1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "RISCV.h"
16 #include "RISCVMachineFunctionInfo.h"
17 #include "RISCVRegisterInfo.h"
18 #include "RISCVSubtarget.h"
19 #include "RISCVTargetMachine.h"
20 #include "Utils/RISCVMatInt.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAGISel.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "riscv-lower"
40 
41 STATISTIC(NumTailCalls, "Number of tail calls");
42 
43 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
44                                          const RISCVSubtarget &STI)
45     : TargetLowering(TM), Subtarget(STI) {
46 
47   if (Subtarget.isRV32E())
48     report_fatal_error("Codegen not yet implemented for RV32E");
49 
50   RISCVABI::ABI ABI = Subtarget.getTargetABI();
51   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
52 
53   switch (ABI) {
54   default:
55     report_fatal_error("Don't know how to lower this ABI");
56   case RISCVABI::ABI_ILP32:
57   case RISCVABI::ABI_ILP32F:
58   case RISCVABI::ABI_ILP32D:
59   case RISCVABI::ABI_LP64:
60   case RISCVABI::ABI_LP64F:
61   case RISCVABI::ABI_LP64D:
62     break;
63   }
64 
65   MVT XLenVT = Subtarget.getXLenVT();
66 
67   // Set up the register classes.
68   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
69 
70   if (Subtarget.hasStdExtF())
71     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
72   if (Subtarget.hasStdExtD())
73     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
74 
75   // Compute derived properties from the register classes.
76   computeRegisterProperties(STI.getRegisterInfo());
77 
78   setStackPointerRegisterToSaveRestore(RISCV::X2);
79 
80   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
81     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
82 
83   // TODO: add all necessary setOperationAction calls.
84   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
85 
86   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
87   setOperationAction(ISD::BR_CC, XLenVT, Expand);
88   setOperationAction(ISD::SELECT, XLenVT, Custom);
89   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
90 
91   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
92   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
93 
94   setOperationAction(ISD::VASTART, MVT::Other, Custom);
95   setOperationAction(ISD::VAARG, MVT::Other, Expand);
96   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
97   setOperationAction(ISD::VAEND, MVT::Other, Expand);
98 
99   for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
100     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
101 
102   if (Subtarget.is64Bit()) {
103     setOperationAction(ISD::ADD, MVT::i32, Custom);
104     setOperationAction(ISD::SUB, MVT::i32, Custom);
105     setOperationAction(ISD::SHL, MVT::i32, Custom);
106     setOperationAction(ISD::SRA, MVT::i32, Custom);
107     setOperationAction(ISD::SRL, MVT::i32, Custom);
108   }
109 
110   if (!Subtarget.hasStdExtM()) {
111     setOperationAction(ISD::MUL, XLenVT, Expand);
112     setOperationAction(ISD::MULHS, XLenVT, Expand);
113     setOperationAction(ISD::MULHU, XLenVT, Expand);
114     setOperationAction(ISD::SDIV, XLenVT, Expand);
115     setOperationAction(ISD::UDIV, XLenVT, Expand);
116     setOperationAction(ISD::SREM, XLenVT, Expand);
117     setOperationAction(ISD::UREM, XLenVT, Expand);
118   }
119 
120   if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) {
121     setOperationAction(ISD::MUL, MVT::i32, Custom);
122     setOperationAction(ISD::SDIV, MVT::i32, Custom);
123     setOperationAction(ISD::UDIV, MVT::i32, Custom);
124     setOperationAction(ISD::UREM, MVT::i32, Custom);
125   }
126 
127   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
128   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
129   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
130   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
131 
132   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
133   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
134   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
135 
136   setOperationAction(ISD::ROTL, XLenVT, Expand);
137   setOperationAction(ISD::ROTR, XLenVT, Expand);
138   setOperationAction(ISD::BSWAP, XLenVT, Expand);
139   setOperationAction(ISD::CTTZ, XLenVT, Expand);
140   setOperationAction(ISD::CTLZ, XLenVT, Expand);
141   setOperationAction(ISD::CTPOP, XLenVT, Expand);
142 
143   ISD::CondCode FPCCToExtend[] = {
144       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
145       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
146       ISD::SETGE,  ISD::SETNE};
147 
148   ISD::NodeType FPOpToExtend[] = {
149       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
150       ISD::FP_TO_FP16};
151 
152   if (Subtarget.hasStdExtF()) {
153     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
154     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
155     for (auto CC : FPCCToExtend)
156       setCondCodeAction(CC, MVT::f32, Expand);
157     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
158     setOperationAction(ISD::SELECT, MVT::f32, Custom);
159     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
160     for (auto Op : FPOpToExtend)
161       setOperationAction(Op, MVT::f32, Expand);
162     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
163     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
164   }
165 
166   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
167     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
168 
169   if (Subtarget.hasStdExtD()) {
170     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
171     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
172     for (auto CC : FPCCToExtend)
173       setCondCodeAction(CC, MVT::f64, Expand);
174     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
175     setOperationAction(ISD::SELECT, MVT::f64, Custom);
176     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
177     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
178     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
179     for (auto Op : FPOpToExtend)
180       setOperationAction(Op, MVT::f64, Expand);
181     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
182     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
183   }
184 
185   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
186   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
187   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
188 
189   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
190 
191   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
192   // Unfortunately this can't be determined just from the ISA naming string.
193   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
194                      Subtarget.is64Bit() ? Legal : Custom);
195 
196   setOperationAction(ISD::TRAP, MVT::Other, Legal);
197   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
198 
199   if (Subtarget.hasStdExtA()) {
200     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
201     setMinCmpXchgSizeInBits(32);
202   } else {
203     setMaxAtomicSizeInBitsSupported(0);
204   }
205 
206   setBooleanContents(ZeroOrOneBooleanContent);
207 
208   // Function alignments.
209   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
210   setMinFunctionAlignment(FunctionAlignment);
211   setPrefFunctionAlignment(FunctionAlignment);
212 
213   // Effectively disable jump table generation.
214   setMinimumJumpTableEntries(INT_MAX);
215 }
216 
217 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
218                                             EVT VT) const {
219   if (!VT.isVector())
220     return getPointerTy(DL);
221   return VT.changeVectorElementTypeToInteger();
222 }
223 
224 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
225                                              const CallInst &I,
226                                              MachineFunction &MF,
227                                              unsigned Intrinsic) const {
228   switch (Intrinsic) {
229   default:
230     return false;
231   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
232   case Intrinsic::riscv_masked_atomicrmw_add_i32:
233   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
234   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
235   case Intrinsic::riscv_masked_atomicrmw_max_i32:
236   case Intrinsic::riscv_masked_atomicrmw_min_i32:
237   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
238   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
239   case Intrinsic::riscv_masked_cmpxchg_i32:
240     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
241     Info.opc = ISD::INTRINSIC_W_CHAIN;
242     Info.memVT = MVT::getVT(PtrTy->getElementType());
243     Info.ptrVal = I.getArgOperand(0);
244     Info.offset = 0;
245     Info.align = Align(4);
246     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
247                  MachineMemOperand::MOVolatile;
248     return true;
249   }
250 }
251 
252 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
253                                                 const AddrMode &AM, Type *Ty,
254                                                 unsigned AS,
255                                                 Instruction *I) const {
256   // No global is ever allowed as a base.
257   if (AM.BaseGV)
258     return false;
259 
260   // Require a 12-bit signed offset.
261   if (!isInt<12>(AM.BaseOffs))
262     return false;
263 
264   switch (AM.Scale) {
265   case 0: // "r+i" or just "i", depending on HasBaseReg.
266     break;
267   case 1:
268     if (!AM.HasBaseReg) // allow "r+i".
269       break;
270     return false; // disallow "r+r" or "r+r+i".
271   default:
272     return false;
273   }
274 
275   return true;
276 }
277 
278 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
279   return isInt<12>(Imm);
280 }
281 
282 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
283   return isInt<12>(Imm);
284 }
285 
286 // On RV32, 64-bit integers are split into their high and low parts and held
287 // in two different registers, so the trunc is free since the low register can
288 // just be used.
289 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
290   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
291     return false;
292   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
293   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
294   return (SrcBits == 64 && DestBits == 32);
295 }
296 
297 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
298   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
299       !SrcVT.isInteger() || !DstVT.isInteger())
300     return false;
301   unsigned SrcBits = SrcVT.getSizeInBits();
302   unsigned DestBits = DstVT.getSizeInBits();
303   return (SrcBits == 64 && DestBits == 32);
304 }
305 
306 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
307   // Zexts are free if they can be combined with a load.
308   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
309     EVT MemVT = LD->getMemoryVT();
310     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
311          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
312         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
313          LD->getExtensionType() == ISD::ZEXTLOAD))
314       return true;
315   }
316 
317   return TargetLowering::isZExtFree(Val, VT2);
318 }
319 
320 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
321   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
322 }
323 
324 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
325   return (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
326          (VT == MVT::f64 && Subtarget.hasStdExtD());
327 }
328 
329 // Changes the condition code and swaps operands if necessary, so the SetCC
330 // operation matches one of the comparisons supported directly in the RISC-V
331 // ISA.
332 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
333   switch (CC) {
334   default:
335     break;
336   case ISD::SETGT:
337   case ISD::SETLE:
338   case ISD::SETUGT:
339   case ISD::SETULE:
340     CC = ISD::getSetCCSwappedOperands(CC);
341     std::swap(LHS, RHS);
342     break;
343   }
344 }
345 
346 // Return the RISC-V branch opcode that matches the given DAG integer
347 // condition code. The CondCode must be one of those supported by the RISC-V
348 // ISA (see normaliseSetCC).
349 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
350   switch (CC) {
351   default:
352     llvm_unreachable("Unsupported CondCode");
353   case ISD::SETEQ:
354     return RISCV::BEQ;
355   case ISD::SETNE:
356     return RISCV::BNE;
357   case ISD::SETLT:
358     return RISCV::BLT;
359   case ISD::SETGE:
360     return RISCV::BGE;
361   case ISD::SETULT:
362     return RISCV::BLTU;
363   case ISD::SETUGE:
364     return RISCV::BGEU;
365   }
366 }
367 
368 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
369                                             SelectionDAG &DAG) const {
370   switch (Op.getOpcode()) {
371   default:
372     report_fatal_error("unimplemented operand");
373   case ISD::GlobalAddress:
374     return lowerGlobalAddress(Op, DAG);
375   case ISD::BlockAddress:
376     return lowerBlockAddress(Op, DAG);
377   case ISD::ConstantPool:
378     return lowerConstantPool(Op, DAG);
379   case ISD::GlobalTLSAddress:
380     return lowerGlobalTLSAddress(Op, DAG);
381   case ISD::SELECT:
382     return lowerSELECT(Op, DAG);
383   case ISD::VASTART:
384     return lowerVASTART(Op, DAG);
385   case ISD::FRAMEADDR:
386     return lowerFRAMEADDR(Op, DAG);
387   case ISD::RETURNADDR:
388     return lowerRETURNADDR(Op, DAG);
389   case ISD::SHL_PARTS:
390     return lowerShiftLeftParts(Op, DAG);
391   case ISD::SRA_PARTS:
392     return lowerShiftRightParts(Op, DAG, true);
393   case ISD::SRL_PARTS:
394     return lowerShiftRightParts(Op, DAG, false);
395   case ISD::BITCAST: {
396     assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() &&
397            "Unexpected custom legalisation");
398     SDLoc DL(Op);
399     SDValue Op0 = Op.getOperand(0);
400     if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32)
401       return SDValue();
402     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
403     SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
404     return FPConv;
405   }
406   }
407 }
408 
409 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
410                              SelectionDAG &DAG, unsigned Flags) {
411   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
412 }
413 
414 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
415                              SelectionDAG &DAG, unsigned Flags) {
416   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
417                                    Flags);
418 }
419 
420 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
421                              SelectionDAG &DAG, unsigned Flags) {
422   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
423                                    N->getOffset(), Flags);
424 }
425 
426 template <class NodeTy>
427 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
428                                      bool IsLocal) const {
429   SDLoc DL(N);
430   EVT Ty = getPointerTy(DAG.getDataLayout());
431 
432   if (isPositionIndependent()) {
433     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
434     if (IsLocal)
435       // Use PC-relative addressing to access the symbol. This generates the
436       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
437       // %pcrel_lo(auipc)).
438       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
439 
440     // Use PC-relative addressing to access the GOT for this symbol, then load
441     // the address from the GOT. This generates the pattern (PseudoLA sym),
442     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
443     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
444   }
445 
446   switch (getTargetMachine().getCodeModel()) {
447   default:
448     report_fatal_error("Unsupported code model for lowering");
449   case CodeModel::Small: {
450     // Generate a sequence for accessing addresses within the first 2 GiB of
451     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
452     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
453     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
454     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
455     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
456   }
457   case CodeModel::Medium: {
458     // Generate a sequence for accessing addresses within any 2GiB range within
459     // the address space. This generates the pattern (PseudoLLA sym), which
460     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
461     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
462     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
463   }
464   }
465 }
466 
467 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
468                                                 SelectionDAG &DAG) const {
469   SDLoc DL(Op);
470   EVT Ty = Op.getValueType();
471   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
472   int64_t Offset = N->getOffset();
473   MVT XLenVT = Subtarget.getXLenVT();
474 
475   const GlobalValue *GV = N->getGlobal();
476   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
477   SDValue Addr = getAddr(N, DAG, IsLocal);
478 
479   // In order to maximise the opportunity for common subexpression elimination,
480   // emit a separate ADD node for the global address offset instead of folding
481   // it in the global address node. Later peephole optimisations may choose to
482   // fold it back in when profitable.
483   if (Offset != 0)
484     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
485                        DAG.getConstant(Offset, DL, XLenVT));
486   return Addr;
487 }
488 
489 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
490                                                SelectionDAG &DAG) const {
491   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
492 
493   return getAddr(N, DAG);
494 }
495 
496 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
497                                                SelectionDAG &DAG) const {
498   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
499 
500   return getAddr(N, DAG);
501 }
502 
503 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
504                                               SelectionDAG &DAG,
505                                               bool UseGOT) const {
506   SDLoc DL(N);
507   EVT Ty = getPointerTy(DAG.getDataLayout());
508   const GlobalValue *GV = N->getGlobal();
509   MVT XLenVT = Subtarget.getXLenVT();
510 
511   if (UseGOT) {
512     // Use PC-relative addressing to access the GOT for this TLS symbol, then
513     // load the address from the GOT and add the thread pointer. This generates
514     // the pattern (PseudoLA_TLS_IE sym), which expands to
515     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
516     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
517     SDValue Load =
518         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
519 
520     // Add the thread pointer.
521     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
522     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
523   }
524 
525   // Generate a sequence for accessing the address relative to the thread
526   // pointer, with the appropriate adjustment for the thread pointer offset.
527   // This generates the pattern
528   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
529   SDValue AddrHi =
530       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
531   SDValue AddrAdd =
532       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
533   SDValue AddrLo =
534       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
535 
536   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
537   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
538   SDValue MNAdd = SDValue(
539       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
540       0);
541   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
542 }
543 
544 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
545                                                SelectionDAG &DAG) const {
546   SDLoc DL(N);
547   EVT Ty = getPointerTy(DAG.getDataLayout());
548   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
549   const GlobalValue *GV = N->getGlobal();
550 
551   // Use a PC-relative addressing mode to access the global dynamic GOT address.
552   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
553   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
554   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
555   SDValue Load =
556       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
557 
558   // Prepare argument list to generate call.
559   ArgListTy Args;
560   ArgListEntry Entry;
561   Entry.Node = Load;
562   Entry.Ty = CallTy;
563   Args.push_back(Entry);
564 
565   // Setup call to __tls_get_addr.
566   TargetLowering::CallLoweringInfo CLI(DAG);
567   CLI.setDebugLoc(DL)
568       .setChain(DAG.getEntryNode())
569       .setLibCallee(CallingConv::C, CallTy,
570                     DAG.getExternalSymbol("__tls_get_addr", Ty),
571                     std::move(Args));
572 
573   return LowerCallTo(CLI).first;
574 }
575 
576 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
577                                                    SelectionDAG &DAG) const {
578   SDLoc DL(Op);
579   EVT Ty = Op.getValueType();
580   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
581   int64_t Offset = N->getOffset();
582   MVT XLenVT = Subtarget.getXLenVT();
583 
584   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
585 
586   SDValue Addr;
587   switch (Model) {
588   case TLSModel::LocalExec:
589     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
590     break;
591   case TLSModel::InitialExec:
592     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
593     break;
594   case TLSModel::LocalDynamic:
595   case TLSModel::GeneralDynamic:
596     Addr = getDynamicTLSAddr(N, DAG);
597     break;
598   }
599 
600   // In order to maximise the opportunity for common subexpression elimination,
601   // emit a separate ADD node for the global address offset instead of folding
602   // it in the global address node. Later peephole optimisations may choose to
603   // fold it back in when profitable.
604   if (Offset != 0)
605     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
606                        DAG.getConstant(Offset, DL, XLenVT));
607   return Addr;
608 }
609 
610 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
611   SDValue CondV = Op.getOperand(0);
612   SDValue TrueV = Op.getOperand(1);
613   SDValue FalseV = Op.getOperand(2);
614   SDLoc DL(Op);
615   MVT XLenVT = Subtarget.getXLenVT();
616 
617   // If the result type is XLenVT and CondV is the output of a SETCC node
618   // which also operated on XLenVT inputs, then merge the SETCC node into the
619   // lowered RISCVISD::SELECT_CC to take advantage of the integer
620   // compare+branch instructions. i.e.:
621   // (select (setcc lhs, rhs, cc), truev, falsev)
622   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
623   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
624       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
625     SDValue LHS = CondV.getOperand(0);
626     SDValue RHS = CondV.getOperand(1);
627     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
628     ISD::CondCode CCVal = CC->get();
629 
630     normaliseSetCC(LHS, RHS, CCVal);
631 
632     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
633     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
634     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
635     return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
636   }
637 
638   // Otherwise:
639   // (select condv, truev, falsev)
640   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
641   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
642   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
643 
644   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
645   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
646 
647   return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
648 }
649 
650 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
651   MachineFunction &MF = DAG.getMachineFunction();
652   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
653 
654   SDLoc DL(Op);
655   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
656                                  getPointerTy(MF.getDataLayout()));
657 
658   // vastart just stores the address of the VarArgsFrameIndex slot into the
659   // memory location argument.
660   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
661   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
662                       MachinePointerInfo(SV));
663 }
664 
665 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
666                                             SelectionDAG &DAG) const {
667   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
668   MachineFunction &MF = DAG.getMachineFunction();
669   MachineFrameInfo &MFI = MF.getFrameInfo();
670   MFI.setFrameAddressIsTaken(true);
671   Register FrameReg = RI.getFrameRegister(MF);
672   int XLenInBytes = Subtarget.getXLen() / 8;
673 
674   EVT VT = Op.getValueType();
675   SDLoc DL(Op);
676   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
677   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
678   while (Depth--) {
679     int Offset = -(XLenInBytes * 2);
680     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
681                               DAG.getIntPtrConstant(Offset, DL));
682     FrameAddr =
683         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
684   }
685   return FrameAddr;
686 }
687 
688 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
689                                              SelectionDAG &DAG) const {
690   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
691   MachineFunction &MF = DAG.getMachineFunction();
692   MachineFrameInfo &MFI = MF.getFrameInfo();
693   MFI.setReturnAddressIsTaken(true);
694   MVT XLenVT = Subtarget.getXLenVT();
695   int XLenInBytes = Subtarget.getXLen() / 8;
696 
697   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
698     return SDValue();
699 
700   EVT VT = Op.getValueType();
701   SDLoc DL(Op);
702   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
703   if (Depth) {
704     int Off = -XLenInBytes;
705     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
706     SDValue Offset = DAG.getConstant(Off, DL, VT);
707     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
708                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
709                        MachinePointerInfo());
710   }
711 
712   // Return the value of the return address register, marking it an implicit
713   // live-in.
714   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
715   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
716 }
717 
718 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
719                                                  SelectionDAG &DAG) const {
720   SDLoc DL(Op);
721   SDValue Lo = Op.getOperand(0);
722   SDValue Hi = Op.getOperand(1);
723   SDValue Shamt = Op.getOperand(2);
724   EVT VT = Lo.getValueType();
725 
726   // if Shamt-XLEN < 0: // Shamt < XLEN
727   //   Lo = Lo << Shamt
728   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
729   // else:
730   //   Lo = 0
731   //   Hi = Lo << (Shamt-XLEN)
732 
733   SDValue Zero = DAG.getConstant(0, DL, VT);
734   SDValue One = DAG.getConstant(1, DL, VT);
735   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
736   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
737   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
738   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
739 
740   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
741   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
742   SDValue ShiftRightLo =
743       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
744   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
745   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
746   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
747 
748   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
749 
750   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
751   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
752 
753   SDValue Parts[2] = {Lo, Hi};
754   return DAG.getMergeValues(Parts, DL);
755 }
756 
757 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
758                                                   bool IsSRA) const {
759   SDLoc DL(Op);
760   SDValue Lo = Op.getOperand(0);
761   SDValue Hi = Op.getOperand(1);
762   SDValue Shamt = Op.getOperand(2);
763   EVT VT = Lo.getValueType();
764 
765   // SRA expansion:
766   //   if Shamt-XLEN < 0: // Shamt < XLEN
767   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
768   //     Hi = Hi >>s Shamt
769   //   else:
770   //     Lo = Hi >>s (Shamt-XLEN);
771   //     Hi = Hi >>s (XLEN-1)
772   //
773   // SRL expansion:
774   //   if Shamt-XLEN < 0: // Shamt < XLEN
775   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
776   //     Hi = Hi >>u Shamt
777   //   else:
778   //     Lo = Hi >>u (Shamt-XLEN);
779   //     Hi = 0;
780 
781   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
782 
783   SDValue Zero = DAG.getConstant(0, DL, VT);
784   SDValue One = DAG.getConstant(1, DL, VT);
785   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
786   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
787   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
788   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
789 
790   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
791   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
792   SDValue ShiftLeftHi =
793       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
794   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
795   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
796   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
797   SDValue HiFalse =
798       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
799 
800   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
801 
802   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
803   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
804 
805   SDValue Parts[2] = {Lo, Hi};
806   return DAG.getMergeValues(Parts, DL);
807 }
808 
809 // Returns the opcode of the target-specific SDNode that implements the 32-bit
810 // form of the given Opcode.
811 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
812   switch (Opcode) {
813   default:
814     llvm_unreachable("Unexpected opcode");
815   case ISD::SHL:
816     return RISCVISD::SLLW;
817   case ISD::SRA:
818     return RISCVISD::SRAW;
819   case ISD::SRL:
820     return RISCVISD::SRLW;
821   case ISD::SDIV:
822     return RISCVISD::DIVW;
823   case ISD::UDIV:
824     return RISCVISD::DIVUW;
825   case ISD::UREM:
826     return RISCVISD::REMUW;
827   }
828 }
829 
830 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
831 // Because i32 isn't a legal type for RV64, these operations would otherwise
832 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
833 // later one because the fact the operation was originally of type i32 is
834 // lost.
835 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) {
836   SDLoc DL(N);
837   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
838   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
839   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
840   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
841   // ReplaceNodeResults requires we maintain the same type for the return value.
842   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
843 }
844 
845 // Converts the given 32-bit operation to a i64 operation with signed extension
846 // semantic to reduce the signed extension instructions.
847 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
848   SDLoc DL(N);
849   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
850   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
851   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
852   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
853                                DAG.getValueType(MVT::i32));
854   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
855 }
856 
857 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
858                                              SmallVectorImpl<SDValue> &Results,
859                                              SelectionDAG &DAG) const {
860   SDLoc DL(N);
861   switch (N->getOpcode()) {
862   default:
863     llvm_unreachable("Don't know how to custom type legalize this operation!");
864   case ISD::READCYCLECOUNTER: {
865     assert(!Subtarget.is64Bit() &&
866            "READCYCLECOUNTER only has custom type legalization on riscv32");
867 
868     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
869     SDValue RCW =
870         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
871 
872     Results.push_back(RCW);
873     Results.push_back(RCW.getValue(1));
874     Results.push_back(RCW.getValue(2));
875     break;
876   }
877   case ISD::ADD:
878   case ISD::SUB:
879   case ISD::MUL:
880     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
881            "Unexpected custom legalisation");
882     if (N->getOperand(1).getOpcode() == ISD::Constant)
883       return;
884     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
885     break;
886   case ISD::SHL:
887   case ISD::SRA:
888   case ISD::SRL:
889     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
890            "Unexpected custom legalisation");
891     if (N->getOperand(1).getOpcode() == ISD::Constant)
892       return;
893     Results.push_back(customLegalizeToWOp(N, DAG));
894     break;
895   case ISD::SDIV:
896   case ISD::UDIV:
897   case ISD::UREM:
898     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
899            Subtarget.hasStdExtM() && "Unexpected custom legalisation");
900     if (N->getOperand(0).getOpcode() == ISD::Constant ||
901         N->getOperand(1).getOpcode() == ISD::Constant)
902       return;
903     Results.push_back(customLegalizeToWOp(N, DAG));
904     break;
905   case ISD::BITCAST: {
906     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
907            Subtarget.hasStdExtF() && "Unexpected custom legalisation");
908     SDLoc DL(N);
909     SDValue Op0 = N->getOperand(0);
910     if (Op0.getValueType() != MVT::f32)
911       return;
912     SDValue FPConv =
913         DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
914     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
915     break;
916   }
917   }
918 }
919 
920 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
921                                                DAGCombinerInfo &DCI) const {
922   SelectionDAG &DAG = DCI.DAG;
923 
924   switch (N->getOpcode()) {
925   default:
926     break;
927   case RISCVISD::SplitF64: {
928     SDValue Op0 = N->getOperand(0);
929     // If the input to SplitF64 is just BuildPairF64 then the operation is
930     // redundant. Instead, use BuildPairF64's operands directly.
931     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
932       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
933 
934     SDLoc DL(N);
935 
936     // It's cheaper to materialise two 32-bit integers than to load a double
937     // from the constant pool and transfer it to integer registers through the
938     // stack.
939     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
940       APInt V = C->getValueAPF().bitcastToAPInt();
941       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
942       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
943       return DCI.CombineTo(N, Lo, Hi);
944     }
945 
946     // This is a target-specific version of a DAGCombine performed in
947     // DAGCombiner::visitBITCAST. It performs the equivalent of:
948     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
949     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
950     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
951         !Op0.getNode()->hasOneUse())
952       break;
953     SDValue NewSplitF64 =
954         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
955                     Op0.getOperand(0));
956     SDValue Lo = NewSplitF64.getValue(0);
957     SDValue Hi = NewSplitF64.getValue(1);
958     APInt SignBit = APInt::getSignMask(32);
959     if (Op0.getOpcode() == ISD::FNEG) {
960       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
961                                   DAG.getConstant(SignBit, DL, MVT::i32));
962       return DCI.CombineTo(N, Lo, NewHi);
963     }
964     assert(Op0.getOpcode() == ISD::FABS);
965     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
966                                 DAG.getConstant(~SignBit, DL, MVT::i32));
967     return DCI.CombineTo(N, Lo, NewHi);
968   }
969   case RISCVISD::SLLW:
970   case RISCVISD::SRAW:
971   case RISCVISD::SRLW: {
972     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
973     SDValue LHS = N->getOperand(0);
974     SDValue RHS = N->getOperand(1);
975     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
976     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
977     if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) ||
978         (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)))
979       return SDValue();
980     break;
981   }
982   case RISCVISD::FMV_X_ANYEXTW_RV64: {
983     SDLoc DL(N);
984     SDValue Op0 = N->getOperand(0);
985     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
986     // conversion is unnecessary and can be replaced with an ANY_EXTEND
987     // of the FMV_W_X_RV64 operand.
988     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
989       SDValue AExtOp =
990           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0));
991       return DCI.CombineTo(N, AExtOp);
992     }
993 
994     // This is a target-specific version of a DAGCombine performed in
995     // DAGCombiner::visitBITCAST. It performs the equivalent of:
996     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
997     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
998     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
999         !Op0.getNode()->hasOneUse())
1000       break;
1001     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
1002                                  Op0.getOperand(0));
1003     APInt SignBit = APInt::getSignMask(32).sext(64);
1004     if (Op0.getOpcode() == ISD::FNEG) {
1005       return DCI.CombineTo(N,
1006                            DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
1007                                        DAG.getConstant(SignBit, DL, MVT::i64)));
1008     }
1009     assert(Op0.getOpcode() == ISD::FABS);
1010     return DCI.CombineTo(N,
1011                          DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
1012                                      DAG.getConstant(~SignBit, DL, MVT::i64)));
1013   }
1014   }
1015 
1016   return SDValue();
1017 }
1018 
1019 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
1020     const SDNode *N, CombineLevel Level) const {
1021   // The following folds are only desirable if `(OP _, c1 << c2)` can be
1022   // materialised in fewer instructions than `(OP _, c1)`:
1023   //
1024   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
1025   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
1026   SDValue N0 = N->getOperand(0);
1027   EVT Ty = N0.getValueType();
1028   if (Ty.isScalarInteger() &&
1029       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
1030     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
1031     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
1032     if (C1 && C2) {
1033       APInt C1Int = C1->getAPIntValue();
1034       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
1035 
1036       // We can materialise `c1 << c2` into an add immediate, so it's "free",
1037       // and the combine should happen, to potentially allow further combines
1038       // later.
1039       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
1040           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
1041         return true;
1042 
1043       // We can materialise `c1` in an add immediate, so it's "free", and the
1044       // combine should be prevented.
1045       if (C1Int.getMinSignedBits() <= 64 &&
1046           isLegalAddImmediate(C1Int.getSExtValue()))
1047         return false;
1048 
1049       // Neither constant will fit into an immediate, so find materialisation
1050       // costs.
1051       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
1052                                               Subtarget.is64Bit());
1053       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
1054           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
1055 
1056       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
1057       // combine should be prevented.
1058       if (C1Cost < ShiftedC1Cost)
1059         return false;
1060     }
1061   }
1062   return true;
1063 }
1064 
1065 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
1066     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
1067     unsigned Depth) const {
1068   switch (Op.getOpcode()) {
1069   default:
1070     break;
1071   case RISCVISD::SLLW:
1072   case RISCVISD::SRAW:
1073   case RISCVISD::SRLW:
1074   case RISCVISD::DIVW:
1075   case RISCVISD::DIVUW:
1076   case RISCVISD::REMUW:
1077     // TODO: As the result is sign-extended, this is conservatively correct. A
1078     // more precise answer could be calculated for SRAW depending on known
1079     // bits in the shift amount.
1080     return 33;
1081   }
1082 
1083   return 1;
1084 }
1085 
1086 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
1087                                                   MachineBasicBlock *BB) {
1088   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
1089 
1090   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
1091   // Should the count have wrapped while it was being read, we need to try
1092   // again.
1093   // ...
1094   // read:
1095   // rdcycleh x3 # load high word of cycle
1096   // rdcycle  x2 # load low word of cycle
1097   // rdcycleh x4 # load high word of cycle
1098   // bne x3, x4, read # check if high word reads match, otherwise try again
1099   // ...
1100 
1101   MachineFunction &MF = *BB->getParent();
1102   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1103   MachineFunction::iterator It = ++BB->getIterator();
1104 
1105   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1106   MF.insert(It, LoopMBB);
1107 
1108   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1109   MF.insert(It, DoneMBB);
1110 
1111   // Transfer the remainder of BB and its successor edges to DoneMBB.
1112   DoneMBB->splice(DoneMBB->begin(), BB,
1113                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1114   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
1115 
1116   BB->addSuccessor(LoopMBB);
1117 
1118   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1119   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1120   Register LoReg = MI.getOperand(0).getReg();
1121   Register HiReg = MI.getOperand(1).getReg();
1122   DebugLoc DL = MI.getDebugLoc();
1123 
1124   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1125   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
1126       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1127       .addReg(RISCV::X0);
1128   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
1129       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
1130       .addReg(RISCV::X0);
1131   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
1132       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1133       .addReg(RISCV::X0);
1134 
1135   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
1136       .addReg(HiReg)
1137       .addReg(ReadAgainReg)
1138       .addMBB(LoopMBB);
1139 
1140   LoopMBB->addSuccessor(LoopMBB);
1141   LoopMBB->addSuccessor(DoneMBB);
1142 
1143   MI.eraseFromParent();
1144 
1145   return DoneMBB;
1146 }
1147 
1148 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
1149                                              MachineBasicBlock *BB) {
1150   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
1151 
1152   MachineFunction &MF = *BB->getParent();
1153   DebugLoc DL = MI.getDebugLoc();
1154   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1155   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1156   Register LoReg = MI.getOperand(0).getReg();
1157   Register HiReg = MI.getOperand(1).getReg();
1158   Register SrcReg = MI.getOperand(2).getReg();
1159   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
1160   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
1161 
1162   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
1163                           RI);
1164   MachineMemOperand *MMO =
1165       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1166                               MachineMemOperand::MOLoad, 8, 8);
1167   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
1168       .addFrameIndex(FI)
1169       .addImm(0)
1170       .addMemOperand(MMO);
1171   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
1172       .addFrameIndex(FI)
1173       .addImm(4)
1174       .addMemOperand(MMO);
1175   MI.eraseFromParent(); // The pseudo instruction is gone now.
1176   return BB;
1177 }
1178 
1179 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
1180                                                  MachineBasicBlock *BB) {
1181   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
1182          "Unexpected instruction");
1183 
1184   MachineFunction &MF = *BB->getParent();
1185   DebugLoc DL = MI.getDebugLoc();
1186   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1187   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1188   Register DstReg = MI.getOperand(0).getReg();
1189   Register LoReg = MI.getOperand(1).getReg();
1190   Register HiReg = MI.getOperand(2).getReg();
1191   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
1192   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
1193 
1194   MachineMemOperand *MMO =
1195       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1196                               MachineMemOperand::MOStore, 8, 8);
1197   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1198       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
1199       .addFrameIndex(FI)
1200       .addImm(0)
1201       .addMemOperand(MMO);
1202   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1203       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
1204       .addFrameIndex(FI)
1205       .addImm(4)
1206       .addMemOperand(MMO);
1207   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
1208   MI.eraseFromParent(); // The pseudo instruction is gone now.
1209   return BB;
1210 }
1211 
1212 static bool isSelectPseudo(MachineInstr &MI) {
1213   switch (MI.getOpcode()) {
1214   default:
1215     return false;
1216   case RISCV::Select_GPR_Using_CC_GPR:
1217   case RISCV::Select_FPR32_Using_CC_GPR:
1218   case RISCV::Select_FPR64_Using_CC_GPR:
1219     return true;
1220   }
1221 }
1222 
1223 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
1224                                            MachineBasicBlock *BB) {
1225   // To "insert" Select_* instructions, we actually have to insert the triangle
1226   // control-flow pattern.  The incoming instructions know the destination vreg
1227   // to set, the condition code register to branch on, the true/false values to
1228   // select between, and the condcode to use to select the appropriate branch.
1229   //
1230   // We produce the following control flow:
1231   //     HeadMBB
1232   //     |  \
1233   //     |  IfFalseMBB
1234   //     | /
1235   //    TailMBB
1236   //
1237   // When we find a sequence of selects we attempt to optimize their emission
1238   // by sharing the control flow. Currently we only handle cases where we have
1239   // multiple selects with the exact same condition (same LHS, RHS and CC).
1240   // The selects may be interleaved with other instructions if the other
1241   // instructions meet some requirements we deem safe:
1242   // - They are debug instructions. Otherwise,
1243   // - They do not have side-effects, do not access memory and their inputs do
1244   //   not depend on the results of the select pseudo-instructions.
1245   // The TrueV/FalseV operands of the selects cannot depend on the result of
1246   // previous selects in the sequence.
1247   // These conditions could be further relaxed. See the X86 target for a
1248   // related approach and more information.
1249   Register LHS = MI.getOperand(1).getReg();
1250   Register RHS = MI.getOperand(2).getReg();
1251   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
1252 
1253   SmallVector<MachineInstr *, 4> SelectDebugValues;
1254   SmallSet<Register, 4> SelectDests;
1255   SelectDests.insert(MI.getOperand(0).getReg());
1256 
1257   MachineInstr *LastSelectPseudo = &MI;
1258 
1259   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
1260        SequenceMBBI != E; ++SequenceMBBI) {
1261     if (SequenceMBBI->isDebugInstr())
1262       continue;
1263     else if (isSelectPseudo(*SequenceMBBI)) {
1264       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
1265           SequenceMBBI->getOperand(2).getReg() != RHS ||
1266           SequenceMBBI->getOperand(3).getImm() != CC ||
1267           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
1268           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
1269         break;
1270       LastSelectPseudo = &*SequenceMBBI;
1271       SequenceMBBI->collectDebugValues(SelectDebugValues);
1272       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
1273     } else {
1274       if (SequenceMBBI->hasUnmodeledSideEffects() ||
1275           SequenceMBBI->mayLoadOrStore())
1276         break;
1277       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
1278             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
1279           }))
1280         break;
1281     }
1282   }
1283 
1284   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1285   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1286   DebugLoc DL = MI.getDebugLoc();
1287   MachineFunction::iterator I = ++BB->getIterator();
1288 
1289   MachineBasicBlock *HeadMBB = BB;
1290   MachineFunction *F = BB->getParent();
1291   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
1292   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
1293 
1294   F->insert(I, IfFalseMBB);
1295   F->insert(I, TailMBB);
1296 
1297   // Transfer debug instructions associated with the selects to TailMBB.
1298   for (MachineInstr *DebugInstr : SelectDebugValues) {
1299     TailMBB->push_back(DebugInstr->removeFromParent());
1300   }
1301 
1302   // Move all instructions after the sequence to TailMBB.
1303   TailMBB->splice(TailMBB->end(), HeadMBB,
1304                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
1305   // Update machine-CFG edges by transferring all successors of the current
1306   // block to the new block which will contain the Phi nodes for the selects.
1307   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
1308   // Set the successors for HeadMBB.
1309   HeadMBB->addSuccessor(IfFalseMBB);
1310   HeadMBB->addSuccessor(TailMBB);
1311 
1312   // Insert appropriate branch.
1313   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
1314 
1315   BuildMI(HeadMBB, DL, TII.get(Opcode))
1316     .addReg(LHS)
1317     .addReg(RHS)
1318     .addMBB(TailMBB);
1319 
1320   // IfFalseMBB just falls through to TailMBB.
1321   IfFalseMBB->addSuccessor(TailMBB);
1322 
1323   // Create PHIs for all of the select pseudo-instructions.
1324   auto SelectMBBI = MI.getIterator();
1325   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
1326   auto InsertionPoint = TailMBB->begin();
1327   while (SelectMBBI != SelectEnd) {
1328     auto Next = std::next(SelectMBBI);
1329     if (isSelectPseudo(*SelectMBBI)) {
1330       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
1331       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
1332               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
1333           .addReg(SelectMBBI->getOperand(4).getReg())
1334           .addMBB(HeadMBB)
1335           .addReg(SelectMBBI->getOperand(5).getReg())
1336           .addMBB(IfFalseMBB);
1337       SelectMBBI->eraseFromParent();
1338     }
1339     SelectMBBI = Next;
1340   }
1341 
1342   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
1343   return TailMBB;
1344 }
1345 
1346 MachineBasicBlock *
1347 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1348                                                  MachineBasicBlock *BB) const {
1349   switch (MI.getOpcode()) {
1350   default:
1351     llvm_unreachable("Unexpected instr type to insert");
1352   case RISCV::ReadCycleWide:
1353     assert(!Subtarget.is64Bit() &&
1354            "ReadCycleWrite is only to be used on riscv32");
1355     return emitReadCycleWidePseudo(MI, BB);
1356   case RISCV::Select_GPR_Using_CC_GPR:
1357   case RISCV::Select_FPR32_Using_CC_GPR:
1358   case RISCV::Select_FPR64_Using_CC_GPR:
1359     return emitSelectPseudo(MI, BB);
1360   case RISCV::BuildPairF64Pseudo:
1361     return emitBuildPairF64Pseudo(MI, BB);
1362   case RISCV::SplitF64Pseudo:
1363     return emitSplitF64Pseudo(MI, BB);
1364   }
1365 }
1366 
1367 // Calling Convention Implementation.
1368 // The expectations for frontend ABI lowering vary from target to target.
1369 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
1370 // details, but this is a longer term goal. For now, we simply try to keep the
1371 // role of the frontend as simple and well-defined as possible. The rules can
1372 // be summarised as:
1373 // * Never split up large scalar arguments. We handle them here.
1374 // * If a hardfloat calling convention is being used, and the struct may be
1375 // passed in a pair of registers (fp+fp, int+fp), and both registers are
1376 // available, then pass as two separate arguments. If either the GPRs or FPRs
1377 // are exhausted, then pass according to the rule below.
1378 // * If a struct could never be passed in registers or directly in a stack
1379 // slot (as it is larger than 2*XLEN and the floating point rules don't
1380 // apply), then pass it using a pointer with the byval attribute.
1381 // * If a struct is less than 2*XLEN, then coerce to either a two-element
1382 // word-sized array or a 2*XLEN scalar (depending on alignment).
1383 // * The frontend can determine whether a struct is returned by reference or
1384 // not based on its size and fields. If it will be returned by reference, the
1385 // frontend must modify the prototype so a pointer with the sret annotation is
1386 // passed as the first argument. This is not necessary for large scalar
1387 // returns.
1388 // * Struct return values and varargs should be coerced to structs containing
1389 // register-size fields in the same situations they would be for fixed
1390 // arguments.
1391 
1392 static const MCPhysReg ArgGPRs[] = {
1393   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
1394   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
1395 };
1396 static const MCPhysReg ArgFPR32s[] = {
1397   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
1398   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
1399 };
1400 static const MCPhysReg ArgFPR64s[] = {
1401   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
1402   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
1403 };
1404 
1405 // Pass a 2*XLEN argument that has been split into two XLEN values through
1406 // registers or the stack as necessary.
1407 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
1408                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
1409                                 MVT ValVT2, MVT LocVT2,
1410                                 ISD::ArgFlagsTy ArgFlags2) {
1411   unsigned XLenInBytes = XLen / 8;
1412   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1413     // At least one half can be passed via register.
1414     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
1415                                      VA1.getLocVT(), CCValAssign::Full));
1416   } else {
1417     // Both halves must be passed on the stack, with proper alignment.
1418     unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign());
1419     State.addLoc(
1420         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
1421                             State.AllocateStack(XLenInBytes, StackAlign),
1422                             VA1.getLocVT(), CCValAssign::Full));
1423     State.addLoc(CCValAssign::getMem(
1424         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
1425         CCValAssign::Full));
1426     return false;
1427   }
1428 
1429   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1430     // The second half can also be passed via register.
1431     State.addLoc(
1432         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
1433   } else {
1434     // The second half is passed via the stack, without additional alignment.
1435     State.addLoc(CCValAssign::getMem(
1436         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
1437         CCValAssign::Full));
1438   }
1439 
1440   return false;
1441 }
1442 
1443 // Implements the RISC-V calling convention. Returns true upon failure.
1444 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
1445                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
1446                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
1447                      bool IsRet, Type *OrigTy) {
1448   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
1449   assert(XLen == 32 || XLen == 64);
1450   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
1451 
1452   // Any return value split in to more than two values can't be returned
1453   // directly.
1454   if (IsRet && ValNo > 1)
1455     return true;
1456 
1457   // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a
1458   // variadic argument, or if no F32 argument registers are available.
1459   bool UseGPRForF32 = true;
1460   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
1461   // variadic argument, or if no F64 argument registers are available.
1462   bool UseGPRForF64 = true;
1463 
1464   switch (ABI) {
1465   default:
1466     llvm_unreachable("Unexpected ABI");
1467   case RISCVABI::ABI_ILP32:
1468   case RISCVABI::ABI_LP64:
1469     break;
1470   case RISCVABI::ABI_ILP32F:
1471   case RISCVABI::ABI_LP64F:
1472     UseGPRForF32 = !IsFixed;
1473     break;
1474   case RISCVABI::ABI_ILP32D:
1475   case RISCVABI::ABI_LP64D:
1476     UseGPRForF32 = !IsFixed;
1477     UseGPRForF64 = !IsFixed;
1478     break;
1479   }
1480 
1481   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s))
1482     UseGPRForF32 = true;
1483   if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s))
1484     UseGPRForF64 = true;
1485 
1486   // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local
1487   // variables rather than directly checking against the target ABI.
1488 
1489   if (UseGPRForF32 && ValVT == MVT::f32) {
1490     LocVT = XLenVT;
1491     LocInfo = CCValAssign::BCvt;
1492   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
1493     LocVT = MVT::i64;
1494     LocInfo = CCValAssign::BCvt;
1495   }
1496 
1497   // If this is a variadic argument, the RISC-V calling convention requires
1498   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
1499   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
1500   // be used regardless of whether the original argument was split during
1501   // legalisation or not. The argument will not be passed by registers if the
1502   // original type is larger than 2*XLEN, so the register alignment rule does
1503   // not apply.
1504   unsigned TwoXLenInBytes = (2 * XLen) / 8;
1505   if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes &&
1506       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
1507     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
1508     // Skip 'odd' register if necessary.
1509     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
1510       State.AllocateReg(ArgGPRs);
1511   }
1512 
1513   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
1514   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
1515       State.getPendingArgFlags();
1516 
1517   assert(PendingLocs.size() == PendingArgFlags.size() &&
1518          "PendingLocs and PendingArgFlags out of sync");
1519 
1520   // Handle passing f64 on RV32D with a soft float ABI or when floating point
1521   // registers are exhausted.
1522   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
1523     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
1524            "Can't lower f64 if it is split");
1525     // Depending on available argument GPRS, f64 may be passed in a pair of
1526     // GPRs, split between a GPR and the stack, or passed completely on the
1527     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
1528     // cases.
1529     Register Reg = State.AllocateReg(ArgGPRs);
1530     LocVT = MVT::i32;
1531     if (!Reg) {
1532       unsigned StackOffset = State.AllocateStack(8, 8);
1533       State.addLoc(
1534           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1535       return false;
1536     }
1537     if (!State.AllocateReg(ArgGPRs))
1538       State.AllocateStack(4, 4);
1539     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1540     return false;
1541   }
1542 
1543   // Split arguments might be passed indirectly, so keep track of the pending
1544   // values.
1545   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
1546     LocVT = XLenVT;
1547     LocInfo = CCValAssign::Indirect;
1548     PendingLocs.push_back(
1549         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
1550     PendingArgFlags.push_back(ArgFlags);
1551     if (!ArgFlags.isSplitEnd()) {
1552       return false;
1553     }
1554   }
1555 
1556   // If the split argument only had two elements, it should be passed directly
1557   // in registers or on the stack.
1558   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
1559     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
1560     // Apply the normal calling convention rules to the first half of the
1561     // split argument.
1562     CCValAssign VA = PendingLocs[0];
1563     ISD::ArgFlagsTy AF = PendingArgFlags[0];
1564     PendingLocs.clear();
1565     PendingArgFlags.clear();
1566     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
1567                                ArgFlags);
1568   }
1569 
1570   // Allocate to a register if possible, or else a stack slot.
1571   Register Reg;
1572   if (ValVT == MVT::f32 && !UseGPRForF32)
1573     Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s);
1574   else if (ValVT == MVT::f64 && !UseGPRForF64)
1575     Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s);
1576   else
1577     Reg = State.AllocateReg(ArgGPRs);
1578   unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8);
1579 
1580   // If we reach this point and PendingLocs is non-empty, we must be at the
1581   // end of a split argument that must be passed indirectly.
1582   if (!PendingLocs.empty()) {
1583     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
1584     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
1585 
1586     for (auto &It : PendingLocs) {
1587       if (Reg)
1588         It.convertToReg(Reg);
1589       else
1590         It.convertToMem(StackOffset);
1591       State.addLoc(It);
1592     }
1593     PendingLocs.clear();
1594     PendingArgFlags.clear();
1595     return false;
1596   }
1597 
1598   assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) &&
1599          "Expected an XLenVT at this stage");
1600 
1601   if (Reg) {
1602     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1603     return false;
1604   }
1605 
1606   // When an f32 or f64 is passed on the stack, no bit-conversion is needed.
1607   if (ValVT == MVT::f32 || ValVT == MVT::f64) {
1608     LocVT = ValVT;
1609     LocInfo = CCValAssign::Full;
1610   }
1611   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1612   return false;
1613 }
1614 
1615 void RISCVTargetLowering::analyzeInputArgs(
1616     MachineFunction &MF, CCState &CCInfo,
1617     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
1618   unsigned NumArgs = Ins.size();
1619   FunctionType *FType = MF.getFunction().getFunctionType();
1620 
1621   for (unsigned i = 0; i != NumArgs; ++i) {
1622     MVT ArgVT = Ins[i].VT;
1623     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
1624 
1625     Type *ArgTy = nullptr;
1626     if (IsRet)
1627       ArgTy = FType->getReturnType();
1628     else if (Ins[i].isOrigArg())
1629       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
1630 
1631     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1632     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1633                  ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) {
1634       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
1635                         << EVT(ArgVT).getEVTString() << '\n');
1636       llvm_unreachable(nullptr);
1637     }
1638   }
1639 }
1640 
1641 void RISCVTargetLowering::analyzeOutputArgs(
1642     MachineFunction &MF, CCState &CCInfo,
1643     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
1644     CallLoweringInfo *CLI) const {
1645   unsigned NumArgs = Outs.size();
1646 
1647   for (unsigned i = 0; i != NumArgs; i++) {
1648     MVT ArgVT = Outs[i].VT;
1649     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
1650     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
1651 
1652     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1653     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1654                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
1655       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
1656                         << EVT(ArgVT).getEVTString() << "\n");
1657       llvm_unreachable(nullptr);
1658     }
1659   }
1660 }
1661 
1662 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
1663 // values.
1664 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
1665                                    const CCValAssign &VA, const SDLoc &DL) {
1666   switch (VA.getLocInfo()) {
1667   default:
1668     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1669   case CCValAssign::Full:
1670     break;
1671   case CCValAssign::BCvt:
1672     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1673       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
1674       break;
1675     }
1676     Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
1677     break;
1678   }
1679   return Val;
1680 }
1681 
1682 // The caller is responsible for loading the full value if the argument is
1683 // passed with CCValAssign::Indirect.
1684 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
1685                                 const CCValAssign &VA, const SDLoc &DL) {
1686   MachineFunction &MF = DAG.getMachineFunction();
1687   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1688   EVT LocVT = VA.getLocVT();
1689   SDValue Val;
1690   const TargetRegisterClass *RC;
1691 
1692   switch (LocVT.getSimpleVT().SimpleTy) {
1693   default:
1694     llvm_unreachable("Unexpected register type");
1695   case MVT::i32:
1696   case MVT::i64:
1697     RC = &RISCV::GPRRegClass;
1698     break;
1699   case MVT::f32:
1700     RC = &RISCV::FPR32RegClass;
1701     break;
1702   case MVT::f64:
1703     RC = &RISCV::FPR64RegClass;
1704     break;
1705   }
1706 
1707   Register VReg = RegInfo.createVirtualRegister(RC);
1708   RegInfo.addLiveIn(VA.getLocReg(), VReg);
1709   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1710 
1711   if (VA.getLocInfo() == CCValAssign::Indirect)
1712     return Val;
1713 
1714   return convertLocVTToValVT(DAG, Val, VA, DL);
1715 }
1716 
1717 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
1718                                    const CCValAssign &VA, const SDLoc &DL) {
1719   EVT LocVT = VA.getLocVT();
1720 
1721   switch (VA.getLocInfo()) {
1722   default:
1723     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1724   case CCValAssign::Full:
1725     break;
1726   case CCValAssign::BCvt:
1727     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1728       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
1729       break;
1730     }
1731     Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
1732     break;
1733   }
1734   return Val;
1735 }
1736 
1737 // The caller is responsible for loading the full value if the argument is
1738 // passed with CCValAssign::Indirect.
1739 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
1740                                 const CCValAssign &VA, const SDLoc &DL) {
1741   MachineFunction &MF = DAG.getMachineFunction();
1742   MachineFrameInfo &MFI = MF.getFrameInfo();
1743   EVT LocVT = VA.getLocVT();
1744   EVT ValVT = VA.getValVT();
1745   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
1746   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
1747                                  VA.getLocMemOffset(), /*Immutable=*/true);
1748   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1749   SDValue Val;
1750 
1751   ISD::LoadExtType ExtType;
1752   switch (VA.getLocInfo()) {
1753   default:
1754     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1755   case CCValAssign::Full:
1756   case CCValAssign::Indirect:
1757   case CCValAssign::BCvt:
1758     ExtType = ISD::NON_EXTLOAD;
1759     break;
1760   }
1761   Val = DAG.getExtLoad(
1762       ExtType, DL, LocVT, Chain, FIN,
1763       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
1764   return Val;
1765 }
1766 
1767 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
1768                                        const CCValAssign &VA, const SDLoc &DL) {
1769   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
1770          "Unexpected VA");
1771   MachineFunction &MF = DAG.getMachineFunction();
1772   MachineFrameInfo &MFI = MF.getFrameInfo();
1773   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1774 
1775   if (VA.isMemLoc()) {
1776     // f64 is passed on the stack.
1777     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
1778     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1779     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
1780                        MachinePointerInfo::getFixedStack(MF, FI));
1781   }
1782 
1783   assert(VA.isRegLoc() && "Expected register VA assignment");
1784 
1785   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1786   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
1787   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
1788   SDValue Hi;
1789   if (VA.getLocReg() == RISCV::X17) {
1790     // Second half of f64 is passed on the stack.
1791     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
1792     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1793     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
1794                      MachinePointerInfo::getFixedStack(MF, FI));
1795   } else {
1796     // Second half of f64 is passed in another GPR.
1797     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1798     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
1799     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
1800   }
1801   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1802 }
1803 
1804 // FastCC has less than 1% performance improvement for some particular
1805 // benchmark. But theoretically, it may has benenfit for some cases.
1806 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
1807                             CCValAssign::LocInfo LocInfo,
1808                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
1809 
1810   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
1811     // X5 and X6 might be used for save-restore libcall.
1812     static const MCPhysReg GPRList[] = {
1813         RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
1814         RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
1815         RISCV::X29, RISCV::X30, RISCV::X31};
1816     if (unsigned Reg = State.AllocateReg(GPRList)) {
1817       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1818       return false;
1819     }
1820   }
1821 
1822   if (LocVT == MVT::f32) {
1823     static const MCPhysReg FPR32List[] = {
1824         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
1825         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
1826         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
1827         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
1828     if (unsigned Reg = State.AllocateReg(FPR32List)) {
1829       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1830       return false;
1831     }
1832   }
1833 
1834   if (LocVT == MVT::f64) {
1835     static const MCPhysReg FPR64List[] = {
1836         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
1837         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
1838         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
1839         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
1840     if (unsigned Reg = State.AllocateReg(FPR64List)) {
1841       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1842       return false;
1843     }
1844   }
1845 
1846   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
1847     unsigned Offset4 = State.AllocateStack(4, 4);
1848     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
1849     return false;
1850   }
1851 
1852   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
1853     unsigned Offset5 = State.AllocateStack(8, 8);
1854     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
1855     return false;
1856   }
1857 
1858   return true; // CC didn't match.
1859 }
1860 
1861 // Transform physical registers into virtual registers.
1862 SDValue RISCVTargetLowering::LowerFormalArguments(
1863     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1864     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1865     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1866 
1867   switch (CallConv) {
1868   default:
1869     report_fatal_error("Unsupported calling convention");
1870   case CallingConv::C:
1871   case CallingConv::Fast:
1872     break;
1873   }
1874 
1875   MachineFunction &MF = DAG.getMachineFunction();
1876 
1877   const Function &Func = MF.getFunction();
1878   if (Func.hasFnAttribute("interrupt")) {
1879     if (!Func.arg_empty())
1880       report_fatal_error(
1881         "Functions with the interrupt attribute cannot have arguments!");
1882 
1883     StringRef Kind =
1884       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
1885 
1886     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
1887       report_fatal_error(
1888         "Function interrupt attribute argument not supported!");
1889   }
1890 
1891   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1892   MVT XLenVT = Subtarget.getXLenVT();
1893   unsigned XLenInBytes = Subtarget.getXLen() / 8;
1894   // Used with vargs to acumulate store chains.
1895   std::vector<SDValue> OutChains;
1896 
1897   // Assign locations to all of the incoming arguments.
1898   SmallVector<CCValAssign, 16> ArgLocs;
1899   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1900 
1901   if (CallConv == CallingConv::Fast)
1902     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
1903   else
1904     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
1905 
1906   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1907     CCValAssign &VA = ArgLocs[i];
1908     SDValue ArgValue;
1909     // Passing f64 on RV32D with a soft float ABI must be handled as a special
1910     // case.
1911     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
1912       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
1913     else if (VA.isRegLoc())
1914       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
1915     else
1916       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
1917 
1918     if (VA.getLocInfo() == CCValAssign::Indirect) {
1919       // If the original argument was split and passed by reference (e.g. i128
1920       // on RV32), we need to load all parts of it here (using the same
1921       // address).
1922       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1923                                    MachinePointerInfo()));
1924       unsigned ArgIndex = Ins[i].OrigArgIndex;
1925       assert(Ins[i].PartOffset == 0);
1926       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
1927         CCValAssign &PartVA = ArgLocs[i + 1];
1928         unsigned PartOffset = Ins[i + 1].PartOffset;
1929         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1930                                       DAG.getIntPtrConstant(PartOffset, DL));
1931         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1932                                      MachinePointerInfo()));
1933         ++i;
1934       }
1935       continue;
1936     }
1937     InVals.push_back(ArgValue);
1938   }
1939 
1940   if (IsVarArg) {
1941     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
1942     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
1943     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
1944     MachineFrameInfo &MFI = MF.getFrameInfo();
1945     MachineRegisterInfo &RegInfo = MF.getRegInfo();
1946     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
1947 
1948     // Offset of the first variable argument from stack pointer, and size of
1949     // the vararg save area. For now, the varargs save area is either zero or
1950     // large enough to hold a0-a7.
1951     int VaArgOffset, VarArgsSaveSize;
1952 
1953     // If all registers are allocated, then all varargs must be passed on the
1954     // stack and we don't need to save any argregs.
1955     if (ArgRegs.size() == Idx) {
1956       VaArgOffset = CCInfo.getNextStackOffset();
1957       VarArgsSaveSize = 0;
1958     } else {
1959       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
1960       VaArgOffset = -VarArgsSaveSize;
1961     }
1962 
1963     // Record the frame index of the first variable argument
1964     // which is a value necessary to VASTART.
1965     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
1966     RVFI->setVarArgsFrameIndex(FI);
1967 
1968     // If saving an odd number of registers then create an extra stack slot to
1969     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
1970     // offsets to even-numbered registered remain 2*XLEN-aligned.
1971     if (Idx % 2) {
1972       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
1973       VarArgsSaveSize += XLenInBytes;
1974     }
1975 
1976     // Copy the integer registers that may have been used for passing varargs
1977     // to the vararg save area.
1978     for (unsigned I = Idx; I < ArgRegs.size();
1979          ++I, VaArgOffset += XLenInBytes) {
1980       const Register Reg = RegInfo.createVirtualRegister(RC);
1981       RegInfo.addLiveIn(ArgRegs[I], Reg);
1982       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
1983       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
1984       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1985       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
1986                                    MachinePointerInfo::getFixedStack(MF, FI));
1987       cast<StoreSDNode>(Store.getNode())
1988           ->getMemOperand()
1989           ->setValue((Value *)nullptr);
1990       OutChains.push_back(Store);
1991     }
1992     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
1993   }
1994 
1995   // All stores are grouped in one node to allow the matching between
1996   // the size of Ins and InVals. This only happens for vararg functions.
1997   if (!OutChains.empty()) {
1998     OutChains.push_back(Chain);
1999     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
2000   }
2001 
2002   return Chain;
2003 }
2004 
2005 /// isEligibleForTailCallOptimization - Check whether the call is eligible
2006 /// for tail call optimization.
2007 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
2008 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
2009     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
2010     const SmallVector<CCValAssign, 16> &ArgLocs) const {
2011 
2012   auto &Callee = CLI.Callee;
2013   auto CalleeCC = CLI.CallConv;
2014   auto &Outs = CLI.Outs;
2015   auto &Caller = MF.getFunction();
2016   auto CallerCC = Caller.getCallingConv();
2017 
2018   // Do not tail call opt functions with "disable-tail-calls" attribute.
2019   if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
2020     return false;
2021 
2022   // Exception-handling functions need a special set of instructions to
2023   // indicate a return to the hardware. Tail-calling another function would
2024   // probably break this.
2025   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
2026   // should be expanded as new function attributes are introduced.
2027   if (Caller.hasFnAttribute("interrupt"))
2028     return false;
2029 
2030   // Do not tail call opt if the stack is used to pass parameters.
2031   if (CCInfo.getNextStackOffset() != 0)
2032     return false;
2033 
2034   // Do not tail call opt if any parameters need to be passed indirectly.
2035   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
2036   // passed indirectly. So the address of the value will be passed in a
2037   // register, or if not available, then the address is put on the stack. In
2038   // order to pass indirectly, space on the stack often needs to be allocated
2039   // in order to store the value. In this case the CCInfo.getNextStackOffset()
2040   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
2041   // are passed CCValAssign::Indirect.
2042   for (auto &VA : ArgLocs)
2043     if (VA.getLocInfo() == CCValAssign::Indirect)
2044       return false;
2045 
2046   // Do not tail call opt if either caller or callee uses struct return
2047   // semantics.
2048   auto IsCallerStructRet = Caller.hasStructRetAttr();
2049   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
2050   if (IsCallerStructRet || IsCalleeStructRet)
2051     return false;
2052 
2053   // Externally-defined functions with weak linkage should not be
2054   // tail-called. The behaviour of branch instructions in this situation (as
2055   // used for tail calls) is implementation-defined, so we cannot rely on the
2056   // linker replacing the tail call with a return.
2057   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2058     const GlobalValue *GV = G->getGlobal();
2059     if (GV->hasExternalWeakLinkage())
2060       return false;
2061   }
2062 
2063   // The callee has to preserve all registers the caller needs to preserve.
2064   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
2065   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2066   if (CalleeCC != CallerCC) {
2067     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2068     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2069       return false;
2070   }
2071 
2072   // Byval parameters hand the function a pointer directly into the stack area
2073   // we want to reuse during a tail call. Working around this *is* possible
2074   // but less efficient and uglier in LowerCall.
2075   for (auto &Arg : Outs)
2076     if (Arg.Flags.isByVal())
2077       return false;
2078 
2079   return true;
2080 }
2081 
2082 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
2083 // and output parameter nodes.
2084 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
2085                                        SmallVectorImpl<SDValue> &InVals) const {
2086   SelectionDAG &DAG = CLI.DAG;
2087   SDLoc &DL = CLI.DL;
2088   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2089   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2090   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2091   SDValue Chain = CLI.Chain;
2092   SDValue Callee = CLI.Callee;
2093   bool &IsTailCall = CLI.IsTailCall;
2094   CallingConv::ID CallConv = CLI.CallConv;
2095   bool IsVarArg = CLI.IsVarArg;
2096   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2097   MVT XLenVT = Subtarget.getXLenVT();
2098 
2099   MachineFunction &MF = DAG.getMachineFunction();
2100 
2101   // Analyze the operands of the call, assigning locations to each operand.
2102   SmallVector<CCValAssign, 16> ArgLocs;
2103   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2104 
2105   if (CallConv == CallingConv::Fast)
2106     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
2107   else
2108     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
2109 
2110   // Check if it's really possible to do a tail call.
2111   if (IsTailCall)
2112     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
2113 
2114   if (IsTailCall)
2115     ++NumTailCalls;
2116   else if (CLI.CS && CLI.CS.isMustTailCall())
2117     report_fatal_error("failed to perform tail call elimination on a call "
2118                        "site marked musttail");
2119 
2120   // Get a count of how many bytes are to be pushed on the stack.
2121   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
2122 
2123   // Create local copies for byval args
2124   SmallVector<SDValue, 8> ByValArgs;
2125   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2126     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2127     if (!Flags.isByVal())
2128       continue;
2129 
2130     SDValue Arg = OutVals[i];
2131     unsigned Size = Flags.getByValSize();
2132     unsigned Align = Flags.getByValAlign();
2133 
2134     int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false);
2135     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2136     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
2137 
2138     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
2139                           /*IsVolatile=*/false,
2140                           /*AlwaysInline=*/false,
2141                           IsTailCall, MachinePointerInfo(),
2142                           MachinePointerInfo());
2143     ByValArgs.push_back(FIPtr);
2144   }
2145 
2146   if (!IsTailCall)
2147     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
2148 
2149   // Copy argument values to their designated locations.
2150   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
2151   SmallVector<SDValue, 8> MemOpChains;
2152   SDValue StackPtr;
2153   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
2154     CCValAssign &VA = ArgLocs[i];
2155     SDValue ArgValue = OutVals[i];
2156     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2157 
2158     // Handle passing f64 on RV32D with a soft float ABI as a special case.
2159     bool IsF64OnRV32DSoftABI =
2160         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
2161     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
2162       SDValue SplitF64 = DAG.getNode(
2163           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
2164       SDValue Lo = SplitF64.getValue(0);
2165       SDValue Hi = SplitF64.getValue(1);
2166 
2167       Register RegLo = VA.getLocReg();
2168       RegsToPass.push_back(std::make_pair(RegLo, Lo));
2169 
2170       if (RegLo == RISCV::X17) {
2171         // Second half of f64 is passed on the stack.
2172         // Work out the address of the stack slot.
2173         if (!StackPtr.getNode())
2174           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2175         // Emit the store.
2176         MemOpChains.push_back(
2177             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
2178       } else {
2179         // Second half of f64 is passed in another GPR.
2180         assert(RegLo < RISCV::X31 && "Invalid register pair");
2181         Register RegHigh = RegLo + 1;
2182         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
2183       }
2184       continue;
2185     }
2186 
2187     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
2188     // as any other MemLoc.
2189 
2190     // Promote the value if needed.
2191     // For now, only handle fully promoted and indirect arguments.
2192     if (VA.getLocInfo() == CCValAssign::Indirect) {
2193       // Store the argument in a stack slot and pass its address.
2194       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
2195       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2196       MemOpChains.push_back(
2197           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
2198                        MachinePointerInfo::getFixedStack(MF, FI)));
2199       // If the original argument was split (e.g. i128), we need
2200       // to store all parts of it here (and pass just one address).
2201       unsigned ArgIndex = Outs[i].OrigArgIndex;
2202       assert(Outs[i].PartOffset == 0);
2203       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
2204         SDValue PartValue = OutVals[i + 1];
2205         unsigned PartOffset = Outs[i + 1].PartOffset;
2206         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
2207                                       DAG.getIntPtrConstant(PartOffset, DL));
2208         MemOpChains.push_back(
2209             DAG.getStore(Chain, DL, PartValue, Address,
2210                          MachinePointerInfo::getFixedStack(MF, FI)));
2211         ++i;
2212       }
2213       ArgValue = SpillSlot;
2214     } else {
2215       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
2216     }
2217 
2218     // Use local copy if it is a byval arg.
2219     if (Flags.isByVal())
2220       ArgValue = ByValArgs[j++];
2221 
2222     if (VA.isRegLoc()) {
2223       // Queue up the argument copies and emit them at the end.
2224       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
2225     } else {
2226       assert(VA.isMemLoc() && "Argument not register or memory");
2227       assert(!IsTailCall && "Tail call not allowed if stack is used "
2228                             "for passing parameters");
2229 
2230       // Work out the address of the stack slot.
2231       if (!StackPtr.getNode())
2232         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2233       SDValue Address =
2234           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
2235                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
2236 
2237       // Emit the store.
2238       MemOpChains.push_back(
2239           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
2240     }
2241   }
2242 
2243   // Join the stores, which are independent of one another.
2244   if (!MemOpChains.empty())
2245     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2246 
2247   SDValue Glue;
2248 
2249   // Build a sequence of copy-to-reg nodes, chained and glued together.
2250   for (auto &Reg : RegsToPass) {
2251     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
2252     Glue = Chain.getValue(1);
2253   }
2254 
2255   // Validate that none of the argument registers have been marked as
2256   // reserved, if so report an error. Do the same for the return address if this
2257   // is not a tailcall.
2258   validateCCReservedRegs(RegsToPass, MF);
2259   if (!IsTailCall &&
2260       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
2261     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2262         MF.getFunction(),
2263         "Return address register required, but has been reserved."});
2264 
2265   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
2266   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
2267   // split it and then direct call can be matched by PseudoCALL.
2268   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
2269     const GlobalValue *GV = S->getGlobal();
2270 
2271     unsigned OpFlags = RISCVII::MO_CALL;
2272     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
2273       OpFlags = RISCVII::MO_PLT;
2274 
2275     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2276   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2277     unsigned OpFlags = RISCVII::MO_CALL;
2278 
2279     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
2280                                                  nullptr))
2281       OpFlags = RISCVII::MO_PLT;
2282 
2283     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
2284   }
2285 
2286   // The first call operand is the chain and the second is the target address.
2287   SmallVector<SDValue, 8> Ops;
2288   Ops.push_back(Chain);
2289   Ops.push_back(Callee);
2290 
2291   // Add argument registers to the end of the list so that they are
2292   // known live into the call.
2293   for (auto &Reg : RegsToPass)
2294     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
2295 
2296   if (!IsTailCall) {
2297     // Add a register mask operand representing the call-preserved registers.
2298     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2299     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2300     assert(Mask && "Missing call preserved mask for calling convention");
2301     Ops.push_back(DAG.getRegisterMask(Mask));
2302   }
2303 
2304   // Glue the call to the argument copies, if any.
2305   if (Glue.getNode())
2306     Ops.push_back(Glue);
2307 
2308   // Emit the call.
2309   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2310 
2311   if (IsTailCall) {
2312     MF.getFrameInfo().setHasTailCall();
2313     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
2314   }
2315 
2316   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
2317   Glue = Chain.getValue(1);
2318 
2319   // Mark the end of the call, which is glued to the call itself.
2320   Chain = DAG.getCALLSEQ_END(Chain,
2321                              DAG.getConstant(NumBytes, DL, PtrVT, true),
2322                              DAG.getConstant(0, DL, PtrVT, true),
2323                              Glue, DL);
2324   Glue = Chain.getValue(1);
2325 
2326   // Assign locations to each value returned by this call.
2327   SmallVector<CCValAssign, 16> RVLocs;
2328   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
2329   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
2330 
2331   // Copy all of the result registers out of their specified physreg.
2332   for (auto &VA : RVLocs) {
2333     // Copy the value out
2334     SDValue RetValue =
2335         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
2336     // Glue the RetValue to the end of the call sequence
2337     Chain = RetValue.getValue(1);
2338     Glue = RetValue.getValue(2);
2339 
2340     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2341       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
2342       SDValue RetValue2 =
2343           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
2344       Chain = RetValue2.getValue(1);
2345       Glue = RetValue2.getValue(2);
2346       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
2347                              RetValue2);
2348     }
2349 
2350     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
2351 
2352     InVals.push_back(RetValue);
2353   }
2354 
2355   return Chain;
2356 }
2357 
2358 bool RISCVTargetLowering::CanLowerReturn(
2359     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
2360     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2361   SmallVector<CCValAssign, 16> RVLocs;
2362   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2363   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2364     MVT VT = Outs[i].VT;
2365     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2366     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
2367     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
2368                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
2369       return false;
2370   }
2371   return true;
2372 }
2373 
2374 SDValue
2375 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2376                                  bool IsVarArg,
2377                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2378                                  const SmallVectorImpl<SDValue> &OutVals,
2379                                  const SDLoc &DL, SelectionDAG &DAG) const {
2380   const MachineFunction &MF = DAG.getMachineFunction();
2381   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2382 
2383   // Stores the assignment of the return value to a location.
2384   SmallVector<CCValAssign, 16> RVLocs;
2385 
2386   // Info about the registers and stack slot.
2387   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2388                  *DAG.getContext());
2389 
2390   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
2391                     nullptr);
2392 
2393   SDValue Glue;
2394   SmallVector<SDValue, 4> RetOps(1, Chain);
2395 
2396   // Copy the result values into the output registers.
2397   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
2398     SDValue Val = OutVals[i];
2399     CCValAssign &VA = RVLocs[i];
2400     assert(VA.isRegLoc() && "Can only return in registers!");
2401 
2402     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2403       // Handle returning f64 on RV32D with a soft float ABI.
2404       assert(VA.isRegLoc() && "Expected return via registers");
2405       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
2406                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
2407       SDValue Lo = SplitF64.getValue(0);
2408       SDValue Hi = SplitF64.getValue(1);
2409       Register RegLo = VA.getLocReg();
2410       assert(RegLo < RISCV::X31 && "Invalid register pair");
2411       Register RegHi = RegLo + 1;
2412 
2413       if (STI.isRegisterReservedByUser(RegLo) ||
2414           STI.isRegisterReservedByUser(RegHi))
2415         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2416             MF.getFunction(),
2417             "Return value register required, but has been reserved."});
2418 
2419       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
2420       Glue = Chain.getValue(1);
2421       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
2422       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
2423       Glue = Chain.getValue(1);
2424       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
2425     } else {
2426       // Handle a 'normal' return.
2427       Val = convertValVTToLocVT(DAG, Val, VA, DL);
2428       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
2429 
2430       if (STI.isRegisterReservedByUser(VA.getLocReg()))
2431         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2432             MF.getFunction(),
2433             "Return value register required, but has been reserved."});
2434 
2435       // Guarantee that all emitted copies are stuck together.
2436       Glue = Chain.getValue(1);
2437       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2438     }
2439   }
2440 
2441   RetOps[0] = Chain; // Update chain.
2442 
2443   // Add the glue node if we have it.
2444   if (Glue.getNode()) {
2445     RetOps.push_back(Glue);
2446   }
2447 
2448   // Interrupt service routines use different return instructions.
2449   const Function &Func = DAG.getMachineFunction().getFunction();
2450   if (Func.hasFnAttribute("interrupt")) {
2451     if (!Func.getReturnType()->isVoidTy())
2452       report_fatal_error(
2453           "Functions with the interrupt attribute must have void return type!");
2454 
2455     MachineFunction &MF = DAG.getMachineFunction();
2456     StringRef Kind =
2457       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
2458 
2459     unsigned RetOpc;
2460     if (Kind == "user")
2461       RetOpc = RISCVISD::URET_FLAG;
2462     else if (Kind == "supervisor")
2463       RetOpc = RISCVISD::SRET_FLAG;
2464     else
2465       RetOpc = RISCVISD::MRET_FLAG;
2466 
2467     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
2468   }
2469 
2470   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
2471 }
2472 
2473 void RISCVTargetLowering::validateCCReservedRegs(
2474     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
2475     MachineFunction &MF) const {
2476   const Function &F = MF.getFunction();
2477   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2478 
2479   if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) {
2480         return STI.isRegisterReservedByUser(Reg.first);
2481       }))
2482     F.getContext().diagnose(DiagnosticInfoUnsupported{
2483         F, "Argument register required, but has been reserved."});
2484 }
2485 
2486 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
2487   switch ((RISCVISD::NodeType)Opcode) {
2488   case RISCVISD::FIRST_NUMBER:
2489     break;
2490   case RISCVISD::RET_FLAG:
2491     return "RISCVISD::RET_FLAG";
2492   case RISCVISD::URET_FLAG:
2493     return "RISCVISD::URET_FLAG";
2494   case RISCVISD::SRET_FLAG:
2495     return "RISCVISD::SRET_FLAG";
2496   case RISCVISD::MRET_FLAG:
2497     return "RISCVISD::MRET_FLAG";
2498   case RISCVISD::CALL:
2499     return "RISCVISD::CALL";
2500   case RISCVISD::SELECT_CC:
2501     return "RISCVISD::SELECT_CC";
2502   case RISCVISD::BuildPairF64:
2503     return "RISCVISD::BuildPairF64";
2504   case RISCVISD::SplitF64:
2505     return "RISCVISD::SplitF64";
2506   case RISCVISD::TAIL:
2507     return "RISCVISD::TAIL";
2508   case RISCVISD::SLLW:
2509     return "RISCVISD::SLLW";
2510   case RISCVISD::SRAW:
2511     return "RISCVISD::SRAW";
2512   case RISCVISD::SRLW:
2513     return "RISCVISD::SRLW";
2514   case RISCVISD::DIVW:
2515     return "RISCVISD::DIVW";
2516   case RISCVISD::DIVUW:
2517     return "RISCVISD::DIVUW";
2518   case RISCVISD::REMUW:
2519     return "RISCVISD::REMUW";
2520   case RISCVISD::FMV_W_X_RV64:
2521     return "RISCVISD::FMV_W_X_RV64";
2522   case RISCVISD::FMV_X_ANYEXTW_RV64:
2523     return "RISCVISD::FMV_X_ANYEXTW_RV64";
2524   case RISCVISD::READ_CYCLE_WIDE:
2525     return "RISCVISD::READ_CYCLE_WIDE";
2526   }
2527   return nullptr;
2528 }
2529 
2530 /// getConstraintType - Given a constraint letter, return the type of
2531 /// constraint it is for this target.
2532 RISCVTargetLowering::ConstraintType
2533 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
2534   if (Constraint.size() == 1) {
2535     switch (Constraint[0]) {
2536     default:
2537       break;
2538     case 'f':
2539       return C_RegisterClass;
2540     case 'I':
2541     case 'J':
2542     case 'K':
2543       return C_Immediate;
2544     case 'A':
2545       return C_Memory;
2546     }
2547   }
2548   return TargetLowering::getConstraintType(Constraint);
2549 }
2550 
2551 std::pair<unsigned, const TargetRegisterClass *>
2552 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2553                                                   StringRef Constraint,
2554                                                   MVT VT) const {
2555   // First, see if this is a constraint that directly corresponds to a
2556   // RISCV register class.
2557   if (Constraint.size() == 1) {
2558     switch (Constraint[0]) {
2559     case 'r':
2560       return std::make_pair(0U, &RISCV::GPRRegClass);
2561     case 'f':
2562       if (Subtarget.hasStdExtF() && VT == MVT::f32)
2563         return std::make_pair(0U, &RISCV::FPR32RegClass);
2564       if (Subtarget.hasStdExtD() && VT == MVT::f64)
2565         return std::make_pair(0U, &RISCV::FPR64RegClass);
2566       break;
2567     default:
2568       break;
2569     }
2570   }
2571 
2572   // Clang will correctly decode the usage of register name aliases into their
2573   // official names. However, other frontends like `rustc` do not. This allows
2574   // users of these frontends to use the ABI names for registers in LLVM-style
2575   // register constraints.
2576   Register XRegFromAlias = StringSwitch<Register>(Constraint.lower())
2577                                .Case("{zero}", RISCV::X0)
2578                                .Case("{ra}", RISCV::X1)
2579                                .Case("{sp}", RISCV::X2)
2580                                .Case("{gp}", RISCV::X3)
2581                                .Case("{tp}", RISCV::X4)
2582                                .Case("{t0}", RISCV::X5)
2583                                .Case("{t1}", RISCV::X6)
2584                                .Case("{t2}", RISCV::X7)
2585                                .Cases("{s0}", "{fp}", RISCV::X8)
2586                                .Case("{s1}", RISCV::X9)
2587                                .Case("{a0}", RISCV::X10)
2588                                .Case("{a1}", RISCV::X11)
2589                                .Case("{a2}", RISCV::X12)
2590                                .Case("{a3}", RISCV::X13)
2591                                .Case("{a4}", RISCV::X14)
2592                                .Case("{a5}", RISCV::X15)
2593                                .Case("{a6}", RISCV::X16)
2594                                .Case("{a7}", RISCV::X17)
2595                                .Case("{s2}", RISCV::X18)
2596                                .Case("{s3}", RISCV::X19)
2597                                .Case("{s4}", RISCV::X20)
2598                                .Case("{s5}", RISCV::X21)
2599                                .Case("{s6}", RISCV::X22)
2600                                .Case("{s7}", RISCV::X23)
2601                                .Case("{s8}", RISCV::X24)
2602                                .Case("{s9}", RISCV::X25)
2603                                .Case("{s10}", RISCV::X26)
2604                                .Case("{s11}", RISCV::X27)
2605                                .Case("{t3}", RISCV::X28)
2606                                .Case("{t4}", RISCV::X29)
2607                                .Case("{t5}", RISCV::X30)
2608                                .Case("{t6}", RISCV::X31)
2609                                .Default(RISCV::NoRegister);
2610   if (XRegFromAlias != RISCV::NoRegister)
2611     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
2612 
2613   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
2614   // TableGen record rather than the AsmName to choose registers for InlineAsm
2615   // constraints, plus we want to match those names to the widest floating point
2616   // register type available, manually select floating point registers here.
2617   //
2618   // The second case is the ABI name of the register, so that frontends can also
2619   // use the ABI names in register constraint lists.
2620   if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) {
2621     std::pair<Register, Register> FReg =
2622         StringSwitch<std::pair<Register, Register>>(Constraint.lower())
2623             .Cases("{f0}", "{ft0}", {RISCV::F0_F, RISCV::F0_D})
2624             .Cases("{f1}", "{ft1}", {RISCV::F1_F, RISCV::F1_D})
2625             .Cases("{f2}", "{ft2}", {RISCV::F2_F, RISCV::F2_D})
2626             .Cases("{f3}", "{ft3}", {RISCV::F3_F, RISCV::F3_D})
2627             .Cases("{f4}", "{ft4}", {RISCV::F4_F, RISCV::F4_D})
2628             .Cases("{f5}", "{ft5}", {RISCV::F5_F, RISCV::F5_D})
2629             .Cases("{f6}", "{ft6}", {RISCV::F6_F, RISCV::F6_D})
2630             .Cases("{f7}", "{ft7}", {RISCV::F7_F, RISCV::F7_D})
2631             .Cases("{f8}", "{fs0}", {RISCV::F8_F, RISCV::F8_D})
2632             .Cases("{f9}", "{fs1}", {RISCV::F9_F, RISCV::F9_D})
2633             .Cases("{f10}", "{fa0}", {RISCV::F10_F, RISCV::F10_D})
2634             .Cases("{f11}", "{fa1}", {RISCV::F11_F, RISCV::F11_D})
2635             .Cases("{f12}", "{fa2}", {RISCV::F12_F, RISCV::F12_D})
2636             .Cases("{f13}", "{fa3}", {RISCV::F13_F, RISCV::F13_D})
2637             .Cases("{f14}", "{fa4}", {RISCV::F14_F, RISCV::F14_D})
2638             .Cases("{f15}", "{fa5}", {RISCV::F15_F, RISCV::F15_D})
2639             .Cases("{f16}", "{fa6}", {RISCV::F16_F, RISCV::F16_D})
2640             .Cases("{f17}", "{fa7}", {RISCV::F17_F, RISCV::F17_D})
2641             .Cases("{f18}", "{fs2}", {RISCV::F18_F, RISCV::F18_D})
2642             .Cases("{f19}", "{fs3}", {RISCV::F19_F, RISCV::F19_D})
2643             .Cases("{f20}", "{fs4}", {RISCV::F20_F, RISCV::F20_D})
2644             .Cases("{f21}", "{fs5}", {RISCV::F21_F, RISCV::F21_D})
2645             .Cases("{f22}", "{fs6}", {RISCV::F22_F, RISCV::F22_D})
2646             .Cases("{f23}", "{fs7}", {RISCV::F23_F, RISCV::F23_D})
2647             .Cases("{f24}", "{fs8}", {RISCV::F24_F, RISCV::F24_D})
2648             .Cases("{f25}", "{fs9}", {RISCV::F25_F, RISCV::F25_D})
2649             .Cases("{f26}", "{fs10}", {RISCV::F26_F, RISCV::F26_D})
2650             .Cases("{f27}", "{fs11}", {RISCV::F27_F, RISCV::F27_D})
2651             .Cases("{f28}", "{ft8}", {RISCV::F28_F, RISCV::F28_D})
2652             .Cases("{f29}", "{ft9}", {RISCV::F29_F, RISCV::F29_D})
2653             .Cases("{f30}", "{ft10}", {RISCV::F30_F, RISCV::F30_D})
2654             .Cases("{f31}", "{ft11}", {RISCV::F31_F, RISCV::F31_D})
2655             .Default({RISCV::NoRegister, RISCV::NoRegister});
2656     if (FReg.first != RISCV::NoRegister)
2657       return Subtarget.hasStdExtD()
2658                  ? std::make_pair(FReg.second, &RISCV::FPR64RegClass)
2659                  : std::make_pair(FReg.first, &RISCV::FPR32RegClass);
2660   }
2661 
2662   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2663 }
2664 
2665 unsigned
2666 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
2667   // Currently only support length 1 constraints.
2668   if (ConstraintCode.size() == 1) {
2669     switch (ConstraintCode[0]) {
2670     case 'A':
2671       return InlineAsm::Constraint_A;
2672     default:
2673       break;
2674     }
2675   }
2676 
2677   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
2678 }
2679 
2680 void RISCVTargetLowering::LowerAsmOperandForConstraint(
2681     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2682     SelectionDAG &DAG) const {
2683   // Currently only support length 1 constraints.
2684   if (Constraint.length() == 1) {
2685     switch (Constraint[0]) {
2686     case 'I':
2687       // Validate & create a 12-bit signed immediate operand.
2688       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2689         uint64_t CVal = C->getSExtValue();
2690         if (isInt<12>(CVal))
2691           Ops.push_back(
2692               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2693       }
2694       return;
2695     case 'J':
2696       // Validate & create an integer zero operand.
2697       if (auto *C = dyn_cast<ConstantSDNode>(Op))
2698         if (C->getZExtValue() == 0)
2699           Ops.push_back(
2700               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
2701       return;
2702     case 'K':
2703       // Validate & create a 5-bit unsigned immediate operand.
2704       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2705         uint64_t CVal = C->getZExtValue();
2706         if (isUInt<5>(CVal))
2707           Ops.push_back(
2708               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2709       }
2710       return;
2711     default:
2712       break;
2713     }
2714   }
2715   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2716 }
2717 
2718 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
2719                                                    Instruction *Inst,
2720                                                    AtomicOrdering Ord) const {
2721   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
2722     return Builder.CreateFence(Ord);
2723   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
2724     return Builder.CreateFence(AtomicOrdering::Release);
2725   return nullptr;
2726 }
2727 
2728 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
2729                                                     Instruction *Inst,
2730                                                     AtomicOrdering Ord) const {
2731   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
2732     return Builder.CreateFence(AtomicOrdering::Acquire);
2733   return nullptr;
2734 }
2735 
2736 TargetLowering::AtomicExpansionKind
2737 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
2738   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
2739   // point operations can't be used in an lr/sc sequence without breaking the
2740   // forward-progress guarantee.
2741   if (AI->isFloatingPointOperation())
2742     return AtomicExpansionKind::CmpXChg;
2743 
2744   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
2745   if (Size == 8 || Size == 16)
2746     return AtomicExpansionKind::MaskedIntrinsic;
2747   return AtomicExpansionKind::None;
2748 }
2749 
2750 static Intrinsic::ID
2751 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
2752   if (XLen == 32) {
2753     switch (BinOp) {
2754     default:
2755       llvm_unreachable("Unexpected AtomicRMW BinOp");
2756     case AtomicRMWInst::Xchg:
2757       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
2758     case AtomicRMWInst::Add:
2759       return Intrinsic::riscv_masked_atomicrmw_add_i32;
2760     case AtomicRMWInst::Sub:
2761       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
2762     case AtomicRMWInst::Nand:
2763       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
2764     case AtomicRMWInst::Max:
2765       return Intrinsic::riscv_masked_atomicrmw_max_i32;
2766     case AtomicRMWInst::Min:
2767       return Intrinsic::riscv_masked_atomicrmw_min_i32;
2768     case AtomicRMWInst::UMax:
2769       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
2770     case AtomicRMWInst::UMin:
2771       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
2772     }
2773   }
2774 
2775   if (XLen == 64) {
2776     switch (BinOp) {
2777     default:
2778       llvm_unreachable("Unexpected AtomicRMW BinOp");
2779     case AtomicRMWInst::Xchg:
2780       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
2781     case AtomicRMWInst::Add:
2782       return Intrinsic::riscv_masked_atomicrmw_add_i64;
2783     case AtomicRMWInst::Sub:
2784       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
2785     case AtomicRMWInst::Nand:
2786       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
2787     case AtomicRMWInst::Max:
2788       return Intrinsic::riscv_masked_atomicrmw_max_i64;
2789     case AtomicRMWInst::Min:
2790       return Intrinsic::riscv_masked_atomicrmw_min_i64;
2791     case AtomicRMWInst::UMax:
2792       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
2793     case AtomicRMWInst::UMin:
2794       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
2795     }
2796   }
2797 
2798   llvm_unreachable("Unexpected XLen\n");
2799 }
2800 
2801 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
2802     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
2803     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
2804   unsigned XLen = Subtarget.getXLen();
2805   Value *Ordering =
2806       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
2807   Type *Tys[] = {AlignedAddr->getType()};
2808   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
2809       AI->getModule(),
2810       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
2811 
2812   if (XLen == 64) {
2813     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
2814     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2815     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
2816   }
2817 
2818   Value *Result;
2819 
2820   // Must pass the shift amount needed to sign extend the loaded value prior
2821   // to performing a signed comparison for min/max. ShiftAmt is the number of
2822   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
2823   // is the number of bits to left+right shift the value in order to
2824   // sign-extend.
2825   if (AI->getOperation() == AtomicRMWInst::Min ||
2826       AI->getOperation() == AtomicRMWInst::Max) {
2827     const DataLayout &DL = AI->getModule()->getDataLayout();
2828     unsigned ValWidth =
2829         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
2830     Value *SextShamt =
2831         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
2832     Result = Builder.CreateCall(LrwOpScwLoop,
2833                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
2834   } else {
2835     Result =
2836         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
2837   }
2838 
2839   if (XLen == 64)
2840     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2841   return Result;
2842 }
2843 
2844 TargetLowering::AtomicExpansionKind
2845 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
2846     AtomicCmpXchgInst *CI) const {
2847   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
2848   if (Size == 8 || Size == 16)
2849     return AtomicExpansionKind::MaskedIntrinsic;
2850   return AtomicExpansionKind::None;
2851 }
2852 
2853 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
2854     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
2855     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
2856   unsigned XLen = Subtarget.getXLen();
2857   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
2858   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
2859   if (XLen == 64) {
2860     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
2861     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
2862     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2863     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
2864   }
2865   Type *Tys[] = {AlignedAddr->getType()};
2866   Function *MaskedCmpXchg =
2867       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
2868   Value *Result = Builder.CreateCall(
2869       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
2870   if (XLen == 64)
2871     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2872   return Result;
2873 }
2874 
2875 unsigned RISCVTargetLowering::getExceptionPointerRegister(
2876     const Constant *PersonalityFn) const {
2877   return RISCV::X10;
2878 }
2879 
2880 unsigned RISCVTargetLowering::getExceptionSelectorRegister(
2881     const Constant *PersonalityFn) const {
2882   return RISCV::X11;
2883 }
2884 
2885 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
2886   // Return false to suppress the unnecessary extensions if the LibCall
2887   // arguments or return value is f32 type for LP64 ABI.
2888   RISCVABI::ABI ABI = Subtarget.getTargetABI();
2889   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
2890     return false;
2891 
2892   return true;
2893 }
2894 
2895 #define GET_REGISTER_MATCHER
2896 #include "RISCVGenAsmMatcher.inc"
2897 
2898 Register
2899 RISCVTargetLowering::getRegisterByName(const char *RegName, EVT VT,
2900                                        const MachineFunction &MF) const {
2901   Register Reg = MatchRegisterAltName(RegName);
2902   if (Reg == RISCV::NoRegister)
2903     Reg = MatchRegisterName(RegName);
2904   if (Reg == RISCV::NoRegister)
2905     report_fatal_error(
2906         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
2907   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
2908   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
2909     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
2910                              StringRef(RegName) + "\"."));
2911   return Reg;
2912 }
2913