1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
254     if (Subtarget.is64Bit()) {
255       setOperationAction(ISD::ROTL, MVT::i32, Custom);
256       setOperationAction(ISD::ROTR, MVT::i32, Custom);
257     }
258   } else {
259     setOperationAction(ISD::ROTL, XLenVT, Expand);
260     setOperationAction(ISD::ROTR, XLenVT, Expand);
261   }
262 
263   if (Subtarget.hasStdExtZbp()) {
264     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
265     // more combining.
266     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
267     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
268     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
269     // BSWAP i8 doesn't exist.
270     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
271     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
272 
273     if (Subtarget.is64Bit()) {
274       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
275       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
276     }
277   } else {
278     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
279     // pattern match it directly in isel.
280     setOperationAction(ISD::BSWAP, XLenVT,
281                        Subtarget.hasStdExtZbb() ? Legal : Expand);
282   }
283 
284   if (Subtarget.hasStdExtZbb()) {
285     setOperationAction(ISD::SMIN, XLenVT, Legal);
286     setOperationAction(ISD::SMAX, XLenVT, Legal);
287     setOperationAction(ISD::UMIN, XLenVT, Legal);
288     setOperationAction(ISD::UMAX, XLenVT, Legal);
289 
290     if (Subtarget.is64Bit()) {
291       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
292       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
293       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
294       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
295     }
296   } else {
297     setOperationAction(ISD::CTTZ, XLenVT, Expand);
298     setOperationAction(ISD::CTLZ, XLenVT, Expand);
299     setOperationAction(ISD::CTPOP, XLenVT, Expand);
300   }
301 
302   if (Subtarget.hasStdExtZbt()) {
303     setOperationAction(ISD::FSHL, XLenVT, Custom);
304     setOperationAction(ISD::FSHR, XLenVT, Custom);
305     setOperationAction(ISD::SELECT, XLenVT, Legal);
306 
307     if (Subtarget.is64Bit()) {
308       setOperationAction(ISD::FSHL, MVT::i32, Custom);
309       setOperationAction(ISD::FSHR, MVT::i32, Custom);
310     }
311   } else {
312     setOperationAction(ISD::SELECT, XLenVT, Custom);
313   }
314 
315   static const ISD::CondCode FPCCToExpand[] = {
316       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
317       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
318       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
319 
320   static const ISD::NodeType FPOpToExpand[] = {
321       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
322       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
323 
324   if (Subtarget.hasStdExtZfh())
325     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
326 
327   if (Subtarget.hasStdExtZfh()) {
328     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
329     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
330     setOperationAction(ISD::LRINT, MVT::f16, Legal);
331     setOperationAction(ISD::LLRINT, MVT::f16, Legal);
332     setOperationAction(ISD::LROUND, MVT::f16, Legal);
333     setOperationAction(ISD::LLROUND, MVT::f16, Legal);
334     setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal);
335     setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal);
336     setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal);
337     setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal);
338     setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal);
339     setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal);
340     setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal);
341     setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal);
342     setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal);
343     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
344     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
345     setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal);
346     setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal);
347     setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal);
348     for (auto CC : FPCCToExpand)
349       setCondCodeAction(CC, MVT::f16, Expand);
350     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
351     setOperationAction(ISD::SELECT, MVT::f16, Custom);
352     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
353 
354     setOperationAction(ISD::FREM,       MVT::f16, Promote);
355     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
356     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
357     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
358     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
359     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
360     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
361     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
362     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
363     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
364     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
365     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
366     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
367     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
368     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
369     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
370     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
371     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
372 
373     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
374     // complete support for all operations in LegalizeDAG.
375 
376     // We need to custom promote this.
377     if (Subtarget.is64Bit())
378       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
379   }
380 
381   if (Subtarget.hasStdExtF()) {
382     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
383     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
384     setOperationAction(ISD::LRINT, MVT::f32, Legal);
385     setOperationAction(ISD::LLRINT, MVT::f32, Legal);
386     setOperationAction(ISD::LROUND, MVT::f32, Legal);
387     setOperationAction(ISD::LLROUND, MVT::f32, Legal);
388     setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal);
389     setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal);
390     setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal);
391     setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal);
392     setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
393     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
394     setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
395     setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
396     setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
397     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
398     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
399     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
400     for (auto CC : FPCCToExpand)
401       setCondCodeAction(CC, MVT::f32, Expand);
402     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
403     setOperationAction(ISD::SELECT, MVT::f32, Custom);
404     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
405     for (auto Op : FPOpToExpand)
406       setOperationAction(Op, MVT::f32, Expand);
407     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
408     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
409   }
410 
411   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
412     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
413 
414   if (Subtarget.hasStdExtD()) {
415     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
416     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
417     setOperationAction(ISD::LRINT, MVT::f64, Legal);
418     setOperationAction(ISD::LLRINT, MVT::f64, Legal);
419     setOperationAction(ISD::LROUND, MVT::f64, Legal);
420     setOperationAction(ISD::LLROUND, MVT::f64, Legal);
421     setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal);
422     setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal);
423     setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal);
424     setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal);
425     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
426     setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
427     setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
428     setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
429     setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
430     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
431     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
432     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
433     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
434     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
435     for (auto CC : FPCCToExpand)
436       setCondCodeAction(CC, MVT::f64, Expand);
437     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
438     setOperationAction(ISD::SELECT, MVT::f64, Custom);
439     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
440     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
441     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
442     for (auto Op : FPOpToExpand)
443       setOperationAction(Op, MVT::f64, Expand);
444     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
445     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
446   }
447 
448   if (Subtarget.is64Bit()) {
449     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
450     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
451     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
452     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
453   }
454 
455   if (Subtarget.hasStdExtF()) {
456     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
457     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
458 
459     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
460     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
461     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
462     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
463 
464     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
465     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
466   }
467 
468   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
469   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
470   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
471   setOperationAction(ISD::JumpTable, XLenVT, Custom);
472 
473   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
474 
475   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
476   // Unfortunately this can't be determined just from the ISA naming string.
477   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
478                      Subtarget.is64Bit() ? Legal : Custom);
479 
480   setOperationAction(ISD::TRAP, MVT::Other, Legal);
481   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
482   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
483   if (Subtarget.is64Bit())
484     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
485 
486   if (Subtarget.hasStdExtA()) {
487     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
488     setMinCmpXchgSizeInBits(32);
489   } else {
490     setMaxAtomicSizeInBitsSupported(0);
491   }
492 
493   setBooleanContents(ZeroOrOneBooleanContent);
494 
495   if (Subtarget.hasVInstructions()) {
496     setBooleanVectorContents(ZeroOrOneBooleanContent);
497 
498     setOperationAction(ISD::VSCALE, XLenVT, Custom);
499 
500     // RVV intrinsics may have illegal operands.
501     // We also need to custom legalize vmv.x.s.
502     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
503     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
504     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
505     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
506     if (Subtarget.is64Bit()) {
507       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
508     } else {
509       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
510       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
511     }
512 
513     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
514     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
515 
516     static const unsigned IntegerVPOps[] = {
517         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
518         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
519         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
520         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
521         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
522         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
523         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
524         ISD::VP_SELECT};
525 
526     static const unsigned FloatingPointVPOps[] = {
527         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
528         ISD::VP_FDIV,        ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
529         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SELECT};
530 
531     if (!Subtarget.is64Bit()) {
532       // We must custom-lower certain vXi64 operations on RV32 due to the vector
533       // element type being illegal.
534       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
535       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
536 
537       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
538       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
539       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
540       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
541       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
542       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
543       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
544       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
545 
546       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
547       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
548       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
549       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
550       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
551       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
552       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
553       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
554     }
555 
556     for (MVT VT : BoolVecVTs) {
557       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
558 
559       // Mask VTs are custom-expanded into a series of standard nodes
560       setOperationAction(ISD::TRUNCATE, VT, Custom);
561       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
562       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
563       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
564 
565       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
566       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
567 
568       setOperationAction(ISD::SELECT, VT, Custom);
569       setOperationAction(ISD::SELECT_CC, VT, Expand);
570       setOperationAction(ISD::VSELECT, VT, Expand);
571       setOperationAction(ISD::VP_SELECT, VT, Expand);
572 
573       setOperationAction(ISD::VP_AND, VT, Custom);
574       setOperationAction(ISD::VP_OR, VT, Custom);
575       setOperationAction(ISD::VP_XOR, VT, Custom);
576 
577       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
578       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
579       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
580 
581       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
582       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
583       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
584 
585       // RVV has native int->float & float->int conversions where the
586       // element type sizes are within one power-of-two of each other. Any
587       // wider distances between type sizes have to be lowered as sequences
588       // which progressively narrow the gap in stages.
589       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
590       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
591       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
592       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
593 
594       // Expand all extending loads to types larger than this, and truncating
595       // stores from types larger than this.
596       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
597         setTruncStoreAction(OtherVT, VT, Expand);
598         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
599         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
600         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
601       }
602     }
603 
604     for (MVT VT : IntVecVTs) {
605       if (VT.getVectorElementType() == MVT::i64 &&
606           !Subtarget.hasVInstructionsI64())
607         continue;
608 
609       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
610       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
611 
612       // Vectors implement MULHS/MULHU.
613       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
614       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
615 
616       setOperationAction(ISD::SMIN, VT, Legal);
617       setOperationAction(ISD::SMAX, VT, Legal);
618       setOperationAction(ISD::UMIN, VT, Legal);
619       setOperationAction(ISD::UMAX, VT, Legal);
620 
621       setOperationAction(ISD::ROTL, VT, Expand);
622       setOperationAction(ISD::ROTR, VT, Expand);
623 
624       setOperationAction(ISD::CTTZ, VT, Expand);
625       setOperationAction(ISD::CTLZ, VT, Expand);
626       setOperationAction(ISD::CTPOP, VT, Expand);
627 
628       setOperationAction(ISD::BSWAP, VT, Expand);
629 
630       // Custom-lower extensions and truncations from/to mask types.
631       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
632       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
633       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
634 
635       // RVV has native int->float & float->int conversions where the
636       // element type sizes are within one power-of-two of each other. Any
637       // wider distances between type sizes have to be lowered as sequences
638       // which progressively narrow the gap in stages.
639       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
640       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
641       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
642       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
643 
644       setOperationAction(ISD::SADDSAT, VT, Legal);
645       setOperationAction(ISD::UADDSAT, VT, Legal);
646       setOperationAction(ISD::SSUBSAT, VT, Legal);
647       setOperationAction(ISD::USUBSAT, VT, Legal);
648 
649       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
650       // nodes which truncate by one power of two at a time.
651       setOperationAction(ISD::TRUNCATE, VT, Custom);
652 
653       // Custom-lower insert/extract operations to simplify patterns.
654       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
655       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
656 
657       // Custom-lower reduction operations to set up the corresponding custom
658       // nodes' operands.
659       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
660       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
661       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
662       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
663       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
664       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
665       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
666       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
667 
668       for (unsigned VPOpc : IntegerVPOps)
669         setOperationAction(VPOpc, VT, Custom);
670 
671       setOperationAction(ISD::LOAD, VT, Custom);
672       setOperationAction(ISD::STORE, VT, Custom);
673 
674       setOperationAction(ISD::MLOAD, VT, Custom);
675       setOperationAction(ISD::MSTORE, VT, Custom);
676       setOperationAction(ISD::MGATHER, VT, Custom);
677       setOperationAction(ISD::MSCATTER, VT, Custom);
678 
679       setOperationAction(ISD::VP_LOAD, VT, Custom);
680       setOperationAction(ISD::VP_STORE, VT, Custom);
681       setOperationAction(ISD::VP_GATHER, VT, Custom);
682       setOperationAction(ISD::VP_SCATTER, VT, Custom);
683 
684       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
685       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
686       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
687 
688       setOperationAction(ISD::SELECT, VT, Custom);
689       setOperationAction(ISD::SELECT_CC, VT, Expand);
690 
691       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
692       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
693 
694       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
695         setTruncStoreAction(VT, OtherVT, Expand);
696         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
697         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
698         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
699       }
700 
701       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
702       // type that can represent the value exactly.
703       if (VT.getVectorElementType() != MVT::i64) {
704         MVT FloatEltVT =
705             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
706         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
707         if (isTypeLegal(FloatVT)) {
708           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
709           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
710         }
711       }
712     }
713 
714     // Expand various CCs to best match the RVV ISA, which natively supports UNE
715     // but no other unordered comparisons, and supports all ordered comparisons
716     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
717     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
718     // and we pattern-match those back to the "original", swapping operands once
719     // more. This way we catch both operations and both "vf" and "fv" forms with
720     // fewer patterns.
721     static const ISD::CondCode VFPCCToExpand[] = {
722         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
723         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
724         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
725     };
726 
727     // Sets common operation actions on RVV floating-point vector types.
728     const auto SetCommonVFPActions = [&](MVT VT) {
729       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
730       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
731       // sizes are within one power-of-two of each other. Therefore conversions
732       // between vXf16 and vXf64 must be lowered as sequences which convert via
733       // vXf32.
734       setOperationAction(ISD::FP_ROUND, VT, Custom);
735       setOperationAction(ISD::FP_EXTEND, VT, Custom);
736       // Custom-lower insert/extract operations to simplify patterns.
737       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
738       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
739       // Expand various condition codes (explained above).
740       for (auto CC : VFPCCToExpand)
741         setCondCodeAction(CC, VT, Expand);
742 
743       setOperationAction(ISD::FMINNUM, VT, Legal);
744       setOperationAction(ISD::FMAXNUM, VT, Legal);
745 
746       setOperationAction(ISD::FTRUNC, VT, Custom);
747       setOperationAction(ISD::FCEIL, VT, Custom);
748       setOperationAction(ISD::FFLOOR, VT, Custom);
749 
750       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
751       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
752       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
753       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
754 
755       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
756 
757       setOperationAction(ISD::LOAD, VT, Custom);
758       setOperationAction(ISD::STORE, VT, Custom);
759 
760       setOperationAction(ISD::MLOAD, VT, Custom);
761       setOperationAction(ISD::MSTORE, VT, Custom);
762       setOperationAction(ISD::MGATHER, VT, Custom);
763       setOperationAction(ISD::MSCATTER, VT, Custom);
764 
765       setOperationAction(ISD::VP_LOAD, VT, Custom);
766       setOperationAction(ISD::VP_STORE, VT, Custom);
767       setOperationAction(ISD::VP_GATHER, VT, Custom);
768       setOperationAction(ISD::VP_SCATTER, VT, Custom);
769 
770       setOperationAction(ISD::SELECT, VT, Custom);
771       setOperationAction(ISD::SELECT_CC, VT, Expand);
772 
773       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
774       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
775       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
776 
777       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
778 
779       for (unsigned VPOpc : FloatingPointVPOps)
780         setOperationAction(VPOpc, VT, Custom);
781     };
782 
783     // Sets common extload/truncstore actions on RVV floating-point vector
784     // types.
785     const auto SetCommonVFPExtLoadTruncStoreActions =
786         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
787           for (auto SmallVT : SmallerVTs) {
788             setTruncStoreAction(VT, SmallVT, Expand);
789             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
790           }
791         };
792 
793     if (Subtarget.hasVInstructionsF16())
794       for (MVT VT : F16VecVTs)
795         SetCommonVFPActions(VT);
796 
797     for (MVT VT : F32VecVTs) {
798       if (Subtarget.hasVInstructionsF32())
799         SetCommonVFPActions(VT);
800       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
801     }
802 
803     for (MVT VT : F64VecVTs) {
804       if (Subtarget.hasVInstructionsF64())
805         SetCommonVFPActions(VT);
806       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
807       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
808     }
809 
810     if (Subtarget.useRVVForFixedLengthVectors()) {
811       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
812         if (!useRVVForFixedLengthVectorVT(VT))
813           continue;
814 
815         // By default everything must be expanded.
816         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
817           setOperationAction(Op, VT, Expand);
818         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
819           setTruncStoreAction(VT, OtherVT, Expand);
820           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
821           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
822           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
823         }
824 
825         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
826         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
827         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
828 
829         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
830         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
831 
832         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
833         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
834 
835         setOperationAction(ISD::LOAD, VT, Custom);
836         setOperationAction(ISD::STORE, VT, Custom);
837 
838         setOperationAction(ISD::SETCC, VT, Custom);
839 
840         setOperationAction(ISD::SELECT, VT, Custom);
841 
842         setOperationAction(ISD::TRUNCATE, VT, Custom);
843 
844         setOperationAction(ISD::BITCAST, VT, Custom);
845 
846         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
847         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
848         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
849 
850         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
851         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
852         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
853 
854         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
855         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
856         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
857         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
858 
859         // Operations below are different for between masks and other vectors.
860         if (VT.getVectorElementType() == MVT::i1) {
861           setOperationAction(ISD::VP_AND, VT, Custom);
862           setOperationAction(ISD::VP_OR, VT, Custom);
863           setOperationAction(ISD::VP_XOR, VT, Custom);
864           setOperationAction(ISD::AND, VT, Custom);
865           setOperationAction(ISD::OR, VT, Custom);
866           setOperationAction(ISD::XOR, VT, Custom);
867           continue;
868         }
869 
870         // Use SPLAT_VECTOR to prevent type legalization from destroying the
871         // splats when type legalizing i64 scalar on RV32.
872         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
873         // improvements first.
874         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
875           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
876           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
877         }
878 
879         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
880         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
881 
882         setOperationAction(ISD::MLOAD, VT, Custom);
883         setOperationAction(ISD::MSTORE, VT, Custom);
884         setOperationAction(ISD::MGATHER, VT, Custom);
885         setOperationAction(ISD::MSCATTER, VT, Custom);
886 
887         setOperationAction(ISD::VP_LOAD, VT, Custom);
888         setOperationAction(ISD::VP_STORE, VT, Custom);
889         setOperationAction(ISD::VP_GATHER, VT, Custom);
890         setOperationAction(ISD::VP_SCATTER, VT, Custom);
891 
892         setOperationAction(ISD::ADD, VT, Custom);
893         setOperationAction(ISD::MUL, VT, Custom);
894         setOperationAction(ISD::SUB, VT, Custom);
895         setOperationAction(ISD::AND, VT, Custom);
896         setOperationAction(ISD::OR, VT, Custom);
897         setOperationAction(ISD::XOR, VT, Custom);
898         setOperationAction(ISD::SDIV, VT, Custom);
899         setOperationAction(ISD::SREM, VT, Custom);
900         setOperationAction(ISD::UDIV, VT, Custom);
901         setOperationAction(ISD::UREM, VT, Custom);
902         setOperationAction(ISD::SHL, VT, Custom);
903         setOperationAction(ISD::SRA, VT, Custom);
904         setOperationAction(ISD::SRL, VT, Custom);
905 
906         setOperationAction(ISD::SMIN, VT, Custom);
907         setOperationAction(ISD::SMAX, VT, Custom);
908         setOperationAction(ISD::UMIN, VT, Custom);
909         setOperationAction(ISD::UMAX, VT, Custom);
910         setOperationAction(ISD::ABS,  VT, Custom);
911 
912         setOperationAction(ISD::MULHS, VT, Custom);
913         setOperationAction(ISD::MULHU, VT, Custom);
914 
915         setOperationAction(ISD::SADDSAT, VT, Custom);
916         setOperationAction(ISD::UADDSAT, VT, Custom);
917         setOperationAction(ISD::SSUBSAT, VT, Custom);
918         setOperationAction(ISD::USUBSAT, VT, Custom);
919 
920         setOperationAction(ISD::VSELECT, VT, Custom);
921         setOperationAction(ISD::SELECT_CC, VT, Expand);
922 
923         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
924         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
925         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
926 
927         // Custom-lower reduction operations to set up the corresponding custom
928         // nodes' operands.
929         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
930         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
931         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
932         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
933         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
934 
935         for (unsigned VPOpc : IntegerVPOps)
936           setOperationAction(VPOpc, VT, Custom);
937 
938         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
939         // type that can represent the value exactly.
940         if (VT.getVectorElementType() != MVT::i64) {
941           MVT FloatEltVT =
942               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
943           EVT FloatVT =
944               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
945           if (isTypeLegal(FloatVT)) {
946             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
947             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
948           }
949         }
950       }
951 
952       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
953         if (!useRVVForFixedLengthVectorVT(VT))
954           continue;
955 
956         // By default everything must be expanded.
957         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
958           setOperationAction(Op, VT, Expand);
959         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
960           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
961           setTruncStoreAction(VT, OtherVT, Expand);
962         }
963 
964         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
965         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
966         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
967 
968         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
969         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
970         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
971         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
972         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
973 
974         setOperationAction(ISD::LOAD, VT, Custom);
975         setOperationAction(ISD::STORE, VT, Custom);
976         setOperationAction(ISD::MLOAD, VT, Custom);
977         setOperationAction(ISD::MSTORE, VT, Custom);
978         setOperationAction(ISD::MGATHER, VT, Custom);
979         setOperationAction(ISD::MSCATTER, VT, Custom);
980 
981         setOperationAction(ISD::VP_LOAD, VT, Custom);
982         setOperationAction(ISD::VP_STORE, VT, Custom);
983         setOperationAction(ISD::VP_GATHER, VT, Custom);
984         setOperationAction(ISD::VP_SCATTER, VT, Custom);
985 
986         setOperationAction(ISD::FADD, VT, Custom);
987         setOperationAction(ISD::FSUB, VT, Custom);
988         setOperationAction(ISD::FMUL, VT, Custom);
989         setOperationAction(ISD::FDIV, VT, Custom);
990         setOperationAction(ISD::FNEG, VT, Custom);
991         setOperationAction(ISD::FABS, VT, Custom);
992         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
993         setOperationAction(ISD::FSQRT, VT, Custom);
994         setOperationAction(ISD::FMA, VT, Custom);
995         setOperationAction(ISD::FMINNUM, VT, Custom);
996         setOperationAction(ISD::FMAXNUM, VT, Custom);
997 
998         setOperationAction(ISD::FP_ROUND, VT, Custom);
999         setOperationAction(ISD::FP_EXTEND, VT, Custom);
1000 
1001         setOperationAction(ISD::FTRUNC, VT, Custom);
1002         setOperationAction(ISD::FCEIL, VT, Custom);
1003         setOperationAction(ISD::FFLOOR, VT, Custom);
1004 
1005         for (auto CC : VFPCCToExpand)
1006           setCondCodeAction(CC, VT, Expand);
1007 
1008         setOperationAction(ISD::VSELECT, VT, Custom);
1009         setOperationAction(ISD::SELECT, VT, Custom);
1010         setOperationAction(ISD::SELECT_CC, VT, Expand);
1011 
1012         setOperationAction(ISD::BITCAST, VT, Custom);
1013 
1014         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1015         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1016         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1017         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1018 
1019         for (unsigned VPOpc : FloatingPointVPOps)
1020           setOperationAction(VPOpc, VT, Custom);
1021       }
1022 
1023       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1024       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1025       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1026       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1027       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1028       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1029       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1030       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1031     }
1032   }
1033 
1034   // Function alignments.
1035   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1036   setMinFunctionAlignment(FunctionAlignment);
1037   setPrefFunctionAlignment(FunctionAlignment);
1038 
1039   setMinimumJumpTableEntries(5);
1040 
1041   // Jumps are expensive, compared to logic
1042   setJumpIsExpensive();
1043 
1044   setTargetDAGCombine(ISD::ADD);
1045   setTargetDAGCombine(ISD::SUB);
1046   setTargetDAGCombine(ISD::AND);
1047   setTargetDAGCombine(ISD::OR);
1048   setTargetDAGCombine(ISD::XOR);
1049   setTargetDAGCombine(ISD::ANY_EXTEND);
1050   if (Subtarget.hasStdExtF()) {
1051     setTargetDAGCombine(ISD::ZERO_EXTEND);
1052     setTargetDAGCombine(ISD::FP_TO_SINT);
1053     setTargetDAGCombine(ISD::FP_TO_UINT);
1054   }
1055   if (Subtarget.hasVInstructions()) {
1056     setTargetDAGCombine(ISD::FCOPYSIGN);
1057     setTargetDAGCombine(ISD::MGATHER);
1058     setTargetDAGCombine(ISD::MSCATTER);
1059     setTargetDAGCombine(ISD::VP_GATHER);
1060     setTargetDAGCombine(ISD::VP_SCATTER);
1061     setTargetDAGCombine(ISD::SRA);
1062     setTargetDAGCombine(ISD::SRL);
1063     setTargetDAGCombine(ISD::SHL);
1064     setTargetDAGCombine(ISD::STORE);
1065   }
1066 }
1067 
1068 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1069                                             LLVMContext &Context,
1070                                             EVT VT) const {
1071   if (!VT.isVector())
1072     return getPointerTy(DL);
1073   if (Subtarget.hasVInstructions() &&
1074       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1075     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1076   return VT.changeVectorElementTypeToInteger();
1077 }
1078 
1079 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1080   return Subtarget.getXLenVT();
1081 }
1082 
1083 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1084                                              const CallInst &I,
1085                                              MachineFunction &MF,
1086                                              unsigned Intrinsic) const {
1087   auto &DL = I.getModule()->getDataLayout();
1088   switch (Intrinsic) {
1089   default:
1090     return false;
1091   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1092   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1093   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1094   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1095   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1096   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1097   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1098   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1099   case Intrinsic::riscv_masked_cmpxchg_i32: {
1100     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
1101     Info.opc = ISD::INTRINSIC_W_CHAIN;
1102     Info.memVT = MVT::getVT(PtrTy->getElementType());
1103     Info.ptrVal = I.getArgOperand(0);
1104     Info.offset = 0;
1105     Info.align = Align(4);
1106     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1107                  MachineMemOperand::MOVolatile;
1108     return true;
1109   }
1110   case Intrinsic::riscv_masked_strided_load:
1111     Info.opc = ISD::INTRINSIC_W_CHAIN;
1112     Info.ptrVal = I.getArgOperand(1);
1113     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1114     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1115     Info.size = MemoryLocation::UnknownSize;
1116     Info.flags |= MachineMemOperand::MOLoad;
1117     return true;
1118   case Intrinsic::riscv_masked_strided_store:
1119     Info.opc = ISD::INTRINSIC_VOID;
1120     Info.ptrVal = I.getArgOperand(1);
1121     Info.memVT =
1122         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1123     Info.align = Align(
1124         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1125         8);
1126     Info.size = MemoryLocation::UnknownSize;
1127     Info.flags |= MachineMemOperand::MOStore;
1128     return true;
1129   }
1130 }
1131 
1132 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1133                                                 const AddrMode &AM, Type *Ty,
1134                                                 unsigned AS,
1135                                                 Instruction *I) const {
1136   // No global is ever allowed as a base.
1137   if (AM.BaseGV)
1138     return false;
1139 
1140   // Require a 12-bit signed offset.
1141   if (!isInt<12>(AM.BaseOffs))
1142     return false;
1143 
1144   switch (AM.Scale) {
1145   case 0: // "r+i" or just "i", depending on HasBaseReg.
1146     break;
1147   case 1:
1148     if (!AM.HasBaseReg) // allow "r+i".
1149       break;
1150     return false; // disallow "r+r" or "r+r+i".
1151   default:
1152     return false;
1153   }
1154 
1155   return true;
1156 }
1157 
1158 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1159   return isInt<12>(Imm);
1160 }
1161 
1162 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1163   return isInt<12>(Imm);
1164 }
1165 
1166 // On RV32, 64-bit integers are split into their high and low parts and held
1167 // in two different registers, so the trunc is free since the low register can
1168 // just be used.
1169 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1170   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1171     return false;
1172   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1173   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1174   return (SrcBits == 64 && DestBits == 32);
1175 }
1176 
1177 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1178   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1179       !SrcVT.isInteger() || !DstVT.isInteger())
1180     return false;
1181   unsigned SrcBits = SrcVT.getSizeInBits();
1182   unsigned DestBits = DstVT.getSizeInBits();
1183   return (SrcBits == 64 && DestBits == 32);
1184 }
1185 
1186 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1187   // Zexts are free if they can be combined with a load.
1188   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1189   // poorly with type legalization of compares preferring sext.
1190   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1191     EVT MemVT = LD->getMemoryVT();
1192     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1193         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1194          LD->getExtensionType() == ISD::ZEXTLOAD))
1195       return true;
1196   }
1197 
1198   return TargetLowering::isZExtFree(Val, VT2);
1199 }
1200 
1201 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1202   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1203 }
1204 
1205 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1206   return Subtarget.hasStdExtZbb();
1207 }
1208 
1209 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1210   return Subtarget.hasStdExtZbb();
1211 }
1212 
1213 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1214   EVT VT = Y.getValueType();
1215 
1216   // FIXME: Support vectors once we have tests.
1217   if (VT.isVector())
1218     return false;
1219 
1220   return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y);
1221 }
1222 
1223 /// Check if sinking \p I's operands to I's basic block is profitable, because
1224 /// the operands can be folded into a target instruction, e.g.
1225 /// splats of scalars can fold into vector instructions.
1226 bool RISCVTargetLowering::shouldSinkOperands(
1227     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1228   using namespace llvm::PatternMatch;
1229 
1230   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1231     return false;
1232 
1233   auto IsSinker = [&](Instruction *I, int Operand) {
1234     switch (I->getOpcode()) {
1235     case Instruction::Add:
1236     case Instruction::Sub:
1237     case Instruction::Mul:
1238     case Instruction::And:
1239     case Instruction::Or:
1240     case Instruction::Xor:
1241     case Instruction::FAdd:
1242     case Instruction::FSub:
1243     case Instruction::FMul:
1244     case Instruction::FDiv:
1245     case Instruction::ICmp:
1246     case Instruction::FCmp:
1247       return true;
1248     case Instruction::Shl:
1249     case Instruction::LShr:
1250     case Instruction::AShr:
1251     case Instruction::UDiv:
1252     case Instruction::SDiv:
1253     case Instruction::URem:
1254     case Instruction::SRem:
1255       return Operand == 1;
1256     case Instruction::Call:
1257       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1258         switch (II->getIntrinsicID()) {
1259         case Intrinsic::fma:
1260           return Operand == 0 || Operand == 1;
1261         default:
1262           return false;
1263         }
1264       }
1265       return false;
1266     default:
1267       return false;
1268     }
1269   };
1270 
1271   for (auto OpIdx : enumerate(I->operands())) {
1272     if (!IsSinker(I, OpIdx.index()))
1273       continue;
1274 
1275     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1276     // Make sure we are not already sinking this operand
1277     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1278       continue;
1279 
1280     // We are looking for a splat that can be sunk.
1281     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1282                              m_Undef(), m_ZeroMask())))
1283       continue;
1284 
1285     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1286     // and vector registers
1287     for (Use &U : Op->uses()) {
1288       Instruction *Insn = cast<Instruction>(U.getUser());
1289       if (!IsSinker(Insn, U.getOperandNo()))
1290         return false;
1291     }
1292 
1293     Ops.push_back(&Op->getOperandUse(0));
1294     Ops.push_back(&OpIdx.value());
1295   }
1296   return true;
1297 }
1298 
1299 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1300                                        bool ForCodeSize) const {
1301   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1302   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1303     return false;
1304   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1305     return false;
1306   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1307     return false;
1308   if (Imm.isNegZero())
1309     return false;
1310   return Imm.isZero();
1311 }
1312 
1313 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1314   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1315          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1316          (VT == MVT::f64 && Subtarget.hasStdExtD());
1317 }
1318 
1319 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1320                                                       CallingConv::ID CC,
1321                                                       EVT VT) const {
1322   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1323   // We might still end up using a GPR but that will be decided based on ABI.
1324   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1325   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1326     return MVT::f32;
1327 
1328   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1329 }
1330 
1331 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1332                                                            CallingConv::ID CC,
1333                                                            EVT VT) const {
1334   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1335   // We might still end up using a GPR but that will be decided based on ABI.
1336   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1337   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1338     return 1;
1339 
1340   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1341 }
1342 
1343 // Changes the condition code and swaps operands if necessary, so the SetCC
1344 // operation matches one of the comparisons supported directly by branches
1345 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1346 // with 1/-1.
1347 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1348                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1349   // Convert X > -1 to X >= 0.
1350   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1351     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1352     CC = ISD::SETGE;
1353     return;
1354   }
1355   // Convert X < 1 to 0 >= X.
1356   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1357     RHS = LHS;
1358     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1359     CC = ISD::SETGE;
1360     return;
1361   }
1362 
1363   switch (CC) {
1364   default:
1365     break;
1366   case ISD::SETGT:
1367   case ISD::SETLE:
1368   case ISD::SETUGT:
1369   case ISD::SETULE:
1370     CC = ISD::getSetCCSwappedOperands(CC);
1371     std::swap(LHS, RHS);
1372     break;
1373   }
1374 }
1375 
1376 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1377   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1378   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1379   if (VT.getVectorElementType() == MVT::i1)
1380     KnownSize *= 8;
1381 
1382   switch (KnownSize) {
1383   default:
1384     llvm_unreachable("Invalid LMUL.");
1385   case 8:
1386     return RISCVII::VLMUL::LMUL_F8;
1387   case 16:
1388     return RISCVII::VLMUL::LMUL_F4;
1389   case 32:
1390     return RISCVII::VLMUL::LMUL_F2;
1391   case 64:
1392     return RISCVII::VLMUL::LMUL_1;
1393   case 128:
1394     return RISCVII::VLMUL::LMUL_2;
1395   case 256:
1396     return RISCVII::VLMUL::LMUL_4;
1397   case 512:
1398     return RISCVII::VLMUL::LMUL_8;
1399   }
1400 }
1401 
1402 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1403   switch (LMul) {
1404   default:
1405     llvm_unreachable("Invalid LMUL.");
1406   case RISCVII::VLMUL::LMUL_F8:
1407   case RISCVII::VLMUL::LMUL_F4:
1408   case RISCVII::VLMUL::LMUL_F2:
1409   case RISCVII::VLMUL::LMUL_1:
1410     return RISCV::VRRegClassID;
1411   case RISCVII::VLMUL::LMUL_2:
1412     return RISCV::VRM2RegClassID;
1413   case RISCVII::VLMUL::LMUL_4:
1414     return RISCV::VRM4RegClassID;
1415   case RISCVII::VLMUL::LMUL_8:
1416     return RISCV::VRM8RegClassID;
1417   }
1418 }
1419 
1420 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1421   RISCVII::VLMUL LMUL = getLMUL(VT);
1422   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1423       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1424       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1425       LMUL == RISCVII::VLMUL::LMUL_1) {
1426     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1427                   "Unexpected subreg numbering");
1428     return RISCV::sub_vrm1_0 + Index;
1429   }
1430   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1431     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1432                   "Unexpected subreg numbering");
1433     return RISCV::sub_vrm2_0 + Index;
1434   }
1435   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1436     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1437                   "Unexpected subreg numbering");
1438     return RISCV::sub_vrm4_0 + Index;
1439   }
1440   llvm_unreachable("Invalid vector type.");
1441 }
1442 
1443 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1444   if (VT.getVectorElementType() == MVT::i1)
1445     return RISCV::VRRegClassID;
1446   return getRegClassIDForLMUL(getLMUL(VT));
1447 }
1448 
1449 // Attempt to decompose a subvector insert/extract between VecVT and
1450 // SubVecVT via subregister indices. Returns the subregister index that
1451 // can perform the subvector insert/extract with the given element index, as
1452 // well as the index corresponding to any leftover subvectors that must be
1453 // further inserted/extracted within the register class for SubVecVT.
1454 std::pair<unsigned, unsigned>
1455 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1456     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1457     const RISCVRegisterInfo *TRI) {
1458   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1459                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1460                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1461                 "Register classes not ordered");
1462   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1463   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1464   // Try to compose a subregister index that takes us from the incoming
1465   // LMUL>1 register class down to the outgoing one. At each step we half
1466   // the LMUL:
1467   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1468   // Note that this is not guaranteed to find a subregister index, such as
1469   // when we are extracting from one VR type to another.
1470   unsigned SubRegIdx = RISCV::NoSubRegister;
1471   for (const unsigned RCID :
1472        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1473     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1474       VecVT = VecVT.getHalfNumVectorElementsVT();
1475       bool IsHi =
1476           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1477       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1478                                             getSubregIndexByMVT(VecVT, IsHi));
1479       if (IsHi)
1480         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1481     }
1482   return {SubRegIdx, InsertExtractIdx};
1483 }
1484 
1485 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1486 // stores for those types.
1487 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1488   return !Subtarget.useRVVForFixedLengthVectors() ||
1489          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1490 }
1491 
1492 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1493   if (ScalarTy->isPointerTy())
1494     return true;
1495 
1496   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1497       ScalarTy->isIntegerTy(32))
1498     return true;
1499 
1500   if (ScalarTy->isIntegerTy(64))
1501     return Subtarget.hasVInstructionsI64();
1502 
1503   if (ScalarTy->isHalfTy())
1504     return Subtarget.hasVInstructionsF16();
1505   if (ScalarTy->isFloatTy())
1506     return Subtarget.hasVInstructionsF32();
1507   if (ScalarTy->isDoubleTy())
1508     return Subtarget.hasVInstructionsF64();
1509 
1510   return false;
1511 }
1512 
1513 static bool useRVVForFixedLengthVectorVT(MVT VT,
1514                                          const RISCVSubtarget &Subtarget) {
1515   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1516   if (!Subtarget.useRVVForFixedLengthVectors())
1517     return false;
1518 
1519   // We only support a set of vector types with a consistent maximum fixed size
1520   // across all supported vector element types to avoid legalization issues.
1521   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1522   // fixed-length vector type we support is 1024 bytes.
1523   if (VT.getFixedSizeInBits() > 1024 * 8)
1524     return false;
1525 
1526   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1527 
1528   MVT EltVT = VT.getVectorElementType();
1529 
1530   // Don't use RVV for vectors we cannot scalarize if required.
1531   switch (EltVT.SimpleTy) {
1532   // i1 is supported but has different rules.
1533   default:
1534     return false;
1535   case MVT::i1:
1536     // Masks can only use a single register.
1537     if (VT.getVectorNumElements() > MinVLen)
1538       return false;
1539     MinVLen /= 8;
1540     break;
1541   case MVT::i8:
1542   case MVT::i16:
1543   case MVT::i32:
1544     break;
1545   case MVT::i64:
1546     if (!Subtarget.hasVInstructionsI64())
1547       return false;
1548     break;
1549   case MVT::f16:
1550     if (!Subtarget.hasVInstructionsF16())
1551       return false;
1552     break;
1553   case MVT::f32:
1554     if (!Subtarget.hasVInstructionsF32())
1555       return false;
1556     break;
1557   case MVT::f64:
1558     if (!Subtarget.hasVInstructionsF64())
1559       return false;
1560     break;
1561   }
1562 
1563   // Reject elements larger than ELEN.
1564   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1565     return false;
1566 
1567   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1568   // Don't use RVV for types that don't fit.
1569   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1570     return false;
1571 
1572   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1573   // the base fixed length RVV support in place.
1574   if (!VT.isPow2VectorType())
1575     return false;
1576 
1577   return true;
1578 }
1579 
1580 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1581   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1582 }
1583 
1584 // Return the largest legal scalable vector type that matches VT's element type.
1585 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1586                                             const RISCVSubtarget &Subtarget) {
1587   // This may be called before legal types are setup.
1588   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1589           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1590          "Expected legal fixed length vector!");
1591 
1592   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1593   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1594 
1595   MVT EltVT = VT.getVectorElementType();
1596   switch (EltVT.SimpleTy) {
1597   default:
1598     llvm_unreachable("unexpected element type for RVV container");
1599   case MVT::i1:
1600   case MVT::i8:
1601   case MVT::i16:
1602   case MVT::i32:
1603   case MVT::i64:
1604   case MVT::f16:
1605   case MVT::f32:
1606   case MVT::f64: {
1607     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1608     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1609     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1610     unsigned NumElts =
1611         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1612     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1613     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1614     return MVT::getScalableVectorVT(EltVT, NumElts);
1615   }
1616   }
1617 }
1618 
1619 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1620                                             const RISCVSubtarget &Subtarget) {
1621   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1622                                           Subtarget);
1623 }
1624 
1625 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1626   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1627 }
1628 
1629 // Grow V to consume an entire RVV register.
1630 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1631                                        const RISCVSubtarget &Subtarget) {
1632   assert(VT.isScalableVector() &&
1633          "Expected to convert into a scalable vector!");
1634   assert(V.getValueType().isFixedLengthVector() &&
1635          "Expected a fixed length vector operand!");
1636   SDLoc DL(V);
1637   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1638   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1639 }
1640 
1641 // Shrink V so it's just big enough to maintain a VT's worth of data.
1642 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1643                                          const RISCVSubtarget &Subtarget) {
1644   assert(VT.isFixedLengthVector() &&
1645          "Expected to convert into a fixed length vector!");
1646   assert(V.getValueType().isScalableVector() &&
1647          "Expected a scalable vector operand!");
1648   SDLoc DL(V);
1649   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1650   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1651 }
1652 
1653 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1654 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1655 // the vector type that it is contained in.
1656 static std::pair<SDValue, SDValue>
1657 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1658                 const RISCVSubtarget &Subtarget) {
1659   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1660   MVT XLenVT = Subtarget.getXLenVT();
1661   SDValue VL = VecVT.isFixedLengthVector()
1662                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1663                    : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT);
1664   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1665   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1666   return {Mask, VL};
1667 }
1668 
1669 // As above but assuming the given type is a scalable vector type.
1670 static std::pair<SDValue, SDValue>
1671 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1672                         const RISCVSubtarget &Subtarget) {
1673   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1674   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1675 }
1676 
1677 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1678 // of either is (currently) supported. This can get us into an infinite loop
1679 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1680 // as a ..., etc.
1681 // Until either (or both) of these can reliably lower any node, reporting that
1682 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1683 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1684 // which is not desirable.
1685 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1686     EVT VT, unsigned DefinedValues) const {
1687   return false;
1688 }
1689 
1690 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1691   // Only splats are currently supported.
1692   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1693     return true;
1694 
1695   return false;
1696 }
1697 
1698 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1699                                   const RISCVSubtarget &Subtarget) {
1700   // RISCV FP-to-int conversions saturate to the destination register size, but
1701   // don't produce 0 for nan. We can use a conversion instruction and fix the
1702   // nan case with a compare and a select.
1703   SDValue Src = Op.getOperand(0);
1704 
1705   EVT DstVT = Op.getValueType();
1706   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1707 
1708   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1709   unsigned Opc;
1710   if (SatVT == DstVT)
1711     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1712   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1713     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1714   else
1715     return SDValue();
1716   // FIXME: Support other SatVTs by clamping before or after the conversion.
1717 
1718   SDLoc DL(Op);
1719   SDValue FpToInt = DAG.getNode(
1720       Opc, DL, DstVT, Src,
1721       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1722 
1723   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1724   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1725 }
1726 
1727 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1728 // and back. Taking care to avoid converting values that are nan or already
1729 // correct.
1730 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1731 // have FRM dependencies modeled yet.
1732 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1733   MVT VT = Op.getSimpleValueType();
1734   assert(VT.isVector() && "Unexpected type");
1735 
1736   SDLoc DL(Op);
1737 
1738   // Freeze the source since we are increasing the number of uses.
1739   SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0));
1740 
1741   // Truncate to integer and convert back to FP.
1742   MVT IntVT = VT.changeVectorElementTypeToInteger();
1743   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1744   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1745 
1746   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1747 
1748   if (Op.getOpcode() == ISD::FCEIL) {
1749     // If the truncated value is the greater than or equal to the original
1750     // value, we've computed the ceil. Otherwise, we went the wrong way and
1751     // need to increase by 1.
1752     // FIXME: This should use a masked operation. Handle here or in isel?
1753     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1754                                  DAG.getConstantFP(1.0, DL, VT));
1755     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1756     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1757   } else if (Op.getOpcode() == ISD::FFLOOR) {
1758     // If the truncated value is the less than or equal to the original value,
1759     // we've computed the floor. Otherwise, we went the wrong way and need to
1760     // decrease by 1.
1761     // FIXME: This should use a masked operation. Handle here or in isel?
1762     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1763                                  DAG.getConstantFP(1.0, DL, VT));
1764     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1765     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1766   }
1767 
1768   // Restore the original sign so that -0.0 is preserved.
1769   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1770 
1771   // Determine the largest integer that can be represented exactly. This and
1772   // values larger than it don't have any fractional bits so don't need to
1773   // be converted.
1774   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1775   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1776   APFloat MaxVal = APFloat(FltSem);
1777   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1778                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1779   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1780 
1781   // If abs(Src) was larger than MaxVal or nan, keep it.
1782   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1783   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1784   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1785 }
1786 
1787 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1788                                  const RISCVSubtarget &Subtarget) {
1789   MVT VT = Op.getSimpleValueType();
1790   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1791 
1792   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1793 
1794   SDLoc DL(Op);
1795   SDValue Mask, VL;
1796   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1797 
1798   unsigned Opc =
1799       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1800   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1801   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1802 }
1803 
1804 struct VIDSequence {
1805   int64_t StepNumerator;
1806   unsigned StepDenominator;
1807   int64_t Addend;
1808 };
1809 
1810 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1811 // to the (non-zero) step S and start value X. This can be then lowered as the
1812 // RVV sequence (VID * S) + X, for example.
1813 // The step S is represented as an integer numerator divided by a positive
1814 // denominator. Note that the implementation currently only identifies
1815 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1816 // cannot detect 2/3, for example.
1817 // Note that this method will also match potentially unappealing index
1818 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1819 // determine whether this is worth generating code for.
1820 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1821   unsigned NumElts = Op.getNumOperands();
1822   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1823   if (!Op.getValueType().isInteger())
1824     return None;
1825 
1826   Optional<unsigned> SeqStepDenom;
1827   Optional<int64_t> SeqStepNum, SeqAddend;
1828   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1829   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1830   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1831     // Assume undef elements match the sequence; we just have to be careful
1832     // when interpolating across them.
1833     if (Op.getOperand(Idx).isUndef())
1834       continue;
1835     // The BUILD_VECTOR must be all constants.
1836     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1837       return None;
1838 
1839     uint64_t Val = Op.getConstantOperandVal(Idx) &
1840                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1841 
1842     if (PrevElt) {
1843       // Calculate the step since the last non-undef element, and ensure
1844       // it's consistent across the entire sequence.
1845       unsigned IdxDiff = Idx - PrevElt->second;
1846       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1847 
1848       // A zero-value value difference means that we're somewhere in the middle
1849       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1850       // step change before evaluating the sequence.
1851       if (ValDiff != 0) {
1852         int64_t Remainder = ValDiff % IdxDiff;
1853         // Normalize the step if it's greater than 1.
1854         if (Remainder != ValDiff) {
1855           // The difference must cleanly divide the element span.
1856           if (Remainder != 0)
1857             return None;
1858           ValDiff /= IdxDiff;
1859           IdxDiff = 1;
1860         }
1861 
1862         if (!SeqStepNum)
1863           SeqStepNum = ValDiff;
1864         else if (ValDiff != SeqStepNum)
1865           return None;
1866 
1867         if (!SeqStepDenom)
1868           SeqStepDenom = IdxDiff;
1869         else if (IdxDiff != *SeqStepDenom)
1870           return None;
1871       }
1872     }
1873 
1874     // Record and/or check any addend.
1875     if (SeqStepNum && SeqStepDenom) {
1876       uint64_t ExpectedVal =
1877           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1878       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1879       if (!SeqAddend)
1880         SeqAddend = Addend;
1881       else if (SeqAddend != Addend)
1882         return None;
1883     }
1884 
1885     // Record this non-undef element for later.
1886     if (!PrevElt || PrevElt->first != Val)
1887       PrevElt = std::make_pair(Val, Idx);
1888   }
1889   // We need to have logged both a step and an addend for this to count as
1890   // a legal index sequence.
1891   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1892     return None;
1893 
1894   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1895 }
1896 
1897 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1898                                  const RISCVSubtarget &Subtarget) {
1899   MVT VT = Op.getSimpleValueType();
1900   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1901 
1902   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1903 
1904   SDLoc DL(Op);
1905   SDValue Mask, VL;
1906   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1907 
1908   MVT XLenVT = Subtarget.getXLenVT();
1909   unsigned NumElts = Op.getNumOperands();
1910 
1911   if (VT.getVectorElementType() == MVT::i1) {
1912     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1913       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1914       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1915     }
1916 
1917     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1918       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1919       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1920     }
1921 
1922     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1923     // scalar integer chunks whose bit-width depends on the number of mask
1924     // bits and XLEN.
1925     // First, determine the most appropriate scalar integer type to use. This
1926     // is at most XLenVT, but may be shrunk to a smaller vector element type
1927     // according to the size of the final vector - use i8 chunks rather than
1928     // XLenVT if we're producing a v8i1. This results in more consistent
1929     // codegen across RV32 and RV64.
1930     unsigned NumViaIntegerBits =
1931         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1932     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1933       // If we have to use more than one INSERT_VECTOR_ELT then this
1934       // optimization is likely to increase code size; avoid peforming it in
1935       // such a case. We can use a load from a constant pool in this case.
1936       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1937         return SDValue();
1938       // Now we can create our integer vector type. Note that it may be larger
1939       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1940       MVT IntegerViaVecVT =
1941           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1942                            divideCeil(NumElts, NumViaIntegerBits));
1943 
1944       uint64_t Bits = 0;
1945       unsigned BitPos = 0, IntegerEltIdx = 0;
1946       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1947 
1948       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1949         // Once we accumulate enough bits to fill our scalar type, insert into
1950         // our vector and clear our accumulated data.
1951         if (I != 0 && I % NumViaIntegerBits == 0) {
1952           if (NumViaIntegerBits <= 32)
1953             Bits = SignExtend64(Bits, 32);
1954           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1955           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1956                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1957           Bits = 0;
1958           BitPos = 0;
1959           IntegerEltIdx++;
1960         }
1961         SDValue V = Op.getOperand(I);
1962         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1963         Bits |= ((uint64_t)BitValue << BitPos);
1964       }
1965 
1966       // Insert the (remaining) scalar value into position in our integer
1967       // vector type.
1968       if (NumViaIntegerBits <= 32)
1969         Bits = SignExtend64(Bits, 32);
1970       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1971       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1972                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1973 
1974       if (NumElts < NumViaIntegerBits) {
1975         // If we're producing a smaller vector than our minimum legal integer
1976         // type, bitcast to the equivalent (known-legal) mask type, and extract
1977         // our final mask.
1978         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1979         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1980         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1981                           DAG.getConstant(0, DL, XLenVT));
1982       } else {
1983         // Else we must have produced an integer type with the same size as the
1984         // mask type; bitcast for the final result.
1985         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1986         Vec = DAG.getBitcast(VT, Vec);
1987       }
1988 
1989       return Vec;
1990     }
1991 
1992     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1993     // vector type, we have a legal equivalently-sized i8 type, so we can use
1994     // that.
1995     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
1996     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
1997 
1998     SDValue WideVec;
1999     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2000       // For a splat, perform a scalar truncate before creating the wider
2001       // vector.
2002       assert(Splat.getValueType() == XLenVT &&
2003              "Unexpected type for i1 splat value");
2004       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2005                           DAG.getConstant(1, DL, XLenVT));
2006       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2007     } else {
2008       SmallVector<SDValue, 8> Ops(Op->op_values());
2009       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2010       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2011       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2012     }
2013 
2014     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2015   }
2016 
2017   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2018     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2019                                         : RISCVISD::VMV_V_X_VL;
2020     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
2021     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2022   }
2023 
2024   // Try and match index sequences, which we can lower to the vid instruction
2025   // with optional modifications. An all-undef vector is matched by
2026   // getSplatValue, above.
2027   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2028     int64_t StepNumerator = SimpleVID->StepNumerator;
2029     unsigned StepDenominator = SimpleVID->StepDenominator;
2030     int64_t Addend = SimpleVID->Addend;
2031 
2032     assert(StepNumerator != 0 && "Invalid step");
2033     bool Negate = false;
2034     int64_t SplatStepVal = StepNumerator;
2035     unsigned StepOpcode = ISD::MUL;
2036     if (StepNumerator != 1) {
2037       if (isPowerOf2_64(std::abs(StepNumerator))) {
2038         Negate = StepNumerator < 0;
2039         StepOpcode = ISD::SHL;
2040         SplatStepVal = Log2_64(std::abs(StepNumerator));
2041       }
2042     }
2043 
2044     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2045     // threshold since it's the immediate value many RVV instructions accept.
2046     // There is no vmul.vi instruction so ensure multiply constant can fit in
2047     // a single addi instruction.
2048     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2049          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2050         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2051       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2052       // Convert right out of the scalable type so we can use standard ISD
2053       // nodes for the rest of the computation. If we used scalable types with
2054       // these, we'd lose the fixed-length vector info and generate worse
2055       // vsetvli code.
2056       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2057       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2058           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2059         SDValue SplatStep = DAG.getSplatVector(
2060             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2061         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2062       }
2063       if (StepDenominator != 1) {
2064         SDValue SplatStep = DAG.getSplatVector(
2065             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2066         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2067       }
2068       if (Addend != 0 || Negate) {
2069         SDValue SplatAddend =
2070             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2071         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2072       }
2073       return VID;
2074     }
2075   }
2076 
2077   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2078   // when re-interpreted as a vector with a larger element type. For example,
2079   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2080   // could be instead splat as
2081   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2082   // TODO: This optimization could also work on non-constant splats, but it
2083   // would require bit-manipulation instructions to construct the splat value.
2084   SmallVector<SDValue> Sequence;
2085   unsigned EltBitSize = VT.getScalarSizeInBits();
2086   const auto *BV = cast<BuildVectorSDNode>(Op);
2087   if (VT.isInteger() && EltBitSize < 64 &&
2088       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2089       BV->getRepeatedSequence(Sequence) &&
2090       (Sequence.size() * EltBitSize) <= 64) {
2091     unsigned SeqLen = Sequence.size();
2092     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2093     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2094     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2095             ViaIntVT == MVT::i64) &&
2096            "Unexpected sequence type");
2097 
2098     unsigned EltIdx = 0;
2099     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2100     uint64_t SplatValue = 0;
2101     // Construct the amalgamated value which can be splatted as this larger
2102     // vector type.
2103     for (const auto &SeqV : Sequence) {
2104       if (!SeqV.isUndef())
2105         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2106                        << (EltIdx * EltBitSize));
2107       EltIdx++;
2108     }
2109 
2110     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2111     // achieve better constant materializion.
2112     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2113       SplatValue = SignExtend64(SplatValue, 32);
2114 
2115     // Since we can't introduce illegal i64 types at this stage, we can only
2116     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2117     // way we can use RVV instructions to splat.
2118     assert((ViaIntVT.bitsLE(XLenVT) ||
2119             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2120            "Unexpected bitcast sequence");
2121     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2122       SDValue ViaVL =
2123           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2124       MVT ViaContainerVT =
2125           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2126       SDValue Splat =
2127           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2128                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2129       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2130       return DAG.getBitcast(VT, Splat);
2131     }
2132   }
2133 
2134   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2135   // which constitute a large proportion of the elements. In such cases we can
2136   // splat a vector with the dominant element and make up the shortfall with
2137   // INSERT_VECTOR_ELTs.
2138   // Note that this includes vectors of 2 elements by association. The
2139   // upper-most element is the "dominant" one, allowing us to use a splat to
2140   // "insert" the upper element, and an insert of the lower element at position
2141   // 0, which improves codegen.
2142   SDValue DominantValue;
2143   unsigned MostCommonCount = 0;
2144   DenseMap<SDValue, unsigned> ValueCounts;
2145   unsigned NumUndefElts =
2146       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2147 
2148   // Track the number of scalar loads we know we'd be inserting, estimated as
2149   // any non-zero floating-point constant. Other kinds of element are either
2150   // already in registers or are materialized on demand. The threshold at which
2151   // a vector load is more desirable than several scalar materializion and
2152   // vector-insertion instructions is not known.
2153   unsigned NumScalarLoads = 0;
2154 
2155   for (SDValue V : Op->op_values()) {
2156     if (V.isUndef())
2157       continue;
2158 
2159     ValueCounts.insert(std::make_pair(V, 0));
2160     unsigned &Count = ValueCounts[V];
2161 
2162     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2163       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2164 
2165     // Is this value dominant? In case of a tie, prefer the highest element as
2166     // it's cheaper to insert near the beginning of a vector than it is at the
2167     // end.
2168     if (++Count >= MostCommonCount) {
2169       DominantValue = V;
2170       MostCommonCount = Count;
2171     }
2172   }
2173 
2174   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2175   unsigned NumDefElts = NumElts - NumUndefElts;
2176   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2177 
2178   // Don't perform this optimization when optimizing for size, since
2179   // materializing elements and inserting them tends to cause code bloat.
2180   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2181       ((MostCommonCount > DominantValueCountThreshold) ||
2182        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2183     // Start by splatting the most common element.
2184     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2185 
2186     DenseSet<SDValue> Processed{DominantValue};
2187     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2188     for (const auto &OpIdx : enumerate(Op->ops())) {
2189       const SDValue &V = OpIdx.value();
2190       if (V.isUndef() || !Processed.insert(V).second)
2191         continue;
2192       if (ValueCounts[V] == 1) {
2193         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2194                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2195       } else {
2196         // Blend in all instances of this value using a VSELECT, using a
2197         // mask where each bit signals whether that element is the one
2198         // we're after.
2199         SmallVector<SDValue> Ops;
2200         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2201           return DAG.getConstant(V == V1, DL, XLenVT);
2202         });
2203         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2204                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2205                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2206       }
2207     }
2208 
2209     return Vec;
2210   }
2211 
2212   return SDValue();
2213 }
2214 
2215 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
2216                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
2217   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2218     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2219     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2220     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2221     // node in order to try and match RVV vector/scalar instructions.
2222     if ((LoC >> 31) == HiC)
2223       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
2224   }
2225 
2226   // Fall back to a stack store and stride x0 vector load.
2227   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
2228 }
2229 
2230 // Called by type legalization to handle splat of i64 on RV32.
2231 // FIXME: We can optimize this when the type has sign or zero bits in one
2232 // of the halves.
2233 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
2234                                    SDValue VL, SelectionDAG &DAG) {
2235   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2236   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2237                            DAG.getConstant(0, DL, MVT::i32));
2238   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2239                            DAG.getConstant(1, DL, MVT::i32));
2240   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
2241 }
2242 
2243 // This function lowers a splat of a scalar operand Splat with the vector
2244 // length VL. It ensures the final sequence is type legal, which is useful when
2245 // lowering a splat after type legalization.
2246 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
2247                                 SelectionDAG &DAG,
2248                                 const RISCVSubtarget &Subtarget) {
2249   if (VT.isFloatingPoint()) {
2250     // If VL is 1, we could use vfmv.s.f.
2251     if (isOneConstant(VL))
2252       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT),
2253                          Scalar, VL);
2254     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
2255   }
2256 
2257   MVT XLenVT = Subtarget.getXLenVT();
2258 
2259   // Simplest case is that the operand needs to be promoted to XLenVT.
2260   if (Scalar.getValueType().bitsLE(XLenVT)) {
2261     // If the operand is a constant, sign extend to increase our chances
2262     // of being able to use a .vi instruction. ANY_EXTEND would become a
2263     // a zero extend and the simm5 check in isel would fail.
2264     // FIXME: Should we ignore the upper bits in isel instead?
2265     unsigned ExtOpc =
2266         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2267     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2268     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2269     // If VL is 1 and the scalar value won't benefit from immediate, we could
2270     // use vmv.s.x.
2271     if (isOneConstant(VL) &&
2272         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2273       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar,
2274                          VL);
2275     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
2276   }
2277 
2278   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2279          "Unexpected scalar for splat lowering!");
2280 
2281   if (isOneConstant(VL) && isNullConstant(Scalar))
2282     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT),
2283                        DAG.getConstant(0, DL, XLenVT), VL);
2284 
2285   // Otherwise use the more complicated splatting algorithm.
2286   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
2287 }
2288 
2289 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2290                                    const RISCVSubtarget &Subtarget) {
2291   SDValue V1 = Op.getOperand(0);
2292   SDValue V2 = Op.getOperand(1);
2293   SDLoc DL(Op);
2294   MVT XLenVT = Subtarget.getXLenVT();
2295   MVT VT = Op.getSimpleValueType();
2296   unsigned NumElts = VT.getVectorNumElements();
2297   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2298 
2299   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2300 
2301   SDValue TrueMask, VL;
2302   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2303 
2304   if (SVN->isSplat()) {
2305     const int Lane = SVN->getSplatIndex();
2306     if (Lane >= 0) {
2307       MVT SVT = VT.getVectorElementType();
2308 
2309       // Turn splatted vector load into a strided load with an X0 stride.
2310       SDValue V = V1;
2311       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2312       // with undef.
2313       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2314       int Offset = Lane;
2315       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2316         int OpElements =
2317             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2318         V = V.getOperand(Offset / OpElements);
2319         Offset %= OpElements;
2320       }
2321 
2322       // We need to ensure the load isn't atomic or volatile.
2323       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2324         auto *Ld = cast<LoadSDNode>(V);
2325         Offset *= SVT.getStoreSize();
2326         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2327                                                    TypeSize::Fixed(Offset), DL);
2328 
2329         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2330         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2331           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2332           SDValue IntID =
2333               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2334           SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
2335                            DAG.getRegister(RISCV::X0, XLenVT), VL};
2336           SDValue NewLoad = DAG.getMemIntrinsicNode(
2337               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2338               DAG.getMachineFunction().getMachineMemOperand(
2339                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2340           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2341           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2342         }
2343 
2344         // Otherwise use a scalar load and splat. This will give the best
2345         // opportunity to fold a splat into the operation. ISel can turn it into
2346         // the x0 strided load if we aren't able to fold away the select.
2347         if (SVT.isFloatingPoint())
2348           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2349                           Ld->getPointerInfo().getWithOffset(Offset),
2350                           Ld->getOriginalAlign(),
2351                           Ld->getMemOperand()->getFlags());
2352         else
2353           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2354                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2355                              Ld->getOriginalAlign(),
2356                              Ld->getMemOperand()->getFlags());
2357         DAG.makeEquivalentMemoryOrdering(Ld, V);
2358 
2359         unsigned Opc =
2360             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2361         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
2362         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2363       }
2364 
2365       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2366       assert(Lane < (int)NumElts && "Unexpected lane!");
2367       SDValue Gather =
2368           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2369                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2370       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2371     }
2372   }
2373 
2374   // Detect shuffles which can be re-expressed as vector selects; these are
2375   // shuffles in which each element in the destination is taken from an element
2376   // at the corresponding index in either source vectors.
2377   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
2378     int MaskIndex = MaskIdx.value();
2379     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2380   });
2381 
2382   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2383 
2384   SmallVector<SDValue> MaskVals;
2385   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2386   // merged with a second vrgather.
2387   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2388 
2389   // By default we preserve the original operand order, and use a mask to
2390   // select LHS as true and RHS as false. However, since RVV vector selects may
2391   // feature splats but only on the LHS, we may choose to invert our mask and
2392   // instead select between RHS and LHS.
2393   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2394   bool InvertMask = IsSelect == SwapOps;
2395 
2396   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2397   // half.
2398   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2399 
2400   // Now construct the mask that will be used by the vselect or blended
2401   // vrgather operation. For vrgathers, construct the appropriate indices into
2402   // each vector.
2403   for (int MaskIndex : SVN->getMask()) {
2404     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2405     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2406     if (!IsSelect) {
2407       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2408       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2409                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2410                                      : DAG.getUNDEF(XLenVT));
2411       GatherIndicesRHS.push_back(
2412           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2413                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2414       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2415         ++LHSIndexCounts[MaskIndex];
2416       if (!IsLHSOrUndefIndex)
2417         ++RHSIndexCounts[MaskIndex - NumElts];
2418     }
2419   }
2420 
2421   if (SwapOps) {
2422     std::swap(V1, V2);
2423     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2424   }
2425 
2426   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2427   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2428   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2429 
2430   if (IsSelect)
2431     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2432 
2433   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2434     // On such a large vector we're unable to use i8 as the index type.
2435     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2436     // may involve vector splitting if we're already at LMUL=8, or our
2437     // user-supplied maximum fixed-length LMUL.
2438     return SDValue();
2439   }
2440 
2441   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2442   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2443   MVT IndexVT = VT.changeTypeToInteger();
2444   // Since we can't introduce illegal index types at this stage, use i16 and
2445   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2446   // than XLenVT.
2447   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2448     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2449     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2450   }
2451 
2452   MVT IndexContainerVT =
2453       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2454 
2455   SDValue Gather;
2456   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2457   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2458   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2459     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
2460   } else {
2461     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2462     // If only one index is used, we can use a "splat" vrgather.
2463     // TODO: We can splat the most-common index and fix-up any stragglers, if
2464     // that's beneficial.
2465     if (LHSIndexCounts.size() == 1) {
2466       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2467       Gather =
2468           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2469                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2470     } else {
2471       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2472       LHSIndices =
2473           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2474 
2475       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2476                            TrueMask, VL);
2477     }
2478   }
2479 
2480   // If a second vector operand is used by this shuffle, blend it in with an
2481   // additional vrgather.
2482   if (!V2.isUndef()) {
2483     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2484     // If only one index is used, we can use a "splat" vrgather.
2485     // TODO: We can splat the most-common index and fix-up any stragglers, if
2486     // that's beneficial.
2487     if (RHSIndexCounts.size() == 1) {
2488       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2489       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2490                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2491     } else {
2492       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2493       RHSIndices =
2494           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2495       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2496                        VL);
2497     }
2498 
2499     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2500     SelectMask =
2501         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2502 
2503     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2504                          Gather, VL);
2505   }
2506 
2507   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2508 }
2509 
2510 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2511                                      SDLoc DL, SelectionDAG &DAG,
2512                                      const RISCVSubtarget &Subtarget) {
2513   if (VT.isScalableVector())
2514     return DAG.getFPExtendOrRound(Op, DL, VT);
2515   assert(VT.isFixedLengthVector() &&
2516          "Unexpected value type for RVV FP extend/round lowering");
2517   SDValue Mask, VL;
2518   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2519   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2520                         ? RISCVISD::FP_EXTEND_VL
2521                         : RISCVISD::FP_ROUND_VL;
2522   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2523 }
2524 
2525 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2526 // the exponent.
2527 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2528   MVT VT = Op.getSimpleValueType();
2529   unsigned EltSize = VT.getScalarSizeInBits();
2530   SDValue Src = Op.getOperand(0);
2531   SDLoc DL(Op);
2532 
2533   // We need a FP type that can represent the value.
2534   // TODO: Use f16 for i8 when possible?
2535   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2536   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2537 
2538   // Legal types should have been checked in the RISCVTargetLowering
2539   // constructor.
2540   // TODO: Splitting may make sense in some cases.
2541   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2542          "Expected legal float type!");
2543 
2544   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2545   // The trailing zero count is equal to log2 of this single bit value.
2546   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2547     SDValue Neg =
2548         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2549     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2550   }
2551 
2552   // We have a legal FP type, convert to it.
2553   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2554   // Bitcast to integer and shift the exponent to the LSB.
2555   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2556   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2557   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2558   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2559                               DAG.getConstant(ShiftAmt, DL, IntVT));
2560   // Truncate back to original type to allow vnsrl.
2561   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2562   // The exponent contains log2 of the value in biased form.
2563   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2564 
2565   // For trailing zeros, we just need to subtract the bias.
2566   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2567     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2568                        DAG.getConstant(ExponentBias, DL, VT));
2569 
2570   // For leading zeros, we need to remove the bias and convert from log2 to
2571   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2572   unsigned Adjust = ExponentBias + (EltSize - 1);
2573   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2574 }
2575 
2576 // While RVV has alignment restrictions, we should always be able to load as a
2577 // legal equivalently-sized byte-typed vector instead. This method is
2578 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2579 // the load is already correctly-aligned, it returns SDValue().
2580 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2581                                                     SelectionDAG &DAG) const {
2582   auto *Load = cast<LoadSDNode>(Op);
2583   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2584 
2585   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2586                                      Load->getMemoryVT(),
2587                                      *Load->getMemOperand()))
2588     return SDValue();
2589 
2590   SDLoc DL(Op);
2591   MVT VT = Op.getSimpleValueType();
2592   unsigned EltSizeBits = VT.getScalarSizeInBits();
2593   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2594          "Unexpected unaligned RVV load type");
2595   MVT NewVT =
2596       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2597   assert(NewVT.isValid() &&
2598          "Expecting equally-sized RVV vector types to be legal");
2599   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2600                           Load->getPointerInfo(), Load->getOriginalAlign(),
2601                           Load->getMemOperand()->getFlags());
2602   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2603 }
2604 
2605 // While RVV has alignment restrictions, we should always be able to store as a
2606 // legal equivalently-sized byte-typed vector instead. This method is
2607 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2608 // returns SDValue() if the store is already correctly aligned.
2609 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2610                                                      SelectionDAG &DAG) const {
2611   auto *Store = cast<StoreSDNode>(Op);
2612   assert(Store && Store->getValue().getValueType().isVector() &&
2613          "Expected vector store");
2614 
2615   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2616                                      Store->getMemoryVT(),
2617                                      *Store->getMemOperand()))
2618     return SDValue();
2619 
2620   SDLoc DL(Op);
2621   SDValue StoredVal = Store->getValue();
2622   MVT VT = StoredVal.getSimpleValueType();
2623   unsigned EltSizeBits = VT.getScalarSizeInBits();
2624   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2625          "Unexpected unaligned RVV store type");
2626   MVT NewVT =
2627       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2628   assert(NewVT.isValid() &&
2629          "Expecting equally-sized RVV vector types to be legal");
2630   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2631   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2632                       Store->getPointerInfo(), Store->getOriginalAlign(),
2633                       Store->getMemOperand()->getFlags());
2634 }
2635 
2636 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2637                                             SelectionDAG &DAG) const {
2638   switch (Op.getOpcode()) {
2639   default:
2640     report_fatal_error("unimplemented operand");
2641   case ISD::GlobalAddress:
2642     return lowerGlobalAddress(Op, DAG);
2643   case ISD::BlockAddress:
2644     return lowerBlockAddress(Op, DAG);
2645   case ISD::ConstantPool:
2646     return lowerConstantPool(Op, DAG);
2647   case ISD::JumpTable:
2648     return lowerJumpTable(Op, DAG);
2649   case ISD::GlobalTLSAddress:
2650     return lowerGlobalTLSAddress(Op, DAG);
2651   case ISD::SELECT:
2652     return lowerSELECT(Op, DAG);
2653   case ISD::BRCOND:
2654     return lowerBRCOND(Op, DAG);
2655   case ISD::VASTART:
2656     return lowerVASTART(Op, DAG);
2657   case ISD::FRAMEADDR:
2658     return lowerFRAMEADDR(Op, DAG);
2659   case ISD::RETURNADDR:
2660     return lowerRETURNADDR(Op, DAG);
2661   case ISD::SHL_PARTS:
2662     return lowerShiftLeftParts(Op, DAG);
2663   case ISD::SRA_PARTS:
2664     return lowerShiftRightParts(Op, DAG, true);
2665   case ISD::SRL_PARTS:
2666     return lowerShiftRightParts(Op, DAG, false);
2667   case ISD::BITCAST: {
2668     SDLoc DL(Op);
2669     EVT VT = Op.getValueType();
2670     SDValue Op0 = Op.getOperand(0);
2671     EVT Op0VT = Op0.getValueType();
2672     MVT XLenVT = Subtarget.getXLenVT();
2673     if (VT.isFixedLengthVector()) {
2674       // We can handle fixed length vector bitcasts with a simple replacement
2675       // in isel.
2676       if (Op0VT.isFixedLengthVector())
2677         return Op;
2678       // When bitcasting from scalar to fixed-length vector, insert the scalar
2679       // into a one-element vector of the result type, and perform a vector
2680       // bitcast.
2681       if (!Op0VT.isVector()) {
2682         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2683         if (!isTypeLegal(BVT))
2684           return SDValue();
2685         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2686                                               DAG.getUNDEF(BVT), Op0,
2687                                               DAG.getConstant(0, DL, XLenVT)));
2688       }
2689       return SDValue();
2690     }
2691     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2692     // thus: bitcast the vector to a one-element vector type whose element type
2693     // is the same as the result type, and extract the first element.
2694     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2695       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
2696       if (!isTypeLegal(BVT))
2697         return SDValue();
2698       SDValue BVec = DAG.getBitcast(BVT, Op0);
2699       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2700                          DAG.getConstant(0, DL, XLenVT));
2701     }
2702     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2703       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2704       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2705       return FPConv;
2706     }
2707     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2708         Subtarget.hasStdExtF()) {
2709       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2710       SDValue FPConv =
2711           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2712       return FPConv;
2713     }
2714     return SDValue();
2715   }
2716   case ISD::INTRINSIC_WO_CHAIN:
2717     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2718   case ISD::INTRINSIC_W_CHAIN:
2719     return LowerINTRINSIC_W_CHAIN(Op, DAG);
2720   case ISD::INTRINSIC_VOID:
2721     return LowerINTRINSIC_VOID(Op, DAG);
2722   case ISD::BSWAP:
2723   case ISD::BITREVERSE: {
2724     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
2725     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
2726     MVT VT = Op.getSimpleValueType();
2727     SDLoc DL(Op);
2728     // Start with the maximum immediate value which is the bitwidth - 1.
2729     unsigned Imm = VT.getSizeInBits() - 1;
2730     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2731     if (Op.getOpcode() == ISD::BSWAP)
2732       Imm &= ~0x7U;
2733     return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
2734                        DAG.getConstant(Imm, DL, VT));
2735   }
2736   case ISD::FSHL:
2737   case ISD::FSHR: {
2738     MVT VT = Op.getSimpleValueType();
2739     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
2740     SDLoc DL(Op);
2741     if (Op.getOperand(2).getOpcode() == ISD::Constant)
2742       return Op;
2743     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2744     // use log(XLen) bits. Mask the shift amount accordingly.
2745     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
2746     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
2747                                 DAG.getConstant(ShAmtWidth, DL, VT));
2748     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
2749     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
2750   }
2751   case ISD::TRUNCATE: {
2752     SDLoc DL(Op);
2753     MVT VT = Op.getSimpleValueType();
2754     // Only custom-lower vector truncates
2755     if (!VT.isVector())
2756       return Op;
2757 
2758     // Truncates to mask types are handled differently
2759     if (VT.getVectorElementType() == MVT::i1)
2760       return lowerVectorMaskTrunc(Op, DAG);
2761 
2762     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2763     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2764     // truncate by one power of two at a time.
2765     MVT DstEltVT = VT.getVectorElementType();
2766 
2767     SDValue Src = Op.getOperand(0);
2768     MVT SrcVT = Src.getSimpleValueType();
2769     MVT SrcEltVT = SrcVT.getVectorElementType();
2770 
2771     assert(DstEltVT.bitsLT(SrcEltVT) &&
2772            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
2773            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
2774            "Unexpected vector truncate lowering");
2775 
2776     MVT ContainerVT = SrcVT;
2777     if (SrcVT.isFixedLengthVector()) {
2778       ContainerVT = getContainerForFixedLengthVector(SrcVT);
2779       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2780     }
2781 
2782     SDValue Result = Src;
2783     SDValue Mask, VL;
2784     std::tie(Mask, VL) =
2785         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
2786     LLVMContext &Context = *DAG.getContext();
2787     const ElementCount Count = ContainerVT.getVectorElementCount();
2788     do {
2789       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
2790       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
2791       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
2792                            Mask, VL);
2793     } while (SrcEltVT != DstEltVT);
2794 
2795     if (SrcVT.isFixedLengthVector())
2796       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
2797 
2798     return Result;
2799   }
2800   case ISD::ANY_EXTEND:
2801   case ISD::ZERO_EXTEND:
2802     if (Op.getOperand(0).getValueType().isVector() &&
2803         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2804       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2805     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2806   case ISD::SIGN_EXTEND:
2807     if (Op.getOperand(0).getValueType().isVector() &&
2808         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2809       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2810     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2811   case ISD::SPLAT_VECTOR_PARTS:
2812     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2813   case ISD::INSERT_VECTOR_ELT:
2814     return lowerINSERT_VECTOR_ELT(Op, DAG);
2815   case ISD::EXTRACT_VECTOR_ELT:
2816     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2817   case ISD::VSCALE: {
2818     MVT VT = Op.getSimpleValueType();
2819     SDLoc DL(Op);
2820     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2821     // We define our scalable vector types for lmul=1 to use a 64 bit known
2822     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2823     // vscale as VLENB / 8.
2824     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
2825     if (isa<ConstantSDNode>(Op.getOperand(0))) {
2826       // We assume VLENB is a multiple of 8. We manually choose the best shift
2827       // here because SimplifyDemandedBits isn't always able to simplify it.
2828       uint64_t Val = Op.getConstantOperandVal(0);
2829       if (isPowerOf2_64(Val)) {
2830         uint64_t Log2 = Log2_64(Val);
2831         if (Log2 < 3)
2832           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
2833                              DAG.getConstant(3 - Log2, DL, VT));
2834         if (Log2 > 3)
2835           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
2836                              DAG.getConstant(Log2 - 3, DL, VT));
2837         return VLENB;
2838       }
2839       // If the multiplier is a multiple of 8, scale it down to avoid needing
2840       // to shift the VLENB value.
2841       if ((Val % 8) == 0)
2842         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
2843                            DAG.getConstant(Val / 8, DL, VT));
2844     }
2845 
2846     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2847                                  DAG.getConstant(3, DL, VT));
2848     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2849   }
2850   case ISD::FPOWI: {
2851     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
2852     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
2853     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
2854         Op.getOperand(1).getValueType() == MVT::i32) {
2855       SDLoc DL(Op);
2856       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
2857       SDValue Powi =
2858           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
2859       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
2860                          DAG.getIntPtrConstant(0, DL));
2861     }
2862     return SDValue();
2863   }
2864   case ISD::FP_EXTEND: {
2865     // RVV can only do fp_extend to types double the size as the source. We
2866     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2867     // via f32.
2868     SDLoc DL(Op);
2869     MVT VT = Op.getSimpleValueType();
2870     SDValue Src = Op.getOperand(0);
2871     MVT SrcVT = Src.getSimpleValueType();
2872 
2873     // Prepare any fixed-length vector operands.
2874     MVT ContainerVT = VT;
2875     if (SrcVT.isFixedLengthVector()) {
2876       ContainerVT = getContainerForFixedLengthVector(VT);
2877       MVT SrcContainerVT =
2878           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2879       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2880     }
2881 
2882     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2883         SrcVT.getVectorElementType() != MVT::f16) {
2884       // For scalable vectors, we only need to close the gap between
2885       // vXf16->vXf64.
2886       if (!VT.isFixedLengthVector())
2887         return Op;
2888       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2889       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2890       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2891     }
2892 
2893     MVT InterVT = VT.changeVectorElementType(MVT::f32);
2894     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2895     SDValue IntermediateExtend = getRVVFPExtendOrRound(
2896         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2897 
2898     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2899                                            DL, DAG, Subtarget);
2900     if (VT.isFixedLengthVector())
2901       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2902     return Extend;
2903   }
2904   case ISD::FP_ROUND: {
2905     // RVV can only do fp_round to types half the size as the source. We
2906     // custom-lower f64->f16 rounds via RVV's round-to-odd float
2907     // conversion instruction.
2908     SDLoc DL(Op);
2909     MVT VT = Op.getSimpleValueType();
2910     SDValue Src = Op.getOperand(0);
2911     MVT SrcVT = Src.getSimpleValueType();
2912 
2913     // Prepare any fixed-length vector operands.
2914     MVT ContainerVT = VT;
2915     if (VT.isFixedLengthVector()) {
2916       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2917       ContainerVT =
2918           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2919       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2920     }
2921 
2922     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2923         SrcVT.getVectorElementType() != MVT::f64) {
2924       // For scalable vectors, we only need to close the gap between
2925       // vXf64<->vXf16.
2926       if (!VT.isFixedLengthVector())
2927         return Op;
2928       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2929       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2930       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2931     }
2932 
2933     SDValue Mask, VL;
2934     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2935 
2936     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2937     SDValue IntermediateRound =
2938         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2939     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2940                                           DL, DAG, Subtarget);
2941 
2942     if (VT.isFixedLengthVector())
2943       return convertFromScalableVector(VT, Round, DAG, Subtarget);
2944     return Round;
2945   }
2946   case ISD::FP_TO_SINT:
2947   case ISD::FP_TO_UINT:
2948   case ISD::SINT_TO_FP:
2949   case ISD::UINT_TO_FP: {
2950     // RVV can only do fp<->int conversions to types half/double the size as
2951     // the source. We custom-lower any conversions that do two hops into
2952     // sequences.
2953     MVT VT = Op.getSimpleValueType();
2954     if (!VT.isVector())
2955       return Op;
2956     SDLoc DL(Op);
2957     SDValue Src = Op.getOperand(0);
2958     MVT EltVT = VT.getVectorElementType();
2959     MVT SrcVT = Src.getSimpleValueType();
2960     MVT SrcEltVT = SrcVT.getVectorElementType();
2961     unsigned EltSize = EltVT.getSizeInBits();
2962     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2963     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2964            "Unexpected vector element types");
2965 
2966     bool IsInt2FP = SrcEltVT.isInteger();
2967     // Widening conversions
2968     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2969       if (IsInt2FP) {
2970         // Do a regular integer sign/zero extension then convert to float.
2971         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2972                                       VT.getVectorElementCount());
2973         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2974                                  ? ISD::ZERO_EXTEND
2975                                  : ISD::SIGN_EXTEND;
2976         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2977         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2978       }
2979       // FP2Int
2980       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2981       // Do one doubling fp_extend then complete the operation by converting
2982       // to int.
2983       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2984       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2985       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2986     }
2987 
2988     // Narrowing conversions
2989     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2990       if (IsInt2FP) {
2991         // One narrowing int_to_fp, then an fp_round.
2992         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2993         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2994         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2995         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2996       }
2997       // FP2Int
2998       // One narrowing fp_to_int, then truncate the integer. If the float isn't
2999       // representable by the integer, the result is poison.
3000       MVT IVecVT =
3001           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
3002                            VT.getVectorElementCount());
3003       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3004       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3005     }
3006 
3007     // Scalable vectors can exit here. Patterns will handle equally-sized
3008     // conversions halving/doubling ones.
3009     if (!VT.isFixedLengthVector())
3010       return Op;
3011 
3012     // For fixed-length vectors we lower to a custom "VL" node.
3013     unsigned RVVOpc = 0;
3014     switch (Op.getOpcode()) {
3015     default:
3016       llvm_unreachable("Impossible opcode");
3017     case ISD::FP_TO_SINT:
3018       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3019       break;
3020     case ISD::FP_TO_UINT:
3021       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3022       break;
3023     case ISD::SINT_TO_FP:
3024       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3025       break;
3026     case ISD::UINT_TO_FP:
3027       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3028       break;
3029     }
3030 
3031     MVT ContainerVT, SrcContainerVT;
3032     // Derive the reference container type from the larger vector type.
3033     if (SrcEltSize > EltSize) {
3034       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3035       ContainerVT =
3036           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3037     } else {
3038       ContainerVT = getContainerForFixedLengthVector(VT);
3039       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3040     }
3041 
3042     SDValue Mask, VL;
3043     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3044 
3045     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3046     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3047     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3048   }
3049   case ISD::FP_TO_SINT_SAT:
3050   case ISD::FP_TO_UINT_SAT:
3051     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3052   case ISD::FTRUNC:
3053   case ISD::FCEIL:
3054   case ISD::FFLOOR:
3055     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3056   case ISD::VECREDUCE_ADD:
3057   case ISD::VECREDUCE_UMAX:
3058   case ISD::VECREDUCE_SMAX:
3059   case ISD::VECREDUCE_UMIN:
3060   case ISD::VECREDUCE_SMIN:
3061     return lowerVECREDUCE(Op, DAG);
3062   case ISD::VECREDUCE_AND:
3063   case ISD::VECREDUCE_OR:
3064   case ISD::VECREDUCE_XOR:
3065     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3066       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3067     return lowerVECREDUCE(Op, DAG);
3068   case ISD::VECREDUCE_FADD:
3069   case ISD::VECREDUCE_SEQ_FADD:
3070   case ISD::VECREDUCE_FMIN:
3071   case ISD::VECREDUCE_FMAX:
3072     return lowerFPVECREDUCE(Op, DAG);
3073   case ISD::VP_REDUCE_ADD:
3074   case ISD::VP_REDUCE_UMAX:
3075   case ISD::VP_REDUCE_SMAX:
3076   case ISD::VP_REDUCE_UMIN:
3077   case ISD::VP_REDUCE_SMIN:
3078   case ISD::VP_REDUCE_FADD:
3079   case ISD::VP_REDUCE_SEQ_FADD:
3080   case ISD::VP_REDUCE_FMIN:
3081   case ISD::VP_REDUCE_FMAX:
3082     return lowerVPREDUCE(Op, DAG);
3083   case ISD::VP_REDUCE_AND:
3084   case ISD::VP_REDUCE_OR:
3085   case ISD::VP_REDUCE_XOR:
3086     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3087       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3088     return lowerVPREDUCE(Op, DAG);
3089   case ISD::INSERT_SUBVECTOR:
3090     return lowerINSERT_SUBVECTOR(Op, DAG);
3091   case ISD::EXTRACT_SUBVECTOR:
3092     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3093   case ISD::STEP_VECTOR:
3094     return lowerSTEP_VECTOR(Op, DAG);
3095   case ISD::VECTOR_REVERSE:
3096     return lowerVECTOR_REVERSE(Op, DAG);
3097   case ISD::BUILD_VECTOR:
3098     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3099   case ISD::SPLAT_VECTOR:
3100     if (Op.getValueType().getVectorElementType() == MVT::i1)
3101       return lowerVectorMaskSplat(Op, DAG);
3102     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
3103   case ISD::VECTOR_SHUFFLE:
3104     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3105   case ISD::CONCAT_VECTORS: {
3106     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3107     // better than going through the stack, as the default expansion does.
3108     SDLoc DL(Op);
3109     MVT VT = Op.getSimpleValueType();
3110     unsigned NumOpElts =
3111         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3112     SDValue Vec = DAG.getUNDEF(VT);
3113     for (const auto &OpIdx : enumerate(Op->ops()))
3114       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
3115                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3116     return Vec;
3117   }
3118   case ISD::LOAD:
3119     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3120       return V;
3121     if (Op.getValueType().isFixedLengthVector())
3122       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3123     return Op;
3124   case ISD::STORE:
3125     if (auto V = expandUnalignedRVVStore(Op, DAG))
3126       return V;
3127     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3128       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3129     return Op;
3130   case ISD::MLOAD:
3131   case ISD::VP_LOAD:
3132     return lowerMaskedLoad(Op, DAG);
3133   case ISD::MSTORE:
3134   case ISD::VP_STORE:
3135     return lowerMaskedStore(Op, DAG);
3136   case ISD::SETCC:
3137     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3138   case ISD::ADD:
3139     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3140   case ISD::SUB:
3141     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3142   case ISD::MUL:
3143     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3144   case ISD::MULHS:
3145     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3146   case ISD::MULHU:
3147     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3148   case ISD::AND:
3149     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3150                                               RISCVISD::AND_VL);
3151   case ISD::OR:
3152     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3153                                               RISCVISD::OR_VL);
3154   case ISD::XOR:
3155     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3156                                               RISCVISD::XOR_VL);
3157   case ISD::SDIV:
3158     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3159   case ISD::SREM:
3160     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3161   case ISD::UDIV:
3162     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3163   case ISD::UREM:
3164     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3165   case ISD::SHL:
3166   case ISD::SRA:
3167   case ISD::SRL:
3168     if (Op.getSimpleValueType().isFixedLengthVector())
3169       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3170     // This can be called for an i32 shift amount that needs to be promoted.
3171     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3172            "Unexpected custom legalisation");
3173     return SDValue();
3174   case ISD::SADDSAT:
3175     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3176   case ISD::UADDSAT:
3177     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3178   case ISD::SSUBSAT:
3179     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3180   case ISD::USUBSAT:
3181     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3182   case ISD::FADD:
3183     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3184   case ISD::FSUB:
3185     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3186   case ISD::FMUL:
3187     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3188   case ISD::FDIV:
3189     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3190   case ISD::FNEG:
3191     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3192   case ISD::FABS:
3193     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3194   case ISD::FSQRT:
3195     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3196   case ISD::FMA:
3197     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3198   case ISD::SMIN:
3199     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3200   case ISD::SMAX:
3201     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3202   case ISD::UMIN:
3203     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3204   case ISD::UMAX:
3205     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3206   case ISD::FMINNUM:
3207     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3208   case ISD::FMAXNUM:
3209     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3210   case ISD::ABS:
3211     return lowerABS(Op, DAG);
3212   case ISD::CTLZ_ZERO_UNDEF:
3213   case ISD::CTTZ_ZERO_UNDEF:
3214     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3215   case ISD::VSELECT:
3216     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3217   case ISD::FCOPYSIGN:
3218     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3219   case ISD::MGATHER:
3220   case ISD::VP_GATHER:
3221     return lowerMaskedGather(Op, DAG);
3222   case ISD::MSCATTER:
3223   case ISD::VP_SCATTER:
3224     return lowerMaskedScatter(Op, DAG);
3225   case ISD::FLT_ROUNDS_:
3226     return lowerGET_ROUNDING(Op, DAG);
3227   case ISD::SET_ROUNDING:
3228     return lowerSET_ROUNDING(Op, DAG);
3229   case ISD::VP_SELECT:
3230     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3231   case ISD::VP_ADD:
3232     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3233   case ISD::VP_SUB:
3234     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3235   case ISD::VP_MUL:
3236     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3237   case ISD::VP_SDIV:
3238     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3239   case ISD::VP_UDIV:
3240     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3241   case ISD::VP_SREM:
3242     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3243   case ISD::VP_UREM:
3244     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3245   case ISD::VP_AND:
3246     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3247   case ISD::VP_OR:
3248     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3249   case ISD::VP_XOR:
3250     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3251   case ISD::VP_ASHR:
3252     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3253   case ISD::VP_LSHR:
3254     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3255   case ISD::VP_SHL:
3256     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3257   case ISD::VP_FADD:
3258     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3259   case ISD::VP_FSUB:
3260     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3261   case ISD::VP_FMUL:
3262     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3263   case ISD::VP_FDIV:
3264     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3265   }
3266 }
3267 
3268 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3269                              SelectionDAG &DAG, unsigned Flags) {
3270   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3271 }
3272 
3273 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3274                              SelectionDAG &DAG, unsigned Flags) {
3275   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3276                                    Flags);
3277 }
3278 
3279 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3280                              SelectionDAG &DAG, unsigned Flags) {
3281   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3282                                    N->getOffset(), Flags);
3283 }
3284 
3285 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3286                              SelectionDAG &DAG, unsigned Flags) {
3287   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3288 }
3289 
3290 template <class NodeTy>
3291 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3292                                      bool IsLocal) const {
3293   SDLoc DL(N);
3294   EVT Ty = getPointerTy(DAG.getDataLayout());
3295 
3296   if (isPositionIndependent()) {
3297     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3298     if (IsLocal)
3299       // Use PC-relative addressing to access the symbol. This generates the
3300       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3301       // %pcrel_lo(auipc)).
3302       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3303 
3304     // Use PC-relative addressing to access the GOT for this symbol, then load
3305     // the address from the GOT. This generates the pattern (PseudoLA sym),
3306     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3307     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3308   }
3309 
3310   switch (getTargetMachine().getCodeModel()) {
3311   default:
3312     report_fatal_error("Unsupported code model for lowering");
3313   case CodeModel::Small: {
3314     // Generate a sequence for accessing addresses within the first 2 GiB of
3315     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3316     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3317     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3318     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3319     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3320   }
3321   case CodeModel::Medium: {
3322     // Generate a sequence for accessing addresses within any 2GiB range within
3323     // the address space. This generates the pattern (PseudoLLA sym), which
3324     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3325     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3326     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3327   }
3328   }
3329 }
3330 
3331 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3332                                                 SelectionDAG &DAG) const {
3333   SDLoc DL(Op);
3334   EVT Ty = Op.getValueType();
3335   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3336   int64_t Offset = N->getOffset();
3337   MVT XLenVT = Subtarget.getXLenVT();
3338 
3339   const GlobalValue *GV = N->getGlobal();
3340   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3341   SDValue Addr = getAddr(N, DAG, IsLocal);
3342 
3343   // In order to maximise the opportunity for common subexpression elimination,
3344   // emit a separate ADD node for the global address offset instead of folding
3345   // it in the global address node. Later peephole optimisations may choose to
3346   // fold it back in when profitable.
3347   if (Offset != 0)
3348     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3349                        DAG.getConstant(Offset, DL, XLenVT));
3350   return Addr;
3351 }
3352 
3353 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3354                                                SelectionDAG &DAG) const {
3355   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3356 
3357   return getAddr(N, DAG);
3358 }
3359 
3360 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3361                                                SelectionDAG &DAG) const {
3362   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3363 
3364   return getAddr(N, DAG);
3365 }
3366 
3367 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3368                                             SelectionDAG &DAG) const {
3369   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3370 
3371   return getAddr(N, DAG);
3372 }
3373 
3374 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3375                                               SelectionDAG &DAG,
3376                                               bool UseGOT) const {
3377   SDLoc DL(N);
3378   EVT Ty = getPointerTy(DAG.getDataLayout());
3379   const GlobalValue *GV = N->getGlobal();
3380   MVT XLenVT = Subtarget.getXLenVT();
3381 
3382   if (UseGOT) {
3383     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3384     // load the address from the GOT and add the thread pointer. This generates
3385     // the pattern (PseudoLA_TLS_IE sym), which expands to
3386     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3387     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3388     SDValue Load =
3389         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3390 
3391     // Add the thread pointer.
3392     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3393     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3394   }
3395 
3396   // Generate a sequence for accessing the address relative to the thread
3397   // pointer, with the appropriate adjustment for the thread pointer offset.
3398   // This generates the pattern
3399   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3400   SDValue AddrHi =
3401       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3402   SDValue AddrAdd =
3403       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3404   SDValue AddrLo =
3405       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3406 
3407   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3408   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3409   SDValue MNAdd = SDValue(
3410       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3411       0);
3412   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3413 }
3414 
3415 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3416                                                SelectionDAG &DAG) const {
3417   SDLoc DL(N);
3418   EVT Ty = getPointerTy(DAG.getDataLayout());
3419   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3420   const GlobalValue *GV = N->getGlobal();
3421 
3422   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3423   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3424   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3425   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3426   SDValue Load =
3427       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3428 
3429   // Prepare argument list to generate call.
3430   ArgListTy Args;
3431   ArgListEntry Entry;
3432   Entry.Node = Load;
3433   Entry.Ty = CallTy;
3434   Args.push_back(Entry);
3435 
3436   // Setup call to __tls_get_addr.
3437   TargetLowering::CallLoweringInfo CLI(DAG);
3438   CLI.setDebugLoc(DL)
3439       .setChain(DAG.getEntryNode())
3440       .setLibCallee(CallingConv::C, CallTy,
3441                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3442                     std::move(Args));
3443 
3444   return LowerCallTo(CLI).first;
3445 }
3446 
3447 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3448                                                    SelectionDAG &DAG) const {
3449   SDLoc DL(Op);
3450   EVT Ty = Op.getValueType();
3451   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3452   int64_t Offset = N->getOffset();
3453   MVT XLenVT = Subtarget.getXLenVT();
3454 
3455   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3456 
3457   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3458       CallingConv::GHC)
3459     report_fatal_error("In GHC calling convention TLS is not supported");
3460 
3461   SDValue Addr;
3462   switch (Model) {
3463   case TLSModel::LocalExec:
3464     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3465     break;
3466   case TLSModel::InitialExec:
3467     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3468     break;
3469   case TLSModel::LocalDynamic:
3470   case TLSModel::GeneralDynamic:
3471     Addr = getDynamicTLSAddr(N, DAG);
3472     break;
3473   }
3474 
3475   // In order to maximise the opportunity for common subexpression elimination,
3476   // emit a separate ADD node for the global address offset instead of folding
3477   // it in the global address node. Later peephole optimisations may choose to
3478   // fold it back in when profitable.
3479   if (Offset != 0)
3480     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3481                        DAG.getConstant(Offset, DL, XLenVT));
3482   return Addr;
3483 }
3484 
3485 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3486   SDValue CondV = Op.getOperand(0);
3487   SDValue TrueV = Op.getOperand(1);
3488   SDValue FalseV = Op.getOperand(2);
3489   SDLoc DL(Op);
3490   MVT VT = Op.getSimpleValueType();
3491   MVT XLenVT = Subtarget.getXLenVT();
3492 
3493   // Lower vector SELECTs to VSELECTs by splatting the condition.
3494   if (VT.isVector()) {
3495     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3496     SDValue CondSplat = VT.isScalableVector()
3497                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3498                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3499     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3500   }
3501 
3502   // If the result type is XLenVT and CondV is the output of a SETCC node
3503   // which also operated on XLenVT inputs, then merge the SETCC node into the
3504   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3505   // compare+branch instructions. i.e.:
3506   // (select (setcc lhs, rhs, cc), truev, falsev)
3507   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3508   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3509       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3510     SDValue LHS = CondV.getOperand(0);
3511     SDValue RHS = CondV.getOperand(1);
3512     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3513     ISD::CondCode CCVal = CC->get();
3514 
3515     // Special case for a select of 2 constants that have a diffence of 1.
3516     // Normally this is done by DAGCombine, but if the select is introduced by
3517     // type legalization or op legalization, we miss it. Restricting to SETLT
3518     // case for now because that is what signed saturating add/sub need.
3519     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3520     // but we would probably want to swap the true/false values if the condition
3521     // is SETGE/SETLE to avoid an XORI.
3522     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3523         CCVal == ISD::SETLT) {
3524       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3525       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3526       if (TrueVal - 1 == FalseVal)
3527         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3528       if (TrueVal + 1 == FalseVal)
3529         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3530     }
3531 
3532     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3533 
3534     SDValue TargetCC = DAG.getCondCode(CCVal);
3535     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3536     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3537   }
3538 
3539   // Otherwise:
3540   // (select condv, truev, falsev)
3541   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3542   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3543   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3544 
3545   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3546 
3547   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3548 }
3549 
3550 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3551   SDValue CondV = Op.getOperand(1);
3552   SDLoc DL(Op);
3553   MVT XLenVT = Subtarget.getXLenVT();
3554 
3555   if (CondV.getOpcode() == ISD::SETCC &&
3556       CondV.getOperand(0).getValueType() == XLenVT) {
3557     SDValue LHS = CondV.getOperand(0);
3558     SDValue RHS = CondV.getOperand(1);
3559     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3560 
3561     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3562 
3563     SDValue TargetCC = DAG.getCondCode(CCVal);
3564     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3565                        LHS, RHS, TargetCC, Op.getOperand(2));
3566   }
3567 
3568   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3569                      CondV, DAG.getConstant(0, DL, XLenVT),
3570                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3571 }
3572 
3573 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3574   MachineFunction &MF = DAG.getMachineFunction();
3575   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3576 
3577   SDLoc DL(Op);
3578   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3579                                  getPointerTy(MF.getDataLayout()));
3580 
3581   // vastart just stores the address of the VarArgsFrameIndex slot into the
3582   // memory location argument.
3583   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3584   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3585                       MachinePointerInfo(SV));
3586 }
3587 
3588 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3589                                             SelectionDAG &DAG) const {
3590   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3591   MachineFunction &MF = DAG.getMachineFunction();
3592   MachineFrameInfo &MFI = MF.getFrameInfo();
3593   MFI.setFrameAddressIsTaken(true);
3594   Register FrameReg = RI.getFrameRegister(MF);
3595   int XLenInBytes = Subtarget.getXLen() / 8;
3596 
3597   EVT VT = Op.getValueType();
3598   SDLoc DL(Op);
3599   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3600   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3601   while (Depth--) {
3602     int Offset = -(XLenInBytes * 2);
3603     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3604                               DAG.getIntPtrConstant(Offset, DL));
3605     FrameAddr =
3606         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3607   }
3608   return FrameAddr;
3609 }
3610 
3611 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3612                                              SelectionDAG &DAG) const {
3613   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3614   MachineFunction &MF = DAG.getMachineFunction();
3615   MachineFrameInfo &MFI = MF.getFrameInfo();
3616   MFI.setReturnAddressIsTaken(true);
3617   MVT XLenVT = Subtarget.getXLenVT();
3618   int XLenInBytes = Subtarget.getXLen() / 8;
3619 
3620   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3621     return SDValue();
3622 
3623   EVT VT = Op.getValueType();
3624   SDLoc DL(Op);
3625   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3626   if (Depth) {
3627     int Off = -XLenInBytes;
3628     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3629     SDValue Offset = DAG.getConstant(Off, DL, VT);
3630     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3631                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3632                        MachinePointerInfo());
3633   }
3634 
3635   // Return the value of the return address register, marking it an implicit
3636   // live-in.
3637   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3638   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3639 }
3640 
3641 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3642                                                  SelectionDAG &DAG) const {
3643   SDLoc DL(Op);
3644   SDValue Lo = Op.getOperand(0);
3645   SDValue Hi = Op.getOperand(1);
3646   SDValue Shamt = Op.getOperand(2);
3647   EVT VT = Lo.getValueType();
3648 
3649   // if Shamt-XLEN < 0: // Shamt < XLEN
3650   //   Lo = Lo << Shamt
3651   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
3652   // else:
3653   //   Lo = 0
3654   //   Hi = Lo << (Shamt-XLEN)
3655 
3656   SDValue Zero = DAG.getConstant(0, DL, VT);
3657   SDValue One = DAG.getConstant(1, DL, VT);
3658   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3659   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3660   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3661   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3662 
3663   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3664   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3665   SDValue ShiftRightLo =
3666       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3667   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3668   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3669   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3670 
3671   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3672 
3673   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3674   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3675 
3676   SDValue Parts[2] = {Lo, Hi};
3677   return DAG.getMergeValues(Parts, DL);
3678 }
3679 
3680 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3681                                                   bool IsSRA) const {
3682   SDLoc DL(Op);
3683   SDValue Lo = Op.getOperand(0);
3684   SDValue Hi = Op.getOperand(1);
3685   SDValue Shamt = Op.getOperand(2);
3686   EVT VT = Lo.getValueType();
3687 
3688   // SRA expansion:
3689   //   if Shamt-XLEN < 0: // Shamt < XLEN
3690   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3691   //     Hi = Hi >>s Shamt
3692   //   else:
3693   //     Lo = Hi >>s (Shamt-XLEN);
3694   //     Hi = Hi >>s (XLEN-1)
3695   //
3696   // SRL expansion:
3697   //   if Shamt-XLEN < 0: // Shamt < XLEN
3698   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3699   //     Hi = Hi >>u Shamt
3700   //   else:
3701   //     Lo = Hi >>u (Shamt-XLEN);
3702   //     Hi = 0;
3703 
3704   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3705 
3706   SDValue Zero = DAG.getConstant(0, DL, VT);
3707   SDValue One = DAG.getConstant(1, DL, VT);
3708   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3709   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3710   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3711   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3712 
3713   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3714   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3715   SDValue ShiftLeftHi =
3716       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3717   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3718   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3719   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3720   SDValue HiFalse =
3721       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3722 
3723   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3724 
3725   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3726   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3727 
3728   SDValue Parts[2] = {Lo, Hi};
3729   return DAG.getMergeValues(Parts, DL);
3730 }
3731 
3732 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3733 // legal equivalently-sized i8 type, so we can use that as a go-between.
3734 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3735                                                   SelectionDAG &DAG) const {
3736   SDLoc DL(Op);
3737   MVT VT = Op.getSimpleValueType();
3738   SDValue SplatVal = Op.getOperand(0);
3739   // All-zeros or all-ones splats are handled specially.
3740   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
3741     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3742     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
3743   }
3744   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
3745     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3746     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
3747   }
3748   MVT XLenVT = Subtarget.getXLenVT();
3749   assert(SplatVal.getValueType() == XLenVT &&
3750          "Unexpected type for i1 splat value");
3751   MVT InterVT = VT.changeVectorElementType(MVT::i8);
3752   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
3753                          DAG.getConstant(1, DL, XLenVT));
3754   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
3755   SDValue Zero = DAG.getConstant(0, DL, InterVT);
3756   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
3757 }
3758 
3759 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
3760 // illegal (currently only vXi64 RV32).
3761 // FIXME: We could also catch non-constant sign-extended i32 values and lower
3762 // them to SPLAT_VECTOR_I64
3763 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
3764                                                      SelectionDAG &DAG) const {
3765   SDLoc DL(Op);
3766   MVT VecVT = Op.getSimpleValueType();
3767   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
3768          "Unexpected SPLAT_VECTOR_PARTS lowering");
3769 
3770   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
3771   SDValue Lo = Op.getOperand(0);
3772   SDValue Hi = Op.getOperand(1);
3773 
3774   if (VecVT.isFixedLengthVector()) {
3775     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3776     SDLoc DL(Op);
3777     SDValue Mask, VL;
3778     std::tie(Mask, VL) =
3779         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3780 
3781     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
3782     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
3783   }
3784 
3785   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
3786     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
3787     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
3788     // If Hi constant is all the same sign bit as Lo, lower this as a custom
3789     // node in order to try and match RVV vector/scalar instructions.
3790     if ((LoC >> 31) == HiC)
3791       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3792   }
3793 
3794   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
3795   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
3796       isa<ConstantSDNode>(Hi.getOperand(1)) &&
3797       Hi.getConstantOperandVal(1) == 31)
3798     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3799 
3800   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
3801   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
3802                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64));
3803 }
3804 
3805 // Custom-lower extensions from mask vectors by using a vselect either with 1
3806 // for zero/any-extension or -1 for sign-extension:
3807 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
3808 // Note that any-extension is lowered identically to zero-extension.
3809 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
3810                                                 int64_t ExtTrueVal) const {
3811   SDLoc DL(Op);
3812   MVT VecVT = Op.getSimpleValueType();
3813   SDValue Src = Op.getOperand(0);
3814   // Only custom-lower extensions from mask types
3815   assert(Src.getValueType().isVector() &&
3816          Src.getValueType().getVectorElementType() == MVT::i1);
3817 
3818   MVT XLenVT = Subtarget.getXLenVT();
3819   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
3820   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
3821 
3822   if (VecVT.isScalableVector()) {
3823     // Be careful not to introduce illegal scalar types at this stage, and be
3824     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
3825     // illegal and must be expanded. Since we know that the constants are
3826     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
3827     bool IsRV32E64 =
3828         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
3829 
3830     if (!IsRV32E64) {
3831       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
3832       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
3833     } else {
3834       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
3835       SplatTrueVal =
3836           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
3837     }
3838 
3839     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
3840   }
3841 
3842   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3843   MVT I1ContainerVT =
3844       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3845 
3846   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
3847 
3848   SDValue Mask, VL;
3849   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3850 
3851   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
3852   SplatTrueVal =
3853       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
3854   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
3855                                SplatTrueVal, SplatZero, VL);
3856 
3857   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
3858 }
3859 
3860 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3861     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
3862   MVT ExtVT = Op.getSimpleValueType();
3863   // Only custom-lower extensions from fixed-length vector types.
3864   if (!ExtVT.isFixedLengthVector())
3865     return Op;
3866   MVT VT = Op.getOperand(0).getSimpleValueType();
3867   // Grab the canonical container type for the extended type. Infer the smaller
3868   // type from that to ensure the same number of vector elements, as we know
3869   // the LMUL will be sufficient to hold the smaller type.
3870   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
3871   // Get the extended container type manually to ensure the same number of
3872   // vector elements between source and dest.
3873   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
3874                                      ContainerExtVT.getVectorElementCount());
3875 
3876   SDValue Op1 =
3877       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3878 
3879   SDLoc DL(Op);
3880   SDValue Mask, VL;
3881   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3882 
3883   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
3884 
3885   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
3886 }
3887 
3888 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3889 // setcc operation:
3890 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
3891 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
3892                                                   SelectionDAG &DAG) const {
3893   SDLoc DL(Op);
3894   EVT MaskVT = Op.getValueType();
3895   // Only expect to custom-lower truncations to mask types
3896   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
3897          "Unexpected type for vector mask lowering");
3898   SDValue Src = Op.getOperand(0);
3899   MVT VecVT = Src.getSimpleValueType();
3900 
3901   // If this is a fixed vector, we need to convert it to a scalable vector.
3902   MVT ContainerVT = VecVT;
3903   if (VecVT.isFixedLengthVector()) {
3904     ContainerVT = getContainerForFixedLengthVector(VecVT);
3905     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3906   }
3907 
3908   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
3909   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
3910 
3911   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
3912   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
3913 
3914   if (VecVT.isScalableVector()) {
3915     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
3916     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
3917   }
3918 
3919   SDValue Mask, VL;
3920   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3921 
3922   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3923   SDValue Trunc =
3924       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
3925   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
3926                       DAG.getCondCode(ISD::SETNE), Mask, VL);
3927   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
3928 }
3929 
3930 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3931 // first position of a vector, and that vector is slid up to the insert index.
3932 // By limiting the active vector length to index+1 and merging with the
3933 // original vector (with an undisturbed tail policy for elements >= VL), we
3934 // achieve the desired result of leaving all elements untouched except the one
3935 // at VL-1, which is replaced with the desired value.
3936 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3937                                                     SelectionDAG &DAG) const {
3938   SDLoc DL(Op);
3939   MVT VecVT = Op.getSimpleValueType();
3940   SDValue Vec = Op.getOperand(0);
3941   SDValue Val = Op.getOperand(1);
3942   SDValue Idx = Op.getOperand(2);
3943 
3944   if (VecVT.getVectorElementType() == MVT::i1) {
3945     // FIXME: For now we just promote to an i8 vector and insert into that,
3946     // but this is probably not optimal.
3947     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3948     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3949     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
3950     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
3951   }
3952 
3953   MVT ContainerVT = VecVT;
3954   // If the operand is a fixed-length vector, convert to a scalable one.
3955   if (VecVT.isFixedLengthVector()) {
3956     ContainerVT = getContainerForFixedLengthVector(VecVT);
3957     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3958   }
3959 
3960   MVT XLenVT = Subtarget.getXLenVT();
3961 
3962   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3963   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
3964   // Even i64-element vectors on RV32 can be lowered without scalar
3965   // legalization if the most-significant 32 bits of the value are not affected
3966   // by the sign-extension of the lower 32 bits.
3967   // TODO: We could also catch sign extensions of a 32-bit value.
3968   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
3969     const auto *CVal = cast<ConstantSDNode>(Val);
3970     if (isInt<32>(CVal->getSExtValue())) {
3971       IsLegalInsert = true;
3972       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3973     }
3974   }
3975 
3976   SDValue Mask, VL;
3977   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3978 
3979   SDValue ValInVec;
3980 
3981   if (IsLegalInsert) {
3982     unsigned Opc =
3983         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
3984     if (isNullConstant(Idx)) {
3985       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
3986       if (!VecVT.isFixedLengthVector())
3987         return Vec;
3988       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
3989     }
3990     ValInVec =
3991         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
3992   } else {
3993     // On RV32, i64-element vectors must be specially handled to place the
3994     // value at element 0, by using two vslide1up instructions in sequence on
3995     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3996     // this.
3997     SDValue One = DAG.getConstant(1, DL, XLenVT);
3998     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
3999     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4000     MVT I32ContainerVT =
4001         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4002     SDValue I32Mask =
4003         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4004     // Limit the active VL to two.
4005     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4006     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4007     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4008     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
4009                            InsertI64VL);
4010     // First slide in the hi value, then the lo in underneath it.
4011     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
4012                            ValHi, I32Mask, InsertI64VL);
4013     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
4014                            ValLo, I32Mask, InsertI64VL);
4015     // Bitcast back to the right container type.
4016     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4017   }
4018 
4019   // Now that the value is in a vector, slide it into position.
4020   SDValue InsertVL =
4021       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4022   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4023                                 ValInVec, Idx, Mask, InsertVL);
4024   if (!VecVT.isFixedLengthVector())
4025     return Slideup;
4026   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4027 }
4028 
4029 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4030 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4031 // types this is done using VMV_X_S to allow us to glean information about the
4032 // sign bits of the result.
4033 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4034                                                      SelectionDAG &DAG) const {
4035   SDLoc DL(Op);
4036   SDValue Idx = Op.getOperand(1);
4037   SDValue Vec = Op.getOperand(0);
4038   EVT EltVT = Op.getValueType();
4039   MVT VecVT = Vec.getSimpleValueType();
4040   MVT XLenVT = Subtarget.getXLenVT();
4041 
4042   if (VecVT.getVectorElementType() == MVT::i1) {
4043     // FIXME: For now we just promote to an i8 vector and extract from that,
4044     // but this is probably not optimal.
4045     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4046     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4047     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4048   }
4049 
4050   // If this is a fixed vector, we need to convert it to a scalable vector.
4051   MVT ContainerVT = VecVT;
4052   if (VecVT.isFixedLengthVector()) {
4053     ContainerVT = getContainerForFixedLengthVector(VecVT);
4054     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4055   }
4056 
4057   // If the index is 0, the vector is already in the right position.
4058   if (!isNullConstant(Idx)) {
4059     // Use a VL of 1 to avoid processing more elements than we need.
4060     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4061     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4062     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4063     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4064                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4065   }
4066 
4067   if (!EltVT.isInteger()) {
4068     // Floating-point extracts are handled in TableGen.
4069     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4070                        DAG.getConstant(0, DL, XLenVT));
4071   }
4072 
4073   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4074   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4075 }
4076 
4077 // Some RVV intrinsics may claim that they want an integer operand to be
4078 // promoted or expanded.
4079 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
4080                                           const RISCVSubtarget &Subtarget) {
4081   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4082           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4083          "Unexpected opcode");
4084 
4085   if (!Subtarget.hasVInstructions())
4086     return SDValue();
4087 
4088   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4089   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4090   SDLoc DL(Op);
4091 
4092   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4093       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4094   if (!II || !II->SplatOperand)
4095     return SDValue();
4096 
4097   unsigned SplatOp = II->SplatOperand + HasChain;
4098   assert(SplatOp < Op.getNumOperands());
4099 
4100   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4101   SDValue &ScalarOp = Operands[SplatOp];
4102   MVT OpVT = ScalarOp.getSimpleValueType();
4103   MVT XLenVT = Subtarget.getXLenVT();
4104 
4105   // If this isn't a scalar, or its type is XLenVT we're done.
4106   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4107     return SDValue();
4108 
4109   // Simplest case is that the operand needs to be promoted to XLenVT.
4110   if (OpVT.bitsLT(XLenVT)) {
4111     // If the operand is a constant, sign extend to increase our chances
4112     // of being able to use a .vi instruction. ANY_EXTEND would become a
4113     // a zero extend and the simm5 check in isel would fail.
4114     // FIXME: Should we ignore the upper bits in isel instead?
4115     unsigned ExtOpc =
4116         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4117     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4118     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4119   }
4120 
4121   // Use the previous operand to get the vXi64 VT. The result might be a mask
4122   // VT for compares. Using the previous operand assumes that the previous
4123   // operand will never have a smaller element size than a scalar operand and
4124   // that a widening operation never uses SEW=64.
4125   // NOTE: If this fails the below assert, we can probably just find the
4126   // element count from any operand or result and use it to construct the VT.
4127   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
4128   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4129 
4130   // The more complex case is when the scalar is larger than XLenVT.
4131   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4132          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4133 
4134   // If this is a sign-extended 32-bit constant, we can truncate it and rely
4135   // on the instruction to sign-extend since SEW>XLEN.
4136   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
4137     if (isInt<32>(CVal->getSExtValue())) {
4138       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4139       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4140     }
4141   }
4142 
4143   // We need to convert the scalar to a splat vector.
4144   // FIXME: Can we implicitly truncate the scalar if it is known to
4145   // be sign extended?
4146   // VL should be the last operand.
4147   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
4148   assert(VL.getValueType() == XLenVT);
4149   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
4150   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4151 }
4152 
4153 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4154                                                      SelectionDAG &DAG) const {
4155   unsigned IntNo = Op.getConstantOperandVal(0);
4156   SDLoc DL(Op);
4157   MVT XLenVT = Subtarget.getXLenVT();
4158 
4159   switch (IntNo) {
4160   default:
4161     break; // Don't custom lower most intrinsics.
4162   case Intrinsic::thread_pointer: {
4163     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4164     return DAG.getRegister(RISCV::X4, PtrVT);
4165   }
4166   case Intrinsic::riscv_orc_b:
4167     // Lower to the GORCI encoding for orc.b.
4168     return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
4169                        DAG.getConstant(7, DL, XLenVT));
4170   case Intrinsic::riscv_grev:
4171   case Intrinsic::riscv_gorc: {
4172     unsigned Opc =
4173         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4174     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4175   }
4176   case Intrinsic::riscv_shfl:
4177   case Intrinsic::riscv_unshfl: {
4178     unsigned Opc =
4179         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4180     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4181   }
4182   case Intrinsic::riscv_bcompress:
4183   case Intrinsic::riscv_bdecompress: {
4184     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4185                                                        : RISCVISD::BDECOMPRESS;
4186     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4187   }
4188   case Intrinsic::riscv_vmv_x_s:
4189     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4190     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4191                        Op.getOperand(1));
4192   case Intrinsic::riscv_vmv_v_x:
4193     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4194                             Op.getSimpleValueType(), DL, DAG, Subtarget);
4195   case Intrinsic::riscv_vfmv_v_f:
4196     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4197                        Op.getOperand(1), Op.getOperand(2));
4198   case Intrinsic::riscv_vmv_s_x: {
4199     SDValue Scalar = Op.getOperand(2);
4200 
4201     if (Scalar.getValueType().bitsLE(XLenVT)) {
4202       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4203       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4204                          Op.getOperand(1), Scalar, Op.getOperand(3));
4205     }
4206 
4207     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4208 
4209     // This is an i64 value that lives in two scalar registers. We have to
4210     // insert this in a convoluted way. First we build vXi64 splat containing
4211     // the/ two values that we assemble using some bit math. Next we'll use
4212     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4213     // to merge element 0 from our splat into the source vector.
4214     // FIXME: This is probably not the best way to do this, but it is
4215     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4216     // point.
4217     //   sw lo, (a0)
4218     //   sw hi, 4(a0)
4219     //   vlse vX, (a0)
4220     //
4221     //   vid.v      vVid
4222     //   vmseq.vx   mMask, vVid, 0
4223     //   vmerge.vvm vDest, vSrc, vVal, mMask
4224     MVT VT = Op.getSimpleValueType();
4225     SDValue Vec = Op.getOperand(1);
4226     SDValue VL = Op.getOperand(3);
4227 
4228     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
4229     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4230                                       DAG.getConstant(0, DL, MVT::i32), VL);
4231 
4232     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4233     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4234     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4235     SDValue SelectCond =
4236         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4237                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4238     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4239                        Vec, VL);
4240   }
4241   case Intrinsic::riscv_vslide1up:
4242   case Intrinsic::riscv_vslide1down:
4243   case Intrinsic::riscv_vslide1up_mask:
4244   case Intrinsic::riscv_vslide1down_mask: {
4245     // We need to special case these when the scalar is larger than XLen.
4246     unsigned NumOps = Op.getNumOperands();
4247     bool IsMasked = NumOps == 7;
4248     unsigned OpOffset = IsMasked ? 1 : 0;
4249     SDValue Scalar = Op.getOperand(2 + OpOffset);
4250     if (Scalar.getValueType().bitsLE(XLenVT))
4251       break;
4252 
4253     // Splatting a sign extended constant is fine.
4254     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
4255       if (isInt<32>(CVal->getSExtValue()))
4256         break;
4257 
4258     MVT VT = Op.getSimpleValueType();
4259     assert(VT.getVectorElementType() == MVT::i64 &&
4260            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
4261 
4262     // Convert the vector source to the equivalent nxvXi32 vector.
4263     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4264     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
4265 
4266     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4267                                    DAG.getConstant(0, DL, XLenVT));
4268     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4269                                    DAG.getConstant(1, DL, XLenVT));
4270 
4271     // Double the VL since we halved SEW.
4272     SDValue VL = Op.getOperand(NumOps - (1 + OpOffset));
4273     SDValue I32VL =
4274         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4275 
4276     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4277     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
4278 
4279     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4280     // instructions.
4281     if (IntNo == Intrinsic::riscv_vslide1up ||
4282         IntNo == Intrinsic::riscv_vslide1up_mask) {
4283       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
4284                         I32Mask, I32VL);
4285       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
4286                         I32Mask, I32VL);
4287     } else {
4288       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
4289                         I32Mask, I32VL);
4290       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
4291                         I32Mask, I32VL);
4292     }
4293 
4294     // Convert back to nxvXi64.
4295     Vec = DAG.getBitcast(VT, Vec);
4296 
4297     if (!IsMasked)
4298       return Vec;
4299 
4300     // Apply mask after the operation.
4301     SDValue Mask = Op.getOperand(NumOps - 3);
4302     SDValue MaskedOff = Op.getOperand(1);
4303     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
4304   }
4305   }
4306 
4307   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4308 }
4309 
4310 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4311                                                     SelectionDAG &DAG) const {
4312   unsigned IntNo = Op.getConstantOperandVal(1);
4313   switch (IntNo) {
4314   default:
4315     break;
4316   case Intrinsic::riscv_masked_strided_load: {
4317     SDLoc DL(Op);
4318     MVT XLenVT = Subtarget.getXLenVT();
4319 
4320     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4321     // the selection of the masked intrinsics doesn't do this for us.
4322     SDValue Mask = Op.getOperand(5);
4323     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4324 
4325     MVT VT = Op->getSimpleValueType(0);
4326     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4327 
4328     SDValue PassThru = Op.getOperand(2);
4329     if (!IsUnmasked) {
4330       MVT MaskVT =
4331           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4332       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4333       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4334     }
4335 
4336     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4337 
4338     SDValue IntID = DAG.getTargetConstant(
4339         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4340         XLenVT);
4341 
4342     auto *Load = cast<MemIntrinsicSDNode>(Op);
4343     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4344     if (!IsUnmasked)
4345       Ops.push_back(PassThru);
4346     Ops.push_back(Op.getOperand(3)); // Ptr
4347     Ops.push_back(Op.getOperand(4)); // Stride
4348     if (!IsUnmasked)
4349       Ops.push_back(Mask);
4350     Ops.push_back(VL);
4351     if (!IsUnmasked) {
4352       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4353       Ops.push_back(Policy);
4354     }
4355 
4356     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4357     SDValue Result =
4358         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4359                                 Load->getMemoryVT(), Load->getMemOperand());
4360     SDValue Chain = Result.getValue(1);
4361     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4362     return DAG.getMergeValues({Result, Chain}, DL);
4363   }
4364   }
4365 
4366   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4367 }
4368 
4369 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4370                                                  SelectionDAG &DAG) const {
4371   unsigned IntNo = Op.getConstantOperandVal(1);
4372   switch (IntNo) {
4373   default:
4374     break;
4375   case Intrinsic::riscv_masked_strided_store: {
4376     SDLoc DL(Op);
4377     MVT XLenVT = Subtarget.getXLenVT();
4378 
4379     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4380     // the selection of the masked intrinsics doesn't do this for us.
4381     SDValue Mask = Op.getOperand(5);
4382     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4383 
4384     SDValue Val = Op.getOperand(2);
4385     MVT VT = Val.getSimpleValueType();
4386     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4387 
4388     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4389     if (!IsUnmasked) {
4390       MVT MaskVT =
4391           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4392       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4393     }
4394 
4395     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4396 
4397     SDValue IntID = DAG.getTargetConstant(
4398         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4399         XLenVT);
4400 
4401     auto *Store = cast<MemIntrinsicSDNode>(Op);
4402     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4403     Ops.push_back(Val);
4404     Ops.push_back(Op.getOperand(3)); // Ptr
4405     Ops.push_back(Op.getOperand(4)); // Stride
4406     if (!IsUnmasked)
4407       Ops.push_back(Mask);
4408     Ops.push_back(VL);
4409 
4410     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4411                                    Ops, Store->getMemoryVT(),
4412                                    Store->getMemOperand());
4413   }
4414   }
4415 
4416   return SDValue();
4417 }
4418 
4419 static MVT getLMUL1VT(MVT VT) {
4420   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4421          "Unexpected vector MVT");
4422   return MVT::getScalableVectorVT(
4423       VT.getVectorElementType(),
4424       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4425 }
4426 
4427 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4428   switch (ISDOpcode) {
4429   default:
4430     llvm_unreachable("Unhandled reduction");
4431   case ISD::VECREDUCE_ADD:
4432     return RISCVISD::VECREDUCE_ADD_VL;
4433   case ISD::VECREDUCE_UMAX:
4434     return RISCVISD::VECREDUCE_UMAX_VL;
4435   case ISD::VECREDUCE_SMAX:
4436     return RISCVISD::VECREDUCE_SMAX_VL;
4437   case ISD::VECREDUCE_UMIN:
4438     return RISCVISD::VECREDUCE_UMIN_VL;
4439   case ISD::VECREDUCE_SMIN:
4440     return RISCVISD::VECREDUCE_SMIN_VL;
4441   case ISD::VECREDUCE_AND:
4442     return RISCVISD::VECREDUCE_AND_VL;
4443   case ISD::VECREDUCE_OR:
4444     return RISCVISD::VECREDUCE_OR_VL;
4445   case ISD::VECREDUCE_XOR:
4446     return RISCVISD::VECREDUCE_XOR_VL;
4447   }
4448 }
4449 
4450 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
4451                                                          SelectionDAG &DAG,
4452                                                          bool IsVP) const {
4453   SDLoc DL(Op);
4454   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
4455   MVT VecVT = Vec.getSimpleValueType();
4456   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
4457           Op.getOpcode() == ISD::VECREDUCE_OR ||
4458           Op.getOpcode() == ISD::VECREDUCE_XOR ||
4459           Op.getOpcode() == ISD::VP_REDUCE_AND ||
4460           Op.getOpcode() == ISD::VP_REDUCE_OR ||
4461           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
4462          "Unexpected reduction lowering");
4463 
4464   MVT XLenVT = Subtarget.getXLenVT();
4465   assert(Op.getValueType() == XLenVT &&
4466          "Expected reduction output to be legalized to XLenVT");
4467 
4468   MVT ContainerVT = VecVT;
4469   if (VecVT.isFixedLengthVector()) {
4470     ContainerVT = getContainerForFixedLengthVector(VecVT);
4471     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4472   }
4473 
4474   SDValue Mask, VL;
4475   if (IsVP) {
4476     Mask = Op.getOperand(2);
4477     VL = Op.getOperand(3);
4478   } else {
4479     std::tie(Mask, VL) =
4480         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4481   }
4482 
4483   unsigned BaseOpc;
4484   ISD::CondCode CC;
4485   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4486 
4487   switch (Op.getOpcode()) {
4488   default:
4489     llvm_unreachable("Unhandled reduction");
4490   case ISD::VECREDUCE_AND:
4491   case ISD::VP_REDUCE_AND: {
4492     // vcpop ~x == 0
4493     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
4494     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
4495     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4496     CC = ISD::SETEQ;
4497     BaseOpc = ISD::AND;
4498     break;
4499   }
4500   case ISD::VECREDUCE_OR:
4501   case ISD::VP_REDUCE_OR:
4502     // vcpop x != 0
4503     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4504     CC = ISD::SETNE;
4505     BaseOpc = ISD::OR;
4506     break;
4507   case ISD::VECREDUCE_XOR:
4508   case ISD::VP_REDUCE_XOR: {
4509     // ((vcpop x) & 1) != 0
4510     SDValue One = DAG.getConstant(1, DL, XLenVT);
4511     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4512     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
4513     CC = ISD::SETNE;
4514     BaseOpc = ISD::XOR;
4515     break;
4516   }
4517   }
4518 
4519   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
4520 
4521   if (!IsVP)
4522     return SetCC;
4523 
4524   // Now include the start value in the operation.
4525   // Note that we must return the start value when no elements are operated
4526   // upon. The vcpop instructions we've emitted in each case above will return
4527   // 0 for an inactive vector, and so we've already received the neutral value:
4528   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
4529   // can simply include the start value.
4530   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
4531 }
4532 
4533 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
4534                                             SelectionDAG &DAG) const {
4535   SDLoc DL(Op);
4536   SDValue Vec = Op.getOperand(0);
4537   EVT VecEVT = Vec.getValueType();
4538 
4539   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
4540 
4541   // Due to ordering in legalize types we may have a vector type that needs to
4542   // be split. Do that manually so we can get down to a legal type.
4543   while (getTypeAction(*DAG.getContext(), VecEVT) ==
4544          TargetLowering::TypeSplitVector) {
4545     SDValue Lo, Hi;
4546     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
4547     VecEVT = Lo.getValueType();
4548     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
4549   }
4550 
4551   // TODO: The type may need to be widened rather than split. Or widened before
4552   // it can be split.
4553   if (!isTypeLegal(VecEVT))
4554     return SDValue();
4555 
4556   MVT VecVT = VecEVT.getSimpleVT();
4557   MVT VecEltVT = VecVT.getVectorElementType();
4558   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
4559 
4560   MVT ContainerVT = VecVT;
4561   if (VecVT.isFixedLengthVector()) {
4562     ContainerVT = getContainerForFixedLengthVector(VecVT);
4563     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4564   }
4565 
4566   MVT M1VT = getLMUL1VT(ContainerVT);
4567   MVT XLenVT = Subtarget.getXLenVT();
4568 
4569   SDValue Mask, VL;
4570   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4571 
4572   SDValue NeutralElem =
4573       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
4574   SDValue IdentitySplat = lowerScalarSplat(
4575       NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget);
4576   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
4577                                   IdentitySplat, Mask, VL);
4578   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4579                              DAG.getConstant(0, DL, XLenVT));
4580   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4581 }
4582 
4583 // Given a reduction op, this function returns the matching reduction opcode,
4584 // the vector SDValue and the scalar SDValue required to lower this to a
4585 // RISCVISD node.
4586 static std::tuple<unsigned, SDValue, SDValue>
4587 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
4588   SDLoc DL(Op);
4589   auto Flags = Op->getFlags();
4590   unsigned Opcode = Op.getOpcode();
4591   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
4592   switch (Opcode) {
4593   default:
4594     llvm_unreachable("Unhandled reduction");
4595   case ISD::VECREDUCE_FADD: {
4596     // Use positive zero if we can. It is cheaper to materialize.
4597     SDValue Zero =
4598         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
4599     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
4600   }
4601   case ISD::VECREDUCE_SEQ_FADD:
4602     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
4603                            Op.getOperand(0));
4604   case ISD::VECREDUCE_FMIN:
4605     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
4606                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4607   case ISD::VECREDUCE_FMAX:
4608     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
4609                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4610   }
4611 }
4612 
4613 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
4614                                               SelectionDAG &DAG) const {
4615   SDLoc DL(Op);
4616   MVT VecEltVT = Op.getSimpleValueType();
4617 
4618   unsigned RVVOpcode;
4619   SDValue VectorVal, ScalarVal;
4620   std::tie(RVVOpcode, VectorVal, ScalarVal) =
4621       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
4622   MVT VecVT = VectorVal.getSimpleValueType();
4623 
4624   MVT ContainerVT = VecVT;
4625   if (VecVT.isFixedLengthVector()) {
4626     ContainerVT = getContainerForFixedLengthVector(VecVT);
4627     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
4628   }
4629 
4630   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
4631   MVT XLenVT = Subtarget.getXLenVT();
4632 
4633   SDValue Mask, VL;
4634   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4635 
4636   SDValue ScalarSplat = lowerScalarSplat(
4637       ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget);
4638   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
4639                                   VectorVal, ScalarSplat, Mask, VL);
4640   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4641                      DAG.getConstant(0, DL, XLenVT));
4642 }
4643 
4644 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
4645   switch (ISDOpcode) {
4646   default:
4647     llvm_unreachable("Unhandled reduction");
4648   case ISD::VP_REDUCE_ADD:
4649     return RISCVISD::VECREDUCE_ADD_VL;
4650   case ISD::VP_REDUCE_UMAX:
4651     return RISCVISD::VECREDUCE_UMAX_VL;
4652   case ISD::VP_REDUCE_SMAX:
4653     return RISCVISD::VECREDUCE_SMAX_VL;
4654   case ISD::VP_REDUCE_UMIN:
4655     return RISCVISD::VECREDUCE_UMIN_VL;
4656   case ISD::VP_REDUCE_SMIN:
4657     return RISCVISD::VECREDUCE_SMIN_VL;
4658   case ISD::VP_REDUCE_AND:
4659     return RISCVISD::VECREDUCE_AND_VL;
4660   case ISD::VP_REDUCE_OR:
4661     return RISCVISD::VECREDUCE_OR_VL;
4662   case ISD::VP_REDUCE_XOR:
4663     return RISCVISD::VECREDUCE_XOR_VL;
4664   case ISD::VP_REDUCE_FADD:
4665     return RISCVISD::VECREDUCE_FADD_VL;
4666   case ISD::VP_REDUCE_SEQ_FADD:
4667     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
4668   case ISD::VP_REDUCE_FMAX:
4669     return RISCVISD::VECREDUCE_FMAX_VL;
4670   case ISD::VP_REDUCE_FMIN:
4671     return RISCVISD::VECREDUCE_FMIN_VL;
4672   }
4673 }
4674 
4675 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
4676                                            SelectionDAG &DAG) const {
4677   SDLoc DL(Op);
4678   SDValue Vec = Op.getOperand(1);
4679   EVT VecEVT = Vec.getValueType();
4680 
4681   // TODO: The type may need to be widened rather than split. Or widened before
4682   // it can be split.
4683   if (!isTypeLegal(VecEVT))
4684     return SDValue();
4685 
4686   MVT VecVT = VecEVT.getSimpleVT();
4687   MVT VecEltVT = VecVT.getVectorElementType();
4688   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
4689 
4690   MVT ContainerVT = VecVT;
4691   if (VecVT.isFixedLengthVector()) {
4692     ContainerVT = getContainerForFixedLengthVector(VecVT);
4693     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4694   }
4695 
4696   SDValue VL = Op.getOperand(3);
4697   SDValue Mask = Op.getOperand(2);
4698 
4699   MVT M1VT = getLMUL1VT(ContainerVT);
4700   MVT XLenVT = Subtarget.getXLenVT();
4701   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
4702 
4703   SDValue StartSplat =
4704       lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT,
4705                        DL, DAG, Subtarget);
4706   SDValue Reduction =
4707       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
4708   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
4709                              DAG.getConstant(0, DL, XLenVT));
4710   if (!VecVT.isInteger())
4711     return Elt0;
4712   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4713 }
4714 
4715 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
4716                                                    SelectionDAG &DAG) const {
4717   SDValue Vec = Op.getOperand(0);
4718   SDValue SubVec = Op.getOperand(1);
4719   MVT VecVT = Vec.getSimpleValueType();
4720   MVT SubVecVT = SubVec.getSimpleValueType();
4721 
4722   SDLoc DL(Op);
4723   MVT XLenVT = Subtarget.getXLenVT();
4724   unsigned OrigIdx = Op.getConstantOperandVal(2);
4725   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4726 
4727   // We don't have the ability to slide mask vectors up indexed by their i1
4728   // elements; the smallest we can do is i8. Often we are able to bitcast to
4729   // equivalent i8 vectors. Note that when inserting a fixed-length vector
4730   // into a scalable one, we might not necessarily have enough scalable
4731   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
4732   if (SubVecVT.getVectorElementType() == MVT::i1 &&
4733       (OrigIdx != 0 || !Vec.isUndef())) {
4734     if (VecVT.getVectorMinNumElements() >= 8 &&
4735         SubVecVT.getVectorMinNumElements() >= 8) {
4736       assert(OrigIdx % 8 == 0 && "Invalid index");
4737       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4738              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4739              "Unexpected mask vector lowering");
4740       OrigIdx /= 8;
4741       SubVecVT =
4742           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4743                            SubVecVT.isScalableVector());
4744       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4745                                VecVT.isScalableVector());
4746       Vec = DAG.getBitcast(VecVT, Vec);
4747       SubVec = DAG.getBitcast(SubVecVT, SubVec);
4748     } else {
4749       // We can't slide this mask vector up indexed by its i1 elements.
4750       // This poses a problem when we wish to insert a scalable vector which
4751       // can't be re-expressed as a larger type. Just choose the slow path and
4752       // extend to a larger type, then truncate back down.
4753       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4754       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4755       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4756       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
4757       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
4758                         Op.getOperand(2));
4759       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
4760       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
4761     }
4762   }
4763 
4764   // If the subvector vector is a fixed-length type, we cannot use subregister
4765   // manipulation to simplify the codegen; we don't know which register of a
4766   // LMUL group contains the specific subvector as we only know the minimum
4767   // register size. Therefore we must slide the vector group up the full
4768   // amount.
4769   if (SubVecVT.isFixedLengthVector()) {
4770     if (OrigIdx == 0 && Vec.isUndef())
4771       return Op;
4772     MVT ContainerVT = VecVT;
4773     if (VecVT.isFixedLengthVector()) {
4774       ContainerVT = getContainerForFixedLengthVector(VecVT);
4775       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4776     }
4777     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
4778                          DAG.getUNDEF(ContainerVT), SubVec,
4779                          DAG.getConstant(0, DL, XLenVT));
4780     SDValue Mask =
4781         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4782     // Set the vector length to only the number of elements we care about. Note
4783     // that for slideup this includes the offset.
4784     SDValue VL =
4785         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
4786     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4787     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4788                                   SubVec, SlideupAmt, Mask, VL);
4789     if (VecVT.isFixedLengthVector())
4790       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4791     return DAG.getBitcast(Op.getValueType(), Slideup);
4792   }
4793 
4794   unsigned SubRegIdx, RemIdx;
4795   std::tie(SubRegIdx, RemIdx) =
4796       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4797           VecVT, SubVecVT, OrigIdx, TRI);
4798 
4799   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
4800   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
4801                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
4802                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
4803 
4804   // 1. If the Idx has been completely eliminated and this subvector's size is
4805   // a vector register or a multiple thereof, or the surrounding elements are
4806   // undef, then this is a subvector insert which naturally aligns to a vector
4807   // register. These can easily be handled using subregister manipulation.
4808   // 2. If the subvector is smaller than a vector register, then the insertion
4809   // must preserve the undisturbed elements of the register. We do this by
4810   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
4811   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
4812   // subvector within the vector register, and an INSERT_SUBVECTOR of that
4813   // LMUL=1 type back into the larger vector (resolving to another subregister
4814   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
4815   // to avoid allocating a large register group to hold our subvector.
4816   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
4817     return Op;
4818 
4819   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
4820   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
4821   // (in our case undisturbed). This means we can set up a subvector insertion
4822   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
4823   // size of the subvector.
4824   MVT InterSubVT = VecVT;
4825   SDValue AlignedExtract = Vec;
4826   unsigned AlignedIdx = OrigIdx - RemIdx;
4827   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4828     InterSubVT = getLMUL1VT(VecVT);
4829     // Extract a subvector equal to the nearest full vector register type. This
4830     // should resolve to a EXTRACT_SUBREG instruction.
4831     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4832                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
4833   }
4834 
4835   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4836   // For scalable vectors this must be further multiplied by vscale.
4837   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
4838 
4839   SDValue Mask, VL;
4840   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4841 
4842   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
4843   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
4844   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
4845   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
4846 
4847   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
4848                        DAG.getUNDEF(InterSubVT), SubVec,
4849                        DAG.getConstant(0, DL, XLenVT));
4850 
4851   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
4852                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
4853 
4854   // If required, insert this subvector back into the correct vector register.
4855   // This should resolve to an INSERT_SUBREG instruction.
4856   if (VecVT.bitsGT(InterSubVT))
4857     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
4858                           DAG.getConstant(AlignedIdx, DL, XLenVT));
4859 
4860   // We might have bitcast from a mask type: cast back to the original type if
4861   // required.
4862   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
4863 }
4864 
4865 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
4866                                                     SelectionDAG &DAG) const {
4867   SDValue Vec = Op.getOperand(0);
4868   MVT SubVecVT = Op.getSimpleValueType();
4869   MVT VecVT = Vec.getSimpleValueType();
4870 
4871   SDLoc DL(Op);
4872   MVT XLenVT = Subtarget.getXLenVT();
4873   unsigned OrigIdx = Op.getConstantOperandVal(1);
4874   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4875 
4876   // We don't have the ability to slide mask vectors down indexed by their i1
4877   // elements; the smallest we can do is i8. Often we are able to bitcast to
4878   // equivalent i8 vectors. Note that when extracting a fixed-length vector
4879   // from a scalable one, we might not necessarily have enough scalable
4880   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
4881   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
4882     if (VecVT.getVectorMinNumElements() >= 8 &&
4883         SubVecVT.getVectorMinNumElements() >= 8) {
4884       assert(OrigIdx % 8 == 0 && "Invalid index");
4885       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4886              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4887              "Unexpected mask vector lowering");
4888       OrigIdx /= 8;
4889       SubVecVT =
4890           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4891                            SubVecVT.isScalableVector());
4892       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4893                                VecVT.isScalableVector());
4894       Vec = DAG.getBitcast(VecVT, Vec);
4895     } else {
4896       // We can't slide this mask vector down, indexed by its i1 elements.
4897       // This poses a problem when we wish to extract a scalable vector which
4898       // can't be re-expressed as a larger type. Just choose the slow path and
4899       // extend to a larger type, then truncate back down.
4900       // TODO: We could probably improve this when extracting certain fixed
4901       // from fixed, where we can extract as i8 and shift the correct element
4902       // right to reach the desired subvector?
4903       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4904       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4905       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4906       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
4907                         Op.getOperand(1));
4908       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
4909       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
4910     }
4911   }
4912 
4913   // If the subvector vector is a fixed-length type, we cannot use subregister
4914   // manipulation to simplify the codegen; we don't know which register of a
4915   // LMUL group contains the specific subvector as we only know the minimum
4916   // register size. Therefore we must slide the vector group down the full
4917   // amount.
4918   if (SubVecVT.isFixedLengthVector()) {
4919     // With an index of 0 this is a cast-like subvector, which can be performed
4920     // with subregister operations.
4921     if (OrigIdx == 0)
4922       return Op;
4923     MVT ContainerVT = VecVT;
4924     if (VecVT.isFixedLengthVector()) {
4925       ContainerVT = getContainerForFixedLengthVector(VecVT);
4926       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4927     }
4928     SDValue Mask =
4929         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4930     // Set the vector length to only the number of elements we care about. This
4931     // avoids sliding down elements we're going to discard straight away.
4932     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
4933     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4934     SDValue Slidedown =
4935         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4936                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
4937     // Now we can use a cast-like subvector extract to get the result.
4938     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4939                             DAG.getConstant(0, DL, XLenVT));
4940     return DAG.getBitcast(Op.getValueType(), Slidedown);
4941   }
4942 
4943   unsigned SubRegIdx, RemIdx;
4944   std::tie(SubRegIdx, RemIdx) =
4945       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4946           VecVT, SubVecVT, OrigIdx, TRI);
4947 
4948   // If the Idx has been completely eliminated then this is a subvector extract
4949   // which naturally aligns to a vector register. These can easily be handled
4950   // using subregister manipulation.
4951   if (RemIdx == 0)
4952     return Op;
4953 
4954   // Else we must shift our vector register directly to extract the subvector.
4955   // Do this using VSLIDEDOWN.
4956 
4957   // If the vector type is an LMUL-group type, extract a subvector equal to the
4958   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
4959   // instruction.
4960   MVT InterSubVT = VecVT;
4961   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4962     InterSubVT = getLMUL1VT(VecVT);
4963     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4964                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
4965   }
4966 
4967   // Slide this vector register down by the desired number of elements in order
4968   // to place the desired subvector starting at element 0.
4969   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4970   // For scalable vectors this must be further multiplied by vscale.
4971   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
4972 
4973   SDValue Mask, VL;
4974   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
4975   SDValue Slidedown =
4976       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
4977                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
4978 
4979   // Now the vector is in the right position, extract our final subvector. This
4980   // should resolve to a COPY.
4981   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4982                           DAG.getConstant(0, DL, XLenVT));
4983 
4984   // We might have bitcast from a mask type: cast back to the original type if
4985   // required.
4986   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
4987 }
4988 
4989 // Lower step_vector to the vid instruction. Any non-identity step value must
4990 // be accounted for my manual expansion.
4991 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
4992                                               SelectionDAG &DAG) const {
4993   SDLoc DL(Op);
4994   MVT VT = Op.getSimpleValueType();
4995   MVT XLenVT = Subtarget.getXLenVT();
4996   SDValue Mask, VL;
4997   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
4998   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4999   uint64_t StepValImm = Op.getConstantOperandVal(0);
5000   if (StepValImm != 1) {
5001     if (isPowerOf2_64(StepValImm)) {
5002       SDValue StepVal =
5003           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
5004                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5005       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5006     } else {
5007       SDValue StepVal = lowerScalarSplat(
5008           DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT,
5009           DL, DAG, Subtarget);
5010       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5011     }
5012   }
5013   return StepVec;
5014 }
5015 
5016 // Implement vector_reverse using vrgather.vv with indices determined by
5017 // subtracting the id of each element from (VLMAX-1). This will convert
5018 // the indices like so:
5019 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5020 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5021 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5022                                                  SelectionDAG &DAG) const {
5023   SDLoc DL(Op);
5024   MVT VecVT = Op.getSimpleValueType();
5025   unsigned EltSize = VecVT.getScalarSizeInBits();
5026   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5027 
5028   unsigned MaxVLMAX = 0;
5029   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5030   if (VectorBitsMax != 0)
5031     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
5032 
5033   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5034   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5035 
5036   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5037   // to use vrgatherei16.vv.
5038   // TODO: It's also possible to use vrgatherei16.vv for other types to
5039   // decrease register width for the index calculation.
5040   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5041     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5042     // Reverse each half, then reassemble them in reverse order.
5043     // NOTE: It's also possible that after splitting that VLMAX no longer
5044     // requires vrgatherei16.vv.
5045     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5046       SDValue Lo, Hi;
5047       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5048       EVT LoVT, HiVT;
5049       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5050       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5051       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5052       // Reassemble the low and high pieces reversed.
5053       // FIXME: This is a CONCAT_VECTORS.
5054       SDValue Res =
5055           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5056                       DAG.getIntPtrConstant(0, DL));
5057       return DAG.getNode(
5058           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5059           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5060     }
5061 
5062     // Just promote the int type to i16 which will double the LMUL.
5063     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5064     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5065   }
5066 
5067   MVT XLenVT = Subtarget.getXLenVT();
5068   SDValue Mask, VL;
5069   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5070 
5071   // Calculate VLMAX-1 for the desired SEW.
5072   unsigned MinElts = VecVT.getVectorMinNumElements();
5073   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5074                               DAG.getConstant(MinElts, DL, XLenVT));
5075   SDValue VLMinus1 =
5076       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5077 
5078   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5079   bool IsRV32E64 =
5080       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5081   SDValue SplatVL;
5082   if (!IsRV32E64)
5083     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5084   else
5085     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
5086 
5087   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5088   SDValue Indices =
5089       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5090 
5091   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5092 }
5093 
5094 SDValue
5095 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5096                                                      SelectionDAG &DAG) const {
5097   SDLoc DL(Op);
5098   auto *Load = cast<LoadSDNode>(Op);
5099 
5100   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5101                                         Load->getMemoryVT(),
5102                                         *Load->getMemOperand()) &&
5103          "Expecting a correctly-aligned load");
5104 
5105   MVT VT = Op.getSimpleValueType();
5106   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5107 
5108   SDValue VL =
5109       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5110 
5111   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5112   SDValue NewLoad = DAG.getMemIntrinsicNode(
5113       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
5114       Load->getMemoryVT(), Load->getMemOperand());
5115 
5116   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5117   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5118 }
5119 
5120 SDValue
5121 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5122                                                       SelectionDAG &DAG) const {
5123   SDLoc DL(Op);
5124   auto *Store = cast<StoreSDNode>(Op);
5125 
5126   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5127                                         Store->getMemoryVT(),
5128                                         *Store->getMemOperand()) &&
5129          "Expecting a correctly-aligned store");
5130 
5131   SDValue StoreVal = Store->getValue();
5132   MVT VT = StoreVal.getSimpleValueType();
5133 
5134   // If the size less than a byte, we need to pad with zeros to make a byte.
5135   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5136     VT = MVT::v8i1;
5137     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5138                            DAG.getConstant(0, DL, VT), StoreVal,
5139                            DAG.getIntPtrConstant(0, DL));
5140   }
5141 
5142   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5143 
5144   SDValue VL =
5145       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5146 
5147   SDValue NewValue =
5148       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5149   return DAG.getMemIntrinsicNode(
5150       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
5151       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
5152       Store->getMemoryVT(), Store->getMemOperand());
5153 }
5154 
5155 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5156                                              SelectionDAG &DAG) const {
5157   SDLoc DL(Op);
5158   MVT VT = Op.getSimpleValueType();
5159 
5160   const auto *MemSD = cast<MemSDNode>(Op);
5161   EVT MemVT = MemSD->getMemoryVT();
5162   MachineMemOperand *MMO = MemSD->getMemOperand();
5163   SDValue Chain = MemSD->getChain();
5164   SDValue BasePtr = MemSD->getBasePtr();
5165 
5166   SDValue Mask, PassThru, VL;
5167   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5168     Mask = VPLoad->getMask();
5169     PassThru = DAG.getUNDEF(VT);
5170     VL = VPLoad->getVectorLength();
5171   } else {
5172     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5173     Mask = MLoad->getMask();
5174     PassThru = MLoad->getPassThru();
5175   }
5176 
5177   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5178 
5179   MVT XLenVT = Subtarget.getXLenVT();
5180 
5181   MVT ContainerVT = VT;
5182   if (VT.isFixedLengthVector()) {
5183     ContainerVT = getContainerForFixedLengthVector(VT);
5184     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5185     if (!IsUnmasked) {
5186       MVT MaskVT =
5187           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5188       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5189     }
5190   }
5191 
5192   if (!VL)
5193     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5194 
5195   unsigned IntID =
5196       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5197   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5198   if (!IsUnmasked)
5199     Ops.push_back(PassThru);
5200   Ops.push_back(BasePtr);
5201   if (!IsUnmasked)
5202     Ops.push_back(Mask);
5203   Ops.push_back(VL);
5204   if (!IsUnmasked)
5205     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5206 
5207   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5208 
5209   SDValue Result =
5210       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5211   Chain = Result.getValue(1);
5212 
5213   if (VT.isFixedLengthVector())
5214     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5215 
5216   return DAG.getMergeValues({Result, Chain}, DL);
5217 }
5218 
5219 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5220                                               SelectionDAG &DAG) const {
5221   SDLoc DL(Op);
5222 
5223   const auto *MemSD = cast<MemSDNode>(Op);
5224   EVT MemVT = MemSD->getMemoryVT();
5225   MachineMemOperand *MMO = MemSD->getMemOperand();
5226   SDValue Chain = MemSD->getChain();
5227   SDValue BasePtr = MemSD->getBasePtr();
5228   SDValue Val, Mask, VL;
5229 
5230   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5231     Val = VPStore->getValue();
5232     Mask = VPStore->getMask();
5233     VL = VPStore->getVectorLength();
5234   } else {
5235     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5236     Val = MStore->getValue();
5237     Mask = MStore->getMask();
5238   }
5239 
5240   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5241 
5242   MVT VT = Val.getSimpleValueType();
5243   MVT XLenVT = Subtarget.getXLenVT();
5244 
5245   MVT ContainerVT = VT;
5246   if (VT.isFixedLengthVector()) {
5247     ContainerVT = getContainerForFixedLengthVector(VT);
5248 
5249     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5250     if (!IsUnmasked) {
5251       MVT MaskVT =
5252           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5253       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5254     }
5255   }
5256 
5257   if (!VL)
5258     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5259 
5260   unsigned IntID =
5261       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5262   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5263   Ops.push_back(Val);
5264   Ops.push_back(BasePtr);
5265   if (!IsUnmasked)
5266     Ops.push_back(Mask);
5267   Ops.push_back(VL);
5268 
5269   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5270                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5271 }
5272 
5273 SDValue
5274 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5275                                                       SelectionDAG &DAG) const {
5276   MVT InVT = Op.getOperand(0).getSimpleValueType();
5277   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5278 
5279   MVT VT = Op.getSimpleValueType();
5280 
5281   SDValue Op1 =
5282       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5283   SDValue Op2 =
5284       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5285 
5286   SDLoc DL(Op);
5287   SDValue VL =
5288       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5289 
5290   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5291   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5292 
5293   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5294                             Op.getOperand(2), Mask, VL);
5295 
5296   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5297 }
5298 
5299 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5300     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5301   MVT VT = Op.getSimpleValueType();
5302 
5303   if (VT.getVectorElementType() == MVT::i1)
5304     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5305 
5306   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5307 }
5308 
5309 SDValue
5310 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5311                                                       SelectionDAG &DAG) const {
5312   unsigned Opc;
5313   switch (Op.getOpcode()) {
5314   default: llvm_unreachable("Unexpected opcode!");
5315   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5316   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5317   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5318   }
5319 
5320   return lowerToScalableOp(Op, DAG, Opc);
5321 }
5322 
5323 // Lower vector ABS to smax(X, sub(0, X)).
5324 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5325   SDLoc DL(Op);
5326   MVT VT = Op.getSimpleValueType();
5327   SDValue X = Op.getOperand(0);
5328 
5329   assert(VT.isFixedLengthVector() && "Unexpected type");
5330 
5331   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5332   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5333 
5334   SDValue Mask, VL;
5335   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5336 
5337   SDValue SplatZero =
5338       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5339                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5340   SDValue NegX =
5341       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5342   SDValue Max =
5343       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5344 
5345   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5346 }
5347 
5348 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5349     SDValue Op, SelectionDAG &DAG) const {
5350   SDLoc DL(Op);
5351   MVT VT = Op.getSimpleValueType();
5352   SDValue Mag = Op.getOperand(0);
5353   SDValue Sign = Op.getOperand(1);
5354   assert(Mag.getValueType() == Sign.getValueType() &&
5355          "Can only handle COPYSIGN with matching types.");
5356 
5357   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5358   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5359   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5360 
5361   SDValue Mask, VL;
5362   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5363 
5364   SDValue CopySign =
5365       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5366 
5367   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5368 }
5369 
5370 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5371     SDValue Op, SelectionDAG &DAG) const {
5372   MVT VT = Op.getSimpleValueType();
5373   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5374 
5375   MVT I1ContainerVT =
5376       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5377 
5378   SDValue CC =
5379       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5380   SDValue Op1 =
5381       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5382   SDValue Op2 =
5383       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5384 
5385   SDLoc DL(Op);
5386   SDValue Mask, VL;
5387   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5388 
5389   SDValue Select =
5390       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5391 
5392   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5393 }
5394 
5395 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5396                                                unsigned NewOpc,
5397                                                bool HasMask) const {
5398   MVT VT = Op.getSimpleValueType();
5399   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5400 
5401   // Create list of operands by converting existing ones to scalable types.
5402   SmallVector<SDValue, 6> Ops;
5403   for (const SDValue &V : Op->op_values()) {
5404     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5405 
5406     // Pass through non-vector operands.
5407     if (!V.getValueType().isVector()) {
5408       Ops.push_back(V);
5409       continue;
5410     }
5411 
5412     // "cast" fixed length vector to a scalable vector.
5413     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
5414            "Only fixed length vectors are supported!");
5415     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5416   }
5417 
5418   SDLoc DL(Op);
5419   SDValue Mask, VL;
5420   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5421   if (HasMask)
5422     Ops.push_back(Mask);
5423   Ops.push_back(VL);
5424 
5425   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
5426   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
5427 }
5428 
5429 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
5430 // * Operands of each node are assumed to be in the same order.
5431 // * The EVL operand is promoted from i32 to i64 on RV64.
5432 // * Fixed-length vectors are converted to their scalable-vector container
5433 //   types.
5434 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
5435                                        unsigned RISCVISDOpc) const {
5436   SDLoc DL(Op);
5437   MVT VT = Op.getSimpleValueType();
5438   SmallVector<SDValue, 4> Ops;
5439 
5440   for (const auto &OpIdx : enumerate(Op->ops())) {
5441     SDValue V = OpIdx.value();
5442     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5443     // Pass through operands which aren't fixed-length vectors.
5444     if (!V.getValueType().isFixedLengthVector()) {
5445       Ops.push_back(V);
5446       continue;
5447     }
5448     // "cast" fixed length vector to a scalable vector.
5449     MVT OpVT = V.getSimpleValueType();
5450     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
5451     assert(useRVVForFixedLengthVectorVT(OpVT) &&
5452            "Only fixed length vectors are supported!");
5453     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5454   }
5455 
5456   if (!VT.isFixedLengthVector())
5457     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
5458 
5459   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5460 
5461   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
5462 
5463   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
5464 }
5465 
5466 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
5467                                             unsigned MaskOpc,
5468                                             unsigned VecOpc) const {
5469   MVT VT = Op.getSimpleValueType();
5470   if (VT.getVectorElementType() != MVT::i1)
5471     return lowerVPOp(Op, DAG, VecOpc);
5472 
5473   // It is safe to drop mask parameter as masked-off elements are undef.
5474   SDValue Op1 = Op->getOperand(0);
5475   SDValue Op2 = Op->getOperand(1);
5476   SDValue VL = Op->getOperand(3);
5477 
5478   MVT ContainerVT = VT;
5479   const bool IsFixed = VT.isFixedLengthVector();
5480   if (IsFixed) {
5481     ContainerVT = getContainerForFixedLengthVector(VT);
5482     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
5483     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
5484   }
5485 
5486   SDLoc DL(Op);
5487   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
5488   if (!IsFixed)
5489     return Val;
5490   return convertFromScalableVector(VT, Val, DAG, Subtarget);
5491 }
5492 
5493 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
5494 // matched to a RVV indexed load. The RVV indexed load instructions only
5495 // support the "unsigned unscaled" addressing mode; indices are implicitly
5496 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5497 // signed or scaled indexing is extended to the XLEN value type and scaled
5498 // accordingly.
5499 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
5500                                                SelectionDAG &DAG) const {
5501   SDLoc DL(Op);
5502   MVT VT = Op.getSimpleValueType();
5503 
5504   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5505   EVT MemVT = MemSD->getMemoryVT();
5506   MachineMemOperand *MMO = MemSD->getMemOperand();
5507   SDValue Chain = MemSD->getChain();
5508   SDValue BasePtr = MemSD->getBasePtr();
5509 
5510   ISD::LoadExtType LoadExtType;
5511   SDValue Index, Mask, PassThru, VL;
5512 
5513   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
5514     Index = VPGN->getIndex();
5515     Mask = VPGN->getMask();
5516     PassThru = DAG.getUNDEF(VT);
5517     VL = VPGN->getVectorLength();
5518     // VP doesn't support extending loads.
5519     LoadExtType = ISD::NON_EXTLOAD;
5520   } else {
5521     // Else it must be a MGATHER.
5522     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
5523     Index = MGN->getIndex();
5524     Mask = MGN->getMask();
5525     PassThru = MGN->getPassThru();
5526     LoadExtType = MGN->getExtensionType();
5527   }
5528 
5529   MVT IndexVT = Index.getSimpleValueType();
5530   MVT XLenVT = Subtarget.getXLenVT();
5531 
5532   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5533          "Unexpected VTs!");
5534   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5535   // Targets have to explicitly opt-in for extending vector loads.
5536   assert(LoadExtType == ISD::NON_EXTLOAD &&
5537          "Unexpected extending MGATHER/VP_GATHER");
5538   (void)LoadExtType;
5539 
5540   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5541   // the selection of the masked intrinsics doesn't do this for us.
5542   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5543 
5544   MVT ContainerVT = VT;
5545   if (VT.isFixedLengthVector()) {
5546     // We need to use the larger of the result and index type to determine the
5547     // scalable type to use so we don't increase LMUL for any operand/result.
5548     if (VT.bitsGE(IndexVT)) {
5549       ContainerVT = getContainerForFixedLengthVector(VT);
5550       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5551                                  ContainerVT.getVectorElementCount());
5552     } else {
5553       IndexVT = getContainerForFixedLengthVector(IndexVT);
5554       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
5555                                      IndexVT.getVectorElementCount());
5556     }
5557 
5558     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5559 
5560     if (!IsUnmasked) {
5561       MVT MaskVT =
5562           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5563       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5564       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5565     }
5566   }
5567 
5568   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
5569       IndexVT = IndexVT.changeVectorElementType(XLenVT);
5570       Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index);
5571   }
5572 
5573   if (!VL)
5574     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5575 
5576   unsigned IntID =
5577       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
5578   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5579   if (!IsUnmasked)
5580     Ops.push_back(PassThru);
5581   Ops.push_back(BasePtr);
5582   Ops.push_back(Index);
5583   if (!IsUnmasked)
5584     Ops.push_back(Mask);
5585   Ops.push_back(VL);
5586   if (!IsUnmasked)
5587     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5588 
5589   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5590   SDValue Result =
5591       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5592   Chain = Result.getValue(1);
5593 
5594   if (VT.isFixedLengthVector())
5595     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5596 
5597   return DAG.getMergeValues({Result, Chain}, DL);
5598 }
5599 
5600 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
5601 // matched to a RVV indexed store. The RVV indexed store instructions only
5602 // support the "unsigned unscaled" addressing mode; indices are implicitly
5603 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5604 // signed or scaled indexing is extended to the XLEN value type and scaled
5605 // accordingly.
5606 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
5607                                                 SelectionDAG &DAG) const {
5608   SDLoc DL(Op);
5609   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5610   EVT MemVT = MemSD->getMemoryVT();
5611   MachineMemOperand *MMO = MemSD->getMemOperand();
5612   SDValue Chain = MemSD->getChain();
5613   SDValue BasePtr = MemSD->getBasePtr();
5614 
5615   bool IsTruncatingStore = false;
5616   SDValue Index, Mask, Val, VL;
5617 
5618   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
5619     Index = VPSN->getIndex();
5620     Mask = VPSN->getMask();
5621     Val = VPSN->getValue();
5622     VL = VPSN->getVectorLength();
5623     // VP doesn't support truncating stores.
5624     IsTruncatingStore = false;
5625   } else {
5626     // Else it must be a MSCATTER.
5627     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
5628     Index = MSN->getIndex();
5629     Mask = MSN->getMask();
5630     Val = MSN->getValue();
5631     IsTruncatingStore = MSN->isTruncatingStore();
5632   }
5633 
5634   MVT VT = Val.getSimpleValueType();
5635   MVT IndexVT = Index.getSimpleValueType();
5636   MVT XLenVT = Subtarget.getXLenVT();
5637 
5638   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5639          "Unexpected VTs!");
5640   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5641   // Targets have to explicitly opt-in for extending vector loads and
5642   // truncating vector stores.
5643   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
5644   (void)IsTruncatingStore;
5645 
5646   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5647   // the selection of the masked intrinsics doesn't do this for us.
5648   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5649 
5650   MVT ContainerVT = VT;
5651   if (VT.isFixedLengthVector()) {
5652     // We need to use the larger of the value and index type to determine the
5653     // scalable type to use so we don't increase LMUL for any operand/result.
5654     if (VT.bitsGE(IndexVT)) {
5655       ContainerVT = getContainerForFixedLengthVector(VT);
5656       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5657                                  ContainerVT.getVectorElementCount());
5658     } else {
5659       IndexVT = getContainerForFixedLengthVector(IndexVT);
5660       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
5661                                      IndexVT.getVectorElementCount());
5662     }
5663 
5664     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5665     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5666 
5667     if (!IsUnmasked) {
5668       MVT MaskVT =
5669           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5670       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5671     }
5672   }
5673 
5674   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
5675       IndexVT = IndexVT.changeVectorElementType(XLenVT);
5676       Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index);
5677   }
5678 
5679   if (!VL)
5680     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5681 
5682   unsigned IntID =
5683       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
5684   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5685   Ops.push_back(Val);
5686   Ops.push_back(BasePtr);
5687   Ops.push_back(Index);
5688   if (!IsUnmasked)
5689     Ops.push_back(Mask);
5690   Ops.push_back(VL);
5691 
5692   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5693                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5694 }
5695 
5696 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
5697                                                SelectionDAG &DAG) const {
5698   const MVT XLenVT = Subtarget.getXLenVT();
5699   SDLoc DL(Op);
5700   SDValue Chain = Op->getOperand(0);
5701   SDValue SysRegNo = DAG.getTargetConstant(
5702       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5703   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
5704   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
5705 
5706   // Encoding used for rounding mode in RISCV differs from that used in
5707   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
5708   // table, which consists of a sequence of 4-bit fields, each representing
5709   // corresponding FLT_ROUNDS mode.
5710   static const int Table =
5711       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
5712       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
5713       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
5714       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
5715       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
5716 
5717   SDValue Shift =
5718       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
5719   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5720                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5721   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5722                                DAG.getConstant(7, DL, XLenVT));
5723 
5724   return DAG.getMergeValues({Masked, Chain}, DL);
5725 }
5726 
5727 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
5728                                                SelectionDAG &DAG) const {
5729   const MVT XLenVT = Subtarget.getXLenVT();
5730   SDLoc DL(Op);
5731   SDValue Chain = Op->getOperand(0);
5732   SDValue RMValue = Op->getOperand(1);
5733   SDValue SysRegNo = DAG.getTargetConstant(
5734       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5735 
5736   // Encoding used for rounding mode in RISCV differs from that used in
5737   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
5738   // a table, which consists of a sequence of 4-bit fields, each representing
5739   // corresponding RISCV mode.
5740   static const unsigned Table =
5741       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
5742       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
5743       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
5744       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
5745       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
5746 
5747   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
5748                               DAG.getConstant(2, DL, XLenVT));
5749   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5750                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5751   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5752                         DAG.getConstant(0x7, DL, XLenVT));
5753   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
5754                      RMValue);
5755 }
5756 
5757 // Returns the opcode of the target-specific SDNode that implements the 32-bit
5758 // form of the given Opcode.
5759 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
5760   switch (Opcode) {
5761   default:
5762     llvm_unreachable("Unexpected opcode");
5763   case ISD::SHL:
5764     return RISCVISD::SLLW;
5765   case ISD::SRA:
5766     return RISCVISD::SRAW;
5767   case ISD::SRL:
5768     return RISCVISD::SRLW;
5769   case ISD::SDIV:
5770     return RISCVISD::DIVW;
5771   case ISD::UDIV:
5772     return RISCVISD::DIVUW;
5773   case ISD::UREM:
5774     return RISCVISD::REMUW;
5775   case ISD::ROTL:
5776     return RISCVISD::ROLW;
5777   case ISD::ROTR:
5778     return RISCVISD::RORW;
5779   case RISCVISD::GREV:
5780     return RISCVISD::GREVW;
5781   case RISCVISD::GORC:
5782     return RISCVISD::GORCW;
5783   }
5784 }
5785 
5786 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
5787 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
5788 // otherwise be promoted to i64, making it difficult to select the
5789 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
5790 // type i8/i16/i32 is lost.
5791 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
5792                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
5793   SDLoc DL(N);
5794   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5795   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
5796   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
5797   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5798   // ReplaceNodeResults requires we maintain the same type for the return value.
5799   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
5800 }
5801 
5802 // Converts the given 32-bit operation to a i64 operation with signed extension
5803 // semantic to reduce the signed extension instructions.
5804 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
5805   SDLoc DL(N);
5806   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5807   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5808   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
5809   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5810                                DAG.getValueType(MVT::i32));
5811   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
5812 }
5813 
5814 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
5815                                              SmallVectorImpl<SDValue> &Results,
5816                                              SelectionDAG &DAG) const {
5817   SDLoc DL(N);
5818   switch (N->getOpcode()) {
5819   default:
5820     llvm_unreachable("Don't know how to custom type legalize this operation!");
5821   case ISD::STRICT_FP_TO_SINT:
5822   case ISD::STRICT_FP_TO_UINT:
5823   case ISD::FP_TO_SINT:
5824   case ISD::FP_TO_UINT: {
5825     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5826            "Unexpected custom legalisation");
5827     bool IsStrict = N->isStrictFPOpcode();
5828     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
5829                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
5830     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
5831     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
5832         TargetLowering::TypeSoftenFloat) {
5833       if (!isTypeLegal(Op0.getValueType()))
5834         return;
5835       if (IsStrict) {
5836         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
5837                                 : RISCVISD::STRICT_FCVT_WU_RV64;
5838         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
5839         SDValue Res = DAG.getNode(
5840             Opc, DL, VTs, N->getOperand(0), Op0,
5841             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
5842         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5843         Results.push_back(Res.getValue(1));
5844         return;
5845       }
5846       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
5847       SDValue Res =
5848           DAG.getNode(Opc, DL, MVT::i64, Op0,
5849                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
5850       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5851       return;
5852     }
5853     // If the FP type needs to be softened, emit a library call using the 'si'
5854     // version. If we left it to default legalization we'd end up with 'di'. If
5855     // the FP type doesn't need to be softened just let generic type
5856     // legalization promote the result type.
5857     RTLIB::Libcall LC;
5858     if (IsSigned)
5859       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
5860     else
5861       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
5862     MakeLibCallOptions CallOptions;
5863     EVT OpVT = Op0.getValueType();
5864     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
5865     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
5866     SDValue Result;
5867     std::tie(Result, Chain) =
5868         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
5869     Results.push_back(Result);
5870     if (IsStrict)
5871       Results.push_back(Chain);
5872     break;
5873   }
5874   case ISD::READCYCLECOUNTER: {
5875     assert(!Subtarget.is64Bit() &&
5876            "READCYCLECOUNTER only has custom type legalization on riscv32");
5877 
5878     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5879     SDValue RCW =
5880         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
5881 
5882     Results.push_back(
5883         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
5884     Results.push_back(RCW.getValue(2));
5885     break;
5886   }
5887   case ISD::MUL: {
5888     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
5889     unsigned XLen = Subtarget.getXLen();
5890     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
5891     if (Size > XLen) {
5892       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
5893       SDValue LHS = N->getOperand(0);
5894       SDValue RHS = N->getOperand(1);
5895       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
5896 
5897       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
5898       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
5899       // We need exactly one side to be unsigned.
5900       if (LHSIsU == RHSIsU)
5901         return;
5902 
5903       auto MakeMULPair = [&](SDValue S, SDValue U) {
5904         MVT XLenVT = Subtarget.getXLenVT();
5905         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
5906         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
5907         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
5908         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
5909         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
5910       };
5911 
5912       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
5913       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
5914 
5915       // The other operand should be signed, but still prefer MULH when
5916       // possible.
5917       if (RHSIsU && LHSIsS && !RHSIsS)
5918         Results.push_back(MakeMULPair(LHS, RHS));
5919       else if (LHSIsU && RHSIsS && !LHSIsS)
5920         Results.push_back(MakeMULPair(RHS, LHS));
5921 
5922       return;
5923     }
5924     LLVM_FALLTHROUGH;
5925   }
5926   case ISD::ADD:
5927   case ISD::SUB:
5928     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5929            "Unexpected custom legalisation");
5930     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
5931     break;
5932   case ISD::SHL:
5933   case ISD::SRA:
5934   case ISD::SRL:
5935     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5936            "Unexpected custom legalisation");
5937     if (N->getOperand(1).getOpcode() != ISD::Constant) {
5938       Results.push_back(customLegalizeToWOp(N, DAG));
5939       break;
5940     }
5941 
5942     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
5943     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
5944     // shift amount.
5945     if (N->getOpcode() == ISD::SHL) {
5946       SDLoc DL(N);
5947       SDValue NewOp0 =
5948           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5949       SDValue NewOp1 =
5950           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
5951       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
5952       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5953                                    DAG.getValueType(MVT::i32));
5954       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5955     }
5956 
5957     break;
5958   case ISD::ROTL:
5959   case ISD::ROTR:
5960     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5961            "Unexpected custom legalisation");
5962     Results.push_back(customLegalizeToWOp(N, DAG));
5963     break;
5964   case ISD::CTTZ:
5965   case ISD::CTTZ_ZERO_UNDEF:
5966   case ISD::CTLZ:
5967   case ISD::CTLZ_ZERO_UNDEF: {
5968     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5969            "Unexpected custom legalisation");
5970 
5971     SDValue NewOp0 =
5972         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5973     bool IsCTZ =
5974         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
5975     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
5976     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
5977     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5978     return;
5979   }
5980   case ISD::SDIV:
5981   case ISD::UDIV:
5982   case ISD::UREM: {
5983     MVT VT = N->getSimpleValueType(0);
5984     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
5985            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
5986            "Unexpected custom legalisation");
5987     // Don't promote division/remainder by constant since we should expand those
5988     // to multiply by magic constant.
5989     // FIXME: What if the expansion is disabled for minsize.
5990     if (N->getOperand(1).getOpcode() == ISD::Constant)
5991       return;
5992 
5993     // If the input is i32, use ANY_EXTEND since the W instructions don't read
5994     // the upper 32 bits. For other types we need to sign or zero extend
5995     // based on the opcode.
5996     unsigned ExtOpc = ISD::ANY_EXTEND;
5997     if (VT != MVT::i32)
5998       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
5999                                            : ISD::ZERO_EXTEND;
6000 
6001     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6002     break;
6003   }
6004   case ISD::UADDO:
6005   case ISD::USUBO: {
6006     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6007            "Unexpected custom legalisation");
6008     bool IsAdd = N->getOpcode() == ISD::UADDO;
6009     // Create an ADDW or SUBW.
6010     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6011     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6012     SDValue Res =
6013         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6014     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6015                       DAG.getValueType(MVT::i32));
6016 
6017     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
6018     // Since the inputs are sign extended from i32, this is equivalent to
6019     // comparing the lower 32 bits.
6020     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6021     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6022                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
6023 
6024     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6025     Results.push_back(Overflow);
6026     return;
6027   }
6028   case ISD::UADDSAT:
6029   case ISD::USUBSAT: {
6030     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6031            "Unexpected custom legalisation");
6032     if (Subtarget.hasStdExtZbb()) {
6033       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6034       // sign extend allows overflow of the lower 32 bits to be detected on
6035       // the promoted size.
6036       SDValue LHS =
6037           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6038       SDValue RHS =
6039           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6040       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6041       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6042       return;
6043     }
6044 
6045     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6046     // promotion for UADDO/USUBO.
6047     Results.push_back(expandAddSubSat(N, DAG));
6048     return;
6049   }
6050   case ISD::BITCAST: {
6051     EVT VT = N->getValueType(0);
6052     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6053     SDValue Op0 = N->getOperand(0);
6054     EVT Op0VT = Op0.getValueType();
6055     MVT XLenVT = Subtarget.getXLenVT();
6056     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6057       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6058       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6059     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6060                Subtarget.hasStdExtF()) {
6061       SDValue FPConv =
6062           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6063       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6064     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6065                isTypeLegal(Op0VT)) {
6066       // Custom-legalize bitcasts from fixed-length vector types to illegal
6067       // scalar types in order to improve codegen. Bitcast the vector to a
6068       // one-element vector type whose element type is the same as the result
6069       // type, and extract the first element.
6070       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6071       if (isTypeLegal(BVT)) {
6072         SDValue BVec = DAG.getBitcast(BVT, Op0);
6073         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6074                                       DAG.getConstant(0, DL, XLenVT)));
6075       }
6076     }
6077     break;
6078   }
6079   case RISCVISD::GREV:
6080   case RISCVISD::GORC: {
6081     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6082            "Unexpected custom legalisation");
6083     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6084     // This is similar to customLegalizeToWOp, except that we pass the second
6085     // operand (a TargetConstant) straight through: it is already of type
6086     // XLenVT.
6087     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6088     SDValue NewOp0 =
6089         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6090     SDValue NewOp1 =
6091         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6092     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6093     // ReplaceNodeResults requires we maintain the same type for the return
6094     // value.
6095     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6096     break;
6097   }
6098   case RISCVISD::SHFL: {
6099     // There is no SHFLIW instruction, but we can just promote the operation.
6100     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6101            "Unexpected custom legalisation");
6102     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6103     SDValue NewOp0 =
6104         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6105     SDValue NewOp1 =
6106         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6107     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
6108     // ReplaceNodeResults requires we maintain the same type for the return
6109     // value.
6110     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6111     break;
6112   }
6113   case ISD::BSWAP:
6114   case ISD::BITREVERSE: {
6115     MVT VT = N->getSimpleValueType(0);
6116     MVT XLenVT = Subtarget.getXLenVT();
6117     assert((VT == MVT::i8 || VT == MVT::i16 ||
6118             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6119            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6120     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6121     unsigned Imm = VT.getSizeInBits() - 1;
6122     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6123     if (N->getOpcode() == ISD::BSWAP)
6124       Imm &= ~0x7U;
6125     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
6126     SDValue GREVI =
6127         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
6128     // ReplaceNodeResults requires we maintain the same type for the return
6129     // value.
6130     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6131     break;
6132   }
6133   case ISD::FSHL:
6134   case ISD::FSHR: {
6135     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6136            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6137     SDValue NewOp0 =
6138         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6139     SDValue NewOp1 =
6140         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6141     SDValue NewOp2 =
6142         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6143     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6144     // Mask the shift amount to 5 bits.
6145     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6146                          DAG.getConstant(0x1f, DL, MVT::i64));
6147     unsigned Opc =
6148         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
6149     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
6150     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6151     break;
6152   }
6153   case ISD::EXTRACT_VECTOR_ELT: {
6154     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
6155     // type is illegal (currently only vXi64 RV32).
6156     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
6157     // transferred to the destination register. We issue two of these from the
6158     // upper- and lower- halves of the SEW-bit vector element, slid down to the
6159     // first element.
6160     SDValue Vec = N->getOperand(0);
6161     SDValue Idx = N->getOperand(1);
6162 
6163     // The vector type hasn't been legalized yet so we can't issue target
6164     // specific nodes if it needs legalization.
6165     // FIXME: We would manually legalize if it's important.
6166     if (!isTypeLegal(Vec.getValueType()))
6167       return;
6168 
6169     MVT VecVT = Vec.getSimpleValueType();
6170 
6171     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
6172            VecVT.getVectorElementType() == MVT::i64 &&
6173            "Unexpected EXTRACT_VECTOR_ELT legalization");
6174 
6175     // If this is a fixed vector, we need to convert it to a scalable vector.
6176     MVT ContainerVT = VecVT;
6177     if (VecVT.isFixedLengthVector()) {
6178       ContainerVT = getContainerForFixedLengthVector(VecVT);
6179       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6180     }
6181 
6182     MVT XLenVT = Subtarget.getXLenVT();
6183 
6184     // Use a VL of 1 to avoid processing more elements than we need.
6185     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6186     SDValue VL = DAG.getConstant(1, DL, XLenVT);
6187     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6188 
6189     // Unless the index is known to be 0, we must slide the vector down to get
6190     // the desired element into index 0.
6191     if (!isNullConstant(Idx)) {
6192       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
6193                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
6194     }
6195 
6196     // Extract the lower XLEN bits of the correct vector element.
6197     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6198 
6199     // To extract the upper XLEN bits of the vector element, shift the first
6200     // element right by 32 bits and re-extract the lower XLEN bits.
6201     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6202                                      DAG.getConstant(32, DL, XLenVT), VL);
6203     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
6204                                  ThirtyTwoV, Mask, VL);
6205 
6206     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6207 
6208     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6209     break;
6210   }
6211   case ISD::INTRINSIC_WO_CHAIN: {
6212     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6213     switch (IntNo) {
6214     default:
6215       llvm_unreachable(
6216           "Don't know how to custom type legalize this intrinsic!");
6217     case Intrinsic::riscv_orc_b: {
6218       // Lower to the GORCI encoding for orc.b with the operand extended.
6219       SDValue NewOp =
6220           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6221       // If Zbp is enabled, use GORCIW which will sign extend the result.
6222       unsigned Opc =
6223           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
6224       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
6225                                 DAG.getConstant(7, DL, MVT::i64));
6226       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6227       return;
6228     }
6229     case Intrinsic::riscv_grev:
6230     case Intrinsic::riscv_gorc: {
6231       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6232              "Unexpected custom legalisation");
6233       SDValue NewOp1 =
6234           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6235       SDValue NewOp2 =
6236           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6237       unsigned Opc =
6238           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
6239       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6240       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6241       break;
6242     }
6243     case Intrinsic::riscv_shfl:
6244     case Intrinsic::riscv_unshfl: {
6245       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6246              "Unexpected custom legalisation");
6247       SDValue NewOp1 =
6248           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6249       SDValue NewOp2 =
6250           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6251       unsigned Opc =
6252           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
6253       if (isa<ConstantSDNode>(N->getOperand(2))) {
6254         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6255                              DAG.getConstant(0xf, DL, MVT::i64));
6256         Opc =
6257             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
6258       }
6259       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6260       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6261       break;
6262     }
6263     case Intrinsic::riscv_bcompress:
6264     case Intrinsic::riscv_bdecompress: {
6265       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6266              "Unexpected custom legalisation");
6267       SDValue NewOp1 =
6268           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6269       SDValue NewOp2 =
6270           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6271       unsigned Opc = IntNo == Intrinsic::riscv_bcompress
6272                          ? RISCVISD::BCOMPRESSW
6273                          : RISCVISD::BDECOMPRESSW;
6274       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6275       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6276       break;
6277     }
6278     case Intrinsic::riscv_vmv_x_s: {
6279       EVT VT = N->getValueType(0);
6280       MVT XLenVT = Subtarget.getXLenVT();
6281       if (VT.bitsLT(XLenVT)) {
6282         // Simple case just extract using vmv.x.s and truncate.
6283         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
6284                                       Subtarget.getXLenVT(), N->getOperand(1));
6285         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
6286         return;
6287       }
6288 
6289       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
6290              "Unexpected custom legalization");
6291 
6292       // We need to do the move in two steps.
6293       SDValue Vec = N->getOperand(1);
6294       MVT VecVT = Vec.getSimpleValueType();
6295 
6296       // First extract the lower XLEN bits of the element.
6297       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6298 
6299       // To extract the upper XLEN bits of the vector element, shift the first
6300       // element right by 32 bits and re-extract the lower XLEN bits.
6301       SDValue VL = DAG.getConstant(1, DL, XLenVT);
6302       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
6303       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6304       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
6305                                        DAG.getConstant(32, DL, XLenVT), VL);
6306       SDValue LShr32 =
6307           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
6308       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6309 
6310       Results.push_back(
6311           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6312       break;
6313     }
6314     }
6315     break;
6316   }
6317   case ISD::VECREDUCE_ADD:
6318   case ISD::VECREDUCE_AND:
6319   case ISD::VECREDUCE_OR:
6320   case ISD::VECREDUCE_XOR:
6321   case ISD::VECREDUCE_SMAX:
6322   case ISD::VECREDUCE_UMAX:
6323   case ISD::VECREDUCE_SMIN:
6324   case ISD::VECREDUCE_UMIN:
6325     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
6326       Results.push_back(V);
6327     break;
6328   case ISD::VP_REDUCE_ADD:
6329   case ISD::VP_REDUCE_AND:
6330   case ISD::VP_REDUCE_OR:
6331   case ISD::VP_REDUCE_XOR:
6332   case ISD::VP_REDUCE_SMAX:
6333   case ISD::VP_REDUCE_UMAX:
6334   case ISD::VP_REDUCE_SMIN:
6335   case ISD::VP_REDUCE_UMIN:
6336     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
6337       Results.push_back(V);
6338     break;
6339   case ISD::FLT_ROUNDS_: {
6340     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
6341     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
6342     Results.push_back(Res.getValue(0));
6343     Results.push_back(Res.getValue(1));
6344     break;
6345   }
6346   }
6347 }
6348 
6349 // A structure to hold one of the bit-manipulation patterns below. Together, a
6350 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
6351 //   (or (and (shl x, 1), 0xAAAAAAAA),
6352 //       (and (srl x, 1), 0x55555555))
6353 struct RISCVBitmanipPat {
6354   SDValue Op;
6355   unsigned ShAmt;
6356   bool IsSHL;
6357 
6358   bool formsPairWith(const RISCVBitmanipPat &Other) const {
6359     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
6360   }
6361 };
6362 
6363 // Matches patterns of the form
6364 //   (and (shl x, C2), (C1 << C2))
6365 //   (and (srl x, C2), C1)
6366 //   (shl (and x, C1), C2)
6367 //   (srl (and x, (C1 << C2)), C2)
6368 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
6369 // The expected masks for each shift amount are specified in BitmanipMasks where
6370 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
6371 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
6372 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
6373 // XLen is 64.
6374 static Optional<RISCVBitmanipPat>
6375 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
6376   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
6377          "Unexpected number of masks");
6378   Optional<uint64_t> Mask;
6379   // Optionally consume a mask around the shift operation.
6380   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
6381     Mask = Op.getConstantOperandVal(1);
6382     Op = Op.getOperand(0);
6383   }
6384   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
6385     return None;
6386   bool IsSHL = Op.getOpcode() == ISD::SHL;
6387 
6388   if (!isa<ConstantSDNode>(Op.getOperand(1)))
6389     return None;
6390   uint64_t ShAmt = Op.getConstantOperandVal(1);
6391 
6392   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6393   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
6394     return None;
6395   // If we don't have enough masks for 64 bit, then we must be trying to
6396   // match SHFL so we're only allowed to shift 1/4 of the width.
6397   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
6398     return None;
6399 
6400   SDValue Src = Op.getOperand(0);
6401 
6402   // The expected mask is shifted left when the AND is found around SHL
6403   // patterns.
6404   //   ((x >> 1) & 0x55555555)
6405   //   ((x << 1) & 0xAAAAAAAA)
6406   bool SHLExpMask = IsSHL;
6407 
6408   if (!Mask) {
6409     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
6410     // the mask is all ones: consume that now.
6411     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
6412       Mask = Src.getConstantOperandVal(1);
6413       Src = Src.getOperand(0);
6414       // The expected mask is now in fact shifted left for SRL, so reverse the
6415       // decision.
6416       //   ((x & 0xAAAAAAAA) >> 1)
6417       //   ((x & 0x55555555) << 1)
6418       SHLExpMask = !SHLExpMask;
6419     } else {
6420       // Use a default shifted mask of all-ones if there's no AND, truncated
6421       // down to the expected width. This simplifies the logic later on.
6422       Mask = maskTrailingOnes<uint64_t>(Width);
6423       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
6424     }
6425   }
6426 
6427   unsigned MaskIdx = Log2_32(ShAmt);
6428   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6429 
6430   if (SHLExpMask)
6431     ExpMask <<= ShAmt;
6432 
6433   if (Mask != ExpMask)
6434     return None;
6435 
6436   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
6437 }
6438 
6439 // Matches any of the following bit-manipulation patterns:
6440 //   (and (shl x, 1), (0x55555555 << 1))
6441 //   (and (srl x, 1), 0x55555555)
6442 //   (shl (and x, 0x55555555), 1)
6443 //   (srl (and x, (0x55555555 << 1)), 1)
6444 // where the shift amount and mask may vary thus:
6445 //   [1]  = 0x55555555 / 0xAAAAAAAA
6446 //   [2]  = 0x33333333 / 0xCCCCCCCC
6447 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
6448 //   [8]  = 0x00FF00FF / 0xFF00FF00
6449 //   [16] = 0x0000FFFF / 0xFFFFFFFF
6450 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
6451 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
6452   // These are the unshifted masks which we use to match bit-manipulation
6453   // patterns. They may be shifted left in certain circumstances.
6454   static const uint64_t BitmanipMasks[] = {
6455       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
6456       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
6457 
6458   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6459 }
6460 
6461 // Match the following pattern as a GREVI(W) operation
6462 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
6463 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
6464                                const RISCVSubtarget &Subtarget) {
6465   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6466   EVT VT = Op.getValueType();
6467 
6468   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6469     auto LHS = matchGREVIPat(Op.getOperand(0));
6470     auto RHS = matchGREVIPat(Op.getOperand(1));
6471     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
6472       SDLoc DL(Op);
6473       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
6474                          DAG.getConstant(LHS->ShAmt, DL, VT));
6475     }
6476   }
6477   return SDValue();
6478 }
6479 
6480 // Matches any the following pattern as a GORCI(W) operation
6481 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
6482 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
6483 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
6484 // Note that with the variant of 3.,
6485 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
6486 // the inner pattern will first be matched as GREVI and then the outer
6487 // pattern will be matched to GORC via the first rule above.
6488 // 4.  (or (rotl/rotr x, bitwidth/2), x)
6489 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
6490                                const RISCVSubtarget &Subtarget) {
6491   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6492   EVT VT = Op.getValueType();
6493 
6494   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6495     SDLoc DL(Op);
6496     SDValue Op0 = Op.getOperand(0);
6497     SDValue Op1 = Op.getOperand(1);
6498 
6499     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
6500       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
6501           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
6502           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
6503         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
6504       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
6505       if ((Reverse.getOpcode() == ISD::ROTL ||
6506            Reverse.getOpcode() == ISD::ROTR) &&
6507           Reverse.getOperand(0) == X &&
6508           isa<ConstantSDNode>(Reverse.getOperand(1))) {
6509         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
6510         if (RotAmt == (VT.getSizeInBits() / 2))
6511           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
6512                              DAG.getConstant(RotAmt, DL, VT));
6513       }
6514       return SDValue();
6515     };
6516 
6517     // Check for either commutable permutation of (or (GREVI x, shamt), x)
6518     if (SDValue V = MatchOROfReverse(Op0, Op1))
6519       return V;
6520     if (SDValue V = MatchOROfReverse(Op1, Op0))
6521       return V;
6522 
6523     // OR is commutable so canonicalize its OR operand to the left
6524     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
6525       std::swap(Op0, Op1);
6526     if (Op0.getOpcode() != ISD::OR)
6527       return SDValue();
6528     SDValue OrOp0 = Op0.getOperand(0);
6529     SDValue OrOp1 = Op0.getOperand(1);
6530     auto LHS = matchGREVIPat(OrOp0);
6531     // OR is commutable so swap the operands and try again: x might have been
6532     // on the left
6533     if (!LHS) {
6534       std::swap(OrOp0, OrOp1);
6535       LHS = matchGREVIPat(OrOp0);
6536     }
6537     auto RHS = matchGREVIPat(Op1);
6538     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
6539       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
6540                          DAG.getConstant(LHS->ShAmt, DL, VT));
6541     }
6542   }
6543   return SDValue();
6544 }
6545 
6546 // Matches any of the following bit-manipulation patterns:
6547 //   (and (shl x, 1), (0x22222222 << 1))
6548 //   (and (srl x, 1), 0x22222222)
6549 //   (shl (and x, 0x22222222), 1)
6550 //   (srl (and x, (0x22222222 << 1)), 1)
6551 // where the shift amount and mask may vary thus:
6552 //   [1]  = 0x22222222 / 0x44444444
6553 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
6554 //   [4]  = 0x00F000F0 / 0x0F000F00
6555 //   [8]  = 0x0000FF00 / 0x00FF0000
6556 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
6557 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
6558   // These are the unshifted masks which we use to match bit-manipulation
6559   // patterns. They may be shifted left in certain circumstances.
6560   static const uint64_t BitmanipMasks[] = {
6561       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
6562       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
6563 
6564   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6565 }
6566 
6567 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
6568 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
6569                                const RISCVSubtarget &Subtarget) {
6570   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6571   EVT VT = Op.getValueType();
6572 
6573   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
6574     return SDValue();
6575 
6576   SDValue Op0 = Op.getOperand(0);
6577   SDValue Op1 = Op.getOperand(1);
6578 
6579   // Or is commutable so canonicalize the second OR to the LHS.
6580   if (Op0.getOpcode() != ISD::OR)
6581     std::swap(Op0, Op1);
6582   if (Op0.getOpcode() != ISD::OR)
6583     return SDValue();
6584 
6585   // We found an inner OR, so our operands are the operands of the inner OR
6586   // and the other operand of the outer OR.
6587   SDValue A = Op0.getOperand(0);
6588   SDValue B = Op0.getOperand(1);
6589   SDValue C = Op1;
6590 
6591   auto Match1 = matchSHFLPat(A);
6592   auto Match2 = matchSHFLPat(B);
6593 
6594   // If neither matched, we failed.
6595   if (!Match1 && !Match2)
6596     return SDValue();
6597 
6598   // We had at least one match. if one failed, try the remaining C operand.
6599   if (!Match1) {
6600     std::swap(A, C);
6601     Match1 = matchSHFLPat(A);
6602     if (!Match1)
6603       return SDValue();
6604   } else if (!Match2) {
6605     std::swap(B, C);
6606     Match2 = matchSHFLPat(B);
6607     if (!Match2)
6608       return SDValue();
6609   }
6610   assert(Match1 && Match2);
6611 
6612   // Make sure our matches pair up.
6613   if (!Match1->formsPairWith(*Match2))
6614     return SDValue();
6615 
6616   // All the remains is to make sure C is an AND with the same input, that masks
6617   // out the bits that are being shuffled.
6618   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
6619       C.getOperand(0) != Match1->Op)
6620     return SDValue();
6621 
6622   uint64_t Mask = C.getConstantOperandVal(1);
6623 
6624   static const uint64_t BitmanipMasks[] = {
6625       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
6626       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
6627   };
6628 
6629   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6630   unsigned MaskIdx = Log2_32(Match1->ShAmt);
6631   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6632 
6633   if (Mask != ExpMask)
6634     return SDValue();
6635 
6636   SDLoc DL(Op);
6637   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
6638                      DAG.getConstant(Match1->ShAmt, DL, VT));
6639 }
6640 
6641 // Optimize (add (shl x, c0), (shl y, c1)) ->
6642 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
6643 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
6644                                   const RISCVSubtarget &Subtarget) {
6645   // Perform this optimization only in the zba extension.
6646   if (!Subtarget.hasStdExtZba())
6647     return SDValue();
6648 
6649   // Skip for vector types and larger types.
6650   EVT VT = N->getValueType(0);
6651   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6652     return SDValue();
6653 
6654   // The two operand nodes must be SHL and have no other use.
6655   SDValue N0 = N->getOperand(0);
6656   SDValue N1 = N->getOperand(1);
6657   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
6658       !N0->hasOneUse() || !N1->hasOneUse())
6659     return SDValue();
6660 
6661   // Check c0 and c1.
6662   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6663   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
6664   if (!N0C || !N1C)
6665     return SDValue();
6666   int64_t C0 = N0C->getSExtValue();
6667   int64_t C1 = N1C->getSExtValue();
6668   if (C0 <= 0 || C1 <= 0)
6669     return SDValue();
6670 
6671   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
6672   int64_t Bits = std::min(C0, C1);
6673   int64_t Diff = std::abs(C0 - C1);
6674   if (Diff != 1 && Diff != 2 && Diff != 3)
6675     return SDValue();
6676 
6677   // Build nodes.
6678   SDLoc DL(N);
6679   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
6680   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
6681   SDValue NA0 =
6682       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
6683   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
6684   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
6685 }
6686 
6687 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
6688 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
6689 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
6690 // not undo itself, but they are redundant.
6691 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
6692   SDValue Src = N->getOperand(0);
6693 
6694   if (Src.getOpcode() != N->getOpcode())
6695     return SDValue();
6696 
6697   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
6698       !isa<ConstantSDNode>(Src.getOperand(1)))
6699     return SDValue();
6700 
6701   unsigned ShAmt1 = N->getConstantOperandVal(1);
6702   unsigned ShAmt2 = Src.getConstantOperandVal(1);
6703   Src = Src.getOperand(0);
6704 
6705   unsigned CombinedShAmt;
6706   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
6707     CombinedShAmt = ShAmt1 | ShAmt2;
6708   else
6709     CombinedShAmt = ShAmt1 ^ ShAmt2;
6710 
6711   if (CombinedShAmt == 0)
6712     return Src;
6713 
6714   SDLoc DL(N);
6715   return DAG.getNode(
6716       N->getOpcode(), DL, N->getValueType(0), Src,
6717       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
6718 }
6719 
6720 // Combine a constant select operand into its use:
6721 //
6722 // (and (select cond, -1, c), x)
6723 //   -> (select cond, x, (and x, c))  [AllOnes=1]
6724 // (or  (select cond, 0, c), x)
6725 //   -> (select cond, x, (or x, c))  [AllOnes=0]
6726 // (xor (select cond, 0, c), x)
6727 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
6728 // (add (select cond, 0, c), x)
6729 //   -> (select cond, x, (add x, c))  [AllOnes=0]
6730 // (sub x, (select cond, 0, c))
6731 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
6732 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6733                                    SelectionDAG &DAG, bool AllOnes) {
6734   EVT VT = N->getValueType(0);
6735 
6736   // Skip vectors.
6737   if (VT.isVector())
6738     return SDValue();
6739 
6740   if ((Slct.getOpcode() != ISD::SELECT &&
6741        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
6742       !Slct.hasOneUse())
6743     return SDValue();
6744 
6745   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
6746     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
6747   };
6748 
6749   bool SwapSelectOps;
6750   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
6751   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
6752   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
6753   SDValue NonConstantVal;
6754   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
6755     SwapSelectOps = false;
6756     NonConstantVal = FalseVal;
6757   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
6758     SwapSelectOps = true;
6759     NonConstantVal = TrueVal;
6760   } else
6761     return SDValue();
6762 
6763   // Slct is now know to be the desired identity constant when CC is true.
6764   TrueVal = OtherOp;
6765   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
6766   // Unless SwapSelectOps says the condition should be false.
6767   if (SwapSelectOps)
6768     std::swap(TrueVal, FalseVal);
6769 
6770   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
6771     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
6772                        {Slct.getOperand(0), Slct.getOperand(1),
6773                         Slct.getOperand(2), TrueVal, FalseVal});
6774 
6775   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
6776                      {Slct.getOperand(0), TrueVal, FalseVal});
6777 }
6778 
6779 // Attempt combineSelectAndUse on each operand of a commutative operator N.
6780 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
6781                                               bool AllOnes) {
6782   SDValue N0 = N->getOperand(0);
6783   SDValue N1 = N->getOperand(1);
6784   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
6785     return Result;
6786   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
6787     return Result;
6788   return SDValue();
6789 }
6790 
6791 // Transform (add (mul x, c0), c1) ->
6792 //           (add (mul (add x, c1/c0), c0), c1%c0).
6793 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
6794 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
6795 // to an infinite loop in DAGCombine if transformed.
6796 // Or transform (add (mul x, c0), c1) ->
6797 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
6798 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
6799 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
6800 // lead to an infinite loop in DAGCombine if transformed.
6801 // Or transform (add (mul x, c0), c1) ->
6802 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
6803 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
6804 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
6805 // lead to an infinite loop in DAGCombine if transformed.
6806 // Or transform (add (mul x, c0), c1) ->
6807 //              (mul (add x, c1/c0), c0).
6808 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
6809 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
6810                                      const RISCVSubtarget &Subtarget) {
6811   // Skip for vector types and larger types.
6812   EVT VT = N->getValueType(0);
6813   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6814     return SDValue();
6815   // The first operand node must be a MUL and has no other use.
6816   SDValue N0 = N->getOperand(0);
6817   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
6818     return SDValue();
6819   // Check if c0 and c1 match above conditions.
6820   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6821   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6822   if (!N0C || !N1C)
6823     return SDValue();
6824   int64_t C0 = N0C->getSExtValue();
6825   int64_t C1 = N1C->getSExtValue();
6826   int64_t CA, CB;
6827   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
6828     return SDValue();
6829   // Search for proper CA (non-zero) and CB that both are simm12.
6830   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
6831       !isInt<12>(C0 * (C1 / C0))) {
6832     CA = C1 / C0;
6833     CB = C1 % C0;
6834   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
6835              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
6836     CA = C1 / C0 + 1;
6837     CB = C1 % C0 - C0;
6838   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
6839              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
6840     CA = C1 / C0 - 1;
6841     CB = C1 % C0 + C0;
6842   } else
6843     return SDValue();
6844   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
6845   SDLoc DL(N);
6846   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
6847                              DAG.getConstant(CA, DL, VT));
6848   SDValue New1 =
6849       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
6850   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
6851 }
6852 
6853 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
6854                                  const RISCVSubtarget &Subtarget) {
6855   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
6856     return V;
6857   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
6858     return V;
6859   // fold (add (select lhs, rhs, cc, 0, y), x) ->
6860   //      (select lhs, rhs, cc, x, (add x, y))
6861   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6862 }
6863 
6864 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
6865   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
6866   //      (select lhs, rhs, cc, x, (sub x, y))
6867   SDValue N0 = N->getOperand(0);
6868   SDValue N1 = N->getOperand(1);
6869   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
6870 }
6871 
6872 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
6873   // fold (and (select lhs, rhs, cc, -1, y), x) ->
6874   //      (select lhs, rhs, cc, x, (and x, y))
6875   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
6876 }
6877 
6878 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
6879                                 const RISCVSubtarget &Subtarget) {
6880   if (Subtarget.hasStdExtZbp()) {
6881     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
6882       return GREV;
6883     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
6884       return GORC;
6885     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
6886       return SHFL;
6887   }
6888 
6889   // fold (or (select cond, 0, y), x) ->
6890   //      (select cond, x, (or x, y))
6891   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6892 }
6893 
6894 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
6895   // fold (xor (select cond, 0, y), x) ->
6896   //      (select cond, x, (xor x, y))
6897   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6898 }
6899 
6900 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
6901 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
6902 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
6903 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
6904 // ADDW/SUBW/MULW.
6905 static SDValue performANY_EXTENDCombine(SDNode *N,
6906                                         TargetLowering::DAGCombinerInfo &DCI,
6907                                         const RISCVSubtarget &Subtarget) {
6908   if (!Subtarget.is64Bit())
6909     return SDValue();
6910 
6911   SelectionDAG &DAG = DCI.DAG;
6912 
6913   SDValue Src = N->getOperand(0);
6914   EVT VT = N->getValueType(0);
6915   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
6916     return SDValue();
6917 
6918   // The opcode must be one that can implicitly sign_extend.
6919   // FIXME: Additional opcodes.
6920   switch (Src.getOpcode()) {
6921   default:
6922     return SDValue();
6923   case ISD::MUL:
6924     if (!Subtarget.hasStdExtM())
6925       return SDValue();
6926     LLVM_FALLTHROUGH;
6927   case ISD::ADD:
6928   case ISD::SUB:
6929     break;
6930   }
6931 
6932   // Only handle cases where the result is used by a CopyToReg. That likely
6933   // means the value is a liveout of the basic block. This helps prevent
6934   // infinite combine loops like PR51206.
6935   if (none_of(N->uses(),
6936               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
6937     return SDValue();
6938 
6939   SmallVector<SDNode *, 4> SetCCs;
6940   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
6941                             UE = Src.getNode()->use_end();
6942        UI != UE; ++UI) {
6943     SDNode *User = *UI;
6944     if (User == N)
6945       continue;
6946     if (UI.getUse().getResNo() != Src.getResNo())
6947       continue;
6948     // All i32 setccs are legalized by sign extending operands.
6949     if (User->getOpcode() == ISD::SETCC) {
6950       SetCCs.push_back(User);
6951       continue;
6952     }
6953     // We don't know if we can extend this user.
6954     break;
6955   }
6956 
6957   // If we don't have any SetCCs, this isn't worthwhile.
6958   if (SetCCs.empty())
6959     return SDValue();
6960 
6961   SDLoc DL(N);
6962   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
6963   DCI.CombineTo(N, SExt);
6964 
6965   // Promote all the setccs.
6966   for (SDNode *SetCC : SetCCs) {
6967     SmallVector<SDValue, 4> Ops;
6968 
6969     for (unsigned j = 0; j != 2; ++j) {
6970       SDValue SOp = SetCC->getOperand(j);
6971       if (SOp == Src)
6972         Ops.push_back(SExt);
6973       else
6974         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
6975     }
6976 
6977     Ops.push_back(SetCC->getOperand(2));
6978     DCI.CombineTo(SetCC,
6979                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
6980   }
6981   return SDValue(N, 0);
6982 }
6983 
6984 // Try to form VWMUL or VWMULU.
6985 // FIXME: Support VWMULSU.
6986 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1,
6987                                     SelectionDAG &DAG) {
6988   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
6989   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
6990   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
6991   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
6992     return SDValue();
6993 
6994   SDValue Mask = N->getOperand(2);
6995   SDValue VL = N->getOperand(3);
6996 
6997   // Make sure the mask and VL match.
6998   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
6999     return SDValue();
7000 
7001   MVT VT = N->getSimpleValueType(0);
7002 
7003   // Determine the narrow size for a widening multiply.
7004   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7005   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7006                                   VT.getVectorElementCount());
7007 
7008   SDLoc DL(N);
7009 
7010   // See if the other operand is the same opcode.
7011   if (Op0.getOpcode() == Op1.getOpcode()) {
7012     if (!Op1.hasOneUse())
7013       return SDValue();
7014 
7015     // Make sure the mask and VL match.
7016     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
7017       return SDValue();
7018 
7019     Op1 = Op1.getOperand(0);
7020   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
7021     // The operand is a splat of a scalar.
7022 
7023     // The VL must be the same.
7024     if (Op1.getOperand(1) != VL)
7025       return SDValue();
7026 
7027     // Get the scalar value.
7028     Op1 = Op1.getOperand(0);
7029 
7030     // See if have enough sign bits or zero bits in the scalar to use a
7031     // widening multiply by splatting to smaller element size.
7032     unsigned EltBits = VT.getScalarSizeInBits();
7033     unsigned ScalarBits = Op1.getValueSizeInBits();
7034     // Make sure we're getting all element bits from the scalar register.
7035     // FIXME: Support implicit sign extension of vmv.v.x?
7036     if (ScalarBits < EltBits)
7037       return SDValue();
7038 
7039     if (IsSignExt) {
7040       if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize))
7041         return SDValue();
7042     } else {
7043       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7044       if (!DAG.MaskedValueIsZero(Op1, Mask))
7045         return SDValue();
7046     }
7047 
7048     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL);
7049   } else
7050     return SDValue();
7051 
7052   Op0 = Op0.getOperand(0);
7053 
7054   // Re-introduce narrower extends if needed.
7055   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
7056   if (Op0.getValueType() != NarrowVT)
7057     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7058   if (Op1.getValueType() != NarrowVT)
7059     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7060 
7061   unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
7062   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
7063 }
7064 
7065 // Fold
7066 //   (fp_to_int (froundeven X)) -> fcvt X, rne
7067 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
7068 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
7069 //   (fp_to_int (fceil X))      -> fcvt X, rup
7070 //   (fp_to_int (fround X))     -> fcvt X, rmm
7071 // FIXME: We should also do this for fp_to_int_sat.
7072 static SDValue performFP_TO_INTCombine(SDNode *N,
7073                                        TargetLowering::DAGCombinerInfo &DCI,
7074                                        const RISCVSubtarget &Subtarget) {
7075   SelectionDAG &DAG = DCI.DAG;
7076   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7077   MVT XLenVT = Subtarget.getXLenVT();
7078 
7079   // Only handle XLen or i32 types. Other types narrower than XLen will
7080   // eventually be legalized to XLenVT.
7081   EVT VT = N->getValueType(0);
7082   if (VT != MVT::i32 && VT != XLenVT)
7083     return SDValue();
7084 
7085   SDValue Src = N->getOperand(0);
7086 
7087   // Ensure the FP type is also legal.
7088   if (!TLI.isTypeLegal(Src.getValueType()))
7089     return SDValue();
7090 
7091   // Don't do this for f16 with Zfhmin and not Zfh.
7092   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
7093     return SDValue();
7094 
7095   RISCVFPRndMode::RoundingMode FRM;
7096   switch (Src->getOpcode()) {
7097   default:
7098     return SDValue();
7099   case ISD::FROUNDEVEN: FRM = RISCVFPRndMode::RNE; break;
7100   case ISD::FTRUNC:     FRM = RISCVFPRndMode::RTZ; break;
7101   case ISD::FFLOOR:     FRM = RISCVFPRndMode::RDN; break;
7102   case ISD::FCEIL:      FRM = RISCVFPRndMode::RUP; break;
7103   case ISD::FROUND:     FRM = RISCVFPRndMode::RMM; break;
7104   }
7105 
7106   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
7107 
7108   unsigned Opc;
7109   if (VT == XLenVT)
7110     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
7111   else
7112     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
7113 
7114   SDLoc DL(N);
7115   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
7116                                 DAG.getTargetConstant(FRM, DL, XLenVT));
7117   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
7118 }
7119 
7120 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
7121                                                DAGCombinerInfo &DCI) const {
7122   SelectionDAG &DAG = DCI.DAG;
7123 
7124   // Helper to call SimplifyDemandedBits on an operand of N where only some low
7125   // bits are demanded. N will be added to the Worklist if it was not deleted.
7126   // Caller should return SDValue(N, 0) if this returns true.
7127   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
7128     SDValue Op = N->getOperand(OpNo);
7129     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
7130     if (!SimplifyDemandedBits(Op, Mask, DCI))
7131       return false;
7132 
7133     if (N->getOpcode() != ISD::DELETED_NODE)
7134       DCI.AddToWorklist(N);
7135     return true;
7136   };
7137 
7138   switch (N->getOpcode()) {
7139   default:
7140     break;
7141   case RISCVISD::SplitF64: {
7142     SDValue Op0 = N->getOperand(0);
7143     // If the input to SplitF64 is just BuildPairF64 then the operation is
7144     // redundant. Instead, use BuildPairF64's operands directly.
7145     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
7146       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
7147 
7148     SDLoc DL(N);
7149 
7150     // It's cheaper to materialise two 32-bit integers than to load a double
7151     // from the constant pool and transfer it to integer registers through the
7152     // stack.
7153     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
7154       APInt V = C->getValueAPF().bitcastToAPInt();
7155       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
7156       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
7157       return DCI.CombineTo(N, Lo, Hi);
7158     }
7159 
7160     // This is a target-specific version of a DAGCombine performed in
7161     // DAGCombiner::visitBITCAST. It performs the equivalent of:
7162     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
7163     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
7164     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
7165         !Op0.getNode()->hasOneUse())
7166       break;
7167     SDValue NewSplitF64 =
7168         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
7169                     Op0.getOperand(0));
7170     SDValue Lo = NewSplitF64.getValue(0);
7171     SDValue Hi = NewSplitF64.getValue(1);
7172     APInt SignBit = APInt::getSignMask(32);
7173     if (Op0.getOpcode() == ISD::FNEG) {
7174       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
7175                                   DAG.getConstant(SignBit, DL, MVT::i32));
7176       return DCI.CombineTo(N, Lo, NewHi);
7177     }
7178     assert(Op0.getOpcode() == ISD::FABS);
7179     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
7180                                 DAG.getConstant(~SignBit, DL, MVT::i32));
7181     return DCI.CombineTo(N, Lo, NewHi);
7182   }
7183   case RISCVISD::SLLW:
7184   case RISCVISD::SRAW:
7185   case RISCVISD::SRLW:
7186   case RISCVISD::ROLW:
7187   case RISCVISD::RORW: {
7188     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
7189     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7190         SimplifyDemandedLowBitsHelper(1, 5))
7191       return SDValue(N, 0);
7192     break;
7193   }
7194   case RISCVISD::CLZW:
7195   case RISCVISD::CTZW: {
7196     // Only the lower 32 bits of the first operand are read
7197     if (SimplifyDemandedLowBitsHelper(0, 32))
7198       return SDValue(N, 0);
7199     break;
7200   }
7201   case RISCVISD::FSL:
7202   case RISCVISD::FSR: {
7203     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
7204     unsigned BitWidth = N->getOperand(2).getValueSizeInBits();
7205     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7206     if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1))
7207       return SDValue(N, 0);
7208     break;
7209   }
7210   case RISCVISD::FSLW:
7211   case RISCVISD::FSRW: {
7212     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
7213     // read.
7214     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7215         SimplifyDemandedLowBitsHelper(1, 32) ||
7216         SimplifyDemandedLowBitsHelper(2, 6))
7217       return SDValue(N, 0);
7218     break;
7219   }
7220   case RISCVISD::GREV:
7221   case RISCVISD::GORC: {
7222     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
7223     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
7224     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7225     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
7226       return SDValue(N, 0);
7227 
7228     return combineGREVI_GORCI(N, DAG);
7229   }
7230   case RISCVISD::GREVW:
7231   case RISCVISD::GORCW: {
7232     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
7233     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7234         SimplifyDemandedLowBitsHelper(1, 5))
7235       return SDValue(N, 0);
7236 
7237     return combineGREVI_GORCI(N, DAG);
7238   }
7239   case RISCVISD::SHFL:
7240   case RISCVISD::UNSHFL: {
7241     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
7242     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
7243     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7244     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
7245       return SDValue(N, 0);
7246 
7247     break;
7248   }
7249   case RISCVISD::SHFLW:
7250   case RISCVISD::UNSHFLW: {
7251     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
7252     SDValue LHS = N->getOperand(0);
7253     SDValue RHS = N->getOperand(1);
7254     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
7255     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
7256     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7257         SimplifyDemandedLowBitsHelper(1, 4))
7258       return SDValue(N, 0);
7259 
7260     break;
7261   }
7262   case RISCVISD::BCOMPRESSW:
7263   case RISCVISD::BDECOMPRESSW: {
7264     // Only the lower 32 bits of LHS and RHS are read.
7265     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7266         SimplifyDemandedLowBitsHelper(1, 32))
7267       return SDValue(N, 0);
7268 
7269     break;
7270   }
7271   case RISCVISD::FMV_X_ANYEXTH:
7272   case RISCVISD::FMV_X_ANYEXTW_RV64: {
7273     SDLoc DL(N);
7274     SDValue Op0 = N->getOperand(0);
7275     MVT VT = N->getSimpleValueType(0);
7276     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
7277     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
7278     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
7279     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
7280          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
7281         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7282          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
7283       assert(Op0.getOperand(0).getValueType() == VT &&
7284              "Unexpected value type!");
7285       return Op0.getOperand(0);
7286     }
7287 
7288     // This is a target-specific version of a DAGCombine performed in
7289     // DAGCombiner::visitBITCAST. It performs the equivalent of:
7290     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
7291     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
7292     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
7293         !Op0.getNode()->hasOneUse())
7294       break;
7295     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
7296     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
7297     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
7298     if (Op0.getOpcode() == ISD::FNEG)
7299       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
7300                          DAG.getConstant(SignBit, DL, VT));
7301 
7302     assert(Op0.getOpcode() == ISD::FABS);
7303     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
7304                        DAG.getConstant(~SignBit, DL, VT));
7305   }
7306   case ISD::ADD:
7307     return performADDCombine(N, DAG, Subtarget);
7308   case ISD::SUB:
7309     return performSUBCombine(N, DAG);
7310   case ISD::AND:
7311     return performANDCombine(N, DAG);
7312   case ISD::OR:
7313     return performORCombine(N, DAG, Subtarget);
7314   case ISD::XOR:
7315     return performXORCombine(N, DAG);
7316   case ISD::ANY_EXTEND:
7317     return performANY_EXTENDCombine(N, DCI, Subtarget);
7318   case ISD::ZERO_EXTEND:
7319     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
7320     // type legalization. This is safe because fp_to_uint produces poison if
7321     // it overflows.
7322     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
7323       SDValue Src = N->getOperand(0);
7324       if (Src.getOpcode() == ISD::FP_TO_UINT &&
7325           isTypeLegal(Src.getOperand(0).getValueType()))
7326         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
7327                            Src.getOperand(0));
7328       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
7329           isTypeLegal(Src.getOperand(1).getValueType())) {
7330         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
7331         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
7332                                   Src.getOperand(0), Src.getOperand(1));
7333         DCI.CombineTo(N, Res);
7334         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
7335         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
7336         return SDValue(N, 0); // Return N so it doesn't get rechecked.
7337       }
7338     }
7339     return SDValue();
7340   case RISCVISD::SELECT_CC: {
7341     // Transform
7342     SDValue LHS = N->getOperand(0);
7343     SDValue RHS = N->getOperand(1);
7344     SDValue TrueV = N->getOperand(3);
7345     SDValue FalseV = N->getOperand(4);
7346 
7347     // If the True and False values are the same, we don't need a select_cc.
7348     if (TrueV == FalseV)
7349       return TrueV;
7350 
7351     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
7352     if (!ISD::isIntEqualitySetCC(CCVal))
7353       break;
7354 
7355     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
7356     //      (select_cc X, Y, lt, trueV, falseV)
7357     // Sometimes the setcc is introduced after select_cc has been formed.
7358     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7359         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7360       // If we're looking for eq 0 instead of ne 0, we need to invert the
7361       // condition.
7362       bool Invert = CCVal == ISD::SETEQ;
7363       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7364       if (Invert)
7365         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7366 
7367       SDLoc DL(N);
7368       RHS = LHS.getOperand(1);
7369       LHS = LHS.getOperand(0);
7370       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7371 
7372       SDValue TargetCC = DAG.getCondCode(CCVal);
7373       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7374                          {LHS, RHS, TargetCC, TrueV, FalseV});
7375     }
7376 
7377     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
7378     //      (select_cc X, Y, eq/ne, trueV, falseV)
7379     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7380       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
7381                          {LHS.getOperand(0), LHS.getOperand(1),
7382                           N->getOperand(2), TrueV, FalseV});
7383     // (select_cc X, 1, setne, trueV, falseV) ->
7384     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
7385     // This can occur when legalizing some floating point comparisons.
7386     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7387     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7388       SDLoc DL(N);
7389       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7390       SDValue TargetCC = DAG.getCondCode(CCVal);
7391       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7392       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7393                          {LHS, RHS, TargetCC, TrueV, FalseV});
7394     }
7395 
7396     break;
7397   }
7398   case RISCVISD::BR_CC: {
7399     SDValue LHS = N->getOperand(1);
7400     SDValue RHS = N->getOperand(2);
7401     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
7402     if (!ISD::isIntEqualitySetCC(CCVal))
7403       break;
7404 
7405     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
7406     //      (br_cc X, Y, lt, dest)
7407     // Sometimes the setcc is introduced after br_cc has been formed.
7408     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7409         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7410       // If we're looking for eq 0 instead of ne 0, we need to invert the
7411       // condition.
7412       bool Invert = CCVal == ISD::SETEQ;
7413       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7414       if (Invert)
7415         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7416 
7417       SDLoc DL(N);
7418       RHS = LHS.getOperand(1);
7419       LHS = LHS.getOperand(0);
7420       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7421 
7422       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7423                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
7424                          N->getOperand(4));
7425     }
7426 
7427     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
7428     //      (br_cc X, Y, eq/ne, trueV, falseV)
7429     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7430       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
7431                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
7432                          N->getOperand(3), N->getOperand(4));
7433 
7434     // (br_cc X, 1, setne, br_cc) ->
7435     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
7436     // This can occur when legalizing some floating point comparisons.
7437     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7438     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7439       SDLoc DL(N);
7440       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7441       SDValue TargetCC = DAG.getCondCode(CCVal);
7442       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7443       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7444                          N->getOperand(0), LHS, RHS, TargetCC,
7445                          N->getOperand(4));
7446     }
7447     break;
7448   }
7449   case ISD::FP_TO_SINT:
7450   case ISD::FP_TO_UINT:
7451     return performFP_TO_INTCombine(N, DCI, Subtarget);
7452   case ISD::FCOPYSIGN: {
7453     EVT VT = N->getValueType(0);
7454     if (!VT.isVector())
7455       break;
7456     // There is a form of VFSGNJ which injects the negated sign of its second
7457     // operand. Try and bubble any FNEG up after the extend/round to produce
7458     // this optimized pattern. Avoid modifying cases where FP_ROUND and
7459     // TRUNC=1.
7460     SDValue In2 = N->getOperand(1);
7461     // Avoid cases where the extend/round has multiple uses, as duplicating
7462     // those is typically more expensive than removing a fneg.
7463     if (!In2.hasOneUse())
7464       break;
7465     if (In2.getOpcode() != ISD::FP_EXTEND &&
7466         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
7467       break;
7468     In2 = In2.getOperand(0);
7469     if (In2.getOpcode() != ISD::FNEG)
7470       break;
7471     SDLoc DL(N);
7472     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
7473     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
7474                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
7475   }
7476   case ISD::MGATHER:
7477   case ISD::MSCATTER:
7478   case ISD::VP_GATHER:
7479   case ISD::VP_SCATTER: {
7480     if (!DCI.isBeforeLegalize())
7481       break;
7482     SDValue Index, ScaleOp;
7483     bool IsIndexScaled = false;
7484     bool IsIndexSigned = false;
7485     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
7486       Index = VPGSN->getIndex();
7487       ScaleOp = VPGSN->getScale();
7488       IsIndexScaled = VPGSN->isIndexScaled();
7489       IsIndexSigned = VPGSN->isIndexSigned();
7490     } else {
7491       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
7492       Index = MGSN->getIndex();
7493       ScaleOp = MGSN->getScale();
7494       IsIndexScaled = MGSN->isIndexScaled();
7495       IsIndexSigned = MGSN->isIndexSigned();
7496     }
7497     EVT IndexVT = Index.getValueType();
7498     MVT XLenVT = Subtarget.getXLenVT();
7499     // RISCV indexed loads only support the "unsigned unscaled" addressing
7500     // mode, so anything else must be manually legalized.
7501     bool NeedsIdxLegalization =
7502         IsIndexScaled ||
7503         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
7504     if (!NeedsIdxLegalization)
7505       break;
7506 
7507     SDLoc DL(N);
7508 
7509     // Any index legalization should first promote to XLenVT, so we don't lose
7510     // bits when scaling. This may create an illegal index type so we let
7511     // LLVM's legalization take care of the splitting.
7512     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
7513     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
7514       IndexVT = IndexVT.changeVectorElementType(XLenVT);
7515       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
7516                           DL, IndexVT, Index);
7517     }
7518 
7519     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
7520     if (IsIndexScaled && Scale != 1) {
7521       // Manually scale the indices by the element size.
7522       // TODO: Sanitize the scale operand here?
7523       // TODO: For VP nodes, should we use VP_SHL here?
7524       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
7525       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
7526       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
7527     }
7528 
7529     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
7530     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
7531       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
7532                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
7533                               VPGN->getScale(), VPGN->getMask(),
7534                               VPGN->getVectorLength()},
7535                              VPGN->getMemOperand(), NewIndexTy);
7536     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
7537       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
7538                               {VPSN->getChain(), VPSN->getValue(),
7539                                VPSN->getBasePtr(), Index, VPSN->getScale(),
7540                                VPSN->getMask(), VPSN->getVectorLength()},
7541                               VPSN->getMemOperand(), NewIndexTy);
7542     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
7543       return DAG.getMaskedGather(
7544           N->getVTList(), MGN->getMemoryVT(), DL,
7545           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
7546            MGN->getBasePtr(), Index, MGN->getScale()},
7547           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
7548     const auto *MSN = cast<MaskedScatterSDNode>(N);
7549     return DAG.getMaskedScatter(
7550         N->getVTList(), MSN->getMemoryVT(), DL,
7551         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
7552          Index, MSN->getScale()},
7553         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
7554   }
7555   case RISCVISD::SRA_VL:
7556   case RISCVISD::SRL_VL:
7557   case RISCVISD::SHL_VL: {
7558     SDValue ShAmt = N->getOperand(1);
7559     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7560       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7561       SDLoc DL(N);
7562       SDValue VL = N->getOperand(3);
7563       EVT VT = N->getValueType(0);
7564       ShAmt =
7565           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
7566       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
7567                          N->getOperand(2), N->getOperand(3));
7568     }
7569     break;
7570   }
7571   case ISD::SRA:
7572   case ISD::SRL:
7573   case ISD::SHL: {
7574     SDValue ShAmt = N->getOperand(1);
7575     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7576       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7577       SDLoc DL(N);
7578       EVT VT = N->getValueType(0);
7579       ShAmt =
7580           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0));
7581       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
7582     }
7583     break;
7584   }
7585   case RISCVISD::MUL_VL: {
7586     SDValue Op0 = N->getOperand(0);
7587     SDValue Op1 = N->getOperand(1);
7588     if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG))
7589       return V;
7590     if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG))
7591       return V;
7592     return SDValue();
7593   }
7594   case ISD::STORE: {
7595     auto *Store = cast<StoreSDNode>(N);
7596     SDValue Val = Store->getValue();
7597     // Combine store of vmv.x.s to vse with VL of 1.
7598     // FIXME: Support FP.
7599     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
7600       SDValue Src = Val.getOperand(0);
7601       EVT VecVT = Src.getValueType();
7602       EVT MemVT = Store->getMemoryVT();
7603       // The memory VT and the element type must match.
7604       if (VecVT.getVectorElementType() == MemVT) {
7605         SDLoc DL(N);
7606         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7607         return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(),
7608                               DAG.getConstant(1, DL, MaskVT),
7609                               DAG.getConstant(1, DL, Subtarget.getXLenVT()),
7610                               Store->getPointerInfo(),
7611                               Store->getOriginalAlign(),
7612                               Store->getMemOperand()->getFlags());
7613       }
7614     }
7615 
7616     break;
7617   }
7618   }
7619 
7620   return SDValue();
7621 }
7622 
7623 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
7624     const SDNode *N, CombineLevel Level) const {
7625   // The following folds are only desirable if `(OP _, c1 << c2)` can be
7626   // materialised in fewer instructions than `(OP _, c1)`:
7627   //
7628   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
7629   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
7630   SDValue N0 = N->getOperand(0);
7631   EVT Ty = N0.getValueType();
7632   if (Ty.isScalarInteger() &&
7633       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
7634     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7635     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
7636     if (C1 && C2) {
7637       const APInt &C1Int = C1->getAPIntValue();
7638       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
7639 
7640       // We can materialise `c1 << c2` into an add immediate, so it's "free",
7641       // and the combine should happen, to potentially allow further combines
7642       // later.
7643       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
7644           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
7645         return true;
7646 
7647       // We can materialise `c1` in an add immediate, so it's "free", and the
7648       // combine should be prevented.
7649       if (C1Int.getMinSignedBits() <= 64 &&
7650           isLegalAddImmediate(C1Int.getSExtValue()))
7651         return false;
7652 
7653       // Neither constant will fit into an immediate, so find materialisation
7654       // costs.
7655       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
7656                                               Subtarget.getFeatureBits(),
7657                                               /*CompressionCost*/true);
7658       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
7659           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
7660           /*CompressionCost*/true);
7661 
7662       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
7663       // combine should be prevented.
7664       if (C1Cost < ShiftedC1Cost)
7665         return false;
7666     }
7667   }
7668   return true;
7669 }
7670 
7671 bool RISCVTargetLowering::targetShrinkDemandedConstant(
7672     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
7673     TargetLoweringOpt &TLO) const {
7674   // Delay this optimization as late as possible.
7675   if (!TLO.LegalOps)
7676     return false;
7677 
7678   EVT VT = Op.getValueType();
7679   if (VT.isVector())
7680     return false;
7681 
7682   // Only handle AND for now.
7683   if (Op.getOpcode() != ISD::AND)
7684     return false;
7685 
7686   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7687   if (!C)
7688     return false;
7689 
7690   const APInt &Mask = C->getAPIntValue();
7691 
7692   // Clear all non-demanded bits initially.
7693   APInt ShrunkMask = Mask & DemandedBits;
7694 
7695   // Try to make a smaller immediate by setting undemanded bits.
7696 
7697   APInt ExpandedMask = Mask | ~DemandedBits;
7698 
7699   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
7700     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
7701   };
7702   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
7703     if (NewMask == Mask)
7704       return true;
7705     SDLoc DL(Op);
7706     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
7707     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
7708     return TLO.CombineTo(Op, NewOp);
7709   };
7710 
7711   // If the shrunk mask fits in sign extended 12 bits, let the target
7712   // independent code apply it.
7713   if (ShrunkMask.isSignedIntN(12))
7714     return false;
7715 
7716   // Preserve (and X, 0xffff) when zext.h is supported.
7717   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
7718     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
7719     if (IsLegalMask(NewMask))
7720       return UseMask(NewMask);
7721   }
7722 
7723   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
7724   if (VT == MVT::i64) {
7725     APInt NewMask = APInt(64, 0xffffffff);
7726     if (IsLegalMask(NewMask))
7727       return UseMask(NewMask);
7728   }
7729 
7730   // For the remaining optimizations, we need to be able to make a negative
7731   // number through a combination of mask and undemanded bits.
7732   if (!ExpandedMask.isNegative())
7733     return false;
7734 
7735   // What is the fewest number of bits we need to represent the negative number.
7736   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
7737 
7738   // Try to make a 12 bit negative immediate. If that fails try to make a 32
7739   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
7740   APInt NewMask = ShrunkMask;
7741   if (MinSignedBits <= 12)
7742     NewMask.setBitsFrom(11);
7743   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
7744     NewMask.setBitsFrom(31);
7745   else
7746     return false;
7747 
7748   // Check that our new mask is a subset of the demanded mask.
7749   assert(IsLegalMask(NewMask));
7750   return UseMask(NewMask);
7751 }
7752 
7753 static void computeGREV(APInt &Src, unsigned ShAmt) {
7754   ShAmt &= Src.getBitWidth() - 1;
7755   uint64_t x = Src.getZExtValue();
7756   if (ShAmt & 1)
7757     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
7758   if (ShAmt & 2)
7759     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
7760   if (ShAmt & 4)
7761     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
7762   if (ShAmt & 8)
7763     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
7764   if (ShAmt & 16)
7765     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
7766   if (ShAmt & 32)
7767     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
7768   Src = x;
7769 }
7770 
7771 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7772                                                         KnownBits &Known,
7773                                                         const APInt &DemandedElts,
7774                                                         const SelectionDAG &DAG,
7775                                                         unsigned Depth) const {
7776   unsigned BitWidth = Known.getBitWidth();
7777   unsigned Opc = Op.getOpcode();
7778   assert((Opc >= ISD::BUILTIN_OP_END ||
7779           Opc == ISD::INTRINSIC_WO_CHAIN ||
7780           Opc == ISD::INTRINSIC_W_CHAIN ||
7781           Opc == ISD::INTRINSIC_VOID) &&
7782          "Should use MaskedValueIsZero if you don't know whether Op"
7783          " is a target node!");
7784 
7785   Known.resetAll();
7786   switch (Opc) {
7787   default: break;
7788   case RISCVISD::SELECT_CC: {
7789     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
7790     // If we don't know any bits, early out.
7791     if (Known.isUnknown())
7792       break;
7793     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
7794 
7795     // Only known if known in both the LHS and RHS.
7796     Known = KnownBits::commonBits(Known, Known2);
7797     break;
7798   }
7799   case RISCVISD::REMUW: {
7800     KnownBits Known2;
7801     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7802     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7803     // We only care about the lower 32 bits.
7804     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
7805     // Restore the original width by sign extending.
7806     Known = Known.sext(BitWidth);
7807     break;
7808   }
7809   case RISCVISD::DIVUW: {
7810     KnownBits Known2;
7811     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7812     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7813     // We only care about the lower 32 bits.
7814     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
7815     // Restore the original width by sign extending.
7816     Known = Known.sext(BitWidth);
7817     break;
7818   }
7819   case RISCVISD::CTZW: {
7820     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7821     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
7822     unsigned LowBits = Log2_32(PossibleTZ) + 1;
7823     Known.Zero.setBitsFrom(LowBits);
7824     break;
7825   }
7826   case RISCVISD::CLZW: {
7827     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7828     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
7829     unsigned LowBits = Log2_32(PossibleLZ) + 1;
7830     Known.Zero.setBitsFrom(LowBits);
7831     break;
7832   }
7833   case RISCVISD::GREV:
7834   case RISCVISD::GREVW: {
7835     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7836       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7837       if (Opc == RISCVISD::GREVW)
7838         Known = Known.trunc(32);
7839       unsigned ShAmt = C->getZExtValue();
7840       computeGREV(Known.Zero, ShAmt);
7841       computeGREV(Known.One, ShAmt);
7842       if (Opc == RISCVISD::GREVW)
7843         Known = Known.sext(BitWidth);
7844     }
7845     break;
7846   }
7847   case RISCVISD::READ_VLENB:
7848     // We assume VLENB is at least 16 bytes.
7849     Known.Zero.setLowBits(4);
7850     // We assume VLENB is no more than 65536 / 8 bytes.
7851     Known.Zero.setBitsFrom(14);
7852     break;
7853   case ISD::INTRINSIC_W_CHAIN: {
7854     unsigned IntNo = Op.getConstantOperandVal(1);
7855     switch (IntNo) {
7856     default:
7857       // We can't do anything for most intrinsics.
7858       break;
7859     case Intrinsic::riscv_vsetvli:
7860     case Intrinsic::riscv_vsetvlimax:
7861       // Assume that VL output is positive and would fit in an int32_t.
7862       // TODO: VLEN might be capped at 16 bits in a future V spec update.
7863       if (BitWidth >= 32)
7864         Known.Zero.setBitsFrom(31);
7865       break;
7866     }
7867     break;
7868   }
7869   }
7870 }
7871 
7872 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
7873     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7874     unsigned Depth) const {
7875   switch (Op.getOpcode()) {
7876   default:
7877     break;
7878   case RISCVISD::SELECT_CC: {
7879     unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
7880     if (Tmp == 1) return 1;  // Early out.
7881     unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
7882     return std::min(Tmp, Tmp2);
7883   }
7884   case RISCVISD::SLLW:
7885   case RISCVISD::SRAW:
7886   case RISCVISD::SRLW:
7887   case RISCVISD::DIVW:
7888   case RISCVISD::DIVUW:
7889   case RISCVISD::REMUW:
7890   case RISCVISD::ROLW:
7891   case RISCVISD::RORW:
7892   case RISCVISD::GREVW:
7893   case RISCVISD::GORCW:
7894   case RISCVISD::FSLW:
7895   case RISCVISD::FSRW:
7896   case RISCVISD::SHFLW:
7897   case RISCVISD::UNSHFLW:
7898   case RISCVISD::BCOMPRESSW:
7899   case RISCVISD::BDECOMPRESSW:
7900   case RISCVISD::FCVT_W_RV64:
7901   case RISCVISD::FCVT_WU_RV64:
7902   case RISCVISD::STRICT_FCVT_W_RV64:
7903   case RISCVISD::STRICT_FCVT_WU_RV64:
7904     // TODO: As the result is sign-extended, this is conservatively correct. A
7905     // more precise answer could be calculated for SRAW depending on known
7906     // bits in the shift amount.
7907     return 33;
7908   case RISCVISD::SHFL:
7909   case RISCVISD::UNSHFL: {
7910     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
7911     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
7912     // will stay within the upper 32 bits. If there were more than 32 sign bits
7913     // before there will be at least 33 sign bits after.
7914     if (Op.getValueType() == MVT::i64 &&
7915         isa<ConstantSDNode>(Op.getOperand(1)) &&
7916         (Op.getConstantOperandVal(1) & 0x10) == 0) {
7917       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
7918       if (Tmp > 32)
7919         return 33;
7920     }
7921     break;
7922   }
7923   case RISCVISD::VMV_X_S:
7924     // The number of sign bits of the scalar result is computed by obtaining the
7925     // element type of the input vector operand, subtracting its width from the
7926     // XLEN, and then adding one (sign bit within the element type). If the
7927     // element type is wider than XLen, the least-significant XLEN bits are
7928     // taken.
7929     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
7930       return 1;
7931     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
7932   }
7933 
7934   return 1;
7935 }
7936 
7937 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
7938                                                   MachineBasicBlock *BB) {
7939   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
7940 
7941   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
7942   // Should the count have wrapped while it was being read, we need to try
7943   // again.
7944   // ...
7945   // read:
7946   // rdcycleh x3 # load high word of cycle
7947   // rdcycle  x2 # load low word of cycle
7948   // rdcycleh x4 # load high word of cycle
7949   // bne x3, x4, read # check if high word reads match, otherwise try again
7950   // ...
7951 
7952   MachineFunction &MF = *BB->getParent();
7953   const BasicBlock *LLVM_BB = BB->getBasicBlock();
7954   MachineFunction::iterator It = ++BB->getIterator();
7955 
7956   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7957   MF.insert(It, LoopMBB);
7958 
7959   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7960   MF.insert(It, DoneMBB);
7961 
7962   // Transfer the remainder of BB and its successor edges to DoneMBB.
7963   DoneMBB->splice(DoneMBB->begin(), BB,
7964                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
7965   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
7966 
7967   BB->addSuccessor(LoopMBB);
7968 
7969   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7970   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7971   Register LoReg = MI.getOperand(0).getReg();
7972   Register HiReg = MI.getOperand(1).getReg();
7973   DebugLoc DL = MI.getDebugLoc();
7974 
7975   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
7976   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
7977       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7978       .addReg(RISCV::X0);
7979   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
7980       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
7981       .addReg(RISCV::X0);
7982   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
7983       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7984       .addReg(RISCV::X0);
7985 
7986   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
7987       .addReg(HiReg)
7988       .addReg(ReadAgainReg)
7989       .addMBB(LoopMBB);
7990 
7991   LoopMBB->addSuccessor(LoopMBB);
7992   LoopMBB->addSuccessor(DoneMBB);
7993 
7994   MI.eraseFromParent();
7995 
7996   return DoneMBB;
7997 }
7998 
7999 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
8000                                              MachineBasicBlock *BB) {
8001   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
8002 
8003   MachineFunction &MF = *BB->getParent();
8004   DebugLoc DL = MI.getDebugLoc();
8005   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8006   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8007   Register LoReg = MI.getOperand(0).getReg();
8008   Register HiReg = MI.getOperand(1).getReg();
8009   Register SrcReg = MI.getOperand(2).getReg();
8010   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
8011   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8012 
8013   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
8014                           RI);
8015   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8016   MachineMemOperand *MMOLo =
8017       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
8018   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
8019       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
8020   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
8021       .addFrameIndex(FI)
8022       .addImm(0)
8023       .addMemOperand(MMOLo);
8024   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
8025       .addFrameIndex(FI)
8026       .addImm(4)
8027       .addMemOperand(MMOHi);
8028   MI.eraseFromParent(); // The pseudo instruction is gone now.
8029   return BB;
8030 }
8031 
8032 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
8033                                                  MachineBasicBlock *BB) {
8034   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
8035          "Unexpected instruction");
8036 
8037   MachineFunction &MF = *BB->getParent();
8038   DebugLoc DL = MI.getDebugLoc();
8039   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8040   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8041   Register DstReg = MI.getOperand(0).getReg();
8042   Register LoReg = MI.getOperand(1).getReg();
8043   Register HiReg = MI.getOperand(2).getReg();
8044   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
8045   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8046 
8047   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8048   MachineMemOperand *MMOLo =
8049       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
8050   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
8051       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
8052   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
8053       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
8054       .addFrameIndex(FI)
8055       .addImm(0)
8056       .addMemOperand(MMOLo);
8057   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
8058       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
8059       .addFrameIndex(FI)
8060       .addImm(4)
8061       .addMemOperand(MMOHi);
8062   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
8063   MI.eraseFromParent(); // The pseudo instruction is gone now.
8064   return BB;
8065 }
8066 
8067 static bool isSelectPseudo(MachineInstr &MI) {
8068   switch (MI.getOpcode()) {
8069   default:
8070     return false;
8071   case RISCV::Select_GPR_Using_CC_GPR:
8072   case RISCV::Select_FPR16_Using_CC_GPR:
8073   case RISCV::Select_FPR32_Using_CC_GPR:
8074   case RISCV::Select_FPR64_Using_CC_GPR:
8075     return true;
8076   }
8077 }
8078 
8079 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
8080                                         unsigned RelOpcode, unsigned EqOpcode,
8081                                         const RISCVSubtarget &Subtarget) {
8082   DebugLoc DL = MI.getDebugLoc();
8083   Register DstReg = MI.getOperand(0).getReg();
8084   Register Src1Reg = MI.getOperand(1).getReg();
8085   Register Src2Reg = MI.getOperand(2).getReg();
8086   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
8087   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
8088   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
8089 
8090   // Save the current FFLAGS.
8091   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
8092 
8093   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
8094                  .addReg(Src1Reg)
8095                  .addReg(Src2Reg);
8096   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
8097     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
8098 
8099   // Restore the FFLAGS.
8100   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
8101       .addReg(SavedFFlags, RegState::Kill);
8102 
8103   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
8104   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
8105                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
8106                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
8107   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
8108     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
8109 
8110   // Erase the pseudoinstruction.
8111   MI.eraseFromParent();
8112   return BB;
8113 }
8114 
8115 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
8116                                            MachineBasicBlock *BB,
8117                                            const RISCVSubtarget &Subtarget) {
8118   // To "insert" Select_* instructions, we actually have to insert the triangle
8119   // control-flow pattern.  The incoming instructions know the destination vreg
8120   // to set, the condition code register to branch on, the true/false values to
8121   // select between, and the condcode to use to select the appropriate branch.
8122   //
8123   // We produce the following control flow:
8124   //     HeadMBB
8125   //     |  \
8126   //     |  IfFalseMBB
8127   //     | /
8128   //    TailMBB
8129   //
8130   // When we find a sequence of selects we attempt to optimize their emission
8131   // by sharing the control flow. Currently we only handle cases where we have
8132   // multiple selects with the exact same condition (same LHS, RHS and CC).
8133   // The selects may be interleaved with other instructions if the other
8134   // instructions meet some requirements we deem safe:
8135   // - They are debug instructions. Otherwise,
8136   // - They do not have side-effects, do not access memory and their inputs do
8137   //   not depend on the results of the select pseudo-instructions.
8138   // The TrueV/FalseV operands of the selects cannot depend on the result of
8139   // previous selects in the sequence.
8140   // These conditions could be further relaxed. See the X86 target for a
8141   // related approach and more information.
8142   Register LHS = MI.getOperand(1).getReg();
8143   Register RHS = MI.getOperand(2).getReg();
8144   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
8145 
8146   SmallVector<MachineInstr *, 4> SelectDebugValues;
8147   SmallSet<Register, 4> SelectDests;
8148   SelectDests.insert(MI.getOperand(0).getReg());
8149 
8150   MachineInstr *LastSelectPseudo = &MI;
8151 
8152   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
8153        SequenceMBBI != E; ++SequenceMBBI) {
8154     if (SequenceMBBI->isDebugInstr())
8155       continue;
8156     else if (isSelectPseudo(*SequenceMBBI)) {
8157       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
8158           SequenceMBBI->getOperand(2).getReg() != RHS ||
8159           SequenceMBBI->getOperand(3).getImm() != CC ||
8160           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
8161           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
8162         break;
8163       LastSelectPseudo = &*SequenceMBBI;
8164       SequenceMBBI->collectDebugValues(SelectDebugValues);
8165       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
8166     } else {
8167       if (SequenceMBBI->hasUnmodeledSideEffects() ||
8168           SequenceMBBI->mayLoadOrStore())
8169         break;
8170       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
8171             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
8172           }))
8173         break;
8174     }
8175   }
8176 
8177   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
8178   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8179   DebugLoc DL = MI.getDebugLoc();
8180   MachineFunction::iterator I = ++BB->getIterator();
8181 
8182   MachineBasicBlock *HeadMBB = BB;
8183   MachineFunction *F = BB->getParent();
8184   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
8185   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
8186 
8187   F->insert(I, IfFalseMBB);
8188   F->insert(I, TailMBB);
8189 
8190   // Transfer debug instructions associated with the selects to TailMBB.
8191   for (MachineInstr *DebugInstr : SelectDebugValues) {
8192     TailMBB->push_back(DebugInstr->removeFromParent());
8193   }
8194 
8195   // Move all instructions after the sequence to TailMBB.
8196   TailMBB->splice(TailMBB->end(), HeadMBB,
8197                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
8198   // Update machine-CFG edges by transferring all successors of the current
8199   // block to the new block which will contain the Phi nodes for the selects.
8200   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
8201   // Set the successors for HeadMBB.
8202   HeadMBB->addSuccessor(IfFalseMBB);
8203   HeadMBB->addSuccessor(TailMBB);
8204 
8205   // Insert appropriate branch.
8206   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
8207     .addReg(LHS)
8208     .addReg(RHS)
8209     .addMBB(TailMBB);
8210 
8211   // IfFalseMBB just falls through to TailMBB.
8212   IfFalseMBB->addSuccessor(TailMBB);
8213 
8214   // Create PHIs for all of the select pseudo-instructions.
8215   auto SelectMBBI = MI.getIterator();
8216   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
8217   auto InsertionPoint = TailMBB->begin();
8218   while (SelectMBBI != SelectEnd) {
8219     auto Next = std::next(SelectMBBI);
8220     if (isSelectPseudo(*SelectMBBI)) {
8221       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
8222       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
8223               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
8224           .addReg(SelectMBBI->getOperand(4).getReg())
8225           .addMBB(HeadMBB)
8226           .addReg(SelectMBBI->getOperand(5).getReg())
8227           .addMBB(IfFalseMBB);
8228       SelectMBBI->eraseFromParent();
8229     }
8230     SelectMBBI = Next;
8231   }
8232 
8233   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
8234   return TailMBB;
8235 }
8236 
8237 MachineBasicBlock *
8238 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
8239                                                  MachineBasicBlock *BB) const {
8240   switch (MI.getOpcode()) {
8241   default:
8242     llvm_unreachable("Unexpected instr type to insert");
8243   case RISCV::ReadCycleWide:
8244     assert(!Subtarget.is64Bit() &&
8245            "ReadCycleWrite is only to be used on riscv32");
8246     return emitReadCycleWidePseudo(MI, BB);
8247   case RISCV::Select_GPR_Using_CC_GPR:
8248   case RISCV::Select_FPR16_Using_CC_GPR:
8249   case RISCV::Select_FPR32_Using_CC_GPR:
8250   case RISCV::Select_FPR64_Using_CC_GPR:
8251     return emitSelectPseudo(MI, BB, Subtarget);
8252   case RISCV::BuildPairF64Pseudo:
8253     return emitBuildPairF64Pseudo(MI, BB);
8254   case RISCV::SplitF64Pseudo:
8255     return emitSplitF64Pseudo(MI, BB);
8256   case RISCV::PseudoQuietFLE_H:
8257     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
8258   case RISCV::PseudoQuietFLT_H:
8259     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
8260   case RISCV::PseudoQuietFLE_S:
8261     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
8262   case RISCV::PseudoQuietFLT_S:
8263     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
8264   case RISCV::PseudoQuietFLE_D:
8265     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
8266   case RISCV::PseudoQuietFLT_D:
8267     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
8268   }
8269 }
8270 
8271 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
8272                                                         SDNode *Node) const {
8273   // Add FRM dependency to any instructions with dynamic rounding mode.
8274   unsigned Opc = MI.getOpcode();
8275   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
8276   if (Idx < 0)
8277     return;
8278   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
8279     return;
8280   // If the instruction already reads FRM, don't add another read.
8281   if (MI.readsRegister(RISCV::FRM))
8282     return;
8283   MI.addOperand(
8284       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
8285 }
8286 
8287 // Calling Convention Implementation.
8288 // The expectations for frontend ABI lowering vary from target to target.
8289 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
8290 // details, but this is a longer term goal. For now, we simply try to keep the
8291 // role of the frontend as simple and well-defined as possible. The rules can
8292 // be summarised as:
8293 // * Never split up large scalar arguments. We handle them here.
8294 // * If a hardfloat calling convention is being used, and the struct may be
8295 // passed in a pair of registers (fp+fp, int+fp), and both registers are
8296 // available, then pass as two separate arguments. If either the GPRs or FPRs
8297 // are exhausted, then pass according to the rule below.
8298 // * If a struct could never be passed in registers or directly in a stack
8299 // slot (as it is larger than 2*XLEN and the floating point rules don't
8300 // apply), then pass it using a pointer with the byval attribute.
8301 // * If a struct is less than 2*XLEN, then coerce to either a two-element
8302 // word-sized array or a 2*XLEN scalar (depending on alignment).
8303 // * The frontend can determine whether a struct is returned by reference or
8304 // not based on its size and fields. If it will be returned by reference, the
8305 // frontend must modify the prototype so a pointer with the sret annotation is
8306 // passed as the first argument. This is not necessary for large scalar
8307 // returns.
8308 // * Struct return values and varargs should be coerced to structs containing
8309 // register-size fields in the same situations they would be for fixed
8310 // arguments.
8311 
8312 static const MCPhysReg ArgGPRs[] = {
8313   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
8314   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
8315 };
8316 static const MCPhysReg ArgFPR16s[] = {
8317   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
8318   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
8319 };
8320 static const MCPhysReg ArgFPR32s[] = {
8321   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
8322   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
8323 };
8324 static const MCPhysReg ArgFPR64s[] = {
8325   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
8326   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
8327 };
8328 // This is an interim calling convention and it may be changed in the future.
8329 static const MCPhysReg ArgVRs[] = {
8330     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
8331     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
8332     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
8333 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
8334                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
8335                                      RISCV::V20M2, RISCV::V22M2};
8336 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
8337                                      RISCV::V20M4};
8338 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
8339 
8340 // Pass a 2*XLEN argument that has been split into two XLEN values through
8341 // registers or the stack as necessary.
8342 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
8343                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
8344                                 MVT ValVT2, MVT LocVT2,
8345                                 ISD::ArgFlagsTy ArgFlags2) {
8346   unsigned XLenInBytes = XLen / 8;
8347   if (Register Reg = State.AllocateReg(ArgGPRs)) {
8348     // At least one half can be passed via register.
8349     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
8350                                      VA1.getLocVT(), CCValAssign::Full));
8351   } else {
8352     // Both halves must be passed on the stack, with proper alignment.
8353     Align StackAlign =
8354         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
8355     State.addLoc(
8356         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
8357                             State.AllocateStack(XLenInBytes, StackAlign),
8358                             VA1.getLocVT(), CCValAssign::Full));
8359     State.addLoc(CCValAssign::getMem(
8360         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
8361         LocVT2, CCValAssign::Full));
8362     return false;
8363   }
8364 
8365   if (Register Reg = State.AllocateReg(ArgGPRs)) {
8366     // The second half can also be passed via register.
8367     State.addLoc(
8368         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
8369   } else {
8370     // The second half is passed via the stack, without additional alignment.
8371     State.addLoc(CCValAssign::getMem(
8372         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
8373         LocVT2, CCValAssign::Full));
8374   }
8375 
8376   return false;
8377 }
8378 
8379 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
8380                                Optional<unsigned> FirstMaskArgument,
8381                                CCState &State, const RISCVTargetLowering &TLI) {
8382   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
8383   if (RC == &RISCV::VRRegClass) {
8384     // Assign the first mask argument to V0.
8385     // This is an interim calling convention and it may be changed in the
8386     // future.
8387     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
8388       return State.AllocateReg(RISCV::V0);
8389     return State.AllocateReg(ArgVRs);
8390   }
8391   if (RC == &RISCV::VRM2RegClass)
8392     return State.AllocateReg(ArgVRM2s);
8393   if (RC == &RISCV::VRM4RegClass)
8394     return State.AllocateReg(ArgVRM4s);
8395   if (RC == &RISCV::VRM8RegClass)
8396     return State.AllocateReg(ArgVRM8s);
8397   llvm_unreachable("Unhandled register class for ValueType");
8398 }
8399 
8400 // Implements the RISC-V calling convention. Returns true upon failure.
8401 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
8402                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
8403                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
8404                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
8405                      Optional<unsigned> FirstMaskArgument) {
8406   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
8407   assert(XLen == 32 || XLen == 64);
8408   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
8409 
8410   // Any return value split in to more than two values can't be returned
8411   // directly. Vectors are returned via the available vector registers.
8412   if (!LocVT.isVector() && IsRet && ValNo > 1)
8413     return true;
8414 
8415   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
8416   // variadic argument, or if no F16/F32 argument registers are available.
8417   bool UseGPRForF16_F32 = true;
8418   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
8419   // variadic argument, or if no F64 argument registers are available.
8420   bool UseGPRForF64 = true;
8421 
8422   switch (ABI) {
8423   default:
8424     llvm_unreachable("Unexpected ABI");
8425   case RISCVABI::ABI_ILP32:
8426   case RISCVABI::ABI_LP64:
8427     break;
8428   case RISCVABI::ABI_ILP32F:
8429   case RISCVABI::ABI_LP64F:
8430     UseGPRForF16_F32 = !IsFixed;
8431     break;
8432   case RISCVABI::ABI_ILP32D:
8433   case RISCVABI::ABI_LP64D:
8434     UseGPRForF16_F32 = !IsFixed;
8435     UseGPRForF64 = !IsFixed;
8436     break;
8437   }
8438 
8439   // FPR16, FPR32, and FPR64 alias each other.
8440   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
8441     UseGPRForF16_F32 = true;
8442     UseGPRForF64 = true;
8443   }
8444 
8445   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
8446   // similar local variables rather than directly checking against the target
8447   // ABI.
8448 
8449   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
8450     LocVT = XLenVT;
8451     LocInfo = CCValAssign::BCvt;
8452   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
8453     LocVT = MVT::i64;
8454     LocInfo = CCValAssign::BCvt;
8455   }
8456 
8457   // If this is a variadic argument, the RISC-V calling convention requires
8458   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
8459   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
8460   // be used regardless of whether the original argument was split during
8461   // legalisation or not. The argument will not be passed by registers if the
8462   // original type is larger than 2*XLEN, so the register alignment rule does
8463   // not apply.
8464   unsigned TwoXLenInBytes = (2 * XLen) / 8;
8465   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
8466       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
8467     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
8468     // Skip 'odd' register if necessary.
8469     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
8470       State.AllocateReg(ArgGPRs);
8471   }
8472 
8473   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
8474   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
8475       State.getPendingArgFlags();
8476 
8477   assert(PendingLocs.size() == PendingArgFlags.size() &&
8478          "PendingLocs and PendingArgFlags out of sync");
8479 
8480   // Handle passing f64 on RV32D with a soft float ABI or when floating point
8481   // registers are exhausted.
8482   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
8483     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
8484            "Can't lower f64 if it is split");
8485     // Depending on available argument GPRS, f64 may be passed in a pair of
8486     // GPRs, split between a GPR and the stack, or passed completely on the
8487     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
8488     // cases.
8489     Register Reg = State.AllocateReg(ArgGPRs);
8490     LocVT = MVT::i32;
8491     if (!Reg) {
8492       unsigned StackOffset = State.AllocateStack(8, Align(8));
8493       State.addLoc(
8494           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8495       return false;
8496     }
8497     if (!State.AllocateReg(ArgGPRs))
8498       State.AllocateStack(4, Align(4));
8499     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8500     return false;
8501   }
8502 
8503   // Fixed-length vectors are located in the corresponding scalable-vector
8504   // container types.
8505   if (ValVT.isFixedLengthVector())
8506     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8507 
8508   // Split arguments might be passed indirectly, so keep track of the pending
8509   // values. Split vectors are passed via a mix of registers and indirectly, so
8510   // treat them as we would any other argument.
8511   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
8512     LocVT = XLenVT;
8513     LocInfo = CCValAssign::Indirect;
8514     PendingLocs.push_back(
8515         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
8516     PendingArgFlags.push_back(ArgFlags);
8517     if (!ArgFlags.isSplitEnd()) {
8518       return false;
8519     }
8520   }
8521 
8522   // If the split argument only had two elements, it should be passed directly
8523   // in registers or on the stack.
8524   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
8525       PendingLocs.size() <= 2) {
8526     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
8527     // Apply the normal calling convention rules to the first half of the
8528     // split argument.
8529     CCValAssign VA = PendingLocs[0];
8530     ISD::ArgFlagsTy AF = PendingArgFlags[0];
8531     PendingLocs.clear();
8532     PendingArgFlags.clear();
8533     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
8534                                ArgFlags);
8535   }
8536 
8537   // Allocate to a register if possible, or else a stack slot.
8538   Register Reg;
8539   unsigned StoreSizeBytes = XLen / 8;
8540   Align StackAlign = Align(XLen / 8);
8541 
8542   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
8543     Reg = State.AllocateReg(ArgFPR16s);
8544   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
8545     Reg = State.AllocateReg(ArgFPR32s);
8546   else if (ValVT == MVT::f64 && !UseGPRForF64)
8547     Reg = State.AllocateReg(ArgFPR64s);
8548   else if (ValVT.isVector()) {
8549     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
8550     if (!Reg) {
8551       // For return values, the vector must be passed fully via registers or
8552       // via the stack.
8553       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
8554       // but we're using all of them.
8555       if (IsRet)
8556         return true;
8557       // Try using a GPR to pass the address
8558       if ((Reg = State.AllocateReg(ArgGPRs))) {
8559         LocVT = XLenVT;
8560         LocInfo = CCValAssign::Indirect;
8561       } else if (ValVT.isScalableVector()) {
8562         LocVT = XLenVT;
8563         LocInfo = CCValAssign::Indirect;
8564       } else {
8565         // Pass fixed-length vectors on the stack.
8566         LocVT = ValVT;
8567         StoreSizeBytes = ValVT.getStoreSize();
8568         // Align vectors to their element sizes, being careful for vXi1
8569         // vectors.
8570         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8571       }
8572     }
8573   } else {
8574     Reg = State.AllocateReg(ArgGPRs);
8575   }
8576 
8577   unsigned StackOffset =
8578       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
8579 
8580   // If we reach this point and PendingLocs is non-empty, we must be at the
8581   // end of a split argument that must be passed indirectly.
8582   if (!PendingLocs.empty()) {
8583     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
8584     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
8585 
8586     for (auto &It : PendingLocs) {
8587       if (Reg)
8588         It.convertToReg(Reg);
8589       else
8590         It.convertToMem(StackOffset);
8591       State.addLoc(It);
8592     }
8593     PendingLocs.clear();
8594     PendingArgFlags.clear();
8595     return false;
8596   }
8597 
8598   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
8599           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
8600          "Expected an XLenVT or vector types at this stage");
8601 
8602   if (Reg) {
8603     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8604     return false;
8605   }
8606 
8607   // When a floating-point value is passed on the stack, no bit-conversion is
8608   // needed.
8609   if (ValVT.isFloatingPoint()) {
8610     LocVT = ValVT;
8611     LocInfo = CCValAssign::Full;
8612   }
8613   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8614   return false;
8615 }
8616 
8617 template <typename ArgTy>
8618 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
8619   for (const auto &ArgIdx : enumerate(Args)) {
8620     MVT ArgVT = ArgIdx.value().VT;
8621     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
8622       return ArgIdx.index();
8623   }
8624   return None;
8625 }
8626 
8627 void RISCVTargetLowering::analyzeInputArgs(
8628     MachineFunction &MF, CCState &CCInfo,
8629     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
8630     RISCVCCAssignFn Fn) const {
8631   unsigned NumArgs = Ins.size();
8632   FunctionType *FType = MF.getFunction().getFunctionType();
8633 
8634   Optional<unsigned> FirstMaskArgument;
8635   if (Subtarget.hasVInstructions())
8636     FirstMaskArgument = preAssignMask(Ins);
8637 
8638   for (unsigned i = 0; i != NumArgs; ++i) {
8639     MVT ArgVT = Ins[i].VT;
8640     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
8641 
8642     Type *ArgTy = nullptr;
8643     if (IsRet)
8644       ArgTy = FType->getReturnType();
8645     else if (Ins[i].isOrigArg())
8646       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
8647 
8648     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8649     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8650            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
8651            FirstMaskArgument)) {
8652       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
8653                         << EVT(ArgVT).getEVTString() << '\n');
8654       llvm_unreachable(nullptr);
8655     }
8656   }
8657 }
8658 
8659 void RISCVTargetLowering::analyzeOutputArgs(
8660     MachineFunction &MF, CCState &CCInfo,
8661     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
8662     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
8663   unsigned NumArgs = Outs.size();
8664 
8665   Optional<unsigned> FirstMaskArgument;
8666   if (Subtarget.hasVInstructions())
8667     FirstMaskArgument = preAssignMask(Outs);
8668 
8669   for (unsigned i = 0; i != NumArgs; i++) {
8670     MVT ArgVT = Outs[i].VT;
8671     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
8672     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
8673 
8674     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8675     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8676            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
8677            FirstMaskArgument)) {
8678       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
8679                         << EVT(ArgVT).getEVTString() << "\n");
8680       llvm_unreachable(nullptr);
8681     }
8682   }
8683 }
8684 
8685 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
8686 // values.
8687 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
8688                                    const CCValAssign &VA, const SDLoc &DL,
8689                                    const RISCVSubtarget &Subtarget) {
8690   switch (VA.getLocInfo()) {
8691   default:
8692     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8693   case CCValAssign::Full:
8694     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
8695       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
8696     break;
8697   case CCValAssign::BCvt:
8698     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8699       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
8700     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8701       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
8702     else
8703       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
8704     break;
8705   }
8706   return Val;
8707 }
8708 
8709 // The caller is responsible for loading the full value if the argument is
8710 // passed with CCValAssign::Indirect.
8711 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
8712                                 const CCValAssign &VA, const SDLoc &DL,
8713                                 const RISCVTargetLowering &TLI) {
8714   MachineFunction &MF = DAG.getMachineFunction();
8715   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8716   EVT LocVT = VA.getLocVT();
8717   SDValue Val;
8718   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
8719   Register VReg = RegInfo.createVirtualRegister(RC);
8720   RegInfo.addLiveIn(VA.getLocReg(), VReg);
8721   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
8722 
8723   if (VA.getLocInfo() == CCValAssign::Indirect)
8724     return Val;
8725 
8726   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
8727 }
8728 
8729 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
8730                                    const CCValAssign &VA, const SDLoc &DL,
8731                                    const RISCVSubtarget &Subtarget) {
8732   EVT LocVT = VA.getLocVT();
8733 
8734   switch (VA.getLocInfo()) {
8735   default:
8736     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8737   case CCValAssign::Full:
8738     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
8739       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
8740     break;
8741   case CCValAssign::BCvt:
8742     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8743       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
8744     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8745       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
8746     else
8747       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
8748     break;
8749   }
8750   return Val;
8751 }
8752 
8753 // The caller is responsible for loading the full value if the argument is
8754 // passed with CCValAssign::Indirect.
8755 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
8756                                 const CCValAssign &VA, const SDLoc &DL) {
8757   MachineFunction &MF = DAG.getMachineFunction();
8758   MachineFrameInfo &MFI = MF.getFrameInfo();
8759   EVT LocVT = VA.getLocVT();
8760   EVT ValVT = VA.getValVT();
8761   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
8762   if (ValVT.isScalableVector()) {
8763     // When the value is a scalable vector, we save the pointer which points to
8764     // the scalable vector value in the stack. The ValVT will be the pointer
8765     // type, instead of the scalable vector type.
8766     ValVT = LocVT;
8767   }
8768   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
8769                                  /*IsImmutable=*/true);
8770   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
8771   SDValue Val;
8772 
8773   ISD::LoadExtType ExtType;
8774   switch (VA.getLocInfo()) {
8775   default:
8776     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8777   case CCValAssign::Full:
8778   case CCValAssign::Indirect:
8779   case CCValAssign::BCvt:
8780     ExtType = ISD::NON_EXTLOAD;
8781     break;
8782   }
8783   Val = DAG.getExtLoad(
8784       ExtType, DL, LocVT, Chain, FIN,
8785       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
8786   return Val;
8787 }
8788 
8789 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
8790                                        const CCValAssign &VA, const SDLoc &DL) {
8791   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
8792          "Unexpected VA");
8793   MachineFunction &MF = DAG.getMachineFunction();
8794   MachineFrameInfo &MFI = MF.getFrameInfo();
8795   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8796 
8797   if (VA.isMemLoc()) {
8798     // f64 is passed on the stack.
8799     int FI =
8800         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
8801     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8802     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
8803                        MachinePointerInfo::getFixedStack(MF, FI));
8804   }
8805 
8806   assert(VA.isRegLoc() && "Expected register VA assignment");
8807 
8808   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8809   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
8810   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
8811   SDValue Hi;
8812   if (VA.getLocReg() == RISCV::X17) {
8813     // Second half of f64 is passed on the stack.
8814     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
8815     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8816     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
8817                      MachinePointerInfo::getFixedStack(MF, FI));
8818   } else {
8819     // Second half of f64 is passed in another GPR.
8820     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8821     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
8822     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
8823   }
8824   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
8825 }
8826 
8827 // FastCC has less than 1% performance improvement for some particular
8828 // benchmark. But theoretically, it may has benenfit for some cases.
8829 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
8830                             unsigned ValNo, MVT ValVT, MVT LocVT,
8831                             CCValAssign::LocInfo LocInfo,
8832                             ISD::ArgFlagsTy ArgFlags, CCState &State,
8833                             bool IsFixed, bool IsRet, Type *OrigTy,
8834                             const RISCVTargetLowering &TLI,
8835                             Optional<unsigned> FirstMaskArgument) {
8836 
8837   // X5 and X6 might be used for save-restore libcall.
8838   static const MCPhysReg GPRList[] = {
8839       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
8840       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
8841       RISCV::X29, RISCV::X30, RISCV::X31};
8842 
8843   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8844     if (unsigned Reg = State.AllocateReg(GPRList)) {
8845       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8846       return false;
8847     }
8848   }
8849 
8850   if (LocVT == MVT::f16) {
8851     static const MCPhysReg FPR16List[] = {
8852         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
8853         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
8854         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
8855         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
8856     if (unsigned Reg = State.AllocateReg(FPR16List)) {
8857       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8858       return false;
8859     }
8860   }
8861 
8862   if (LocVT == MVT::f32) {
8863     static const MCPhysReg FPR32List[] = {
8864         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
8865         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
8866         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
8867         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
8868     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8869       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8870       return false;
8871     }
8872   }
8873 
8874   if (LocVT == MVT::f64) {
8875     static const MCPhysReg FPR64List[] = {
8876         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
8877         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
8878         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
8879         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
8880     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8881       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8882       return false;
8883     }
8884   }
8885 
8886   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
8887     unsigned Offset4 = State.AllocateStack(4, Align(4));
8888     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
8889     return false;
8890   }
8891 
8892   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
8893     unsigned Offset5 = State.AllocateStack(8, Align(8));
8894     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
8895     return false;
8896   }
8897 
8898   if (LocVT.isVector()) {
8899     if (unsigned Reg =
8900             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
8901       // Fixed-length vectors are located in the corresponding scalable-vector
8902       // container types.
8903       if (ValVT.isFixedLengthVector())
8904         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8905       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8906     } else {
8907       // Try and pass the address via a "fast" GPR.
8908       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
8909         LocInfo = CCValAssign::Indirect;
8910         LocVT = TLI.getSubtarget().getXLenVT();
8911         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
8912       } else if (ValVT.isFixedLengthVector()) {
8913         auto StackAlign =
8914             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8915         unsigned StackOffset =
8916             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
8917         State.addLoc(
8918             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8919       } else {
8920         // Can't pass scalable vectors on the stack.
8921         return true;
8922       }
8923     }
8924 
8925     return false;
8926   }
8927 
8928   return true; // CC didn't match.
8929 }
8930 
8931 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
8932                          CCValAssign::LocInfo LocInfo,
8933                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
8934 
8935   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8936     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
8937     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
8938     static const MCPhysReg GPRList[] = {
8939         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
8940         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
8941     if (unsigned Reg = State.AllocateReg(GPRList)) {
8942       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8943       return false;
8944     }
8945   }
8946 
8947   if (LocVT == MVT::f32) {
8948     // Pass in STG registers: F1, ..., F6
8949     //                        fs0 ... fs5
8950     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
8951                                           RISCV::F18_F, RISCV::F19_F,
8952                                           RISCV::F20_F, RISCV::F21_F};
8953     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8954       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8955       return false;
8956     }
8957   }
8958 
8959   if (LocVT == MVT::f64) {
8960     // Pass in STG registers: D1, ..., D6
8961     //                        fs6 ... fs11
8962     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
8963                                           RISCV::F24_D, RISCV::F25_D,
8964                                           RISCV::F26_D, RISCV::F27_D};
8965     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8966       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8967       return false;
8968     }
8969   }
8970 
8971   report_fatal_error("No registers left in GHC calling convention");
8972   return true;
8973 }
8974 
8975 // Transform physical registers into virtual registers.
8976 SDValue RISCVTargetLowering::LowerFormalArguments(
8977     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
8978     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
8979     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
8980 
8981   MachineFunction &MF = DAG.getMachineFunction();
8982 
8983   switch (CallConv) {
8984   default:
8985     report_fatal_error("Unsupported calling convention");
8986   case CallingConv::C:
8987   case CallingConv::Fast:
8988     break;
8989   case CallingConv::GHC:
8990     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
8991         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
8992       report_fatal_error(
8993         "GHC calling convention requires the F and D instruction set extensions");
8994   }
8995 
8996   const Function &Func = MF.getFunction();
8997   if (Func.hasFnAttribute("interrupt")) {
8998     if (!Func.arg_empty())
8999       report_fatal_error(
9000         "Functions with the interrupt attribute cannot have arguments!");
9001 
9002     StringRef Kind =
9003       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9004 
9005     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
9006       report_fatal_error(
9007         "Function interrupt attribute argument not supported!");
9008   }
9009 
9010   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9011   MVT XLenVT = Subtarget.getXLenVT();
9012   unsigned XLenInBytes = Subtarget.getXLen() / 8;
9013   // Used with vargs to acumulate store chains.
9014   std::vector<SDValue> OutChains;
9015 
9016   // Assign locations to all of the incoming arguments.
9017   SmallVector<CCValAssign, 16> ArgLocs;
9018   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
9019 
9020   if (CallConv == CallingConv::GHC)
9021     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
9022   else
9023     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
9024                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
9025                                                    : CC_RISCV);
9026 
9027   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
9028     CCValAssign &VA = ArgLocs[i];
9029     SDValue ArgValue;
9030     // Passing f64 on RV32D with a soft float ABI must be handled as a special
9031     // case.
9032     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
9033       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
9034     else if (VA.isRegLoc())
9035       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
9036     else
9037       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
9038 
9039     if (VA.getLocInfo() == CCValAssign::Indirect) {
9040       // If the original argument was split and passed by reference (e.g. i128
9041       // on RV32), we need to load all parts of it here (using the same
9042       // address). Vectors may be partly split to registers and partly to the
9043       // stack, in which case the base address is partly offset and subsequent
9044       // stores are relative to that.
9045       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
9046                                    MachinePointerInfo()));
9047       unsigned ArgIndex = Ins[i].OrigArgIndex;
9048       unsigned ArgPartOffset = Ins[i].PartOffset;
9049       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
9050       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
9051         CCValAssign &PartVA = ArgLocs[i + 1];
9052         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
9053         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
9054         if (PartVA.getValVT().isScalableVector())
9055           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
9056         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
9057         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
9058                                      MachinePointerInfo()));
9059         ++i;
9060       }
9061       continue;
9062     }
9063     InVals.push_back(ArgValue);
9064   }
9065 
9066   if (IsVarArg) {
9067     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
9068     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
9069     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
9070     MachineFrameInfo &MFI = MF.getFrameInfo();
9071     MachineRegisterInfo &RegInfo = MF.getRegInfo();
9072     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
9073 
9074     // Offset of the first variable argument from stack pointer, and size of
9075     // the vararg save area. For now, the varargs save area is either zero or
9076     // large enough to hold a0-a7.
9077     int VaArgOffset, VarArgsSaveSize;
9078 
9079     // If all registers are allocated, then all varargs must be passed on the
9080     // stack and we don't need to save any argregs.
9081     if (ArgRegs.size() == Idx) {
9082       VaArgOffset = CCInfo.getNextStackOffset();
9083       VarArgsSaveSize = 0;
9084     } else {
9085       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
9086       VaArgOffset = -VarArgsSaveSize;
9087     }
9088 
9089     // Record the frame index of the first variable argument
9090     // which is a value necessary to VASTART.
9091     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
9092     RVFI->setVarArgsFrameIndex(FI);
9093 
9094     // If saving an odd number of registers then create an extra stack slot to
9095     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
9096     // offsets to even-numbered registered remain 2*XLEN-aligned.
9097     if (Idx % 2) {
9098       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
9099       VarArgsSaveSize += XLenInBytes;
9100     }
9101 
9102     // Copy the integer registers that may have been used for passing varargs
9103     // to the vararg save area.
9104     for (unsigned I = Idx; I < ArgRegs.size();
9105          ++I, VaArgOffset += XLenInBytes) {
9106       const Register Reg = RegInfo.createVirtualRegister(RC);
9107       RegInfo.addLiveIn(ArgRegs[I], Reg);
9108       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
9109       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
9110       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
9111       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
9112                                    MachinePointerInfo::getFixedStack(MF, FI));
9113       cast<StoreSDNode>(Store.getNode())
9114           ->getMemOperand()
9115           ->setValue((Value *)nullptr);
9116       OutChains.push_back(Store);
9117     }
9118     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
9119   }
9120 
9121   // All stores are grouped in one node to allow the matching between
9122   // the size of Ins and InVals. This only happens for vararg functions.
9123   if (!OutChains.empty()) {
9124     OutChains.push_back(Chain);
9125     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
9126   }
9127 
9128   return Chain;
9129 }
9130 
9131 /// isEligibleForTailCallOptimization - Check whether the call is eligible
9132 /// for tail call optimization.
9133 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
9134 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
9135     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
9136     const SmallVector<CCValAssign, 16> &ArgLocs) const {
9137 
9138   auto &Callee = CLI.Callee;
9139   auto CalleeCC = CLI.CallConv;
9140   auto &Outs = CLI.Outs;
9141   auto &Caller = MF.getFunction();
9142   auto CallerCC = Caller.getCallingConv();
9143 
9144   // Exception-handling functions need a special set of instructions to
9145   // indicate a return to the hardware. Tail-calling another function would
9146   // probably break this.
9147   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
9148   // should be expanded as new function attributes are introduced.
9149   if (Caller.hasFnAttribute("interrupt"))
9150     return false;
9151 
9152   // Do not tail call opt if the stack is used to pass parameters.
9153   if (CCInfo.getNextStackOffset() != 0)
9154     return false;
9155 
9156   // Do not tail call opt if any parameters need to be passed indirectly.
9157   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
9158   // passed indirectly. So the address of the value will be passed in a
9159   // register, or if not available, then the address is put on the stack. In
9160   // order to pass indirectly, space on the stack often needs to be allocated
9161   // in order to store the value. In this case the CCInfo.getNextStackOffset()
9162   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
9163   // are passed CCValAssign::Indirect.
9164   for (auto &VA : ArgLocs)
9165     if (VA.getLocInfo() == CCValAssign::Indirect)
9166       return false;
9167 
9168   // Do not tail call opt if either caller or callee uses struct return
9169   // semantics.
9170   auto IsCallerStructRet = Caller.hasStructRetAttr();
9171   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
9172   if (IsCallerStructRet || IsCalleeStructRet)
9173     return false;
9174 
9175   // Externally-defined functions with weak linkage should not be
9176   // tail-called. The behaviour of branch instructions in this situation (as
9177   // used for tail calls) is implementation-defined, so we cannot rely on the
9178   // linker replacing the tail call with a return.
9179   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
9180     const GlobalValue *GV = G->getGlobal();
9181     if (GV->hasExternalWeakLinkage())
9182       return false;
9183   }
9184 
9185   // The callee has to preserve all registers the caller needs to preserve.
9186   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
9187   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
9188   if (CalleeCC != CallerCC) {
9189     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
9190     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
9191       return false;
9192   }
9193 
9194   // Byval parameters hand the function a pointer directly into the stack area
9195   // we want to reuse during a tail call. Working around this *is* possible
9196   // but less efficient and uglier in LowerCall.
9197   for (auto &Arg : Outs)
9198     if (Arg.Flags.isByVal())
9199       return false;
9200 
9201   return true;
9202 }
9203 
9204 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
9205   return DAG.getDataLayout().getPrefTypeAlign(
9206       VT.getTypeForEVT(*DAG.getContext()));
9207 }
9208 
9209 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
9210 // and output parameter nodes.
9211 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
9212                                        SmallVectorImpl<SDValue> &InVals) const {
9213   SelectionDAG &DAG = CLI.DAG;
9214   SDLoc &DL = CLI.DL;
9215   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
9216   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
9217   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
9218   SDValue Chain = CLI.Chain;
9219   SDValue Callee = CLI.Callee;
9220   bool &IsTailCall = CLI.IsTailCall;
9221   CallingConv::ID CallConv = CLI.CallConv;
9222   bool IsVarArg = CLI.IsVarArg;
9223   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9224   MVT XLenVT = Subtarget.getXLenVT();
9225 
9226   MachineFunction &MF = DAG.getMachineFunction();
9227 
9228   // Analyze the operands of the call, assigning locations to each operand.
9229   SmallVector<CCValAssign, 16> ArgLocs;
9230   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
9231 
9232   if (CallConv == CallingConv::GHC)
9233     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
9234   else
9235     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
9236                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
9237                                                     : CC_RISCV);
9238 
9239   // Check if it's really possible to do a tail call.
9240   if (IsTailCall)
9241     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
9242 
9243   if (IsTailCall)
9244     ++NumTailCalls;
9245   else if (CLI.CB && CLI.CB->isMustTailCall())
9246     report_fatal_error("failed to perform tail call elimination on a call "
9247                        "site marked musttail");
9248 
9249   // Get a count of how many bytes are to be pushed on the stack.
9250   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
9251 
9252   // Create local copies for byval args
9253   SmallVector<SDValue, 8> ByValArgs;
9254   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
9255     ISD::ArgFlagsTy Flags = Outs[i].Flags;
9256     if (!Flags.isByVal())
9257       continue;
9258 
9259     SDValue Arg = OutVals[i];
9260     unsigned Size = Flags.getByValSize();
9261     Align Alignment = Flags.getNonZeroByValAlign();
9262 
9263     int FI =
9264         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
9265     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
9266     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
9267 
9268     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
9269                           /*IsVolatile=*/false,
9270                           /*AlwaysInline=*/false, IsTailCall,
9271                           MachinePointerInfo(), MachinePointerInfo());
9272     ByValArgs.push_back(FIPtr);
9273   }
9274 
9275   if (!IsTailCall)
9276     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
9277 
9278   // Copy argument values to their designated locations.
9279   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
9280   SmallVector<SDValue, 8> MemOpChains;
9281   SDValue StackPtr;
9282   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
9283     CCValAssign &VA = ArgLocs[i];
9284     SDValue ArgValue = OutVals[i];
9285     ISD::ArgFlagsTy Flags = Outs[i].Flags;
9286 
9287     // Handle passing f64 on RV32D with a soft float ABI as a special case.
9288     bool IsF64OnRV32DSoftABI =
9289         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
9290     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
9291       SDValue SplitF64 = DAG.getNode(
9292           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
9293       SDValue Lo = SplitF64.getValue(0);
9294       SDValue Hi = SplitF64.getValue(1);
9295 
9296       Register RegLo = VA.getLocReg();
9297       RegsToPass.push_back(std::make_pair(RegLo, Lo));
9298 
9299       if (RegLo == RISCV::X17) {
9300         // Second half of f64 is passed on the stack.
9301         // Work out the address of the stack slot.
9302         if (!StackPtr.getNode())
9303           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
9304         // Emit the store.
9305         MemOpChains.push_back(
9306             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
9307       } else {
9308         // Second half of f64 is passed in another GPR.
9309         assert(RegLo < RISCV::X31 && "Invalid register pair");
9310         Register RegHigh = RegLo + 1;
9311         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
9312       }
9313       continue;
9314     }
9315 
9316     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
9317     // as any other MemLoc.
9318 
9319     // Promote the value if needed.
9320     // For now, only handle fully promoted and indirect arguments.
9321     if (VA.getLocInfo() == CCValAssign::Indirect) {
9322       // Store the argument in a stack slot and pass its address.
9323       Align StackAlign =
9324           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
9325                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
9326       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
9327       // If the original argument was split (e.g. i128), we need
9328       // to store the required parts of it here (and pass just one address).
9329       // Vectors may be partly split to registers and partly to the stack, in
9330       // which case the base address is partly offset and subsequent stores are
9331       // relative to that.
9332       unsigned ArgIndex = Outs[i].OrigArgIndex;
9333       unsigned ArgPartOffset = Outs[i].PartOffset;
9334       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
9335       // Calculate the total size to store. We don't have access to what we're
9336       // actually storing other than performing the loop and collecting the
9337       // info.
9338       SmallVector<std::pair<SDValue, SDValue>> Parts;
9339       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
9340         SDValue PartValue = OutVals[i + 1];
9341         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
9342         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
9343         EVT PartVT = PartValue.getValueType();
9344         if (PartVT.isScalableVector())
9345           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
9346         StoredSize += PartVT.getStoreSize();
9347         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
9348         Parts.push_back(std::make_pair(PartValue, Offset));
9349         ++i;
9350       }
9351       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
9352       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
9353       MemOpChains.push_back(
9354           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
9355                        MachinePointerInfo::getFixedStack(MF, FI)));
9356       for (const auto &Part : Parts) {
9357         SDValue PartValue = Part.first;
9358         SDValue PartOffset = Part.second;
9359         SDValue Address =
9360             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
9361         MemOpChains.push_back(
9362             DAG.getStore(Chain, DL, PartValue, Address,
9363                          MachinePointerInfo::getFixedStack(MF, FI)));
9364       }
9365       ArgValue = SpillSlot;
9366     } else {
9367       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
9368     }
9369 
9370     // Use local copy if it is a byval arg.
9371     if (Flags.isByVal())
9372       ArgValue = ByValArgs[j++];
9373 
9374     if (VA.isRegLoc()) {
9375       // Queue up the argument copies and emit them at the end.
9376       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
9377     } else {
9378       assert(VA.isMemLoc() && "Argument not register or memory");
9379       assert(!IsTailCall && "Tail call not allowed if stack is used "
9380                             "for passing parameters");
9381 
9382       // Work out the address of the stack slot.
9383       if (!StackPtr.getNode())
9384         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
9385       SDValue Address =
9386           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
9387                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
9388 
9389       // Emit the store.
9390       MemOpChains.push_back(
9391           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
9392     }
9393   }
9394 
9395   // Join the stores, which are independent of one another.
9396   if (!MemOpChains.empty())
9397     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
9398 
9399   SDValue Glue;
9400 
9401   // Build a sequence of copy-to-reg nodes, chained and glued together.
9402   for (auto &Reg : RegsToPass) {
9403     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
9404     Glue = Chain.getValue(1);
9405   }
9406 
9407   // Validate that none of the argument registers have been marked as
9408   // reserved, if so report an error. Do the same for the return address if this
9409   // is not a tailcall.
9410   validateCCReservedRegs(RegsToPass, MF);
9411   if (!IsTailCall &&
9412       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
9413     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9414         MF.getFunction(),
9415         "Return address register required, but has been reserved."});
9416 
9417   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
9418   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
9419   // split it and then direct call can be matched by PseudoCALL.
9420   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
9421     const GlobalValue *GV = S->getGlobal();
9422 
9423     unsigned OpFlags = RISCVII::MO_CALL;
9424     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
9425       OpFlags = RISCVII::MO_PLT;
9426 
9427     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
9428   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
9429     unsigned OpFlags = RISCVII::MO_CALL;
9430 
9431     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
9432                                                  nullptr))
9433       OpFlags = RISCVII::MO_PLT;
9434 
9435     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
9436   }
9437 
9438   // The first call operand is the chain and the second is the target address.
9439   SmallVector<SDValue, 8> Ops;
9440   Ops.push_back(Chain);
9441   Ops.push_back(Callee);
9442 
9443   // Add argument registers to the end of the list so that they are
9444   // known live into the call.
9445   for (auto &Reg : RegsToPass)
9446     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
9447 
9448   if (!IsTailCall) {
9449     // Add a register mask operand representing the call-preserved registers.
9450     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
9451     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
9452     assert(Mask && "Missing call preserved mask for calling convention");
9453     Ops.push_back(DAG.getRegisterMask(Mask));
9454   }
9455 
9456   // Glue the call to the argument copies, if any.
9457   if (Glue.getNode())
9458     Ops.push_back(Glue);
9459 
9460   // Emit the call.
9461   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9462 
9463   if (IsTailCall) {
9464     MF.getFrameInfo().setHasTailCall();
9465     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
9466   }
9467 
9468   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
9469   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
9470   Glue = Chain.getValue(1);
9471 
9472   // Mark the end of the call, which is glued to the call itself.
9473   Chain = DAG.getCALLSEQ_END(Chain,
9474                              DAG.getConstant(NumBytes, DL, PtrVT, true),
9475                              DAG.getConstant(0, DL, PtrVT, true),
9476                              Glue, DL);
9477   Glue = Chain.getValue(1);
9478 
9479   // Assign locations to each value returned by this call.
9480   SmallVector<CCValAssign, 16> RVLocs;
9481   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
9482   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
9483 
9484   // Copy all of the result registers out of their specified physreg.
9485   for (auto &VA : RVLocs) {
9486     // Copy the value out
9487     SDValue RetValue =
9488         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
9489     // Glue the RetValue to the end of the call sequence
9490     Chain = RetValue.getValue(1);
9491     Glue = RetValue.getValue(2);
9492 
9493     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9494       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
9495       SDValue RetValue2 =
9496           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
9497       Chain = RetValue2.getValue(1);
9498       Glue = RetValue2.getValue(2);
9499       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
9500                              RetValue2);
9501     }
9502 
9503     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
9504 
9505     InVals.push_back(RetValue);
9506   }
9507 
9508   return Chain;
9509 }
9510 
9511 bool RISCVTargetLowering::CanLowerReturn(
9512     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
9513     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
9514   SmallVector<CCValAssign, 16> RVLocs;
9515   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
9516 
9517   Optional<unsigned> FirstMaskArgument;
9518   if (Subtarget.hasVInstructions())
9519     FirstMaskArgument = preAssignMask(Outs);
9520 
9521   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
9522     MVT VT = Outs[i].VT;
9523     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9524     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9525     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
9526                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
9527                  *this, FirstMaskArgument))
9528       return false;
9529   }
9530   return true;
9531 }
9532 
9533 SDValue
9534 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
9535                                  bool IsVarArg,
9536                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
9537                                  const SmallVectorImpl<SDValue> &OutVals,
9538                                  const SDLoc &DL, SelectionDAG &DAG) const {
9539   const MachineFunction &MF = DAG.getMachineFunction();
9540   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9541 
9542   // Stores the assignment of the return value to a location.
9543   SmallVector<CCValAssign, 16> RVLocs;
9544 
9545   // Info about the registers and stack slot.
9546   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
9547                  *DAG.getContext());
9548 
9549   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
9550                     nullptr, CC_RISCV);
9551 
9552   if (CallConv == CallingConv::GHC && !RVLocs.empty())
9553     report_fatal_error("GHC functions return void only");
9554 
9555   SDValue Glue;
9556   SmallVector<SDValue, 4> RetOps(1, Chain);
9557 
9558   // Copy the result values into the output registers.
9559   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
9560     SDValue Val = OutVals[i];
9561     CCValAssign &VA = RVLocs[i];
9562     assert(VA.isRegLoc() && "Can only return in registers!");
9563 
9564     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9565       // Handle returning f64 on RV32D with a soft float ABI.
9566       assert(VA.isRegLoc() && "Expected return via registers");
9567       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
9568                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
9569       SDValue Lo = SplitF64.getValue(0);
9570       SDValue Hi = SplitF64.getValue(1);
9571       Register RegLo = VA.getLocReg();
9572       assert(RegLo < RISCV::X31 && "Invalid register pair");
9573       Register RegHi = RegLo + 1;
9574 
9575       if (STI.isRegisterReservedByUser(RegLo) ||
9576           STI.isRegisterReservedByUser(RegHi))
9577         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9578             MF.getFunction(),
9579             "Return value register required, but has been reserved."});
9580 
9581       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
9582       Glue = Chain.getValue(1);
9583       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
9584       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
9585       Glue = Chain.getValue(1);
9586       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
9587     } else {
9588       // Handle a 'normal' return.
9589       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
9590       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
9591 
9592       if (STI.isRegisterReservedByUser(VA.getLocReg()))
9593         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9594             MF.getFunction(),
9595             "Return value register required, but has been reserved."});
9596 
9597       // Guarantee that all emitted copies are stuck together.
9598       Glue = Chain.getValue(1);
9599       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
9600     }
9601   }
9602 
9603   RetOps[0] = Chain; // Update chain.
9604 
9605   // Add the glue node if we have it.
9606   if (Glue.getNode()) {
9607     RetOps.push_back(Glue);
9608   }
9609 
9610   unsigned RetOpc = RISCVISD::RET_FLAG;
9611   // Interrupt service routines use different return instructions.
9612   const Function &Func = DAG.getMachineFunction().getFunction();
9613   if (Func.hasFnAttribute("interrupt")) {
9614     if (!Func.getReturnType()->isVoidTy())
9615       report_fatal_error(
9616           "Functions with the interrupt attribute must have void return type!");
9617 
9618     MachineFunction &MF = DAG.getMachineFunction();
9619     StringRef Kind =
9620       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9621 
9622     if (Kind == "user")
9623       RetOpc = RISCVISD::URET_FLAG;
9624     else if (Kind == "supervisor")
9625       RetOpc = RISCVISD::SRET_FLAG;
9626     else
9627       RetOpc = RISCVISD::MRET_FLAG;
9628   }
9629 
9630   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
9631 }
9632 
9633 void RISCVTargetLowering::validateCCReservedRegs(
9634     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
9635     MachineFunction &MF) const {
9636   const Function &F = MF.getFunction();
9637   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9638 
9639   if (llvm::any_of(Regs, [&STI](auto Reg) {
9640         return STI.isRegisterReservedByUser(Reg.first);
9641       }))
9642     F.getContext().diagnose(DiagnosticInfoUnsupported{
9643         F, "Argument register required, but has been reserved."});
9644 }
9645 
9646 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
9647   return CI->isTailCall();
9648 }
9649 
9650 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
9651 #define NODE_NAME_CASE(NODE)                                                   \
9652   case RISCVISD::NODE:                                                         \
9653     return "RISCVISD::" #NODE;
9654   // clang-format off
9655   switch ((RISCVISD::NodeType)Opcode) {
9656   case RISCVISD::FIRST_NUMBER:
9657     break;
9658   NODE_NAME_CASE(RET_FLAG)
9659   NODE_NAME_CASE(URET_FLAG)
9660   NODE_NAME_CASE(SRET_FLAG)
9661   NODE_NAME_CASE(MRET_FLAG)
9662   NODE_NAME_CASE(CALL)
9663   NODE_NAME_CASE(SELECT_CC)
9664   NODE_NAME_CASE(BR_CC)
9665   NODE_NAME_CASE(BuildPairF64)
9666   NODE_NAME_CASE(SplitF64)
9667   NODE_NAME_CASE(TAIL)
9668   NODE_NAME_CASE(MULHSU)
9669   NODE_NAME_CASE(SLLW)
9670   NODE_NAME_CASE(SRAW)
9671   NODE_NAME_CASE(SRLW)
9672   NODE_NAME_CASE(DIVW)
9673   NODE_NAME_CASE(DIVUW)
9674   NODE_NAME_CASE(REMUW)
9675   NODE_NAME_CASE(ROLW)
9676   NODE_NAME_CASE(RORW)
9677   NODE_NAME_CASE(CLZW)
9678   NODE_NAME_CASE(CTZW)
9679   NODE_NAME_CASE(FSLW)
9680   NODE_NAME_CASE(FSRW)
9681   NODE_NAME_CASE(FSL)
9682   NODE_NAME_CASE(FSR)
9683   NODE_NAME_CASE(FMV_H_X)
9684   NODE_NAME_CASE(FMV_X_ANYEXTH)
9685   NODE_NAME_CASE(FMV_W_X_RV64)
9686   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
9687   NODE_NAME_CASE(FCVT_X)
9688   NODE_NAME_CASE(FCVT_XU)
9689   NODE_NAME_CASE(FCVT_W_RV64)
9690   NODE_NAME_CASE(FCVT_WU_RV64)
9691   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
9692   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
9693   NODE_NAME_CASE(READ_CYCLE_WIDE)
9694   NODE_NAME_CASE(GREV)
9695   NODE_NAME_CASE(GREVW)
9696   NODE_NAME_CASE(GORC)
9697   NODE_NAME_CASE(GORCW)
9698   NODE_NAME_CASE(SHFL)
9699   NODE_NAME_CASE(SHFLW)
9700   NODE_NAME_CASE(UNSHFL)
9701   NODE_NAME_CASE(UNSHFLW)
9702   NODE_NAME_CASE(BCOMPRESS)
9703   NODE_NAME_CASE(BCOMPRESSW)
9704   NODE_NAME_CASE(BDECOMPRESS)
9705   NODE_NAME_CASE(BDECOMPRESSW)
9706   NODE_NAME_CASE(VMV_V_X_VL)
9707   NODE_NAME_CASE(VFMV_V_F_VL)
9708   NODE_NAME_CASE(VMV_X_S)
9709   NODE_NAME_CASE(VMV_S_X_VL)
9710   NODE_NAME_CASE(VFMV_S_F_VL)
9711   NODE_NAME_CASE(SPLAT_VECTOR_I64)
9712   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
9713   NODE_NAME_CASE(READ_VLENB)
9714   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
9715   NODE_NAME_CASE(VSLIDEUP_VL)
9716   NODE_NAME_CASE(VSLIDE1UP_VL)
9717   NODE_NAME_CASE(VSLIDEDOWN_VL)
9718   NODE_NAME_CASE(VSLIDE1DOWN_VL)
9719   NODE_NAME_CASE(VID_VL)
9720   NODE_NAME_CASE(VFNCVT_ROD_VL)
9721   NODE_NAME_CASE(VECREDUCE_ADD_VL)
9722   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
9723   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
9724   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
9725   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
9726   NODE_NAME_CASE(VECREDUCE_AND_VL)
9727   NODE_NAME_CASE(VECREDUCE_OR_VL)
9728   NODE_NAME_CASE(VECREDUCE_XOR_VL)
9729   NODE_NAME_CASE(VECREDUCE_FADD_VL)
9730   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
9731   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
9732   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
9733   NODE_NAME_CASE(ADD_VL)
9734   NODE_NAME_CASE(AND_VL)
9735   NODE_NAME_CASE(MUL_VL)
9736   NODE_NAME_CASE(OR_VL)
9737   NODE_NAME_CASE(SDIV_VL)
9738   NODE_NAME_CASE(SHL_VL)
9739   NODE_NAME_CASE(SREM_VL)
9740   NODE_NAME_CASE(SRA_VL)
9741   NODE_NAME_CASE(SRL_VL)
9742   NODE_NAME_CASE(SUB_VL)
9743   NODE_NAME_CASE(UDIV_VL)
9744   NODE_NAME_CASE(UREM_VL)
9745   NODE_NAME_CASE(XOR_VL)
9746   NODE_NAME_CASE(SADDSAT_VL)
9747   NODE_NAME_CASE(UADDSAT_VL)
9748   NODE_NAME_CASE(SSUBSAT_VL)
9749   NODE_NAME_CASE(USUBSAT_VL)
9750   NODE_NAME_CASE(FADD_VL)
9751   NODE_NAME_CASE(FSUB_VL)
9752   NODE_NAME_CASE(FMUL_VL)
9753   NODE_NAME_CASE(FDIV_VL)
9754   NODE_NAME_CASE(FNEG_VL)
9755   NODE_NAME_CASE(FABS_VL)
9756   NODE_NAME_CASE(FSQRT_VL)
9757   NODE_NAME_CASE(FMA_VL)
9758   NODE_NAME_CASE(FCOPYSIGN_VL)
9759   NODE_NAME_CASE(SMIN_VL)
9760   NODE_NAME_CASE(SMAX_VL)
9761   NODE_NAME_CASE(UMIN_VL)
9762   NODE_NAME_CASE(UMAX_VL)
9763   NODE_NAME_CASE(FMINNUM_VL)
9764   NODE_NAME_CASE(FMAXNUM_VL)
9765   NODE_NAME_CASE(MULHS_VL)
9766   NODE_NAME_CASE(MULHU_VL)
9767   NODE_NAME_CASE(FP_TO_SINT_VL)
9768   NODE_NAME_CASE(FP_TO_UINT_VL)
9769   NODE_NAME_CASE(SINT_TO_FP_VL)
9770   NODE_NAME_CASE(UINT_TO_FP_VL)
9771   NODE_NAME_CASE(FP_EXTEND_VL)
9772   NODE_NAME_CASE(FP_ROUND_VL)
9773   NODE_NAME_CASE(VWMUL_VL)
9774   NODE_NAME_CASE(VWMULU_VL)
9775   NODE_NAME_CASE(SETCC_VL)
9776   NODE_NAME_CASE(VSELECT_VL)
9777   NODE_NAME_CASE(VMAND_VL)
9778   NODE_NAME_CASE(VMOR_VL)
9779   NODE_NAME_CASE(VMXOR_VL)
9780   NODE_NAME_CASE(VMCLR_VL)
9781   NODE_NAME_CASE(VMSET_VL)
9782   NODE_NAME_CASE(VRGATHER_VX_VL)
9783   NODE_NAME_CASE(VRGATHER_VV_VL)
9784   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
9785   NODE_NAME_CASE(VSEXT_VL)
9786   NODE_NAME_CASE(VZEXT_VL)
9787   NODE_NAME_CASE(VCPOP_VL)
9788   NODE_NAME_CASE(VLE_VL)
9789   NODE_NAME_CASE(VSE_VL)
9790   NODE_NAME_CASE(READ_CSR)
9791   NODE_NAME_CASE(WRITE_CSR)
9792   NODE_NAME_CASE(SWAP_CSR)
9793   }
9794   // clang-format on
9795   return nullptr;
9796 #undef NODE_NAME_CASE
9797 }
9798 
9799 /// getConstraintType - Given a constraint letter, return the type of
9800 /// constraint it is for this target.
9801 RISCVTargetLowering::ConstraintType
9802 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
9803   if (Constraint.size() == 1) {
9804     switch (Constraint[0]) {
9805     default:
9806       break;
9807     case 'f':
9808       return C_RegisterClass;
9809     case 'I':
9810     case 'J':
9811     case 'K':
9812       return C_Immediate;
9813     case 'A':
9814       return C_Memory;
9815     case 'S': // A symbolic address
9816       return C_Other;
9817     }
9818   } else {
9819     if (Constraint == "vr" || Constraint == "vm")
9820       return C_RegisterClass;
9821   }
9822   return TargetLowering::getConstraintType(Constraint);
9823 }
9824 
9825 std::pair<unsigned, const TargetRegisterClass *>
9826 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
9827                                                   StringRef Constraint,
9828                                                   MVT VT) const {
9829   // First, see if this is a constraint that directly corresponds to a
9830   // RISCV register class.
9831   if (Constraint.size() == 1) {
9832     switch (Constraint[0]) {
9833     case 'r':
9834       // TODO: Support fixed vectors up to XLen for P extension?
9835       if (VT.isVector())
9836         break;
9837       return std::make_pair(0U, &RISCV::GPRRegClass);
9838     case 'f':
9839       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
9840         return std::make_pair(0U, &RISCV::FPR16RegClass);
9841       if (Subtarget.hasStdExtF() && VT == MVT::f32)
9842         return std::make_pair(0U, &RISCV::FPR32RegClass);
9843       if (Subtarget.hasStdExtD() && VT == MVT::f64)
9844         return std::make_pair(0U, &RISCV::FPR64RegClass);
9845       break;
9846     default:
9847       break;
9848     }
9849   } else if (Constraint == "vr") {
9850     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
9851                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9852       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
9853         return std::make_pair(0U, RC);
9854     }
9855   } else if (Constraint == "vm") {
9856     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
9857       return std::make_pair(0U, &RISCV::VMV0RegClass);
9858   }
9859 
9860   // Clang will correctly decode the usage of register name aliases into their
9861   // official names. However, other frontends like `rustc` do not. This allows
9862   // users of these frontends to use the ABI names for registers in LLVM-style
9863   // register constraints.
9864   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
9865                                .Case("{zero}", RISCV::X0)
9866                                .Case("{ra}", RISCV::X1)
9867                                .Case("{sp}", RISCV::X2)
9868                                .Case("{gp}", RISCV::X3)
9869                                .Case("{tp}", RISCV::X4)
9870                                .Case("{t0}", RISCV::X5)
9871                                .Case("{t1}", RISCV::X6)
9872                                .Case("{t2}", RISCV::X7)
9873                                .Cases("{s0}", "{fp}", RISCV::X8)
9874                                .Case("{s1}", RISCV::X9)
9875                                .Case("{a0}", RISCV::X10)
9876                                .Case("{a1}", RISCV::X11)
9877                                .Case("{a2}", RISCV::X12)
9878                                .Case("{a3}", RISCV::X13)
9879                                .Case("{a4}", RISCV::X14)
9880                                .Case("{a5}", RISCV::X15)
9881                                .Case("{a6}", RISCV::X16)
9882                                .Case("{a7}", RISCV::X17)
9883                                .Case("{s2}", RISCV::X18)
9884                                .Case("{s3}", RISCV::X19)
9885                                .Case("{s4}", RISCV::X20)
9886                                .Case("{s5}", RISCV::X21)
9887                                .Case("{s6}", RISCV::X22)
9888                                .Case("{s7}", RISCV::X23)
9889                                .Case("{s8}", RISCV::X24)
9890                                .Case("{s9}", RISCV::X25)
9891                                .Case("{s10}", RISCV::X26)
9892                                .Case("{s11}", RISCV::X27)
9893                                .Case("{t3}", RISCV::X28)
9894                                .Case("{t4}", RISCV::X29)
9895                                .Case("{t5}", RISCV::X30)
9896                                .Case("{t6}", RISCV::X31)
9897                                .Default(RISCV::NoRegister);
9898   if (XRegFromAlias != RISCV::NoRegister)
9899     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
9900 
9901   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
9902   // TableGen record rather than the AsmName to choose registers for InlineAsm
9903   // constraints, plus we want to match those names to the widest floating point
9904   // register type available, manually select floating point registers here.
9905   //
9906   // The second case is the ABI name of the register, so that frontends can also
9907   // use the ABI names in register constraint lists.
9908   if (Subtarget.hasStdExtF()) {
9909     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
9910                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
9911                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
9912                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
9913                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
9914                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
9915                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
9916                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
9917                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
9918                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
9919                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
9920                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
9921                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
9922                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
9923                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
9924                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
9925                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
9926                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
9927                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
9928                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
9929                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
9930                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
9931                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
9932                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
9933                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
9934                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
9935                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
9936                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
9937                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
9938                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
9939                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
9940                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
9941                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
9942                         .Default(RISCV::NoRegister);
9943     if (FReg != RISCV::NoRegister) {
9944       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
9945       if (Subtarget.hasStdExtD()) {
9946         unsigned RegNo = FReg - RISCV::F0_F;
9947         unsigned DReg = RISCV::F0_D + RegNo;
9948         return std::make_pair(DReg, &RISCV::FPR64RegClass);
9949       }
9950       return std::make_pair(FReg, &RISCV::FPR32RegClass);
9951     }
9952   }
9953 
9954   if (Subtarget.hasVInstructions()) {
9955     Register VReg = StringSwitch<Register>(Constraint.lower())
9956                         .Case("{v0}", RISCV::V0)
9957                         .Case("{v1}", RISCV::V1)
9958                         .Case("{v2}", RISCV::V2)
9959                         .Case("{v3}", RISCV::V3)
9960                         .Case("{v4}", RISCV::V4)
9961                         .Case("{v5}", RISCV::V5)
9962                         .Case("{v6}", RISCV::V6)
9963                         .Case("{v7}", RISCV::V7)
9964                         .Case("{v8}", RISCV::V8)
9965                         .Case("{v9}", RISCV::V9)
9966                         .Case("{v10}", RISCV::V10)
9967                         .Case("{v11}", RISCV::V11)
9968                         .Case("{v12}", RISCV::V12)
9969                         .Case("{v13}", RISCV::V13)
9970                         .Case("{v14}", RISCV::V14)
9971                         .Case("{v15}", RISCV::V15)
9972                         .Case("{v16}", RISCV::V16)
9973                         .Case("{v17}", RISCV::V17)
9974                         .Case("{v18}", RISCV::V18)
9975                         .Case("{v19}", RISCV::V19)
9976                         .Case("{v20}", RISCV::V20)
9977                         .Case("{v21}", RISCV::V21)
9978                         .Case("{v22}", RISCV::V22)
9979                         .Case("{v23}", RISCV::V23)
9980                         .Case("{v24}", RISCV::V24)
9981                         .Case("{v25}", RISCV::V25)
9982                         .Case("{v26}", RISCV::V26)
9983                         .Case("{v27}", RISCV::V27)
9984                         .Case("{v28}", RISCV::V28)
9985                         .Case("{v29}", RISCV::V29)
9986                         .Case("{v30}", RISCV::V30)
9987                         .Case("{v31}", RISCV::V31)
9988                         .Default(RISCV::NoRegister);
9989     if (VReg != RISCV::NoRegister) {
9990       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
9991         return std::make_pair(VReg, &RISCV::VMRegClass);
9992       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
9993         return std::make_pair(VReg, &RISCV::VRRegClass);
9994       for (const auto *RC :
9995            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9996         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
9997           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
9998           return std::make_pair(VReg, RC);
9999         }
10000       }
10001     }
10002   }
10003 
10004   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10005 }
10006 
10007 unsigned
10008 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
10009   // Currently only support length 1 constraints.
10010   if (ConstraintCode.size() == 1) {
10011     switch (ConstraintCode[0]) {
10012     case 'A':
10013       return InlineAsm::Constraint_A;
10014     default:
10015       break;
10016     }
10017   }
10018 
10019   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
10020 }
10021 
10022 void RISCVTargetLowering::LowerAsmOperandForConstraint(
10023     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
10024     SelectionDAG &DAG) const {
10025   // Currently only support length 1 constraints.
10026   if (Constraint.length() == 1) {
10027     switch (Constraint[0]) {
10028     case 'I':
10029       // Validate & create a 12-bit signed immediate operand.
10030       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
10031         uint64_t CVal = C->getSExtValue();
10032         if (isInt<12>(CVal))
10033           Ops.push_back(
10034               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
10035       }
10036       return;
10037     case 'J':
10038       // Validate & create an integer zero operand.
10039       if (auto *C = dyn_cast<ConstantSDNode>(Op))
10040         if (C->getZExtValue() == 0)
10041           Ops.push_back(
10042               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
10043       return;
10044     case 'K':
10045       // Validate & create a 5-bit unsigned immediate operand.
10046       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
10047         uint64_t CVal = C->getZExtValue();
10048         if (isUInt<5>(CVal))
10049           Ops.push_back(
10050               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
10051       }
10052       return;
10053     case 'S':
10054       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
10055         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
10056                                                  GA->getValueType(0)));
10057       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
10058         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
10059                                                 BA->getValueType(0)));
10060       }
10061       return;
10062     default:
10063       break;
10064     }
10065   }
10066   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10067 }
10068 
10069 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
10070                                                    Instruction *Inst,
10071                                                    AtomicOrdering Ord) const {
10072   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
10073     return Builder.CreateFence(Ord);
10074   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
10075     return Builder.CreateFence(AtomicOrdering::Release);
10076   return nullptr;
10077 }
10078 
10079 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
10080                                                     Instruction *Inst,
10081                                                     AtomicOrdering Ord) const {
10082   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
10083     return Builder.CreateFence(AtomicOrdering::Acquire);
10084   return nullptr;
10085 }
10086 
10087 TargetLowering::AtomicExpansionKind
10088 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
10089   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
10090   // point operations can't be used in an lr/sc sequence without breaking the
10091   // forward-progress guarantee.
10092   if (AI->isFloatingPointOperation())
10093     return AtomicExpansionKind::CmpXChg;
10094 
10095   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
10096   if (Size == 8 || Size == 16)
10097     return AtomicExpansionKind::MaskedIntrinsic;
10098   return AtomicExpansionKind::None;
10099 }
10100 
10101 static Intrinsic::ID
10102 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
10103   if (XLen == 32) {
10104     switch (BinOp) {
10105     default:
10106       llvm_unreachable("Unexpected AtomicRMW BinOp");
10107     case AtomicRMWInst::Xchg:
10108       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
10109     case AtomicRMWInst::Add:
10110       return Intrinsic::riscv_masked_atomicrmw_add_i32;
10111     case AtomicRMWInst::Sub:
10112       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
10113     case AtomicRMWInst::Nand:
10114       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
10115     case AtomicRMWInst::Max:
10116       return Intrinsic::riscv_masked_atomicrmw_max_i32;
10117     case AtomicRMWInst::Min:
10118       return Intrinsic::riscv_masked_atomicrmw_min_i32;
10119     case AtomicRMWInst::UMax:
10120       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
10121     case AtomicRMWInst::UMin:
10122       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
10123     }
10124   }
10125 
10126   if (XLen == 64) {
10127     switch (BinOp) {
10128     default:
10129       llvm_unreachable("Unexpected AtomicRMW BinOp");
10130     case AtomicRMWInst::Xchg:
10131       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
10132     case AtomicRMWInst::Add:
10133       return Intrinsic::riscv_masked_atomicrmw_add_i64;
10134     case AtomicRMWInst::Sub:
10135       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
10136     case AtomicRMWInst::Nand:
10137       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
10138     case AtomicRMWInst::Max:
10139       return Intrinsic::riscv_masked_atomicrmw_max_i64;
10140     case AtomicRMWInst::Min:
10141       return Intrinsic::riscv_masked_atomicrmw_min_i64;
10142     case AtomicRMWInst::UMax:
10143       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
10144     case AtomicRMWInst::UMin:
10145       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
10146     }
10147   }
10148 
10149   llvm_unreachable("Unexpected XLen\n");
10150 }
10151 
10152 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
10153     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
10154     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
10155   unsigned XLen = Subtarget.getXLen();
10156   Value *Ordering =
10157       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
10158   Type *Tys[] = {AlignedAddr->getType()};
10159   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
10160       AI->getModule(),
10161       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
10162 
10163   if (XLen == 64) {
10164     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
10165     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
10166     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
10167   }
10168 
10169   Value *Result;
10170 
10171   // Must pass the shift amount needed to sign extend the loaded value prior
10172   // to performing a signed comparison for min/max. ShiftAmt is the number of
10173   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
10174   // is the number of bits to left+right shift the value in order to
10175   // sign-extend.
10176   if (AI->getOperation() == AtomicRMWInst::Min ||
10177       AI->getOperation() == AtomicRMWInst::Max) {
10178     const DataLayout &DL = AI->getModule()->getDataLayout();
10179     unsigned ValWidth =
10180         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
10181     Value *SextShamt =
10182         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
10183     Result = Builder.CreateCall(LrwOpScwLoop,
10184                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
10185   } else {
10186     Result =
10187         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
10188   }
10189 
10190   if (XLen == 64)
10191     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
10192   return Result;
10193 }
10194 
10195 TargetLowering::AtomicExpansionKind
10196 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
10197     AtomicCmpXchgInst *CI) const {
10198   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
10199   if (Size == 8 || Size == 16)
10200     return AtomicExpansionKind::MaskedIntrinsic;
10201   return AtomicExpansionKind::None;
10202 }
10203 
10204 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
10205     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
10206     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
10207   unsigned XLen = Subtarget.getXLen();
10208   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
10209   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
10210   if (XLen == 64) {
10211     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
10212     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
10213     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
10214     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
10215   }
10216   Type *Tys[] = {AlignedAddr->getType()};
10217   Function *MaskedCmpXchg =
10218       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
10219   Value *Result = Builder.CreateCall(
10220       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
10221   if (XLen == 64)
10222     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
10223   return Result;
10224 }
10225 
10226 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
10227   return false;
10228 }
10229 
10230 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
10231                                                EVT VT) const {
10232   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
10233     return false;
10234 
10235   switch (FPVT.getSimpleVT().SimpleTy) {
10236   case MVT::f16:
10237     return Subtarget.hasStdExtZfh();
10238   case MVT::f32:
10239     return Subtarget.hasStdExtF();
10240   case MVT::f64:
10241     return Subtarget.hasStdExtD();
10242   default:
10243     return false;
10244   }
10245 }
10246 
10247 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
10248   // If we are using the small code model, we can reduce size of jump table
10249   // entry to 4 bytes.
10250   if (Subtarget.is64Bit() && !isPositionIndependent() &&
10251       getTargetMachine().getCodeModel() == CodeModel::Small) {
10252     return MachineJumpTableInfo::EK_Custom32;
10253   }
10254   return TargetLowering::getJumpTableEncoding();
10255 }
10256 
10257 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
10258     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
10259     unsigned uid, MCContext &Ctx) const {
10260   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
10261          getTargetMachine().getCodeModel() == CodeModel::Small);
10262   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
10263 }
10264 
10265 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
10266                                                      EVT VT) const {
10267   VT = VT.getScalarType();
10268 
10269   if (!VT.isSimple())
10270     return false;
10271 
10272   switch (VT.getSimpleVT().SimpleTy) {
10273   case MVT::f16:
10274     return Subtarget.hasStdExtZfh();
10275   case MVT::f32:
10276     return Subtarget.hasStdExtF();
10277   case MVT::f64:
10278     return Subtarget.hasStdExtD();
10279   default:
10280     break;
10281   }
10282 
10283   return false;
10284 }
10285 
10286 Register RISCVTargetLowering::getExceptionPointerRegister(
10287     const Constant *PersonalityFn) const {
10288   return RISCV::X10;
10289 }
10290 
10291 Register RISCVTargetLowering::getExceptionSelectorRegister(
10292     const Constant *PersonalityFn) const {
10293   return RISCV::X11;
10294 }
10295 
10296 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
10297   // Return false to suppress the unnecessary extensions if the LibCall
10298   // arguments or return value is f32 type for LP64 ABI.
10299   RISCVABI::ABI ABI = Subtarget.getTargetABI();
10300   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
10301     return false;
10302 
10303   return true;
10304 }
10305 
10306 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
10307   if (Subtarget.is64Bit() && Type == MVT::i32)
10308     return true;
10309 
10310   return IsSigned;
10311 }
10312 
10313 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
10314                                                  SDValue C) const {
10315   // Check integral scalar types.
10316   if (VT.isScalarInteger()) {
10317     // Omit the optimization if the sub target has the M extension and the data
10318     // size exceeds XLen.
10319     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
10320       return false;
10321     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
10322       // Break the MUL to a SLLI and an ADD/SUB.
10323       const APInt &Imm = ConstNode->getAPIntValue();
10324       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
10325           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
10326         return true;
10327       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
10328       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
10329           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
10330            (Imm - 8).isPowerOf2()))
10331         return true;
10332       // Omit the following optimization if the sub target has the M extension
10333       // and the data size >= XLen.
10334       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
10335         return false;
10336       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
10337       // a pair of LUI/ADDI.
10338       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
10339         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
10340         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
10341             (1 - ImmS).isPowerOf2())
10342         return true;
10343       }
10344     }
10345   }
10346 
10347   return false;
10348 }
10349 
10350 bool RISCVTargetLowering::isMulAddWithConstProfitable(
10351     const SDValue &AddNode, const SDValue &ConstNode) const {
10352   // Let the DAGCombiner decide for vectors.
10353   EVT VT = AddNode.getValueType();
10354   if (VT.isVector())
10355     return true;
10356 
10357   // Let the DAGCombiner decide for larger types.
10358   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
10359     return true;
10360 
10361   // It is worse if c1 is simm12 while c1*c2 is not.
10362   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
10363   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
10364   const APInt &C1 = C1Node->getAPIntValue();
10365   const APInt &C2 = C2Node->getAPIntValue();
10366   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
10367     return false;
10368 
10369   // Default to true and let the DAGCombiner decide.
10370   return true;
10371 }
10372 
10373 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
10374     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
10375     bool *Fast) const {
10376   if (!VT.isVector())
10377     return false;
10378 
10379   EVT ElemVT = VT.getVectorElementType();
10380   if (Alignment >= ElemVT.getStoreSize()) {
10381     if (Fast)
10382       *Fast = true;
10383     return true;
10384   }
10385 
10386   return false;
10387 }
10388 
10389 bool RISCVTargetLowering::splitValueIntoRegisterParts(
10390     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
10391     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
10392   bool IsABIRegCopy = CC.hasValue();
10393   EVT ValueVT = Val.getValueType();
10394   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
10395     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
10396     // and cast to f32.
10397     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
10398     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
10399     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
10400                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
10401     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
10402     Parts[0] = Val;
10403     return true;
10404   }
10405 
10406   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
10407     LLVMContext &Context = *DAG.getContext();
10408     EVT ValueEltVT = ValueVT.getVectorElementType();
10409     EVT PartEltVT = PartVT.getVectorElementType();
10410     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
10411     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
10412     if (PartVTBitSize % ValueVTBitSize == 0) {
10413       assert(PartVTBitSize >= ValueVTBitSize);
10414       // If the element types are different, bitcast to the same element type of
10415       // PartVT first.
10416       // Give an example here, we want copy a <vscale x 1 x i8> value to
10417       // <vscale x 4 x i16>.
10418       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
10419       // subvector, then we can bitcast to <vscale x 4 x i16>.
10420       if (ValueEltVT != PartEltVT) {
10421         if (PartVTBitSize > ValueVTBitSize) {
10422           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
10423           assert(Count != 0 && "The number of element should not be zero.");
10424           EVT SameEltTypeVT =
10425               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
10426           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
10427                             DAG.getUNDEF(SameEltTypeVT), Val,
10428                             DAG.getVectorIdxConstant(0, DL));
10429         }
10430         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
10431       } else {
10432         Val =
10433             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
10434                         Val, DAG.getVectorIdxConstant(0, DL));
10435       }
10436       Parts[0] = Val;
10437       return true;
10438     }
10439   }
10440   return false;
10441 }
10442 
10443 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
10444     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
10445     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
10446   bool IsABIRegCopy = CC.hasValue();
10447   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
10448     SDValue Val = Parts[0];
10449 
10450     // Cast the f32 to i32, truncate to i16, and cast back to f16.
10451     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
10452     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
10453     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
10454     return Val;
10455   }
10456 
10457   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
10458     LLVMContext &Context = *DAG.getContext();
10459     SDValue Val = Parts[0];
10460     EVT ValueEltVT = ValueVT.getVectorElementType();
10461     EVT PartEltVT = PartVT.getVectorElementType();
10462     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
10463     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
10464     if (PartVTBitSize % ValueVTBitSize == 0) {
10465       assert(PartVTBitSize >= ValueVTBitSize);
10466       EVT SameEltTypeVT = ValueVT;
10467       // If the element types are different, convert it to the same element type
10468       // of PartVT.
10469       // Give an example here, we want copy a <vscale x 1 x i8> value from
10470       // <vscale x 4 x i16>.
10471       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
10472       // then we can extract <vscale x 1 x i8>.
10473       if (ValueEltVT != PartEltVT) {
10474         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
10475         assert(Count != 0 && "The number of element should not be zero.");
10476         SameEltTypeVT =
10477             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
10478         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
10479       }
10480       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
10481                         DAG.getVectorIdxConstant(0, DL));
10482       return Val;
10483     }
10484   }
10485   return SDValue();
10486 }
10487 
10488 SDValue
10489 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
10490                                    SelectionDAG &DAG,
10491                                    SmallVectorImpl<SDNode *> &Created) const {
10492   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
10493   if (isIntDivCheap(N->getValueType(0), Attr))
10494     return SDValue(N, 0); // Lower SDIV as SDIV
10495 
10496   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
10497          "Unexpected divisor!");
10498 
10499   // Conditional move is needed, so do the transformation iff Zbt is enabled.
10500   if (!Subtarget.hasStdExtZbt())
10501     return SDValue();
10502 
10503   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
10504   // Besides, more critical path instructions will be generated when dividing
10505   // by 2. So we keep using the original DAGs for these cases.
10506   unsigned Lg2 = Divisor.countTrailingZeros();
10507   if (Lg2 == 1 || Lg2 >= 12)
10508     return SDValue();
10509 
10510   // fold (sdiv X, pow2)
10511   EVT VT = N->getValueType(0);
10512   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
10513     return SDValue();
10514 
10515   SDLoc DL(N);
10516   SDValue N0 = N->getOperand(0);
10517   SDValue Zero = DAG.getConstant(0, DL, VT);
10518   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
10519 
10520   // Add (N0 < 0) ? Pow2 - 1 : 0;
10521   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
10522   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
10523   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
10524 
10525   Created.push_back(Cmp.getNode());
10526   Created.push_back(Add.getNode());
10527   Created.push_back(Sel.getNode());
10528 
10529   // Divide by pow2.
10530   SDValue SRA =
10531       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
10532 
10533   // If we're dividing by a positive value, we're done.  Otherwise, we must
10534   // negate the result.
10535   if (Divisor.isNonNegative())
10536     return SRA;
10537 
10538   Created.push_back(SRA.getNode());
10539   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
10540 }
10541 
10542 #define GET_REGISTER_MATCHER
10543 #include "RISCVGenAsmMatcher.inc"
10544 
10545 Register
10546 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
10547                                        const MachineFunction &MF) const {
10548   Register Reg = MatchRegisterAltName(RegName);
10549   if (Reg == RISCV::NoRegister)
10550     Reg = MatchRegisterName(RegName);
10551   if (Reg == RISCV::NoRegister)
10552     report_fatal_error(
10553         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
10554   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
10555   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
10556     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
10557                              StringRef(RegName) + "\"."));
10558   return Reg;
10559 }
10560 
10561 namespace llvm {
10562 namespace RISCVVIntrinsicsTable {
10563 
10564 #define GET_RISCVVIntrinsicsTable_IMPL
10565 #include "RISCVGenSearchableTables.inc"
10566 
10567 } // namespace RISCVVIntrinsicsTable
10568 
10569 } // namespace llvm
10570