(ISD::SDIV, XLenVT, Expand); 209 setOperationAction(ISD::UDIV, XLenVT, Expand); 210 setOperationAction(ISD::SREM, XLenVT, Expand); 211 setOperationAction(ISD::UREM, XLenVT, Expand); 212 } else { 213 if (Subtarget.is64Bit()) { 214 setOperationAction(ISD::MUL, MVT::i32, Custom); 215 setOperationAction(ISD::MUL, MVT::i128, Custom); 216 217 setOperationAction(ISD::SDIV, MVT::i8, Custom); 218 setOperationAction(ISD::UDIV, MVT::i8, Custom); 219 setOperationAction(ISD::UREM, MVT::i8, Custom); 220 setOperationAction(ISD::SDIV, MVT::i16, Custom); 221 setOperationAction(ISD::UDIV, MVT::i16, Custom); 222 setOperationAction(ISD::UREM, MVT::i16, Custom); 223 setOperationAction(ISD::SDIV, MVT::i32, Custom); 224 setOperationAction(ISD::UDIV, MVT::i32, Custom); 225 setOperationAction(ISD::UREM, MVT::i32, Custom); 226 } else { 227 setOperationAction(ISD::MUL, MVT::i64, Custom); 228 } 229 } 230 231 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 232 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 233 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 234 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 235 236 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 237 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 238 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 239 240 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 241 if (Subtarget.is64Bit()) { 242 setOperationAction(ISD::ROTL, MVT::i32, Custom); 243 setOperationAction(ISD::ROTR, MVT::i32, Custom); 244 } 245 } else { 246 setOperationAction(ISD::ROTL, XLenVT, Expand); 247 setOperationAction(ISD::ROTR, XLenVT, Expand); 248 } 249 250 if (Subtarget.hasStdExtZbp()) { 251 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 252 // more combining. 253 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 254 setOperationAction(ISD::BSWAP, XLenVT, Custom); 255 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 256 // BSWAP i8 doesn't exist. 257 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 258 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 259 260 if (Subtarget.is64Bit()) { 261 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 262 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 263 } 264 } else { 265 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 266 // pattern match it directly in isel. 267 setOperationAction(ISD::BSWAP, XLenVT, 268 Subtarget.hasStdExtZbb() ? Legal : Expand); 269 } 270 271 if (Subtarget.hasStdExtZbb()) { 272 setOperationAction(ISD::SMIN, XLenVT, Legal); 273 setOperationAction(ISD::SMAX, XLenVT, Legal); 274 setOperationAction(ISD::UMIN, XLenVT, Legal); 275 setOperationAction(ISD::UMAX, XLenVT, Legal); 276 277 if (Subtarget.is64Bit()) { 278 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 279 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 280 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 281 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 282 } 283 } else { 284 setOperationAction(ISD::CTTZ, XLenVT, Expand); 285 setOperationAction(ISD::CTLZ, XLenVT, Expand); 286 setOperationAction(ISD::CTPOP, XLenVT, Expand); 287 } 288 289 if (Subtarget.hasStdExtZbt()) { 290 setOperationAction(ISD::FSHL, XLenVT, Custom); 291 setOperationAction(ISD::FSHR, XLenVT, Custom); 292 setOperationAction(ISD::SELECT, XLenVT, Legal); 293 294 if (Subtarget.is64Bit()) { 295 setOperationAction(ISD::FSHL, MVT::i32, Custom); 296 setOperationAction(ISD::FSHR, MVT::i32, Custom); 297 } 298 } else { 299 setOperationAction(ISD::SELECT, XLenVT, Custom); 300 } 301 302 ISD::CondCode FPCCToExpand[] = { 303 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 304 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 305 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 306 307 ISD::NodeType FPOpToExpand[] = { 308 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 309 ISD::FP_TO_FP16}; 310 311 if (Subtarget.hasStdExtZfh()) 312 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 313 314 if (Subtarget.hasStdExtZfh()) { 315 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 316 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 317 setOperationAction(ISD::LRINT, MVT::f16, Legal); 318 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 319 setOperationAction(ISD::LROUND, MVT::f16, Legal); 320 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 321 for (auto CC : FPCCToExpand) 322 setCondCodeAction(CC, MVT::f16, Expand); 323 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 324 setOperationAction(ISD::SELECT, MVT::f16, Custom); 325 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 326 for (auto Op : FPOpToExpand) 327 setOperationAction(Op, MVT::f16, Expand); 328 } 329 330 if (Subtarget.hasStdExtF()) { 331 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 332 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 333 setOperationAction(ISD::LRINT, MVT::f32, Legal); 334 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 335 setOperationAction(ISD::LROUND, MVT::f32, Legal); 336 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 337 for (auto CC : FPCCToExpand) 338 setCondCodeAction(CC, MVT::f32, Expand); 339 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 340 setOperationAction(ISD::SELECT, MVT::f32, Custom); 341 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 342 for (auto Op : FPOpToExpand) 343 setOperationAction(Op, MVT::f32, Expand); 344 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 345 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 346 } 347 348 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 349 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 350 351 if (Subtarget.hasStdExtD()) { 352 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 353 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 354 setOperationAction(ISD::LRINT, MVT::f64, Legal); 355 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 356 setOperationAction(ISD::LROUND, MVT::f64, Legal); 357 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 358 for (auto CC : FPCCToExpand) 359 setCondCodeAction(CC, MVT::f64, Expand); 360 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 361 setOperationAction(ISD::SELECT, MVT::f64, Custom); 362 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 363 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 364 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 365 for (auto Op : FPOpToExpand) 366 setOperationAction(Op, MVT::f64, Expand); 367 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 368 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 369 } 370 371 if (Subtarget.is64Bit()) { 372 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 373 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 374 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 375 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 376 } 377 378 if (Subtarget.hasStdExtF()) { 379 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 380 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 381 382 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 383 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 384 } 385 386 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 387 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 388 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 389 setOperationAction(ISD::JumpTable, XLenVT, Custom); 390 391 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 392 393 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 394 // Unfortunately this can't be determined just from the ISA naming string. 395 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 396 Subtarget.is64Bit() ? Legal : Custom); 397 398 setOperationAction(ISD::TRAP, MVT::Other, Legal); 399 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 400 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 401 if (Subtarget.is64Bit()) 402 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 403 404 if (Subtarget.hasStdExtA()) { 405 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 406 setMinCmpXchgSizeInBits(32); 407 } else { 408 setMaxAtomicSizeInBitsSupported(0); 409 } 410 411 setBooleanContents(ZeroOrOneBooleanContent); 412 413 if (Subtarget.hasStdExtV()) { 414 setBooleanVectorContents(ZeroOrOneBooleanContent); 415 416 setOperationAction(ISD::VSCALE, XLenVT, Custom); 417 418 // RVV intrinsics may have illegal operands. 419 // We also need to custom legalize vmv.x.s. 420 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 421 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 422 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 423 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 424 if (Subtarget.is64Bit()) { 425 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 426 } else { 427 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 428 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 429 } 430 431 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 432 433 static unsigned IntegerVPOps[] = { 434 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV, 435 ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, 436 ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL}; 437 438 static unsigned FloatingPointVPOps[] = {ISD::VP_FADD, ISD::VP_FSUB, 439 ISD::VP_FMUL, ISD::VP_FDIV}; 440 441 if (!Subtarget.is64Bit()) { 442 // We must custom-lower certain vXi64 operations on RV32 due to the vector 443 // element type being illegal. 444 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 445 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 446 447 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 448 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 449 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 450 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 451 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 452 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 453 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 454 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 455 } 456 457 for (MVT VT : BoolVecVTs) { 458 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 459 460 // Mask VTs are custom-expanded into a series of standard nodes 461 setOperationAction(ISD::TRUNCATE, VT, Custom); 462 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 463 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 464 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 465 466 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 467 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 468 469 setOperationAction(ISD::SELECT, VT, Custom); 470 setOperationAction(ISD::SELECT_CC, VT, Expand); 471 setOperationAction(ISD::VSELECT, VT, Expand); 472 473 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 474 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 475 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 476 477 // RVV has native int->float & float->int conversions where the 478 // element type sizes are within one power-of-two of each other. Any 479 // wider distances between type sizes have to be lowered as sequences 480 // which progressively narrow the gap in stages. 481 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 482 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 483 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 484 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 485 486 // Expand all extending loads to types larger than this, and truncating 487 // stores from types larger than this. 488 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 489 setTruncStoreAction(OtherVT, VT, Expand); 490 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 491 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 492 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 493 } 494 } 495 496 for (MVT VT : IntVecVTs) { 497 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 498 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 499 500 setOperationAction(ISD::SMIN, VT, Legal); 501 setOperationAction(ISD::SMAX, VT, Legal); 502 setOperationAction(ISD::UMIN, VT, Legal); 503 setOperationAction(ISD::UMAX, VT, Legal); 504 505 setOperationAction(ISD::ROTL, VT, Expand); 506 setOperationAction(ISD::ROTR, VT, Expand); 507 508 // Custom-lower extensions and truncations from/to mask types. 509 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 510 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 511 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 512 513 // RVV has native int->float & float->int conversions where the 514 // element type sizes are within one power-of-two of each other. Any 515 // wider distances between type sizes have to be lowered as sequences 516 // which progressively narrow the gap in stages. 517 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 518 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 519 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 520 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 521 522 setOperationAction(ISD::SADDSAT, VT, Legal); 523 setOperationAction(ISD::UADDSAT, VT, Legal); 524 setOperationAction(ISD::SSUBSAT, VT, Legal); 525 setOperationAction(ISD::USUBSAT, VT, Legal); 526 527 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 528 // nodes which truncate by one power of two at a time. 529 setOperationAction(ISD::TRUNCATE, VT, Custom); 530 531 // Custom-lower insert/extract operations to simplify patterns. 532 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 533 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 534 535 // Custom-lower reduction operations to set up the corresponding custom 536 // nodes' operands. 537 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 538 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 539 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 540 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 541 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 542 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 543 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 544 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 545 546 for (unsigned VPOpc : IntegerVPOps) 547 setOperationAction(VPOpc, VT, Custom); 548 549 setOperationAction(ISD::LOAD, VT, Custom); 550 setOperationAction(ISD::STORE, VT, Custom); 551 552 setOperationAction(ISD::MLOAD, VT, Custom); 553 setOperationAction(ISD::MSTORE, VT, Custom); 554 setOperationAction(ISD::MGATHER, VT, Custom); 555 setOperationAction(ISD::MSCATTER, VT, Custom); 556 557 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 558 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 559 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 560 561 setOperationAction(ISD::SELECT, VT, Custom); 562 setOperationAction(ISD::SELECT_CC, VT, Expand); 563 564 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 565 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 566 567 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 568 setTruncStoreAction(VT, OtherVT, Expand); 569 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 570 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 571 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 572 } 573 } 574 575 // Expand various CCs to best match the RVV ISA, which natively supports UNE 576 // but no other unordered comparisons, and supports all ordered comparisons 577 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 578 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 579 // and we pattern-match those back to the "original", swapping operands once 580 // more. This way we catch both operations and both "vf" and "fv" forms with 581 // fewer patterns. 582 ISD::CondCode VFPCCToExpand[] = { 583 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 584 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 585 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 586 }; 587 588 // Sets common operation actions on RVV floating-point vector types. 589 const auto SetCommonVFPActions = [&](MVT VT) { 590 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 591 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 592 // sizes are within one power-of-two of each other. Therefore conversions 593 // between vXf16 and vXf64 must be lowered as sequences which convert via 594 // vXf32. 595 setOperationAction(ISD::FP_ROUND, VT, Custom); 596 setOperationAction(ISD::FP_EXTEND, VT, Custom); 597 // Custom-lower insert/extract operations to simplify patterns. 598 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 599 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 600 // Expand various condition codes (explained above). 601 for (auto CC : VFPCCToExpand) 602 setCondCodeAction(CC, VT, Expand); 603 604 setOperationAction(ISD::FMINNUM, VT, Legal); 605 setOperationAction(ISD::FMAXNUM, VT, Legal); 606 607 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 608 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 609 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 610 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 611 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 612 613 setOperationAction(ISD::LOAD, VT, Custom); 614 setOperationAction(ISD::STORE, VT, Custom); 615 616 setOperationAction(ISD::MLOAD, VT, Custom); 617 setOperationAction(ISD::MSTORE, VT, Custom); 618 setOperationAction(ISD::MGATHER, VT, Custom); 619 setOperationAction(ISD::MSCATTER, VT, Custom); 620 621 setOperationAction(ISD::SELECT, VT, Custom); 622 setOperationAction(ISD::SELECT_CC, VT, Expand); 623 624 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 625 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 626 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 627 628 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 629 630 for (unsigned VPOpc : FloatingPointVPOps) 631 setOperationAction(VPOpc, VT, Custom); 632 }; 633 634 // Sets common extload/truncstore actions on RVV floating-point vector 635 // types. 636 const auto SetCommonVFPExtLoadTruncStoreActions = 637 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 638 for (auto SmallVT : SmallerVTs) { 639 setTruncStoreAction(VT, SmallVT, Expand); 640 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 641 } 642 }; 643 644 if (Subtarget.hasStdExtZfh()) 645 for (MVT VT : F16VecVTs) 646 SetCommonVFPActions(VT); 647 648 for (MVT VT : F32VecVTs) { 649 if (Subtarget.hasStdExtF()) 650 SetCommonVFPActions(VT); 651 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 652 } 653 654 for (MVT VT : F64VecVTs) { 655 if (Subtarget.hasStdExtD()) 656 SetCommonVFPActions(VT); 657 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 658 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 659 } 660 661 if (Subtarget.useRVVForFixedLengthVectors()) { 662 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 663 if (!useRVVForFixedLengthVectorVT(VT)) 664 continue; 665 666 // By default everything must be expanded. 667 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 668 setOperationAction(Op, VT, Expand); 669 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 670 setTruncStoreAction(VT, OtherVT, Expand); 671 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 672 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 673 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 674 } 675 676 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 677 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 678 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 679 680 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 681 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 682 683 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 684 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 685 686 setOperationAction(ISD::LOAD, VT, Custom); 687 setOperationAction(ISD::STORE, VT, Custom); 688 689 setOperationAction(ISD::SETCC, VT, Custom); 690 691 setOperationAction(ISD::SELECT, VT, Custom); 692 693 setOperationAction(ISD::TRUNCATE, VT, Custom); 694 695 setOperationAction(ISD::BITCAST, VT, Custom); 696 697 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 698 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 699 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 700 701 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 702 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 703 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 704 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 705 706 // Operations below are different for between masks and other vectors. 707 if (VT.getVectorElementType() == MVT::i1) { 708 setOperationAction(ISD::AND, VT, Custom); 709 setOperationAction(ISD::OR, VT, Custom); 710 setOperationAction(ISD::XOR, VT, Custom); 711 continue; 712 } 713 714 // Use SPLAT_VECTOR to prevent type legalization from destroying the 715 // splats when type legalizing i64 scalar on RV32. 716 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 717 // improvements first. 718 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 719 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 720 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 721 } 722 723 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 724 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 725 726 setOperationAction(ISD::MLOAD, VT, Custom); 727 setOperationAction(ISD::MSTORE, VT, Custom); 728 setOperationAction(ISD::MGATHER, VT, Custom); 729 setOperationAction(ISD::MSCATTER, VT, Custom); 730 setOperationAction(ISD::ADD, VT, Custom); 731 setOperationAction(ISD::MUL, VT, Custom); 732 setOperationAction(ISD::SUB, VT, Custom); 733 setOperationAction(ISD::AND, VT, Custom); 734 setOperationAction(ISD::OR, VT, Custom); 735 setOperationAction(ISD::XOR, VT, Custom); 736 setOperationAction(ISD::SDIV, VT, Custom); 737 setOperationAction(ISD::SREM, VT, Custom); 738 setOperationAction(ISD::UDIV, VT, Custom); 739 setOperationAction(ISD::UREM, VT, Custom); 740 setOperationAction(ISD::SHL, VT, Custom); 741 setOperationAction(ISD::SRA, VT, Custom); 742 setOperationAction(ISD::SRL, VT, Custom); 743 744 setOperationAction(ISD::SMIN, VT, Custom); 745 setOperationAction(ISD::SMAX, VT, Custom); 746 setOperationAction(ISD::UMIN, VT, Custom); 747 setOperationAction(ISD::UMAX, VT, Custom); 748 setOperationAction(ISD::ABS, VT, Custom); 749 750 setOperationAction(ISD::MULHS, VT, Custom); 751 setOperationAction(ISD::MULHU, VT, Custom); 752 753 setOperationAction(ISD::SADDSAT, VT, Custom); 754 setOperationAction(ISD::UADDSAT, VT, Custom); 755 setOperationAction(ISD::SSUBSAT, VT, Custom); 756 setOperationAction(ISD::USUBSAT, VT, Custom); 757 758 setOperationAction(ISD::VSELECT, VT, Custom); 759 setOperationAction(ISD::SELECT_CC, VT, Expand); 760 761 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 762 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 763 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 764 765 // Custom-lower reduction operations to set up the corresponding custom 766 // nodes' operands. 767 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 768 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 769 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 770 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 771 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 772 773 for (unsigned VPOpc : IntegerVPOps) 774 setOperationAction(VPOpc, VT, Custom); 775 } 776 777 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 778 if (!useRVVForFixedLengthVectorVT(VT)) 779 continue; 780 781 // By default everything must be expanded. 782 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 783 setOperationAction(Op, VT, Expand); 784 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 785 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 786 setTruncStoreAction(VT, OtherVT, Expand); 787 } 788 789 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 790 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 791 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 792 793 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 794 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 795 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 796 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 797 798 setOperationAction(ISD::LOAD, VT, Custom); 799 setOperationAction(ISD::STORE, VT, Custom); 800 setOperationAction(ISD::MLOAD, VT, Custom); 801 setOperationAction(ISD::MSTORE, VT, Custom); 802 setOperationAction(ISD::MGATHER, VT, Custom); 803 setOperationAction(ISD::MSCATTER, VT, Custom); 804 setOperationAction(ISD::FADD, VT, Custom); 805 setOperationAction(ISD::FSUB, VT, Custom); 806 setOperationAction(ISD::FMUL, VT, Custom); 807 setOperationAction(ISD::FDIV, VT, Custom); 808 setOperationAction(ISD::FNEG, VT, Custom); 809 setOperationAction(ISD::FABS, VT, Custom); 810 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 811 setOperationAction(ISD::FSQRT, VT, Custom); 812 setOperationAction(ISD::FMA, VT, Custom); 813 setOperationAction(ISD::FMINNUM, VT, Custom); 814 setOperationAction(ISD::FMAXNUM, VT, Custom); 815 816 setOperationAction(ISD::FP_ROUND, VT, Custom); 817 setOperationAction(ISD::FP_EXTEND, VT, Custom); 818 819 for (auto CC : VFPCCToExpand) 820 setCondCodeAction(CC, VT, Expand); 821 822 setOperationAction(ISD::VSELECT, VT, Custom); 823 setOperationAction(ISD::SELECT, VT, Custom); 824 setOperationAction(ISD::SELECT_CC, VT, Expand); 825 826 setOperationAction(ISD::BITCAST, VT, Custom); 827 828 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 829 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 830 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 831 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 832 833 for (unsigned VPOpc : FloatingPointVPOps) 834 setOperationAction(VPOpc, VT, Custom); 835 } 836 837 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 838 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 839 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 840 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 841 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 842 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 843 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 844 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 845 } 846 } 847 848 // Function alignments. 849 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 850 setMinFunctionAlignment(FunctionAlignment); 851 setPrefFunctionAlignment(FunctionAlignment); 852 853 setMinimumJumpTableEntries(5); 854 855 // Jumps are expensive, compared to logic 856 setJumpIsExpensive(); 857 858 // We can use any register for comparisons 859 setHasMultipleConditionRegisters(); 860 861 setTargetDAGCombine(ISD::ADD); 862 setTargetDAGCombine(ISD::SUB); 863 setTargetDAGCombine(ISD::AND); 864 setTargetDAGCombine(ISD::OR); 865 setTargetDAGCombine(ISD::XOR); 866 setTargetDAGCombine(ISD::ANY_EXTEND); 867 setTargetDAGCombine(ISD::ZERO_EXTEND); 868 if (Subtarget.hasStdExtV()) { 869 setTargetDAGCombine(ISD::FCOPYSIGN); 870 setTargetDAGCombine(ISD::MGATHER); 871 setTargetDAGCombine(ISD::MSCATTER); 872 setTargetDAGCombine(ISD::SRA); 873 setTargetDAGCombine(ISD::SRL); 874 setTargetDAGCombine(ISD::SHL); 875 } 876 } 877 878 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 879 LLVMContext &Context, 880 EVT VT) const { 881 if (!VT.isVector()) 882 return getPointerTy(DL); 883 if (Subtarget.hasStdExtV() && 884 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 885 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 886 return VT.changeVectorElementTypeToInteger(); 887 } 888 889 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 890 return Subtarget.getXLenVT(); 891 } 892 893 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 894 const CallInst &I, 895 MachineFunction &MF, 896 unsigned Intrinsic) const { 897 switch (Intrinsic) { 898 default: 899 return false; 900 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 901 case Intrinsic::riscv_masked_atomicrmw_add_i32: 902 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 903 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 904 case Intrinsic::riscv_masked_atomicrmw_max_i32: 905 case Intrinsic::riscv_masked_atomicrmw_min_i32: 906 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 907 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 908 case Intrinsic::riscv_masked_cmpxchg_i32: { 909 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 910 Info.opc = ISD::INTRINSIC_W_CHAIN; 911 Info.memVT = MVT::getVT(PtrTy->getElementType()); 912 Info.ptrVal = I.getArgOperand(0); 913 Info.offset = 0; 914 Info.align = Align(4); 915 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 916 MachineMemOperand::MOVolatile; 917 return true; 918 } 919 } 920 } 921 922 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 923 const AddrMode &AM, Type *Ty, 924 unsigned AS, 925 Instruction *I) const { 926 // No global is ever allowed as a base. 927 if (AM.BaseGV) 928 return false; 929 930 // Require a 12-bit signed offset. 931 if (!isInt<12>(AM.BaseOffs)) 932 return false; 933 934 switch (AM.Scale) { 935 case 0: // "r+i" or just "i", depending on HasBaseReg. 936 break; 937 case 1: 938 if (!AM.HasBaseReg) // allow "r+i". 939 break; 940 return false; // disallow "r+r" or "r+r+i". 941 default: 942 return false; 943 } 944 945 return true; 946 } 947 948 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 949 return isInt<12>(Imm); 950 } 951 952 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 953 return isInt<12>(Imm); 954 } 955 956 // On RV32, 64-bit integers are split into their high and low parts and held 957 // in two different registers, so the trunc is free since the low register can 958 // just be used. 959 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 960 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 961 return false; 962 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 963 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 964 return (SrcBits == 64 && DestBits == 32); 965 } 966 967 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 968 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 969 !SrcVT.isInteger() || !DstVT.isInteger()) 970 return false; 971 unsigned SrcBits = SrcVT.getSizeInBits(); 972 unsigned DestBits = DstVT.getSizeInBits(); 973 return (SrcBits == 64 && DestBits == 32); 974 } 975 976 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 977 // Zexts are free if they can be combined with a load. 978 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 979 EVT MemVT = LD->getMemoryVT(); 980 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 981 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 982 (LD->getExtensionType() == ISD::NON_EXTLOAD || 983 LD->getExtensionType() == ISD::ZEXTLOAD)) 984 return true; 985 } 986 987 return TargetLowering::isZExtFree(Val, VT2); 988 } 989 990 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 991 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 992 } 993 994 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 995 return Subtarget.hasStdExtZbb(); 996 } 997 998 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 999 return Subtarget.hasStdExtZbb(); 1000 } 1001 1002 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1003 bool ForCodeSize) const { 1004 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1005 return false; 1006 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1007 return false; 1008 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1009 return false; 1010 if (Imm.isNegZero()) 1011 return false; 1012 return Imm.isZero(); 1013 } 1014 1015 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1016 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1017 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1018 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1019 } 1020 1021 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1022 CallingConv::ID CC, 1023 EVT VT) const { 1024 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1025 // end up using a GPR but that will be decided based on ABI. 1026 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1027 return MVT::f32; 1028 1029 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1030 } 1031 1032 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1033 CallingConv::ID CC, 1034 EVT VT) const { 1035 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1036 // end up using a GPR but that will be decided based on ABI. 1037 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1038 return 1; 1039 1040 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1041 } 1042 1043 // Changes the condition code and swaps operands if necessary, so the SetCC 1044 // operation matches one of the comparisons supported directly by branches 1045 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1046 // with 1/-1. 1047 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1048 ISD::CondCode &CC, SelectionDAG &DAG) { 1049 // Convert X > -1 to X >= 0. 1050 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1051 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1052 CC = ISD::SETGE; 1053 return; 1054 } 1055 // Convert X < 1 to 0 >= X. 1056 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1057 RHS = LHS; 1058 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1059 CC = ISD::SETGE; 1060 return; 1061 } 1062 1063 switch (CC) { 1064 default: 1065 break; 1066 case ISD::SETGT: 1067 case ISD::SETLE: 1068 case ISD::SETUGT: 1069 case ISD::SETULE: 1070 CC = ISD::getSetCCSwappedOperands(CC); 1071 std::swap(LHS, RHS); 1072 break; 1073 } 1074 } 1075 1076 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1077 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1078 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1079 if (VT.getVectorElementType() == MVT::i1) 1080 KnownSize *= 8; 1081 1082 switch (KnownSize) { 1083 default: 1084 llvm_unreachable("Invalid LMUL."); 1085 case 8: 1086 return RISCVII::VLMUL::LMUL_F8; 1087 case 16: 1088 return RISCVII::VLMUL::LMUL_F4; 1089 case 32: 1090 return RISCVII::VLMUL::LMUL_F2; 1091 case 64: 1092 return RISCVII::VLMUL::LMUL_1; 1093 case 128: 1094 return RISCVII::VLMUL::LMUL_2; 1095 case 256: 1096 return RISCVII::VLMUL::LMUL_4; 1097 case 512: 1098 return RISCVII::VLMUL::LMUL_8; 1099 } 1100 } 1101 1102 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1103 switch (LMul) { 1104 default: 1105 llvm_unreachable("Invalid LMUL."); 1106 case RISCVII::VLMUL::LMUL_F8: 1107 case RISCVII::VLMUL::LMUL_F4: 1108 case RISCVII::VLMUL::LMUL_F2: 1109 case RISCVII::VLMUL::LMUL_1: 1110 return RISCV::VRRegClassID; 1111 case RISCVII::VLMUL::LMUL_2: 1112 return RISCV::VRM2RegClassID; 1113 case RISCVII::VLMUL::LMUL_4: 1114 return RISCV::VRM4RegClassID; 1115 case RISCVII::VLMUL::LMUL_8: 1116 return RISCV::VRM8RegClassID; 1117 } 1118 } 1119 1120 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1121 RISCVII::VLMUL LMUL = getLMUL(VT); 1122 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1123 LMUL == RISCVII::VLMUL::LMUL_F4 || 1124 LMUL == RISCVII::VLMUL::LMUL_F2 || 1125 LMUL == RISCVII::VLMUL::LMUL_1) { 1126 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1127 "Unexpected subreg numbering"); 1128 return RISCV::sub_vrm1_0 + Index; 1129 } 1130 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1131 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1132 "Unexpected subreg numbering"); 1133 return RISCV::sub_vrm2_0 + Index; 1134 } 1135 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1136 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1137 "Unexpected subreg numbering"); 1138 return RISCV::sub_vrm4_0 + Index; 1139 } 1140 llvm_unreachable("Invalid vector type."); 1141 } 1142 1143 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1144 if (VT.getVectorElementType() == MVT::i1) 1145 return RISCV::VRRegClassID; 1146 return getRegClassIDForLMUL(getLMUL(VT)); 1147 } 1148 1149 // Attempt to decompose a subvector insert/extract between VecVT and 1150 // SubVecVT via subregister indices. Returns the subregister index that 1151 // can perform the subvector insert/extract with the given element index, as 1152 // well as the index corresponding to any leftover subvectors that must be 1153 // further inserted/extracted within the register class for SubVecVT. 1154 std::pair<unsigned, unsigned> 1155 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1156 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1157 const RISCVRegisterInfo *TRI) { 1158 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1159 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1160 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1161 "Register classes not ordered"); 1162 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1163 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1164 // Try to compose a subregister index that takes us from the incoming 1165 // LMUL>1 register class down to the outgoing one. At each step we half 1166 // the LMUL: 1167 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1168 // Note that this is not guaranteed to find a subregister index, such as 1169 // when we are extracting from one VR type to another. 1170 unsigned SubRegIdx = RISCV::NoSubRegister; 1171 for (const unsigned RCID : 1172 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1173 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1174 VecVT = VecVT.getHalfNumVectorElementsVT(); 1175 bool IsHi = 1176 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1177 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1178 getSubregIndexByMVT(VecVT, IsHi)); 1179 if (IsHi) 1180 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1181 } 1182 return {SubRegIdx, InsertExtractIdx}; 1183 } 1184 1185 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1186 // stores for those types. 1187 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1188 return !Subtarget.useRVVForFixedLengthVectors() || 1189 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1190 } 1191 1192 static bool useRVVForFixedLengthVectorVT(MVT VT, 1193 const RISCVSubtarget &Subtarget) { 1194 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1195 if (!Subtarget.useRVVForFixedLengthVectors()) 1196 return false; 1197 1198 // We only support a set of vector types with a consistent maximum fixed size 1199 // across all supported vector element types to avoid legalization issues. 1200 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1201 // fixed-length vector type we support is 1024 bytes. 1202 if (VT.getFixedSizeInBits() > 1024 * 8) 1203 return false; 1204 1205 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1206 1207 // Don't use RVV for vectors we cannot scalarize if required. 1208 switch (VT.getVectorElementType().SimpleTy) { 1209 // i1 is supported but has different rules. 1210 default: 1211 return false; 1212 case MVT::i1: 1213 // Masks can only use a single register. 1214 if (VT.getVectorNumElements() > MinVLen) 1215 return false; 1216 MinVLen /= 8; 1217 break; 1218 case MVT::i8: 1219 case MVT::i16: 1220 case MVT::i32: 1221 case MVT::i64: 1222 break; 1223 case MVT::f16: 1224 if (!Subtarget.hasStdExtZfh()) 1225 return false; 1226 break; 1227 case MVT::f32: 1228 if (!Subtarget.hasStdExtF()) 1229 return false; 1230 break; 1231 case MVT::f64: 1232 if (!Subtarget.hasStdExtD()) 1233 return false; 1234 break; 1235 } 1236 1237 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1238 // Don't use RVV for types that don't fit. 1239 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1240 return false; 1241 1242 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1243 // the base fixed length RVV support in place. 1244 if (!VT.isPow2VectorType()) 1245 return false; 1246 1247 return true; 1248 } 1249 1250 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1251 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1252 } 1253 1254 // Return the largest legal scalable vector type that matches VT's element type. 1255 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1256 const RISCVSubtarget &Subtarget) { 1257 // This may be called before legal types are setup. 1258 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1259 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1260 "Expected legal fixed length vector!"); 1261 1262 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1263 1264 MVT EltVT = VT.getVectorElementType(); 1265 switch (EltVT.SimpleTy) { 1266 default: 1267 llvm_unreachable("unexpected element type for RVV container"); 1268 case MVT::i1: 1269 case MVT::i8: 1270 case MVT::i16: 1271 case MVT::i32: 1272 case MVT::i64: 1273 case MVT::f16: 1274 case MVT::f32: 1275 case MVT::f64: { 1276 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1277 // narrower types, but we can't have a fractional LMUL with demoninator less 1278 // than 64/SEW. 1279 unsigned NumElts = 1280 divideCeil(VT.getVectorNumElements(), MinVLen / RISCV::RVVBitsPerBlock); 1281 return MVT::getScalableVectorVT(EltVT, NumElts); 1282 } 1283 } 1284 } 1285 1286 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1287 const RISCVSubtarget &Subtarget) { 1288 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1289 Subtarget); 1290 } 1291 1292 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1293 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1294 } 1295 1296 // Grow V to consume an entire RVV register. 1297 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1298 const RISCVSubtarget &Subtarget) { 1299 assert(VT.isScalableVector() && 1300 "Expected to convert into a scalable vector!"); 1301 assert(V.getValueType().isFixedLengthVector() && 1302 "Expected a fixed length vector operand!"); 1303 SDLoc DL(V); 1304 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1305 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1306 } 1307 1308 // Shrink V so it's just big enough to maintain a VT's worth of data. 1309 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1310 const RISCVSubtarget &Subtarget) { 1311 assert(VT.isFixedLengthVector() && 1312 "Expected to convert into a fixed length vector!"); 1313 assert(V.getValueType().isScalableVector() && 1314 "Expected a scalable vector operand!"); 1315 SDLoc DL(V); 1316 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1317 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1318 } 1319 1320 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1321 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1322 // the vector type that it is contained in. 1323 static std::pair<SDValue, SDValue> 1324 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1325 const RISCVSubtarget &Subtarget) { 1326 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1327 MVT XLenVT = Subtarget.getXLenVT(); 1328 SDValue VL = VecVT.isFixedLengthVector() 1329 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1330 : DAG.getRegister(RISCV::X0, XLenVT); 1331 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1332 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1333 return {Mask, VL}; 1334 } 1335 1336 // As above but assuming the given type is a scalable vector type. 1337 static std::pair<SDValue, SDValue> 1338 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1339 const RISCVSubtarget &Subtarget) { 1340 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1341 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1342 } 1343 1344 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1345 // of either is (currently) supported. This can get us into an infinite loop 1346 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1347 // as a ..., etc. 1348 // Until either (or both) of these can reliably lower any node, reporting that 1349 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1350 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1351 // which is not desirable. 1352 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1353 EVT VT, unsigned DefinedValues) const { 1354 return false; 1355 } 1356 1357 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1358 // Only splats are currently supported. 1359 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1360 return true; 1361 1362 return false; 1363 } 1364 1365 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1366 // RISCV FP-to-int conversions saturate to the destination register size, but 1367 // don't produce 0 for nan. We can use a conversion instruction and fix the 1368 // nan case with a compare and a select. 1369 SDValue Src = Op.getOperand(0); 1370 1371 EVT DstVT = Op.getValueType(); 1372 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1373 1374 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1375 unsigned Opc; 1376 if (SatVT == DstVT) 1377 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1378 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1379 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1380 else 1381 return SDValue(); 1382 // FIXME: Support other SatVTs by clamping before or after the conversion. 1383 1384 SDLoc DL(Op); 1385 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1386 1387 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1388 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1389 } 1390 1391 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1392 const RISCVSubtarget &Subtarget) { 1393 MVT VT = Op.getSimpleValueType(); 1394 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1395 1396 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1397 1398 SDLoc DL(Op); 1399 SDValue Mask, VL; 1400 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1401 1402 unsigned Opc = 1403 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1404 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1405 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1406 } 1407 1408 struct VIDSequence { 1409 int64_t StepNumerator; 1410 unsigned StepDenominator; 1411 int64_t Addend; 1412 }; 1413 1414 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1415 // to the (non-zero) step S and start value X. This can be then lowered as the 1416 // RVV sequence (VID * S) + X, for example. 1417 // The step S is represented as an integer numerator divided by a positive 1418 // denominator. Note that the implementation currently only identifies 1419 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1420 // cannot detect 2/3, for example. 1421 // Note that this method will also match potentially unappealing index 1422 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1423 // determine whether this is worth generating code for. 1424 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1425 unsigned NumElts = Op.getNumOperands(); 1426 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1427 if (!Op.getValueType().isInteger()) 1428 return None; 1429 1430 Optional<unsigned> SeqStepDenom; 1431 Optional<int64_t> SeqStepNum, SeqAddend; 1432 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1433 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1434 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1435 // Assume undef elements match the sequence; we just have to be careful 1436 // when interpolating across them. 1437 if (Op.getOperand(Idx).isUndef()) 1438 continue; 1439 // The BUILD_VECTOR must be all constants. 1440 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1441 return None; 1442 1443 uint64_t Val = Op.getConstantOperandVal(Idx) & 1444 maskTrailingOnes<uint64_t>(EltSizeInBits); 1445 1446 if (PrevElt) { 1447 // Calculate the step since the last non-undef element, and ensure 1448 // it's consistent across the entire sequence. 1449 unsigned IdxDiff = Idx - PrevElt->second; 1450 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1451 1452 // A zero-value value difference means that we're somewhere in the middle 1453 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1454 // step change before evaluating the sequence. 1455 if (ValDiff != 0) { 1456 int64_t Remainder = ValDiff % IdxDiff; 1457 // Normalize the step if it's greater than 1. 1458 if (Remainder != ValDiff) { 1459 // The difference must cleanly divide the element span. 1460 if (Remainder != 0) 1461 return None; 1462 ValDiff /= IdxDiff; 1463 IdxDiff = 1; 1464 } 1465 1466 if (!SeqStepNum) 1467 SeqStepNum = ValDiff; 1468 else if (ValDiff != SeqStepNum) 1469 return None; 1470 1471 if (!SeqStepDenom) 1472 SeqStepDenom = IdxDiff; 1473 else if (IdxDiff != *SeqStepDenom) 1474 return None; 1475 } 1476 } 1477 1478 // Record and/or check any addend. 1479 if (SeqStepNum && SeqStepDenom) { 1480 uint64_t ExpectedVal = 1481 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1482 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1483 if (!SeqAddend) 1484 SeqAddend = Addend; 1485 else if (SeqAddend != Addend) 1486 return None; 1487 } 1488 1489 // Record this non-undef element for later. 1490 if (!PrevElt || PrevElt->first != Val) 1491 PrevElt = std::make_pair(Val, Idx); 1492 } 1493 // We need to have logged both a step and an addend for this to count as 1494 // a legal index sequence. 1495 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1496 return None; 1497 1498 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1499 } 1500 1501 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1502 const RISCVSubtarget &Subtarget) { 1503 MVT VT = Op.getSimpleValueType(); 1504 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1505 1506 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1507 1508 SDLoc DL(Op); 1509 SDValue Mask, VL; 1510 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1511 1512 MVT XLenVT = Subtarget.getXLenVT(); 1513 unsigned NumElts = Op.getNumOperands(); 1514 1515 if (VT.getVectorElementType() == MVT::i1) { 1516 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1517 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1518 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1519 } 1520 1521 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1522 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1523 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1524 } 1525 1526 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1527 // scalar integer chunks whose bit-width depends on the number of mask 1528 // bits and XLEN. 1529 // First, determine the most appropriate scalar integer type to use. This 1530 // is at most XLenVT, but may be shrunk to a smaller vector element type 1531 // according to the size of the final vector - use i8 chunks rather than 1532 // XLenVT if we're producing a v8i1. This results in more consistent 1533 // codegen across RV32 and RV64. 1534 unsigned NumViaIntegerBits = 1535 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1536 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1537 // If we have to use more than one INSERT_VECTOR_ELT then this 1538 // optimization is likely to increase code size; avoid peforming it in 1539 // such a case. We can use a load from a constant pool in this case. 1540 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1541 return SDValue(); 1542 // Now we can create our integer vector type. Note that it may be larger 1543 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1544 MVT IntegerViaVecVT = 1545 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1546 divideCeil(NumElts, NumViaIntegerBits)); 1547 1548 uint64_t Bits = 0; 1549 unsigned BitPos = 0, IntegerEltIdx = 0; 1550 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1551 1552 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1553 // Once we accumulate enough bits to fill our scalar type, insert into 1554 // our vector and clear our accumulated data. 1555 if (I != 0 && I % NumViaIntegerBits == 0) { 1556 if (NumViaIntegerBits <= 32) 1557 Bits = SignExtend64(Bits, 32); 1558 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1559 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1560 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1561 Bits = 0; 1562 BitPos = 0; 1563 IntegerEltIdx++; 1564 } 1565 SDValue V = Op.getOperand(I); 1566 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1567 Bits |= ((uint64_t)BitValue << BitPos); 1568 } 1569 1570 // Insert the (remaining) scalar value into position in our integer 1571 // vector type. 1572 if (NumViaIntegerBits <= 32) 1573 Bits = SignExtend64(Bits, 32); 1574 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1575 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1576 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1577 1578 if (NumElts < NumViaIntegerBits) { 1579 // If we're producing a smaller vector than our minimum legal integer 1580 // type, bitcast to the equivalent (known-legal) mask type, and extract 1581 // our final mask. 1582 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1583 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1584 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1585 DAG.getConstant(0, DL, XLenVT)); 1586 } else { 1587 // Else we must have produced an integer type with the same size as the 1588 // mask type; bitcast for the final result. 1589 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1590 Vec = DAG.getBitcast(VT, Vec); 1591 } 1592 1593 return Vec; 1594 } 1595 1596 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1597 // vector type, we have a legal equivalently-sized i8 type, so we can use 1598 // that. 1599 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1600 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1601 1602 SDValue WideVec; 1603 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1604 // For a splat, perform a scalar truncate before creating the wider 1605 // vector. 1606 assert(Splat.getValueType() == XLenVT && 1607 "Unexpected type for i1 splat value"); 1608 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1609 DAG.getConstant(1, DL, XLenVT)); 1610 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1611 } else { 1612 SmallVector<SDValue, 8> Ops(Op->op_values()); 1613 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1614 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1615 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1616 } 1617 1618 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1619 } 1620 1621 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1622 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1623 : RISCVISD::VMV_V_X_VL; 1624 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1625 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1626 } 1627 1628 // Try and match index sequences, which we can lower to the vid instruction 1629 // with optional modifications. An all-undef vector is matched by 1630 // getSplatValue, above. 1631 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1632 int64_t StepNumerator = SimpleVID->StepNumerator; 1633 unsigned StepDenominator = SimpleVID->StepDenominator; 1634 int64_t Addend = SimpleVID->Addend; 1635 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1636 // threshold since it's the immediate value many RVV instructions accept. 1637 if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) && 1638 isInt<5>(Addend)) { 1639 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1640 // Convert right out of the scalable type so we can use standard ISD 1641 // nodes for the rest of the computation. If we used scalable types with 1642 // these, we'd lose the fixed-length vector info and generate worse 1643 // vsetvli code. 1644 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 1645 assert(StepNumerator != 0 && "Invalid step"); 1646 bool Negate = false; 1647 if (StepNumerator != 1) { 1648 int64_t SplatStepVal = StepNumerator; 1649 unsigned Opcode = ISD::MUL; 1650 if (isPowerOf2_64(std::abs(StepNumerator))) { 1651 Negate = StepNumerator < 0; 1652 Opcode = ISD::SHL; 1653 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1654 } 1655 SDValue SplatStep = DAG.getSplatVector( 1656 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 1657 VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep); 1658 } 1659 if (StepDenominator != 1) { 1660 SDValue SplatStep = DAG.getSplatVector( 1661 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 1662 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 1663 } 1664 if (Addend != 0 || Negate) { 1665 SDValue SplatAddend = 1666 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 1667 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 1668 } 1669 return VID; 1670 } 1671 } 1672 1673 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1674 // when re-interpreted as a vector with a larger element type. For example, 1675 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1676 // could be instead splat as 1677 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1678 // TODO: This optimization could also work on non-constant splats, but it 1679 // would require bit-manipulation instructions to construct the splat value. 1680 SmallVector<SDValue> Sequence; 1681 unsigned EltBitSize = VT.getScalarSizeInBits(); 1682 const auto *BV = cast<BuildVectorSDNode>(Op); 1683 if (VT.isInteger() && EltBitSize < 64 && 1684 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1685 BV->getRepeatedSequence(Sequence) && 1686 (Sequence.size() * EltBitSize) <= 64) { 1687 unsigned SeqLen = Sequence.size(); 1688 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1689 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1690 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1691 ViaIntVT == MVT::i64) && 1692 "Unexpected sequence type"); 1693 1694 unsigned EltIdx = 0; 1695 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1696 uint64_t SplatValue = 0; 1697 // Construct the amalgamated value which can be splatted as this larger 1698 // vector type. 1699 for (const auto &SeqV : Sequence) { 1700 if (!SeqV.isUndef()) 1701 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1702 << (EltIdx * EltBitSize)); 1703 EltIdx++; 1704 } 1705 1706 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1707 // achieve better constant materializion. 1708 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1709 SplatValue = SignExtend64(SplatValue, 32); 1710 1711 // Since we can't introduce illegal i64 types at this stage, we can only 1712 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1713 // way we can use RVV instructions to splat. 1714 assert((ViaIntVT.bitsLE(XLenVT) || 1715 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1716 "Unexpected bitcast sequence"); 1717 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1718 SDValue ViaVL = 1719 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1720 MVT ViaContainerVT = 1721 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1722 SDValue Splat = 1723 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1724 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1725 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1726 return DAG.getBitcast(VT, Splat); 1727 } 1728 } 1729 1730 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1731 // which constitute a large proportion of the elements. In such cases we can 1732 // splat a vector with the dominant element and make up the shortfall with 1733 // INSERT_VECTOR_ELTs. 1734 // Note that this includes vectors of 2 elements by association. The 1735 // upper-most element is the "dominant" one, allowing us to use a splat to 1736 // "insert" the upper element, and an insert of the lower element at position 1737 // 0, which improves codegen. 1738 SDValue DominantValue; 1739 unsigned MostCommonCount = 0; 1740 DenseMap<SDValue, unsigned> ValueCounts; 1741 unsigned NumUndefElts = 1742 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1743 1744 // Track the number of scalar loads we know we'd be inserting, estimated as 1745 // any non-zero floating-point constant. Other kinds of element are either 1746 // already in registers or are materialized on demand. The threshold at which 1747 // a vector load is more desirable than several scalar materializion and 1748 // vector-insertion instructions is not known. 1749 unsigned NumScalarLoads = 0; 1750 1751 for (SDValue V : Op->op_values()) { 1752 if (V.isUndef()) 1753 continue; 1754 1755 ValueCounts.insert(std::make_pair(V, 0)); 1756 unsigned &Count = ValueCounts[V]; 1757 1758 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 1759 NumScalarLoads += !CFP->isExactlyValue(+0.0); 1760 1761 // Is this value dominant? In case of a tie, prefer the highest element as 1762 // it's cheaper to insert near the beginning of a vector than it is at the 1763 // end. 1764 if (++Count >= MostCommonCount) { 1765 DominantValue = V; 1766 MostCommonCount = Count; 1767 } 1768 } 1769 1770 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1771 unsigned NumDefElts = NumElts - NumUndefElts; 1772 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1773 1774 // Don't perform this optimization when optimizing for size, since 1775 // materializing elements and inserting them tends to cause code bloat. 1776 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 1777 ((MostCommonCount > DominantValueCountThreshold) || 1778 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1779 // Start by splatting the most common element. 1780 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1781 1782 DenseSet<SDValue> Processed{DominantValue}; 1783 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1784 for (const auto &OpIdx : enumerate(Op->ops())) { 1785 const SDValue &V = OpIdx.value(); 1786 if (V.isUndef() || !Processed.insert(V).second) 1787 continue; 1788 if (ValueCounts[V] == 1) { 1789 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1790 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1791 } else { 1792 // Blend in all instances of this value using a VSELECT, using a 1793 // mask where each bit signals whether that element is the one 1794 // we're after. 1795 SmallVector<SDValue> Ops; 1796 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1797 return DAG.getConstant(V == V1, DL, XLenVT); 1798 }); 1799 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1800 DAG.getBuildVector(SelMaskTy, DL, Ops), 1801 DAG.getSplatBuildVector(VT, DL, V), Vec); 1802 } 1803 } 1804 1805 return Vec; 1806 } 1807 1808 return SDValue(); 1809 } 1810 1811 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1812 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1813 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1814 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1815 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1816 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1817 // node in order to try and match RVV vector/scalar instructions. 1818 if ((LoC >> 31) == HiC) 1819 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1820 } 1821 1822 // Fall back to a stack store and stride x0 vector load. 1823 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 1824 } 1825 1826 // Called by type legalization to handle splat of i64 on RV32. 1827 // FIXME: We can optimize this when the type has sign or zero bits in one 1828 // of the halves. 1829 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 1830 SDValue VL, SelectionDAG &DAG) { 1831 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 1832 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1833 DAG.getConstant(0, DL, MVT::i32)); 1834 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1835 DAG.getConstant(1, DL, MVT::i32)); 1836 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 1837 } 1838 1839 // This function lowers a splat of a scalar operand Splat with the vector 1840 // length VL. It ensures the final sequence is type legal, which is useful when 1841 // lowering a splat after type legalization. 1842 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 1843 SelectionDAG &DAG, 1844 const RISCVSubtarget &Subtarget) { 1845 if (VT.isFloatingPoint()) 1846 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 1847 1848 MVT XLenVT = Subtarget.getXLenVT(); 1849 1850 // Simplest case is that the operand needs to be promoted to XLenVT. 1851 if (Scalar.getValueType().bitsLE(XLenVT)) { 1852 // If the operand is a constant, sign extend to increase our chances 1853 // of being able to use a .vi instruction. ANY_EXTEND would become a 1854 // a zero extend and the simm5 check in isel would fail. 1855 // FIXME: Should we ignore the upper bits in isel instead? 1856 unsigned ExtOpc = 1857 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 1858 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 1859 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 1860 } 1861 1862 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 1863 "Unexpected scalar for splat lowering!"); 1864 1865 // Otherwise use the more complicated splatting algorithm. 1866 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 1867 } 1868 1869 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1870 const RISCVSubtarget &Subtarget) { 1871 SDValue V1 = Op.getOperand(0); 1872 SDValue V2 = Op.getOperand(1); 1873 SDLoc DL(Op); 1874 MVT XLenVT = Subtarget.getXLenVT(); 1875 MVT VT = Op.getSimpleValueType(); 1876 unsigned NumElts = VT.getVectorNumElements(); 1877 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1878 1879 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1880 1881 SDValue TrueMask, VL; 1882 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1883 1884 if (SVN->isSplat()) { 1885 const int Lane = SVN->getSplatIndex(); 1886 if (Lane >= 0) { 1887 MVT SVT = VT.getVectorElementType(); 1888 1889 // Turn splatted vector load into a strided load with an X0 stride. 1890 SDValue V = V1; 1891 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 1892 // with undef. 1893 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 1894 int Offset = Lane; 1895 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 1896 int OpElements = 1897 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 1898 V = V.getOperand(Offset / OpElements); 1899 Offset %= OpElements; 1900 } 1901 1902 // We need to ensure the load isn't atomic or volatile. 1903 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 1904 auto *Ld = cast<LoadSDNode>(V); 1905 Offset *= SVT.getStoreSize(); 1906 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 1907 TypeSize::Fixed(Offset), DL); 1908 1909 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 1910 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 1911 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 1912 SDValue IntID = 1913 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 1914 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 1915 DAG.getRegister(RISCV::X0, XLenVT), VL}; 1916 SDValue NewLoad = DAG.getMemIntrinsicNode( 1917 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 1918 DAG.getMachineFunction().getMachineMemOperand( 1919 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 1920 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 1921 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 1922 } 1923 1924 // Otherwise use a scalar load and splat. This will give the best 1925 // opportunity to fold a splat into the operation. ISel can turn it into 1926 // the x0 strided load if we aren't able to fold away the select. 1927 if (SVT.isFloatingPoint()) 1928 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 1929 Ld->getPointerInfo().getWithOffset(Offset), 1930 Ld->getOriginalAlign(), 1931 Ld->getMemOperand()->getFlags()); 1932 else 1933 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 1934 Ld->getPointerInfo().getWithOffset(Offset), SVT, 1935 Ld->getOriginalAlign(), 1936 Ld->getMemOperand()->getFlags()); 1937 DAG.makeEquivalentMemoryOrdering(Ld, V); 1938 1939 unsigned Opc = 1940 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1941 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 1942 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1943 } 1944 1945 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1946 assert(Lane < (int)NumElts && "Unexpected lane!"); 1947 SDValue Gather = 1948 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1949 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 1950 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1951 } 1952 } 1953 1954 // Detect shuffles which can be re-expressed as vector selects; these are 1955 // shuffles in which each element in the destination is taken from an element 1956 // at the corresponding index in either source vectors. 1957 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 1958 int MaskIndex = MaskIdx.value(); 1959 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 1960 }); 1961 1962 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 1963 1964 SmallVector<SDValue> MaskVals; 1965 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 1966 // merged with a second vrgather. 1967 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 1968 1969 // By default we preserve the original operand order, and use a mask to 1970 // select LHS as true and RHS as false. However, since RVV vector selects may 1971 // feature splats but only on the LHS, we may choose to invert our mask and 1972 // instead select between RHS and LHS. 1973 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 1974 bool InvertMask = IsSelect == SwapOps; 1975 1976 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 1977 // half. 1978 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 1979 1980 // Now construct the mask that will be used by the vselect or blended 1981 // vrgather operation. For vrgathers, construct the appropriate indices into 1982 // each vector. 1983 for (int MaskIndex : SVN->getMask()) { 1984 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 1985 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 1986 if (!IsSelect) { 1987 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 1988 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 1989 ? DAG.getConstant(MaskIndex, DL, XLenVT) 1990 : DAG.getUNDEF(XLenVT)); 1991 GatherIndicesRHS.push_back( 1992 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 1993 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 1994 if (IsLHSOrUndefIndex && MaskIndex >= 0) 1995 ++LHSIndexCounts[MaskIndex]; 1996 if (!IsLHSOrUndefIndex) 1997 ++RHSIndexCounts[MaskIndex - NumElts]; 1998 } 1999 } 2000 2001 if (SwapOps) { 2002 std::swap(V1, V2); 2003 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2004 } 2005 2006 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2007 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2008 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2009 2010 if (IsSelect) 2011 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2012 2013 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2014 // On such a large vector we're unable to use i8 as the index type. 2015 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2016 // may involve vector splitting if we're already at LMUL=8, or our 2017 // user-supplied maximum fixed-length LMUL. 2018 return SDValue(); 2019 } 2020 2021 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2022 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2023 MVT IndexVT = VT.changeTypeToInteger(); 2024 // Since we can't introduce illegal index types at this stage, use i16 and 2025 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2026 // than XLenVT. 2027 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2028 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2029 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2030 } 2031 2032 MVT IndexContainerVT = 2033 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2034 2035 SDValue Gather; 2036 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2037 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2038 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2039 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2040 } else { 2041 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2042 // If only one index is used, we can use a "splat" vrgather. 2043 // TODO: We can splat the most-common index and fix-up any stragglers, if 2044 // that's beneficial. 2045 if (LHSIndexCounts.size() == 1) { 2046 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2047 Gather = 2048 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2049 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2050 } else { 2051 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2052 LHSIndices = 2053 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2054 2055 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2056 TrueMask, VL); 2057 } 2058 } 2059 2060 // If a second vector operand is used by this shuffle, blend it in with an 2061 // additional vrgather. 2062 if (!V2.isUndef()) { 2063 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2064 // If only one index is used, we can use a "splat" vrgather. 2065 // TODO: We can splat the most-common index and fix-up any stragglers, if 2066 // that's beneficial. 2067 if (RHSIndexCounts.size() == 1) { 2068 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2069 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2070 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2071 } else { 2072 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2073 RHSIndices = 2074 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2075 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2076 VL); 2077 } 2078 2079 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2080 SelectMask = 2081 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2082 2083 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2084 Gather, VL); 2085 } 2086 2087 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2088 } 2089 2090 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2091 SDLoc DL, SelectionDAG &DAG, 2092 const RISCVSubtarget &Subtarget) { 2093 if (VT.isScalableVector()) 2094 return DAG.getFPExtendOrRound(Op, DL, VT); 2095 assert(VT.isFixedLengthVector() && 2096 "Unexpected value type for RVV FP extend/round lowering"); 2097 SDValue Mask, VL; 2098 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2099 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2100 ? RISCVISD::FP_EXTEND_VL 2101 : RISCVISD::FP_ROUND_VL; 2102 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2103 } 2104 2105 // While RVV has alignment restrictions, we should always be able to load as a 2106 // legal equivalently-sized byte-typed vector instead. This method is 2107 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2108 // the load is already correctly-aligned, it returns SDValue(). 2109 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2110 SelectionDAG &DAG) const { 2111 auto *Load = cast<LoadSDNode>(Op); 2112 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2113 2114 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2115 Load->getMemoryVT(), 2116 *Load->getMemOperand())) 2117 return SDValue(); 2118 2119 SDLoc DL(Op); 2120 MVT VT = Op.getSimpleValueType(); 2121 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2122 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2123 "Unexpected unaligned RVV load type"); 2124 MVT NewVT = 2125 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2126 assert(NewVT.isValid() && 2127 "Expecting equally-sized RVV vector types to be legal"); 2128 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2129 Load->getPointerInfo(), Load->getOriginalAlign(), 2130 Load->getMemOperand()->getFlags()); 2131 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2132 } 2133 2134 // While RVV has alignment restrictions, we should always be able to store as a 2135 // legal equivalently-sized byte-typed vector instead. This method is 2136 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2137 // returns SDValue() if the store is already correctly aligned. 2138 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2139 SelectionDAG &DAG) const { 2140 auto *Store = cast<StoreSDNode>(Op); 2141 assert(Store && Store->getValue().getValueType().isVector() && 2142 "Expected vector store"); 2143 2144 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2145 Store->getMemoryVT(), 2146 *Store->getMemOperand())) 2147 return SDValue(); 2148 2149 SDLoc DL(Op); 2150 SDValue StoredVal = Store->getValue(); 2151 MVT VT = StoredVal.getSimpleValueType(); 2152 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2153 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2154 "Unexpected unaligned RVV store type"); 2155 MVT NewVT = 2156 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2157 assert(NewVT.isValid() && 2158 "Expecting equally-sized RVV vector types to be legal"); 2159 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2160 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2161 Store->getPointerInfo(), Store->getOriginalAlign(), 2162 Store->getMemOperand()->getFlags()); 2163 } 2164 2165 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2166 SelectionDAG &DAG) const { 2167 switch (Op.getOpcode()) { 2168 default: 2169 report_fatal_error("unimplemented operand"); 2170 case ISD::GlobalAddress: 2171 return lowerGlobalAddress(Op, DAG); 2172 case ISD::BlockAddress: 2173 return lowerBlockAddress(Op, DAG); 2174 case ISD::ConstantPool: 2175 return lowerConstantPool(Op, DAG); 2176 case ISD::JumpTable: 2177 return lowerJumpTable(Op, DAG); 2178 case ISD::GlobalTLSAddress: 2179 return lowerGlobalTLSAddress(Op, DAG); 2180 case ISD::SELECT: 2181 return lowerSELECT(Op, DAG); 2182 case ISD::BRCOND: 2183 return lowerBRCOND(Op, DAG); 2184 case ISD::VASTART: 2185 return lowerVASTART(Op, DAG); 2186 case ISD::FRAMEADDR: 2187 return lowerFRAMEADDR(Op, DAG); 2188 case ISD::RETURNADDR: 2189 return lowerRETURNADDR(Op, DAG); 2190 case ISD::SHL_PARTS: 2191 return lowerShiftLeftParts(Op, DAG); 2192 case ISD::SRA_PARTS: 2193 return lowerShiftRightParts(Op, DAG, true); 2194 case ISD::SRL_PARTS: 2195 return lowerShiftRightParts(Op, DAG, false); 2196 case ISD::BITCAST: { 2197 SDLoc DL(Op); 2198 EVT VT = Op.getValueType(); 2199 SDValue Op0 = Op.getOperand(0); 2200 EVT Op0VT = Op0.getValueType(); 2201 MVT XLenVT = Subtarget.getXLenVT(); 2202 if (VT.isFixedLengthVector()) { 2203 // We can handle fixed length vector bitcasts with a simple replacement 2204 // in isel. 2205 if (Op0VT.isFixedLengthVector()) 2206 return Op; 2207 // When bitcasting from scalar to fixed-length vector, insert the scalar 2208 // into a one-element vector of the result type, and perform a vector 2209 // bitcast. 2210 if (!Op0VT.isVector()) { 2211 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2212 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2213 DAG.getUNDEF(BVT), Op0, 2214 DAG.getConstant(0, DL, XLenVT))); 2215 } 2216 return SDValue(); 2217 } 2218 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2219 // thus: bitcast the vector to a one-element vector type whose element type 2220 // is the same as the result type, and extract the first element. 2221 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2222 LLVMContext &Context = *DAG.getContext(); 2223 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 2224 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2225 DAG.getConstant(0, DL, XLenVT)); 2226 } 2227 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2228 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2229 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2230 return FPConv; 2231 } 2232 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2233 Subtarget.hasStdExtF()) { 2234 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2235 SDValue FPConv = 2236 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2237 return FPConv; 2238 } 2239 return SDValue(); 2240 } 2241 case ISD::INTRINSIC_WO_CHAIN: 2242 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2243 case ISD::INTRINSIC_W_CHAIN: 2244 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2245 case ISD::BSWAP: 2246 case ISD::BITREVERSE: { 2247 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2248 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2249 MVT VT = Op.getSimpleValueType(); 2250 SDLoc DL(Op); 2251 // Start with the maximum immediate value which is the bitwidth - 1. 2252 unsigned Imm = VT.getSizeInBits() - 1; 2253 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2254 if (Op.getOpcode() == ISD::BSWAP) 2255 Imm &= ~0x7U; 2256 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2257 DAG.getConstant(Imm, DL, VT)); 2258 } 2259 case ISD::FSHL: 2260 case ISD::FSHR: { 2261 MVT VT = Op.getSimpleValueType(); 2262 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2263 SDLoc DL(Op); 2264 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2265 return Op; 2266 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2267 // use log(XLen) bits. Mask the shift amount accordingly. 2268 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2269 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2270 DAG.getConstant(ShAmtWidth, DL, VT)); 2271 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2272 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2273 } 2274 case ISD::TRUNCATE: { 2275 SDLoc DL(Op); 2276 MVT VT = Op.getSimpleValueType(); 2277 // Only custom-lower vector truncates 2278 if (!VT.isVector()) 2279 return Op; 2280 2281 // Truncates to mask types are handled differently 2282 if (VT.getVectorElementType() == MVT::i1) 2283 return lowerVectorMaskTrunc(Op, DAG); 2284 2285 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2286 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2287 // truncate by one power of two at a time. 2288 MVT DstEltVT = VT.getVectorElementType(); 2289 2290 SDValue Src = Op.getOperand(0); 2291 MVT SrcVT = Src.getSimpleValueType(); 2292 MVT SrcEltVT = SrcVT.getVectorElementType(); 2293 2294 assert(DstEltVT.bitsLT(SrcEltVT) && 2295 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2296 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2297 "Unexpected vector truncate lowering"); 2298 2299 MVT ContainerVT = SrcVT; 2300 if (SrcVT.isFixedLengthVector()) { 2301 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2302 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2303 } 2304 2305 SDValue Result = Src; 2306 SDValue Mask, VL; 2307 std::tie(Mask, VL) = 2308 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2309 LLVMContext &Context = *DAG.getContext(); 2310 const ElementCount Count = ContainerVT.getVectorElementCount(); 2311 do { 2312 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2313 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2314 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2315 Mask, VL); 2316 } while (SrcEltVT != DstEltVT); 2317 2318 if (SrcVT.isFixedLengthVector()) 2319 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2320 2321 return Result; 2322 } 2323 case ISD::ANY_EXTEND: 2324 case ISD::ZERO_EXTEND: 2325 if (Op.getOperand(0).getValueType().isVector() && 2326 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2327 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2328 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2329 case ISD::SIGN_EXTEND: 2330 if (Op.getOperand(0).getValueType().isVector() && 2331 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2332 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2333 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2334 case ISD::SPLAT_VECTOR_PARTS: 2335 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2336 case ISD::INSERT_VECTOR_ELT: 2337 return lowerINSERT_VECTOR_ELT(Op, DAG); 2338 case ISD::EXTRACT_VECTOR_ELT: 2339 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2340 case ISD::VSCALE: { 2341 MVT VT = Op.getSimpleValueType(); 2342 SDLoc DL(Op); 2343 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2344 // We define our scalable vector types for lmul=1 to use a 64 bit known 2345 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2346 // vscale as VLENB / 8. 2347 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2348 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2349 // We assume VLENB is a multiple of 8. We manually choose the best shift 2350 // here because SimplifyDemandedBits isn't always able to simplify it. 2351 uint64_t Val = Op.getConstantOperandVal(0); 2352 if (isPowerOf2_64(Val)) { 2353 uint64_t Log2 = Log2_64(Val); 2354 if (Log2 < 3) 2355 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2356 DAG.getConstant(3 - Log2, DL, VT)); 2357 if (Log2 > 3) 2358 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2359 DAG.getConstant(Log2 - 3, DL, VT)); 2360 return VLENB; 2361 } 2362 // If the multiplier is a multiple of 8, scale it down to avoid needing 2363 // to shift the VLENB value. 2364 if ((Val % 8) == 0) 2365 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2366 DAG.getConstant(Val / 8, DL, VT)); 2367 } 2368 2369 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2370 DAG.getConstant(3, DL, VT)); 2371 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2372 } 2373 case ISD::FP_EXTEND: { 2374 // RVV can only do fp_extend to types double the size as the source. We 2375 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2376 // via f32. 2377 SDLoc DL(Op); 2378 MVT VT = Op.getSimpleValueType(); 2379 SDValue Src = Op.getOperand(0); 2380 MVT SrcVT = Src.getSimpleValueType(); 2381 2382 // Prepare any fixed-length vector operands. 2383 MVT ContainerVT = VT; 2384 if (SrcVT.isFixedLengthVector()) { 2385 ContainerVT = getContainerForFixedLengthVector(VT); 2386 MVT SrcContainerVT = 2387 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2388 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2389 } 2390 2391 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2392 SrcVT.getVectorElementType() != MVT::f16) { 2393 // For scalable vectors, we only need to close the gap between 2394 // vXf16->vXf64. 2395 if (!VT.isFixedLengthVector()) 2396 return Op; 2397 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2398 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2399 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2400 } 2401 2402 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2403 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2404 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2405 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2406 2407 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2408 DL, DAG, Subtarget); 2409 if (VT.isFixedLengthVector()) 2410 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2411 return Extend; 2412 } 2413 case ISD::FP_ROUND: { 2414 // RVV can only do fp_round to types half the size as the source. We 2415 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2416 // conversion instruction. 2417 SDLoc DL(Op); 2418 MVT VT = Op.getSimpleValueType(); 2419 SDValue Src = Op.getOperand(0); 2420 MVT SrcVT = Src.getSimpleValueType(); 2421 2422 // Prepare any fixed-length vector operands. 2423 MVT ContainerVT = VT; 2424 if (VT.isFixedLengthVector()) { 2425 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2426 ContainerVT = 2427 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2428 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2429 } 2430 2431 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2432 SrcVT.getVectorElementType() != MVT::f64) { 2433 // For scalable vectors, we only need to close the gap between 2434 // vXf64<->vXf16. 2435 if (!VT.isFixedLengthVector()) 2436 return Op; 2437 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2438 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2439 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2440 } 2441 2442 SDValue Mask, VL; 2443 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2444 2445 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2446 SDValue IntermediateRound = 2447 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2448 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2449 DL, DAG, Subtarget); 2450 2451 if (VT.isFixedLengthVector()) 2452 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2453 return Round; 2454 } 2455 case ISD::FP_TO_SINT: 2456 case ISD::FP_TO_UINT: 2457 case ISD::SINT_TO_FP: 2458 case ISD::UINT_TO_FP: { 2459 // RVV can only do fp<->int conversions to types half/double the size as 2460 // the source. We custom-lower any conversions that do two hops into 2461 // sequences. 2462 MVT VT = Op.getSimpleValueType(); 2463 if (!VT.isVector()) 2464 return Op; 2465 SDLoc DL(Op); 2466 SDValue Src = Op.getOperand(0); 2467 MVT EltVT = VT.getVectorElementType(); 2468 MVT SrcVT = Src.getSimpleValueType(); 2469 MVT SrcEltVT = SrcVT.getVectorElementType(); 2470 unsigned EltSize = EltVT.getSizeInBits(); 2471 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2472 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2473 "Unexpected vector element types"); 2474 2475 bool IsInt2FP = SrcEltVT.isInteger(); 2476 // Widening conversions 2477 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2478 if (IsInt2FP) { 2479 // Do a regular integer sign/zero extension then convert to float. 2480 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2481 VT.getVectorElementCount()); 2482 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2483 ? ISD::ZERO_EXTEND 2484 : ISD::SIGN_EXTEND; 2485 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2486 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2487 } 2488 // FP2Int 2489 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2490 // Do one doubling fp_extend then complete the operation by converting 2491 // to int. 2492 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2493 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2494 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2495 } 2496 2497 // Narrowing conversions 2498 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2499 if (IsInt2FP) { 2500 // One narrowing int_to_fp, then an fp_round. 2501 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2502 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2503 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2504 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2505 } 2506 // FP2Int 2507 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2508 // representable by the integer, the result is poison. 2509 MVT IVecVT = 2510 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2511 VT.getVectorElementCount()); 2512 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2513 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2514 } 2515 2516 // Scalable vectors can exit here. Patterns will handle equally-sized 2517 // conversions halving/doubling ones. 2518 if (!VT.isFixedLengthVector()) 2519 return Op; 2520 2521 // For fixed-length vectors we lower to a custom "VL" node. 2522 unsigned RVVOpc = 0; 2523 switch (Op.getOpcode()) { 2524 default: 2525 llvm_unreachable("Impossible opcode"); 2526 case ISD::FP_TO_SINT: 2527 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2528 break; 2529 case ISD::FP_TO_UINT: 2530 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2531 break; 2532 case ISD::SINT_TO_FP: 2533 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2534 break; 2535 case ISD::UINT_TO_FP: 2536 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2537 break; 2538 } 2539 2540 MVT ContainerVT, SrcContainerVT; 2541 // Derive the reference container type from the larger vector type. 2542 if (SrcEltSize > EltSize) { 2543 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2544 ContainerVT = 2545 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2546 } else { 2547 ContainerVT = getContainerForFixedLengthVector(VT); 2548 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2549 } 2550 2551 SDValue Mask, VL; 2552 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2553 2554 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2555 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2556 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2557 } 2558 case ISD::FP_TO_SINT_SAT: 2559 case ISD::FP_TO_UINT_SAT: 2560 return lowerFP_TO_INT_SAT(Op, DAG); 2561 case ISD::VECREDUCE_ADD: 2562 case ISD::VECREDUCE_UMAX: 2563 case ISD::VECREDUCE_SMAX: 2564 case ISD::VECREDUCE_UMIN: 2565 case ISD::VECREDUCE_SMIN: 2566 return lowerVECREDUCE(Op, DAG); 2567 case ISD::VECREDUCE_AND: 2568 case ISD::VECREDUCE_OR: 2569 case ISD::VECREDUCE_XOR: 2570 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2571 return lowerVectorMaskVECREDUCE(Op, DAG); 2572 return lowerVECREDUCE(Op, DAG); 2573 case ISD::VECREDUCE_FADD: 2574 case ISD::VECREDUCE_SEQ_FADD: 2575 case ISD::VECREDUCE_FMIN: 2576 case ISD::VECREDUCE_FMAX: 2577 return lowerFPVECREDUCE(Op, DAG); 2578 case ISD::INSERT_SUBVECTOR: 2579 return lowerINSERT_SUBVECTOR(Op, DAG); 2580 case ISD::EXTRACT_SUBVECTOR: 2581 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2582 case ISD::STEP_VECTOR: 2583 return lowerSTEP_VECTOR(Op, DAG); 2584 case ISD::VECTOR_REVERSE: 2585 return lowerVECTOR_REVERSE(Op, DAG); 2586 case ISD::BUILD_VECTOR: 2587 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2588 case ISD::SPLAT_VECTOR: 2589 if (Op.getValueType().getVectorElementType() == MVT::i1) 2590 return lowerVectorMaskSplat(Op, DAG); 2591 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2592 case ISD::VECTOR_SHUFFLE: 2593 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2594 case ISD::CONCAT_VECTORS: { 2595 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2596 // better than going through the stack, as the default expansion does. 2597 SDLoc DL(Op); 2598 MVT VT = Op.getSimpleValueType(); 2599 unsigned NumOpElts = 2600 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2601 SDValue Vec = DAG.getUNDEF(VT); 2602 for (const auto &OpIdx : enumerate(Op->ops())) 2603 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2604 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2605 return Vec; 2606 } 2607 case ISD::LOAD: 2608 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2609 return V; 2610 if (Op.getValueType().isFixedLengthVector()) 2611 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2612 return Op; 2613 case ISD::STORE: 2614 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2615 return V; 2616 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2617 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2618 return Op; 2619 case ISD::MLOAD: 2620 return lowerMLOAD(Op, DAG); 2621 case ISD::MSTORE: 2622 return lowerMSTORE(Op, DAG); 2623 case ISD::SETCC: 2624 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2625 case ISD::ADD: 2626 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2627 case ISD::SUB: 2628 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2629 case ISD::MUL: 2630 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2631 case ISD::MULHS: 2632 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2633 case ISD::MULHU: 2634 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2635 case ISD::AND: 2636 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2637 RISCVISD::AND_VL); 2638 case ISD::OR: 2639 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2640 RISCVISD::OR_VL); 2641 case ISD::XOR: 2642 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2643 RISCVISD::XOR_VL); 2644 case ISD::SDIV: 2645 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2646 case ISD::SREM: 2647 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2648 case ISD::UDIV: 2649 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2650 case ISD::UREM: 2651 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2652 case ISD::SHL: 2653 case ISD::SRA: 2654 case ISD::SRL: 2655 if (Op.getSimpleValueType().isFixedLengthVector()) 2656 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2657 // This can be called for an i32 shift amount that needs to be promoted. 2658 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2659 "Unexpected custom legalisation"); 2660 return SDValue(); 2661 case ISD::SADDSAT: 2662 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 2663 case ISD::UADDSAT: 2664 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 2665 case ISD::SSUBSAT: 2666 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 2667 case ISD::USUBSAT: 2668 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 2669 case ISD::FADD: 2670 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2671 case ISD::FSUB: 2672 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2673 case ISD::FMUL: 2674 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2675 case ISD::FDIV: 2676 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2677 case ISD::FNEG: 2678 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2679 case ISD::FABS: 2680 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2681 case ISD::FSQRT: 2682 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2683 case ISD::FMA: 2684 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2685 case ISD::SMIN: 2686 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2687 case ISD::SMAX: 2688 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2689 case ISD::UMIN: 2690 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2691 case ISD::UMAX: 2692 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2693 case ISD::FMINNUM: 2694 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2695 case ISD::FMAXNUM: 2696 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2697 case ISD::ABS: 2698 return lowerABS(Op, DAG); 2699 case ISD::VSELECT: 2700 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2701 case ISD::FCOPYSIGN: 2702 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2703 case ISD::MGATHER: 2704 return lowerMGATHER(Op, DAG); 2705 case ISD::MSCATTER: 2706 return lowerMSCATTER(Op, DAG); 2707 case ISD::FLT_ROUNDS_: 2708 return lowerGET_ROUNDING(Op, DAG); 2709 case ISD::SET_ROUNDING: 2710 return lowerSET_ROUNDING(Op, DAG); 2711 case ISD::VP_ADD: 2712 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2713 case ISD::VP_SUB: 2714 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2715 case ISD::VP_MUL: 2716 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2717 case ISD::VP_SDIV: 2718 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2719 case ISD::VP_UDIV: 2720 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2721 case ISD::VP_SREM: 2722 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2723 case ISD::VP_UREM: 2724 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2725 case ISD::VP_AND: 2726 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2727 case ISD::VP_OR: 2728 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2729 case ISD::VP_XOR: 2730 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2731 case ISD::VP_ASHR: 2732 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2733 case ISD::VP_LSHR: 2734 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2735 case ISD::VP_SHL: 2736 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2737 case ISD::VP_FADD: 2738 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2739 case ISD::VP_FSUB: 2740 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2741 case ISD::VP_FMUL: 2742 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2743 case ISD::VP_FDIV: 2744 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2745 } 2746 } 2747 2748 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2749 SelectionDAG &DAG, unsigned Flags) { 2750 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2751 } 2752 2753 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2754 SelectionDAG &DAG, unsigned Flags) { 2755 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2756 Flags); 2757 } 2758 2759 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2760 SelectionDAG &DAG, unsigned Flags) { 2761 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2762 N->getOffset(), Flags); 2763 } 2764 2765 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2766 SelectionDAG &DAG, unsigned Flags) { 2767 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2768 } 2769 2770 template <class NodeTy> 2771 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2772 bool IsLocal) const { 2773 SDLoc DL(N); 2774 EVT Ty = getPointerTy(DAG.getDataLayout()); 2775 2776 if (isPositionIndependent()) { 2777 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2778 if (IsLocal) 2779 // Use PC-relative addressing to access the symbol. This generates the 2780 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2781 // %pcrel_lo(auipc)). 2782 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2783 2784 // Use PC-relative addressing to access the GOT for this symbol, then load 2785 // the address from the GOT. This generates the pattern (PseudoLA sym), 2786 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2787 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2788 } 2789 2790 switch (getTargetMachine().getCodeModel()) { 2791 default: 2792 report_fatal_error("Unsupported code model for lowering"); 2793 case CodeModel::Small: { 2794 // Generate a sequence for accessing addresses within the first 2 GiB of 2795 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2796 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2797 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2798 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2799 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2800 } 2801 case CodeModel::Medium: { 2802 // Generate a sequence for accessing addresses within any 2GiB range within 2803 // the address space. This generates the pattern (PseudoLLA sym), which 2804 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2805 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2806 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2807 } 2808 } 2809 } 2810 2811 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 2812 SelectionDAG &DAG) const { 2813 SDLoc DL(Op); 2814 EVT Ty = Op.getValueType(); 2815 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2816 int64_t Offset = N->getOffset(); 2817 MVT XLenVT = Subtarget.getXLenVT(); 2818 2819 const GlobalValue *GV = N->getGlobal(); 2820 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 2821 SDValue Addr = getAddr(N, DAG, IsLocal); 2822 2823 // In order to maximise the opportunity for common subexpression elimination, 2824 // emit a separate ADD node for the global address offset instead of folding 2825 // it in the global address node. Later peephole optimisations may choose to 2826 // fold it back in when profitable. 2827 if (Offset != 0) 2828 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2829 DAG.getConstant(Offset, DL, XLenVT)); 2830 return Addr; 2831 } 2832 2833 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2834 SelectionDAG &DAG) const { 2835 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2836 2837 return getAddr(N, DAG); 2838 } 2839 2840 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2841 SelectionDAG &DAG) const { 2842 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2843 2844 return getAddr(N, DAG); 2845 } 2846 2847 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 2848 SelectionDAG &DAG) const { 2849 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2850 2851 return getAddr(N, DAG); 2852 } 2853 2854 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 2855 SelectionDAG &DAG, 2856 bool UseGOT) const { 2857 SDLoc DL(N); 2858 EVT Ty = getPointerTy(DAG.getDataLayout()); 2859 const GlobalValue *GV = N->getGlobal(); 2860 MVT XLenVT = Subtarget.getXLenVT(); 2861 2862 if (UseGOT) { 2863 // Use PC-relative addressing to access the GOT for this TLS symbol, then 2864 // load the address from the GOT and add the thread pointer. This generates 2865 // the pattern (PseudoLA_TLS_IE sym), which expands to 2866 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 2867 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2868 SDValue Load = 2869 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 2870 2871 // Add the thread pointer. 2872 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2873 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 2874 } 2875 2876 // Generate a sequence for accessing the address relative to the thread 2877 // pointer, with the appropriate adjustment for the thread pointer offset. 2878 // This generates the pattern 2879 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 2880 SDValue AddrHi = 2881 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 2882 SDValue AddrAdd = 2883 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 2884 SDValue AddrLo = 2885 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 2886 2887 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2888 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2889 SDValue MNAdd = SDValue( 2890 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 2891 0); 2892 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 2893 } 2894 2895 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 2896 SelectionDAG &DAG) const { 2897 SDLoc DL(N); 2898 EVT Ty = getPointerTy(DAG.getDataLayout()); 2899 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 2900 const GlobalValue *GV = N->getGlobal(); 2901 2902 // Use a PC-relative addressing mode to access the global dynamic GOT address. 2903 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 2904 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 2905 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2906 SDValue Load = 2907 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 2908 2909 // Prepare argument list to generate call. 2910 ArgListTy Args; 2911 ArgListEntry Entry; 2912 Entry.Node = Load; 2913 Entry.Ty = CallTy; 2914 Args.push_back(Entry); 2915 2916 // Setup call to __tls_get_addr. 2917 TargetLowering::CallLoweringInfo CLI(DAG); 2918 CLI.setDebugLoc(DL) 2919 .setChain(DAG.getEntryNode()) 2920 .setLibCallee(CallingConv::C, CallTy, 2921 DAG.getExternalSymbol("__tls_get_addr", Ty), 2922 std::move(Args)); 2923 2924 return LowerCallTo(CLI).first; 2925 } 2926 2927 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 2928 SelectionDAG &DAG) const { 2929 SDLoc DL(Op); 2930 EVT Ty = Op.getValueType(); 2931 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2932 int64_t Offset = N->getOffset(); 2933 MVT XLenVT = Subtarget.getXLenVT(); 2934 2935 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 2936 2937 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2938 CallingConv::GHC) 2939 report_fatal_error("In GHC calling convention TLS is not supported"); 2940 2941 SDValue Addr; 2942 switch (Model) { 2943 case TLSModel::LocalExec: 2944 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 2945 break; 2946 case TLSModel::InitialExec: 2947 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 2948 break; 2949 case TLSModel::LocalDynamic: 2950 case TLSModel::GeneralDynamic: 2951 Addr = getDynamicTLSAddr(N, DAG); 2952 break; 2953 } 2954 2955 // In order to maximise the opportunity for common subexpression elimination, 2956 // emit a separate ADD node for the global address offset instead of folding 2957 // it in the global address node. Later peephole optimisations may choose to 2958 // fold it back in when profitable. 2959 if (Offset != 0) 2960 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2961 DAG.getConstant(Offset, DL, XLenVT)); 2962 return Addr; 2963 } 2964 2965 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 2966 SDValue CondV = Op.getOperand(0); 2967 SDValue TrueV = Op.getOperand(1); 2968 SDValue FalseV = Op.getOperand(2); 2969 SDLoc DL(Op); 2970 MVT VT = Op.getSimpleValueType(); 2971 MVT XLenVT = Subtarget.getXLenVT(); 2972 2973 // Lower vector SELECTs to VSELECTs by splatting the condition. 2974 if (VT.isVector()) { 2975 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 2976 SDValue CondSplat = VT.isScalableVector() 2977 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 2978 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 2979 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 2980 } 2981 2982 // If the result type is XLenVT and CondV is the output of a SETCC node 2983 // which also operated on XLenVT inputs, then merge the SETCC node into the 2984 // lowered RISCVISD::SELECT_CC to take advantage of the integer 2985 // compare+branch instructions. i.e.: 2986 // (select (setcc lhs, rhs, cc), truev, falsev) 2987 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 2988 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 2989 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 2990 SDValue LHS = CondV.getOperand(0); 2991 SDValue RHS = CondV.getOperand(1); 2992 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 2993 ISD::CondCode CCVal = CC->get(); 2994 2995 // Special case for a select of 2 constants that have a diffence of 1. 2996 // Normally this is done by DAGCombine, but if the select is introduced by 2997 // type legalization or op legalization, we miss it. Restricting to SETLT 2998 // case for now because that is what signed saturating add/sub need. 2999 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3000 // but we would probably want to swap the true/false values if the condition 3001 // is SETGE/SETLE to avoid an XORI. 3002 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3003 CCVal == ISD::SETLT) { 3004 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3005 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3006 if (TrueVal - 1 == FalseVal) 3007 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3008 if (TrueVal + 1 == FalseVal) 3009 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3010 } 3011 3012 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3013 3014 SDValue TargetCC = DAG.getCondCode(CCVal); 3015 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3016 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3017 } 3018 3019 // Otherwise: 3020 // (select condv, truev, falsev) 3021 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3022 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3023 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3024 3025 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3026 3027 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3028 } 3029 3030 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3031 SDValue CondV = Op.getOperand(1); 3032 SDLoc DL(Op); 3033 MVT XLenVT = Subtarget.getXLenVT(); 3034 3035 if (CondV.getOpcode() == ISD::SETCC && 3036 CondV.getOperand(0).getValueType() == XLenVT) { 3037 SDValue LHS = CondV.getOperand(0); 3038 SDValue RHS = CondV.getOperand(1); 3039 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3040 3041 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3042 3043 SDValue TargetCC = DAG.getCondCode(CCVal); 3044 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3045 LHS, RHS, TargetCC, Op.getOperand(2)); 3046 } 3047 3048 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3049 CondV, DAG.getConstant(0, DL, XLenVT), 3050 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3051 } 3052 3053 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3054 MachineFunction &MF = DAG.getMachineFunction(); 3055 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3056 3057 SDLoc DL(Op); 3058 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3059 getPointerTy(MF.getDataLayout())); 3060 3061 // vastart just stores the address of the VarArgsFrameIndex slot into the 3062 // memory location argument. 3063 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3064 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3065 MachinePointerInfo(SV)); 3066 } 3067 3068 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3069 SelectionDAG &DAG) const { 3070 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3071 MachineFunction &MF = DAG.getMachineFunction(); 3072 MachineFrameInfo &MFI = MF.getFrameInfo(); 3073 MFI.setFrameAddressIsTaken(true); 3074 Register FrameReg = RI.getFrameRegister(MF); 3075 int XLenInBytes = Subtarget.getXLen() / 8; 3076 3077 EVT VT = Op.getValueType(); 3078 SDLoc DL(Op); 3079 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3080 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3081 while (Depth--) { 3082 int Offset = -(XLenInBytes * 2); 3083 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3084 DAG.getIntPtrConstant(Offset, DL)); 3085 FrameAddr = 3086 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3087 } 3088 return FrameAddr; 3089 } 3090 3091 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3092 SelectionDAG &DAG) const { 3093 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3094 MachineFunction &MF = DAG.getMachineFunction(); 3095 MachineFrameInfo &MFI = MF.getFrameInfo(); 3096 MFI.setReturnAddressIsTaken(true); 3097 MVT XLenVT = Subtarget.getXLenVT(); 3098 int XLenInBytes = Subtarget.getXLen() / 8; 3099 3100 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3101 return SDValue(); 3102 3103 EVT VT = Op.getValueType(); 3104 SDLoc DL(Op); 3105 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3106 if (Depth) { 3107 int Off = -XLenInBytes; 3108 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3109 SDValue Offset = DAG.getConstant(Off, DL, VT); 3110 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3111 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3112 MachinePointerInfo()); 3113 } 3114 3115 // Return the value of the return address register, marking it an implicit 3116 // live-in. 3117 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3118 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3119 } 3120 3121 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3122 SelectionDAG &DAG) const { 3123 SDLoc DL(Op); 3124 SDValue Lo = Op.getOperand(0); 3125 SDValue Hi = Op.getOperand(1); 3126 SDValue Shamt = Op.getOperand(2); 3127 EVT VT = Lo.getValueType(); 3128 3129 // if Shamt-XLEN < 0: // Shamt < XLEN 3130 // Lo = Lo << Shamt 3131 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3132 // else: 3133 // Lo = 0 3134 // Hi = Lo << (Shamt-XLEN) 3135 3136 SDValue Zero = DAG.getConstant(0, DL, VT); 3137 SDValue One = DAG.getConstant(1, DL, VT); 3138 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3139 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3140 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3141 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3142 3143 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3144 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3145 SDValue ShiftRightLo = 3146 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3147 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3148 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3149 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3150 3151 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3152 3153 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3154 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3155 3156 SDValue Parts[2] = {Lo, Hi}; 3157 return DAG.getMergeValues(Parts, DL); 3158 } 3159 3160 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3161 bool IsSRA) const { 3162 SDLoc DL(Op); 3163 SDValue Lo = Op.getOperand(0); 3164 SDValue Hi = Op.getOperand(1); 3165 SDValue Shamt = Op.getOperand(2); 3166 EVT VT = Lo.getValueType(); 3167 3168 // SRA expansion: 3169 // if Shamt-XLEN < 0: // Shamt < XLEN 3170 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3171 // Hi = Hi >>s Shamt 3172 // else: 3173 // Lo = Hi >>s (Shamt-XLEN); 3174 // Hi = Hi >>s (XLEN-1) 3175 // 3176 // SRL expansion: 3177 // if Shamt-XLEN < 0: // Shamt < XLEN 3178 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3179 // Hi = Hi >>u Shamt 3180 // else: 3181 // Lo = Hi >>u (Shamt-XLEN); 3182 // Hi = 0; 3183 3184 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3185 3186 SDValue Zero = DAG.getConstant(0, DL, VT); 3187 SDValue One = DAG.getConstant(1, DL, VT); 3188 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3189 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3190 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3191 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3192 3193 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3194 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3195 SDValue ShiftLeftHi = 3196 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3197 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3198 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3199 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3200 SDValue HiFalse = 3201 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3202 3203 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3204 3205 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3206 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3207 3208 SDValue Parts[2] = {Lo, Hi}; 3209 return DAG.getMergeValues(Parts, DL); 3210 } 3211 3212 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3213 // legal equivalently-sized i8 type, so we can use that as a go-between. 3214 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3215 SelectionDAG &DAG) const { 3216 SDLoc DL(Op); 3217 MVT VT = Op.getSimpleValueType(); 3218 SDValue SplatVal = Op.getOperand(0); 3219 // All-zeros or all-ones splats are handled specially. 3220 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3221 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3222 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3223 } 3224 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3225 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3226 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3227 } 3228 MVT XLenVT = Subtarget.getXLenVT(); 3229 assert(SplatVal.getValueType() == XLenVT && 3230 "Unexpected type for i1 splat value"); 3231 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3232 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3233 DAG.getConstant(1, DL, XLenVT)); 3234 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3235 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3236 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3237 } 3238 3239 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3240 // illegal (currently only vXi64 RV32). 3241 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3242 // them to SPLAT_VECTOR_I64 3243 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3244 SelectionDAG &DAG) const { 3245 SDLoc DL(Op); 3246 MVT VecVT = Op.getSimpleValueType(); 3247 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3248 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3249 3250 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3251 SDValue Lo = Op.getOperand(0); 3252 SDValue Hi = Op.getOperand(1); 3253 3254 if (VecVT.isFixedLengthVector()) { 3255 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3256 SDLoc DL(Op); 3257 SDValue Mask, VL; 3258 std::tie(Mask, VL) = 3259 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3260 3261 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3262 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3263 } 3264 3265 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3266 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3267 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3268 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3269 // node in order to try and match RVV vector/scalar instructions. 3270 if ((LoC >> 31) == HiC) 3271 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3272 } 3273 3274 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3275 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3276 isa<ConstantSDNode>(Hi.getOperand(1)) && 3277 Hi.getConstantOperandVal(1) == 31) 3278 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3279 3280 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3281 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3282 DAG.getRegister(RISCV::X0, MVT::i64)); 3283 } 3284 3285 // Custom-lower extensions from mask vectors by using a vselect either with 1 3286 // for zero/any-extension or -1 for sign-extension: 3287 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3288 // Note that any-extension is lowered identically to zero-extension. 3289 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3290 int64_t ExtTrueVal) const { 3291 SDLoc DL(Op); 3292 MVT VecVT = Op.getSimpleValueType(); 3293 SDValue Src = Op.getOperand(0); 3294 // Only custom-lower extensions from mask types 3295 assert(Src.getValueType().isVector() && 3296 Src.getValueType().getVectorElementType() == MVT::i1); 3297 3298 MVT XLenVT = Subtarget.getXLenVT(); 3299 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3300 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3301 3302 if (VecVT.isScalableVector()) { 3303 // Be careful not to introduce illegal scalar types at this stage, and be 3304 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3305 // illegal and must be expanded. Since we know that the constants are 3306 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3307 bool IsRV32E64 = 3308 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3309 3310 if (!IsRV32E64) { 3311 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3312 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3313 } else { 3314 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3315 SplatTrueVal = 3316 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3317 } 3318 3319 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3320 } 3321 3322 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3323 MVT I1ContainerVT = 3324 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3325 3326 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3327 3328 SDValue Mask, VL; 3329 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3330 3331 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3332 SplatTrueVal = 3333 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3334 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3335 SplatTrueVal, SplatZero, VL); 3336 3337 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3338 } 3339 3340 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3341 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3342 MVT ExtVT = Op.getSimpleValueType(); 3343 // Only custom-lower extensions from fixed-length vector types. 3344 if (!ExtVT.isFixedLengthVector()) 3345 return Op; 3346 MVT VT = Op.getOperand(0).getSimpleValueType(); 3347 // Grab the canonical container type for the extended type. Infer the smaller 3348 // type from that to ensure the same number of vector elements, as we know 3349 // the LMUL will be sufficient to hold the smaller type. 3350 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3351 // Get the extended container type manually to ensure the same number of 3352 // vector elements between source and dest. 3353 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3354 ContainerExtVT.getVectorElementCount()); 3355 3356 SDValue Op1 = 3357 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3358 3359 SDLoc DL(Op); 3360 SDValue Mask, VL; 3361 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3362 3363 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3364 3365 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3366 } 3367 3368 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3369 // setcc operation: 3370 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3371 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3372 SelectionDAG &DAG) const { 3373 SDLoc DL(Op); 3374 EVT MaskVT = Op.getValueType(); 3375 // Only expect to custom-lower truncations to mask types 3376 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3377 "Unexpected type for vector mask lowering"); 3378 SDValue Src = Op.getOperand(0); 3379 MVT VecVT = Src.getSimpleValueType(); 3380 3381 // If this is a fixed vector, we need to convert it to a scalable vector. 3382 MVT ContainerVT = VecVT; 3383 if (VecVT.isFixedLengthVector()) { 3384 ContainerVT = getContainerForFixedLengthVector(VecVT); 3385 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3386 } 3387 3388 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3389 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3390 3391 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3392 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3393 3394 if (VecVT.isScalableVector()) { 3395 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3396 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3397 } 3398 3399 SDValue Mask, VL; 3400 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3401 3402 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3403 SDValue Trunc = 3404 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3405 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3406 DAG.getCondCode(ISD::SETNE), Mask, VL); 3407 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3408 } 3409 3410 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3411 // first position of a vector, and that vector is slid up to the insert index. 3412 // By limiting the active vector length to index+1 and merging with the 3413 // original vector (with an undisturbed tail policy for elements >= VL), we 3414 // achieve the desired result of leaving all elements untouched except the one 3415 // at VL-1, which is replaced with the desired value. 3416 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3417 SelectionDAG &DAG) const { 3418 SDLoc DL(Op); 3419 MVT VecVT = Op.getSimpleValueType(); 3420 SDValue Vec = Op.getOperand(0); 3421 SDValue Val = Op.getOperand(1); 3422 SDValue Idx = Op.getOperand(2); 3423 3424 if (VecVT.getVectorElementType() == MVT::i1) { 3425 // FIXME: For now we just promote to an i8 vector and insert into that, 3426 // but this is probably not optimal. 3427 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3428 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3429 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3430 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3431 } 3432 3433 MVT ContainerVT = VecVT; 3434 // If the operand is a fixed-length vector, convert to a scalable one. 3435 if (VecVT.isFixedLengthVector()) { 3436 ContainerVT = getContainerForFixedLengthVector(VecVT); 3437 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3438 } 3439 3440 MVT XLenVT = Subtarget.getXLenVT(); 3441 3442 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3443 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3444 // Even i64-element vectors on RV32 can be lowered without scalar 3445 // legalization if the most-significant 32 bits of the value are not affected 3446 // by the sign-extension of the lower 32 bits. 3447 // TODO: We could also catch sign extensions of a 32-bit value. 3448 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3449 const auto *CVal = cast<ConstantSDNode>(Val); 3450 if (isInt<32>(CVal->getSExtValue())) { 3451 IsLegalInsert = true; 3452 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3453 } 3454 } 3455 3456 SDValue Mask, VL; 3457 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3458 3459 SDValue ValInVec; 3460 3461 if (IsLegalInsert) { 3462 unsigned Opc = 3463 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3464 if (isNullConstant(Idx)) { 3465 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3466 if (!VecVT.isFixedLengthVector()) 3467 return Vec; 3468 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3469 } 3470 ValInVec = 3471 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3472 } else { 3473 // On RV32, i64-element vectors must be specially handled to place the 3474 // value at element 0, by using two vslide1up instructions in sequence on 3475 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3476 // this. 3477 SDValue One = DAG.getConstant(1, DL, XLenVT); 3478 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3479 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3480 MVT I32ContainerVT = 3481 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3482 SDValue I32Mask = 3483 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3484 // Limit the active VL to two. 3485 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3486 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3487 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3488 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3489 InsertI64VL); 3490 // First slide in the hi value, then the lo in underneath it. 3491 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3492 ValHi, I32Mask, InsertI64VL); 3493 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3494 ValLo, I32Mask, InsertI64VL); 3495 // Bitcast back to the right container type. 3496 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3497 } 3498 3499 // Now that the value is in a vector, slide it into position. 3500 SDValue InsertVL = 3501 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3502 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3503 ValInVec, Idx, Mask, InsertVL); 3504 if (!VecVT.isFixedLengthVector()) 3505 return Slideup; 3506 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3507 } 3508 3509 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3510 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3511 // types this is done using VMV_X_S to allow us to glean information about the 3512 // sign bits of the result. 3513 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3514 SelectionDAG &DAG) const { 3515 SDLoc DL(Op); 3516 SDValue Idx = Op.getOperand(1); 3517 SDValue Vec = Op.getOperand(0); 3518 EVT EltVT = Op.getValueType(); 3519 MVT VecVT = Vec.getSimpleValueType(); 3520 MVT XLenVT = Subtarget.getXLenVT(); 3521 3522 if (VecVT.getVectorElementType() == MVT::i1) { 3523 // FIXME: For now we just promote to an i8 vector and extract from that, 3524 // but this is probably not optimal. 3525 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3526 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3527 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3528 } 3529 3530 // If this is a fixed vector, we need to convert it to a scalable vector. 3531 MVT ContainerVT = VecVT; 3532 if (VecVT.isFixedLengthVector()) { 3533 ContainerVT = getContainerForFixedLengthVector(VecVT); 3534 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3535 } 3536 3537 // If the index is 0, the vector is already in the right position. 3538 if (!isNullConstant(Idx)) { 3539 // Use a VL of 1 to avoid processing more elements than we need. 3540 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3541 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3542 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3543 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3544 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3545 } 3546 3547 if (!EltVT.isInteger()) { 3548 // Floating-point extracts are handled in TableGen. 3549 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3550 DAG.getConstant(0, DL, XLenVT)); 3551 } 3552 3553 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3554 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3555 } 3556 3557 // Some RVV intrinsics may claim that they want an integer operand to be 3558 // promoted or expanded. 3559 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3560 const RISCVSubtarget &Subtarget) { 3561 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3562 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3563 "Unexpected opcode"); 3564 3565 if (!Subtarget.hasStdExtV()) 3566 return SDValue(); 3567 3568 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3569 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3570 SDLoc DL(Op); 3571 3572 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3573 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3574 if (!II || !II->SplatOperand) 3575 return SDValue(); 3576 3577 unsigned SplatOp = II->SplatOperand + HasChain; 3578 assert(SplatOp < Op.getNumOperands()); 3579 3580 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3581 SDValue &ScalarOp = Operands[SplatOp]; 3582 MVT OpVT = ScalarOp.getSimpleValueType(); 3583 MVT XLenVT = Subtarget.getXLenVT(); 3584 3585 // If this isn't a scalar, or its type is XLenVT we're done. 3586 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3587 return SDValue(); 3588 3589 // Simplest case is that the operand needs to be promoted to XLenVT. 3590 if (OpVT.bitsLT(XLenVT)) { 3591 // If the operand is a constant, sign extend to increase our chances 3592 // of being able to use a .vi instruction. ANY_EXTEND would become a 3593 // a zero extend and the simm5 check in isel would fail. 3594 // FIXME: Should we ignore the upper bits in isel instead? 3595 unsigned ExtOpc = 3596 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3597 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3598 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3599 } 3600 3601 // Use the previous operand to get the vXi64 VT. The result might be a mask 3602 // VT for compares. Using the previous operand assumes that the previous 3603 // operand will never have a smaller element size than a scalar operand and 3604 // that a widening operation never uses SEW=64. 3605 // NOTE: If this fails the below assert, we can probably just find the 3606 // element count from any operand or result and use it to construct the VT. 3607 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3608 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3609 3610 // The more complex case is when the scalar is larger than XLenVT. 3611 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3612 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3613 3614 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3615 // on the instruction to sign-extend since SEW>XLEN. 3616 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3617 if (isInt<32>(CVal->getSExtValue())) { 3618 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3619 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3620 } 3621 } 3622 3623 // We need to convert the scalar to a splat vector. 3624 // FIXME: Can we implicitly truncate the scalar if it is known to 3625 // be sign extended? 3626 // VL should be the last operand. 3627 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3628 assert(VL.getValueType() == XLenVT); 3629 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3630 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3631 } 3632 3633 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3634 SelectionDAG &DAG) const { 3635 unsigned IntNo = Op.getConstantOperandVal(0); 3636 SDLoc DL(Op); 3637 MVT XLenVT = Subtarget.getXLenVT(); 3638 3639 switch (IntNo) { 3640 default: 3641 break; // Don't custom lower most intrinsics. 3642 case Intrinsic::thread_pointer: { 3643 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3644 return DAG.getRegister(RISCV::X4, PtrVT); 3645 } 3646 case Intrinsic::riscv_orc_b: 3647 // Lower to the GORCI encoding for orc.b. 3648 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3649 DAG.getConstant(7, DL, XLenVT)); 3650 case Intrinsic::riscv_grev: 3651 case Intrinsic::riscv_gorc: { 3652 unsigned Opc = 3653 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3654 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3655 } 3656 case Intrinsic::riscv_shfl: 3657 case Intrinsic::riscv_unshfl: { 3658 unsigned Opc = 3659 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3660 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3661 } 3662 case Intrinsic::riscv_bcompress: 3663 case Intrinsic::riscv_bdecompress: { 3664 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3665 : RISCVISD::BDECOMPRESS; 3666 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3667 } 3668 case Intrinsic::riscv_vmv_x_s: 3669 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3670 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3671 Op.getOperand(1)); 3672 case Intrinsic::riscv_vmv_v_x: 3673 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3674 Op.getSimpleValueType(), DL, DAG, Subtarget); 3675 case Intrinsic::riscv_vfmv_v_f: 3676 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3677 Op.getOperand(1), Op.getOperand(2)); 3678 case Intrinsic::riscv_vmv_s_x: { 3679 SDValue Scalar = Op.getOperand(2); 3680 3681 if (Scalar.getValueType().bitsLE(XLenVT)) { 3682 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3683 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3684 Op.getOperand(1), Scalar, Op.getOperand(3)); 3685 } 3686 3687 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3688 3689 // This is an i64 value that lives in two scalar registers. We have to 3690 // insert this in a convoluted way. First we build vXi64 splat containing 3691 // the/ two values that we assemble using some bit math. Next we'll use 3692 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3693 // to merge element 0 from our splat into the source vector. 3694 // FIXME: This is probably not the best way to do this, but it is 3695 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3696 // point. 3697 // sw lo, (a0) 3698 // sw hi, 4(a0) 3699 // vlse vX, (a0) 3700 // 3701 // vid.v vVid 3702 // vmseq.vx mMask, vVid, 0 3703 // vmerge.vvm vDest, vSrc, vVal, mMask 3704 MVT VT = Op.getSimpleValueType(); 3705 SDValue Vec = Op.getOperand(1); 3706 SDValue VL = Op.getOperand(3); 3707 3708 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3709 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3710 DAG.getConstant(0, DL, MVT::i32), VL); 3711 3712 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3713 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3714 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3715 SDValue SelectCond = 3716 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3717 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3718 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3719 Vec, VL); 3720 } 3721 case Intrinsic::riscv_vslide1up: 3722 case Intrinsic::riscv_vslide1down: 3723 case Intrinsic::riscv_vslide1up_mask: 3724 case Intrinsic::riscv_vslide1down_mask: { 3725 // We need to special case these when the scalar is larger than XLen. 3726 unsigned NumOps = Op.getNumOperands(); 3727 bool IsMasked = NumOps == 6; 3728 unsigned OpOffset = IsMasked ? 1 : 0; 3729 SDValue Scalar = Op.getOperand(2 + OpOffset); 3730 if (Scalar.getValueType().bitsLE(XLenVT)) 3731 break; 3732 3733 // Splatting a sign extended constant is fine. 3734 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3735 if (isInt<32>(CVal->getSExtValue())) 3736 break; 3737 3738 MVT VT = Op.getSimpleValueType(); 3739 assert(VT.getVectorElementType() == MVT::i64 && 3740 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3741 3742 // Convert the vector source to the equivalent nxvXi32 vector. 3743 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3744 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3745 3746 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3747 DAG.getConstant(0, DL, XLenVT)); 3748 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3749 DAG.getConstant(1, DL, XLenVT)); 3750 3751 // Double the VL since we halved SEW. 3752 SDValue VL = Op.getOperand(NumOps - 1); 3753 SDValue I32VL = 3754 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3755 3756 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3757 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3758 3759 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3760 // instructions. 3761 if (IntNo == Intrinsic::riscv_vslide1up || 3762 IntNo == Intrinsic::riscv_vslide1up_mask) { 3763 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3764 I32Mask, I32VL); 3765 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3766 I32Mask, I32VL); 3767 } else { 3768 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3769 I32Mask, I32VL); 3770 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3771 I32Mask, I32VL); 3772 } 3773 3774 // Convert back to nxvXi64. 3775 Vec = DAG.getBitcast(VT, Vec); 3776 3777 if (!IsMasked) 3778 return Vec; 3779 3780 // Apply mask after the operation. 3781 SDValue Mask = Op.getOperand(NumOps - 2); 3782 SDValue MaskedOff = Op.getOperand(1); 3783 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3784 } 3785 } 3786 3787 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3788 } 3789 3790 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3791 SelectionDAG &DAG) const { 3792 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3793 } 3794 3795 static MVT getLMUL1VT(MVT VT) { 3796 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 3797 "Unexpected vector MVT"); 3798 return MVT::getScalableVectorVT( 3799 VT.getVectorElementType(), 3800 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 3801 } 3802 3803 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 3804 switch (ISDOpcode) { 3805 default: 3806 llvm_unreachable("Unhandled reduction"); 3807 case ISD::VECREDUCE_ADD: 3808 return RISCVISD::VECREDUCE_ADD_VL; 3809 case ISD::VECREDUCE_UMAX: 3810 return RISCVISD::VECREDUCE_UMAX_VL; 3811 case ISD::VECREDUCE_SMAX: 3812 return RISCVISD::VECREDUCE_SMAX_VL; 3813 case ISD::VECREDUCE_UMIN: 3814 return RISCVISD::VECREDUCE_UMIN_VL; 3815 case ISD::VECREDUCE_SMIN: 3816 return RISCVISD::VECREDUCE_SMIN_VL; 3817 case ISD::VECREDUCE_AND: 3818 return RISCVISD::VECREDUCE_AND_VL; 3819 case ISD::VECREDUCE_OR: 3820 return RISCVISD::VECREDUCE_OR_VL; 3821 case ISD::VECREDUCE_XOR: 3822 return RISCVISD::VECREDUCE_XOR_VL; 3823 } 3824 } 3825 3826 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op, 3827 SelectionDAG &DAG) const { 3828 SDLoc DL(Op); 3829 SDValue Vec = Op.getOperand(0); 3830 MVT VecVT = Vec.getSimpleValueType(); 3831 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 3832 Op.getOpcode() == ISD::VECREDUCE_OR || 3833 Op.getOpcode() == ISD::VECREDUCE_XOR) && 3834 "Unexpected reduction lowering"); 3835 3836 MVT XLenVT = Subtarget.getXLenVT(); 3837 assert(Op.getValueType() == XLenVT && 3838 "Expected reduction output to be legalized to XLenVT"); 3839 3840 MVT ContainerVT = VecVT; 3841 if (VecVT.isFixedLengthVector()) { 3842 ContainerVT = getContainerForFixedLengthVector(VecVT); 3843 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3844 } 3845 3846 SDValue Mask, VL; 3847 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3848 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3849 3850 switch (Op.getOpcode()) { 3851 default: 3852 llvm_unreachable("Unhandled reduction"); 3853 case ISD::VECREDUCE_AND: 3854 // vpopc ~x == 0 3855 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL); 3856 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3857 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ); 3858 case ISD::VECREDUCE_OR: 3859 // vpopc x != 0 3860 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3861 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3862 case ISD::VECREDUCE_XOR: { 3863 // ((vpopc x) & 1) != 0 3864 SDValue One = DAG.getConstant(1, DL, XLenVT); 3865 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3866 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 3867 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3868 } 3869 } 3870 } 3871 3872 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 3873 SelectionDAG &DAG) const { 3874 SDLoc DL(Op); 3875 SDValue Vec = Op.getOperand(0); 3876 EVT VecEVT = Vec.getValueType(); 3877 3878 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 3879 3880 // Due to ordering in legalize types we may have a vector type that needs to 3881 // be split. Do that manually so we can get down to a legal type. 3882 while (getTypeAction(*DAG.getContext(), VecEVT) == 3883 TargetLowering::TypeSplitVector) { 3884 SDValue Lo, Hi; 3885 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 3886 VecEVT = Lo.getValueType(); 3887 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 3888 } 3889 3890 // TODO: The type may need to be widened rather than split. Or widened before 3891 // it can be split. 3892 if (!isTypeLegal(VecEVT)) 3893 return SDValue(); 3894 3895 MVT VecVT = VecEVT.getSimpleVT(); 3896 MVT VecEltVT = VecVT.getVectorElementType(); 3897 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 3898 3899 MVT ContainerVT = VecVT; 3900 if (VecVT.isFixedLengthVector()) { 3901 ContainerVT = getContainerForFixedLengthVector(VecVT); 3902 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3903 } 3904 3905 MVT M1VT = getLMUL1VT(ContainerVT); 3906 3907 SDValue Mask, VL; 3908 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3909 3910 // FIXME: This is a VLMAX splat which might be too large and can prevent 3911 // vsetvli removal. 3912 SDValue NeutralElem = 3913 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 3914 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 3915 SDValue Reduction = 3916 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 3917 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3918 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3919 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 3920 } 3921 3922 // Given a reduction op, this function returns the matching reduction opcode, 3923 // the vector SDValue and the scalar SDValue required to lower this to a 3924 // RISCVISD node. 3925 static std::tuple<unsigned, SDValue, SDValue> 3926 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 3927 SDLoc DL(Op); 3928 auto Flags = Op->getFlags(); 3929 unsigned Opcode = Op.getOpcode(); 3930 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 3931 switch (Opcode) { 3932 default: 3933 llvm_unreachable("Unhandled reduction"); 3934 case ISD::VECREDUCE_FADD: 3935 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 3936 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3937 case ISD::VECREDUCE_SEQ_FADD: 3938 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 3939 Op.getOperand(0)); 3940 case ISD::VECREDUCE_FMIN: 3941 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 3942 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3943 case ISD::VECREDUCE_FMAX: 3944 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 3945 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3946 } 3947 } 3948 3949 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 3950 SelectionDAG &DAG) const { 3951 SDLoc DL(Op); 3952 MVT VecEltVT = Op.getSimpleValueType(); 3953 3954 unsigned RVVOpcode; 3955 SDValue VectorVal, ScalarVal; 3956 std::tie(RVVOpcode, VectorVal, ScalarVal) = 3957 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 3958 MVT VecVT = VectorVal.getSimpleValueType(); 3959 3960 MVT ContainerVT = VecVT; 3961 if (VecVT.isFixedLengthVector()) { 3962 ContainerVT = getContainerForFixedLengthVector(VecVT); 3963 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 3964 } 3965 3966 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 3967 3968 SDValue Mask, VL; 3969 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3970 3971 // FIXME: This is a VLMAX splat which might be too large and can prevent 3972 // vsetvli removal. 3973 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 3974 SDValue Reduction = 3975 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 3976 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3977 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3978 } 3979 3980 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 3981 SelectionDAG &DAG) const { 3982 SDValue Vec = Op.getOperand(0); 3983 SDValue SubVec = Op.getOperand(1); 3984 MVT VecVT = Vec.getSimpleValueType(); 3985 MVT SubVecVT = SubVec.getSimpleValueType(); 3986 3987 SDLoc DL(Op); 3988 MVT XLenVT = Subtarget.getXLenVT(); 3989 unsigned OrigIdx = Op.getConstantOperandVal(2); 3990 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3991 3992 // We don't have the ability to slide mask vectors up indexed by their i1 3993 // elements; the smallest we can do is i8. Often we are able to bitcast to 3994 // equivalent i8 vectors. Note that when inserting a fixed-length vector 3995 // into a scalable one, we might not necessarily have enough scalable 3996 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 3997 if (SubVecVT.getVectorElementType() == MVT::i1 && 3998 (OrigIdx != 0 || !Vec.isUndef())) { 3999 if (VecVT.getVectorMinNumElements() >= 8 && 4000 SubVecVT.getVectorMinNumElements() >= 8) { 4001 assert(OrigIdx % 8 == 0 && "Invalid index"); 4002 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4003 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4004 "Unexpected mask vector lowering"); 4005 OrigIdx /= 8; 4006 SubVecVT = 4007 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4008 SubVecVT.isScalableVector()); 4009 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4010 VecVT.isScalableVector()); 4011 Vec = DAG.getBitcast(VecVT, Vec); 4012 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4013 } else { 4014 // We can't slide this mask vector up indexed by its i1 elements. 4015 // This poses a problem when we wish to insert a scalable vector which 4016 // can't be re-expressed as a larger type. Just choose the slow path and 4017 // extend to a larger type, then truncate back down. 4018 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4019 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4020 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4021 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4022 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4023 Op.getOperand(2)); 4024 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4025 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4026 } 4027 } 4028 4029 // If the subvector vector is a fixed-length type, we cannot use subregister 4030 // manipulation to simplify the codegen; we don't know which register of a 4031 // LMUL group contains the specific subvector as we only know the minimum 4032 // register size. Therefore we must slide the vector group up the full 4033 // amount. 4034 if (SubVecVT.isFixedLengthVector()) { 4035 if (OrigIdx == 0 && Vec.isUndef()) 4036 return Op; 4037 MVT ContainerVT = VecVT; 4038 if (VecVT.isFixedLengthVector()) { 4039 ContainerVT = getContainerForFixedLengthVector(VecVT); 4040 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4041 } 4042 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4043 DAG.getUNDEF(ContainerVT), SubVec, 4044 DAG.getConstant(0, DL, XLenVT)); 4045 SDValue Mask = 4046 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4047 // Set the vector length to only the number of elements we care about. Note 4048 // that for slideup this includes the offset. 4049 SDValue VL = 4050 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4051 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4052 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4053 SubVec, SlideupAmt, Mask, VL); 4054 if (VecVT.isFixedLengthVector()) 4055 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4056 return DAG.getBitcast(Op.getValueType(), Slideup); 4057 } 4058 4059 unsigned SubRegIdx, RemIdx; 4060 std::tie(SubRegIdx, RemIdx) = 4061 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4062 VecVT, SubVecVT, OrigIdx, TRI); 4063 4064 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4065 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4066 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4067 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4068 4069 // 1. If the Idx has been completely eliminated and this subvector's size is 4070 // a vector register or a multiple thereof, or the surrounding elements are 4071 // undef, then this is a subvector insert which naturally aligns to a vector 4072 // register. These can easily be handled using subregister manipulation. 4073 // 2. If the subvector is smaller than a vector register, then the insertion 4074 // must preserve the undisturbed elements of the register. We do this by 4075 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4076 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4077 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4078 // LMUL=1 type back into the larger vector (resolving to another subregister 4079 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4080 // to avoid allocating a large register group to hold our subvector. 4081 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4082 return Op; 4083 4084 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4085 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4086 // (in our case undisturbed). This means we can set up a subvector insertion 4087 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4088 // size of the subvector. 4089 MVT InterSubVT = VecVT; 4090 SDValue AlignedExtract = Vec; 4091 unsigned AlignedIdx = OrigIdx - RemIdx; 4092 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4093 InterSubVT = getLMUL1VT(VecVT); 4094 // Extract a subvector equal to the nearest full vector register type. This 4095 // should resolve to a EXTRACT_SUBREG instruction. 4096 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4097 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4098 } 4099 4100 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4101 // For scalable vectors this must be further multiplied by vscale. 4102 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4103 4104 SDValue Mask, VL; 4105 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4106 4107 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4108 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4109 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4110 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4111 4112 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4113 DAG.getUNDEF(InterSubVT), SubVec, 4114 DAG.getConstant(0, DL, XLenVT)); 4115 4116 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4117 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4118 4119 // If required, insert this subvector back into the correct vector register. 4120 // This should resolve to an INSERT_SUBREG instruction. 4121 if (VecVT.bitsGT(InterSubVT)) 4122 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4123 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4124 4125 // We might have bitcast from a mask type: cast back to the original type if 4126 // required. 4127 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4128 } 4129 4130 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4131 SelectionDAG &DAG) const { 4132 SDValue Vec = Op.getOperand(0); 4133 MVT SubVecVT = Op.getSimpleValueType(); 4134 MVT VecVT = Vec.getSimpleValueType(); 4135 4136 SDLoc DL(Op); 4137 MVT XLenVT = Subtarget.getXLenVT(); 4138 unsigned OrigIdx = Op.getConstantOperandVal(1); 4139 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4140 4141 // We don't have the ability to slide mask vectors down indexed by their i1 4142 // elements; the smallest we can do is i8. Often we are able to bitcast to 4143 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4144 // from a scalable one, we might not necessarily have enough scalable 4145 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4146 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4147 if (VecVT.getVectorMinNumElements() >= 8 && 4148 SubVecVT.getVectorMinNumElements() >= 8) { 4149 assert(OrigIdx % 8 == 0 && "Invalid index"); 4150 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4151 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4152 "Unexpected mask vector lowering"); 4153 OrigIdx /= 8; 4154 SubVecVT = 4155 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4156 SubVecVT.isScalableVector()); 4157 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4158 VecVT.isScalableVector()); 4159 Vec = DAG.getBitcast(VecVT, Vec); 4160 } else { 4161 // We can't slide this mask vector down, indexed by its i1 elements. 4162 // This poses a problem when we wish to extract a scalable vector which 4163 // can't be re-expressed as a larger type. Just choose the slow path and 4164 // extend to a larger type, then truncate back down. 4165 // TODO: We could probably improve this when extracting certain fixed 4166 // from fixed, where we can extract as i8 and shift the correct element 4167 // right to reach the desired subvector? 4168 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4169 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4170 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4171 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4172 Op.getOperand(1)); 4173 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4174 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4175 } 4176 } 4177 4178 // If the subvector vector is a fixed-length type, we cannot use subregister 4179 // manipulation to simplify the codegen; we don't know which register of a 4180 // LMUL group contains the specific subvector as we only know the minimum 4181 // register size. Therefore we must slide the vector group down the full 4182 // amount. 4183 if (SubVecVT.isFixedLengthVector()) { 4184 // With an index of 0 this is a cast-like subvector, which can be performed 4185 // with subregister operations. 4186 if (OrigIdx == 0) 4187 return Op; 4188 MVT ContainerVT = VecVT; 4189 if (VecVT.isFixedLengthVector()) { 4190 ContainerVT = getContainerForFixedLengthVector(VecVT); 4191 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4192 } 4193 SDValue Mask = 4194 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4195 // Set the vector length to only the number of elements we care about. This 4196 // avoids sliding down elements we're going to discard straight away. 4197 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4198 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4199 SDValue Slidedown = 4200 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4201 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4202 // Now we can use a cast-like subvector extract to get the result. 4203 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4204 DAG.getConstant(0, DL, XLenVT)); 4205 return DAG.getBitcast(Op.getValueType(), Slidedown); 4206 } 4207 4208 unsigned SubRegIdx, RemIdx; 4209 std::tie(SubRegIdx, RemIdx) = 4210 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4211 VecVT, SubVecVT, OrigIdx, TRI); 4212 4213 // If the Idx has been completely eliminated then this is a subvector extract 4214 // which naturally aligns to a vector register. These can easily be handled 4215 // using subregister manipulation. 4216 if (RemIdx == 0) 4217 return Op; 4218 4219 // Else we must shift our vector register directly to extract the subvector. 4220 // Do this using VSLIDEDOWN. 4221 4222 // If the vector type is an LMUL-group type, extract a subvector equal to the 4223 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4224 // instruction. 4225 MVT InterSubVT = VecVT; 4226 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4227 InterSubVT = getLMUL1VT(VecVT); 4228 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4229 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4230 } 4231 4232 // Slide this vector register down by the desired number of elements in order 4233 // to place the desired subvector starting at element 0. 4234 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4235 // For scalable vectors this must be further multiplied by vscale. 4236 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4237 4238 SDValue Mask, VL; 4239 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4240 SDValue Slidedown = 4241 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4242 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4243 4244 // Now the vector is in the right position, extract our final subvector. This 4245 // should resolve to a COPY. 4246 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4247 DAG.getConstant(0, DL, XLenVT)); 4248 4249 // We might have bitcast from a mask type: cast back to the original type if 4250 // required. 4251 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4252 } 4253 4254 // Lower step_vector to the vid instruction. Any non-identity step value must 4255 // be accounted for my manual expansion. 4256 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4257 SelectionDAG &DAG) const { 4258 SDLoc DL(Op); 4259 MVT VT = Op.getSimpleValueType(); 4260 MVT XLenVT = Subtarget.getXLenVT(); 4261 SDValue Mask, VL; 4262 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4263 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4264 uint64_t StepValImm = Op.getConstantOperandVal(0); 4265 if (StepValImm != 1) { 4266 if (isPowerOf2_64(StepValImm)) { 4267 SDValue StepVal = 4268 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4269 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4270 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4271 } else { 4272 SDValue StepVal = lowerScalarSplat( 4273 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4274 DL, DAG, Subtarget); 4275 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4276 } 4277 } 4278 return StepVec; 4279 } 4280 4281 // Implement vector_reverse using vrgather.vv with indices determined by 4282 // subtracting the id of each element from (VLMAX-1). This will convert 4283 // the indices like so: 4284 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4285 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4286 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4287 SelectionDAG &DAG) const { 4288 SDLoc DL(Op); 4289 MVT VecVT = Op.getSimpleValueType(); 4290 unsigned EltSize = VecVT.getScalarSizeInBits(); 4291 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4292 4293 unsigned MaxVLMAX = 0; 4294 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4295 if (VectorBitsMax != 0) 4296 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4297 4298 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4299 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4300 4301 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4302 // to use vrgatherei16.vv. 4303 // TODO: It's also possible to use vrgatherei16.vv for other types to 4304 // decrease register width for the index calculation. 4305 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4306 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4307 // Reverse each half, then reassemble them in reverse order. 4308 // NOTE: It's also possible that after splitting that VLMAX no longer 4309 // requires vrgatherei16.vv. 4310 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4311 SDValue Lo, Hi; 4312 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4313 EVT LoVT, HiVT; 4314 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4315 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4316 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4317 // Reassemble the low and high pieces reversed. 4318 // FIXME: This is a CONCAT_VECTORS. 4319 SDValue Res = 4320 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4321 DAG.getIntPtrConstant(0, DL)); 4322 return DAG.getNode( 4323 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4324 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4325 } 4326 4327 // Just promote the int type to i16 which will double the LMUL. 4328 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4329 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4330 } 4331 4332 MVT XLenVT = Subtarget.getXLenVT(); 4333 SDValue Mask, VL; 4334 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4335 4336 // Calculate VLMAX-1 for the desired SEW. 4337 unsigned MinElts = VecVT.getVectorMinNumElements(); 4338 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4339 DAG.getConstant(MinElts, DL, XLenVT)); 4340 SDValue VLMinus1 = 4341 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4342 4343 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4344 bool IsRV32E64 = 4345 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4346 SDValue SplatVL; 4347 if (!IsRV32E64) 4348 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4349 else 4350 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4351 4352 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4353 SDValue Indices = 4354 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4355 4356 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4357 } 4358 4359 SDValue 4360 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4361 SelectionDAG &DAG) const { 4362 SDLoc DL(Op); 4363 auto *Load = cast<LoadSDNode>(Op); 4364 4365 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4366 Load->getMemoryVT(), 4367 *Load->getMemOperand()) && 4368 "Expecting a correctly-aligned load"); 4369 4370 MVT VT = Op.getSimpleValueType(); 4371 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4372 4373 SDValue VL = 4374 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4375 4376 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4377 SDValue NewLoad = DAG.getMemIntrinsicNode( 4378 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4379 Load->getMemoryVT(), Load->getMemOperand()); 4380 4381 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4382 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4383 } 4384 4385 SDValue 4386 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4387 SelectionDAG &DAG) const { 4388 SDLoc DL(Op); 4389 auto *Store = cast<StoreSDNode>(Op); 4390 4391 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4392 Store->getMemoryVT(), 4393 *Store->getMemOperand()) && 4394 "Expecting a correctly-aligned store"); 4395 4396 SDValue StoreVal = Store->getValue(); 4397 MVT VT = StoreVal.getSimpleValueType(); 4398 4399 // If the size less than a byte, we need to pad with zeros to make a byte. 4400 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4401 VT = MVT::v8i1; 4402 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4403 DAG.getConstant(0, DL, VT), StoreVal, 4404 DAG.getIntPtrConstant(0, DL)); 4405 } 4406 4407 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4408 4409 SDValue VL = 4410 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4411 4412 SDValue NewValue = 4413 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4414 return DAG.getMemIntrinsicNode( 4415 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4416 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4417 Store->getMemoryVT(), Store->getMemOperand()); 4418 } 4419 4420 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const { 4421 auto *Load = cast<MaskedLoadSDNode>(Op); 4422 4423 SDLoc DL(Op); 4424 MVT VT = Op.getSimpleValueType(); 4425 MVT XLenVT = Subtarget.getXLenVT(); 4426 4427 SDValue Mask = Load->getMask(); 4428 SDValue PassThru = Load->getPassThru(); 4429 SDValue VL; 4430 4431 MVT ContainerVT = VT; 4432 if (VT.isFixedLengthVector()) { 4433 ContainerVT = getContainerForFixedLengthVector(VT); 4434 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4435 4436 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4437 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4438 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4439 } else 4440 VL = DAG.getRegister(RISCV::X0, XLenVT); 4441 4442 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4443 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4444 SDValue Ops[] = {Load->getChain(), IntID, PassThru, 4445 Load->getBasePtr(), Mask, VL}; 4446 SDValue Result = 4447 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4448 Load->getMemoryVT(), Load->getMemOperand()); 4449 SDValue Chain = Result.getValue(1); 4450 4451 if (VT.isFixedLengthVector()) 4452 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4453 4454 return DAG.getMergeValues({Result, Chain}, DL); 4455 } 4456 4457 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const { 4458 auto *Store = cast<MaskedStoreSDNode>(Op); 4459 4460 SDLoc DL(Op); 4461 SDValue Val = Store->getValue(); 4462 SDValue Mask = Store->getMask(); 4463 MVT VT = Val.getSimpleValueType(); 4464 MVT XLenVT = Subtarget.getXLenVT(); 4465 SDValue VL; 4466 4467 MVT ContainerVT = VT; 4468 if (VT.isFixedLengthVector()) { 4469 ContainerVT = getContainerForFixedLengthVector(VT); 4470 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4471 4472 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4473 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4474 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4475 } else 4476 VL = DAG.getRegister(RISCV::X0, XLenVT); 4477 4478 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT); 4479 return DAG.getMemIntrinsicNode( 4480 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 4481 {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL}, 4482 Store->getMemoryVT(), Store->getMemOperand()); 4483 } 4484 4485 SDValue 4486 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4487 SelectionDAG &DAG) const { 4488 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4489 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4490 4491 MVT VT = Op.getSimpleValueType(); 4492 4493 SDValue Op1 = 4494 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4495 SDValue Op2 = 4496 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4497 4498 SDLoc DL(Op); 4499 SDValue VL = 4500 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4501 4502 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4503 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4504 4505 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4506 Op.getOperand(2), Mask, VL); 4507 4508 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4509 } 4510 4511 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4512 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4513 MVT VT = Op.getSimpleValueType(); 4514 4515 if (VT.getVectorElementType() == MVT::i1) 4516 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4517 4518 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4519 } 4520 4521 SDValue 4522 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 4523 SelectionDAG &DAG) const { 4524 unsigned Opc; 4525 switch (Op.getOpcode()) { 4526 default: llvm_unreachable("Unexpected opcode!"); 4527 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 4528 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 4529 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 4530 } 4531 4532 return lowerToScalableOp(Op, DAG, Opc); 4533 } 4534 4535 // Lower vector ABS to smax(X, sub(0, X)). 4536 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4537 SDLoc DL(Op); 4538 MVT VT = Op.getSimpleValueType(); 4539 SDValue X = Op.getOperand(0); 4540 4541 assert(VT.isFixedLengthVector() && "Unexpected type"); 4542 4543 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4544 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4545 4546 SDValue Mask, VL; 4547 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4548 4549 SDValue SplatZero = 4550 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4551 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4552 SDValue NegX = 4553 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 4554 SDValue Max = 4555 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 4556 4557 return convertFromScalableVector(VT, Max, DAG, Subtarget); 4558 } 4559 4560 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 4561 SDValue Op, SelectionDAG &DAG) const { 4562 SDLoc DL(Op); 4563 MVT VT = Op.getSimpleValueType(); 4564 SDValue Mag = Op.getOperand(0); 4565 SDValue Sign = Op.getOperand(1); 4566 assert(Mag.getValueType() == Sign.getValueType() && 4567 "Can only handle COPYSIGN with matching types."); 4568 4569 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4570 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 4571 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 4572 4573 SDValue Mask, VL; 4574 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4575 4576 SDValue CopySign = 4577 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 4578 4579 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 4580 } 4581 4582 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 4583 SDValue Op, SelectionDAG &DAG) const { 4584 MVT VT = Op.getSimpleValueType(); 4585 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4586 4587 MVT I1ContainerVT = 4588 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4589 4590 SDValue CC = 4591 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 4592 SDValue Op1 = 4593 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4594 SDValue Op2 = 4595 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 4596 4597 SDLoc DL(Op); 4598 SDValue Mask, VL; 4599 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4600 4601 SDValue Select = 4602 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 4603 4604 return convertFromScalableVector(VT, Select, DAG, Subtarget); 4605 } 4606 4607 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 4608 unsigned NewOpc, 4609 bool HasMask) const { 4610 MVT VT = Op.getSimpleValueType(); 4611 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4612 4613 // Create list of operands by converting existing ones to scalable types. 4614 SmallVector<SDValue, 6> Ops; 4615 for (const SDValue &V : Op->op_values()) { 4616 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4617 4618 // Pass through non-vector operands. 4619 if (!V.getValueType().isVector()) { 4620 Ops.push_back(V); 4621 continue; 4622 } 4623 4624 // "cast" fixed length vector to a scalable vector. 4625 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 4626 "Only fixed length vectors are supported!"); 4627 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4628 } 4629 4630 SDLoc DL(Op); 4631 SDValue Mask, VL; 4632 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4633 if (HasMask) 4634 Ops.push_back(Mask); 4635 Ops.push_back(VL); 4636 4637 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 4638 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 4639 } 4640 4641 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 4642 // * Operands of each node are assumed to be in the same order. 4643 // * The EVL operand is promoted from i32 to i64 on RV64. 4644 // * Fixed-length vectors are converted to their scalable-vector container 4645 // types. 4646 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 4647 unsigned RISCVISDOpc) const { 4648 SDLoc DL(Op); 4649 MVT VT = Op.getSimpleValueType(); 4650 SmallVector<SDValue, 4> Ops; 4651 4652 for (const auto &OpIdx : enumerate(Op->ops())) { 4653 SDValue V = OpIdx.value(); 4654 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4655 // Pass through operands which aren't fixed-length vectors. 4656 if (!V.getValueType().isFixedLengthVector()) { 4657 Ops.push_back(V); 4658 continue; 4659 } 4660 // "cast" fixed length vector to a scalable vector. 4661 MVT OpVT = V.getSimpleValueType(); 4662 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 4663 assert(useRVVForFixedLengthVectorVT(OpVT) && 4664 "Only fixed length vectors are supported!"); 4665 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4666 } 4667 4668 if (!VT.isFixedLengthVector()) 4669 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 4670 4671 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4672 4673 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 4674 4675 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 4676 } 4677 4678 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to 4679 // a RVV indexed load. The RVV indexed load instructions only support the 4680 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4681 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4682 // indexing is extended to the XLEN value type and scaled accordingly. 4683 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const { 4684 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 4685 SDLoc DL(Op); 4686 4687 SDValue Index = MGN->getIndex(); 4688 SDValue Mask = MGN->getMask(); 4689 SDValue PassThru = MGN->getPassThru(); 4690 4691 MVT VT = Op.getSimpleValueType(); 4692 MVT IndexVT = Index.getSimpleValueType(); 4693 MVT XLenVT = Subtarget.getXLenVT(); 4694 4695 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4696 "Unexpected VTs!"); 4697 assert(MGN->getBasePtr().getSimpleValueType() == XLenVT && 4698 "Unexpected pointer type"); 4699 // Targets have to explicitly opt-in for extending vector loads. 4700 assert(MGN->getExtensionType() == ISD::NON_EXTLOAD && 4701 "Unexpected extending MGATHER"); 4702 4703 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4704 // the selection of the masked intrinsics doesn't do this for us. 4705 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4706 4707 SDValue VL; 4708 MVT ContainerVT = VT; 4709 if (VT.isFixedLengthVector()) { 4710 // We need to use the larger of the result and index type to determine the 4711 // scalable type to use so we don't increase LMUL for any operand/result. 4712 if (VT.bitsGE(IndexVT)) { 4713 ContainerVT = getContainerForFixedLengthVector(VT); 4714 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4715 ContainerVT.getVectorElementCount()); 4716 } else { 4717 IndexVT = getContainerForFixedLengthVector(IndexVT); 4718 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 4719 IndexVT.getVectorElementCount()); 4720 } 4721 4722 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4723 4724 if (!IsUnmasked) { 4725 MVT MaskVT = 4726 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4727 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4728 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4729 } 4730 4731 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4732 } else 4733 VL = DAG.getRegister(RISCV::X0, XLenVT); 4734 4735 unsigned IntID = 4736 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 4737 SmallVector<SDValue, 8> Ops{MGN->getChain(), 4738 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4739 if (!IsUnmasked) 4740 Ops.push_back(PassThru); 4741 Ops.push_back(MGN->getBasePtr()); 4742 Ops.push_back(Index); 4743 if (!IsUnmasked) 4744 Ops.push_back(Mask); 4745 Ops.push_back(VL); 4746 4747 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4748 SDValue Result = 4749 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4750 MGN->getMemoryVT(), MGN->getMemOperand()); 4751 SDValue Chain = Result.getValue(1); 4752 4753 if (VT.isFixedLengthVector()) 4754 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4755 4756 return DAG.getMergeValues({Result, Chain}, DL); 4757 } 4758 4759 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to 4760 // a RVV indexed store. The RVV indexed store instructions only support the 4761 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4762 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4763 // indexing is extended to the XLEN value type and scaled accordingly. 4764 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op, 4765 SelectionDAG &DAG) const { 4766 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 4767 SDLoc DL(Op); 4768 SDValue Index = MSN->getIndex(); 4769 SDValue Mask = MSN->getMask(); 4770 SDValue Val = MSN->getValue(); 4771 4772 MVT VT = Val.getSimpleValueType(); 4773 MVT IndexVT = Index.getSimpleValueType(); 4774 MVT XLenVT = Subtarget.getXLenVT(); 4775 4776 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4777 "Unexpected VTs!"); 4778 assert(MSN->getBasePtr().getSimpleValueType() == XLenVT && 4779 "Unexpected pointer type"); 4780 // Targets have to explicitly opt-in for extending vector loads and 4781 // truncating vector stores. 4782 assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER"); 4783 4784 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4785 // the selection of the masked intrinsics doesn't do this for us. 4786 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4787 4788 SDValue VL; 4789 if (VT.isFixedLengthVector()) { 4790 // We need to use the larger of the value and index type to determine the 4791 // scalable type to use so we don't increase LMUL for any operand/result. 4792 MVT ContainerVT; 4793 if (VT.bitsGE(IndexVT)) { 4794 ContainerVT = getContainerForFixedLengthVector(VT); 4795 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4796 ContainerVT.getVectorElementCount()); 4797 } else { 4798 IndexVT = getContainerForFixedLengthVector(IndexVT); 4799 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4800 IndexVT.getVectorElementCount()); 4801 } 4802 4803 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4804 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4805 4806 if (!IsUnmasked) { 4807 MVT MaskVT = 4808 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4809 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4810 } 4811 4812 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4813 } else 4814 VL = DAG.getRegister(RISCV::X0, XLenVT); 4815 4816 unsigned IntID = 4817 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 4818 SmallVector<SDValue, 8> Ops{MSN->getChain(), 4819 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4820 Ops.push_back(Val); 4821 Ops.push_back(MSN->getBasePtr()); 4822 Ops.push_back(Index); 4823 if (!IsUnmasked) 4824 Ops.push_back(Mask); 4825 Ops.push_back(VL); 4826 4827 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops, 4828 MSN->getMemoryVT(), MSN->getMemOperand()); 4829 } 4830 4831 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 4832 SelectionDAG &DAG) const { 4833 const MVT XLenVT = Subtarget.getXLenVT(); 4834 SDLoc DL(Op); 4835 SDValue Chain = Op->getOperand(0); 4836 SDValue SysRegNo = DAG.getConstant( 4837 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4838 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 4839 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 4840 4841 // Encoding used for rounding mode in RISCV differs from that used in 4842 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 4843 // table, which consists of a sequence of 4-bit fields, each representing 4844 // corresponding FLT_ROUNDS mode. 4845 static const int Table = 4846 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 4847 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 4848 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 4849 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 4850 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 4851 4852 SDValue Shift = 4853 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 4854 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4855 DAG.getConstant(Table, DL, XLenVT), Shift); 4856 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4857 DAG.getConstant(7, DL, XLenVT)); 4858 4859 return DAG.getMergeValues({Masked, Chain}, DL); 4860 } 4861 4862 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 4863 SelectionDAG &DAG) const { 4864 const MVT XLenVT = Subtarget.getXLenVT(); 4865 SDLoc DL(Op); 4866 SDValue Chain = Op->getOperand(0); 4867 SDValue RMValue = Op->getOperand(1); 4868 SDValue SysRegNo = DAG.getConstant( 4869 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4870 4871 // Encoding used for rounding mode in RISCV differs from that used in 4872 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 4873 // a table, which consists of a sequence of 4-bit fields, each representing 4874 // corresponding RISCV mode. 4875 static const unsigned Table = 4876 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 4877 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 4878 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 4879 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 4880 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 4881 4882 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 4883 DAG.getConstant(2, DL, XLenVT)); 4884 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4885 DAG.getConstant(Table, DL, XLenVT), Shift); 4886 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4887 DAG.getConstant(0x7, DL, XLenVT)); 4888 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 4889 RMValue); 4890 } 4891 4892 // Returns the opcode of the target-specific SDNode that implements the 32-bit 4893 // form of the given Opcode. 4894 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 4895 switch (Opcode) { 4896 default: 4897 llvm_unreachable("Unexpected opcode"); 4898 case ISD::SHL: 4899 return RISCVISD::SLLW; 4900 case ISD::SRA: 4901 return RISCVISD::SRAW; 4902 case ISD::SRL: 4903 return RISCVISD::SRLW; 4904 case ISD::SDIV: 4905 return RISCVISD::DIVW; 4906 case ISD::UDIV: 4907 return RISCVISD::DIVUW; 4908 case ISD::UREM: 4909 return RISCVISD::REMUW; 4910 case ISD::ROTL: 4911 return RISCVISD::ROLW; 4912 case ISD::ROTR: 4913 return RISCVISD::RORW; 4914 case RISCVISD::GREV: 4915 return RISCVISD::GREVW; 4916 case RISCVISD::GORC: 4917 return RISCVISD::GORCW; 4918 } 4919 } 4920 4921 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 4922 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 4923 // otherwise be promoted to i64, making it difficult to select the 4924 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 4925 // type i8/i16/i32 is lost. 4926 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 4927 unsigned ExtOpc = ISD::ANY_EXTEND) { 4928 SDLoc DL(N); 4929 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4930 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 4931 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 4932 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4933 // ReplaceNodeResults requires we maintain the same type for the return value. 4934 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 4935 } 4936 4937 // Converts the given 32-bit operation to a i64 operation with signed extension 4938 // semantic to reduce the signed extension instructions. 4939 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 4940 SDLoc DL(N); 4941 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4942 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4943 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 4944 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 4945 DAG.getValueType(MVT::i32)); 4946 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 4947 } 4948 4949 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 4950 SmallVectorImpl<SDValue> &Results, 4951 SelectionDAG &DAG) const { 4952 SDLoc DL(N); 4953 switch (N->getOpcode()) { 4954 default: 4955 llvm_unreachable("Don't know how to custom type legalize this operation!"); 4956 case ISD::STRICT_FP_TO_SINT: 4957 case ISD::STRICT_FP_TO_UINT: 4958 case ISD::FP_TO_SINT: 4959 case ISD::FP_TO_UINT: { 4960 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4961 "Unexpected custom legalisation"); 4962 bool IsStrict = N->isStrictFPOpcode(); 4963 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 4964 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 4965 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 4966 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 4967 TargetLowering::TypeSoftenFloat) { 4968 // FIXME: Support strict FP. 4969 if (IsStrict) 4970 return; 4971 if (!isTypeLegal(Op0.getValueType())) 4972 return; 4973 unsigned Opc = 4974 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 4975 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 4976 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4977 return; 4978 } 4979 // If the FP type needs to be softened, emit a library call using the 'si' 4980 // version. If we left it to default legalization we'd end up with 'di'. If 4981 // the FP type doesn't need to be softened just let generic type 4982 // legalization promote the result type. 4983 RTLIB::Libcall LC; 4984 if (IsSigned) 4985 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 4986 else 4987 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 4988 MakeLibCallOptions CallOptions; 4989 EVT OpVT = Op0.getValueType(); 4990 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 4991 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 4992 SDValue Result; 4993 std::tie(Result, Chain) = 4994 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 4995 Results.push_back(Result); 4996 if (IsStrict) 4997 Results.push_back(Chain); 4998 break; 4999 } 5000 case ISD::READCYCLECOUNTER: { 5001 assert(!Subtarget.is64Bit() && 5002 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5003 5004 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5005 SDValue RCW = 5006 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5007 5008 Results.push_back( 5009 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5010 Results.push_back(RCW.getValue(2)); 5011 break; 5012 } 5013 case ISD::MUL: { 5014 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5015 unsigned XLen = Subtarget.getXLen(); 5016 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5017 if (Size > XLen) { 5018 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5019 SDValue LHS = N->getOperand(0); 5020 SDValue RHS = N->getOperand(1); 5021 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5022 5023 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5024 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5025 // We need exactly one side to be unsigned. 5026 if (LHSIsU == RHSIsU) 5027 return; 5028 5029 auto MakeMULPair = [&](SDValue S, SDValue U) { 5030 MVT XLenVT = Subtarget.getXLenVT(); 5031 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5032 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5033 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5034 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5035 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5036 }; 5037 5038 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5039 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5040 5041 // The other operand should be signed, but still prefer MULH when 5042 // possible. 5043 if (RHSIsU && LHSIsS && !RHSIsS) 5044 Results.push_back(MakeMULPair(LHS, RHS)); 5045 else if (LHSIsU && RHSIsS && !LHSIsS) 5046 Results.push_back(MakeMULPair(RHS, LHS)); 5047 5048 return; 5049 } 5050 LLVM_FALLTHROUGH; 5051 } 5052 case ISD::ADD: 5053 case ISD::SUB: 5054 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5055 "Unexpected custom legalisation"); 5056 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5057 break; 5058 case ISD::SHL: 5059 case ISD::SRA: 5060 case ISD::SRL: 5061 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5062 "Unexpected custom legalisation"); 5063 if (N->getOperand(1).getOpcode() == ISD::Constant) 5064 return; 5065 Results.push_back(customLegalizeToWOp(N, DAG)); 5066 break; 5067 case ISD::ROTL: 5068 case ISD::ROTR: 5069 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5070 "Unexpected custom legalisation"); 5071 Results.push_back(customLegalizeToWOp(N, DAG)); 5072 break; 5073 case ISD::CTTZ: 5074 case ISD::CTTZ_ZERO_UNDEF: 5075 case ISD::CTLZ: 5076 case ISD::CTLZ_ZERO_UNDEF: { 5077 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5078 "Unexpected custom legalisation"); 5079 5080 SDValue NewOp0 = 5081 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5082 bool IsCTZ = 5083 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5084 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5085 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5086 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5087 return; 5088 } 5089 case ISD::SDIV: 5090 case ISD::UDIV: 5091 case ISD::UREM: { 5092 MVT VT = N->getSimpleValueType(0); 5093 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5094 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5095 "Unexpected custom legalisation"); 5096 // Don't promote division/remainder by constant since we should expand those 5097 // to multiply by magic constant. 5098 // FIXME: What if the expansion is disabled for minsize. 5099 if (N->getOperand(1).getOpcode() == ISD::Constant) 5100 return; 5101 5102 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5103 // the upper 32 bits. For other types we need to sign or zero extend 5104 // based on the opcode. 5105 unsigned ExtOpc = ISD::ANY_EXTEND; 5106 if (VT != MVT::i32) 5107 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5108 : ISD::ZERO_EXTEND; 5109 5110 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5111 break; 5112 } 5113 case ISD::UADDO: 5114 case ISD::USUBO: { 5115 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5116 "Unexpected custom legalisation"); 5117 bool IsAdd = N->getOpcode() == ISD::UADDO; 5118 // Create an ADDW or SUBW. 5119 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5120 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5121 SDValue Res = 5122 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5123 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5124 DAG.getValueType(MVT::i32)); 5125 5126 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5127 // Since the inputs are sign extended from i32, this is equivalent to 5128 // comparing the lower 32 bits. 5129 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5130 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5131 IsAdd ? ISD::SETULT : ISD::SETUGT); 5132 5133 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5134 Results.push_back(Overflow); 5135 return; 5136 } 5137 case ISD::UADDSAT: 5138 case ISD::USUBSAT: { 5139 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5140 "Unexpected custom legalisation"); 5141 if (Subtarget.hasStdExtZbb()) { 5142 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5143 // sign extend allows overflow of the lower 32 bits to be detected on 5144 // the promoted size. 5145 SDValue LHS = 5146 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5147 SDValue RHS = 5148 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5149 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5150 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5151 return; 5152 } 5153 5154 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5155 // promotion for UADDO/USUBO. 5156 Results.push_back(expandAddSubSat(N, DAG)); 5157 return; 5158 } 5159 case ISD::BITCAST: { 5160 EVT VT = N->getValueType(0); 5161 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5162 SDValue Op0 = N->getOperand(0); 5163 EVT Op0VT = Op0.getValueType(); 5164 MVT XLenVT = Subtarget.getXLenVT(); 5165 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5166 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5167 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5168 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5169 Subtarget.hasStdExtF()) { 5170 SDValue FPConv = 5171 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5172 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5173 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5174 isTypeLegal(Op0VT)) { 5175 // Custom-legalize bitcasts from fixed-length vector types to illegal 5176 // scalar types in order to improve codegen. Bitcast the vector to a 5177 // one-element vector type whose element type is the same as the result 5178 // type, and extract the first element. 5179 LLVMContext &Context = *DAG.getContext(); 5180 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 5181 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5182 DAG.getConstant(0, DL, XLenVT))); 5183 } 5184 break; 5185 } 5186 case RISCVISD::GREV: 5187 case RISCVISD::GORC: { 5188 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5189 "Unexpected custom legalisation"); 5190 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5191 // This is similar to customLegalizeToWOp, except that we pass the second 5192 // operand (a TargetConstant) straight through: it is already of type 5193 // XLenVT. 5194 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5195 SDValue NewOp0 = 5196 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5197 SDValue NewOp1 = 5198 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5199 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5200 // ReplaceNodeResults requires we maintain the same type for the return 5201 // value. 5202 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5203 break; 5204 } 5205 case RISCVISD::SHFL: { 5206 // There is no SHFLIW instruction, but we can just promote the operation. 5207 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5208 "Unexpected custom legalisation"); 5209 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5210 SDValue NewOp0 = 5211 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5212 SDValue NewOp1 = 5213 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5214 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5215 // ReplaceNodeResults requires we maintain the same type for the return 5216 // value. 5217 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5218 break; 5219 } 5220 case ISD::BSWAP: 5221 case ISD::BITREVERSE: { 5222 MVT VT = N->getSimpleValueType(0); 5223 MVT XLenVT = Subtarget.getXLenVT(); 5224 assert((VT == MVT::i8 || VT == MVT::i16 || 5225 (VT == MVT::i32 && Subtarget.is64Bit())) && 5226 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5227 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5228 unsigned Imm = VT.getSizeInBits() - 1; 5229 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5230 if (N->getOpcode() == ISD::BSWAP) 5231 Imm &= ~0x7U; 5232 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5233 SDValue GREVI = 5234 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5235 // ReplaceNodeResults requires we maintain the same type for the return 5236 // value. 5237 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5238 break; 5239 } 5240 case ISD::FSHL: 5241 case ISD::FSHR: { 5242 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5243 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5244 SDValue NewOp0 = 5245 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5246 SDValue NewOp1 = 5247 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5248 SDValue NewOp2 = 5249 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5250 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5251 // Mask the shift amount to 5 bits. 5252 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5253 DAG.getConstant(0x1f, DL, MVT::i64)); 5254 unsigned Opc = 5255 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5256 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5257 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5258 break; 5259 } 5260 case ISD::EXTRACT_VECTOR_ELT: { 5261 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5262 // type is illegal (currently only vXi64 RV32). 5263 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5264 // transferred to the destination register. We issue two of these from the 5265 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5266 // first element. 5267 SDValue Vec = N->getOperand(0); 5268 SDValue Idx = N->getOperand(1); 5269 5270 // The vector type hasn't been legalized yet so we can't issue target 5271 // specific nodes if it needs legalization. 5272 // FIXME: We would manually legalize if it's important. 5273 if (!isTypeLegal(Vec.getValueType())) 5274 return; 5275 5276 MVT VecVT = Vec.getSimpleValueType(); 5277 5278 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5279 VecVT.getVectorElementType() == MVT::i64 && 5280 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5281 5282 // If this is a fixed vector, we need to convert it to a scalable vector. 5283 MVT ContainerVT = VecVT; 5284 if (VecVT.isFixedLengthVector()) { 5285 ContainerVT = getContainerForFixedLengthVector(VecVT); 5286 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5287 } 5288 5289 MVT XLenVT = Subtarget.getXLenVT(); 5290 5291 // Use a VL of 1 to avoid processing more elements than we need. 5292 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5293 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5294 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5295 5296 // Unless the index is known to be 0, we must slide the vector down to get 5297 // the desired element into index 0. 5298 if (!isNullConstant(Idx)) { 5299 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5300 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5301 } 5302 5303 // Extract the lower XLEN bits of the correct vector element. 5304 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5305 5306 // To extract the upper XLEN bits of the vector element, shift the first 5307 // element right by 32 bits and re-extract the lower XLEN bits. 5308 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5309 DAG.getConstant(32, DL, XLenVT), VL); 5310 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5311 ThirtyTwoV, Mask, VL); 5312 5313 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5314 5315 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5316 break; 5317 } 5318 case ISD::INTRINSIC_WO_CHAIN: { 5319 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5320 switch (IntNo) { 5321 default: 5322 llvm_unreachable( 5323 "Don't know how to custom type legalize this intrinsic!"); 5324 case Intrinsic::riscv_orc_b: { 5325 // Lower to the GORCI encoding for orc.b with the operand extended. 5326 SDValue NewOp = 5327 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5328 // If Zbp is enabled, use GORCIW which will sign extend the result. 5329 unsigned Opc = 5330 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5331 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5332 DAG.getConstant(7, DL, MVT::i64)); 5333 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5334 return; 5335 } 5336 case Intrinsic::riscv_grev: 5337 case Intrinsic::riscv_gorc: { 5338 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5339 "Unexpected custom legalisation"); 5340 SDValue NewOp1 = 5341 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5342 SDValue NewOp2 = 5343 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5344 unsigned Opc = 5345 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5346 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5347 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5348 break; 5349 } 5350 case Intrinsic::riscv_shfl: 5351 case Intrinsic::riscv_unshfl: { 5352 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5353 "Unexpected custom legalisation"); 5354 SDValue NewOp1 = 5355 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5356 SDValue NewOp2 = 5357 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5358 unsigned Opc = 5359 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5360 if (isa<ConstantSDNode>(N->getOperand(2))) { 5361 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5362 DAG.getConstant(0xf, DL, MVT::i64)); 5363 Opc = 5364 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5365 } 5366 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5367 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5368 break; 5369 } 5370 case Intrinsic::riscv_bcompress: 5371 case Intrinsic::riscv_bdecompress: { 5372 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5373 "Unexpected custom legalisation"); 5374 SDValue NewOp1 = 5375 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5376 SDValue NewOp2 = 5377 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5378 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5379 ? RISCVISD::BCOMPRESSW 5380 : RISCVISD::BDECOMPRESSW; 5381 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5382 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5383 break; 5384 } 5385 case Intrinsic::riscv_vmv_x_s: { 5386 EVT VT = N->getValueType(0); 5387 MVT XLenVT = Subtarget.getXLenVT(); 5388 if (VT.bitsLT(XLenVT)) { 5389 // Simple case just extract using vmv.x.s and truncate. 5390 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5391 Subtarget.getXLenVT(), N->getOperand(1)); 5392 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5393 return; 5394 } 5395 5396 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5397 "Unexpected custom legalization"); 5398 5399 // We need to do the move in two steps. 5400 SDValue Vec = N->getOperand(1); 5401 MVT VecVT = Vec.getSimpleValueType(); 5402 5403 // First extract the lower XLEN bits of the element. 5404 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5405 5406 // To extract the upper XLEN bits of the vector element, shift the first 5407 // element right by 32 bits and re-extract the lower XLEN bits. 5408 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5409 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5410 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5411 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5412 DAG.getConstant(32, DL, XLenVT), VL); 5413 SDValue LShr32 = 5414 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5415 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5416 5417 Results.push_back( 5418 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5419 break; 5420 } 5421 } 5422 break; 5423 } 5424 case ISD::VECREDUCE_ADD: 5425 case ISD::VECREDUCE_AND: 5426 case ISD::VECREDUCE_OR: 5427 case ISD::VECREDUCE_XOR: 5428 case ISD::VECREDUCE_SMAX: 5429 case ISD::VECREDUCE_UMAX: 5430 case ISD::VECREDUCE_SMIN: 5431 case ISD::VECREDUCE_UMIN: 5432 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5433 Results.push_back(V); 5434 break; 5435 case ISD::FLT_ROUNDS_: { 5436 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5437 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5438 Results.push_back(Res.getValue(0)); 5439 Results.push_back(Res.getValue(1)); 5440 break; 5441 } 5442 } 5443 } 5444 5445 // A structure to hold one of the bit-manipulation patterns below. Together, a 5446 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5447 // (or (and (shl x, 1), 0xAAAAAAAA), 5448 // (and (srl x, 1), 0x55555555)) 5449 struct RISCVBitmanipPat { 5450 SDValue Op; 5451 unsigned ShAmt; 5452 bool IsSHL; 5453 5454 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5455 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5456 } 5457 }; 5458 5459 // Matches patterns of the form 5460 // (and (shl x, C2), (C1 << C2)) 5461 // (and (srl x, C2), C1) 5462 // (shl (and x, C1), C2) 5463 // (srl (and x, (C1 << C2)), C2) 5464 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5465 // The expected masks for each shift amount are specified in BitmanipMasks where 5466 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5467 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5468 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5469 // XLen is 64. 5470 static Optional<RISCVBitmanipPat> 5471 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5472 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5473 "Unexpected number of masks"); 5474 Optional<uint64_t> Mask; 5475 // Optionally consume a mask around the shift operation. 5476 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 5477 Mask = Op.getConstantOperandVal(1); 5478 Op = Op.getOperand(0); 5479 } 5480 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 5481 return None; 5482 bool IsSHL = Op.getOpcode() == ISD::SHL; 5483 5484 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5485 return None; 5486 uint64_t ShAmt = Op.getConstantOperandVal(1); 5487 5488 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5489 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 5490 return None; 5491 // If we don't have enough masks for 64 bit, then we must be trying to 5492 // match SHFL so we're only allowed to shift 1/4 of the width. 5493 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 5494 return None; 5495 5496 SDValue Src = Op.getOperand(0); 5497 5498 // The expected mask is shifted left when the AND is found around SHL 5499 // patterns. 5500 // ((x >> 1) & 0x55555555) 5501 // ((x << 1) & 0xAAAAAAAA) 5502 bool SHLExpMask = IsSHL; 5503 5504 if (!Mask) { 5505 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 5506 // the mask is all ones: consume that now. 5507 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 5508 Mask = Src.getConstantOperandVal(1); 5509 Src = Src.getOperand(0); 5510 // The expected mask is now in fact shifted left for SRL, so reverse the 5511 // decision. 5512 // ((x & 0xAAAAAAAA) >> 1) 5513 // ((x & 0x55555555) << 1) 5514 SHLExpMask = !SHLExpMask; 5515 } else { 5516 // Use a default shifted mask of all-ones if there's no AND, truncated 5517 // down to the expected width. This simplifies the logic later on. 5518 Mask = maskTrailingOnes<uint64_t>(Width); 5519 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 5520 } 5521 } 5522 5523 unsigned MaskIdx = Log2_32(ShAmt); 5524 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5525 5526 if (SHLExpMask) 5527 ExpMask <<= ShAmt; 5528 5529 if (Mask != ExpMask) 5530 return None; 5531 5532 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 5533 } 5534 5535 // Matches any of the following bit-manipulation patterns: 5536 // (and (shl x, 1), (0x55555555 << 1)) 5537 // (and (srl x, 1), 0x55555555) 5538 // (shl (and x, 0x55555555), 1) 5539 // (srl (and x, (0x55555555 << 1)), 1) 5540 // where the shift amount and mask may vary thus: 5541 // [1] = 0x55555555 / 0xAAAAAAAA 5542 // [2] = 0x33333333 / 0xCCCCCCCC 5543 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 5544 // [8] = 0x00FF00FF / 0xFF00FF00 5545 // [16] = 0x0000FFFF / 0xFFFFFFFF 5546 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 5547 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 5548 // These are the unshifted masks which we use to match bit-manipulation 5549 // patterns. They may be shifted left in certain circumstances. 5550 static const uint64_t BitmanipMasks[] = { 5551 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 5552 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 5553 5554 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5555 } 5556 5557 // Match the following pattern as a GREVI(W) operation 5558 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 5559 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 5560 const RISCVSubtarget &Subtarget) { 5561 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5562 EVT VT = Op.getValueType(); 5563 5564 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5565 auto LHS = matchGREVIPat(Op.getOperand(0)); 5566 auto RHS = matchGREVIPat(Op.getOperand(1)); 5567 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 5568 SDLoc DL(Op); 5569 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 5570 DAG.getConstant(LHS->ShAmt, DL, VT)); 5571 } 5572 } 5573 return SDValue(); 5574 } 5575 5576 // Matches any the following pattern as a GORCI(W) operation 5577 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 5578 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 5579 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 5580 // Note that with the variant of 3., 5581 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 5582 // the inner pattern will first be matched as GREVI and then the outer 5583 // pattern will be matched to GORC via the first rule above. 5584 // 4. (or (rotl/rotr x, bitwidth/2), x) 5585 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 5586 const RISCVSubtarget &Subtarget) { 5587 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5588 EVT VT = Op.getValueType(); 5589 5590 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5591 SDLoc DL(Op); 5592 SDValue Op0 = Op.getOperand(0); 5593 SDValue Op1 = Op.getOperand(1); 5594 5595 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 5596 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 5597 isa<ConstantSDNode>(Reverse.getOperand(1)) && 5598 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 5599 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 5600 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 5601 if ((Reverse.getOpcode() == ISD::ROTL || 5602 Reverse.getOpcode() == ISD::ROTR) && 5603 Reverse.getOperand(0) == X && 5604 isa<ConstantSDNode>(Reverse.getOperand(1))) { 5605 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 5606 if (RotAmt == (VT.getSizeInBits() / 2)) 5607 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 5608 DAG.getConstant(RotAmt, DL, VT)); 5609 } 5610 return SDValue(); 5611 }; 5612 5613 // Check for either commutable permutation of (or (GREVI x, shamt), x) 5614 if (SDValue V = MatchOROfReverse(Op0, Op1)) 5615 return V; 5616 if (SDValue V = MatchOROfReverse(Op1, Op0)) 5617 return V; 5618 5619 // OR is commutable so canonicalize its OR operand to the left 5620 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 5621 std::swap(Op0, Op1); 5622 if (Op0.getOpcode() != ISD::OR) 5623 return SDValue(); 5624 SDValue OrOp0 = Op0.getOperand(0); 5625 SDValue OrOp1 = Op0.getOperand(1); 5626 auto LHS = matchGREVIPat(OrOp0); 5627 // OR is commutable so swap the operands and try again: x might have been 5628 // on the left 5629 if (!LHS) { 5630 std::swap(OrOp0, OrOp1); 5631 LHS = matchGREVIPat(OrOp0); 5632 } 5633 auto RHS = matchGREVIPat(Op1); 5634 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 5635 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 5636 DAG.getConstant(LHS->ShAmt, DL, VT)); 5637 } 5638 } 5639 return SDValue(); 5640 } 5641 5642 // Matches any of the following bit-manipulation patterns: 5643 // (and (shl x, 1), (0x22222222 << 1)) 5644 // (and (srl x, 1), 0x22222222) 5645 // (shl (and x, 0x22222222), 1) 5646 // (srl (and x, (0x22222222 << 1)), 1) 5647 // where the shift amount and mask may vary thus: 5648 // [1] = 0x22222222 / 0x44444444 5649 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 5650 // [4] = 0x00F000F0 / 0x0F000F00 5651 // [8] = 0x0000FF00 / 0x00FF0000 5652 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 5653 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 5654 // These are the unshifted masks which we use to match bit-manipulation 5655 // patterns. They may be shifted left in certain circumstances. 5656 static const uint64_t BitmanipMasks[] = { 5657 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 5658 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 5659 5660 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5661 } 5662 5663 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 5664 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 5665 const RISCVSubtarget &Subtarget) { 5666 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5667 EVT VT = Op.getValueType(); 5668 5669 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 5670 return SDValue(); 5671 5672 SDValue Op0 = Op.getOperand(0); 5673 SDValue Op1 = Op.getOperand(1); 5674 5675 // Or is commutable so canonicalize the second OR to the LHS. 5676 if (Op0.getOpcode() != ISD::OR) 5677 std::swap(Op0, Op1); 5678 if (Op0.getOpcode() != ISD::OR) 5679 return SDValue(); 5680 5681 // We found an inner OR, so our operands are the operands of the inner OR 5682 // and the other operand of the outer OR. 5683 SDValue A = Op0.getOperand(0); 5684 SDValue B = Op0.getOperand(1); 5685 SDValue C = Op1; 5686 5687 auto Match1 = matchSHFLPat(A); 5688 auto Match2 = matchSHFLPat(B); 5689 5690 // If neither matched, we failed. 5691 if (!Match1 && !Match2) 5692 return SDValue(); 5693 5694 // We had at least one match. if one failed, try the remaining C operand. 5695 if (!Match1) { 5696 std::swap(A, C); 5697 Match1 = matchSHFLPat(A); 5698 if (!Match1) 5699 return SDValue(); 5700 } else if (!Match2) { 5701 std::swap(B, C); 5702 Match2 = matchSHFLPat(B); 5703 if (!Match2) 5704 return SDValue(); 5705 } 5706 assert(Match1 && Match2); 5707 5708 // Make sure our matches pair up. 5709 if (!Match1->formsPairWith(*Match2)) 5710 return SDValue(); 5711 5712 // All the remains is to make sure C is an AND with the same input, that masks 5713 // out the bits that are being shuffled. 5714 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 5715 C.getOperand(0) != Match1->Op) 5716 return SDValue(); 5717 5718 uint64_t Mask = C.getConstantOperandVal(1); 5719 5720 static const uint64_t BitmanipMasks[] = { 5721 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 5722 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 5723 }; 5724 5725 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5726 unsigned MaskIdx = Log2_32(Match1->ShAmt); 5727 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5728 5729 if (Mask != ExpMask) 5730 return SDValue(); 5731 5732 SDLoc DL(Op); 5733 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 5734 DAG.getConstant(Match1->ShAmt, DL, VT)); 5735 } 5736 5737 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 5738 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 5739 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 5740 // not undo itself, but they are redundant. 5741 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 5742 SDValue Src = N->getOperand(0); 5743 5744 if (Src.getOpcode() != N->getOpcode()) 5745 return SDValue(); 5746 5747 if (!isa<ConstantSDNode>(N->getOperand(1)) || 5748 !isa<ConstantSDNode>(Src.getOperand(1))) 5749 return SDValue(); 5750 5751 unsigned ShAmt1 = N->getConstantOperandVal(1); 5752 unsigned ShAmt2 = Src.getConstantOperandVal(1); 5753 Src = Src.getOperand(0); 5754 5755 unsigned CombinedShAmt; 5756 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 5757 CombinedShAmt = ShAmt1 | ShAmt2; 5758 else 5759 CombinedShAmt = ShAmt1 ^ ShAmt2; 5760 5761 if (CombinedShAmt == 0) 5762 return Src; 5763 5764 SDLoc DL(N); 5765 return DAG.getNode( 5766 N->getOpcode(), DL, N->getValueType(0), Src, 5767 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 5768 } 5769 5770 // Combine a constant select operand into its use: 5771 // 5772 // (and (select cond, -1, c), x) 5773 // -> (select cond, x, (and x, c)) [AllOnes=1] 5774 // (or (select cond, 0, c), x) 5775 // -> (select cond, x, (or x, c)) [AllOnes=0] 5776 // (xor (select cond, 0, c), x) 5777 // -> (select cond, x, (xor x, c)) [AllOnes=0] 5778 // (add (select cond, 0, c), x) 5779 // -> (select cond, x, (add x, c)) [AllOnes=0] 5780 // (sub x, (select cond, 0, c)) 5781 // -> (select cond, x, (sub x, c)) [AllOnes=0] 5782 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 5783 SelectionDAG &DAG, bool AllOnes) { 5784 EVT VT = N->getValueType(0); 5785 5786 // Skip vectors. 5787 if (VT.isVector()) 5788 return SDValue(); 5789 5790 if ((Slct.getOpcode() != ISD::SELECT && 5791 Slct.getOpcode() != RISCVISD::SELECT_CC) || 5792 !Slct.hasOneUse()) 5793 return SDValue(); 5794 5795 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 5796 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 5797 }; 5798 5799 bool SwapSelectOps; 5800 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 5801 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 5802 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 5803 SDValue NonConstantVal; 5804 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 5805 SwapSelectOps = false; 5806 NonConstantVal = FalseVal; 5807 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 5808 SwapSelectOps = true; 5809 NonConstantVal = TrueVal; 5810 } else 5811 return SDValue(); 5812 5813 // Slct is now know to be the desired identity constant when CC is true. 5814 TrueVal = OtherOp; 5815 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 5816 // Unless SwapSelectOps says the condition should be false. 5817 if (SwapSelectOps) 5818 std::swap(TrueVal, FalseVal); 5819 5820 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 5821 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 5822 {Slct.getOperand(0), Slct.getOperand(1), 5823 Slct.getOperand(2), TrueVal, FalseVal}); 5824 5825 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 5826 {Slct.getOperand(0), TrueVal, FalseVal}); 5827 } 5828 5829 // Attempt combineSelectAndUse on each operand of a commutative operator N. 5830 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 5831 bool AllOnes) { 5832 SDValue N0 = N->getOperand(0); 5833 SDValue N1 = N->getOperand(1); 5834 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 5835 return Result; 5836 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 5837 return Result; 5838 return SDValue(); 5839 } 5840 5841 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG) { 5842 // fold (add (select lhs, rhs, cc, 0, y), x) -> 5843 // (select lhs, rhs, cc, x, (add x, y)) 5844 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 5845 } 5846 5847 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 5848 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 5849 // (select lhs, rhs, cc, x, (sub x, y)) 5850 SDValue N0 = N->getOperand(0); 5851 SDValue N1 = N->getOperand(1); 5852 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 5853 } 5854 5855 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 5856 // fold (and (select lhs, rhs, cc, -1, y), x) -> 5857 // (select lhs, rhs, cc, x, (and x, y)) 5858 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 5859 } 5860 5861 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 5862 const RISCVSubtarget &Subtarget) { 5863 if (Subtarget.hasStdExtZbp()) { 5864 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 5865 return GREV; 5866 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 5867 return GORC; 5868 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 5869 return SHFL; 5870 } 5871 5872 // fold (or (select cond, 0, y), x) -> 5873 // (select cond, x, (or x, y)) 5874 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 5875 } 5876 5877 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 5878 // fold (xor (select cond, 0, y), x) -> 5879 // (select cond, x, (xor x, y)) 5880 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 5881 } 5882 5883 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 5884 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 5885 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 5886 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 5887 // ADDW/SUBW/MULW. 5888 static SDValue performANY_EXTENDCombine(SDNode *N, 5889 TargetLowering::DAGCombinerInfo &DCI, 5890 const RISCVSubtarget &Subtarget) { 5891 if (!Subtarget.is64Bit()) 5892 return SDValue(); 5893 5894 SelectionDAG &DAG = DCI.DAG; 5895 5896 SDValue Src = N->getOperand(0); 5897 EVT VT = N->getValueType(0); 5898 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 5899 return SDValue(); 5900 5901 // The opcode must be one that can implicitly sign_extend. 5902 // FIXME: Additional opcodes. 5903 switch (Src.getOpcode()) { 5904 default: 5905 return SDValue(); 5906 case ISD::MUL: 5907 if (!Subtarget.hasStdExtM()) 5908 return SDValue(); 5909 LLVM_FALLTHROUGH; 5910 case ISD::ADD: 5911 case ISD::SUB: 5912 break; 5913 } 5914 5915 // Only handle cases where the result is used by a CopyToReg. That likely 5916 // means the value is a liveout of the basic block. This helps prevent 5917 // infinite combine loops like PR51206. 5918 if (none_of(N->uses(), 5919 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 5920 return SDValue(); 5921 5922 SmallVector<SDNode *, 4> SetCCs; 5923 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 5924 UE = Src.getNode()->use_end(); 5925 UI != UE; ++UI) { 5926 SDNode *User = *UI; 5927 if (User == N) 5928 continue; 5929 if (UI.getUse().getResNo() != Src.getResNo()) 5930 continue; 5931 // All i32 setccs are legalized by sign extending operands. 5932 if (User->getOpcode() == ISD::SETCC) { 5933 SetCCs.push_back(User); 5934 continue; 5935 } 5936 // We don't know if we can extend this user. 5937 break; 5938 } 5939 5940 // If we don't have any SetCCs, this isn't worthwhile. 5941 if (SetCCs.empty()) 5942 return SDValue(); 5943 5944 SDLoc DL(N); 5945 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 5946 DCI.CombineTo(N, SExt); 5947 5948 // Promote all the setccs. 5949 for (SDNode *SetCC : SetCCs) { 5950 SmallVector<SDValue, 4> Ops; 5951 5952 for (unsigned j = 0; j != 2; ++j) { 5953 SDValue SOp = SetCC->getOperand(j); 5954 if (SOp == Src) 5955 Ops.push_back(SExt); 5956 else 5957 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 5958 } 5959 5960 Ops.push_back(SetCC->getOperand(2)); 5961 DCI.CombineTo(SetCC, 5962 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 5963 } 5964 return SDValue(N, 0); 5965 } 5966 5967 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 5968 DAGCombinerInfo &DCI) const { 5969 SelectionDAG &DAG = DCI.DAG; 5970 5971 // Helper to call SimplifyDemandedBits on an operand of N where only some low 5972 // bits are demanded. N will be added to the Worklist if it was not deleted. 5973 // Caller should return SDValue(N, 0) if this returns true. 5974 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 5975 SDValue Op = N->getOperand(OpNo); 5976 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 5977 if (!SimplifyDemandedBits(Op, Mask, DCI)) 5978 return false; 5979 5980 if (N->getOpcode() != ISD::DELETED_NODE) 5981 DCI.AddToWorklist(N); 5982 return true; 5983 }; 5984 5985 switch (N->getOpcode()) { 5986 default: 5987 break; 5988 case RISCVISD::SplitF64: { 5989 SDValue Op0 = N->getOperand(0); 5990 // If the input to SplitF64 is just BuildPairF64 then the operation is 5991 // redundant. Instead, use BuildPairF64's operands directly. 5992 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 5993 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 5994 5995 SDLoc DL(N); 5996 5997 // It's cheaper to materialise two 32-bit integers than to load a double 5998 // from the constant pool and transfer it to integer registers through the 5999 // stack. 6000 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6001 APInt V = C->getValueAPF().bitcastToAPInt(); 6002 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6003 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6004 return DCI.CombineTo(N, Lo, Hi); 6005 } 6006 6007 // This is a target-specific version of a DAGCombine performed in 6008 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6009 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6010 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6011 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6012 !Op0.getNode()->hasOneUse()) 6013 break; 6014 SDValue NewSplitF64 = 6015 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 6016 Op0.getOperand(0)); 6017 SDValue Lo = NewSplitF64.getValue(0); 6018 SDValue Hi = NewSplitF64.getValue(1); 6019 APInt SignBit = APInt::getSignMask(32); 6020 if (Op0.getOpcode() == ISD::FNEG) { 6021 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 6022 DAG.getConstant(SignBit, DL, MVT::i32)); 6023 return DCI.CombineTo(N, Lo, NewHi); 6024 } 6025 assert(Op0.getOpcode() == ISD::FABS); 6026 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 6027 DAG.getConstant(~SignBit, DL, MVT::i32)); 6028 return DCI.CombineTo(N, Lo, NewHi); 6029 } 6030 case RISCVISD::SLLW: 6031 case RISCVISD::SRAW: 6032 case RISCVISD::SRLW: 6033 case RISCVISD::ROLW: 6034 case RISCVISD::RORW: { 6035 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6036 if (SimplifyDemandedLowBitsHelper(0, 32) || 6037 SimplifyDemandedLowBitsHelper(1, 5)) 6038 return SDValue(N, 0); 6039 break; 6040 } 6041 case RISCVISD::CLZW: 6042 case RISCVISD::CTZW: { 6043 // Only the lower 32 bits of the first operand are read 6044 if (SimplifyDemandedLowBitsHelper(0, 32)) 6045 return SDValue(N, 0); 6046 break; 6047 } 6048 case RISCVISD::FSL: 6049 case RISCVISD::FSR: { 6050 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 6051 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 6052 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6053 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 6054 return SDValue(N, 0); 6055 break; 6056 } 6057 case RISCVISD::FSLW: 6058 case RISCVISD::FSRW: { 6059 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 6060 // read. 6061 if (SimplifyDemandedLowBitsHelper(0, 32) || 6062 SimplifyDemandedLowBitsHelper(1, 32) || 6063 SimplifyDemandedLowBitsHelper(2, 6)) 6064 return SDValue(N, 0); 6065 break; 6066 } 6067 case RISCVISD::GREV: 6068 case RISCVISD::GORC: { 6069 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 6070 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6071 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6072 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 6073 return SDValue(N, 0); 6074 6075 return combineGREVI_GORCI(N, DCI.DAG); 6076 } 6077 case RISCVISD::GREVW: 6078 case RISCVISD::GORCW: { 6079 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6080 if (SimplifyDemandedLowBitsHelper(0, 32) || 6081 SimplifyDemandedLowBitsHelper(1, 5)) 6082 return SDValue(N, 0); 6083 6084 return combineGREVI_GORCI(N, DCI.DAG); 6085 } 6086 case RISCVISD::SHFL: 6087 case RISCVISD::UNSHFL: { 6088 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 6089 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6090 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6091 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 6092 return SDValue(N, 0); 6093 6094 break; 6095 } 6096 case RISCVISD::SHFLW: 6097 case RISCVISD::UNSHFLW: { 6098 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 6099 SDValue LHS = N->getOperand(0); 6100 SDValue RHS = N->getOperand(1); 6101 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 6102 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 6103 if (SimplifyDemandedLowBitsHelper(0, 32) || 6104 SimplifyDemandedLowBitsHelper(1, 4)) 6105 return SDValue(N, 0); 6106 6107 break; 6108 } 6109 case RISCVISD::BCOMPRESSW: 6110 case RISCVISD::BDECOMPRESSW: { 6111 // Only the lower 32 bits of LHS and RHS are read. 6112 if (SimplifyDemandedLowBitsHelper(0, 32) || 6113 SimplifyDemandedLowBitsHelper(1, 32)) 6114 return SDValue(N, 0); 6115 6116 break; 6117 } 6118 case RISCVISD::FMV_X_ANYEXTH: 6119 case RISCVISD::FMV_X_ANYEXTW_RV64: { 6120 SDLoc DL(N); 6121 SDValue Op0 = N->getOperand(0); 6122 MVT VT = N->getSimpleValueType(0); 6123 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 6124 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 6125 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 6126 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 6127 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 6128 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 6129 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 6130 assert(Op0.getOperand(0).getValueType() == VT && 6131 "Unexpected value type!"); 6132 return Op0.getOperand(0); 6133 } 6134 6135 // This is a target-specific version of a DAGCombine performed in 6136 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6137 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6138 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6139 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6140 !Op0.getNode()->hasOneUse()) 6141 break; 6142 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 6143 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 6144 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 6145 if (Op0.getOpcode() == ISD::FNEG) 6146 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 6147 DAG.getConstant(SignBit, DL, VT)); 6148 6149 assert(Op0.getOpcode() == ISD::FABS); 6150 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 6151 DAG.getConstant(~SignBit, DL, VT)); 6152 } 6153 case ISD::ADD: 6154 return performADDCombine(N, DAG); 6155 case ISD::SUB: 6156 return performSUBCombine(N, DAG); 6157 case ISD::AND: 6158 return performANDCombine(N, DAG); 6159 case ISD::OR: 6160 return performORCombine(N, DAG, Subtarget); 6161 case ISD::XOR: 6162 return performXORCombine(N, DAG); 6163 case ISD::ANY_EXTEND: 6164 return performANY_EXTENDCombine(N, DCI, Subtarget); 6165 case ISD::ZERO_EXTEND: 6166 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 6167 // type legalization. This is safe because fp_to_uint produces poison if 6168 // it overflows. 6169 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 6170 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 6171 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 6172 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 6173 N->getOperand(0).getOperand(0)); 6174 return SDValue(); 6175 case RISCVISD::SELECT_CC: { 6176 // Transform 6177 SDValue LHS = N->getOperand(0); 6178 SDValue RHS = N->getOperand(1); 6179 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 6180 if (!ISD::isIntEqualitySetCC(CCVal)) 6181 break; 6182 6183 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 6184 // (select_cc X, Y, lt, trueV, falseV) 6185 // Sometimes the setcc is introduced after select_cc has been formed. 6186 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6187 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6188 // If we're looking for eq 0 instead of ne 0, we need to invert the 6189 // condition. 6190 bool Invert = CCVal == ISD::SETEQ; 6191 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6192 if (Invert) 6193 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6194 6195 SDLoc DL(N); 6196 RHS = LHS.getOperand(1); 6197 LHS = LHS.getOperand(0); 6198 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6199 6200 SDValue TargetCC = DAG.getCondCode(CCVal); 6201 return DAG.getNode( 6202 RISCVISD::SELECT_CC, DL, N->getValueType(0), 6203 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 6204 } 6205 6206 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 6207 // (select_cc X, Y, eq/ne, trueV, falseV) 6208 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6209 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 6210 {LHS.getOperand(0), LHS.getOperand(1), 6211 N->getOperand(2), N->getOperand(3), 6212 N->getOperand(4)}); 6213 // (select_cc X, 1, setne, trueV, falseV) -> 6214 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 6215 // This can occur when legalizing some floating point comparisons. 6216 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6217 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6218 SDLoc DL(N); 6219 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6220 SDValue TargetCC = DAG.getCondCode(CCVal); 6221 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6222 return DAG.getNode( 6223 RISCVISD::SELECT_CC, DL, N->getValueType(0), 6224 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 6225 } 6226 6227 break; 6228 } 6229 case RISCVISD::BR_CC: { 6230 SDValue LHS = N->getOperand(1); 6231 SDValue RHS = N->getOperand(2); 6232 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 6233 if (!ISD::isIntEqualitySetCC(CCVal)) 6234 break; 6235 6236 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 6237 // (br_cc X, Y, lt, dest) 6238 // Sometimes the setcc is introduced after br_cc has been formed. 6239 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6240 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6241 // If we're looking for eq 0 instead of ne 0, we need to invert the 6242 // condition. 6243 bool Invert = CCVal == ISD::SETEQ; 6244 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6245 if (Invert) 6246 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6247 6248 SDLoc DL(N); 6249 RHS = LHS.getOperand(1); 6250 LHS = LHS.getOperand(0); 6251 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6252 6253 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6254 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 6255 N->getOperand(4)); 6256 } 6257 6258 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 6259 // (br_cc X, Y, eq/ne, trueV, falseV) 6260 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6261 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 6262 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 6263 N->getOperand(3), N->getOperand(4)); 6264 6265 // (br_cc X, 1, setne, br_cc) -> 6266 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 6267 // This can occur when legalizing some floating point comparisons. 6268 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6269 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6270 SDLoc DL(N); 6271 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6272 SDValue TargetCC = DAG.getCondCode(CCVal); 6273 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6274 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6275 N->getOperand(0), LHS, RHS, TargetCC, 6276 N->getOperand(4)); 6277 } 6278 break; 6279 } 6280 case ISD::FCOPYSIGN: { 6281 EVT VT = N->getValueType(0); 6282 if (!VT.isVector()) 6283 break; 6284 // There is a form of VFSGNJ which injects the negated sign of its second 6285 // operand. Try and bubble any FNEG up after the extend/round to produce 6286 // this optimized pattern. Avoid modifying cases where FP_ROUND and 6287 // TRUNC=1. 6288 SDValue In2 = N->getOperand(1); 6289 // Avoid cases where the extend/round has multiple uses, as duplicating 6290 // those is typically more expensive than removing a fneg. 6291 if (!In2.hasOneUse()) 6292 break; 6293 if (In2.getOpcode() != ISD::FP_EXTEND && 6294 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 6295 break; 6296 In2 = In2.getOperand(0); 6297 if (In2.getOpcode() != ISD::FNEG) 6298 break; 6299 SDLoc DL(N); 6300 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 6301 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 6302 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 6303 } 6304 case ISD::MGATHER: 6305 case ISD::MSCATTER: { 6306 if (!DCI.isBeforeLegalize()) 6307 break; 6308 MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N); 6309 SDValue Index = MGSN->getIndex(); 6310 EVT IndexVT = Index.getValueType(); 6311 MVT XLenVT = Subtarget.getXLenVT(); 6312 // RISCV indexed loads only support the "unsigned unscaled" addressing 6313 // mode, so anything else must be manually legalized. 6314 bool NeedsIdxLegalization = MGSN->isIndexScaled() || 6315 (MGSN->isIndexSigned() && 6316 IndexVT.getVectorElementType().bitsLT(XLenVT)); 6317 if (!NeedsIdxLegalization) 6318 break; 6319 6320 SDLoc DL(N); 6321 6322 // Any index legalization should first promote to XLenVT, so we don't lose 6323 // bits when scaling. This may create an illegal index type so we let 6324 // LLVM's legalization take care of the splitting. 6325 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 6326 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6327 Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND 6328 : ISD::ZERO_EXTEND, 6329 DL, IndexVT, Index); 6330 } 6331 6332 unsigned Scale = N->getConstantOperandVal(5); 6333 if (MGSN->isIndexScaled() && Scale != 1) { 6334 // Manually scale the indices by the element size. 6335 // TODO: Sanitize the scale operand here? 6336 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 6337 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 6338 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 6339 } 6340 6341 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 6342 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) { 6343 return DAG.getMaskedGather( 6344 N->getVTList(), MGSN->getMemoryVT(), DL, 6345 {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(), 6346 MGSN->getBasePtr(), Index, MGN->getScale()}, 6347 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 6348 } 6349 const auto *MSN = cast<MaskedScatterSDNode>(N); 6350 return DAG.getMaskedScatter( 6351 N->getVTList(), MGSN->getMemoryVT(), DL, 6352 {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(), 6353 Index, MGSN->getScale()}, 6354 MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 6355 } 6356 case RISCVISD::SRA_VL: 6357 case RISCVISD::SRL_VL: 6358 case RISCVISD::SHL_VL: { 6359 SDValue ShAmt = N->getOperand(1); 6360 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6361 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6362 SDLoc DL(N); 6363 SDValue VL = N->getOperand(3); 6364 EVT VT = N->getValueType(0); 6365 ShAmt = 6366 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 6367 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 6368 N->getOperand(2), N->getOperand(3)); 6369 } 6370 break; 6371 } 6372 case ISD::SRA: 6373 case ISD::SRL: 6374 case ISD::SHL: { 6375 SDValue ShAmt = N->getOperand(1); 6376 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6377 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6378 SDLoc DL(N); 6379 EVT VT = N->getValueType(0); 6380 ShAmt = 6381 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 6382 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 6383 } 6384 break; 6385 } 6386 case RISCVISD::MUL_VL: { 6387 // Try to form VWMUL or VWMULU. 6388 // FIXME: Look for splat of extended scalar as well. 6389 // FIXME: Support VWMULSU. 6390 SDValue Op0 = N->getOperand(0); 6391 SDValue Op1 = N->getOperand(1); 6392 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6393 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6394 if ((!IsSignExt && !IsZeroExt) || Op0.getOpcode() != Op1.getOpcode()) 6395 return SDValue(); 6396 6397 // Make sure the extends have a single use. 6398 if (!Op0.hasOneUse() || !Op1.hasOneUse()) 6399 return SDValue(); 6400 6401 SDValue Mask = N->getOperand(2); 6402 SDValue VL = N->getOperand(3); 6403 if (Op0.getOperand(1) != Mask || Op1.getOperand(1) != Mask || 6404 Op0.getOperand(2) != VL || Op1.getOperand(2) != VL) 6405 return SDValue(); 6406 6407 Op0 = Op0.getOperand(0); 6408 Op1 = Op1.getOperand(0); 6409 6410 MVT VT = N->getSimpleValueType(0); 6411 MVT NarrowVT = 6412 MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits() / 2), 6413 VT.getVectorElementCount()); 6414 6415 SDLoc DL(N); 6416 6417 // Re-introduce narrower extends if needed. 6418 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6419 if (Op0.getValueType() != NarrowVT) 6420 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6421 if (Op1.getValueType() != NarrowVT) 6422 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6423 6424 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6425 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6426 } 6427 } 6428 6429 return SDValue(); 6430 } 6431 6432 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 6433 const SDNode *N, CombineLevel Level) const { 6434 // The following folds are only desirable if `(OP _, c1 << c2)` can be 6435 // materialised in fewer instructions than `(OP _, c1)`: 6436 // 6437 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 6438 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 6439 SDValue N0 = N->getOperand(0); 6440 EVT Ty = N0.getValueType(); 6441 if (Ty.isScalarInteger() && 6442 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 6443 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6444 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6445 if (C1 && C2) { 6446 const APInt &C1Int = C1->getAPIntValue(); 6447 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 6448 6449 // We can materialise `c1 << c2` into an add immediate, so it's "free", 6450 // and the combine should happen, to potentially allow further combines 6451 // later. 6452 if (ShiftedC1Int.getMinSignedBits() <= 64 && 6453 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 6454 return true; 6455 6456 // We can materialise `c1` in an add immediate, so it's "free", and the 6457 // combine should be prevented. 6458 if (C1Int.getMinSignedBits() <= 64 && 6459 isLegalAddImmediate(C1Int.getSExtValue())) 6460 return false; 6461 6462 // Neither constant will fit into an immediate, so find materialisation 6463 // costs. 6464 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 6465 Subtarget.getFeatureBits(), 6466 /*CompressionCost*/true); 6467 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 6468 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 6469 /*CompressionCost*/true); 6470 6471 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 6472 // combine should be prevented. 6473 if (C1Cost < ShiftedC1Cost) 6474 return false; 6475 } 6476 } 6477 return true; 6478 } 6479 6480 bool RISCVTargetLowering::targetShrinkDemandedConstant( 6481 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 6482 TargetLoweringOpt &TLO) const { 6483 // Delay this optimization as late as possible. 6484 if (!TLO.LegalOps) 6485 return false; 6486 6487 EVT VT = Op.getValueType(); 6488 if (VT.isVector()) 6489 return false; 6490 6491 // Only handle AND for now. 6492 if (Op.getOpcode() != ISD::AND) 6493 return false; 6494 6495 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 6496 if (!C) 6497 return false; 6498 6499 const APInt &Mask = C->getAPIntValue(); 6500 6501 // Clear all non-demanded bits initially. 6502 APInt ShrunkMask = Mask & DemandedBits; 6503 6504 // Try to make a smaller immediate by setting undemanded bits. 6505 6506 APInt ExpandedMask = Mask | ~DemandedBits; 6507 6508 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 6509 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 6510 }; 6511 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 6512 if (NewMask == Mask) 6513 return true; 6514 SDLoc DL(Op); 6515 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 6516 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 6517 return TLO.CombineTo(Op, NewOp); 6518 }; 6519 6520 // If the shrunk mask fits in sign extended 12 bits, let the target 6521 // independent code apply it. 6522 if (ShrunkMask.isSignedIntN(12)) 6523 return false; 6524 6525 // Preserve (and X, 0xffff) when zext.h is supported. 6526 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 6527 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 6528 if (IsLegalMask(NewMask)) 6529 return UseMask(NewMask); 6530 } 6531 6532 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 6533 if (VT == MVT::i64) { 6534 APInt NewMask = APInt(64, 0xffffffff); 6535 if (IsLegalMask(NewMask)) 6536 return UseMask(NewMask); 6537 } 6538 6539 // For the remaining optimizations, we need to be able to make a negative 6540 // number through a combination of mask and undemanded bits. 6541 if (!ExpandedMask.isNegative()) 6542 return false; 6543 6544 // What is the fewest number of bits we need to represent the negative number. 6545 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 6546 6547 // Try to make a 12 bit negative immediate. If that fails try to make a 32 6548 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 6549 APInt NewMask = ShrunkMask; 6550 if (MinSignedBits <= 12) 6551 NewMask.setBitsFrom(11); 6552 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 6553 NewMask.setBitsFrom(31); 6554 else 6555 return false; 6556 6557 // Sanity check that our new mask is a subset of the demanded mask. 6558 assert(IsLegalMask(NewMask)); 6559 return UseMask(NewMask); 6560 } 6561 6562 static void computeGREV(APInt &Src, unsigned ShAmt) { 6563 ShAmt &= Src.getBitWidth() - 1; 6564 uint64_t x = Src.getZExtValue(); 6565 if (ShAmt & 1) 6566 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 6567 if (ShAmt & 2) 6568 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 6569 if (ShAmt & 4) 6570 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 6571 if (ShAmt & 8) 6572 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 6573 if (ShAmt & 16) 6574 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 6575 if (ShAmt & 32) 6576 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 6577 Src = x; 6578 } 6579 6580 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6581 KnownBits &Known, 6582 const APInt &DemandedElts, 6583 const SelectionDAG &DAG, 6584 unsigned Depth) const { 6585 unsigned BitWidth = Known.getBitWidth(); 6586 unsigned Opc = Op.getOpcode(); 6587 assert((Opc >= ISD::BUILTIN_OP_END || 6588 Opc == ISD::INTRINSIC_WO_CHAIN || 6589 Opc == ISD::INTRINSIC_W_CHAIN || 6590 Opc == ISD::INTRINSIC_VOID) && 6591 "Should use MaskedValueIsZero if you don't know whether Op" 6592 " is a target node!"); 6593 6594 Known.resetAll(); 6595 switch (Opc) { 6596 default: break; 6597 case RISCVISD::SELECT_CC: { 6598 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 6599 // If we don't know any bits, early out. 6600 if (Known.isUnknown()) 6601 break; 6602 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 6603 6604 // Only known if known in both the LHS and RHS. 6605 Known = KnownBits::commonBits(Known, Known2); 6606 break; 6607 } 6608 case RISCVISD::REMUW: { 6609 KnownBits Known2; 6610 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6611 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6612 // We only care about the lower 32 bits. 6613 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 6614 // Restore the original width by sign extending. 6615 Known = Known.sext(BitWidth); 6616 break; 6617 } 6618 case RISCVISD::DIVUW: { 6619 KnownBits Known2; 6620 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6621 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6622 // We only care about the lower 32 bits. 6623 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 6624 // Restore the original width by sign extending. 6625 Known = Known.sext(BitWidth); 6626 break; 6627 } 6628 case RISCVISD::CTZW: { 6629 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6630 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 6631 unsigned LowBits = Log2_32(PossibleTZ) + 1; 6632 Known.Zero.setBitsFrom(LowBits); 6633 break; 6634 } 6635 case RISCVISD::CLZW: { 6636 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6637 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 6638 unsigned LowBits = Log2_32(PossibleLZ) + 1; 6639 Known.Zero.setBitsFrom(LowBits); 6640 break; 6641 } 6642 case RISCVISD::GREV: 6643 case RISCVISD::GREVW: { 6644 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6645 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6646 if (Opc == RISCVISD::GREVW) 6647 Known = Known.trunc(32); 6648 unsigned ShAmt = C->getZExtValue(); 6649 computeGREV(Known.Zero, ShAmt); 6650 computeGREV(Known.One, ShAmt); 6651 if (Opc == RISCVISD::GREVW) 6652 Known = Known.sext(BitWidth); 6653 } 6654 break; 6655 } 6656 case RISCVISD::READ_VLENB: 6657 // We assume VLENB is at least 16 bytes. 6658 Known.Zero.setLowBits(4); 6659 // We assume VLENB is no more than 65536 / 8 bytes. 6660 Known.Zero.setBitsFrom(14); 6661 break; 6662 case ISD::INTRINSIC_W_CHAIN: { 6663 unsigned IntNo = Op.getConstantOperandVal(1); 6664 switch (IntNo) { 6665 default: 6666 // We can't do anything for most intrinsics. 6667 break; 6668 case Intrinsic::riscv_vsetvli: 6669 case Intrinsic::riscv_vsetvlimax: 6670 // Assume that VL output is positive and would fit in an int32_t. 6671 // TODO: VLEN might be capped at 16 bits in a future V spec update. 6672 if (BitWidth >= 32) 6673 Known.Zero.setBitsFrom(31); 6674 break; 6675 } 6676 break; 6677 } 6678 } 6679 } 6680 6681 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 6682 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6683 unsigned Depth) const { 6684 switch (Op.getOpcode()) { 6685 default: 6686 break; 6687 case RISCVISD::SELECT_CC: { 6688 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 6689 if (Tmp == 1) return 1; // Early out. 6690 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 6691 return std::min(Tmp, Tmp2); 6692 } 6693 case RISCVISD::SLLW: 6694 case RISCVISD::SRAW: 6695 case RISCVISD::SRLW: 6696 case RISCVISD::DIVW: 6697 case RISCVISD::DIVUW: 6698 case RISCVISD::REMUW: 6699 case RISCVISD::ROLW: 6700 case RISCVISD::RORW: 6701 case RISCVISD::GREVW: 6702 case RISCVISD::GORCW: 6703 case RISCVISD::FSLW: 6704 case RISCVISD::FSRW: 6705 case RISCVISD::SHFLW: 6706 case RISCVISD::UNSHFLW: 6707 case RISCVISD::BCOMPRESSW: 6708 case RISCVISD::BDECOMPRESSW: 6709 case RISCVISD::FCVT_W_RTZ_RV64: 6710 case RISCVISD::FCVT_WU_RTZ_RV64: 6711 // TODO: As the result is sign-extended, this is conservatively correct. A 6712 // more precise answer could be calculated for SRAW depending on known 6713 // bits in the shift amount. 6714 return 33; 6715 case RISCVISD::SHFL: 6716 case RISCVISD::UNSHFL: { 6717 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 6718 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 6719 // will stay within the upper 32 bits. If there were more than 32 sign bits 6720 // before there will be at least 33 sign bits after. 6721 if (Op.getValueType() == MVT::i64 && 6722 isa<ConstantSDNode>(Op.getOperand(1)) && 6723 (Op.getConstantOperandVal(1) & 0x10) == 0) { 6724 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 6725 if (Tmp > 32) 6726 return 33; 6727 } 6728 break; 6729 } 6730 case RISCVISD::VMV_X_S: 6731 // The number of sign bits of the scalar result is computed by obtaining the 6732 // element type of the input vector operand, subtracting its width from the 6733 // XLEN, and then adding one (sign bit within the element type). If the 6734 // element type is wider than XLen, the least-significant XLEN bits are 6735 // taken. 6736 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 6737 return 1; 6738 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 6739 } 6740 6741 return 1; 6742 } 6743 6744 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 6745 MachineBasicBlock *BB) { 6746 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 6747 6748 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 6749 // Should the count have wrapped while it was being read, we need to try 6750 // again. 6751 // ... 6752 // read: 6753 // rdcycleh x3 # load high word of cycle 6754 // rdcycle x2 # load low word of cycle 6755 // rdcycleh x4 # load high word of cycle 6756 // bne x3, x4, read # check if high word reads match, otherwise try again 6757 // ... 6758 6759 MachineFunction &MF = *BB->getParent(); 6760 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6761 MachineFunction::iterator It = ++BB->getIterator(); 6762 6763 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6764 MF.insert(It, LoopMBB); 6765 6766 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6767 MF.insert(It, DoneMBB); 6768 6769 // Transfer the remainder of BB and its successor edges to DoneMBB. 6770 DoneMBB->splice(DoneMBB->begin(), BB, 6771 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 6772 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 6773 6774 BB->addSuccessor(LoopMBB); 6775 6776 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6777 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6778 Register LoReg = MI.getOperand(0).getReg(); 6779 Register HiReg = MI.getOperand(1).getReg(); 6780 DebugLoc DL = MI.getDebugLoc(); 6781 6782 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 6783 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 6784 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6785 .addReg(RISCV::X0); 6786 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 6787 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 6788 .addReg(RISCV::X0); 6789 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 6790 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6791 .addReg(RISCV::X0); 6792 6793 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 6794 .addReg(HiReg) 6795 .addReg(ReadAgainReg) 6796 .addMBB(LoopMBB); 6797 6798 LoopMBB->addSuccessor(LoopMBB); 6799 LoopMBB->addSuccessor(DoneMBB); 6800 6801 MI.eraseFromParent(); 6802 6803 return DoneMBB; 6804 } 6805 6806 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 6807 MachineBasicBlock *BB) { 6808 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 6809 6810 MachineFunction &MF = *BB->getParent(); 6811 DebugLoc DL = MI.getDebugLoc(); 6812 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6813 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6814 Register LoReg = MI.getOperand(0).getReg(); 6815 Register HiReg = MI.getOperand(1).getReg(); 6816 Register SrcReg = MI.getOperand(2).getReg(); 6817 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 6818 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6819 6820 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 6821 RI); 6822 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6823 MachineMemOperand *MMOLo = 6824 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 6825 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6826 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 6827 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 6828 .addFrameIndex(FI) 6829 .addImm(0) 6830 .addMemOperand(MMOLo); 6831 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 6832 .addFrameIndex(FI) 6833 .addImm(4) 6834 .addMemOperand(MMOHi); 6835 MI.eraseFromParent(); // The pseudo instruction is gone now. 6836 return BB; 6837 } 6838 6839 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 6840 MachineBasicBlock *BB) { 6841 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 6842 "Unexpected instruction"); 6843 6844 MachineFunction &MF = *BB->getParent(); 6845 DebugLoc DL = MI.getDebugLoc(); 6846 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6847 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6848 Register DstReg = MI.getOperand(0).getReg(); 6849 Register LoReg = MI.getOperand(1).getReg(); 6850 Register HiReg = MI.getOperand(2).getReg(); 6851 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 6852 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6853 6854 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6855 MachineMemOperand *MMOLo = 6856 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 6857 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6858 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 6859 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6860 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 6861 .addFrameIndex(FI) 6862 .addImm(0) 6863 .addMemOperand(MMOLo); 6864 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6865 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 6866 .addFrameIndex(FI) 6867 .addImm(4) 6868 .addMemOperand(MMOHi); 6869 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 6870 MI.eraseFromParent(); // The pseudo instruction is gone now. 6871 return BB; 6872 } 6873 6874 static bool isSelectPseudo(MachineInstr &MI) { 6875 switch (MI.getOpcode()) { 6876 default: 6877 return false; 6878 case RISCV::Select_GPR_Using_CC_GPR: 6879 case RISCV::Select_FPR16_Using_CC_GPR: 6880 case RISCV::Select_FPR32_Using_CC_GPR: 6881 case RISCV::Select_FPR64_Using_CC_GPR: 6882 return true; 6883 } 6884 } 6885 6886 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 6887 MachineBasicBlock *BB, 6888 const RISCVSubtarget &Subtarget) { 6889 // To "insert" Select_* instructions, we actually have to insert the triangle 6890 // control-flow pattern. The incoming instructions know the destination vreg 6891 // to set, the condition code register to branch on, the true/false values to 6892 // select between, and the condcode to use to select the appropriate branch. 6893 // 6894 // We produce the following control flow: 6895 // HeadMBB 6896 // | \ 6897 // | IfFalseMBB 6898 // | / 6899 // TailMBB 6900 // 6901 // When we find a sequence of selects we attempt to optimize their emission 6902 // by sharing the control flow. Currently we only handle cases where we have 6903 // multiple selects with the exact same condition (same LHS, RHS and CC). 6904 // The selects may be interleaved with other instructions if the other 6905 // instructions meet some requirements we deem safe: 6906 // - They are debug instructions. Otherwise, 6907 // - They do not have side-effects, do not access memory and their inputs do 6908 // not depend on the results of the select pseudo-instructions. 6909 // The TrueV/FalseV operands of the selects cannot depend on the result of 6910 // previous selects in the sequence. 6911 // These conditions could be further relaxed. See the X86 target for a 6912 // related approach and more information. 6913 Register LHS = MI.getOperand(1).getReg(); 6914 Register RHS = MI.getOperand(2).getReg(); 6915 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 6916 6917 SmallVector<MachineInstr *, 4> SelectDebugValues; 6918 SmallSet<Register, 4> SelectDests; 6919 SelectDests.insert(MI.getOperand(0).getReg()); 6920 6921 MachineInstr *LastSelectPseudo = &MI; 6922 6923 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 6924 SequenceMBBI != E; ++SequenceMBBI) { 6925 if (SequenceMBBI->isDebugInstr()) 6926 continue; 6927 else if (isSelectPseudo(*SequenceMBBI)) { 6928 if (SequenceMBBI->getOperand(1).getReg() != LHS || 6929 SequenceMBBI->getOperand(2).getReg() != RHS || 6930 SequenceMBBI->getOperand(3).getImm() != CC || 6931 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 6932 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 6933 break; 6934 LastSelectPseudo = &*SequenceMBBI; 6935 SequenceMBBI->collectDebugValues(SelectDebugValues); 6936 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 6937 } else { 6938 if (SequenceMBBI->hasUnmodeledSideEffects() || 6939 SequenceMBBI->mayLoadOrStore()) 6940 break; 6941 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 6942 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 6943 })) 6944 break; 6945 } 6946 } 6947 6948 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 6949 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6950 DebugLoc DL = MI.getDebugLoc(); 6951 MachineFunction::iterator I = ++BB->getIterator(); 6952 6953 MachineBasicBlock *HeadMBB = BB; 6954 MachineFunction *F = BB->getParent(); 6955 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 6956 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 6957 6958 F->insert(I, IfFalseMBB); 6959 F->insert(I, TailMBB); 6960 6961 // Transfer debug instructions associated with the selects to TailMBB. 6962 for (MachineInstr *DebugInstr : SelectDebugValues) { 6963 TailMBB->push_back(DebugInstr->removeFromParent()); 6964 } 6965 6966 // Move all instructions after the sequence to TailMBB. 6967 TailMBB->splice(TailMBB->end(), HeadMBB, 6968 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 6969 // Update machine-CFG edges by transferring all successors of the current 6970 // block to the new block which will contain the Phi nodes for the selects. 6971 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 6972 // Set the successors for HeadMBB. 6973 HeadMBB->addSuccessor(IfFalseMBB); 6974 HeadMBB->addSuccessor(TailMBB); 6975 6976 // Insert appropriate branch. 6977 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 6978 .addReg(LHS) 6979 .addReg(RHS) 6980 .addMBB(TailMBB); 6981 6982 // IfFalseMBB just falls through to TailMBB. 6983 IfFalseMBB->addSuccessor(TailMBB); 6984 6985 // Create PHIs for all of the select pseudo-instructions. 6986 auto SelectMBBI = MI.getIterator(); 6987 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 6988 auto InsertionPoint = TailMBB->begin(); 6989 while (SelectMBBI != SelectEnd) { 6990 auto Next = std::next(SelectMBBI); 6991 if (isSelectPseudo(*SelectMBBI)) { 6992 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 6993 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 6994 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 6995 .addReg(SelectMBBI->getOperand(4).getReg()) 6996 .addMBB(HeadMBB) 6997 .addReg(SelectMBBI->getOperand(5).getReg()) 6998 .addMBB(IfFalseMBB); 6999 SelectMBBI->eraseFromParent(); 7000 } 7001 SelectMBBI = Next; 7002 } 7003 7004 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7005 return TailMBB; 7006 } 7007 7008 MachineBasicBlock * 7009 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 7010 MachineBasicBlock *BB) const { 7011 switch (MI.getOpcode()) { 7012 default: 7013 llvm_unreachable("Unexpected instr type to insert"); 7014 case RISCV::ReadCycleWide: 7015 assert(!Subtarget.is64Bit() && 7016 "ReadCycleWrite is only to be used on riscv32"); 7017 return emitReadCycleWidePseudo(MI, BB); 7018 case RISCV::Select_GPR_Using_CC_GPR: 7019 case RISCV::Select_FPR16_Using_CC_GPR: 7020 case RISCV::Select_FPR32_Using_CC_GPR: 7021 case RISCV::Select_FPR64_Using_CC_GPR: 7022 return emitSelectPseudo(MI, BB, Subtarget); 7023 case RISCV::BuildPairF64Pseudo: 7024 return emitBuildPairF64Pseudo(MI, BB); 7025 case RISCV::SplitF64Pseudo: 7026 return emitSplitF64Pseudo(MI, BB); 7027 } 7028 } 7029 7030 // Calling Convention Implementation. 7031 // The expectations for frontend ABI lowering vary from target to target. 7032 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 7033 // details, but this is a longer term goal. For now, we simply try to keep the 7034 // role of the frontend as simple and well-defined as possible. The rules can 7035 // be summarised as: 7036 // * Never split up large scalar arguments. We handle them here. 7037 // * If a hardfloat calling convention is being used, and the struct may be 7038 // passed in a pair of registers (fp+fp, int+fp), and both registers are 7039 // available, then pass as two separate arguments. If either the GPRs or FPRs 7040 // are exhausted, then pass according to the rule below. 7041 // * If a struct could never be passed in registers or directly in a stack 7042 // slot (as it is larger than 2*XLEN and the floating point rules don't 7043 // apply), then pass it using a pointer with the byval attribute. 7044 // * If a struct is less than 2*XLEN, then coerce to either a two-element 7045 // word-sized array or a 2*XLEN scalar (depending on alignment). 7046 // * The frontend can determine whether a struct is returned by reference or 7047 // not based on its size and fields. If it will be returned by reference, the 7048 // frontend must modify the prototype so a pointer with the sret annotation is 7049 // passed as the first argument. This is not necessary for large scalar 7050 // returns. 7051 // * Struct return values and varargs should be coerced to structs containing 7052 // register-size fields in the same situations they would be for fixed 7053 // arguments. 7054 7055 static const MCPhysReg ArgGPRs[] = { 7056 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 7057 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 7058 }; 7059 static const MCPhysReg ArgFPR16s[] = { 7060 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 7061 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 7062 }; 7063 static const MCPhysReg ArgFPR32s[] = { 7064 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 7065 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 7066 }; 7067 static const MCPhysReg ArgFPR64s[] = { 7068 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 7069 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 7070 }; 7071 // This is an interim calling convention and it may be changed in the future. 7072 static const MCPhysReg ArgVRs[] = { 7073 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 7074 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 7075 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 7076 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 7077 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 7078 RISCV::V20M2, RISCV::V22M2}; 7079 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 7080 RISCV::V20M4}; 7081 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 7082 7083 // Pass a 2*XLEN argument that has been split into two XLEN values through 7084 // registers or the stack as necessary. 7085 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 7086 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 7087 MVT ValVT2, MVT LocVT2, 7088 ISD::ArgFlagsTy ArgFlags2) { 7089 unsigned XLenInBytes = XLen / 8; 7090 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7091 // At least one half can be passed via register. 7092 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 7093 VA1.getLocVT(), CCValAssign::Full)); 7094 } else { 7095 // Both halves must be passed on the stack, with proper alignment. 7096 Align StackAlign = 7097 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 7098 State.addLoc( 7099 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 7100 State.AllocateStack(XLenInBytes, StackAlign), 7101 VA1.getLocVT(), CCValAssign::Full)); 7102 State.addLoc(CCValAssign::getMem( 7103 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7104 LocVT2, CCValAssign::Full)); 7105 return false; 7106 } 7107 7108 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7109 // The second half can also be passed via register. 7110 State.addLoc( 7111 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 7112 } else { 7113 // The second half is passed via the stack, without additional alignment. 7114 State.addLoc(CCValAssign::getMem( 7115 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7116 LocVT2, CCValAssign::Full)); 7117 } 7118 7119 return false; 7120 } 7121 7122 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 7123 Optional<unsigned> FirstMaskArgument, 7124 CCState &State, const RISCVTargetLowering &TLI) { 7125 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 7126 if (RC == &RISCV::VRRegClass) { 7127 // Assign the first mask argument to V0. 7128 // This is an interim calling convention and it may be changed in the 7129 // future. 7130 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 7131 return State.AllocateReg(RISCV::V0); 7132 return State.AllocateReg(ArgVRs); 7133 } 7134 if (RC == &RISCV::VRM2RegClass) 7135 return State.AllocateReg(ArgVRM2s); 7136 if (RC == &RISCV::VRM4RegClass) 7137 return State.AllocateReg(ArgVRM4s); 7138 if (RC == &RISCV::VRM8RegClass) 7139 return State.AllocateReg(ArgVRM8s); 7140 llvm_unreachable("Unhandled register class for ValueType"); 7141 } 7142 7143 // Implements the RISC-V calling convention. Returns true upon failure. 7144 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 7145 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 7146 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 7147 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 7148 Optional<unsigned> FirstMaskArgument) { 7149 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 7150 assert(XLen == 32 || XLen == 64); 7151 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 7152 7153 // Any return value split in to more than two values can't be returned 7154 // directly. Vectors are returned via the available vector registers. 7155 if (!LocVT.isVector() && IsRet && ValNo > 1) 7156 return true; 7157 7158 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 7159 // variadic argument, or if no F16/F32 argument registers are available. 7160 bool UseGPRForF16_F32 = true; 7161 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 7162 // variadic argument, or if no F64 argument registers are available. 7163 bool UseGPRForF64 = true; 7164 7165 switch (ABI) { 7166 default: 7167 llvm_unreachable("Unexpected ABI"); 7168 case RISCVABI::ABI_ILP32: 7169 case RISCVABI::ABI_LP64: 7170 break; 7171 case RISCVABI::ABI_ILP32F: 7172 case RISCVABI::ABI_LP64F: 7173 UseGPRForF16_F32 = !IsFixed; 7174 break; 7175 case RISCVABI::ABI_ILP32D: 7176 case RISCVABI::ABI_LP64D: 7177 UseGPRForF16_F32 = !IsFixed; 7178 UseGPRForF64 = !IsFixed; 7179 break; 7180 } 7181 7182 // FPR16, FPR32, and FPR64 alias each other. 7183 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 7184 UseGPRForF16_F32 = true; 7185 UseGPRForF64 = true; 7186 } 7187 7188 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 7189 // similar local variables rather than directly checking against the target 7190 // ABI. 7191 7192 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 7193 LocVT = XLenVT; 7194 LocInfo = CCValAssign::BCvt; 7195 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 7196 LocVT = MVT::i64; 7197 LocInfo = CCValAssign::BCvt; 7198 } 7199 7200 // If this is a variadic argument, the RISC-V calling convention requires 7201 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 7202 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 7203 // be used regardless of whether the original argument was split during 7204 // legalisation or not. The argument will not be passed by registers if the 7205 // original type is larger than 2*XLEN, so the register alignment rule does 7206 // not apply. 7207 unsigned TwoXLenInBytes = (2 * XLen) / 8; 7208 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 7209 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 7210 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 7211 // Skip 'odd' register if necessary. 7212 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 7213 State.AllocateReg(ArgGPRs); 7214 } 7215 7216 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 7217 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 7218 State.getPendingArgFlags(); 7219 7220 assert(PendingLocs.size() == PendingArgFlags.size() && 7221 "PendingLocs and PendingArgFlags out of sync"); 7222 7223 // Handle passing f64 on RV32D with a soft float ABI or when floating point 7224 // registers are exhausted. 7225 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 7226 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 7227 "Can't lower f64 if it is split"); 7228 // Depending on available argument GPRS, f64 may be passed in a pair of 7229 // GPRs, split between a GPR and the stack, or passed completely on the 7230 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 7231 // cases. 7232 Register Reg = State.AllocateReg(ArgGPRs); 7233 LocVT = MVT::i32; 7234 if (!Reg) { 7235 unsigned StackOffset = State.AllocateStack(8, Align(8)); 7236 State.addLoc( 7237 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7238 return false; 7239 } 7240 if (!State.AllocateReg(ArgGPRs)) 7241 State.AllocateStack(4, Align(4)); 7242 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7243 return false; 7244 } 7245 7246 // Fixed-length vectors are located in the corresponding scalable-vector 7247 // container types. 7248 if (ValVT.isFixedLengthVector()) 7249 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7250 7251 // Split arguments might be passed indirectly, so keep track of the pending 7252 // values. Split vectors are passed via a mix of registers and indirectly, so 7253 // treat them as we would any other argument. 7254 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 7255 LocVT = XLenVT; 7256 LocInfo = CCValAssign::Indirect; 7257 PendingLocs.push_back( 7258 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 7259 PendingArgFlags.push_back(ArgFlags); 7260 if (!ArgFlags.isSplitEnd()) { 7261 return false; 7262 } 7263 } 7264 7265 // If the split argument only had two elements, it should be passed directly 7266 // in registers or on the stack. 7267 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 7268 PendingLocs.size() <= 2) { 7269 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 7270 // Apply the normal calling convention rules to the first half of the 7271 // split argument. 7272 CCValAssign VA = PendingLocs[0]; 7273 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 7274 PendingLocs.clear(); 7275 PendingArgFlags.clear(); 7276 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 7277 ArgFlags); 7278 } 7279 7280 // Allocate to a register if possible, or else a stack slot. 7281 Register Reg; 7282 unsigned StoreSizeBytes = XLen / 8; 7283 Align StackAlign = Align(XLen / 8); 7284 7285 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 7286 Reg = State.AllocateReg(ArgFPR16s); 7287 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 7288 Reg = State.AllocateReg(ArgFPR32s); 7289 else if (ValVT == MVT::f64 && !UseGPRForF64) 7290 Reg = State.AllocateReg(ArgFPR64s); 7291 else if (ValVT.isVector()) { 7292 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 7293 if (!Reg) { 7294 // For return values, the vector must be passed fully via registers or 7295 // via the stack. 7296 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 7297 // but we're using all of them. 7298 if (IsRet) 7299 return true; 7300 // Try using a GPR to pass the address 7301 if ((Reg = State.AllocateReg(ArgGPRs))) { 7302 LocVT = XLenVT; 7303 LocInfo = CCValAssign::Indirect; 7304 } else if (ValVT.isScalableVector()) { 7305 report_fatal_error("Unable to pass scalable vector types on the stack"); 7306 } else { 7307 // Pass fixed-length vectors on the stack. 7308 LocVT = ValVT; 7309 StoreSizeBytes = ValVT.getStoreSize(); 7310 // Align vectors to their element sizes, being careful for vXi1 7311 // vectors. 7312 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7313 } 7314 } 7315 } else { 7316 Reg = State.AllocateReg(ArgGPRs); 7317 } 7318 7319 unsigned StackOffset = 7320 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 7321 7322 // If we reach this point and PendingLocs is non-empty, we must be at the 7323 // end of a split argument that must be passed indirectly. 7324 if (!PendingLocs.empty()) { 7325 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 7326 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 7327 7328 for (auto &It : PendingLocs) { 7329 if (Reg) 7330 It.convertToReg(Reg); 7331 else 7332 It.convertToMem(StackOffset); 7333 State.addLoc(It); 7334 } 7335 PendingLocs.clear(); 7336 PendingArgFlags.clear(); 7337 return false; 7338 } 7339 7340 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 7341 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 7342 "Expected an XLenVT or vector types at this stage"); 7343 7344 if (Reg) { 7345 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7346 return false; 7347 } 7348 7349 // When a floating-point value is passed on the stack, no bit-conversion is 7350 // needed. 7351 if (ValVT.isFloatingPoint()) { 7352 LocVT = ValVT; 7353 LocInfo = CCValAssign::Full; 7354 } 7355 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7356 return false; 7357 } 7358 7359 template <typename ArgTy> 7360 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 7361 for (const auto &ArgIdx : enumerate(Args)) { 7362 MVT ArgVT = ArgIdx.value().VT; 7363 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 7364 return ArgIdx.index(); 7365 } 7366 return None; 7367 } 7368 7369 void RISCVTargetLowering::analyzeInputArgs( 7370 MachineFunction &MF, CCState &CCInfo, 7371 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 7372 RISCVCCAssignFn Fn) const { 7373 unsigned NumArgs = Ins.size(); 7374 FunctionType *FType = MF.getFunction().getFunctionType(); 7375 7376 Optional<unsigned> FirstMaskArgument; 7377 if (Subtarget.hasStdExtV()) 7378 FirstMaskArgument = preAssignMask(Ins); 7379 7380 for (unsigned i = 0; i != NumArgs; ++i) { 7381 MVT ArgVT = Ins[i].VT; 7382 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 7383 7384 Type *ArgTy = nullptr; 7385 if (IsRet) 7386 ArgTy = FType->getReturnType(); 7387 else if (Ins[i].isOrigArg()) 7388 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 7389 7390 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7391 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7392 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 7393 FirstMaskArgument)) { 7394 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 7395 << EVT(ArgVT).getEVTString() << '\n'); 7396 llvm_unreachable(nullptr); 7397 } 7398 } 7399 } 7400 7401 void RISCVTargetLowering::analyzeOutputArgs( 7402 MachineFunction &MF, CCState &CCInfo, 7403 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 7404 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 7405 unsigned NumArgs = Outs.size(); 7406 7407 Optional<unsigned> FirstMaskArgument; 7408 if (Subtarget.hasStdExtV()) 7409 FirstMaskArgument = preAssignMask(Outs); 7410 7411 for (unsigned i = 0; i != NumArgs; i++) { 7412 MVT ArgVT = Outs[i].VT; 7413 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 7414 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 7415 7416 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7417 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7418 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 7419 FirstMaskArgument)) { 7420 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 7421 << EVT(ArgVT).getEVTString() << "\n"); 7422 llvm_unreachable(nullptr); 7423 } 7424 } 7425 } 7426 7427 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 7428 // values. 7429 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 7430 const CCValAssign &VA, const SDLoc &DL, 7431 const RISCVSubtarget &Subtarget) { 7432 switch (VA.getLocInfo()) { 7433 default: 7434 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7435 case CCValAssign::Full: 7436 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 7437 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 7438 break; 7439 case CCValAssign::BCvt: 7440 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7441 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 7442 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7443 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 7444 else 7445 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 7446 break; 7447 } 7448 return Val; 7449 } 7450 7451 // The caller is responsible for loading the full value if the argument is 7452 // passed with CCValAssign::Indirect. 7453 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 7454 const CCValAssign &VA, const SDLoc &DL, 7455 const RISCVTargetLowering &TLI) { 7456 MachineFunction &MF = DAG.getMachineFunction(); 7457 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7458 EVT LocVT = VA.getLocVT(); 7459 SDValue Val; 7460 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 7461 Register VReg = RegInfo.createVirtualRegister(RC); 7462 RegInfo.addLiveIn(VA.getLocReg(), VReg); 7463 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 7464 7465 if (VA.getLocInfo() == CCValAssign::Indirect) 7466 return Val; 7467 7468 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 7469 } 7470 7471 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 7472 const CCValAssign &VA, const SDLoc &DL, 7473 const RISCVSubtarget &Subtarget) { 7474 EVT LocVT = VA.getLocVT(); 7475 7476 switch (VA.getLocInfo()) { 7477 default: 7478 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7479 case CCValAssign::Full: 7480 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 7481 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 7482 break; 7483 case CCValAssign::BCvt: 7484 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7485 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 7486 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7487 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 7488 else 7489 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 7490 break; 7491 } 7492 return Val; 7493 } 7494 7495 // The caller is responsible for loading the full value if the argument is 7496 // passed with CCValAssign::Indirect. 7497 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 7498 const CCValAssign &VA, const SDLoc &DL) { 7499 MachineFunction &MF = DAG.getMachineFunction(); 7500 MachineFrameInfo &MFI = MF.getFrameInfo(); 7501 EVT LocVT = VA.getLocVT(); 7502 EVT ValVT = VA.getValVT(); 7503 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 7504 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 7505 /*Immutable=*/true); 7506 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7507 SDValue Val; 7508 7509 ISD::LoadExtType ExtType; 7510 switch (VA.getLocInfo()) { 7511 default: 7512 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7513 case CCValAssign::Full: 7514 case CCValAssign::Indirect: 7515 case CCValAssign::BCvt: 7516 ExtType = ISD::NON_EXTLOAD; 7517 break; 7518 } 7519 Val = DAG.getExtLoad( 7520 ExtType, DL, LocVT, Chain, FIN, 7521 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 7522 return Val; 7523 } 7524 7525 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 7526 const CCValAssign &VA, const SDLoc &DL) { 7527 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 7528 "Unexpected VA"); 7529 MachineFunction &MF = DAG.getMachineFunction(); 7530 MachineFrameInfo &MFI = MF.getFrameInfo(); 7531 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7532 7533 if (VA.isMemLoc()) { 7534 // f64 is passed on the stack. 7535 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 7536 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7537 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 7538 MachinePointerInfo::getFixedStack(MF, FI)); 7539 } 7540 7541 assert(VA.isRegLoc() && "Expected register VA assignment"); 7542 7543 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7544 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 7545 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 7546 SDValue Hi; 7547 if (VA.getLocReg() == RISCV::X17) { 7548 // Second half of f64 is passed on the stack. 7549 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 7550 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7551 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 7552 MachinePointerInfo::getFixedStack(MF, FI)); 7553 } else { 7554 // Second half of f64 is passed in another GPR. 7555 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7556 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 7557 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 7558 } 7559 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 7560 } 7561 7562 // FastCC has less than 1% performance improvement for some particular 7563 // benchmark. But theoretically, it may has benenfit for some cases. 7564 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 7565 unsigned ValNo, MVT ValVT, MVT LocVT, 7566 CCValAssign::LocInfo LocInfo, 7567 ISD::ArgFlagsTy ArgFlags, CCState &State, 7568 bool IsFixed, bool IsRet, Type *OrigTy, 7569 const RISCVTargetLowering &TLI, 7570 Optional<unsigned> FirstMaskArgument) { 7571 7572 // X5 and X6 might be used for save-restore libcall. 7573 static const MCPhysReg GPRList[] = { 7574 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 7575 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 7576 RISCV::X29, RISCV::X30, RISCV::X31}; 7577 7578 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7579 if (unsigned Reg = State.AllocateReg(GPRList)) { 7580 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7581 return false; 7582 } 7583 } 7584 7585 if (LocVT == MVT::f16) { 7586 static const MCPhysReg FPR16List[] = { 7587 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 7588 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 7589 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 7590 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 7591 if (unsigned Reg = State.AllocateReg(FPR16List)) { 7592 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7593 return false; 7594 } 7595 } 7596 7597 if (LocVT == MVT::f32) { 7598 static const MCPhysReg FPR32List[] = { 7599 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 7600 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 7601 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 7602 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 7603 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7604 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7605 return false; 7606 } 7607 } 7608 7609 if (LocVT == MVT::f64) { 7610 static const MCPhysReg FPR64List[] = { 7611 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 7612 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 7613 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 7614 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 7615 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7616 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7617 return false; 7618 } 7619 } 7620 7621 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 7622 unsigned Offset4 = State.AllocateStack(4, Align(4)); 7623 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 7624 return false; 7625 } 7626 7627 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 7628 unsigned Offset5 = State.AllocateStack(8, Align(8)); 7629 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 7630 return false; 7631 } 7632 7633 if (LocVT.isVector()) { 7634 if (unsigned Reg = 7635 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 7636 // Fixed-length vectors are located in the corresponding scalable-vector 7637 // container types. 7638 if (ValVT.isFixedLengthVector()) 7639 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7640 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7641 } else { 7642 // Try and pass the address via a "fast" GPR. 7643 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 7644 LocInfo = CCValAssign::Indirect; 7645 LocVT = TLI.getSubtarget().getXLenVT(); 7646 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 7647 } else if (ValVT.isFixedLengthVector()) { 7648 auto StackAlign = 7649 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7650 unsigned StackOffset = 7651 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 7652 State.addLoc( 7653 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7654 } else { 7655 // Can't pass scalable vectors on the stack. 7656 return true; 7657 } 7658 } 7659 7660 return false; 7661 } 7662 7663 return true; // CC didn't match. 7664 } 7665 7666 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 7667 CCValAssign::LocInfo LocInfo, 7668 ISD::ArgFlagsTy ArgFlags, CCState &State) { 7669 7670 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7671 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 7672 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 7673 static const MCPhysReg GPRList[] = { 7674 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 7675 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 7676 if (unsigned Reg = State.AllocateReg(GPRList)) { 7677 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7678 return false; 7679 } 7680 } 7681 7682 if (LocVT == MVT::f32) { 7683 // Pass in STG registers: F1, ..., F6 7684 // fs0 ... fs5 7685 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 7686 RISCV::F18_F, RISCV::F19_F, 7687 RISCV::F20_F, RISCV::F21_F}; 7688 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7689 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7690 return false; 7691 } 7692 } 7693 7694 if (LocVT == MVT::f64) { 7695 // Pass in STG registers: D1, ..., D6 7696 // fs6 ... fs11 7697 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 7698 RISCV::F24_D, RISCV::F25_D, 7699 RISCV::F26_D, RISCV::F27_D}; 7700 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7701 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7702 return false; 7703 } 7704 } 7705 7706 report_fatal_error("No registers left in GHC calling convention"); 7707 return true; 7708 } 7709 7710 // Transform physical registers into virtual registers. 7711 SDValue RISCVTargetLowering::LowerFormalArguments( 7712 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 7713 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 7714 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7715 7716 MachineFunction &MF = DAG.getMachineFunction(); 7717 7718 switch (CallConv) { 7719 default: 7720 report_fatal_error("Unsupported calling convention"); 7721 case CallingConv::C: 7722 case CallingConv::Fast: 7723 break; 7724 case CallingConv::GHC: 7725 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 7726 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 7727 report_fatal_error( 7728 "GHC calling convention requires the F and D instruction set extensions"); 7729 } 7730 7731 const Function &Func = MF.getFunction(); 7732 if (Func.hasFnAttribute("interrupt")) { 7733 if (!Func.arg_empty()) 7734 report_fatal_error( 7735 "Functions with the interrupt attribute cannot have arguments!"); 7736 7737 StringRef Kind = 7738 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7739 7740 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 7741 report_fatal_error( 7742 "Function interrupt attribute argument not supported!"); 7743 } 7744 7745 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7746 MVT XLenVT = Subtarget.getXLenVT(); 7747 unsigned XLenInBytes = Subtarget.getXLen() / 8; 7748 // Used with vargs to acumulate store chains. 7749 std::vector<SDValue> OutChains; 7750 7751 // Assign locations to all of the incoming arguments. 7752 SmallVector<CCValAssign, 16> ArgLocs; 7753 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7754 7755 if (CallConv == CallingConv::GHC) 7756 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 7757 else 7758 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 7759 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 7760 : CC_RISCV); 7761 7762 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 7763 CCValAssign &VA = ArgLocs[i]; 7764 SDValue ArgValue; 7765 // Passing f64 on RV32D with a soft float ABI must be handled as a special 7766 // case. 7767 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 7768 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 7769 else if (VA.isRegLoc()) 7770 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 7771 else 7772 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 7773 7774 if (VA.getLocInfo() == CCValAssign::Indirect) { 7775 // If the original argument was split and passed by reference (e.g. i128 7776 // on RV32), we need to load all parts of it here (using the same 7777 // address). Vectors may be partly split to registers and partly to the 7778 // stack, in which case the base address is partly offset and subsequent 7779 // stores are relative to that. 7780 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 7781 MachinePointerInfo())); 7782 unsigned ArgIndex = Ins[i].OrigArgIndex; 7783 unsigned ArgPartOffset = Ins[i].PartOffset; 7784 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7785 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 7786 CCValAssign &PartVA = ArgLocs[i + 1]; 7787 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 7788 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 7789 if (PartVA.getValVT().isScalableVector()) 7790 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 7791 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 7792 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 7793 MachinePointerInfo())); 7794 ++i; 7795 } 7796 continue; 7797 } 7798 InVals.push_back(ArgValue); 7799 } 7800 7801 if (IsVarArg) { 7802 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 7803 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 7804 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 7805 MachineFrameInfo &MFI = MF.getFrameInfo(); 7806 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7807 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 7808 7809 // Offset of the first variable argument from stack pointer, and size of 7810 // the vararg save area. For now, the varargs save area is either zero or 7811 // large enough to hold a0-a7. 7812 int VaArgOffset, VarArgsSaveSize; 7813 7814 // If all registers are allocated, then all varargs must be passed on the 7815 // stack and we don't need to save any argregs. 7816 if (ArgRegs.size() == Idx) { 7817 VaArgOffset = CCInfo.getNextStackOffset(); 7818 VarArgsSaveSize = 0; 7819 } else { 7820 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 7821 VaArgOffset = -VarArgsSaveSize; 7822 } 7823 7824 // Record the frame index of the first variable argument 7825 // which is a value necessary to VASTART. 7826 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7827 RVFI->setVarArgsFrameIndex(FI); 7828 7829 // If saving an odd number of registers then create an extra stack slot to 7830 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 7831 // offsets to even-numbered registered remain 2*XLEN-aligned. 7832 if (Idx % 2) { 7833 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 7834 VarArgsSaveSize += XLenInBytes; 7835 } 7836 7837 // Copy the integer registers that may have been used for passing varargs 7838 // to the vararg save area. 7839 for (unsigned I = Idx; I < ArgRegs.size(); 7840 ++I, VaArgOffset += XLenInBytes) { 7841 const Register Reg = RegInfo.createVirtualRegister(RC); 7842 RegInfo.addLiveIn(ArgRegs[I], Reg); 7843 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 7844 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7845 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7846 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 7847 MachinePointerInfo::getFixedStack(MF, FI)); 7848 cast<StoreSDNode>(Store.getNode()) 7849 ->getMemOperand() 7850 ->setValue((Value *)nullptr); 7851 OutChains.push_back(Store); 7852 } 7853 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 7854 } 7855 7856 // All stores are grouped in one node to allow the matching between 7857 // the size of Ins and InVals. This only happens for vararg functions. 7858 if (!OutChains.empty()) { 7859 OutChains.push_back(Chain); 7860 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 7861 } 7862 7863 return Chain; 7864 } 7865 7866 /// isEligibleForTailCallOptimization - Check whether the call is eligible 7867 /// for tail call optimization. 7868 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 7869 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 7870 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 7871 const SmallVector<CCValAssign, 16> &ArgLocs) const { 7872 7873 auto &Callee = CLI.Callee; 7874 auto CalleeCC = CLI.CallConv; 7875 auto &Outs = CLI.Outs; 7876 auto &Caller = MF.getFunction(); 7877 auto CallerCC = Caller.getCallingConv(); 7878 7879 // Exception-handling functions need a special set of instructions to 7880 // indicate a return to the hardware. Tail-calling another function would 7881 // probably break this. 7882 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 7883 // should be expanded as new function attributes are introduced. 7884 if (Caller.hasFnAttribute("interrupt")) 7885 return false; 7886 7887 // Do not tail call opt if the stack is used to pass parameters. 7888 if (CCInfo.getNextStackOffset() != 0) 7889 return false; 7890 7891 // Do not tail call opt if any parameters need to be passed indirectly. 7892 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 7893 // passed indirectly. So the address of the value will be passed in a 7894 // register, or if not available, then the address is put on the stack. In 7895 // order to pass indirectly, space on the stack often needs to be allocated 7896 // in order to store the value. In this case the CCInfo.getNextStackOffset() 7897 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 7898 // are passed CCValAssign::Indirect. 7899 for (auto &VA : ArgLocs) 7900 if (VA.getLocInfo() == CCValAssign::Indirect) 7901 return false; 7902 7903 // Do not tail call opt if either caller or callee uses struct return 7904 // semantics. 7905 auto IsCallerStructRet = Caller.hasStructRetAttr(); 7906 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 7907 if (IsCallerStructRet || IsCalleeStructRet) 7908 return false; 7909 7910 // Externally-defined functions with weak linkage should not be 7911 // tail-called. The behaviour of branch instructions in this situation (as 7912 // used for tail calls) is implementation-defined, so we cannot rely on the 7913 // linker replacing the tail call with a return. 7914 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 7915 const GlobalValue *GV = G->getGlobal(); 7916 if (GV->hasExternalWeakLinkage()) 7917 return false; 7918 } 7919 7920 // The callee has to preserve all registers the caller needs to preserve. 7921 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7922 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 7923 if (CalleeCC != CallerCC) { 7924 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 7925 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 7926 return false; 7927 } 7928 7929 // Byval parameters hand the function a pointer directly into the stack area 7930 // we want to reuse during a tail call. Working around this *is* possible 7931 // but less efficient and uglier in LowerCall. 7932 for (auto &Arg : Outs) 7933 if (Arg.Flags.isByVal()) 7934 return false; 7935 7936 return true; 7937 } 7938 7939 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 7940 return DAG.getDataLayout().getPrefTypeAlign( 7941 VT.getTypeForEVT(*DAG.getContext())); 7942 } 7943 7944 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 7945 // and output parameter nodes. 7946 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 7947 SmallVectorImpl<SDValue> &InVals) const { 7948 SelectionDAG &DAG = CLI.DAG; 7949 SDLoc &DL = CLI.DL; 7950 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 7951 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 7952 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 7953 SDValue Chain = CLI.Chain; 7954 SDValue Callee = CLI.Callee; 7955 bool &IsTailCall = CLI.IsTailCall; 7956 CallingConv::ID CallConv = CLI.CallConv; 7957 bool IsVarArg = CLI.IsVarArg; 7958 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7959 MVT XLenVT = Subtarget.getXLenVT(); 7960 7961 MachineFunction &MF = DAG.getMachineFunction(); 7962 7963 // Analyze the operands of the call, assigning locations to each operand. 7964 SmallVector<CCValAssign, 16> ArgLocs; 7965 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7966 7967 if (CallConv == CallingConv::GHC) 7968 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 7969 else 7970 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 7971 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 7972 : CC_RISCV); 7973 7974 // Check if it's really possible to do a tail call. 7975 if (IsTailCall) 7976 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 7977 7978 if (IsTailCall) 7979 ++NumTailCalls; 7980 else if (CLI.CB && CLI.CB->isMustTailCall()) 7981 report_fatal_error("failed to perform tail call elimination on a call " 7982 "site marked musttail"); 7983 7984 // Get a count of how many bytes are to be pushed on the stack. 7985 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 7986 7987 // Create local copies for byval args 7988 SmallVector<SDValue, 8> ByValArgs; 7989 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7990 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7991 if (!Flags.isByVal()) 7992 continue; 7993 7994 SDValue Arg = OutVals[i]; 7995 unsigned Size = Flags.getByValSize(); 7996 Align Alignment = Flags.getNonZeroByValAlign(); 7997 7998 int FI = 7999 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 8000 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8001 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 8002 8003 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 8004 /*IsVolatile=*/false, 8005 /*AlwaysInline=*/false, IsTailCall, 8006 MachinePointerInfo(), MachinePointerInfo()); 8007 ByValArgs.push_back(FIPtr); 8008 } 8009 8010 if (!IsTailCall) 8011 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 8012 8013 // Copy argument values to their designated locations. 8014 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 8015 SmallVector<SDValue, 8> MemOpChains; 8016 SDValue StackPtr; 8017 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 8018 CCValAssign &VA = ArgLocs[i]; 8019 SDValue ArgValue = OutVals[i]; 8020 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8021 8022 // Handle passing f64 on RV32D with a soft float ABI as a special case. 8023 bool IsF64OnRV32DSoftABI = 8024 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 8025 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 8026 SDValue SplitF64 = DAG.getNode( 8027 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 8028 SDValue Lo = SplitF64.getValue(0); 8029 SDValue Hi = SplitF64.getValue(1); 8030 8031 Register RegLo = VA.getLocReg(); 8032 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 8033 8034 if (RegLo == RISCV::X17) { 8035 // Second half of f64 is passed on the stack. 8036 // Work out the address of the stack slot. 8037 if (!StackPtr.getNode()) 8038 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8039 // Emit the store. 8040 MemOpChains.push_back( 8041 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 8042 } else { 8043 // Second half of f64 is passed in another GPR. 8044 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8045 Register RegHigh = RegLo + 1; 8046 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 8047 } 8048 continue; 8049 } 8050 8051 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 8052 // as any other MemLoc. 8053 8054 // Promote the value if needed. 8055 // For now, only handle fully promoted and indirect arguments. 8056 if (VA.getLocInfo() == CCValAssign::Indirect) { 8057 // Store the argument in a stack slot and pass its address. 8058 Align StackAlign = 8059 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 8060 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 8061 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 8062 // If the original argument was split (e.g. i128), we need 8063 // to store the required parts of it here (and pass just one address). 8064 // Vectors may be partly split to registers and partly to the stack, in 8065 // which case the base address is partly offset and subsequent stores are 8066 // relative to that. 8067 unsigned ArgIndex = Outs[i].OrigArgIndex; 8068 unsigned ArgPartOffset = Outs[i].PartOffset; 8069 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8070 // Calculate the total size to store. We don't have access to what we're 8071 // actually storing other than performing the loop and collecting the 8072 // info. 8073 SmallVector<std::pair<SDValue, SDValue>> Parts; 8074 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 8075 SDValue PartValue = OutVals[i + 1]; 8076 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 8077 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8078 EVT PartVT = PartValue.getValueType(); 8079 if (PartVT.isScalableVector()) 8080 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8081 StoredSize += PartVT.getStoreSize(); 8082 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 8083 Parts.push_back(std::make_pair(PartValue, Offset)); 8084 ++i; 8085 } 8086 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 8087 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 8088 MemOpChains.push_back( 8089 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 8090 MachinePointerInfo::getFixedStack(MF, FI))); 8091 for (const auto &Part : Parts) { 8092 SDValue PartValue = Part.first; 8093 SDValue PartOffset = Part.second; 8094 SDValue Address = 8095 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 8096 MemOpChains.push_back( 8097 DAG.getStore(Chain, DL, PartValue, Address, 8098 MachinePointerInfo::getFixedStack(MF, FI))); 8099 } 8100 ArgValue = SpillSlot; 8101 } else { 8102 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 8103 } 8104 8105 // Use local copy if it is a byval arg. 8106 if (Flags.isByVal()) 8107 ArgValue = ByValArgs[j++]; 8108 8109 if (VA.isRegLoc()) { 8110 // Queue up the argument copies and emit them at the end. 8111 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 8112 } else { 8113 assert(VA.isMemLoc() && "Argument not register or memory"); 8114 assert(!IsTailCall && "Tail call not allowed if stack is used " 8115 "for passing parameters"); 8116 8117 // Work out the address of the stack slot. 8118 if (!StackPtr.getNode()) 8119 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8120 SDValue Address = 8121 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 8122 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 8123 8124 // Emit the store. 8125 MemOpChains.push_back( 8126 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 8127 } 8128 } 8129 8130 // Join the stores, which are independent of one another. 8131 if (!MemOpChains.empty()) 8132 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 8133 8134 SDValue Glue; 8135 8136 // Build a sequence of copy-to-reg nodes, chained and glued together. 8137 for (auto &Reg : RegsToPass) { 8138 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 8139 Glue = Chain.getValue(1); 8140 } 8141 8142 // Validate that none of the argument registers have been marked as 8143 // reserved, if so report an error. Do the same for the return address if this 8144 // is not a tailcall. 8145 validateCCReservedRegs(RegsToPass, MF); 8146 if (!IsTailCall && 8147 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 8148 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8149 MF.getFunction(), 8150 "Return address register required, but has been reserved."}); 8151 8152 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 8153 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 8154 // split it and then direct call can be matched by PseudoCALL. 8155 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 8156 const GlobalValue *GV = S->getGlobal(); 8157 8158 unsigned OpFlags = RISCVII::MO_CALL; 8159 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 8160 OpFlags = RISCVII::MO_PLT; 8161 8162 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 8163 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 8164 unsigned OpFlags = RISCVII::MO_CALL; 8165 8166 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 8167 nullptr)) 8168 OpFlags = RISCVII::MO_PLT; 8169 8170 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 8171 } 8172 8173 // The first call operand is the chain and the second is the target address. 8174 SmallVector<SDValue, 8> Ops; 8175 Ops.push_back(Chain); 8176 Ops.push_back(Callee); 8177 8178 // Add argument registers to the end of the list so that they are 8179 // known live into the call. 8180 for (auto &Reg : RegsToPass) 8181 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 8182 8183 if (!IsTailCall) { 8184 // Add a register mask operand representing the call-preserved registers. 8185 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8186 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 8187 assert(Mask && "Missing call preserved mask for calling convention"); 8188 Ops.push_back(DAG.getRegisterMask(Mask)); 8189 } 8190 8191 // Glue the call to the argument copies, if any. 8192 if (Glue.getNode()) 8193 Ops.push_back(Glue); 8194 8195 // Emit the call. 8196 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8197 8198 if (IsTailCall) { 8199 MF.getFrameInfo().setHasTailCall(); 8200 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 8201 } 8202 8203 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 8204 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 8205 Glue = Chain.getValue(1); 8206 8207 // Mark the end of the call, which is glued to the call itself. 8208 Chain = DAG.getCALLSEQ_END(Chain, 8209 DAG.getConstant(NumBytes, DL, PtrVT, true), 8210 DAG.getConstant(0, DL, PtrVT, true), 8211 Glue, DL); 8212 Glue = Chain.getValue(1); 8213 8214 // Assign locations to each value returned by this call. 8215 SmallVector<CCValAssign, 16> RVLocs; 8216 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 8217 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 8218 8219 // Copy all of the result registers out of their specified physreg. 8220 for (auto &VA : RVLocs) { 8221 // Copy the value out 8222 SDValue RetValue = 8223 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 8224 // Glue the RetValue to the end of the call sequence 8225 Chain = RetValue.getValue(1); 8226 Glue = RetValue.getValue(2); 8227 8228 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8229 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 8230 SDValue RetValue2 = 8231 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 8232 Chain = RetValue2.getValue(1); 8233 Glue = RetValue2.getValue(2); 8234 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 8235 RetValue2); 8236 } 8237 8238 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 8239 8240 InVals.push_back(RetValue); 8241 } 8242 8243 return Chain; 8244 } 8245 8246 bool RISCVTargetLowering::CanLowerReturn( 8247 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 8248 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 8249 SmallVector<CCValAssign, 16> RVLocs; 8250 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 8251 8252 Optional<unsigned> FirstMaskArgument; 8253 if (Subtarget.hasStdExtV()) 8254 FirstMaskArgument = preAssignMask(Outs); 8255 8256 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8257 MVT VT = Outs[i].VT; 8258 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8259 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8260 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 8261 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 8262 *this, FirstMaskArgument)) 8263 return false; 8264 } 8265 return true; 8266 } 8267 8268 SDValue 8269 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 8270 bool IsVarArg, 8271 const SmallVectorImpl<ISD::OutputArg> &Outs, 8272 const SmallVectorImpl<SDValue> &OutVals, 8273 const SDLoc &DL, SelectionDAG &DAG) const { 8274 const MachineFunction &MF = DAG.getMachineFunction(); 8275 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8276 8277 // Stores the assignment of the return value to a location. 8278 SmallVector<CCValAssign, 16> RVLocs; 8279 8280 // Info about the registers and stack slot. 8281 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 8282 *DAG.getContext()); 8283 8284 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 8285 nullptr, CC_RISCV); 8286 8287 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 8288 report_fatal_error("GHC functions return void only"); 8289 8290 SDValue Glue; 8291 SmallVector<SDValue, 4> RetOps(1, Chain); 8292 8293 // Copy the result values into the output registers. 8294 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 8295 SDValue Val = OutVals[i]; 8296 CCValAssign &VA = RVLocs[i]; 8297 assert(VA.isRegLoc() && "Can only return in registers!"); 8298 8299 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8300 // Handle returning f64 on RV32D with a soft float ABI. 8301 assert(VA.isRegLoc() && "Expected return via registers"); 8302 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 8303 DAG.getVTList(MVT::i32, MVT::i32), Val); 8304 SDValue Lo = SplitF64.getValue(0); 8305 SDValue Hi = SplitF64.getValue(1); 8306 Register RegLo = VA.getLocReg(); 8307 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8308 Register RegHi = RegLo + 1; 8309 8310 if (STI.isRegisterReservedByUser(RegLo) || 8311 STI.isRegisterReservedByUser(RegHi)) 8312 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8313 MF.getFunction(), 8314 "Return value register required, but has been reserved."}); 8315 8316 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 8317 Glue = Chain.getValue(1); 8318 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 8319 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 8320 Glue = Chain.getValue(1); 8321 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 8322 } else { 8323 // Handle a 'normal' return. 8324 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 8325 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 8326 8327 if (STI.isRegisterReservedByUser(VA.getLocReg())) 8328 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8329 MF.getFunction(), 8330 "Return value register required, but has been reserved."}); 8331 8332 // Guarantee that all emitted copies are stuck together. 8333 Glue = Chain.getValue(1); 8334 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 8335 } 8336 } 8337 8338 RetOps[0] = Chain; // Update chain. 8339 8340 // Add the glue node if we have it. 8341 if (Glue.getNode()) { 8342 RetOps.push_back(Glue); 8343 } 8344 8345 unsigned RetOpc = RISCVISD::RET_FLAG; 8346 // Interrupt service routines use different return instructions. 8347 const Function &Func = DAG.getMachineFunction().getFunction(); 8348 if (Func.hasFnAttribute("interrupt")) { 8349 if (!Func.getReturnType()->isVoidTy()) 8350 report_fatal_error( 8351 "Functions with the interrupt attribute must have void return type!"); 8352 8353 MachineFunction &MF = DAG.getMachineFunction(); 8354 StringRef Kind = 8355 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8356 8357 if (Kind == "user") 8358 RetOpc = RISCVISD::URET_FLAG; 8359 else if (Kind == "supervisor") 8360 RetOpc = RISCVISD::SRET_FLAG; 8361 else 8362 RetOpc = RISCVISD::MRET_FLAG; 8363 } 8364 8365 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 8366 } 8367 8368 void RISCVTargetLowering::validateCCReservedRegs( 8369 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 8370 MachineFunction &MF) const { 8371 const Function &F = MF.getFunction(); 8372 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8373 8374 if (llvm::any_of(Regs, [&STI](auto Reg) { 8375 return STI.isRegisterReservedByUser(Reg.first); 8376 })) 8377 F.getContext().diagnose(DiagnosticInfoUnsupported{ 8378 F, "Argument register required, but has been reserved."}); 8379 } 8380 8381 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 8382 return CI->isTailCall(); 8383 } 8384 8385 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 8386 #define NODE_NAME_CASE(NODE) \ 8387 case RISCVISD::NODE: \ 8388 return "RISCVISD::" #NODE; 8389 // clang-format off 8390 switch ((RISCVISD::NodeType)Opcode) { 8391 case RISCVISD::FIRST_NUMBER: 8392 break; 8393 NODE_NAME_CASE(RET_FLAG) 8394 NODE_NAME_CASE(URET_FLAG) 8395 NODE_NAME_CASE(SRET_FLAG) 8396 NODE_NAME_CASE(MRET_FLAG) 8397 NODE_NAME_CASE(CALL) 8398 NODE_NAME_CASE(SELECT_CC) 8399 NODE_NAME_CASE(BR_CC) 8400 NODE_NAME_CASE(BuildPairF64) 8401 NODE_NAME_CASE(SplitF64) 8402 NODE_NAME_CASE(TAIL) 8403 NODE_NAME_CASE(MULHSU) 8404 NODE_NAME_CASE(SLLW) 8405 NODE_NAME_CASE(SRAW) 8406 NODE_NAME_CASE(SRLW) 8407 NODE_NAME_CASE(DIVW) 8408 NODE_NAME_CASE(DIVUW) 8409 NODE_NAME_CASE(REMUW) 8410 NODE_NAME_CASE(ROLW) 8411 NODE_NAME_CASE(RORW) 8412 NODE_NAME_CASE(CLZW) 8413 NODE_NAME_CASE(CTZW) 8414 NODE_NAME_CASE(FSLW) 8415 NODE_NAME_CASE(FSRW) 8416 NODE_NAME_CASE(FSL) 8417 NODE_NAME_CASE(FSR) 8418 NODE_NAME_CASE(FMV_H_X) 8419 NODE_NAME_CASE(FMV_X_ANYEXTH) 8420 NODE_NAME_CASE(FMV_W_X_RV64) 8421 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 8422 NODE_NAME_CASE(FCVT_X_RTZ) 8423 NODE_NAME_CASE(FCVT_XU_RTZ) 8424 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 8425 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 8426 NODE_NAME_CASE(READ_CYCLE_WIDE) 8427 NODE_NAME_CASE(GREV) 8428 NODE_NAME_CASE(GREVW) 8429 NODE_NAME_CASE(GORC) 8430 NODE_NAME_CASE(GORCW) 8431 NODE_NAME_CASE(SHFL) 8432 NODE_NAME_CASE(SHFLW) 8433 NODE_NAME_CASE(UNSHFL) 8434 NODE_NAME_CASE(UNSHFLW) 8435 NODE_NAME_CASE(BCOMPRESS) 8436 NODE_NAME_CASE(BCOMPRESSW) 8437 NODE_NAME_CASE(BDECOMPRESS) 8438 NODE_NAME_CASE(BDECOMPRESSW) 8439 NODE_NAME_CASE(VMV_V_X_VL) 8440 NODE_NAME_CASE(VFMV_V_F_VL) 8441 NODE_NAME_CASE(VMV_X_S) 8442 NODE_NAME_CASE(VMV_S_X_VL) 8443 NODE_NAME_CASE(VFMV_S_F_VL) 8444 NODE_NAME_CASE(SPLAT_VECTOR_I64) 8445 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 8446 NODE_NAME_CASE(READ_VLENB) 8447 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 8448 NODE_NAME_CASE(VSLIDEUP_VL) 8449 NODE_NAME_CASE(VSLIDE1UP_VL) 8450 NODE_NAME_CASE(VSLIDEDOWN_VL) 8451 NODE_NAME_CASE(VSLIDE1DOWN_VL) 8452 NODE_NAME_CASE(VID_VL) 8453 NODE_NAME_CASE(VFNCVT_ROD_VL) 8454 NODE_NAME_CASE(VECREDUCE_ADD_VL) 8455 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 8456 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 8457 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 8458 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 8459 NODE_NAME_CASE(VECREDUCE_AND_VL) 8460 NODE_NAME_CASE(VECREDUCE_OR_VL) 8461 NODE_NAME_CASE(VECREDUCE_XOR_VL) 8462 NODE_NAME_CASE(VECREDUCE_FADD_VL) 8463 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 8464 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 8465 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 8466 NODE_NAME_CASE(ADD_VL) 8467 NODE_NAME_CASE(AND_VL) 8468 NODE_NAME_CASE(MUL_VL) 8469 NODE_NAME_CASE(OR_VL) 8470 NODE_NAME_CASE(SDIV_VL) 8471 NODE_NAME_CASE(SHL_VL) 8472 NODE_NAME_CASE(SREM_VL) 8473 NODE_NAME_CASE(SRA_VL) 8474 NODE_NAME_CASE(SRL_VL) 8475 NODE_NAME_CASE(SUB_VL) 8476 NODE_NAME_CASE(UDIV_VL) 8477 NODE_NAME_CASE(UREM_VL) 8478 NODE_NAME_CASE(XOR_VL) 8479 NODE_NAME_CASE(SADDSAT_VL) 8480 NODE_NAME_CASE(UADDSAT_VL) 8481 NODE_NAME_CASE(SSUBSAT_VL) 8482 NODE_NAME_CASE(USUBSAT_VL) 8483 NODE_NAME_CASE(FADD_VL) 8484 NODE_NAME_CASE(FSUB_VL) 8485 NODE_NAME_CASE(FMUL_VL) 8486 NODE_NAME_CASE(FDIV_VL) 8487 NODE_NAME_CASE(FNEG_VL) 8488 NODE_NAME_CASE(FABS_VL) 8489 NODE_NAME_CASE(FSQRT_VL) 8490 NODE_NAME_CASE(FMA_VL) 8491 NODE_NAME_CASE(FCOPYSIGN_VL) 8492 NODE_NAME_CASE(SMIN_VL) 8493 NODE_NAME_CASE(SMAX_VL) 8494 NODE_NAME_CASE(UMIN_VL) 8495 NODE_NAME_CASE(UMAX_VL) 8496 NODE_NAME_CASE(FMINNUM_VL) 8497 NODE_NAME_CASE(FMAXNUM_VL) 8498 NODE_NAME_CASE(MULHS_VL) 8499 NODE_NAME_CASE(MULHU_VL) 8500 NODE_NAME_CASE(FP_TO_SINT_VL) 8501 NODE_NAME_CASE(FP_TO_UINT_VL) 8502 NODE_NAME_CASE(SINT_TO_FP_VL) 8503 NODE_NAME_CASE(UINT_TO_FP_VL) 8504 NODE_NAME_CASE(FP_EXTEND_VL) 8505 NODE_NAME_CASE(FP_ROUND_VL) 8506 NODE_NAME_CASE(VWMUL_VL) 8507 NODE_NAME_CASE(VWMULU_VL) 8508 NODE_NAME_CASE(SETCC_VL) 8509 NODE_NAME_CASE(VSELECT_VL) 8510 NODE_NAME_CASE(VMAND_VL) 8511 NODE_NAME_CASE(VMOR_VL) 8512 NODE_NAME_CASE(VMXOR_VL) 8513 NODE_NAME_CASE(VMCLR_VL) 8514 NODE_NAME_CASE(VMSET_VL) 8515 NODE_NAME_CASE(VRGATHER_VX_VL) 8516 NODE_NAME_CASE(VRGATHER_VV_VL) 8517 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 8518 NODE_NAME_CASE(VSEXT_VL) 8519 NODE_NAME_CASE(VZEXT_VL) 8520 NODE_NAME_CASE(VPOPC_VL) 8521 NODE_NAME_CASE(VLE_VL) 8522 NODE_NAME_CASE(VSE_VL) 8523 NODE_NAME_CASE(READ_CSR) 8524 NODE_NAME_CASE(WRITE_CSR) 8525 NODE_NAME_CASE(SWAP_CSR) 8526 } 8527 // clang-format on 8528 return nullptr; 8529 #undef NODE_NAME_CASE 8530 } 8531 8532 /// getConstraintType - Given a constraint letter, return the type of 8533 /// constraint it is for this target. 8534 RISCVTargetLowering::ConstraintType 8535 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 8536 if (Constraint.size() == 1) { 8537 switch (Constraint[0]) { 8538 default: 8539 break; 8540 case 'f': 8541 return C_RegisterClass; 8542 case 'I': 8543 case 'J': 8544 case 'K': 8545 return C_Immediate; 8546 case 'A': 8547 return C_Memory; 8548 case 'S': // A symbolic address 8549 return C_Other; 8550 } 8551 } else { 8552 if (Constraint == "vr" || Constraint == "vm") 8553 return C_RegisterClass; 8554 } 8555 return TargetLowering::getConstraintType(Constraint); 8556 } 8557 8558 std::pair<unsigned, const TargetRegisterClass *> 8559 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 8560 StringRef Constraint, 8561 MVT VT) const { 8562 // First, see if this is a constraint that directly corresponds to a 8563 // RISCV register class. 8564 if (Constraint.size() == 1) { 8565 switch (Constraint[0]) { 8566 case 'r': 8567 return std::make_pair(0U, &RISCV::GPRRegClass); 8568 case 'f': 8569 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 8570 return std::make_pair(0U, &RISCV::FPR16RegClass); 8571 if (Subtarget.hasStdExtF() && VT == MVT::f32) 8572 return std::make_pair(0U, &RISCV::FPR32RegClass); 8573 if (Subtarget.hasStdExtD() && VT == MVT::f64) 8574 return std::make_pair(0U, &RISCV::FPR64RegClass); 8575 break; 8576 default: 8577 break; 8578 } 8579 } else { 8580 if (Constraint == "vr") { 8581 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 8582 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8583 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 8584 return std::make_pair(0U, RC); 8585 } 8586 } else if (Constraint == "vm") { 8587 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8588 return std::make_pair(0U, &RISCV::VMRegClass); 8589 } 8590 } 8591 8592 // Clang will correctly decode the usage of register name aliases into their 8593 // official names. However, other frontends like `rustc` do not. This allows 8594 // users of these frontends to use the ABI names for registers in LLVM-style 8595 // register constraints. 8596 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 8597 .Case("{zero}", RISCV::X0) 8598 .Case("{ra}", RISCV::X1) 8599 .Case("{sp}", RISCV::X2) 8600 .Case("{gp}", RISCV::X3) 8601 .Case("{tp}", RISCV::X4) 8602 .Case("{t0}", RISCV::X5) 8603 .Case("{t1}", RISCV::X6) 8604 .Case("{t2}", RISCV::X7) 8605 .Cases("{s0}", "{fp}", RISCV::X8) 8606 .Case("{s1}", RISCV::X9) 8607 .Case("{a0}", RISCV::X10) 8608 .Case("{a1}", RISCV::X11) 8609 .Case("{a2}", RISCV::X12) 8610 .Case("{a3}", RISCV::X13) 8611 .Case("{a4}", RISCV::X14) 8612 .Case("{a5}", RISCV::X15) 8613 .Case("{a6}", RISCV::X16) 8614 .Case("{a7}", RISCV::X17) 8615 .Case("{s2}", RISCV::X18) 8616 .Case("{s3}", RISCV::X19) 8617 .Case("{s4}", RISCV::X20) 8618 .Case("{s5}", RISCV::X21) 8619 .Case("{s6}", RISCV::X22) 8620 .Case("{s7}", RISCV::X23) 8621 .Case("{s8}", RISCV::X24) 8622 .Case("{s9}", RISCV::X25) 8623 .Case("{s10}", RISCV::X26) 8624 .Case("{s11}", RISCV::X27) 8625 .Case("{t3}", RISCV::X28) 8626 .Case("{t4}", RISCV::X29) 8627 .Case("{t5}", RISCV::X30) 8628 .Case("{t6}", RISCV::X31) 8629 .Default(RISCV::NoRegister); 8630 if (XRegFromAlias != RISCV::NoRegister) 8631 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 8632 8633 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 8634 // TableGen record rather than the AsmName to choose registers for InlineAsm 8635 // constraints, plus we want to match those names to the widest floating point 8636 // register type available, manually select floating point registers here. 8637 // 8638 // The second case is the ABI name of the register, so that frontends can also 8639 // use the ABI names in register constraint lists. 8640 if (Subtarget.hasStdExtF()) { 8641 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 8642 .Cases("{f0}", "{ft0}", RISCV::F0_F) 8643 .Cases("{f1}", "{ft1}", RISCV::F1_F) 8644 .Cases("{f2}", "{ft2}", RISCV::F2_F) 8645 .Cases("{f3}", "{ft3}", RISCV::F3_F) 8646 .Cases("{f4}", "{ft4}", RISCV::F4_F) 8647 .Cases("{f5}", "{ft5}", RISCV::F5_F) 8648 .Cases("{f6}", "{ft6}", RISCV::F6_F) 8649 .Cases("{f7}", "{ft7}", RISCV::F7_F) 8650 .Cases("{f8}", "{fs0}", RISCV::F8_F) 8651 .Cases("{f9}", "{fs1}", RISCV::F9_F) 8652 .Cases("{f10}", "{fa0}", RISCV::F10_F) 8653 .Cases("{f11}", "{fa1}", RISCV::F11_F) 8654 .Cases("{f12}", "{fa2}", RISCV::F12_F) 8655 .Cases("{f13}", "{fa3}", RISCV::F13_F) 8656 .Cases("{f14}", "{fa4}", RISCV::F14_F) 8657 .Cases("{f15}", "{fa5}", RISCV::F15_F) 8658 .Cases("{f16}", "{fa6}", RISCV::F16_F) 8659 .Cases("{f17}", "{fa7}", RISCV::F17_F) 8660 .Cases("{f18}", "{fs2}", RISCV::F18_F) 8661 .Cases("{f19}", "{fs3}", RISCV::F19_F) 8662 .Cases("{f20}", "{fs4}", RISCV::F20_F) 8663 .Cases("{f21}", "{fs5}", RISCV::F21_F) 8664 .Cases("{f22}", "{fs6}", RISCV::F22_F) 8665 .Cases("{f23}", "{fs7}", RISCV::F23_F) 8666 .Cases("{f24}", "{fs8}", RISCV::F24_F) 8667 .Cases("{f25}", "{fs9}", RISCV::F25_F) 8668 .Cases("{f26}", "{fs10}", RISCV::F26_F) 8669 .Cases("{f27}", "{fs11}", RISCV::F27_F) 8670 .Cases("{f28}", "{ft8}", RISCV::F28_F) 8671 .Cases("{f29}", "{ft9}", RISCV::F29_F) 8672 .Cases("{f30}", "{ft10}", RISCV::F30_F) 8673 .Cases("{f31}", "{ft11}", RISCV::F31_F) 8674 .Default(RISCV::NoRegister); 8675 if (FReg != RISCV::NoRegister) { 8676 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 8677 if (Subtarget.hasStdExtD()) { 8678 unsigned RegNo = FReg - RISCV::F0_F; 8679 unsigned DReg = RISCV::F0_D + RegNo; 8680 return std::make_pair(DReg, &RISCV::FPR64RegClass); 8681 } 8682 return std::make_pair(FReg, &RISCV::FPR32RegClass); 8683 } 8684 } 8685 8686 if (Subtarget.hasStdExtV()) { 8687 Register VReg = StringSwitch<Register>(Constraint.lower()) 8688 .Case("{v0}", RISCV::V0) 8689 .Case("{v1}", RISCV::V1) 8690 .Case("{v2}", RISCV::V2) 8691 .Case("{v3}", RISCV::V3) 8692 .Case("{v4}", RISCV::V4) 8693 .Case("{v5}", RISCV::V5) 8694 .Case("{v6}", RISCV::V6) 8695 .Case("{v7}", RISCV::V7) 8696 .Case("{v8}", RISCV::V8) 8697 .Case("{v9}", RISCV::V9) 8698 .Case("{v10}", RISCV::V10) 8699 .Case("{v11}", RISCV::V11) 8700 .Case("{v12}", RISCV::V12) 8701 .Case("{v13}", RISCV::V13) 8702 .Case("{v14}", RISCV::V14) 8703 .Case("{v15}", RISCV::V15) 8704 .Case("{v16}", RISCV::V16) 8705 .Case("{v17}", RISCV::V17) 8706 .Case("{v18}", RISCV::V18) 8707 .Case("{v19}", RISCV::V19) 8708 .Case("{v20}", RISCV::V20) 8709 .Case("{v21}", RISCV::V21) 8710 .Case("{v22}", RISCV::V22) 8711 .Case("{v23}", RISCV::V23) 8712 .Case("{v24}", RISCV::V24) 8713 .Case("{v25}", RISCV::V25) 8714 .Case("{v26}", RISCV::V26) 8715 .Case("{v27}", RISCV::V27) 8716 .Case("{v28}", RISCV::V28) 8717 .Case("{v29}", RISCV::V29) 8718 .Case("{v30}", RISCV::V30) 8719 .Case("{v31}", RISCV::V31) 8720 .Default(RISCV::NoRegister); 8721 if (VReg != RISCV::NoRegister) { 8722 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8723 return std::make_pair(VReg, &RISCV::VMRegClass); 8724 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 8725 return std::make_pair(VReg, &RISCV::VRRegClass); 8726 for (const auto *RC : 8727 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8728 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 8729 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 8730 return std::make_pair(VReg, RC); 8731 } 8732 } 8733 } 8734 } 8735 8736 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 8737 } 8738 8739 unsigned 8740 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 8741 // Currently only support length 1 constraints. 8742 if (ConstraintCode.size() == 1) { 8743 switch (ConstraintCode[0]) { 8744 case 'A': 8745 return InlineAsm::Constraint_A; 8746 default: 8747 break; 8748 } 8749 } 8750 8751 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 8752 } 8753 8754 void RISCVTargetLowering::LowerAsmOperandForConstraint( 8755 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 8756 SelectionDAG &DAG) const { 8757 // Currently only support length 1 constraints. 8758 if (Constraint.length() == 1) { 8759 switch (Constraint[0]) { 8760 case 'I': 8761 // Validate & create a 12-bit signed immediate operand. 8762 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8763 uint64_t CVal = C->getSExtValue(); 8764 if (isInt<12>(CVal)) 8765 Ops.push_back( 8766 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8767 } 8768 return; 8769 case 'J': 8770 // Validate & create an integer zero operand. 8771 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 8772 if (C->getZExtValue() == 0) 8773 Ops.push_back( 8774 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 8775 return; 8776 case 'K': 8777 // Validate & create a 5-bit unsigned immediate operand. 8778 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8779 uint64_t CVal = C->getZExtValue(); 8780 if (isUInt<5>(CVal)) 8781 Ops.push_back( 8782 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8783 } 8784 return; 8785 case 'S': 8786 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 8787 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 8788 GA->getValueType(0))); 8789 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 8790 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 8791 BA->getValueType(0))); 8792 } 8793 return; 8794 default: 8795 break; 8796 } 8797 } 8798 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 8799 } 8800 8801 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 8802 Instruction *Inst, 8803 AtomicOrdering Ord) const { 8804 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 8805 return Builder.CreateFence(Ord); 8806 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 8807 return Builder.CreateFence(AtomicOrdering::Release); 8808 return nullptr; 8809 } 8810 8811 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 8812 Instruction *Inst, 8813 AtomicOrdering Ord) const { 8814 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 8815 return Builder.CreateFence(AtomicOrdering::Acquire); 8816 return nullptr; 8817 } 8818 8819 TargetLowering::AtomicExpansionKind 8820 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 8821 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 8822 // point operations can't be used in an lr/sc sequence without breaking the 8823 // forward-progress guarantee. 8824 if (AI->isFloatingPointOperation()) 8825 return AtomicExpansionKind::CmpXChg; 8826 8827 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 8828 if (Size == 8 || Size == 16) 8829 return AtomicExpansionKind::MaskedIntrinsic; 8830 return AtomicExpansionKind::None; 8831 } 8832 8833 static Intrinsic::ID 8834 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 8835 if (XLen == 32) { 8836 switch (BinOp) { 8837 default: 8838 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8839 case AtomicRMWInst::Xchg: 8840 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 8841 case AtomicRMWInst::Add: 8842 return Intrinsic::riscv_masked_atomicrmw_add_i32; 8843 case AtomicRMWInst::Sub: 8844 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 8845 case AtomicRMWInst::Nand: 8846 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 8847 case AtomicRMWInst::Max: 8848 return Intrinsic::riscv_masked_atomicrmw_max_i32; 8849 case AtomicRMWInst::Min: 8850 return Intrinsic::riscv_masked_atomicrmw_min_i32; 8851 case AtomicRMWInst::UMax: 8852 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 8853 case AtomicRMWInst::UMin: 8854 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 8855 } 8856 } 8857 8858 if (XLen == 64) { 8859 switch (BinOp) { 8860 default: 8861 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8862 case AtomicRMWInst::Xchg: 8863 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 8864 case AtomicRMWInst::Add: 8865 return Intrinsic::riscv_masked_atomicrmw_add_i64; 8866 case AtomicRMWInst::Sub: 8867 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 8868 case AtomicRMWInst::Nand: 8869 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 8870 case AtomicRMWInst::Max: 8871 return Intrinsic::riscv_masked_atomicrmw_max_i64; 8872 case AtomicRMWInst::Min: 8873 return Intrinsic::riscv_masked_atomicrmw_min_i64; 8874 case AtomicRMWInst::UMax: 8875 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 8876 case AtomicRMWInst::UMin: 8877 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 8878 } 8879 } 8880 8881 llvm_unreachable("Unexpected XLen\n"); 8882 } 8883 8884 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 8885 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 8886 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 8887 unsigned XLen = Subtarget.getXLen(); 8888 Value *Ordering = 8889 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 8890 Type *Tys[] = {AlignedAddr->getType()}; 8891 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 8892 AI->getModule(), 8893 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 8894 8895 if (XLen == 64) { 8896 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 8897 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8898 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 8899 } 8900 8901 Value *Result; 8902 8903 // Must pass the shift amount needed to sign extend the loaded value prior 8904 // to performing a signed comparison for min/max. ShiftAmt is the number of 8905 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 8906 // is the number of bits to left+right shift the value in order to 8907 // sign-extend. 8908 if (AI->getOperation() == AtomicRMWInst::Min || 8909 AI->getOperation() == AtomicRMWInst::Max) { 8910 const DataLayout &DL = AI->getModule()->getDataLayout(); 8911 unsigned ValWidth = 8912 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 8913 Value *SextShamt = 8914 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 8915 Result = Builder.CreateCall(LrwOpScwLoop, 8916 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 8917 } else { 8918 Result = 8919 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 8920 } 8921 8922 if (XLen == 64) 8923 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8924 return Result; 8925 } 8926 8927 TargetLowering::AtomicExpansionKind 8928 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 8929 AtomicCmpXchgInst *CI) const { 8930 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 8931 if (Size == 8 || Size == 16) 8932 return AtomicExpansionKind::MaskedIntrinsic; 8933 return AtomicExpansionKind::None; 8934 } 8935 8936 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 8937 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 8938 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 8939 unsigned XLen = Subtarget.getXLen(); 8940 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 8941 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 8942 if (XLen == 64) { 8943 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 8944 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 8945 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8946 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 8947 } 8948 Type *Tys[] = {AlignedAddr->getType()}; 8949 Function *MaskedCmpXchg = 8950 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 8951 Value *Result = Builder.CreateCall( 8952 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 8953 if (XLen == 64) 8954 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8955 return Result; 8956 } 8957 8958 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 8959 return false; 8960 } 8961 8962 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 8963 EVT VT) const { 8964 VT = VT.getScalarType(); 8965 8966 if (!VT.isSimple()) 8967 return false; 8968 8969 switch (VT.getSimpleVT().SimpleTy) { 8970 case MVT::f16: 8971 return Subtarget.hasStdExtZfh(); 8972 case MVT::f32: 8973 return Subtarget.hasStdExtF(); 8974 case MVT::f64: 8975 return Subtarget.hasStdExtD(); 8976 default: 8977 break; 8978 } 8979 8980 return false; 8981 } 8982 8983 Register RISCVTargetLowering::getExceptionPointerRegister( 8984 const Constant *PersonalityFn) const { 8985 return RISCV::X10; 8986 } 8987 8988 Register RISCVTargetLowering::getExceptionSelectorRegister( 8989 const Constant *PersonalityFn) const { 8990 return RISCV::X11; 8991 } 8992 8993 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 8994 // Return false to suppress the unnecessary extensions if the LibCall 8995 // arguments or return value is f32 type for LP64 ABI. 8996 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 8997 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 8998 return false; 8999 9000 return true; 9001 } 9002 9003 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 9004 if (Subtarget.is64Bit() && Type == MVT::i32) 9005 return true; 9006 9007 return IsSigned; 9008 } 9009 9010 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 9011 SDValue C) const { 9012 // Check integral scalar types. 9013 if (VT.isScalarInteger()) { 9014 // Omit the optimization if the sub target has the M extension and the data 9015 // size exceeds XLen. 9016 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 9017 return false; 9018 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 9019 // Break the MUL to a SLLI and an ADD/SUB. 9020 const APInt &Imm = ConstNode->getAPIntValue(); 9021 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 9022 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 9023 return true; 9024 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 9025 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 9026 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 9027 (Imm - 8).isPowerOf2())) 9028 return true; 9029 // Omit the following optimization if the sub target has the M extension 9030 // and the data size >= XLen. 9031 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 9032 return false; 9033 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 9034 // a pair of LUI/ADDI. 9035 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 9036 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 9037 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 9038 (1 - ImmS).isPowerOf2()) 9039 return true; 9040 } 9041 } 9042 } 9043 9044 return false; 9045 } 9046 9047 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 9048 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 9049 bool *Fast) const { 9050 if (!VT.isVector()) 9051 return false; 9052 9053 EVT ElemVT = VT.getVectorElementType(); 9054 if (Alignment >= ElemVT.getStoreSize()) { 9055 if (Fast) 9056 *Fast = true; 9057 return true; 9058 } 9059 9060 return false; 9061 } 9062 9063 bool RISCVTargetLowering::splitValueIntoRegisterParts( 9064 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 9065 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 9066 bool IsABIRegCopy = CC.hasValue(); 9067 EVT ValueVT = Val.getValueType(); 9068 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9069 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 9070 // and cast to f32. 9071 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 9072 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 9073 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 9074 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 9075 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 9076 Parts[0] = Val; 9077 return true; 9078 } 9079 9080 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9081 LLVMContext &Context = *DAG.getContext(); 9082 EVT ValueEltVT = ValueVT.getVectorElementType(); 9083 EVT PartEltVT = PartVT.getVectorElementType(); 9084 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9085 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9086 if (PartVTBitSize % ValueVTBitSize == 0) { 9087 // If the element types are different, bitcast to the same element type of 9088 // PartVT first. 9089 if (ValueEltVT != PartEltVT) { 9090 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9091 assert(Count != 0 && "The number of element should not be zero."); 9092 EVT SameEltTypeVT = 9093 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9094 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 9095 } 9096 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 9097 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9098 Parts[0] = Val; 9099 return true; 9100 } 9101 } 9102 return false; 9103 } 9104 9105 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 9106 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 9107 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 9108 bool IsABIRegCopy = CC.hasValue(); 9109 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9110 SDValue Val = Parts[0]; 9111 9112 // Cast the f32 to i32, truncate to i16, and cast back to f16. 9113 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 9114 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 9115 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 9116 return Val; 9117 } 9118 9119 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9120 LLVMContext &Context = *DAG.getContext(); 9121 SDValue Val = Parts[0]; 9122 EVT ValueEltVT = ValueVT.getVectorElementType(); 9123 EVT PartEltVT = PartVT.getVectorElementType(); 9124 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9125 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9126 if (PartVTBitSize % ValueVTBitSize == 0) { 9127 EVT SameEltTypeVT = ValueVT; 9128 // If the element types are different, convert it to the same element type 9129 // of PartVT. 9130 if (ValueEltVT != PartEltVT) { 9131 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9132 assert(Count != 0 && "The number of element should not be zero."); 9133 SameEltTypeVT = 9134 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9135 } 9136 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 9137 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9138 if (ValueEltVT != PartEltVT) 9139 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 9140 return Val; 9141 } 9142 } 9143 return SDValue(); 9144 } 9145 9146 #define GET_REGISTER_MATCHER 9147 #include "RISCVGenAsmMatcher.inc" 9148 9149 Register 9150 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 9151 const MachineFunction &MF) const { 9152 Register Reg = MatchRegisterAltName(RegName); 9153 if (Reg == RISCV::NoRegister) 9154 Reg = MatchRegisterName(RegName); 9155 if (Reg == RISCV::NoRegister) 9156 report_fatal_error( 9157 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 9158 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 9159 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 9160 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 9161 StringRef(RegName) + "\".")); 9162 return Reg; 9163 } 9164 9165 namespace llvm { 9166 namespace RISCVVIntrinsicsTable { 9167 9168 #define GET_RISCVVIntrinsicsTable_IMPL 9169 #include "RISCVGenSearchableTables.inc" 9170 9171 } // namespace RISCVVIntrinsicsTable 9172 9173 } // namespace llvm 9174